xref: /openbmc/linux/kernel/sched/core.c (revision 11c416e3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 #include <linux/scs.h>
15 
16 #include <asm/switch_to.h>
17 #include <asm/tlb.h>
18 
19 #include "../workqueue_internal.h"
20 #include "../../fs/io-wq.h"
21 #include "../smpboot.h"
22 
23 #include "pelt.h"
24 #include "smp.h"
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/sched.h>
28 
29 /*
30  * Export tracepoints that act as a bare tracehook (ie: have no trace event
31  * associated with them) to allow external modules to probe them.
32  */
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
39 
40 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
41 
42 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
43 /*
44  * Debugging: various feature bits
45  *
46  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
47  * sysctl_sched_features, defined in sched.h, to allow constants propagation
48  * at compile time and compiler optimization based on features default.
49  */
50 #define SCHED_FEAT(name, enabled)	\
51 	(1UL << __SCHED_FEAT_##name) * enabled |
52 const_debug unsigned int sysctl_sched_features =
53 #include "features.h"
54 	0;
55 #undef SCHED_FEAT
56 #endif
57 
58 /*
59  * Number of tasks to iterate in a single balance run.
60  * Limited because this is done with IRQs disabled.
61  */
62 const_debug unsigned int sysctl_sched_nr_migrate = 32;
63 
64 /*
65  * period over which we measure -rt task CPU usage in us.
66  * default: 1s
67  */
68 unsigned int sysctl_sched_rt_period = 1000000;
69 
70 __read_mostly int scheduler_running;
71 
72 /*
73  * part of the period that we allow rt tasks to run in us.
74  * default: 0.95s
75  */
76 int sysctl_sched_rt_runtime = 950000;
77 
78 /*
79  * __task_rq_lock - lock the rq @p resides on.
80  */
81 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
82 	__acquires(rq->lock)
83 {
84 	struct rq *rq;
85 
86 	lockdep_assert_held(&p->pi_lock);
87 
88 	for (;;) {
89 		rq = task_rq(p);
90 		raw_spin_lock(&rq->lock);
91 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
92 			rq_pin_lock(rq, rf);
93 			return rq;
94 		}
95 		raw_spin_unlock(&rq->lock);
96 
97 		while (unlikely(task_on_rq_migrating(p)))
98 			cpu_relax();
99 	}
100 }
101 
102 /*
103  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
104  */
105 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
106 	__acquires(p->pi_lock)
107 	__acquires(rq->lock)
108 {
109 	struct rq *rq;
110 
111 	for (;;) {
112 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
113 		rq = task_rq(p);
114 		raw_spin_lock(&rq->lock);
115 		/*
116 		 *	move_queued_task()		task_rq_lock()
117 		 *
118 		 *	ACQUIRE (rq->lock)
119 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
120 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
121 		 *	[S] ->cpu = new_cpu		[L] task_rq()
122 		 *					[L] ->on_rq
123 		 *	RELEASE (rq->lock)
124 		 *
125 		 * If we observe the old CPU in task_rq_lock(), the acquire of
126 		 * the old rq->lock will fully serialize against the stores.
127 		 *
128 		 * If we observe the new CPU in task_rq_lock(), the address
129 		 * dependency headed by '[L] rq = task_rq()' and the acquire
130 		 * will pair with the WMB to ensure we then also see migrating.
131 		 */
132 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
133 			rq_pin_lock(rq, rf);
134 			return rq;
135 		}
136 		raw_spin_unlock(&rq->lock);
137 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
138 
139 		while (unlikely(task_on_rq_migrating(p)))
140 			cpu_relax();
141 	}
142 }
143 
144 /*
145  * RQ-clock updating methods:
146  */
147 
148 static void update_rq_clock_task(struct rq *rq, s64 delta)
149 {
150 /*
151  * In theory, the compile should just see 0 here, and optimize out the call
152  * to sched_rt_avg_update. But I don't trust it...
153  */
154 	s64 __maybe_unused steal = 0, irq_delta = 0;
155 
156 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
157 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
158 
159 	/*
160 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
161 	 * this case when a previous update_rq_clock() happened inside a
162 	 * {soft,}irq region.
163 	 *
164 	 * When this happens, we stop ->clock_task and only update the
165 	 * prev_irq_time stamp to account for the part that fit, so that a next
166 	 * update will consume the rest. This ensures ->clock_task is
167 	 * monotonic.
168 	 *
169 	 * It does however cause some slight miss-attribution of {soft,}irq
170 	 * time, a more accurate solution would be to update the irq_time using
171 	 * the current rq->clock timestamp, except that would require using
172 	 * atomic ops.
173 	 */
174 	if (irq_delta > delta)
175 		irq_delta = delta;
176 
177 	rq->prev_irq_time += irq_delta;
178 	delta -= irq_delta;
179 #endif
180 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
181 	if (static_key_false((&paravirt_steal_rq_enabled))) {
182 		steal = paravirt_steal_clock(cpu_of(rq));
183 		steal -= rq->prev_steal_time_rq;
184 
185 		if (unlikely(steal > delta))
186 			steal = delta;
187 
188 		rq->prev_steal_time_rq += steal;
189 		delta -= steal;
190 	}
191 #endif
192 
193 	rq->clock_task += delta;
194 
195 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
196 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
197 		update_irq_load_avg(rq, irq_delta + steal);
198 #endif
199 	update_rq_clock_pelt(rq, delta);
200 }
201 
202 void update_rq_clock(struct rq *rq)
203 {
204 	s64 delta;
205 
206 	lockdep_assert_held(&rq->lock);
207 
208 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
209 		return;
210 
211 #ifdef CONFIG_SCHED_DEBUG
212 	if (sched_feat(WARN_DOUBLE_CLOCK))
213 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
214 	rq->clock_update_flags |= RQCF_UPDATED;
215 #endif
216 
217 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
218 	if (delta < 0)
219 		return;
220 	rq->clock += delta;
221 	update_rq_clock_task(rq, delta);
222 }
223 
224 static inline void
225 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
226 {
227 	csd->flags = 0;
228 	csd->func = func;
229 	csd->info = rq;
230 }
231 
232 #ifdef CONFIG_SCHED_HRTICK
233 /*
234  * Use HR-timers to deliver accurate preemption points.
235  */
236 
237 static void hrtick_clear(struct rq *rq)
238 {
239 	if (hrtimer_active(&rq->hrtick_timer))
240 		hrtimer_cancel(&rq->hrtick_timer);
241 }
242 
243 /*
244  * High-resolution timer tick.
245  * Runs from hardirq context with interrupts disabled.
246  */
247 static enum hrtimer_restart hrtick(struct hrtimer *timer)
248 {
249 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
250 	struct rq_flags rf;
251 
252 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
253 
254 	rq_lock(rq, &rf);
255 	update_rq_clock(rq);
256 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
257 	rq_unlock(rq, &rf);
258 
259 	return HRTIMER_NORESTART;
260 }
261 
262 #ifdef CONFIG_SMP
263 
264 static void __hrtick_restart(struct rq *rq)
265 {
266 	struct hrtimer *timer = &rq->hrtick_timer;
267 
268 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
269 }
270 
271 /*
272  * called from hardirq (IPI) context
273  */
274 static void __hrtick_start(void *arg)
275 {
276 	struct rq *rq = arg;
277 	struct rq_flags rf;
278 
279 	rq_lock(rq, &rf);
280 	__hrtick_restart(rq);
281 	rq_unlock(rq, &rf);
282 }
283 
284 /*
285  * Called to set the hrtick timer state.
286  *
287  * called with rq->lock held and irqs disabled
288  */
289 void hrtick_start(struct rq *rq, u64 delay)
290 {
291 	struct hrtimer *timer = &rq->hrtick_timer;
292 	ktime_t time;
293 	s64 delta;
294 
295 	/*
296 	 * Don't schedule slices shorter than 10000ns, that just
297 	 * doesn't make sense and can cause timer DoS.
298 	 */
299 	delta = max_t(s64, delay, 10000LL);
300 	time = ktime_add_ns(timer->base->get_time(), delta);
301 
302 	hrtimer_set_expires(timer, time);
303 
304 	if (rq == this_rq())
305 		__hrtick_restart(rq);
306 	else
307 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
308 }
309 
310 #else
311 /*
312  * Called to set the hrtick timer state.
313  *
314  * called with rq->lock held and irqs disabled
315  */
316 void hrtick_start(struct rq *rq, u64 delay)
317 {
318 	/*
319 	 * Don't schedule slices shorter than 10000ns, that just
320 	 * doesn't make sense. Rely on vruntime for fairness.
321 	 */
322 	delay = max_t(u64, delay, 10000LL);
323 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
324 		      HRTIMER_MODE_REL_PINNED_HARD);
325 }
326 
327 #endif /* CONFIG_SMP */
328 
329 static void hrtick_rq_init(struct rq *rq)
330 {
331 #ifdef CONFIG_SMP
332 	rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
333 #endif
334 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
335 	rq->hrtick_timer.function = hrtick;
336 }
337 #else	/* CONFIG_SCHED_HRTICK */
338 static inline void hrtick_clear(struct rq *rq)
339 {
340 }
341 
342 static inline void hrtick_rq_init(struct rq *rq)
343 {
344 }
345 #endif	/* CONFIG_SCHED_HRTICK */
346 
347 /*
348  * cmpxchg based fetch_or, macro so it works for different integer types
349  */
350 #define fetch_or(ptr, mask)						\
351 	({								\
352 		typeof(ptr) _ptr = (ptr);				\
353 		typeof(mask) _mask = (mask);				\
354 		typeof(*_ptr) _old, _val = *_ptr;			\
355 									\
356 		for (;;) {						\
357 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
358 			if (_old == _val)				\
359 				break;					\
360 			_val = _old;					\
361 		}							\
362 	_old;								\
363 })
364 
365 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
366 /*
367  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
368  * this avoids any races wrt polling state changes and thereby avoids
369  * spurious IPIs.
370  */
371 static bool set_nr_and_not_polling(struct task_struct *p)
372 {
373 	struct thread_info *ti = task_thread_info(p);
374 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
375 }
376 
377 /*
378  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
379  *
380  * If this returns true, then the idle task promises to call
381  * sched_ttwu_pending() and reschedule soon.
382  */
383 static bool set_nr_if_polling(struct task_struct *p)
384 {
385 	struct thread_info *ti = task_thread_info(p);
386 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
387 
388 	for (;;) {
389 		if (!(val & _TIF_POLLING_NRFLAG))
390 			return false;
391 		if (val & _TIF_NEED_RESCHED)
392 			return true;
393 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
394 		if (old == val)
395 			break;
396 		val = old;
397 	}
398 	return true;
399 }
400 
401 #else
402 static bool set_nr_and_not_polling(struct task_struct *p)
403 {
404 	set_tsk_need_resched(p);
405 	return true;
406 }
407 
408 #ifdef CONFIG_SMP
409 static bool set_nr_if_polling(struct task_struct *p)
410 {
411 	return false;
412 }
413 #endif
414 #endif
415 
416 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
417 {
418 	struct wake_q_node *node = &task->wake_q;
419 
420 	/*
421 	 * Atomically grab the task, if ->wake_q is !nil already it means
422 	 * its already queued (either by us or someone else) and will get the
423 	 * wakeup due to that.
424 	 *
425 	 * In order to ensure that a pending wakeup will observe our pending
426 	 * state, even in the failed case, an explicit smp_mb() must be used.
427 	 */
428 	smp_mb__before_atomic();
429 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
430 		return false;
431 
432 	/*
433 	 * The head is context local, there can be no concurrency.
434 	 */
435 	*head->lastp = node;
436 	head->lastp = &node->next;
437 	return true;
438 }
439 
440 /**
441  * wake_q_add() - queue a wakeup for 'later' waking.
442  * @head: the wake_q_head to add @task to
443  * @task: the task to queue for 'later' wakeup
444  *
445  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
446  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
447  * instantly.
448  *
449  * This function must be used as-if it were wake_up_process(); IOW the task
450  * must be ready to be woken at this location.
451  */
452 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
453 {
454 	if (__wake_q_add(head, task))
455 		get_task_struct(task);
456 }
457 
458 /**
459  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
460  * @head: the wake_q_head to add @task to
461  * @task: the task to queue for 'later' wakeup
462  *
463  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
464  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
465  * instantly.
466  *
467  * This function must be used as-if it were wake_up_process(); IOW the task
468  * must be ready to be woken at this location.
469  *
470  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
471  * that already hold reference to @task can call the 'safe' version and trust
472  * wake_q to do the right thing depending whether or not the @task is already
473  * queued for wakeup.
474  */
475 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
476 {
477 	if (!__wake_q_add(head, task))
478 		put_task_struct(task);
479 }
480 
481 void wake_up_q(struct wake_q_head *head)
482 {
483 	struct wake_q_node *node = head->first;
484 
485 	while (node != WAKE_Q_TAIL) {
486 		struct task_struct *task;
487 
488 		task = container_of(node, struct task_struct, wake_q);
489 		BUG_ON(!task);
490 		/* Task can safely be re-inserted now: */
491 		node = node->next;
492 		task->wake_q.next = NULL;
493 
494 		/*
495 		 * wake_up_process() executes a full barrier, which pairs with
496 		 * the queueing in wake_q_add() so as not to miss wakeups.
497 		 */
498 		wake_up_process(task);
499 		put_task_struct(task);
500 	}
501 }
502 
503 /*
504  * resched_curr - mark rq's current task 'to be rescheduled now'.
505  *
506  * On UP this means the setting of the need_resched flag, on SMP it
507  * might also involve a cross-CPU call to trigger the scheduler on
508  * the target CPU.
509  */
510 void resched_curr(struct rq *rq)
511 {
512 	struct task_struct *curr = rq->curr;
513 	int cpu;
514 
515 	lockdep_assert_held(&rq->lock);
516 
517 	if (test_tsk_need_resched(curr))
518 		return;
519 
520 	cpu = cpu_of(rq);
521 
522 	if (cpu == smp_processor_id()) {
523 		set_tsk_need_resched(curr);
524 		set_preempt_need_resched();
525 		return;
526 	}
527 
528 	if (set_nr_and_not_polling(curr))
529 		smp_send_reschedule(cpu);
530 	else
531 		trace_sched_wake_idle_without_ipi(cpu);
532 }
533 
534 void resched_cpu(int cpu)
535 {
536 	struct rq *rq = cpu_rq(cpu);
537 	unsigned long flags;
538 
539 	raw_spin_lock_irqsave(&rq->lock, flags);
540 	if (cpu_online(cpu) || cpu == smp_processor_id())
541 		resched_curr(rq);
542 	raw_spin_unlock_irqrestore(&rq->lock, flags);
543 }
544 
545 #ifdef CONFIG_SMP
546 #ifdef CONFIG_NO_HZ_COMMON
547 /*
548  * In the semi idle case, use the nearest busy CPU for migrating timers
549  * from an idle CPU.  This is good for power-savings.
550  *
551  * We don't do similar optimization for completely idle system, as
552  * selecting an idle CPU will add more delays to the timers than intended
553  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
554  */
555 int get_nohz_timer_target(void)
556 {
557 	int i, cpu = smp_processor_id(), default_cpu = -1;
558 	struct sched_domain *sd;
559 
560 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
561 		if (!idle_cpu(cpu))
562 			return cpu;
563 		default_cpu = cpu;
564 	}
565 
566 	rcu_read_lock();
567 	for_each_domain(cpu, sd) {
568 		for_each_cpu_and(i, sched_domain_span(sd),
569 			housekeeping_cpumask(HK_FLAG_TIMER)) {
570 			if (cpu == i)
571 				continue;
572 
573 			if (!idle_cpu(i)) {
574 				cpu = i;
575 				goto unlock;
576 			}
577 		}
578 	}
579 
580 	if (default_cpu == -1)
581 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
582 	cpu = default_cpu;
583 unlock:
584 	rcu_read_unlock();
585 	return cpu;
586 }
587 
588 /*
589  * When add_timer_on() enqueues a timer into the timer wheel of an
590  * idle CPU then this timer might expire before the next timer event
591  * which is scheduled to wake up that CPU. In case of a completely
592  * idle system the next event might even be infinite time into the
593  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
594  * leaves the inner idle loop so the newly added timer is taken into
595  * account when the CPU goes back to idle and evaluates the timer
596  * wheel for the next timer event.
597  */
598 static void wake_up_idle_cpu(int cpu)
599 {
600 	struct rq *rq = cpu_rq(cpu);
601 
602 	if (cpu == smp_processor_id())
603 		return;
604 
605 	if (set_nr_and_not_polling(rq->idle))
606 		smp_send_reschedule(cpu);
607 	else
608 		trace_sched_wake_idle_without_ipi(cpu);
609 }
610 
611 static bool wake_up_full_nohz_cpu(int cpu)
612 {
613 	/*
614 	 * We just need the target to call irq_exit() and re-evaluate
615 	 * the next tick. The nohz full kick at least implies that.
616 	 * If needed we can still optimize that later with an
617 	 * empty IRQ.
618 	 */
619 	if (cpu_is_offline(cpu))
620 		return true;  /* Don't try to wake offline CPUs. */
621 	if (tick_nohz_full_cpu(cpu)) {
622 		if (cpu != smp_processor_id() ||
623 		    tick_nohz_tick_stopped())
624 			tick_nohz_full_kick_cpu(cpu);
625 		return true;
626 	}
627 
628 	return false;
629 }
630 
631 /*
632  * Wake up the specified CPU.  If the CPU is going offline, it is the
633  * caller's responsibility to deal with the lost wakeup, for example,
634  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
635  */
636 void wake_up_nohz_cpu(int cpu)
637 {
638 	if (!wake_up_full_nohz_cpu(cpu))
639 		wake_up_idle_cpu(cpu);
640 }
641 
642 static void nohz_csd_func(void *info)
643 {
644 	struct rq *rq = info;
645 	int cpu = cpu_of(rq);
646 	unsigned int flags;
647 
648 	/*
649 	 * Release the rq::nohz_csd.
650 	 */
651 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
652 	WARN_ON(!(flags & NOHZ_KICK_MASK));
653 
654 	rq->idle_balance = idle_cpu(cpu);
655 	if (rq->idle_balance && !need_resched()) {
656 		rq->nohz_idle_balance = flags;
657 		raise_softirq_irqoff(SCHED_SOFTIRQ);
658 	}
659 }
660 
661 #endif /* CONFIG_NO_HZ_COMMON */
662 
663 #ifdef CONFIG_NO_HZ_FULL
664 bool sched_can_stop_tick(struct rq *rq)
665 {
666 	int fifo_nr_running;
667 
668 	/* Deadline tasks, even if single, need the tick */
669 	if (rq->dl.dl_nr_running)
670 		return false;
671 
672 	/*
673 	 * If there are more than one RR tasks, we need the tick to effect the
674 	 * actual RR behaviour.
675 	 */
676 	if (rq->rt.rr_nr_running) {
677 		if (rq->rt.rr_nr_running == 1)
678 			return true;
679 		else
680 			return false;
681 	}
682 
683 	/*
684 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
685 	 * forced preemption between FIFO tasks.
686 	 */
687 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
688 	if (fifo_nr_running)
689 		return true;
690 
691 	/*
692 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
693 	 * if there's more than one we need the tick for involuntary
694 	 * preemption.
695 	 */
696 	if (rq->nr_running > 1)
697 		return false;
698 
699 	return true;
700 }
701 #endif /* CONFIG_NO_HZ_FULL */
702 #endif /* CONFIG_SMP */
703 
704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706 /*
707  * Iterate task_group tree rooted at *from, calling @down when first entering a
708  * node and @up when leaving it for the final time.
709  *
710  * Caller must hold rcu_lock or sufficient equivalent.
711  */
712 int walk_tg_tree_from(struct task_group *from,
713 			     tg_visitor down, tg_visitor up, void *data)
714 {
715 	struct task_group *parent, *child;
716 	int ret;
717 
718 	parent = from;
719 
720 down:
721 	ret = (*down)(parent, data);
722 	if (ret)
723 		goto out;
724 	list_for_each_entry_rcu(child, &parent->children, siblings) {
725 		parent = child;
726 		goto down;
727 
728 up:
729 		continue;
730 	}
731 	ret = (*up)(parent, data);
732 	if (ret || parent == from)
733 		goto out;
734 
735 	child = parent;
736 	parent = parent->parent;
737 	if (parent)
738 		goto up;
739 out:
740 	return ret;
741 }
742 
743 int tg_nop(struct task_group *tg, void *data)
744 {
745 	return 0;
746 }
747 #endif
748 
749 static void set_load_weight(struct task_struct *p, bool update_load)
750 {
751 	int prio = p->static_prio - MAX_RT_PRIO;
752 	struct load_weight *load = &p->se.load;
753 
754 	/*
755 	 * SCHED_IDLE tasks get minimal weight:
756 	 */
757 	if (task_has_idle_policy(p)) {
758 		load->weight = scale_load(WEIGHT_IDLEPRIO);
759 		load->inv_weight = WMULT_IDLEPRIO;
760 		return;
761 	}
762 
763 	/*
764 	 * SCHED_OTHER tasks have to update their load when changing their
765 	 * weight
766 	 */
767 	if (update_load && p->sched_class == &fair_sched_class) {
768 		reweight_task(p, prio);
769 	} else {
770 		load->weight = scale_load(sched_prio_to_weight[prio]);
771 		load->inv_weight = sched_prio_to_wmult[prio];
772 	}
773 }
774 
775 #ifdef CONFIG_UCLAMP_TASK
776 /*
777  * Serializes updates of utilization clamp values
778  *
779  * The (slow-path) user-space triggers utilization clamp value updates which
780  * can require updates on (fast-path) scheduler's data structures used to
781  * support enqueue/dequeue operations.
782  * While the per-CPU rq lock protects fast-path update operations, user-space
783  * requests are serialized using a mutex to reduce the risk of conflicting
784  * updates or API abuses.
785  */
786 static DEFINE_MUTEX(uclamp_mutex);
787 
788 /* Max allowed minimum utilization */
789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790 
791 /* Max allowed maximum utilization */
792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793 
794 /* All clamps are required to be less or equal than these values */
795 static struct uclamp_se uclamp_default[UCLAMP_CNT];
796 
797 /* Integer rounded range for each bucket */
798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799 
800 #define for_each_clamp_id(clamp_id) \
801 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802 
803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804 {
805 	return clamp_value / UCLAMP_BUCKET_DELTA;
806 }
807 
808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809 {
810 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
811 }
812 
813 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
814 {
815 	if (clamp_id == UCLAMP_MIN)
816 		return 0;
817 	return SCHED_CAPACITY_SCALE;
818 }
819 
820 static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 				 unsigned int value, bool user_defined)
822 {
823 	uc_se->value = value;
824 	uc_se->bucket_id = uclamp_bucket_id(value);
825 	uc_se->user_defined = user_defined;
826 }
827 
828 static inline unsigned int
829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 		  unsigned int clamp_value)
831 {
832 	/*
833 	 * Avoid blocked utilization pushing up the frequency when we go
834 	 * idle (which drops the max-clamp) by retaining the last known
835 	 * max-clamp.
836 	 */
837 	if (clamp_id == UCLAMP_MAX) {
838 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 		return clamp_value;
840 	}
841 
842 	return uclamp_none(UCLAMP_MIN);
843 }
844 
845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 				     unsigned int clamp_value)
847 {
848 	/* Reset max-clamp retention only on idle exit */
849 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 		return;
851 
852 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
853 }
854 
855 static inline
856 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 				   unsigned int clamp_value)
858 {
859 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 	int bucket_id = UCLAMP_BUCKETS - 1;
861 
862 	/*
863 	 * Since both min and max clamps are max aggregated, find the
864 	 * top most bucket with tasks in.
865 	 */
866 	for ( ; bucket_id >= 0; bucket_id--) {
867 		if (!bucket[bucket_id].tasks)
868 			continue;
869 		return bucket[bucket_id].value;
870 	}
871 
872 	/* No tasks -- default clamp values */
873 	return uclamp_idle_value(rq, clamp_id, clamp_value);
874 }
875 
876 static inline struct uclamp_se
877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
878 {
879 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880 #ifdef CONFIG_UCLAMP_TASK_GROUP
881 	struct uclamp_se uc_max;
882 
883 	/*
884 	 * Tasks in autogroups or root task group will be
885 	 * restricted by system defaults.
886 	 */
887 	if (task_group_is_autogroup(task_group(p)))
888 		return uc_req;
889 	if (task_group(p) == &root_task_group)
890 		return uc_req;
891 
892 	uc_max = task_group(p)->uclamp[clamp_id];
893 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 		return uc_max;
895 #endif
896 
897 	return uc_req;
898 }
899 
900 /*
901  * The effective clamp bucket index of a task depends on, by increasing
902  * priority:
903  * - the task specific clamp value, when explicitly requested from userspace
904  * - the task group effective clamp value, for tasks not either in the root
905  *   group or in an autogroup
906  * - the system default clamp value, defined by the sysadmin
907  */
908 static inline struct uclamp_se
909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
910 {
911 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 	struct uclamp_se uc_max = uclamp_default[clamp_id];
913 
914 	/* System default restrictions always apply */
915 	if (unlikely(uc_req.value > uc_max.value))
916 		return uc_max;
917 
918 	return uc_req;
919 }
920 
921 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
922 {
923 	struct uclamp_se uc_eff;
924 
925 	/* Task currently refcounted: use back-annotated (effective) value */
926 	if (p->uclamp[clamp_id].active)
927 		return (unsigned long)p->uclamp[clamp_id].value;
928 
929 	uc_eff = uclamp_eff_get(p, clamp_id);
930 
931 	return (unsigned long)uc_eff.value;
932 }
933 
934 /*
935  * When a task is enqueued on a rq, the clamp bucket currently defined by the
936  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937  * updates the rq's clamp value if required.
938  *
939  * Tasks can have a task-specific value requested from user-space, track
940  * within each bucket the maximum value for tasks refcounted in it.
941  * This "local max aggregation" allows to track the exact "requested" value
942  * for each bucket when all its RUNNABLE tasks require the same clamp.
943  */
944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 				    enum uclamp_id clamp_id)
946 {
947 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 	struct uclamp_bucket *bucket;
950 
951 	lockdep_assert_held(&rq->lock);
952 
953 	/* Update task effective clamp */
954 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955 
956 	bucket = &uc_rq->bucket[uc_se->bucket_id];
957 	bucket->tasks++;
958 	uc_se->active = true;
959 
960 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
961 
962 	/*
963 	 * Local max aggregation: rq buckets always track the max
964 	 * "requested" clamp value of its RUNNABLE tasks.
965 	 */
966 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 		bucket->value = uc_se->value;
968 
969 	if (uc_se->value > READ_ONCE(uc_rq->value))
970 		WRITE_ONCE(uc_rq->value, uc_se->value);
971 }
972 
973 /*
974  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975  * is released. If this is the last task reference counting the rq's max
976  * active clamp value, then the rq's clamp value is updated.
977  *
978  * Both refcounted tasks and rq's cached clamp values are expected to be
979  * always valid. If it's detected they are not, as defensive programming,
980  * enforce the expected state and warn.
981  */
982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 				    enum uclamp_id clamp_id)
984 {
985 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 	struct uclamp_bucket *bucket;
988 	unsigned int bkt_clamp;
989 	unsigned int rq_clamp;
990 
991 	lockdep_assert_held(&rq->lock);
992 
993 	bucket = &uc_rq->bucket[uc_se->bucket_id];
994 	SCHED_WARN_ON(!bucket->tasks);
995 	if (likely(bucket->tasks))
996 		bucket->tasks--;
997 	uc_se->active = false;
998 
999 	/*
1000 	 * Keep "local max aggregation" simple and accept to (possibly)
1001 	 * overboost some RUNNABLE tasks in the same bucket.
1002 	 * The rq clamp bucket value is reset to its base value whenever
1003 	 * there are no more RUNNABLE tasks refcounting it.
1004 	 */
1005 	if (likely(bucket->tasks))
1006 		return;
1007 
1008 	rq_clamp = READ_ONCE(uc_rq->value);
1009 	/*
1010 	 * Defensive programming: this should never happen. If it happens,
1011 	 * e.g. due to future modification, warn and fixup the expected value.
1012 	 */
1013 	SCHED_WARN_ON(bucket->value > rq_clamp);
1014 	if (bucket->value >= rq_clamp) {
1015 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1017 	}
1018 }
1019 
1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021 {
1022 	enum uclamp_id clamp_id;
1023 
1024 	if (unlikely(!p->sched_class->uclamp_enabled))
1025 		return;
1026 
1027 	for_each_clamp_id(clamp_id)
1028 		uclamp_rq_inc_id(rq, p, clamp_id);
1029 
1030 	/* Reset clamp idle holding when there is one RUNNABLE task */
1031 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1033 }
1034 
1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036 {
1037 	enum uclamp_id clamp_id;
1038 
1039 	if (unlikely(!p->sched_class->uclamp_enabled))
1040 		return;
1041 
1042 	for_each_clamp_id(clamp_id)
1043 		uclamp_rq_dec_id(rq, p, clamp_id);
1044 }
1045 
1046 static inline void
1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048 {
1049 	struct rq_flags rf;
1050 	struct rq *rq;
1051 
1052 	/*
1053 	 * Lock the task and the rq where the task is (or was) queued.
1054 	 *
1055 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 	 * price to pay to safely serialize util_{min,max} updates with
1057 	 * enqueues, dequeues and migration operations.
1058 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059 	 */
1060 	rq = task_rq_lock(p, &rf);
1061 
1062 	/*
1063 	 * Setting the clamp bucket is serialized by task_rq_lock().
1064 	 * If the task is not yet RUNNABLE and its task_struct is not
1065 	 * affecting a valid clamp bucket, the next time it's enqueued,
1066 	 * it will already see the updated clamp bucket value.
1067 	 */
1068 	if (p->uclamp[clamp_id].active) {
1069 		uclamp_rq_dec_id(rq, p, clamp_id);
1070 		uclamp_rq_inc_id(rq, p, clamp_id);
1071 	}
1072 
1073 	task_rq_unlock(rq, p, &rf);
1074 }
1075 
1076 #ifdef CONFIG_UCLAMP_TASK_GROUP
1077 static inline void
1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079 			   unsigned int clamps)
1080 {
1081 	enum uclamp_id clamp_id;
1082 	struct css_task_iter it;
1083 	struct task_struct *p;
1084 
1085 	css_task_iter_start(css, 0, &it);
1086 	while ((p = css_task_iter_next(&it))) {
1087 		for_each_clamp_id(clamp_id) {
1088 			if ((0x1 << clamp_id) & clamps)
1089 				uclamp_update_active(p, clamp_id);
1090 		}
1091 	}
1092 	css_task_iter_end(&it);
1093 }
1094 
1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096 static void uclamp_update_root_tg(void)
1097 {
1098 	struct task_group *tg = &root_task_group;
1099 
1100 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 		      sysctl_sched_uclamp_util_min, false);
1102 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 		      sysctl_sched_uclamp_util_max, false);
1104 
1105 	rcu_read_lock();
1106 	cpu_util_update_eff(&root_task_group.css);
1107 	rcu_read_unlock();
1108 }
1109 #else
1110 static void uclamp_update_root_tg(void) { }
1111 #endif
1112 
1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 				void *buffer, size_t *lenp, loff_t *ppos)
1115 {
1116 	bool update_root_tg = false;
1117 	int old_min, old_max;
1118 	int result;
1119 
1120 	mutex_lock(&uclamp_mutex);
1121 	old_min = sysctl_sched_uclamp_util_min;
1122 	old_max = sysctl_sched_uclamp_util_max;
1123 
1124 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1125 	if (result)
1126 		goto undo;
1127 	if (!write)
1128 		goto done;
1129 
1130 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1131 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1132 		result = -EINVAL;
1133 		goto undo;
1134 	}
1135 
1136 	if (old_min != sysctl_sched_uclamp_util_min) {
1137 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1138 			      sysctl_sched_uclamp_util_min, false);
1139 		update_root_tg = true;
1140 	}
1141 	if (old_max != sysctl_sched_uclamp_util_max) {
1142 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1143 			      sysctl_sched_uclamp_util_max, false);
1144 		update_root_tg = true;
1145 	}
1146 
1147 	if (update_root_tg)
1148 		uclamp_update_root_tg();
1149 
1150 	/*
1151 	 * We update all RUNNABLE tasks only when task groups are in use.
1152 	 * Otherwise, keep it simple and do just a lazy update at each next
1153 	 * task enqueue time.
1154 	 */
1155 
1156 	goto done;
1157 
1158 undo:
1159 	sysctl_sched_uclamp_util_min = old_min;
1160 	sysctl_sched_uclamp_util_max = old_max;
1161 done:
1162 	mutex_unlock(&uclamp_mutex);
1163 
1164 	return result;
1165 }
1166 
1167 static int uclamp_validate(struct task_struct *p,
1168 			   const struct sched_attr *attr)
1169 {
1170 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1171 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1172 
1173 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1174 		lower_bound = attr->sched_util_min;
1175 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1176 		upper_bound = attr->sched_util_max;
1177 
1178 	if (lower_bound > upper_bound)
1179 		return -EINVAL;
1180 	if (upper_bound > SCHED_CAPACITY_SCALE)
1181 		return -EINVAL;
1182 
1183 	return 0;
1184 }
1185 
1186 static void __setscheduler_uclamp(struct task_struct *p,
1187 				  const struct sched_attr *attr)
1188 {
1189 	enum uclamp_id clamp_id;
1190 
1191 	/*
1192 	 * On scheduling class change, reset to default clamps for tasks
1193 	 * without a task-specific value.
1194 	 */
1195 	for_each_clamp_id(clamp_id) {
1196 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1197 		unsigned int clamp_value = uclamp_none(clamp_id);
1198 
1199 		/* Keep using defined clamps across class changes */
1200 		if (uc_se->user_defined)
1201 			continue;
1202 
1203 		/* By default, RT tasks always get 100% boost */
1204 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1205 			clamp_value = uclamp_none(UCLAMP_MAX);
1206 
1207 		uclamp_se_set(uc_se, clamp_value, false);
1208 	}
1209 
1210 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1211 		return;
1212 
1213 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1214 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1215 			      attr->sched_util_min, true);
1216 	}
1217 
1218 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1219 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1220 			      attr->sched_util_max, true);
1221 	}
1222 }
1223 
1224 static void uclamp_fork(struct task_struct *p)
1225 {
1226 	enum uclamp_id clamp_id;
1227 
1228 	for_each_clamp_id(clamp_id)
1229 		p->uclamp[clamp_id].active = false;
1230 
1231 	if (likely(!p->sched_reset_on_fork))
1232 		return;
1233 
1234 	for_each_clamp_id(clamp_id) {
1235 		uclamp_se_set(&p->uclamp_req[clamp_id],
1236 			      uclamp_none(clamp_id), false);
1237 	}
1238 }
1239 
1240 static void __init init_uclamp(void)
1241 {
1242 	struct uclamp_se uc_max = {};
1243 	enum uclamp_id clamp_id;
1244 	int cpu;
1245 
1246 	mutex_init(&uclamp_mutex);
1247 
1248 	for_each_possible_cpu(cpu) {
1249 		memset(&cpu_rq(cpu)->uclamp, 0,
1250 				sizeof(struct uclamp_rq)*UCLAMP_CNT);
1251 		cpu_rq(cpu)->uclamp_flags = 0;
1252 	}
1253 
1254 	for_each_clamp_id(clamp_id) {
1255 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1256 			      uclamp_none(clamp_id), false);
1257 	}
1258 
1259 	/* System defaults allow max clamp values for both indexes */
1260 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1261 	for_each_clamp_id(clamp_id) {
1262 		uclamp_default[clamp_id] = uc_max;
1263 #ifdef CONFIG_UCLAMP_TASK_GROUP
1264 		root_task_group.uclamp_req[clamp_id] = uc_max;
1265 		root_task_group.uclamp[clamp_id] = uc_max;
1266 #endif
1267 	}
1268 }
1269 
1270 #else /* CONFIG_UCLAMP_TASK */
1271 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1272 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1273 static inline int uclamp_validate(struct task_struct *p,
1274 				  const struct sched_attr *attr)
1275 {
1276 	return -EOPNOTSUPP;
1277 }
1278 static void __setscheduler_uclamp(struct task_struct *p,
1279 				  const struct sched_attr *attr) { }
1280 static inline void uclamp_fork(struct task_struct *p) { }
1281 static inline void init_uclamp(void) { }
1282 #endif /* CONFIG_UCLAMP_TASK */
1283 
1284 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1285 {
1286 	if (!(flags & ENQUEUE_NOCLOCK))
1287 		update_rq_clock(rq);
1288 
1289 	if (!(flags & ENQUEUE_RESTORE)) {
1290 		sched_info_queued(rq, p);
1291 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1292 	}
1293 
1294 	uclamp_rq_inc(rq, p);
1295 	p->sched_class->enqueue_task(rq, p, flags);
1296 }
1297 
1298 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1299 {
1300 	if (!(flags & DEQUEUE_NOCLOCK))
1301 		update_rq_clock(rq);
1302 
1303 	if (!(flags & DEQUEUE_SAVE)) {
1304 		sched_info_dequeued(rq, p);
1305 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1306 	}
1307 
1308 	uclamp_rq_dec(rq, p);
1309 	p->sched_class->dequeue_task(rq, p, flags);
1310 }
1311 
1312 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1313 {
1314 	enqueue_task(rq, p, flags);
1315 
1316 	p->on_rq = TASK_ON_RQ_QUEUED;
1317 }
1318 
1319 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1320 {
1321 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1322 
1323 	dequeue_task(rq, p, flags);
1324 }
1325 
1326 /*
1327  * __normal_prio - return the priority that is based on the static prio
1328  */
1329 static inline int __normal_prio(struct task_struct *p)
1330 {
1331 	return p->static_prio;
1332 }
1333 
1334 /*
1335  * Calculate the expected normal priority: i.e. priority
1336  * without taking RT-inheritance into account. Might be
1337  * boosted by interactivity modifiers. Changes upon fork,
1338  * setprio syscalls, and whenever the interactivity
1339  * estimator recalculates.
1340  */
1341 static inline int normal_prio(struct task_struct *p)
1342 {
1343 	int prio;
1344 
1345 	if (task_has_dl_policy(p))
1346 		prio = MAX_DL_PRIO-1;
1347 	else if (task_has_rt_policy(p))
1348 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1349 	else
1350 		prio = __normal_prio(p);
1351 	return prio;
1352 }
1353 
1354 /*
1355  * Calculate the current priority, i.e. the priority
1356  * taken into account by the scheduler. This value might
1357  * be boosted by RT tasks, or might be boosted by
1358  * interactivity modifiers. Will be RT if the task got
1359  * RT-boosted. If not then it returns p->normal_prio.
1360  */
1361 static int effective_prio(struct task_struct *p)
1362 {
1363 	p->normal_prio = normal_prio(p);
1364 	/*
1365 	 * If we are RT tasks or we were boosted to RT priority,
1366 	 * keep the priority unchanged. Otherwise, update priority
1367 	 * to the normal priority:
1368 	 */
1369 	if (!rt_prio(p->prio))
1370 		return p->normal_prio;
1371 	return p->prio;
1372 }
1373 
1374 /**
1375  * task_curr - is this task currently executing on a CPU?
1376  * @p: the task in question.
1377  *
1378  * Return: 1 if the task is currently executing. 0 otherwise.
1379  */
1380 inline int task_curr(const struct task_struct *p)
1381 {
1382 	return cpu_curr(task_cpu(p)) == p;
1383 }
1384 
1385 /*
1386  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1387  * use the balance_callback list if you want balancing.
1388  *
1389  * this means any call to check_class_changed() must be followed by a call to
1390  * balance_callback().
1391  */
1392 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1393 				       const struct sched_class *prev_class,
1394 				       int oldprio)
1395 {
1396 	if (prev_class != p->sched_class) {
1397 		if (prev_class->switched_from)
1398 			prev_class->switched_from(rq, p);
1399 
1400 		p->sched_class->switched_to(rq, p);
1401 	} else if (oldprio != p->prio || dl_task(p))
1402 		p->sched_class->prio_changed(rq, p, oldprio);
1403 }
1404 
1405 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1406 {
1407 	const struct sched_class *class;
1408 
1409 	if (p->sched_class == rq->curr->sched_class) {
1410 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1411 	} else {
1412 		for_each_class(class) {
1413 			if (class == rq->curr->sched_class)
1414 				break;
1415 			if (class == p->sched_class) {
1416 				resched_curr(rq);
1417 				break;
1418 			}
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * A queue event has occurred, and we're going to schedule.  In
1424 	 * this case, we can save a useless back to back clock update.
1425 	 */
1426 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1427 		rq_clock_skip_update(rq);
1428 }
1429 
1430 #ifdef CONFIG_SMP
1431 
1432 /*
1433  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1434  * __set_cpus_allowed_ptr() and select_fallback_rq().
1435  */
1436 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1437 {
1438 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1439 		return false;
1440 
1441 	if (is_per_cpu_kthread(p))
1442 		return cpu_online(cpu);
1443 
1444 	return cpu_active(cpu);
1445 }
1446 
1447 /*
1448  * This is how migration works:
1449  *
1450  * 1) we invoke migration_cpu_stop() on the target CPU using
1451  *    stop_one_cpu().
1452  * 2) stopper starts to run (implicitly forcing the migrated thread
1453  *    off the CPU)
1454  * 3) it checks whether the migrated task is still in the wrong runqueue.
1455  * 4) if it's in the wrong runqueue then the migration thread removes
1456  *    it and puts it into the right queue.
1457  * 5) stopper completes and stop_one_cpu() returns and the migration
1458  *    is done.
1459  */
1460 
1461 /*
1462  * move_queued_task - move a queued task to new rq.
1463  *
1464  * Returns (locked) new rq. Old rq's lock is released.
1465  */
1466 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1467 				   struct task_struct *p, int new_cpu)
1468 {
1469 	lockdep_assert_held(&rq->lock);
1470 
1471 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1472 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1473 	set_task_cpu(p, new_cpu);
1474 	rq_unlock(rq, rf);
1475 
1476 	rq = cpu_rq(new_cpu);
1477 
1478 	rq_lock(rq, rf);
1479 	BUG_ON(task_cpu(p) != new_cpu);
1480 	enqueue_task(rq, p, 0);
1481 	p->on_rq = TASK_ON_RQ_QUEUED;
1482 	check_preempt_curr(rq, p, 0);
1483 
1484 	return rq;
1485 }
1486 
1487 struct migration_arg {
1488 	struct task_struct *task;
1489 	int dest_cpu;
1490 };
1491 
1492 /*
1493  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1494  * this because either it can't run here any more (set_cpus_allowed()
1495  * away from this CPU, or CPU going down), or because we're
1496  * attempting to rebalance this task on exec (sched_exec).
1497  *
1498  * So we race with normal scheduler movements, but that's OK, as long
1499  * as the task is no longer on this CPU.
1500  */
1501 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1502 				 struct task_struct *p, int dest_cpu)
1503 {
1504 	/* Affinity changed (again). */
1505 	if (!is_cpu_allowed(p, dest_cpu))
1506 		return rq;
1507 
1508 	update_rq_clock(rq);
1509 	rq = move_queued_task(rq, rf, p, dest_cpu);
1510 
1511 	return rq;
1512 }
1513 
1514 /*
1515  * migration_cpu_stop - this will be executed by a highprio stopper thread
1516  * and performs thread migration by bumping thread off CPU then
1517  * 'pushing' onto another runqueue.
1518  */
1519 static int migration_cpu_stop(void *data)
1520 {
1521 	struct migration_arg *arg = data;
1522 	struct task_struct *p = arg->task;
1523 	struct rq *rq = this_rq();
1524 	struct rq_flags rf;
1525 
1526 	/*
1527 	 * The original target CPU might have gone down and we might
1528 	 * be on another CPU but it doesn't matter.
1529 	 */
1530 	local_irq_disable();
1531 	/*
1532 	 * We need to explicitly wake pending tasks before running
1533 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1534 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1535 	 */
1536 	flush_smp_call_function_from_idle();
1537 
1538 	raw_spin_lock(&p->pi_lock);
1539 	rq_lock(rq, &rf);
1540 	/*
1541 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1542 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1543 	 * we're holding p->pi_lock.
1544 	 */
1545 	if (task_rq(p) == rq) {
1546 		if (task_on_rq_queued(p))
1547 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1548 		else
1549 			p->wake_cpu = arg->dest_cpu;
1550 	}
1551 	rq_unlock(rq, &rf);
1552 	raw_spin_unlock(&p->pi_lock);
1553 
1554 	local_irq_enable();
1555 	return 0;
1556 }
1557 
1558 /*
1559  * sched_class::set_cpus_allowed must do the below, but is not required to
1560  * actually call this function.
1561  */
1562 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1563 {
1564 	cpumask_copy(&p->cpus_mask, new_mask);
1565 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1566 }
1567 
1568 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1569 {
1570 	struct rq *rq = task_rq(p);
1571 	bool queued, running;
1572 
1573 	lockdep_assert_held(&p->pi_lock);
1574 
1575 	queued = task_on_rq_queued(p);
1576 	running = task_current(rq, p);
1577 
1578 	if (queued) {
1579 		/*
1580 		 * Because __kthread_bind() calls this on blocked tasks without
1581 		 * holding rq->lock.
1582 		 */
1583 		lockdep_assert_held(&rq->lock);
1584 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1585 	}
1586 	if (running)
1587 		put_prev_task(rq, p);
1588 
1589 	p->sched_class->set_cpus_allowed(p, new_mask);
1590 
1591 	if (queued)
1592 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1593 	if (running)
1594 		set_next_task(rq, p);
1595 }
1596 
1597 /*
1598  * Change a given task's CPU affinity. Migrate the thread to a
1599  * proper CPU and schedule it away if the CPU it's executing on
1600  * is removed from the allowed bitmask.
1601  *
1602  * NOTE: the caller must have a valid reference to the task, the
1603  * task must not exit() & deallocate itself prematurely. The
1604  * call is not atomic; no spinlocks may be held.
1605  */
1606 static int __set_cpus_allowed_ptr(struct task_struct *p,
1607 				  const struct cpumask *new_mask, bool check)
1608 {
1609 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1610 	unsigned int dest_cpu;
1611 	struct rq_flags rf;
1612 	struct rq *rq;
1613 	int ret = 0;
1614 
1615 	rq = task_rq_lock(p, &rf);
1616 	update_rq_clock(rq);
1617 
1618 	if (p->flags & PF_KTHREAD) {
1619 		/*
1620 		 * Kernel threads are allowed on online && !active CPUs
1621 		 */
1622 		cpu_valid_mask = cpu_online_mask;
1623 	}
1624 
1625 	/*
1626 	 * Must re-check here, to close a race against __kthread_bind(),
1627 	 * sched_setaffinity() is not guaranteed to observe the flag.
1628 	 */
1629 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1630 		ret = -EINVAL;
1631 		goto out;
1632 	}
1633 
1634 	if (cpumask_equal(&p->cpus_mask, new_mask))
1635 		goto out;
1636 
1637 	/*
1638 	 * Picking a ~random cpu helps in cases where we are changing affinity
1639 	 * for groups of tasks (ie. cpuset), so that load balancing is not
1640 	 * immediately required to distribute the tasks within their new mask.
1641 	 */
1642 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1643 	if (dest_cpu >= nr_cpu_ids) {
1644 		ret = -EINVAL;
1645 		goto out;
1646 	}
1647 
1648 	do_set_cpus_allowed(p, new_mask);
1649 
1650 	if (p->flags & PF_KTHREAD) {
1651 		/*
1652 		 * For kernel threads that do indeed end up on online &&
1653 		 * !active we want to ensure they are strict per-CPU threads.
1654 		 */
1655 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1656 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1657 			p->nr_cpus_allowed != 1);
1658 	}
1659 
1660 	/* Can the task run on the task's current CPU? If so, we're done */
1661 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1662 		goto out;
1663 
1664 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1665 		struct migration_arg arg = { p, dest_cpu };
1666 		/* Need help from migration thread: drop lock and wait. */
1667 		task_rq_unlock(rq, p, &rf);
1668 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1669 		return 0;
1670 	} else if (task_on_rq_queued(p)) {
1671 		/*
1672 		 * OK, since we're going to drop the lock immediately
1673 		 * afterwards anyway.
1674 		 */
1675 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1676 	}
1677 out:
1678 	task_rq_unlock(rq, p, &rf);
1679 
1680 	return ret;
1681 }
1682 
1683 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1684 {
1685 	return __set_cpus_allowed_ptr(p, new_mask, false);
1686 }
1687 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1688 
1689 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1690 {
1691 #ifdef CONFIG_SCHED_DEBUG
1692 	/*
1693 	 * We should never call set_task_cpu() on a blocked task,
1694 	 * ttwu() will sort out the placement.
1695 	 */
1696 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1697 			!p->on_rq);
1698 
1699 	/*
1700 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1701 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1702 	 * time relying on p->on_rq.
1703 	 */
1704 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1705 		     p->sched_class == &fair_sched_class &&
1706 		     (p->on_rq && !task_on_rq_migrating(p)));
1707 
1708 #ifdef CONFIG_LOCKDEP
1709 	/*
1710 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1711 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1712 	 *
1713 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1714 	 * see task_group().
1715 	 *
1716 	 * Furthermore, all task_rq users should acquire both locks, see
1717 	 * task_rq_lock().
1718 	 */
1719 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1720 				      lockdep_is_held(&task_rq(p)->lock)));
1721 #endif
1722 	/*
1723 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1724 	 */
1725 	WARN_ON_ONCE(!cpu_online(new_cpu));
1726 #endif
1727 
1728 	trace_sched_migrate_task(p, new_cpu);
1729 
1730 	if (task_cpu(p) != new_cpu) {
1731 		if (p->sched_class->migrate_task_rq)
1732 			p->sched_class->migrate_task_rq(p, new_cpu);
1733 		p->se.nr_migrations++;
1734 		rseq_migrate(p);
1735 		perf_event_task_migrate(p);
1736 	}
1737 
1738 	__set_task_cpu(p, new_cpu);
1739 }
1740 
1741 #ifdef CONFIG_NUMA_BALANCING
1742 static void __migrate_swap_task(struct task_struct *p, int cpu)
1743 {
1744 	if (task_on_rq_queued(p)) {
1745 		struct rq *src_rq, *dst_rq;
1746 		struct rq_flags srf, drf;
1747 
1748 		src_rq = task_rq(p);
1749 		dst_rq = cpu_rq(cpu);
1750 
1751 		rq_pin_lock(src_rq, &srf);
1752 		rq_pin_lock(dst_rq, &drf);
1753 
1754 		deactivate_task(src_rq, p, 0);
1755 		set_task_cpu(p, cpu);
1756 		activate_task(dst_rq, p, 0);
1757 		check_preempt_curr(dst_rq, p, 0);
1758 
1759 		rq_unpin_lock(dst_rq, &drf);
1760 		rq_unpin_lock(src_rq, &srf);
1761 
1762 	} else {
1763 		/*
1764 		 * Task isn't running anymore; make it appear like we migrated
1765 		 * it before it went to sleep. This means on wakeup we make the
1766 		 * previous CPU our target instead of where it really is.
1767 		 */
1768 		p->wake_cpu = cpu;
1769 	}
1770 }
1771 
1772 struct migration_swap_arg {
1773 	struct task_struct *src_task, *dst_task;
1774 	int src_cpu, dst_cpu;
1775 };
1776 
1777 static int migrate_swap_stop(void *data)
1778 {
1779 	struct migration_swap_arg *arg = data;
1780 	struct rq *src_rq, *dst_rq;
1781 	int ret = -EAGAIN;
1782 
1783 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1784 		return -EAGAIN;
1785 
1786 	src_rq = cpu_rq(arg->src_cpu);
1787 	dst_rq = cpu_rq(arg->dst_cpu);
1788 
1789 	double_raw_lock(&arg->src_task->pi_lock,
1790 			&arg->dst_task->pi_lock);
1791 	double_rq_lock(src_rq, dst_rq);
1792 
1793 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1794 		goto unlock;
1795 
1796 	if (task_cpu(arg->src_task) != arg->src_cpu)
1797 		goto unlock;
1798 
1799 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1800 		goto unlock;
1801 
1802 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1803 		goto unlock;
1804 
1805 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1806 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1807 
1808 	ret = 0;
1809 
1810 unlock:
1811 	double_rq_unlock(src_rq, dst_rq);
1812 	raw_spin_unlock(&arg->dst_task->pi_lock);
1813 	raw_spin_unlock(&arg->src_task->pi_lock);
1814 
1815 	return ret;
1816 }
1817 
1818 /*
1819  * Cross migrate two tasks
1820  */
1821 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1822 		int target_cpu, int curr_cpu)
1823 {
1824 	struct migration_swap_arg arg;
1825 	int ret = -EINVAL;
1826 
1827 	arg = (struct migration_swap_arg){
1828 		.src_task = cur,
1829 		.src_cpu = curr_cpu,
1830 		.dst_task = p,
1831 		.dst_cpu = target_cpu,
1832 	};
1833 
1834 	if (arg.src_cpu == arg.dst_cpu)
1835 		goto out;
1836 
1837 	/*
1838 	 * These three tests are all lockless; this is OK since all of them
1839 	 * will be re-checked with proper locks held further down the line.
1840 	 */
1841 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1842 		goto out;
1843 
1844 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1845 		goto out;
1846 
1847 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1848 		goto out;
1849 
1850 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1851 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1852 
1853 out:
1854 	return ret;
1855 }
1856 #endif /* CONFIG_NUMA_BALANCING */
1857 
1858 /*
1859  * wait_task_inactive - wait for a thread to unschedule.
1860  *
1861  * If @match_state is nonzero, it's the @p->state value just checked and
1862  * not expected to change.  If it changes, i.e. @p might have woken up,
1863  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1864  * we return a positive number (its total switch count).  If a second call
1865  * a short while later returns the same number, the caller can be sure that
1866  * @p has remained unscheduled the whole time.
1867  *
1868  * The caller must ensure that the task *will* unschedule sometime soon,
1869  * else this function might spin for a *long* time. This function can't
1870  * be called with interrupts off, or it may introduce deadlock with
1871  * smp_call_function() if an IPI is sent by the same process we are
1872  * waiting to become inactive.
1873  */
1874 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1875 {
1876 	int running, queued;
1877 	struct rq_flags rf;
1878 	unsigned long ncsw;
1879 	struct rq *rq;
1880 
1881 	for (;;) {
1882 		/*
1883 		 * We do the initial early heuristics without holding
1884 		 * any task-queue locks at all. We'll only try to get
1885 		 * the runqueue lock when things look like they will
1886 		 * work out!
1887 		 */
1888 		rq = task_rq(p);
1889 
1890 		/*
1891 		 * If the task is actively running on another CPU
1892 		 * still, just relax and busy-wait without holding
1893 		 * any locks.
1894 		 *
1895 		 * NOTE! Since we don't hold any locks, it's not
1896 		 * even sure that "rq" stays as the right runqueue!
1897 		 * But we don't care, since "task_running()" will
1898 		 * return false if the runqueue has changed and p
1899 		 * is actually now running somewhere else!
1900 		 */
1901 		while (task_running(rq, p)) {
1902 			if (match_state && unlikely(p->state != match_state))
1903 				return 0;
1904 			cpu_relax();
1905 		}
1906 
1907 		/*
1908 		 * Ok, time to look more closely! We need the rq
1909 		 * lock now, to be *sure*. If we're wrong, we'll
1910 		 * just go back and repeat.
1911 		 */
1912 		rq = task_rq_lock(p, &rf);
1913 		trace_sched_wait_task(p);
1914 		running = task_running(rq, p);
1915 		queued = task_on_rq_queued(p);
1916 		ncsw = 0;
1917 		if (!match_state || p->state == match_state)
1918 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1919 		task_rq_unlock(rq, p, &rf);
1920 
1921 		/*
1922 		 * If it changed from the expected state, bail out now.
1923 		 */
1924 		if (unlikely(!ncsw))
1925 			break;
1926 
1927 		/*
1928 		 * Was it really running after all now that we
1929 		 * checked with the proper locks actually held?
1930 		 *
1931 		 * Oops. Go back and try again..
1932 		 */
1933 		if (unlikely(running)) {
1934 			cpu_relax();
1935 			continue;
1936 		}
1937 
1938 		/*
1939 		 * It's not enough that it's not actively running,
1940 		 * it must be off the runqueue _entirely_, and not
1941 		 * preempted!
1942 		 *
1943 		 * So if it was still runnable (but just not actively
1944 		 * running right now), it's preempted, and we should
1945 		 * yield - it could be a while.
1946 		 */
1947 		if (unlikely(queued)) {
1948 			ktime_t to = NSEC_PER_SEC / HZ;
1949 
1950 			set_current_state(TASK_UNINTERRUPTIBLE);
1951 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1952 			continue;
1953 		}
1954 
1955 		/*
1956 		 * Ahh, all good. It wasn't running, and it wasn't
1957 		 * runnable, which means that it will never become
1958 		 * running in the future either. We're all done!
1959 		 */
1960 		break;
1961 	}
1962 
1963 	return ncsw;
1964 }
1965 
1966 /***
1967  * kick_process - kick a running thread to enter/exit the kernel
1968  * @p: the to-be-kicked thread
1969  *
1970  * Cause a process which is running on another CPU to enter
1971  * kernel-mode, without any delay. (to get signals handled.)
1972  *
1973  * NOTE: this function doesn't have to take the runqueue lock,
1974  * because all it wants to ensure is that the remote task enters
1975  * the kernel. If the IPI races and the task has been migrated
1976  * to another CPU then no harm is done and the purpose has been
1977  * achieved as well.
1978  */
1979 void kick_process(struct task_struct *p)
1980 {
1981 	int cpu;
1982 
1983 	preempt_disable();
1984 	cpu = task_cpu(p);
1985 	if ((cpu != smp_processor_id()) && task_curr(p))
1986 		smp_send_reschedule(cpu);
1987 	preempt_enable();
1988 }
1989 EXPORT_SYMBOL_GPL(kick_process);
1990 
1991 /*
1992  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
1993  *
1994  * A few notes on cpu_active vs cpu_online:
1995  *
1996  *  - cpu_active must be a subset of cpu_online
1997  *
1998  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1999  *    see __set_cpus_allowed_ptr(). At this point the newly online
2000  *    CPU isn't yet part of the sched domains, and balancing will not
2001  *    see it.
2002  *
2003  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2004  *    avoid the load balancer to place new tasks on the to be removed
2005  *    CPU. Existing tasks will remain running there and will be taken
2006  *    off.
2007  *
2008  * This means that fallback selection must not select !active CPUs.
2009  * And can assume that any active CPU must be online. Conversely
2010  * select_task_rq() below may allow selection of !active CPUs in order
2011  * to satisfy the above rules.
2012  */
2013 static int select_fallback_rq(int cpu, struct task_struct *p)
2014 {
2015 	int nid = cpu_to_node(cpu);
2016 	const struct cpumask *nodemask = NULL;
2017 	enum { cpuset, possible, fail } state = cpuset;
2018 	int dest_cpu;
2019 
2020 	/*
2021 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2022 	 * will return -1. There is no CPU on the node, and we should
2023 	 * select the CPU on the other node.
2024 	 */
2025 	if (nid != -1) {
2026 		nodemask = cpumask_of_node(nid);
2027 
2028 		/* Look for allowed, online CPU in same node. */
2029 		for_each_cpu(dest_cpu, nodemask) {
2030 			if (!cpu_active(dest_cpu))
2031 				continue;
2032 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2033 				return dest_cpu;
2034 		}
2035 	}
2036 
2037 	for (;;) {
2038 		/* Any allowed, online CPU? */
2039 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2040 			if (!is_cpu_allowed(p, dest_cpu))
2041 				continue;
2042 
2043 			goto out;
2044 		}
2045 
2046 		/* No more Mr. Nice Guy. */
2047 		switch (state) {
2048 		case cpuset:
2049 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2050 				cpuset_cpus_allowed_fallback(p);
2051 				state = possible;
2052 				break;
2053 			}
2054 			/* Fall-through */
2055 		case possible:
2056 			do_set_cpus_allowed(p, cpu_possible_mask);
2057 			state = fail;
2058 			break;
2059 
2060 		case fail:
2061 			BUG();
2062 			break;
2063 		}
2064 	}
2065 
2066 out:
2067 	if (state != cpuset) {
2068 		/*
2069 		 * Don't tell them about moving exiting tasks or
2070 		 * kernel threads (both mm NULL), since they never
2071 		 * leave kernel.
2072 		 */
2073 		if (p->mm && printk_ratelimit()) {
2074 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2075 					task_pid_nr(p), p->comm, cpu);
2076 		}
2077 	}
2078 
2079 	return dest_cpu;
2080 }
2081 
2082 /*
2083  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2084  */
2085 static inline
2086 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2087 {
2088 	lockdep_assert_held(&p->pi_lock);
2089 
2090 	if (p->nr_cpus_allowed > 1)
2091 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2092 	else
2093 		cpu = cpumask_any(p->cpus_ptr);
2094 
2095 	/*
2096 	 * In order not to call set_task_cpu() on a blocking task we need
2097 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2098 	 * CPU.
2099 	 *
2100 	 * Since this is common to all placement strategies, this lives here.
2101 	 *
2102 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2103 	 *   not worry about this generic constraint ]
2104 	 */
2105 	if (unlikely(!is_cpu_allowed(p, cpu)))
2106 		cpu = select_fallback_rq(task_cpu(p), p);
2107 
2108 	return cpu;
2109 }
2110 
2111 void sched_set_stop_task(int cpu, struct task_struct *stop)
2112 {
2113 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2114 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2115 
2116 	if (stop) {
2117 		/*
2118 		 * Make it appear like a SCHED_FIFO task, its something
2119 		 * userspace knows about and won't get confused about.
2120 		 *
2121 		 * Also, it will make PI more or less work without too
2122 		 * much confusion -- but then, stop work should not
2123 		 * rely on PI working anyway.
2124 		 */
2125 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2126 
2127 		stop->sched_class = &stop_sched_class;
2128 	}
2129 
2130 	cpu_rq(cpu)->stop = stop;
2131 
2132 	if (old_stop) {
2133 		/*
2134 		 * Reset it back to a normal scheduling class so that
2135 		 * it can die in pieces.
2136 		 */
2137 		old_stop->sched_class = &rt_sched_class;
2138 	}
2139 }
2140 
2141 #else
2142 
2143 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2144 					 const struct cpumask *new_mask, bool check)
2145 {
2146 	return set_cpus_allowed_ptr(p, new_mask);
2147 }
2148 
2149 #endif /* CONFIG_SMP */
2150 
2151 static void
2152 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2153 {
2154 	struct rq *rq;
2155 
2156 	if (!schedstat_enabled())
2157 		return;
2158 
2159 	rq = this_rq();
2160 
2161 #ifdef CONFIG_SMP
2162 	if (cpu == rq->cpu) {
2163 		__schedstat_inc(rq->ttwu_local);
2164 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2165 	} else {
2166 		struct sched_domain *sd;
2167 
2168 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2169 		rcu_read_lock();
2170 		for_each_domain(rq->cpu, sd) {
2171 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2172 				__schedstat_inc(sd->ttwu_wake_remote);
2173 				break;
2174 			}
2175 		}
2176 		rcu_read_unlock();
2177 	}
2178 
2179 	if (wake_flags & WF_MIGRATED)
2180 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2181 #endif /* CONFIG_SMP */
2182 
2183 	__schedstat_inc(rq->ttwu_count);
2184 	__schedstat_inc(p->se.statistics.nr_wakeups);
2185 
2186 	if (wake_flags & WF_SYNC)
2187 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2188 }
2189 
2190 /*
2191  * Mark the task runnable and perform wakeup-preemption.
2192  */
2193 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2194 			   struct rq_flags *rf)
2195 {
2196 	check_preempt_curr(rq, p, wake_flags);
2197 	p->state = TASK_RUNNING;
2198 	trace_sched_wakeup(p);
2199 
2200 #ifdef CONFIG_SMP
2201 	if (p->sched_class->task_woken) {
2202 		/*
2203 		 * Our task @p is fully woken up and running; so its safe to
2204 		 * drop the rq->lock, hereafter rq is only used for statistics.
2205 		 */
2206 		rq_unpin_lock(rq, rf);
2207 		p->sched_class->task_woken(rq, p);
2208 		rq_repin_lock(rq, rf);
2209 	}
2210 
2211 	if (rq->idle_stamp) {
2212 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2213 		u64 max = 2*rq->max_idle_balance_cost;
2214 
2215 		update_avg(&rq->avg_idle, delta);
2216 
2217 		if (rq->avg_idle > max)
2218 			rq->avg_idle = max;
2219 
2220 		rq->idle_stamp = 0;
2221 	}
2222 #endif
2223 }
2224 
2225 static void
2226 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2227 		 struct rq_flags *rf)
2228 {
2229 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2230 
2231 	lockdep_assert_held(&rq->lock);
2232 
2233 	if (p->sched_contributes_to_load)
2234 		rq->nr_uninterruptible--;
2235 
2236 #ifdef CONFIG_SMP
2237 	if (wake_flags & WF_MIGRATED)
2238 		en_flags |= ENQUEUE_MIGRATED;
2239 #endif
2240 
2241 	activate_task(rq, p, en_flags);
2242 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2243 }
2244 
2245 /*
2246  * Called in case the task @p isn't fully descheduled from its runqueue,
2247  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2248  * since all we need to do is flip p->state to TASK_RUNNING, since
2249  * the task is still ->on_rq.
2250  */
2251 static int ttwu_remote(struct task_struct *p, int wake_flags)
2252 {
2253 	struct rq_flags rf;
2254 	struct rq *rq;
2255 	int ret = 0;
2256 
2257 	rq = __task_rq_lock(p, &rf);
2258 	if (task_on_rq_queued(p)) {
2259 		/* check_preempt_curr() may use rq clock */
2260 		update_rq_clock(rq);
2261 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2262 		ret = 1;
2263 	}
2264 	__task_rq_unlock(rq, &rf);
2265 
2266 	return ret;
2267 }
2268 
2269 #ifdef CONFIG_SMP
2270 void sched_ttwu_pending(void *arg)
2271 {
2272 	struct llist_node *llist = arg;
2273 	struct rq *rq = this_rq();
2274 	struct task_struct *p, *t;
2275 	struct rq_flags rf;
2276 
2277 	if (!llist)
2278 		return;
2279 
2280 	/*
2281 	 * rq::ttwu_pending racy indication of out-standing wakeups.
2282 	 * Races such that false-negatives are possible, since they
2283 	 * are shorter lived that false-positives would be.
2284 	 */
2285 	WRITE_ONCE(rq->ttwu_pending, 0);
2286 
2287 	rq_lock_irqsave(rq, &rf);
2288 	update_rq_clock(rq);
2289 
2290 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2291 		if (WARN_ON_ONCE(p->on_cpu))
2292 			smp_cond_load_acquire(&p->on_cpu, !VAL);
2293 
2294 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2295 			set_task_cpu(p, cpu_of(rq));
2296 
2297 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2298 	}
2299 
2300 	rq_unlock_irqrestore(rq, &rf);
2301 }
2302 
2303 void send_call_function_single_ipi(int cpu)
2304 {
2305 	struct rq *rq = cpu_rq(cpu);
2306 
2307 	if (!set_nr_if_polling(rq->idle))
2308 		arch_send_call_function_single_ipi(cpu);
2309 	else
2310 		trace_sched_wake_idle_without_ipi(cpu);
2311 }
2312 
2313 /*
2314  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2315  * necessary. The wakee CPU on receipt of the IPI will queue the task
2316  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2317  * of the wakeup instead of the waker.
2318  */
2319 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2320 {
2321 	struct rq *rq = cpu_rq(cpu);
2322 
2323 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2324 
2325 	WRITE_ONCE(rq->ttwu_pending, 1);
2326 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
2327 }
2328 
2329 void wake_up_if_idle(int cpu)
2330 {
2331 	struct rq *rq = cpu_rq(cpu);
2332 	struct rq_flags rf;
2333 
2334 	rcu_read_lock();
2335 
2336 	if (!is_idle_task(rcu_dereference(rq->curr)))
2337 		goto out;
2338 
2339 	if (set_nr_if_polling(rq->idle)) {
2340 		trace_sched_wake_idle_without_ipi(cpu);
2341 	} else {
2342 		rq_lock_irqsave(rq, &rf);
2343 		if (is_idle_task(rq->curr))
2344 			smp_send_reschedule(cpu);
2345 		/* Else CPU is not idle, do nothing here: */
2346 		rq_unlock_irqrestore(rq, &rf);
2347 	}
2348 
2349 out:
2350 	rcu_read_unlock();
2351 }
2352 
2353 bool cpus_share_cache(int this_cpu, int that_cpu)
2354 {
2355 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2356 }
2357 
2358 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2359 {
2360 	/*
2361 	 * If the CPU does not share cache, then queue the task on the
2362 	 * remote rqs wakelist to avoid accessing remote data.
2363 	 */
2364 	if (!cpus_share_cache(smp_processor_id(), cpu))
2365 		return true;
2366 
2367 	/*
2368 	 * If the task is descheduling and the only running task on the
2369 	 * CPU then use the wakelist to offload the task activation to
2370 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
2371 	 * nr_running is checked to avoid unnecessary task stacking.
2372 	 */
2373 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2374 		return true;
2375 
2376 	return false;
2377 }
2378 
2379 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2380 {
2381 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2382 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
2383 			return false;
2384 
2385 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2386 		__ttwu_queue_wakelist(p, cpu, wake_flags);
2387 		return true;
2388 	}
2389 
2390 	return false;
2391 }
2392 #endif /* CONFIG_SMP */
2393 
2394 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2395 {
2396 	struct rq *rq = cpu_rq(cpu);
2397 	struct rq_flags rf;
2398 
2399 #if defined(CONFIG_SMP)
2400 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
2401 		return;
2402 #endif
2403 
2404 	rq_lock(rq, &rf);
2405 	update_rq_clock(rq);
2406 	ttwu_do_activate(rq, p, wake_flags, &rf);
2407 	rq_unlock(rq, &rf);
2408 }
2409 
2410 /*
2411  * Notes on Program-Order guarantees on SMP systems.
2412  *
2413  *  MIGRATION
2414  *
2415  * The basic program-order guarantee on SMP systems is that when a task [t]
2416  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2417  * execution on its new CPU [c1].
2418  *
2419  * For migration (of runnable tasks) this is provided by the following means:
2420  *
2421  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2422  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2423  *     rq(c1)->lock (if not at the same time, then in that order).
2424  *  C) LOCK of the rq(c1)->lock scheduling in task
2425  *
2426  * Release/acquire chaining guarantees that B happens after A and C after B.
2427  * Note: the CPU doing B need not be c0 or c1
2428  *
2429  * Example:
2430  *
2431  *   CPU0            CPU1            CPU2
2432  *
2433  *   LOCK rq(0)->lock
2434  *   sched-out X
2435  *   sched-in Y
2436  *   UNLOCK rq(0)->lock
2437  *
2438  *                                   LOCK rq(0)->lock // orders against CPU0
2439  *                                   dequeue X
2440  *                                   UNLOCK rq(0)->lock
2441  *
2442  *                                   LOCK rq(1)->lock
2443  *                                   enqueue X
2444  *                                   UNLOCK rq(1)->lock
2445  *
2446  *                   LOCK rq(1)->lock // orders against CPU2
2447  *                   sched-out Z
2448  *                   sched-in X
2449  *                   UNLOCK rq(1)->lock
2450  *
2451  *
2452  *  BLOCKING -- aka. SLEEP + WAKEUP
2453  *
2454  * For blocking we (obviously) need to provide the same guarantee as for
2455  * migration. However the means are completely different as there is no lock
2456  * chain to provide order. Instead we do:
2457  *
2458  *   1) smp_store_release(X->on_cpu, 0)
2459  *   2) smp_cond_load_acquire(!X->on_cpu)
2460  *
2461  * Example:
2462  *
2463  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2464  *
2465  *   LOCK rq(0)->lock LOCK X->pi_lock
2466  *   dequeue X
2467  *   sched-out X
2468  *   smp_store_release(X->on_cpu, 0);
2469  *
2470  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2471  *                    X->state = WAKING
2472  *                    set_task_cpu(X,2)
2473  *
2474  *                    LOCK rq(2)->lock
2475  *                    enqueue X
2476  *                    X->state = RUNNING
2477  *                    UNLOCK rq(2)->lock
2478  *
2479  *                                          LOCK rq(2)->lock // orders against CPU1
2480  *                                          sched-out Z
2481  *                                          sched-in X
2482  *                                          UNLOCK rq(2)->lock
2483  *
2484  *                    UNLOCK X->pi_lock
2485  *   UNLOCK rq(0)->lock
2486  *
2487  *
2488  * However, for wakeups there is a second guarantee we must provide, namely we
2489  * must ensure that CONDITION=1 done by the caller can not be reordered with
2490  * accesses to the task state; see try_to_wake_up() and set_current_state().
2491  */
2492 
2493 /**
2494  * try_to_wake_up - wake up a thread
2495  * @p: the thread to be awakened
2496  * @state: the mask of task states that can be woken
2497  * @wake_flags: wake modifier flags (WF_*)
2498  *
2499  * If (@state & @p->state) @p->state = TASK_RUNNING.
2500  *
2501  * If the task was not queued/runnable, also place it back on a runqueue.
2502  *
2503  * Atomic against schedule() which would dequeue a task, also see
2504  * set_current_state().
2505  *
2506  * This function executes a full memory barrier before accessing the task
2507  * state; see set_current_state().
2508  *
2509  * Return: %true if @p->state changes (an actual wakeup was done),
2510  *	   %false otherwise.
2511  */
2512 static int
2513 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2514 {
2515 	unsigned long flags;
2516 	int cpu, success = 0;
2517 
2518 	preempt_disable();
2519 	if (p == current) {
2520 		/*
2521 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2522 		 * == smp_processor_id()'. Together this means we can special
2523 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2524 		 * without taking any locks.
2525 		 *
2526 		 * In particular:
2527 		 *  - we rely on Program-Order guarantees for all the ordering,
2528 		 *  - we're serialized against set_special_state() by virtue of
2529 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2530 		 */
2531 		if (!(p->state & state))
2532 			goto out;
2533 
2534 		success = 1;
2535 		trace_sched_waking(p);
2536 		p->state = TASK_RUNNING;
2537 		trace_sched_wakeup(p);
2538 		goto out;
2539 	}
2540 
2541 	/*
2542 	 * If we are going to wake up a thread waiting for CONDITION we
2543 	 * need to ensure that CONDITION=1 done by the caller can not be
2544 	 * reordered with p->state check below. This pairs with mb() in
2545 	 * set_current_state() the waiting thread does.
2546 	 */
2547 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2548 	smp_mb__after_spinlock();
2549 	if (!(p->state & state))
2550 		goto unlock;
2551 
2552 	trace_sched_waking(p);
2553 
2554 	/* We're going to change ->state: */
2555 	success = 1;
2556 
2557 	/*
2558 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2559 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2560 	 * in smp_cond_load_acquire() below.
2561 	 *
2562 	 * sched_ttwu_pending()			try_to_wake_up()
2563 	 *   STORE p->on_rq = 1			  LOAD p->state
2564 	 *   UNLOCK rq->lock
2565 	 *
2566 	 * __schedule() (switch to task 'p')
2567 	 *   LOCK rq->lock			  smp_rmb();
2568 	 *   smp_mb__after_spinlock();
2569 	 *   UNLOCK rq->lock
2570 	 *
2571 	 * [task p]
2572 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2573 	 *
2574 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2575 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2576 	 *
2577 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2578 	 */
2579 	smp_rmb();
2580 	if (READ_ONCE(p->on_rq) && ttwu_remote(p, wake_flags))
2581 		goto unlock;
2582 
2583 	if (p->in_iowait) {
2584 		delayacct_blkio_end(p);
2585 		atomic_dec(&task_rq(p)->nr_iowait);
2586 	}
2587 
2588 #ifdef CONFIG_SMP
2589 	/*
2590 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2591 	 * possible to, falsely, observe p->on_cpu == 0.
2592 	 *
2593 	 * One must be running (->on_cpu == 1) in order to remove oneself
2594 	 * from the runqueue.
2595 	 *
2596 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2597 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2598 	 *   UNLOCK rq->lock
2599 	 *
2600 	 * __schedule() (put 'p' to sleep)
2601 	 *   LOCK rq->lock			  smp_rmb();
2602 	 *   smp_mb__after_spinlock();
2603 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2604 	 *
2605 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2606 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2607 	 *
2608 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2609 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
2610 	 * care about it's own p->state. See the comment in __schedule().
2611 	 */
2612 	smp_acquire__after_ctrl_dep();
2613 
2614 	/*
2615 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2616 	 * == 0), which means we need to do an enqueue, change p->state to
2617 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
2618 	 * enqueue, such as ttwu_queue_wakelist().
2619 	 */
2620 	p->state = TASK_WAKING;
2621 
2622 	/*
2623 	 * If the owning (remote) CPU is still in the middle of schedule() with
2624 	 * this task as prev, considering queueing p on the remote CPUs wake_list
2625 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
2626 	 * let the waker make forward progress. This is safe because IRQs are
2627 	 * disabled and the IPI will deliver after on_cpu is cleared.
2628 	 *
2629 	 * Ensure we load task_cpu(p) after p->on_cpu:
2630 	 *
2631 	 * set_task_cpu(p, cpu);
2632 	 *   STORE p->cpu = @cpu
2633 	 * __schedule() (switch to task 'p')
2634 	 *   LOCK rq->lock
2635 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
2636 	 *   STORE p->on_cpu = 1		LOAD p->cpu
2637 	 *
2638 	 * to ensure we observe the correct CPU on which the task is currently
2639 	 * scheduling.
2640 	 */
2641 	if (smp_load_acquire(&p->on_cpu) &&
2642 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
2643 		goto unlock;
2644 
2645 	/*
2646 	 * If the owning (remote) CPU is still in the middle of schedule() with
2647 	 * this task as prev, wait until its done referencing the task.
2648 	 *
2649 	 * Pairs with the smp_store_release() in finish_task().
2650 	 *
2651 	 * This ensures that tasks getting woken will be fully ordered against
2652 	 * their previous state and preserve Program Order.
2653 	 */
2654 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2655 
2656 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2657 	if (task_cpu(p) != cpu) {
2658 		wake_flags |= WF_MIGRATED;
2659 		psi_ttwu_dequeue(p);
2660 		set_task_cpu(p, cpu);
2661 	}
2662 #else
2663 	cpu = task_cpu(p);
2664 #endif /* CONFIG_SMP */
2665 
2666 	ttwu_queue(p, cpu, wake_flags);
2667 unlock:
2668 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2669 out:
2670 	if (success)
2671 		ttwu_stat(p, task_cpu(p), wake_flags);
2672 	preempt_enable();
2673 
2674 	return success;
2675 }
2676 
2677 /**
2678  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2679  * @p: Process for which the function is to be invoked.
2680  * @func: Function to invoke.
2681  * @arg: Argument to function.
2682  *
2683  * If the specified task can be quickly locked into a definite state
2684  * (either sleeping or on a given runqueue), arrange to keep it in that
2685  * state while invoking @func(@arg).  This function can use ->on_rq and
2686  * task_curr() to work out what the state is, if required.  Given that
2687  * @func can be invoked with a runqueue lock held, it had better be quite
2688  * lightweight.
2689  *
2690  * Returns:
2691  *	@false if the task slipped out from under the locks.
2692  *	@true if the task was locked onto a runqueue or is sleeping.
2693  *		However, @func can override this by returning @false.
2694  */
2695 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
2696 {
2697 	bool ret = false;
2698 	struct rq_flags rf;
2699 	struct rq *rq;
2700 
2701 	lockdep_assert_irqs_enabled();
2702 	raw_spin_lock_irq(&p->pi_lock);
2703 	if (p->on_rq) {
2704 		rq = __task_rq_lock(p, &rf);
2705 		if (task_rq(p) == rq)
2706 			ret = func(p, arg);
2707 		rq_unlock(rq, &rf);
2708 	} else {
2709 		switch (p->state) {
2710 		case TASK_RUNNING:
2711 		case TASK_WAKING:
2712 			break;
2713 		default:
2714 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
2715 			if (!p->on_rq)
2716 				ret = func(p, arg);
2717 		}
2718 	}
2719 	raw_spin_unlock_irq(&p->pi_lock);
2720 	return ret;
2721 }
2722 
2723 /**
2724  * wake_up_process - Wake up a specific process
2725  * @p: The process to be woken up.
2726  *
2727  * Attempt to wake up the nominated process and move it to the set of runnable
2728  * processes.
2729  *
2730  * Return: 1 if the process was woken up, 0 if it was already running.
2731  *
2732  * This function executes a full memory barrier before accessing the task state.
2733  */
2734 int wake_up_process(struct task_struct *p)
2735 {
2736 	return try_to_wake_up(p, TASK_NORMAL, 0);
2737 }
2738 EXPORT_SYMBOL(wake_up_process);
2739 
2740 int wake_up_state(struct task_struct *p, unsigned int state)
2741 {
2742 	return try_to_wake_up(p, state, 0);
2743 }
2744 
2745 /*
2746  * Perform scheduler related setup for a newly forked process p.
2747  * p is forked by current.
2748  *
2749  * __sched_fork() is basic setup used by init_idle() too:
2750  */
2751 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2752 {
2753 	p->on_rq			= 0;
2754 
2755 	p->se.on_rq			= 0;
2756 	p->se.exec_start		= 0;
2757 	p->se.sum_exec_runtime		= 0;
2758 	p->se.prev_sum_exec_runtime	= 0;
2759 	p->se.nr_migrations		= 0;
2760 	p->se.vruntime			= 0;
2761 	INIT_LIST_HEAD(&p->se.group_node);
2762 
2763 #ifdef CONFIG_FAIR_GROUP_SCHED
2764 	p->se.cfs_rq			= NULL;
2765 #endif
2766 
2767 #ifdef CONFIG_SCHEDSTATS
2768 	/* Even if schedstat is disabled, there should not be garbage */
2769 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2770 #endif
2771 
2772 	RB_CLEAR_NODE(&p->dl.rb_node);
2773 	init_dl_task_timer(&p->dl);
2774 	init_dl_inactive_task_timer(&p->dl);
2775 	__dl_clear_params(p);
2776 
2777 	INIT_LIST_HEAD(&p->rt.run_list);
2778 	p->rt.timeout		= 0;
2779 	p->rt.time_slice	= sched_rr_timeslice;
2780 	p->rt.on_rq		= 0;
2781 	p->rt.on_list		= 0;
2782 
2783 #ifdef CONFIG_PREEMPT_NOTIFIERS
2784 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2785 #endif
2786 
2787 #ifdef CONFIG_COMPACTION
2788 	p->capture_control = NULL;
2789 #endif
2790 	init_numa_balancing(clone_flags, p);
2791 #ifdef CONFIG_SMP
2792 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
2793 #endif
2794 }
2795 
2796 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2797 
2798 #ifdef CONFIG_NUMA_BALANCING
2799 
2800 void set_numabalancing_state(bool enabled)
2801 {
2802 	if (enabled)
2803 		static_branch_enable(&sched_numa_balancing);
2804 	else
2805 		static_branch_disable(&sched_numa_balancing);
2806 }
2807 
2808 #ifdef CONFIG_PROC_SYSCTL
2809 int sysctl_numa_balancing(struct ctl_table *table, int write,
2810 			  void *buffer, size_t *lenp, loff_t *ppos)
2811 {
2812 	struct ctl_table t;
2813 	int err;
2814 	int state = static_branch_likely(&sched_numa_balancing);
2815 
2816 	if (write && !capable(CAP_SYS_ADMIN))
2817 		return -EPERM;
2818 
2819 	t = *table;
2820 	t.data = &state;
2821 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2822 	if (err < 0)
2823 		return err;
2824 	if (write)
2825 		set_numabalancing_state(state);
2826 	return err;
2827 }
2828 #endif
2829 #endif
2830 
2831 #ifdef CONFIG_SCHEDSTATS
2832 
2833 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2834 static bool __initdata __sched_schedstats = false;
2835 
2836 static void set_schedstats(bool enabled)
2837 {
2838 	if (enabled)
2839 		static_branch_enable(&sched_schedstats);
2840 	else
2841 		static_branch_disable(&sched_schedstats);
2842 }
2843 
2844 void force_schedstat_enabled(void)
2845 {
2846 	if (!schedstat_enabled()) {
2847 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2848 		static_branch_enable(&sched_schedstats);
2849 	}
2850 }
2851 
2852 static int __init setup_schedstats(char *str)
2853 {
2854 	int ret = 0;
2855 	if (!str)
2856 		goto out;
2857 
2858 	/*
2859 	 * This code is called before jump labels have been set up, so we can't
2860 	 * change the static branch directly just yet.  Instead set a temporary
2861 	 * variable so init_schedstats() can do it later.
2862 	 */
2863 	if (!strcmp(str, "enable")) {
2864 		__sched_schedstats = true;
2865 		ret = 1;
2866 	} else if (!strcmp(str, "disable")) {
2867 		__sched_schedstats = false;
2868 		ret = 1;
2869 	}
2870 out:
2871 	if (!ret)
2872 		pr_warn("Unable to parse schedstats=\n");
2873 
2874 	return ret;
2875 }
2876 __setup("schedstats=", setup_schedstats);
2877 
2878 static void __init init_schedstats(void)
2879 {
2880 	set_schedstats(__sched_schedstats);
2881 }
2882 
2883 #ifdef CONFIG_PROC_SYSCTL
2884 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
2885 		size_t *lenp, loff_t *ppos)
2886 {
2887 	struct ctl_table t;
2888 	int err;
2889 	int state = static_branch_likely(&sched_schedstats);
2890 
2891 	if (write && !capable(CAP_SYS_ADMIN))
2892 		return -EPERM;
2893 
2894 	t = *table;
2895 	t.data = &state;
2896 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2897 	if (err < 0)
2898 		return err;
2899 	if (write)
2900 		set_schedstats(state);
2901 	return err;
2902 }
2903 #endif /* CONFIG_PROC_SYSCTL */
2904 #else  /* !CONFIG_SCHEDSTATS */
2905 static inline void init_schedstats(void) {}
2906 #endif /* CONFIG_SCHEDSTATS */
2907 
2908 /*
2909  * fork()/clone()-time setup:
2910  */
2911 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2912 {
2913 	unsigned long flags;
2914 
2915 	__sched_fork(clone_flags, p);
2916 	/*
2917 	 * We mark the process as NEW here. This guarantees that
2918 	 * nobody will actually run it, and a signal or other external
2919 	 * event cannot wake it up and insert it on the runqueue either.
2920 	 */
2921 	p->state = TASK_NEW;
2922 
2923 	/*
2924 	 * Make sure we do not leak PI boosting priority to the child.
2925 	 */
2926 	p->prio = current->normal_prio;
2927 
2928 	uclamp_fork(p);
2929 
2930 	/*
2931 	 * Revert to default priority/policy on fork if requested.
2932 	 */
2933 	if (unlikely(p->sched_reset_on_fork)) {
2934 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2935 			p->policy = SCHED_NORMAL;
2936 			p->static_prio = NICE_TO_PRIO(0);
2937 			p->rt_priority = 0;
2938 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2939 			p->static_prio = NICE_TO_PRIO(0);
2940 
2941 		p->prio = p->normal_prio = __normal_prio(p);
2942 		set_load_weight(p, false);
2943 
2944 		/*
2945 		 * We don't need the reset flag anymore after the fork. It has
2946 		 * fulfilled its duty:
2947 		 */
2948 		p->sched_reset_on_fork = 0;
2949 	}
2950 
2951 	if (dl_prio(p->prio))
2952 		return -EAGAIN;
2953 	else if (rt_prio(p->prio))
2954 		p->sched_class = &rt_sched_class;
2955 	else
2956 		p->sched_class = &fair_sched_class;
2957 
2958 	init_entity_runnable_average(&p->se);
2959 
2960 	/*
2961 	 * The child is not yet in the pid-hash so no cgroup attach races,
2962 	 * and the cgroup is pinned to this child due to cgroup_fork()
2963 	 * is ran before sched_fork().
2964 	 *
2965 	 * Silence PROVE_RCU.
2966 	 */
2967 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2968 	rseq_migrate(p);
2969 	/*
2970 	 * We're setting the CPU for the first time, we don't migrate,
2971 	 * so use __set_task_cpu().
2972 	 */
2973 	__set_task_cpu(p, smp_processor_id());
2974 	if (p->sched_class->task_fork)
2975 		p->sched_class->task_fork(p);
2976 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2977 
2978 #ifdef CONFIG_SCHED_INFO
2979 	if (likely(sched_info_on()))
2980 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2981 #endif
2982 #if defined(CONFIG_SMP)
2983 	p->on_cpu = 0;
2984 #endif
2985 	init_task_preempt_count(p);
2986 #ifdef CONFIG_SMP
2987 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2988 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2989 #endif
2990 	return 0;
2991 }
2992 
2993 unsigned long to_ratio(u64 period, u64 runtime)
2994 {
2995 	if (runtime == RUNTIME_INF)
2996 		return BW_UNIT;
2997 
2998 	/*
2999 	 * Doing this here saves a lot of checks in all
3000 	 * the calling paths, and returning zero seems
3001 	 * safe for them anyway.
3002 	 */
3003 	if (period == 0)
3004 		return 0;
3005 
3006 	return div64_u64(runtime << BW_SHIFT, period);
3007 }
3008 
3009 /*
3010  * wake_up_new_task - wake up a newly created task for the first time.
3011  *
3012  * This function will do some initial scheduler statistics housekeeping
3013  * that must be done for every newly created context, then puts the task
3014  * on the runqueue and wakes it.
3015  */
3016 void wake_up_new_task(struct task_struct *p)
3017 {
3018 	struct rq_flags rf;
3019 	struct rq *rq;
3020 
3021 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3022 	p->state = TASK_RUNNING;
3023 #ifdef CONFIG_SMP
3024 	/*
3025 	 * Fork balancing, do it here and not earlier because:
3026 	 *  - cpus_ptr can change in the fork path
3027 	 *  - any previously selected CPU might disappear through hotplug
3028 	 *
3029 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3030 	 * as we're not fully set-up yet.
3031 	 */
3032 	p->recent_used_cpu = task_cpu(p);
3033 	rseq_migrate(p);
3034 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3035 #endif
3036 	rq = __task_rq_lock(p, &rf);
3037 	update_rq_clock(rq);
3038 	post_init_entity_util_avg(p);
3039 
3040 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3041 	trace_sched_wakeup_new(p);
3042 	check_preempt_curr(rq, p, WF_FORK);
3043 #ifdef CONFIG_SMP
3044 	if (p->sched_class->task_woken) {
3045 		/*
3046 		 * Nothing relies on rq->lock after this, so its fine to
3047 		 * drop it.
3048 		 */
3049 		rq_unpin_lock(rq, &rf);
3050 		p->sched_class->task_woken(rq, p);
3051 		rq_repin_lock(rq, &rf);
3052 	}
3053 #endif
3054 	task_rq_unlock(rq, p, &rf);
3055 }
3056 
3057 #ifdef CONFIG_PREEMPT_NOTIFIERS
3058 
3059 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3060 
3061 void preempt_notifier_inc(void)
3062 {
3063 	static_branch_inc(&preempt_notifier_key);
3064 }
3065 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3066 
3067 void preempt_notifier_dec(void)
3068 {
3069 	static_branch_dec(&preempt_notifier_key);
3070 }
3071 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3072 
3073 /**
3074  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3075  * @notifier: notifier struct to register
3076  */
3077 void preempt_notifier_register(struct preempt_notifier *notifier)
3078 {
3079 	if (!static_branch_unlikely(&preempt_notifier_key))
3080 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3081 
3082 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3083 }
3084 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3085 
3086 /**
3087  * preempt_notifier_unregister - no longer interested in preemption notifications
3088  * @notifier: notifier struct to unregister
3089  *
3090  * This is *not* safe to call from within a preemption notifier.
3091  */
3092 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3093 {
3094 	hlist_del(&notifier->link);
3095 }
3096 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3097 
3098 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3099 {
3100 	struct preempt_notifier *notifier;
3101 
3102 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3103 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3104 }
3105 
3106 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3107 {
3108 	if (static_branch_unlikely(&preempt_notifier_key))
3109 		__fire_sched_in_preempt_notifiers(curr);
3110 }
3111 
3112 static void
3113 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3114 				   struct task_struct *next)
3115 {
3116 	struct preempt_notifier *notifier;
3117 
3118 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3119 		notifier->ops->sched_out(notifier, next);
3120 }
3121 
3122 static __always_inline void
3123 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3124 				 struct task_struct *next)
3125 {
3126 	if (static_branch_unlikely(&preempt_notifier_key))
3127 		__fire_sched_out_preempt_notifiers(curr, next);
3128 }
3129 
3130 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3131 
3132 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3133 {
3134 }
3135 
3136 static inline void
3137 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3138 				 struct task_struct *next)
3139 {
3140 }
3141 
3142 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3143 
3144 static inline void prepare_task(struct task_struct *next)
3145 {
3146 #ifdef CONFIG_SMP
3147 	/*
3148 	 * Claim the task as running, we do this before switching to it
3149 	 * such that any running task will have this set.
3150 	 */
3151 	next->on_cpu = 1;
3152 #endif
3153 }
3154 
3155 static inline void finish_task(struct task_struct *prev)
3156 {
3157 #ifdef CONFIG_SMP
3158 	/*
3159 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3160 	 * We must ensure this doesn't happen until the switch is completely
3161 	 * finished.
3162 	 *
3163 	 * In particular, the load of prev->state in finish_task_switch() must
3164 	 * happen before this.
3165 	 *
3166 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3167 	 */
3168 	smp_store_release(&prev->on_cpu, 0);
3169 #endif
3170 }
3171 
3172 static inline void
3173 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3174 {
3175 	/*
3176 	 * Since the runqueue lock will be released by the next
3177 	 * task (which is an invalid locking op but in the case
3178 	 * of the scheduler it's an obvious special-case), so we
3179 	 * do an early lockdep release here:
3180 	 */
3181 	rq_unpin_lock(rq, rf);
3182 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3183 #ifdef CONFIG_DEBUG_SPINLOCK
3184 	/* this is a valid case when another task releases the spinlock */
3185 	rq->lock.owner = next;
3186 #endif
3187 }
3188 
3189 static inline void finish_lock_switch(struct rq *rq)
3190 {
3191 	/*
3192 	 * If we are tracking spinlock dependencies then we have to
3193 	 * fix up the runqueue lock - which gets 'carried over' from
3194 	 * prev into current:
3195 	 */
3196 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3197 	raw_spin_unlock_irq(&rq->lock);
3198 }
3199 
3200 /*
3201  * NOP if the arch has not defined these:
3202  */
3203 
3204 #ifndef prepare_arch_switch
3205 # define prepare_arch_switch(next)	do { } while (0)
3206 #endif
3207 
3208 #ifndef finish_arch_post_lock_switch
3209 # define finish_arch_post_lock_switch()	do { } while (0)
3210 #endif
3211 
3212 /**
3213  * prepare_task_switch - prepare to switch tasks
3214  * @rq: the runqueue preparing to switch
3215  * @prev: the current task that is being switched out
3216  * @next: the task we are going to switch to.
3217  *
3218  * This is called with the rq lock held and interrupts off. It must
3219  * be paired with a subsequent finish_task_switch after the context
3220  * switch.
3221  *
3222  * prepare_task_switch sets up locking and calls architecture specific
3223  * hooks.
3224  */
3225 static inline void
3226 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3227 		    struct task_struct *next)
3228 {
3229 	kcov_prepare_switch(prev);
3230 	sched_info_switch(rq, prev, next);
3231 	perf_event_task_sched_out(prev, next);
3232 	rseq_preempt(prev);
3233 	fire_sched_out_preempt_notifiers(prev, next);
3234 	prepare_task(next);
3235 	prepare_arch_switch(next);
3236 }
3237 
3238 /**
3239  * finish_task_switch - clean up after a task-switch
3240  * @prev: the thread we just switched away from.
3241  *
3242  * finish_task_switch must be called after the context switch, paired
3243  * with a prepare_task_switch call before the context switch.
3244  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3245  * and do any other architecture-specific cleanup actions.
3246  *
3247  * Note that we may have delayed dropping an mm in context_switch(). If
3248  * so, we finish that here outside of the runqueue lock. (Doing it
3249  * with the lock held can cause deadlocks; see schedule() for
3250  * details.)
3251  *
3252  * The context switch have flipped the stack from under us and restored the
3253  * local variables which were saved when this task called schedule() in the
3254  * past. prev == current is still correct but we need to recalculate this_rq
3255  * because prev may have moved to another CPU.
3256  */
3257 static struct rq *finish_task_switch(struct task_struct *prev)
3258 	__releases(rq->lock)
3259 {
3260 	struct rq *rq = this_rq();
3261 	struct mm_struct *mm = rq->prev_mm;
3262 	long prev_state;
3263 
3264 	/*
3265 	 * The previous task will have left us with a preempt_count of 2
3266 	 * because it left us after:
3267 	 *
3268 	 *	schedule()
3269 	 *	  preempt_disable();			// 1
3270 	 *	  __schedule()
3271 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3272 	 *
3273 	 * Also, see FORK_PREEMPT_COUNT.
3274 	 */
3275 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3276 		      "corrupted preempt_count: %s/%d/0x%x\n",
3277 		      current->comm, current->pid, preempt_count()))
3278 		preempt_count_set(FORK_PREEMPT_COUNT);
3279 
3280 	rq->prev_mm = NULL;
3281 
3282 	/*
3283 	 * A task struct has one reference for the use as "current".
3284 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3285 	 * schedule one last time. The schedule call will never return, and
3286 	 * the scheduled task must drop that reference.
3287 	 *
3288 	 * We must observe prev->state before clearing prev->on_cpu (in
3289 	 * finish_task), otherwise a concurrent wakeup can get prev
3290 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3291 	 * transition, resulting in a double drop.
3292 	 */
3293 	prev_state = prev->state;
3294 	vtime_task_switch(prev);
3295 	perf_event_task_sched_in(prev, current);
3296 	finish_task(prev);
3297 	finish_lock_switch(rq);
3298 	finish_arch_post_lock_switch();
3299 	kcov_finish_switch(current);
3300 
3301 	fire_sched_in_preempt_notifiers(current);
3302 	/*
3303 	 * When switching through a kernel thread, the loop in
3304 	 * membarrier_{private,global}_expedited() may have observed that
3305 	 * kernel thread and not issued an IPI. It is therefore possible to
3306 	 * schedule between user->kernel->user threads without passing though
3307 	 * switch_mm(). Membarrier requires a barrier after storing to
3308 	 * rq->curr, before returning to userspace, so provide them here:
3309 	 *
3310 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3311 	 *   provided by mmdrop(),
3312 	 * - a sync_core for SYNC_CORE.
3313 	 */
3314 	if (mm) {
3315 		membarrier_mm_sync_core_before_usermode(mm);
3316 		mmdrop(mm);
3317 	}
3318 	if (unlikely(prev_state == TASK_DEAD)) {
3319 		if (prev->sched_class->task_dead)
3320 			prev->sched_class->task_dead(prev);
3321 
3322 		/*
3323 		 * Remove function-return probe instances associated with this
3324 		 * task and put them back on the free list.
3325 		 */
3326 		kprobe_flush_task(prev);
3327 
3328 		/* Task is done with its stack. */
3329 		put_task_stack(prev);
3330 
3331 		put_task_struct_rcu_user(prev);
3332 	}
3333 
3334 	tick_nohz_task_switch();
3335 	return rq;
3336 }
3337 
3338 #ifdef CONFIG_SMP
3339 
3340 /* rq->lock is NOT held, but preemption is disabled */
3341 static void __balance_callback(struct rq *rq)
3342 {
3343 	struct callback_head *head, *next;
3344 	void (*func)(struct rq *rq);
3345 	unsigned long flags;
3346 
3347 	raw_spin_lock_irqsave(&rq->lock, flags);
3348 	head = rq->balance_callback;
3349 	rq->balance_callback = NULL;
3350 	while (head) {
3351 		func = (void (*)(struct rq *))head->func;
3352 		next = head->next;
3353 		head->next = NULL;
3354 		head = next;
3355 
3356 		func(rq);
3357 	}
3358 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3359 }
3360 
3361 static inline void balance_callback(struct rq *rq)
3362 {
3363 	if (unlikely(rq->balance_callback))
3364 		__balance_callback(rq);
3365 }
3366 
3367 #else
3368 
3369 static inline void balance_callback(struct rq *rq)
3370 {
3371 }
3372 
3373 #endif
3374 
3375 /**
3376  * schedule_tail - first thing a freshly forked thread must call.
3377  * @prev: the thread we just switched away from.
3378  */
3379 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3380 	__releases(rq->lock)
3381 {
3382 	struct rq *rq;
3383 
3384 	/*
3385 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3386 	 * finish_task_switch() for details.
3387 	 *
3388 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3389 	 * and the preempt_enable() will end up enabling preemption (on
3390 	 * PREEMPT_COUNT kernels).
3391 	 */
3392 
3393 	rq = finish_task_switch(prev);
3394 	balance_callback(rq);
3395 	preempt_enable();
3396 
3397 	if (current->set_child_tid)
3398 		put_user(task_pid_vnr(current), current->set_child_tid);
3399 
3400 	calculate_sigpending();
3401 }
3402 
3403 /*
3404  * context_switch - switch to the new MM and the new thread's register state.
3405  */
3406 static __always_inline struct rq *
3407 context_switch(struct rq *rq, struct task_struct *prev,
3408 	       struct task_struct *next, struct rq_flags *rf)
3409 {
3410 	prepare_task_switch(rq, prev, next);
3411 
3412 	/*
3413 	 * For paravirt, this is coupled with an exit in switch_to to
3414 	 * combine the page table reload and the switch backend into
3415 	 * one hypercall.
3416 	 */
3417 	arch_start_context_switch(prev);
3418 
3419 	/*
3420 	 * kernel -> kernel   lazy + transfer active
3421 	 *   user -> kernel   lazy + mmgrab() active
3422 	 *
3423 	 * kernel ->   user   switch + mmdrop() active
3424 	 *   user ->   user   switch
3425 	 */
3426 	if (!next->mm) {                                // to kernel
3427 		enter_lazy_tlb(prev->active_mm, next);
3428 
3429 		next->active_mm = prev->active_mm;
3430 		if (prev->mm)                           // from user
3431 			mmgrab(prev->active_mm);
3432 		else
3433 			prev->active_mm = NULL;
3434 	} else {                                        // to user
3435 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3436 		/*
3437 		 * sys_membarrier() requires an smp_mb() between setting
3438 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3439 		 *
3440 		 * The below provides this either through switch_mm(), or in
3441 		 * case 'prev->active_mm == next->mm' through
3442 		 * finish_task_switch()'s mmdrop().
3443 		 */
3444 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3445 
3446 		if (!prev->mm) {                        // from kernel
3447 			/* will mmdrop() in finish_task_switch(). */
3448 			rq->prev_mm = prev->active_mm;
3449 			prev->active_mm = NULL;
3450 		}
3451 	}
3452 
3453 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3454 
3455 	prepare_lock_switch(rq, next, rf);
3456 
3457 	/* Here we just switch the register state and the stack. */
3458 	switch_to(prev, next, prev);
3459 	barrier();
3460 
3461 	return finish_task_switch(prev);
3462 }
3463 
3464 /*
3465  * nr_running and nr_context_switches:
3466  *
3467  * externally visible scheduler statistics: current number of runnable
3468  * threads, total number of context switches performed since bootup.
3469  */
3470 unsigned long nr_running(void)
3471 {
3472 	unsigned long i, sum = 0;
3473 
3474 	for_each_online_cpu(i)
3475 		sum += cpu_rq(i)->nr_running;
3476 
3477 	return sum;
3478 }
3479 
3480 /*
3481  * Check if only the current task is running on the CPU.
3482  *
3483  * Caution: this function does not check that the caller has disabled
3484  * preemption, thus the result might have a time-of-check-to-time-of-use
3485  * race.  The caller is responsible to use it correctly, for example:
3486  *
3487  * - from a non-preemptible section (of course)
3488  *
3489  * - from a thread that is bound to a single CPU
3490  *
3491  * - in a loop with very short iterations (e.g. a polling loop)
3492  */
3493 bool single_task_running(void)
3494 {
3495 	return raw_rq()->nr_running == 1;
3496 }
3497 EXPORT_SYMBOL(single_task_running);
3498 
3499 unsigned long long nr_context_switches(void)
3500 {
3501 	int i;
3502 	unsigned long long sum = 0;
3503 
3504 	for_each_possible_cpu(i)
3505 		sum += cpu_rq(i)->nr_switches;
3506 
3507 	return sum;
3508 }
3509 
3510 /*
3511  * Consumers of these two interfaces, like for example the cpuidle menu
3512  * governor, are using nonsensical data. Preferring shallow idle state selection
3513  * for a CPU that has IO-wait which might not even end up running the task when
3514  * it does become runnable.
3515  */
3516 
3517 unsigned long nr_iowait_cpu(int cpu)
3518 {
3519 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3520 }
3521 
3522 /*
3523  * IO-wait accounting, and how its mostly bollocks (on SMP).
3524  *
3525  * The idea behind IO-wait account is to account the idle time that we could
3526  * have spend running if it were not for IO. That is, if we were to improve the
3527  * storage performance, we'd have a proportional reduction in IO-wait time.
3528  *
3529  * This all works nicely on UP, where, when a task blocks on IO, we account
3530  * idle time as IO-wait, because if the storage were faster, it could've been
3531  * running and we'd not be idle.
3532  *
3533  * This has been extended to SMP, by doing the same for each CPU. This however
3534  * is broken.
3535  *
3536  * Imagine for instance the case where two tasks block on one CPU, only the one
3537  * CPU will have IO-wait accounted, while the other has regular idle. Even
3538  * though, if the storage were faster, both could've ran at the same time,
3539  * utilising both CPUs.
3540  *
3541  * This means, that when looking globally, the current IO-wait accounting on
3542  * SMP is a lower bound, by reason of under accounting.
3543  *
3544  * Worse, since the numbers are provided per CPU, they are sometimes
3545  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3546  * associated with any one particular CPU, it can wake to another CPU than it
3547  * blocked on. This means the per CPU IO-wait number is meaningless.
3548  *
3549  * Task CPU affinities can make all that even more 'interesting'.
3550  */
3551 
3552 unsigned long nr_iowait(void)
3553 {
3554 	unsigned long i, sum = 0;
3555 
3556 	for_each_possible_cpu(i)
3557 		sum += nr_iowait_cpu(i);
3558 
3559 	return sum;
3560 }
3561 
3562 #ifdef CONFIG_SMP
3563 
3564 /*
3565  * sched_exec - execve() is a valuable balancing opportunity, because at
3566  * this point the task has the smallest effective memory and cache footprint.
3567  */
3568 void sched_exec(void)
3569 {
3570 	struct task_struct *p = current;
3571 	unsigned long flags;
3572 	int dest_cpu;
3573 
3574 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3575 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3576 	if (dest_cpu == smp_processor_id())
3577 		goto unlock;
3578 
3579 	if (likely(cpu_active(dest_cpu))) {
3580 		struct migration_arg arg = { p, dest_cpu };
3581 
3582 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3583 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3584 		return;
3585 	}
3586 unlock:
3587 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3588 }
3589 
3590 #endif
3591 
3592 DEFINE_PER_CPU(struct kernel_stat, kstat);
3593 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3594 
3595 EXPORT_PER_CPU_SYMBOL(kstat);
3596 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3597 
3598 /*
3599  * The function fair_sched_class.update_curr accesses the struct curr
3600  * and its field curr->exec_start; when called from task_sched_runtime(),
3601  * we observe a high rate of cache misses in practice.
3602  * Prefetching this data results in improved performance.
3603  */
3604 static inline void prefetch_curr_exec_start(struct task_struct *p)
3605 {
3606 #ifdef CONFIG_FAIR_GROUP_SCHED
3607 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3608 #else
3609 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3610 #endif
3611 	prefetch(curr);
3612 	prefetch(&curr->exec_start);
3613 }
3614 
3615 /*
3616  * Return accounted runtime for the task.
3617  * In case the task is currently running, return the runtime plus current's
3618  * pending runtime that have not been accounted yet.
3619  */
3620 unsigned long long task_sched_runtime(struct task_struct *p)
3621 {
3622 	struct rq_flags rf;
3623 	struct rq *rq;
3624 	u64 ns;
3625 
3626 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3627 	/*
3628 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3629 	 * So we have a optimization chance when the task's delta_exec is 0.
3630 	 * Reading ->on_cpu is racy, but this is ok.
3631 	 *
3632 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3633 	 * If we race with it entering CPU, unaccounted time is 0. This is
3634 	 * indistinguishable from the read occurring a few cycles earlier.
3635 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3636 	 * been accounted, so we're correct here as well.
3637 	 */
3638 	if (!p->on_cpu || !task_on_rq_queued(p))
3639 		return p->se.sum_exec_runtime;
3640 #endif
3641 
3642 	rq = task_rq_lock(p, &rf);
3643 	/*
3644 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3645 	 * project cycles that may never be accounted to this
3646 	 * thread, breaking clock_gettime().
3647 	 */
3648 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3649 		prefetch_curr_exec_start(p);
3650 		update_rq_clock(rq);
3651 		p->sched_class->update_curr(rq);
3652 	}
3653 	ns = p->se.sum_exec_runtime;
3654 	task_rq_unlock(rq, p, &rf);
3655 
3656 	return ns;
3657 }
3658 
3659 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3660 
3661 void arch_set_thermal_pressure(struct cpumask *cpus,
3662 			       unsigned long th_pressure)
3663 {
3664 	int cpu;
3665 
3666 	for_each_cpu(cpu, cpus)
3667 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3668 }
3669 
3670 /*
3671  * This function gets called by the timer code, with HZ frequency.
3672  * We call it with interrupts disabled.
3673  */
3674 void scheduler_tick(void)
3675 {
3676 	int cpu = smp_processor_id();
3677 	struct rq *rq = cpu_rq(cpu);
3678 	struct task_struct *curr = rq->curr;
3679 	struct rq_flags rf;
3680 	unsigned long thermal_pressure;
3681 
3682 	arch_scale_freq_tick();
3683 	sched_clock_tick();
3684 
3685 	rq_lock(rq, &rf);
3686 
3687 	update_rq_clock(rq);
3688 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3689 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3690 	curr->sched_class->task_tick(rq, curr, 0);
3691 	calc_global_load_tick(rq);
3692 	psi_task_tick(rq);
3693 
3694 	rq_unlock(rq, &rf);
3695 
3696 	perf_event_task_tick();
3697 
3698 #ifdef CONFIG_SMP
3699 	rq->idle_balance = idle_cpu(cpu);
3700 	trigger_load_balance(rq);
3701 #endif
3702 }
3703 
3704 #ifdef CONFIG_NO_HZ_FULL
3705 
3706 struct tick_work {
3707 	int			cpu;
3708 	atomic_t		state;
3709 	struct delayed_work	work;
3710 };
3711 /* Values for ->state, see diagram below. */
3712 #define TICK_SCHED_REMOTE_OFFLINE	0
3713 #define TICK_SCHED_REMOTE_OFFLINING	1
3714 #define TICK_SCHED_REMOTE_RUNNING	2
3715 
3716 /*
3717  * State diagram for ->state:
3718  *
3719  *
3720  *          TICK_SCHED_REMOTE_OFFLINE
3721  *                    |   ^
3722  *                    |   |
3723  *                    |   | sched_tick_remote()
3724  *                    |   |
3725  *                    |   |
3726  *                    +--TICK_SCHED_REMOTE_OFFLINING
3727  *                    |   ^
3728  *                    |   |
3729  * sched_tick_start() |   | sched_tick_stop()
3730  *                    |   |
3731  *                    V   |
3732  *          TICK_SCHED_REMOTE_RUNNING
3733  *
3734  *
3735  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3736  * and sched_tick_start() are happy to leave the state in RUNNING.
3737  */
3738 
3739 static struct tick_work __percpu *tick_work_cpu;
3740 
3741 static void sched_tick_remote(struct work_struct *work)
3742 {
3743 	struct delayed_work *dwork = to_delayed_work(work);
3744 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3745 	int cpu = twork->cpu;
3746 	struct rq *rq = cpu_rq(cpu);
3747 	struct task_struct *curr;
3748 	struct rq_flags rf;
3749 	u64 delta;
3750 	int os;
3751 
3752 	/*
3753 	 * Handle the tick only if it appears the remote CPU is running in full
3754 	 * dynticks mode. The check is racy by nature, but missing a tick or
3755 	 * having one too much is no big deal because the scheduler tick updates
3756 	 * statistics and checks timeslices in a time-independent way, regardless
3757 	 * of when exactly it is running.
3758 	 */
3759 	if (!tick_nohz_tick_stopped_cpu(cpu))
3760 		goto out_requeue;
3761 
3762 	rq_lock_irq(rq, &rf);
3763 	curr = rq->curr;
3764 	if (cpu_is_offline(cpu))
3765 		goto out_unlock;
3766 
3767 	update_rq_clock(rq);
3768 
3769 	if (!is_idle_task(curr)) {
3770 		/*
3771 		 * Make sure the next tick runs within a reasonable
3772 		 * amount of time.
3773 		 */
3774 		delta = rq_clock_task(rq) - curr->se.exec_start;
3775 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3776 	}
3777 	curr->sched_class->task_tick(rq, curr, 0);
3778 
3779 	calc_load_nohz_remote(rq);
3780 out_unlock:
3781 	rq_unlock_irq(rq, &rf);
3782 out_requeue:
3783 
3784 	/*
3785 	 * Run the remote tick once per second (1Hz). This arbitrary
3786 	 * frequency is large enough to avoid overload but short enough
3787 	 * to keep scheduler internal stats reasonably up to date.  But
3788 	 * first update state to reflect hotplug activity if required.
3789 	 */
3790 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3791 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3792 	if (os == TICK_SCHED_REMOTE_RUNNING)
3793 		queue_delayed_work(system_unbound_wq, dwork, HZ);
3794 }
3795 
3796 static void sched_tick_start(int cpu)
3797 {
3798 	int os;
3799 	struct tick_work *twork;
3800 
3801 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3802 		return;
3803 
3804 	WARN_ON_ONCE(!tick_work_cpu);
3805 
3806 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3807 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3808 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3809 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3810 		twork->cpu = cpu;
3811 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3812 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3813 	}
3814 }
3815 
3816 #ifdef CONFIG_HOTPLUG_CPU
3817 static void sched_tick_stop(int cpu)
3818 {
3819 	struct tick_work *twork;
3820 	int os;
3821 
3822 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3823 		return;
3824 
3825 	WARN_ON_ONCE(!tick_work_cpu);
3826 
3827 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3828 	/* There cannot be competing actions, but don't rely on stop-machine. */
3829 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3830 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3831 	/* Don't cancel, as this would mess up the state machine. */
3832 }
3833 #endif /* CONFIG_HOTPLUG_CPU */
3834 
3835 int __init sched_tick_offload_init(void)
3836 {
3837 	tick_work_cpu = alloc_percpu(struct tick_work);
3838 	BUG_ON(!tick_work_cpu);
3839 	return 0;
3840 }
3841 
3842 #else /* !CONFIG_NO_HZ_FULL */
3843 static inline void sched_tick_start(int cpu) { }
3844 static inline void sched_tick_stop(int cpu) { }
3845 #endif
3846 
3847 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3848 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3849 /*
3850  * If the value passed in is equal to the current preempt count
3851  * then we just disabled preemption. Start timing the latency.
3852  */
3853 static inline void preempt_latency_start(int val)
3854 {
3855 	if (preempt_count() == val) {
3856 		unsigned long ip = get_lock_parent_ip();
3857 #ifdef CONFIG_DEBUG_PREEMPT
3858 		current->preempt_disable_ip = ip;
3859 #endif
3860 		trace_preempt_off(CALLER_ADDR0, ip);
3861 	}
3862 }
3863 
3864 void preempt_count_add(int val)
3865 {
3866 #ifdef CONFIG_DEBUG_PREEMPT
3867 	/*
3868 	 * Underflow?
3869 	 */
3870 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3871 		return;
3872 #endif
3873 	__preempt_count_add(val);
3874 #ifdef CONFIG_DEBUG_PREEMPT
3875 	/*
3876 	 * Spinlock count overflowing soon?
3877 	 */
3878 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3879 				PREEMPT_MASK - 10);
3880 #endif
3881 	preempt_latency_start(val);
3882 }
3883 EXPORT_SYMBOL(preempt_count_add);
3884 NOKPROBE_SYMBOL(preempt_count_add);
3885 
3886 /*
3887  * If the value passed in equals to the current preempt count
3888  * then we just enabled preemption. Stop timing the latency.
3889  */
3890 static inline void preempt_latency_stop(int val)
3891 {
3892 	if (preempt_count() == val)
3893 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3894 }
3895 
3896 void preempt_count_sub(int val)
3897 {
3898 #ifdef CONFIG_DEBUG_PREEMPT
3899 	/*
3900 	 * Underflow?
3901 	 */
3902 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3903 		return;
3904 	/*
3905 	 * Is the spinlock portion underflowing?
3906 	 */
3907 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3908 			!(preempt_count() & PREEMPT_MASK)))
3909 		return;
3910 #endif
3911 
3912 	preempt_latency_stop(val);
3913 	__preempt_count_sub(val);
3914 }
3915 EXPORT_SYMBOL(preempt_count_sub);
3916 NOKPROBE_SYMBOL(preempt_count_sub);
3917 
3918 #else
3919 static inline void preempt_latency_start(int val) { }
3920 static inline void preempt_latency_stop(int val) { }
3921 #endif
3922 
3923 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3924 {
3925 #ifdef CONFIG_DEBUG_PREEMPT
3926 	return p->preempt_disable_ip;
3927 #else
3928 	return 0;
3929 #endif
3930 }
3931 
3932 /*
3933  * Print scheduling while atomic bug:
3934  */
3935 static noinline void __schedule_bug(struct task_struct *prev)
3936 {
3937 	/* Save this before calling printk(), since that will clobber it */
3938 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3939 
3940 	if (oops_in_progress)
3941 		return;
3942 
3943 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3944 		prev->comm, prev->pid, preempt_count());
3945 
3946 	debug_show_held_locks(prev);
3947 	print_modules();
3948 	if (irqs_disabled())
3949 		print_irqtrace_events(prev);
3950 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3951 	    && in_atomic_preempt_off()) {
3952 		pr_err("Preemption disabled at:");
3953 		print_ip_sym(KERN_ERR, preempt_disable_ip);
3954 	}
3955 	if (panic_on_warn)
3956 		panic("scheduling while atomic\n");
3957 
3958 	dump_stack();
3959 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3960 }
3961 
3962 /*
3963  * Various schedule()-time debugging checks and statistics:
3964  */
3965 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3966 {
3967 #ifdef CONFIG_SCHED_STACK_END_CHECK
3968 	if (task_stack_end_corrupted(prev))
3969 		panic("corrupted stack end detected inside scheduler\n");
3970 
3971 	if (task_scs_end_corrupted(prev))
3972 		panic("corrupted shadow stack detected inside scheduler\n");
3973 #endif
3974 
3975 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3976 	if (!preempt && prev->state && prev->non_block_count) {
3977 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3978 			prev->comm, prev->pid, prev->non_block_count);
3979 		dump_stack();
3980 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3981 	}
3982 #endif
3983 
3984 	if (unlikely(in_atomic_preempt_off())) {
3985 		__schedule_bug(prev);
3986 		preempt_count_set(PREEMPT_DISABLED);
3987 	}
3988 	rcu_sleep_check();
3989 
3990 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3991 
3992 	schedstat_inc(this_rq()->sched_count);
3993 }
3994 
3995 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
3996 				  struct rq_flags *rf)
3997 {
3998 #ifdef CONFIG_SMP
3999 	const struct sched_class *class;
4000 	/*
4001 	 * We must do the balancing pass before put_prev_task(), such
4002 	 * that when we release the rq->lock the task is in the same
4003 	 * state as before we took rq->lock.
4004 	 *
4005 	 * We can terminate the balance pass as soon as we know there is
4006 	 * a runnable task of @class priority or higher.
4007 	 */
4008 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4009 		if (class->balance(rq, prev, rf))
4010 			break;
4011 	}
4012 #endif
4013 
4014 	put_prev_task(rq, prev);
4015 }
4016 
4017 /*
4018  * Pick up the highest-prio task:
4019  */
4020 static inline struct task_struct *
4021 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4022 {
4023 	const struct sched_class *class;
4024 	struct task_struct *p;
4025 
4026 	/*
4027 	 * Optimization: we know that if all tasks are in the fair class we can
4028 	 * call that function directly, but only if the @prev task wasn't of a
4029 	 * higher scheduling class, because otherwise those loose the
4030 	 * opportunity to pull in more work from other CPUs.
4031 	 */
4032 	if (likely((prev->sched_class == &idle_sched_class ||
4033 		    prev->sched_class == &fair_sched_class) &&
4034 		   rq->nr_running == rq->cfs.h_nr_running)) {
4035 
4036 		p = pick_next_task_fair(rq, prev, rf);
4037 		if (unlikely(p == RETRY_TASK))
4038 			goto restart;
4039 
4040 		/* Assumes fair_sched_class->next == idle_sched_class */
4041 		if (!p) {
4042 			put_prev_task(rq, prev);
4043 			p = pick_next_task_idle(rq);
4044 		}
4045 
4046 		return p;
4047 	}
4048 
4049 restart:
4050 	put_prev_task_balance(rq, prev, rf);
4051 
4052 	for_each_class(class) {
4053 		p = class->pick_next_task(rq);
4054 		if (p)
4055 			return p;
4056 	}
4057 
4058 	/* The idle class should always have a runnable task: */
4059 	BUG();
4060 }
4061 
4062 /*
4063  * __schedule() is the main scheduler function.
4064  *
4065  * The main means of driving the scheduler and thus entering this function are:
4066  *
4067  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4068  *
4069  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4070  *      paths. For example, see arch/x86/entry_64.S.
4071  *
4072  *      To drive preemption between tasks, the scheduler sets the flag in timer
4073  *      interrupt handler scheduler_tick().
4074  *
4075  *   3. Wakeups don't really cause entry into schedule(). They add a
4076  *      task to the run-queue and that's it.
4077  *
4078  *      Now, if the new task added to the run-queue preempts the current
4079  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4080  *      called on the nearest possible occasion:
4081  *
4082  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4083  *
4084  *         - in syscall or exception context, at the next outmost
4085  *           preempt_enable(). (this might be as soon as the wake_up()'s
4086  *           spin_unlock()!)
4087  *
4088  *         - in IRQ context, return from interrupt-handler to
4089  *           preemptible context
4090  *
4091  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4092  *         then at the next:
4093  *
4094  *          - cond_resched() call
4095  *          - explicit schedule() call
4096  *          - return from syscall or exception to user-space
4097  *          - return from interrupt-handler to user-space
4098  *
4099  * WARNING: must be called with preemption disabled!
4100  */
4101 static void __sched notrace __schedule(bool preempt)
4102 {
4103 	struct task_struct *prev, *next;
4104 	unsigned long *switch_count;
4105 	unsigned long prev_state;
4106 	struct rq_flags rf;
4107 	struct rq *rq;
4108 	int cpu;
4109 
4110 	cpu = smp_processor_id();
4111 	rq = cpu_rq(cpu);
4112 	prev = rq->curr;
4113 
4114 	schedule_debug(prev, preempt);
4115 
4116 	if (sched_feat(HRTICK))
4117 		hrtick_clear(rq);
4118 
4119 	local_irq_disable();
4120 	rcu_note_context_switch(preempt);
4121 
4122 	/*
4123 	 * Make sure that signal_pending_state()->signal_pending() below
4124 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4125 	 * done by the caller to avoid the race with signal_wake_up():
4126 	 *
4127 	 * __set_current_state(@state)		signal_wake_up()
4128 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4129 	 *					  wake_up_state(p, state)
4130 	 *   LOCK rq->lock			    LOCK p->pi_state
4131 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4132 	 *     if (signal_pending_state())	    if (p->state & @state)
4133 	 *
4134 	 * Also, the membarrier system call requires a full memory barrier
4135 	 * after coming from user-space, before storing to rq->curr.
4136 	 */
4137 	rq_lock(rq, &rf);
4138 	smp_mb__after_spinlock();
4139 
4140 	/* Promote REQ to ACT */
4141 	rq->clock_update_flags <<= 1;
4142 	update_rq_clock(rq);
4143 
4144 	switch_count = &prev->nivcsw;
4145 
4146 	/*
4147 	 * We must load prev->state once (task_struct::state is volatile), such
4148 	 * that:
4149 	 *
4150 	 *  - we form a control dependency vs deactivate_task() below.
4151 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4152 	 */
4153 	prev_state = prev->state;
4154 	if (!preempt && prev_state) {
4155 		if (signal_pending_state(prev_state, prev)) {
4156 			prev->state = TASK_RUNNING;
4157 		} else {
4158 			prev->sched_contributes_to_load =
4159 				(prev_state & TASK_UNINTERRUPTIBLE) &&
4160 				!(prev_state & TASK_NOLOAD) &&
4161 				!(prev->flags & PF_FROZEN);
4162 
4163 			if (prev->sched_contributes_to_load)
4164 				rq->nr_uninterruptible++;
4165 
4166 			/*
4167 			 * __schedule()			ttwu()
4168 			 *   prev_state = prev->state;    if (p->on_rq && ...)
4169 			 *   if (prev_state)		    goto out;
4170 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
4171 			 *				  p->state = TASK_WAKING
4172 			 *
4173 			 * Where __schedule() and ttwu() have matching control dependencies.
4174 			 *
4175 			 * After this, schedule() must not care about p->state any more.
4176 			 */
4177 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4178 
4179 			if (prev->in_iowait) {
4180 				atomic_inc(&rq->nr_iowait);
4181 				delayacct_blkio_start();
4182 			}
4183 		}
4184 		switch_count = &prev->nvcsw;
4185 	}
4186 
4187 	next = pick_next_task(rq, prev, &rf);
4188 	clear_tsk_need_resched(prev);
4189 	clear_preempt_need_resched();
4190 
4191 	if (likely(prev != next)) {
4192 		rq->nr_switches++;
4193 		/*
4194 		 * RCU users of rcu_dereference(rq->curr) may not see
4195 		 * changes to task_struct made by pick_next_task().
4196 		 */
4197 		RCU_INIT_POINTER(rq->curr, next);
4198 		/*
4199 		 * The membarrier system call requires each architecture
4200 		 * to have a full memory barrier after updating
4201 		 * rq->curr, before returning to user-space.
4202 		 *
4203 		 * Here are the schemes providing that barrier on the
4204 		 * various architectures:
4205 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4206 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4207 		 * - finish_lock_switch() for weakly-ordered
4208 		 *   architectures where spin_unlock is a full barrier,
4209 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4210 		 *   is a RELEASE barrier),
4211 		 */
4212 		++*switch_count;
4213 
4214 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4215 
4216 		trace_sched_switch(preempt, prev, next);
4217 
4218 		/* Also unlocks the rq: */
4219 		rq = context_switch(rq, prev, next, &rf);
4220 	} else {
4221 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4222 		rq_unlock_irq(rq, &rf);
4223 	}
4224 
4225 	balance_callback(rq);
4226 }
4227 
4228 void __noreturn do_task_dead(void)
4229 {
4230 	/* Causes final put_task_struct in finish_task_switch(): */
4231 	set_special_state(TASK_DEAD);
4232 
4233 	/* Tell freezer to ignore us: */
4234 	current->flags |= PF_NOFREEZE;
4235 
4236 	__schedule(false);
4237 	BUG();
4238 
4239 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4240 	for (;;)
4241 		cpu_relax();
4242 }
4243 
4244 static inline void sched_submit_work(struct task_struct *tsk)
4245 {
4246 	if (!tsk->state)
4247 		return;
4248 
4249 	/*
4250 	 * If a worker went to sleep, notify and ask workqueue whether
4251 	 * it wants to wake up a task to maintain concurrency.
4252 	 * As this function is called inside the schedule() context,
4253 	 * we disable preemption to avoid it calling schedule() again
4254 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4255 	 * requires it.
4256 	 */
4257 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4258 		preempt_disable();
4259 		if (tsk->flags & PF_WQ_WORKER)
4260 			wq_worker_sleeping(tsk);
4261 		else
4262 			io_wq_worker_sleeping(tsk);
4263 		preempt_enable_no_resched();
4264 	}
4265 
4266 	if (tsk_is_pi_blocked(tsk))
4267 		return;
4268 
4269 	/*
4270 	 * If we are going to sleep and we have plugged IO queued,
4271 	 * make sure to submit it to avoid deadlocks.
4272 	 */
4273 	if (blk_needs_flush_plug(tsk))
4274 		blk_schedule_flush_plug(tsk);
4275 }
4276 
4277 static void sched_update_worker(struct task_struct *tsk)
4278 {
4279 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4280 		if (tsk->flags & PF_WQ_WORKER)
4281 			wq_worker_running(tsk);
4282 		else
4283 			io_wq_worker_running(tsk);
4284 	}
4285 }
4286 
4287 asmlinkage __visible void __sched schedule(void)
4288 {
4289 	struct task_struct *tsk = current;
4290 
4291 	sched_submit_work(tsk);
4292 	do {
4293 		preempt_disable();
4294 		__schedule(false);
4295 		sched_preempt_enable_no_resched();
4296 	} while (need_resched());
4297 	sched_update_worker(tsk);
4298 }
4299 EXPORT_SYMBOL(schedule);
4300 
4301 /*
4302  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4303  * state (have scheduled out non-voluntarily) by making sure that all
4304  * tasks have either left the run queue or have gone into user space.
4305  * As idle tasks do not do either, they must not ever be preempted
4306  * (schedule out non-voluntarily).
4307  *
4308  * schedule_idle() is similar to schedule_preempt_disable() except that it
4309  * never enables preemption because it does not call sched_submit_work().
4310  */
4311 void __sched schedule_idle(void)
4312 {
4313 	/*
4314 	 * As this skips calling sched_submit_work(), which the idle task does
4315 	 * regardless because that function is a nop when the task is in a
4316 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4317 	 * current task can be in any other state. Note, idle is always in the
4318 	 * TASK_RUNNING state.
4319 	 */
4320 	WARN_ON_ONCE(current->state);
4321 	do {
4322 		__schedule(false);
4323 	} while (need_resched());
4324 }
4325 
4326 #ifdef CONFIG_CONTEXT_TRACKING
4327 asmlinkage __visible void __sched schedule_user(void)
4328 {
4329 	/*
4330 	 * If we come here after a random call to set_need_resched(),
4331 	 * or we have been woken up remotely but the IPI has not yet arrived,
4332 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4333 	 * we find a better solution.
4334 	 *
4335 	 * NB: There are buggy callers of this function.  Ideally we
4336 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4337 	 * too frequently to make sense yet.
4338 	 */
4339 	enum ctx_state prev_state = exception_enter();
4340 	schedule();
4341 	exception_exit(prev_state);
4342 }
4343 #endif
4344 
4345 /**
4346  * schedule_preempt_disabled - called with preemption disabled
4347  *
4348  * Returns with preemption disabled. Note: preempt_count must be 1
4349  */
4350 void __sched schedule_preempt_disabled(void)
4351 {
4352 	sched_preempt_enable_no_resched();
4353 	schedule();
4354 	preempt_disable();
4355 }
4356 
4357 static void __sched notrace preempt_schedule_common(void)
4358 {
4359 	do {
4360 		/*
4361 		 * Because the function tracer can trace preempt_count_sub()
4362 		 * and it also uses preempt_enable/disable_notrace(), if
4363 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4364 		 * by the function tracer will call this function again and
4365 		 * cause infinite recursion.
4366 		 *
4367 		 * Preemption must be disabled here before the function
4368 		 * tracer can trace. Break up preempt_disable() into two
4369 		 * calls. One to disable preemption without fear of being
4370 		 * traced. The other to still record the preemption latency,
4371 		 * which can also be traced by the function tracer.
4372 		 */
4373 		preempt_disable_notrace();
4374 		preempt_latency_start(1);
4375 		__schedule(true);
4376 		preempt_latency_stop(1);
4377 		preempt_enable_no_resched_notrace();
4378 
4379 		/*
4380 		 * Check again in case we missed a preemption opportunity
4381 		 * between schedule and now.
4382 		 */
4383 	} while (need_resched());
4384 }
4385 
4386 #ifdef CONFIG_PREEMPTION
4387 /*
4388  * This is the entry point to schedule() from in-kernel preemption
4389  * off of preempt_enable.
4390  */
4391 asmlinkage __visible void __sched notrace preempt_schedule(void)
4392 {
4393 	/*
4394 	 * If there is a non-zero preempt_count or interrupts are disabled,
4395 	 * we do not want to preempt the current task. Just return..
4396 	 */
4397 	if (likely(!preemptible()))
4398 		return;
4399 
4400 	preempt_schedule_common();
4401 }
4402 NOKPROBE_SYMBOL(preempt_schedule);
4403 EXPORT_SYMBOL(preempt_schedule);
4404 
4405 /**
4406  * preempt_schedule_notrace - preempt_schedule called by tracing
4407  *
4408  * The tracing infrastructure uses preempt_enable_notrace to prevent
4409  * recursion and tracing preempt enabling caused by the tracing
4410  * infrastructure itself. But as tracing can happen in areas coming
4411  * from userspace or just about to enter userspace, a preempt enable
4412  * can occur before user_exit() is called. This will cause the scheduler
4413  * to be called when the system is still in usermode.
4414  *
4415  * To prevent this, the preempt_enable_notrace will use this function
4416  * instead of preempt_schedule() to exit user context if needed before
4417  * calling the scheduler.
4418  */
4419 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4420 {
4421 	enum ctx_state prev_ctx;
4422 
4423 	if (likely(!preemptible()))
4424 		return;
4425 
4426 	do {
4427 		/*
4428 		 * Because the function tracer can trace preempt_count_sub()
4429 		 * and it also uses preempt_enable/disable_notrace(), if
4430 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4431 		 * by the function tracer will call this function again and
4432 		 * cause infinite recursion.
4433 		 *
4434 		 * Preemption must be disabled here before the function
4435 		 * tracer can trace. Break up preempt_disable() into two
4436 		 * calls. One to disable preemption without fear of being
4437 		 * traced. The other to still record the preemption latency,
4438 		 * which can also be traced by the function tracer.
4439 		 */
4440 		preempt_disable_notrace();
4441 		preempt_latency_start(1);
4442 		/*
4443 		 * Needs preempt disabled in case user_exit() is traced
4444 		 * and the tracer calls preempt_enable_notrace() causing
4445 		 * an infinite recursion.
4446 		 */
4447 		prev_ctx = exception_enter();
4448 		__schedule(true);
4449 		exception_exit(prev_ctx);
4450 
4451 		preempt_latency_stop(1);
4452 		preempt_enable_no_resched_notrace();
4453 	} while (need_resched());
4454 }
4455 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4456 
4457 #endif /* CONFIG_PREEMPTION */
4458 
4459 /*
4460  * This is the entry point to schedule() from kernel preemption
4461  * off of irq context.
4462  * Note, that this is called and return with irqs disabled. This will
4463  * protect us against recursive calling from irq.
4464  */
4465 asmlinkage __visible void __sched preempt_schedule_irq(void)
4466 {
4467 	enum ctx_state prev_state;
4468 
4469 	/* Catch callers which need to be fixed */
4470 	BUG_ON(preempt_count() || !irqs_disabled());
4471 
4472 	prev_state = exception_enter();
4473 
4474 	do {
4475 		preempt_disable();
4476 		local_irq_enable();
4477 		__schedule(true);
4478 		local_irq_disable();
4479 		sched_preempt_enable_no_resched();
4480 	} while (need_resched());
4481 
4482 	exception_exit(prev_state);
4483 }
4484 
4485 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4486 			  void *key)
4487 {
4488 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
4489 	return try_to_wake_up(curr->private, mode, wake_flags);
4490 }
4491 EXPORT_SYMBOL(default_wake_function);
4492 
4493 #ifdef CONFIG_RT_MUTEXES
4494 
4495 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4496 {
4497 	if (pi_task)
4498 		prio = min(prio, pi_task->prio);
4499 
4500 	return prio;
4501 }
4502 
4503 static inline int rt_effective_prio(struct task_struct *p, int prio)
4504 {
4505 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4506 
4507 	return __rt_effective_prio(pi_task, prio);
4508 }
4509 
4510 /*
4511  * rt_mutex_setprio - set the current priority of a task
4512  * @p: task to boost
4513  * @pi_task: donor task
4514  *
4515  * This function changes the 'effective' priority of a task. It does
4516  * not touch ->normal_prio like __setscheduler().
4517  *
4518  * Used by the rt_mutex code to implement priority inheritance
4519  * logic. Call site only calls if the priority of the task changed.
4520  */
4521 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4522 {
4523 	int prio, oldprio, queued, running, queue_flag =
4524 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4525 	const struct sched_class *prev_class;
4526 	struct rq_flags rf;
4527 	struct rq *rq;
4528 
4529 	/* XXX used to be waiter->prio, not waiter->task->prio */
4530 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4531 
4532 	/*
4533 	 * If nothing changed; bail early.
4534 	 */
4535 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4536 		return;
4537 
4538 	rq = __task_rq_lock(p, &rf);
4539 	update_rq_clock(rq);
4540 	/*
4541 	 * Set under pi_lock && rq->lock, such that the value can be used under
4542 	 * either lock.
4543 	 *
4544 	 * Note that there is loads of tricky to make this pointer cache work
4545 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4546 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4547 	 * task is allowed to run again (and can exit). This ensures the pointer
4548 	 * points to a blocked task -- which guaratees the task is present.
4549 	 */
4550 	p->pi_top_task = pi_task;
4551 
4552 	/*
4553 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4554 	 */
4555 	if (prio == p->prio && !dl_prio(prio))
4556 		goto out_unlock;
4557 
4558 	/*
4559 	 * Idle task boosting is a nono in general. There is one
4560 	 * exception, when PREEMPT_RT and NOHZ is active:
4561 	 *
4562 	 * The idle task calls get_next_timer_interrupt() and holds
4563 	 * the timer wheel base->lock on the CPU and another CPU wants
4564 	 * to access the timer (probably to cancel it). We can safely
4565 	 * ignore the boosting request, as the idle CPU runs this code
4566 	 * with interrupts disabled and will complete the lock
4567 	 * protected section without being interrupted. So there is no
4568 	 * real need to boost.
4569 	 */
4570 	if (unlikely(p == rq->idle)) {
4571 		WARN_ON(p != rq->curr);
4572 		WARN_ON(p->pi_blocked_on);
4573 		goto out_unlock;
4574 	}
4575 
4576 	trace_sched_pi_setprio(p, pi_task);
4577 	oldprio = p->prio;
4578 
4579 	if (oldprio == prio)
4580 		queue_flag &= ~DEQUEUE_MOVE;
4581 
4582 	prev_class = p->sched_class;
4583 	queued = task_on_rq_queued(p);
4584 	running = task_current(rq, p);
4585 	if (queued)
4586 		dequeue_task(rq, p, queue_flag);
4587 	if (running)
4588 		put_prev_task(rq, p);
4589 
4590 	/*
4591 	 * Boosting condition are:
4592 	 * 1. -rt task is running and holds mutex A
4593 	 *      --> -dl task blocks on mutex A
4594 	 *
4595 	 * 2. -dl task is running and holds mutex A
4596 	 *      --> -dl task blocks on mutex A and could preempt the
4597 	 *          running task
4598 	 */
4599 	if (dl_prio(prio)) {
4600 		if (!dl_prio(p->normal_prio) ||
4601 		    (pi_task && dl_prio(pi_task->prio) &&
4602 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
4603 			p->dl.dl_boosted = 1;
4604 			queue_flag |= ENQUEUE_REPLENISH;
4605 		} else
4606 			p->dl.dl_boosted = 0;
4607 		p->sched_class = &dl_sched_class;
4608 	} else if (rt_prio(prio)) {
4609 		if (dl_prio(oldprio))
4610 			p->dl.dl_boosted = 0;
4611 		if (oldprio < prio)
4612 			queue_flag |= ENQUEUE_HEAD;
4613 		p->sched_class = &rt_sched_class;
4614 	} else {
4615 		if (dl_prio(oldprio))
4616 			p->dl.dl_boosted = 0;
4617 		if (rt_prio(oldprio))
4618 			p->rt.timeout = 0;
4619 		p->sched_class = &fair_sched_class;
4620 	}
4621 
4622 	p->prio = prio;
4623 
4624 	if (queued)
4625 		enqueue_task(rq, p, queue_flag);
4626 	if (running)
4627 		set_next_task(rq, p);
4628 
4629 	check_class_changed(rq, p, prev_class, oldprio);
4630 out_unlock:
4631 	/* Avoid rq from going away on us: */
4632 	preempt_disable();
4633 	__task_rq_unlock(rq, &rf);
4634 
4635 	balance_callback(rq);
4636 	preempt_enable();
4637 }
4638 #else
4639 static inline int rt_effective_prio(struct task_struct *p, int prio)
4640 {
4641 	return prio;
4642 }
4643 #endif
4644 
4645 void set_user_nice(struct task_struct *p, long nice)
4646 {
4647 	bool queued, running;
4648 	int old_prio;
4649 	struct rq_flags rf;
4650 	struct rq *rq;
4651 
4652 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4653 		return;
4654 	/*
4655 	 * We have to be careful, if called from sys_setpriority(),
4656 	 * the task might be in the middle of scheduling on another CPU.
4657 	 */
4658 	rq = task_rq_lock(p, &rf);
4659 	update_rq_clock(rq);
4660 
4661 	/*
4662 	 * The RT priorities are set via sched_setscheduler(), but we still
4663 	 * allow the 'normal' nice value to be set - but as expected
4664 	 * it wont have any effect on scheduling until the task is
4665 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4666 	 */
4667 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4668 		p->static_prio = NICE_TO_PRIO(nice);
4669 		goto out_unlock;
4670 	}
4671 	queued = task_on_rq_queued(p);
4672 	running = task_current(rq, p);
4673 	if (queued)
4674 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4675 	if (running)
4676 		put_prev_task(rq, p);
4677 
4678 	p->static_prio = NICE_TO_PRIO(nice);
4679 	set_load_weight(p, true);
4680 	old_prio = p->prio;
4681 	p->prio = effective_prio(p);
4682 
4683 	if (queued)
4684 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4685 	if (running)
4686 		set_next_task(rq, p);
4687 
4688 	/*
4689 	 * If the task increased its priority or is running and
4690 	 * lowered its priority, then reschedule its CPU:
4691 	 */
4692 	p->sched_class->prio_changed(rq, p, old_prio);
4693 
4694 out_unlock:
4695 	task_rq_unlock(rq, p, &rf);
4696 }
4697 EXPORT_SYMBOL(set_user_nice);
4698 
4699 /*
4700  * can_nice - check if a task can reduce its nice value
4701  * @p: task
4702  * @nice: nice value
4703  */
4704 int can_nice(const struct task_struct *p, const int nice)
4705 {
4706 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4707 	int nice_rlim = nice_to_rlimit(nice);
4708 
4709 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4710 		capable(CAP_SYS_NICE));
4711 }
4712 
4713 #ifdef __ARCH_WANT_SYS_NICE
4714 
4715 /*
4716  * sys_nice - change the priority of the current process.
4717  * @increment: priority increment
4718  *
4719  * sys_setpriority is a more generic, but much slower function that
4720  * does similar things.
4721  */
4722 SYSCALL_DEFINE1(nice, int, increment)
4723 {
4724 	long nice, retval;
4725 
4726 	/*
4727 	 * Setpriority might change our priority at the same moment.
4728 	 * We don't have to worry. Conceptually one call occurs first
4729 	 * and we have a single winner.
4730 	 */
4731 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4732 	nice = task_nice(current) + increment;
4733 
4734 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4735 	if (increment < 0 && !can_nice(current, nice))
4736 		return -EPERM;
4737 
4738 	retval = security_task_setnice(current, nice);
4739 	if (retval)
4740 		return retval;
4741 
4742 	set_user_nice(current, nice);
4743 	return 0;
4744 }
4745 
4746 #endif
4747 
4748 /**
4749  * task_prio - return the priority value of a given task.
4750  * @p: the task in question.
4751  *
4752  * Return: The priority value as seen by users in /proc.
4753  * RT tasks are offset by -200. Normal tasks are centered
4754  * around 0, value goes from -16 to +15.
4755  */
4756 int task_prio(const struct task_struct *p)
4757 {
4758 	return p->prio - MAX_RT_PRIO;
4759 }
4760 
4761 /**
4762  * idle_cpu - is a given CPU idle currently?
4763  * @cpu: the processor in question.
4764  *
4765  * Return: 1 if the CPU is currently idle. 0 otherwise.
4766  */
4767 int idle_cpu(int cpu)
4768 {
4769 	struct rq *rq = cpu_rq(cpu);
4770 
4771 	if (rq->curr != rq->idle)
4772 		return 0;
4773 
4774 	if (rq->nr_running)
4775 		return 0;
4776 
4777 #ifdef CONFIG_SMP
4778 	if (rq->ttwu_pending)
4779 		return 0;
4780 #endif
4781 
4782 	return 1;
4783 }
4784 
4785 /**
4786  * available_idle_cpu - is a given CPU idle for enqueuing work.
4787  * @cpu: the CPU in question.
4788  *
4789  * Return: 1 if the CPU is currently idle. 0 otherwise.
4790  */
4791 int available_idle_cpu(int cpu)
4792 {
4793 	if (!idle_cpu(cpu))
4794 		return 0;
4795 
4796 	if (vcpu_is_preempted(cpu))
4797 		return 0;
4798 
4799 	return 1;
4800 }
4801 
4802 /**
4803  * idle_task - return the idle task for a given CPU.
4804  * @cpu: the processor in question.
4805  *
4806  * Return: The idle task for the CPU @cpu.
4807  */
4808 struct task_struct *idle_task(int cpu)
4809 {
4810 	return cpu_rq(cpu)->idle;
4811 }
4812 
4813 /**
4814  * find_process_by_pid - find a process with a matching PID value.
4815  * @pid: the pid in question.
4816  *
4817  * The task of @pid, if found. %NULL otherwise.
4818  */
4819 static struct task_struct *find_process_by_pid(pid_t pid)
4820 {
4821 	return pid ? find_task_by_vpid(pid) : current;
4822 }
4823 
4824 /*
4825  * sched_setparam() passes in -1 for its policy, to let the functions
4826  * it calls know not to change it.
4827  */
4828 #define SETPARAM_POLICY	-1
4829 
4830 static void __setscheduler_params(struct task_struct *p,
4831 		const struct sched_attr *attr)
4832 {
4833 	int policy = attr->sched_policy;
4834 
4835 	if (policy == SETPARAM_POLICY)
4836 		policy = p->policy;
4837 
4838 	p->policy = policy;
4839 
4840 	if (dl_policy(policy))
4841 		__setparam_dl(p, attr);
4842 	else if (fair_policy(policy))
4843 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4844 
4845 	/*
4846 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4847 	 * !rt_policy. Always setting this ensures that things like
4848 	 * getparam()/getattr() don't report silly values for !rt tasks.
4849 	 */
4850 	p->rt_priority = attr->sched_priority;
4851 	p->normal_prio = normal_prio(p);
4852 	set_load_weight(p, true);
4853 }
4854 
4855 /* Actually do priority change: must hold pi & rq lock. */
4856 static void __setscheduler(struct rq *rq, struct task_struct *p,
4857 			   const struct sched_attr *attr, bool keep_boost)
4858 {
4859 	/*
4860 	 * If params can't change scheduling class changes aren't allowed
4861 	 * either.
4862 	 */
4863 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4864 		return;
4865 
4866 	__setscheduler_params(p, attr);
4867 
4868 	/*
4869 	 * Keep a potential priority boosting if called from
4870 	 * sched_setscheduler().
4871 	 */
4872 	p->prio = normal_prio(p);
4873 	if (keep_boost)
4874 		p->prio = rt_effective_prio(p, p->prio);
4875 
4876 	if (dl_prio(p->prio))
4877 		p->sched_class = &dl_sched_class;
4878 	else if (rt_prio(p->prio))
4879 		p->sched_class = &rt_sched_class;
4880 	else
4881 		p->sched_class = &fair_sched_class;
4882 }
4883 
4884 /*
4885  * Check the target process has a UID that matches the current process's:
4886  */
4887 static bool check_same_owner(struct task_struct *p)
4888 {
4889 	const struct cred *cred = current_cred(), *pcred;
4890 	bool match;
4891 
4892 	rcu_read_lock();
4893 	pcred = __task_cred(p);
4894 	match = (uid_eq(cred->euid, pcred->euid) ||
4895 		 uid_eq(cred->euid, pcred->uid));
4896 	rcu_read_unlock();
4897 	return match;
4898 }
4899 
4900 static int __sched_setscheduler(struct task_struct *p,
4901 				const struct sched_attr *attr,
4902 				bool user, bool pi)
4903 {
4904 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4905 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4906 	int retval, oldprio, oldpolicy = -1, queued, running;
4907 	int new_effective_prio, policy = attr->sched_policy;
4908 	const struct sched_class *prev_class;
4909 	struct rq_flags rf;
4910 	int reset_on_fork;
4911 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4912 	struct rq *rq;
4913 
4914 	/* The pi code expects interrupts enabled */
4915 	BUG_ON(pi && in_interrupt());
4916 recheck:
4917 	/* Double check policy once rq lock held: */
4918 	if (policy < 0) {
4919 		reset_on_fork = p->sched_reset_on_fork;
4920 		policy = oldpolicy = p->policy;
4921 	} else {
4922 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4923 
4924 		if (!valid_policy(policy))
4925 			return -EINVAL;
4926 	}
4927 
4928 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4929 		return -EINVAL;
4930 
4931 	/*
4932 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4933 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4934 	 * SCHED_BATCH and SCHED_IDLE is 0.
4935 	 */
4936 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4937 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4938 		return -EINVAL;
4939 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4940 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4941 		return -EINVAL;
4942 
4943 	/*
4944 	 * Allow unprivileged RT tasks to decrease priority:
4945 	 */
4946 	if (user && !capable(CAP_SYS_NICE)) {
4947 		if (fair_policy(policy)) {
4948 			if (attr->sched_nice < task_nice(p) &&
4949 			    !can_nice(p, attr->sched_nice))
4950 				return -EPERM;
4951 		}
4952 
4953 		if (rt_policy(policy)) {
4954 			unsigned long rlim_rtprio =
4955 					task_rlimit(p, RLIMIT_RTPRIO);
4956 
4957 			/* Can't set/change the rt policy: */
4958 			if (policy != p->policy && !rlim_rtprio)
4959 				return -EPERM;
4960 
4961 			/* Can't increase priority: */
4962 			if (attr->sched_priority > p->rt_priority &&
4963 			    attr->sched_priority > rlim_rtprio)
4964 				return -EPERM;
4965 		}
4966 
4967 		 /*
4968 		  * Can't set/change SCHED_DEADLINE policy at all for now
4969 		  * (safest behavior); in the future we would like to allow
4970 		  * unprivileged DL tasks to increase their relative deadline
4971 		  * or reduce their runtime (both ways reducing utilization)
4972 		  */
4973 		if (dl_policy(policy))
4974 			return -EPERM;
4975 
4976 		/*
4977 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4978 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4979 		 */
4980 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4981 			if (!can_nice(p, task_nice(p)))
4982 				return -EPERM;
4983 		}
4984 
4985 		/* Can't change other user's priorities: */
4986 		if (!check_same_owner(p))
4987 			return -EPERM;
4988 
4989 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4990 		if (p->sched_reset_on_fork && !reset_on_fork)
4991 			return -EPERM;
4992 	}
4993 
4994 	if (user) {
4995 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4996 			return -EINVAL;
4997 
4998 		retval = security_task_setscheduler(p);
4999 		if (retval)
5000 			return retval;
5001 	}
5002 
5003 	/* Update task specific "requested" clamps */
5004 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5005 		retval = uclamp_validate(p, attr);
5006 		if (retval)
5007 			return retval;
5008 	}
5009 
5010 	if (pi)
5011 		cpuset_read_lock();
5012 
5013 	/*
5014 	 * Make sure no PI-waiters arrive (or leave) while we are
5015 	 * changing the priority of the task:
5016 	 *
5017 	 * To be able to change p->policy safely, the appropriate
5018 	 * runqueue lock must be held.
5019 	 */
5020 	rq = task_rq_lock(p, &rf);
5021 	update_rq_clock(rq);
5022 
5023 	/*
5024 	 * Changing the policy of the stop threads its a very bad idea:
5025 	 */
5026 	if (p == rq->stop) {
5027 		retval = -EINVAL;
5028 		goto unlock;
5029 	}
5030 
5031 	/*
5032 	 * If not changing anything there's no need to proceed further,
5033 	 * but store a possible modification of reset_on_fork.
5034 	 */
5035 	if (unlikely(policy == p->policy)) {
5036 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5037 			goto change;
5038 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5039 			goto change;
5040 		if (dl_policy(policy) && dl_param_changed(p, attr))
5041 			goto change;
5042 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5043 			goto change;
5044 
5045 		p->sched_reset_on_fork = reset_on_fork;
5046 		retval = 0;
5047 		goto unlock;
5048 	}
5049 change:
5050 
5051 	if (user) {
5052 #ifdef CONFIG_RT_GROUP_SCHED
5053 		/*
5054 		 * Do not allow realtime tasks into groups that have no runtime
5055 		 * assigned.
5056 		 */
5057 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5058 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5059 				!task_group_is_autogroup(task_group(p))) {
5060 			retval = -EPERM;
5061 			goto unlock;
5062 		}
5063 #endif
5064 #ifdef CONFIG_SMP
5065 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5066 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5067 			cpumask_t *span = rq->rd->span;
5068 
5069 			/*
5070 			 * Don't allow tasks with an affinity mask smaller than
5071 			 * the entire root_domain to become SCHED_DEADLINE. We
5072 			 * will also fail if there's no bandwidth available.
5073 			 */
5074 			if (!cpumask_subset(span, p->cpus_ptr) ||
5075 			    rq->rd->dl_bw.bw == 0) {
5076 				retval = -EPERM;
5077 				goto unlock;
5078 			}
5079 		}
5080 #endif
5081 	}
5082 
5083 	/* Re-check policy now with rq lock held: */
5084 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5085 		policy = oldpolicy = -1;
5086 		task_rq_unlock(rq, p, &rf);
5087 		if (pi)
5088 			cpuset_read_unlock();
5089 		goto recheck;
5090 	}
5091 
5092 	/*
5093 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5094 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5095 	 * is available.
5096 	 */
5097 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5098 		retval = -EBUSY;
5099 		goto unlock;
5100 	}
5101 
5102 	p->sched_reset_on_fork = reset_on_fork;
5103 	oldprio = p->prio;
5104 
5105 	if (pi) {
5106 		/*
5107 		 * Take priority boosted tasks into account. If the new
5108 		 * effective priority is unchanged, we just store the new
5109 		 * normal parameters and do not touch the scheduler class and
5110 		 * the runqueue. This will be done when the task deboost
5111 		 * itself.
5112 		 */
5113 		new_effective_prio = rt_effective_prio(p, newprio);
5114 		if (new_effective_prio == oldprio)
5115 			queue_flags &= ~DEQUEUE_MOVE;
5116 	}
5117 
5118 	queued = task_on_rq_queued(p);
5119 	running = task_current(rq, p);
5120 	if (queued)
5121 		dequeue_task(rq, p, queue_flags);
5122 	if (running)
5123 		put_prev_task(rq, p);
5124 
5125 	prev_class = p->sched_class;
5126 
5127 	__setscheduler(rq, p, attr, pi);
5128 	__setscheduler_uclamp(p, attr);
5129 
5130 	if (queued) {
5131 		/*
5132 		 * We enqueue to tail when the priority of a task is
5133 		 * increased (user space view).
5134 		 */
5135 		if (oldprio < p->prio)
5136 			queue_flags |= ENQUEUE_HEAD;
5137 
5138 		enqueue_task(rq, p, queue_flags);
5139 	}
5140 	if (running)
5141 		set_next_task(rq, p);
5142 
5143 	check_class_changed(rq, p, prev_class, oldprio);
5144 
5145 	/* Avoid rq from going away on us: */
5146 	preempt_disable();
5147 	task_rq_unlock(rq, p, &rf);
5148 
5149 	if (pi) {
5150 		cpuset_read_unlock();
5151 		rt_mutex_adjust_pi(p);
5152 	}
5153 
5154 	/* Run balance callbacks after we've adjusted the PI chain: */
5155 	balance_callback(rq);
5156 	preempt_enable();
5157 
5158 	return 0;
5159 
5160 unlock:
5161 	task_rq_unlock(rq, p, &rf);
5162 	if (pi)
5163 		cpuset_read_unlock();
5164 	return retval;
5165 }
5166 
5167 static int _sched_setscheduler(struct task_struct *p, int policy,
5168 			       const struct sched_param *param, bool check)
5169 {
5170 	struct sched_attr attr = {
5171 		.sched_policy   = policy,
5172 		.sched_priority = param->sched_priority,
5173 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5174 	};
5175 
5176 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5177 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5178 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5179 		policy &= ~SCHED_RESET_ON_FORK;
5180 		attr.sched_policy = policy;
5181 	}
5182 
5183 	return __sched_setscheduler(p, &attr, check, true);
5184 }
5185 /**
5186  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5187  * @p: the task in question.
5188  * @policy: new policy.
5189  * @param: structure containing the new RT priority.
5190  *
5191  * Return: 0 on success. An error code otherwise.
5192  *
5193  * NOTE that the task may be already dead.
5194  */
5195 int sched_setscheduler(struct task_struct *p, int policy,
5196 		       const struct sched_param *param)
5197 {
5198 	return _sched_setscheduler(p, policy, param, true);
5199 }
5200 EXPORT_SYMBOL_GPL(sched_setscheduler);
5201 
5202 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5203 {
5204 	return __sched_setscheduler(p, attr, true, true);
5205 }
5206 EXPORT_SYMBOL_GPL(sched_setattr);
5207 
5208 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5209 {
5210 	return __sched_setscheduler(p, attr, false, true);
5211 }
5212 
5213 /**
5214  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5215  * @p: the task in question.
5216  * @policy: new policy.
5217  * @param: structure containing the new RT priority.
5218  *
5219  * Just like sched_setscheduler, only don't bother checking if the
5220  * current context has permission.  For example, this is needed in
5221  * stop_machine(): we create temporary high priority worker threads,
5222  * but our caller might not have that capability.
5223  *
5224  * Return: 0 on success. An error code otherwise.
5225  */
5226 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5227 			       const struct sched_param *param)
5228 {
5229 	return _sched_setscheduler(p, policy, param, false);
5230 }
5231 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5232 
5233 static int
5234 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5235 {
5236 	struct sched_param lparam;
5237 	struct task_struct *p;
5238 	int retval;
5239 
5240 	if (!param || pid < 0)
5241 		return -EINVAL;
5242 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5243 		return -EFAULT;
5244 
5245 	rcu_read_lock();
5246 	retval = -ESRCH;
5247 	p = find_process_by_pid(pid);
5248 	if (likely(p))
5249 		get_task_struct(p);
5250 	rcu_read_unlock();
5251 
5252 	if (likely(p)) {
5253 		retval = sched_setscheduler(p, policy, &lparam);
5254 		put_task_struct(p);
5255 	}
5256 
5257 	return retval;
5258 }
5259 
5260 /*
5261  * Mimics kernel/events/core.c perf_copy_attr().
5262  */
5263 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5264 {
5265 	u32 size;
5266 	int ret;
5267 
5268 	/* Zero the full structure, so that a short copy will be nice: */
5269 	memset(attr, 0, sizeof(*attr));
5270 
5271 	ret = get_user(size, &uattr->size);
5272 	if (ret)
5273 		return ret;
5274 
5275 	/* ABI compatibility quirk: */
5276 	if (!size)
5277 		size = SCHED_ATTR_SIZE_VER0;
5278 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5279 		goto err_size;
5280 
5281 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5282 	if (ret) {
5283 		if (ret == -E2BIG)
5284 			goto err_size;
5285 		return ret;
5286 	}
5287 
5288 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5289 	    size < SCHED_ATTR_SIZE_VER1)
5290 		return -EINVAL;
5291 
5292 	/*
5293 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5294 	 * to be strict and return an error on out-of-bounds values?
5295 	 */
5296 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5297 
5298 	return 0;
5299 
5300 err_size:
5301 	put_user(sizeof(*attr), &uattr->size);
5302 	return -E2BIG;
5303 }
5304 
5305 /**
5306  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5307  * @pid: the pid in question.
5308  * @policy: new policy.
5309  * @param: structure containing the new RT priority.
5310  *
5311  * Return: 0 on success. An error code otherwise.
5312  */
5313 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5314 {
5315 	if (policy < 0)
5316 		return -EINVAL;
5317 
5318 	return do_sched_setscheduler(pid, policy, param);
5319 }
5320 
5321 /**
5322  * sys_sched_setparam - set/change the RT priority of a thread
5323  * @pid: the pid in question.
5324  * @param: structure containing the new RT priority.
5325  *
5326  * Return: 0 on success. An error code otherwise.
5327  */
5328 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5329 {
5330 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5331 }
5332 
5333 /**
5334  * sys_sched_setattr - same as above, but with extended sched_attr
5335  * @pid: the pid in question.
5336  * @uattr: structure containing the extended parameters.
5337  * @flags: for future extension.
5338  */
5339 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5340 			       unsigned int, flags)
5341 {
5342 	struct sched_attr attr;
5343 	struct task_struct *p;
5344 	int retval;
5345 
5346 	if (!uattr || pid < 0 || flags)
5347 		return -EINVAL;
5348 
5349 	retval = sched_copy_attr(uattr, &attr);
5350 	if (retval)
5351 		return retval;
5352 
5353 	if ((int)attr.sched_policy < 0)
5354 		return -EINVAL;
5355 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5356 		attr.sched_policy = SETPARAM_POLICY;
5357 
5358 	rcu_read_lock();
5359 	retval = -ESRCH;
5360 	p = find_process_by_pid(pid);
5361 	if (likely(p))
5362 		get_task_struct(p);
5363 	rcu_read_unlock();
5364 
5365 	if (likely(p)) {
5366 		retval = sched_setattr(p, &attr);
5367 		put_task_struct(p);
5368 	}
5369 
5370 	return retval;
5371 }
5372 
5373 /**
5374  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5375  * @pid: the pid in question.
5376  *
5377  * Return: On success, the policy of the thread. Otherwise, a negative error
5378  * code.
5379  */
5380 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5381 {
5382 	struct task_struct *p;
5383 	int retval;
5384 
5385 	if (pid < 0)
5386 		return -EINVAL;
5387 
5388 	retval = -ESRCH;
5389 	rcu_read_lock();
5390 	p = find_process_by_pid(pid);
5391 	if (p) {
5392 		retval = security_task_getscheduler(p);
5393 		if (!retval)
5394 			retval = p->policy
5395 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5396 	}
5397 	rcu_read_unlock();
5398 	return retval;
5399 }
5400 
5401 /**
5402  * sys_sched_getparam - get the RT priority of a thread
5403  * @pid: the pid in question.
5404  * @param: structure containing the RT priority.
5405  *
5406  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5407  * code.
5408  */
5409 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5410 {
5411 	struct sched_param lp = { .sched_priority = 0 };
5412 	struct task_struct *p;
5413 	int retval;
5414 
5415 	if (!param || pid < 0)
5416 		return -EINVAL;
5417 
5418 	rcu_read_lock();
5419 	p = find_process_by_pid(pid);
5420 	retval = -ESRCH;
5421 	if (!p)
5422 		goto out_unlock;
5423 
5424 	retval = security_task_getscheduler(p);
5425 	if (retval)
5426 		goto out_unlock;
5427 
5428 	if (task_has_rt_policy(p))
5429 		lp.sched_priority = p->rt_priority;
5430 	rcu_read_unlock();
5431 
5432 	/*
5433 	 * This one might sleep, we cannot do it with a spinlock held ...
5434 	 */
5435 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5436 
5437 	return retval;
5438 
5439 out_unlock:
5440 	rcu_read_unlock();
5441 	return retval;
5442 }
5443 
5444 /*
5445  * Copy the kernel size attribute structure (which might be larger
5446  * than what user-space knows about) to user-space.
5447  *
5448  * Note that all cases are valid: user-space buffer can be larger or
5449  * smaller than the kernel-space buffer. The usual case is that both
5450  * have the same size.
5451  */
5452 static int
5453 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5454 			struct sched_attr *kattr,
5455 			unsigned int usize)
5456 {
5457 	unsigned int ksize = sizeof(*kattr);
5458 
5459 	if (!access_ok(uattr, usize))
5460 		return -EFAULT;
5461 
5462 	/*
5463 	 * sched_getattr() ABI forwards and backwards compatibility:
5464 	 *
5465 	 * If usize == ksize then we just copy everything to user-space and all is good.
5466 	 *
5467 	 * If usize < ksize then we only copy as much as user-space has space for,
5468 	 * this keeps ABI compatibility as well. We skip the rest.
5469 	 *
5470 	 * If usize > ksize then user-space is using a newer version of the ABI,
5471 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5472 	 * detect the kernel's knowledge of attributes from the attr->size value
5473 	 * which is set to ksize in this case.
5474 	 */
5475 	kattr->size = min(usize, ksize);
5476 
5477 	if (copy_to_user(uattr, kattr, kattr->size))
5478 		return -EFAULT;
5479 
5480 	return 0;
5481 }
5482 
5483 /**
5484  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5485  * @pid: the pid in question.
5486  * @uattr: structure containing the extended parameters.
5487  * @usize: sizeof(attr) for fwd/bwd comp.
5488  * @flags: for future extension.
5489  */
5490 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5491 		unsigned int, usize, unsigned int, flags)
5492 {
5493 	struct sched_attr kattr = { };
5494 	struct task_struct *p;
5495 	int retval;
5496 
5497 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5498 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5499 		return -EINVAL;
5500 
5501 	rcu_read_lock();
5502 	p = find_process_by_pid(pid);
5503 	retval = -ESRCH;
5504 	if (!p)
5505 		goto out_unlock;
5506 
5507 	retval = security_task_getscheduler(p);
5508 	if (retval)
5509 		goto out_unlock;
5510 
5511 	kattr.sched_policy = p->policy;
5512 	if (p->sched_reset_on_fork)
5513 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5514 	if (task_has_dl_policy(p))
5515 		__getparam_dl(p, &kattr);
5516 	else if (task_has_rt_policy(p))
5517 		kattr.sched_priority = p->rt_priority;
5518 	else
5519 		kattr.sched_nice = task_nice(p);
5520 
5521 #ifdef CONFIG_UCLAMP_TASK
5522 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5523 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5524 #endif
5525 
5526 	rcu_read_unlock();
5527 
5528 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5529 
5530 out_unlock:
5531 	rcu_read_unlock();
5532 	return retval;
5533 }
5534 
5535 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5536 {
5537 	cpumask_var_t cpus_allowed, new_mask;
5538 	struct task_struct *p;
5539 	int retval;
5540 
5541 	rcu_read_lock();
5542 
5543 	p = find_process_by_pid(pid);
5544 	if (!p) {
5545 		rcu_read_unlock();
5546 		return -ESRCH;
5547 	}
5548 
5549 	/* Prevent p going away */
5550 	get_task_struct(p);
5551 	rcu_read_unlock();
5552 
5553 	if (p->flags & PF_NO_SETAFFINITY) {
5554 		retval = -EINVAL;
5555 		goto out_put_task;
5556 	}
5557 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5558 		retval = -ENOMEM;
5559 		goto out_put_task;
5560 	}
5561 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5562 		retval = -ENOMEM;
5563 		goto out_free_cpus_allowed;
5564 	}
5565 	retval = -EPERM;
5566 	if (!check_same_owner(p)) {
5567 		rcu_read_lock();
5568 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5569 			rcu_read_unlock();
5570 			goto out_free_new_mask;
5571 		}
5572 		rcu_read_unlock();
5573 	}
5574 
5575 	retval = security_task_setscheduler(p);
5576 	if (retval)
5577 		goto out_free_new_mask;
5578 
5579 
5580 	cpuset_cpus_allowed(p, cpus_allowed);
5581 	cpumask_and(new_mask, in_mask, cpus_allowed);
5582 
5583 	/*
5584 	 * Since bandwidth control happens on root_domain basis,
5585 	 * if admission test is enabled, we only admit -deadline
5586 	 * tasks allowed to run on all the CPUs in the task's
5587 	 * root_domain.
5588 	 */
5589 #ifdef CONFIG_SMP
5590 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5591 		rcu_read_lock();
5592 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5593 			retval = -EBUSY;
5594 			rcu_read_unlock();
5595 			goto out_free_new_mask;
5596 		}
5597 		rcu_read_unlock();
5598 	}
5599 #endif
5600 again:
5601 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5602 
5603 	if (!retval) {
5604 		cpuset_cpus_allowed(p, cpus_allowed);
5605 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5606 			/*
5607 			 * We must have raced with a concurrent cpuset
5608 			 * update. Just reset the cpus_allowed to the
5609 			 * cpuset's cpus_allowed
5610 			 */
5611 			cpumask_copy(new_mask, cpus_allowed);
5612 			goto again;
5613 		}
5614 	}
5615 out_free_new_mask:
5616 	free_cpumask_var(new_mask);
5617 out_free_cpus_allowed:
5618 	free_cpumask_var(cpus_allowed);
5619 out_put_task:
5620 	put_task_struct(p);
5621 	return retval;
5622 }
5623 
5624 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5625 			     struct cpumask *new_mask)
5626 {
5627 	if (len < cpumask_size())
5628 		cpumask_clear(new_mask);
5629 	else if (len > cpumask_size())
5630 		len = cpumask_size();
5631 
5632 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5633 }
5634 
5635 /**
5636  * sys_sched_setaffinity - set the CPU affinity of a process
5637  * @pid: pid of the process
5638  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5639  * @user_mask_ptr: user-space pointer to the new CPU mask
5640  *
5641  * Return: 0 on success. An error code otherwise.
5642  */
5643 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5644 		unsigned long __user *, user_mask_ptr)
5645 {
5646 	cpumask_var_t new_mask;
5647 	int retval;
5648 
5649 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5650 		return -ENOMEM;
5651 
5652 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5653 	if (retval == 0)
5654 		retval = sched_setaffinity(pid, new_mask);
5655 	free_cpumask_var(new_mask);
5656 	return retval;
5657 }
5658 
5659 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5660 {
5661 	struct task_struct *p;
5662 	unsigned long flags;
5663 	int retval;
5664 
5665 	rcu_read_lock();
5666 
5667 	retval = -ESRCH;
5668 	p = find_process_by_pid(pid);
5669 	if (!p)
5670 		goto out_unlock;
5671 
5672 	retval = security_task_getscheduler(p);
5673 	if (retval)
5674 		goto out_unlock;
5675 
5676 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5677 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5678 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5679 
5680 out_unlock:
5681 	rcu_read_unlock();
5682 
5683 	return retval;
5684 }
5685 
5686 /**
5687  * sys_sched_getaffinity - get the CPU affinity of a process
5688  * @pid: pid of the process
5689  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5690  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5691  *
5692  * Return: size of CPU mask copied to user_mask_ptr on success. An
5693  * error code otherwise.
5694  */
5695 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5696 		unsigned long __user *, user_mask_ptr)
5697 {
5698 	int ret;
5699 	cpumask_var_t mask;
5700 
5701 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5702 		return -EINVAL;
5703 	if (len & (sizeof(unsigned long)-1))
5704 		return -EINVAL;
5705 
5706 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5707 		return -ENOMEM;
5708 
5709 	ret = sched_getaffinity(pid, mask);
5710 	if (ret == 0) {
5711 		unsigned int retlen = min(len, cpumask_size());
5712 
5713 		if (copy_to_user(user_mask_ptr, mask, retlen))
5714 			ret = -EFAULT;
5715 		else
5716 			ret = retlen;
5717 	}
5718 	free_cpumask_var(mask);
5719 
5720 	return ret;
5721 }
5722 
5723 /**
5724  * sys_sched_yield - yield the current processor to other threads.
5725  *
5726  * This function yields the current CPU to other tasks. If there are no
5727  * other threads running on this CPU then this function will return.
5728  *
5729  * Return: 0.
5730  */
5731 static void do_sched_yield(void)
5732 {
5733 	struct rq_flags rf;
5734 	struct rq *rq;
5735 
5736 	rq = this_rq_lock_irq(&rf);
5737 
5738 	schedstat_inc(rq->yld_count);
5739 	current->sched_class->yield_task(rq);
5740 
5741 	/*
5742 	 * Since we are going to call schedule() anyway, there's
5743 	 * no need to preempt or enable interrupts:
5744 	 */
5745 	preempt_disable();
5746 	rq_unlock(rq, &rf);
5747 	sched_preempt_enable_no_resched();
5748 
5749 	schedule();
5750 }
5751 
5752 SYSCALL_DEFINE0(sched_yield)
5753 {
5754 	do_sched_yield();
5755 	return 0;
5756 }
5757 
5758 #ifndef CONFIG_PREEMPTION
5759 int __sched _cond_resched(void)
5760 {
5761 	if (should_resched(0)) {
5762 		preempt_schedule_common();
5763 		return 1;
5764 	}
5765 	rcu_all_qs();
5766 	return 0;
5767 }
5768 EXPORT_SYMBOL(_cond_resched);
5769 #endif
5770 
5771 /*
5772  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5773  * call schedule, and on return reacquire the lock.
5774  *
5775  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5776  * operations here to prevent schedule() from being called twice (once via
5777  * spin_unlock(), once by hand).
5778  */
5779 int __cond_resched_lock(spinlock_t *lock)
5780 {
5781 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5782 	int ret = 0;
5783 
5784 	lockdep_assert_held(lock);
5785 
5786 	if (spin_needbreak(lock) || resched) {
5787 		spin_unlock(lock);
5788 		if (resched)
5789 			preempt_schedule_common();
5790 		else
5791 			cpu_relax();
5792 		ret = 1;
5793 		spin_lock(lock);
5794 	}
5795 	return ret;
5796 }
5797 EXPORT_SYMBOL(__cond_resched_lock);
5798 
5799 /**
5800  * yield - yield the current processor to other threads.
5801  *
5802  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5803  *
5804  * The scheduler is at all times free to pick the calling task as the most
5805  * eligible task to run, if removing the yield() call from your code breaks
5806  * it, its already broken.
5807  *
5808  * Typical broken usage is:
5809  *
5810  * while (!event)
5811  *	yield();
5812  *
5813  * where one assumes that yield() will let 'the other' process run that will
5814  * make event true. If the current task is a SCHED_FIFO task that will never
5815  * happen. Never use yield() as a progress guarantee!!
5816  *
5817  * If you want to use yield() to wait for something, use wait_event().
5818  * If you want to use yield() to be 'nice' for others, use cond_resched().
5819  * If you still want to use yield(), do not!
5820  */
5821 void __sched yield(void)
5822 {
5823 	set_current_state(TASK_RUNNING);
5824 	do_sched_yield();
5825 }
5826 EXPORT_SYMBOL(yield);
5827 
5828 /**
5829  * yield_to - yield the current processor to another thread in
5830  * your thread group, or accelerate that thread toward the
5831  * processor it's on.
5832  * @p: target task
5833  * @preempt: whether task preemption is allowed or not
5834  *
5835  * It's the caller's job to ensure that the target task struct
5836  * can't go away on us before we can do any checks.
5837  *
5838  * Return:
5839  *	true (>0) if we indeed boosted the target task.
5840  *	false (0) if we failed to boost the target.
5841  *	-ESRCH if there's no task to yield to.
5842  */
5843 int __sched yield_to(struct task_struct *p, bool preempt)
5844 {
5845 	struct task_struct *curr = current;
5846 	struct rq *rq, *p_rq;
5847 	unsigned long flags;
5848 	int yielded = 0;
5849 
5850 	local_irq_save(flags);
5851 	rq = this_rq();
5852 
5853 again:
5854 	p_rq = task_rq(p);
5855 	/*
5856 	 * If we're the only runnable task on the rq and target rq also
5857 	 * has only one task, there's absolutely no point in yielding.
5858 	 */
5859 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5860 		yielded = -ESRCH;
5861 		goto out_irq;
5862 	}
5863 
5864 	double_rq_lock(rq, p_rq);
5865 	if (task_rq(p) != p_rq) {
5866 		double_rq_unlock(rq, p_rq);
5867 		goto again;
5868 	}
5869 
5870 	if (!curr->sched_class->yield_to_task)
5871 		goto out_unlock;
5872 
5873 	if (curr->sched_class != p->sched_class)
5874 		goto out_unlock;
5875 
5876 	if (task_running(p_rq, p) || p->state)
5877 		goto out_unlock;
5878 
5879 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5880 	if (yielded) {
5881 		schedstat_inc(rq->yld_count);
5882 		/*
5883 		 * Make p's CPU reschedule; pick_next_entity takes care of
5884 		 * fairness.
5885 		 */
5886 		if (preempt && rq != p_rq)
5887 			resched_curr(p_rq);
5888 	}
5889 
5890 out_unlock:
5891 	double_rq_unlock(rq, p_rq);
5892 out_irq:
5893 	local_irq_restore(flags);
5894 
5895 	if (yielded > 0)
5896 		schedule();
5897 
5898 	return yielded;
5899 }
5900 EXPORT_SYMBOL_GPL(yield_to);
5901 
5902 int io_schedule_prepare(void)
5903 {
5904 	int old_iowait = current->in_iowait;
5905 
5906 	current->in_iowait = 1;
5907 	blk_schedule_flush_plug(current);
5908 
5909 	return old_iowait;
5910 }
5911 
5912 void io_schedule_finish(int token)
5913 {
5914 	current->in_iowait = token;
5915 }
5916 
5917 /*
5918  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5919  * that process accounting knows that this is a task in IO wait state.
5920  */
5921 long __sched io_schedule_timeout(long timeout)
5922 {
5923 	int token;
5924 	long ret;
5925 
5926 	token = io_schedule_prepare();
5927 	ret = schedule_timeout(timeout);
5928 	io_schedule_finish(token);
5929 
5930 	return ret;
5931 }
5932 EXPORT_SYMBOL(io_schedule_timeout);
5933 
5934 void __sched io_schedule(void)
5935 {
5936 	int token;
5937 
5938 	token = io_schedule_prepare();
5939 	schedule();
5940 	io_schedule_finish(token);
5941 }
5942 EXPORT_SYMBOL(io_schedule);
5943 
5944 /**
5945  * sys_sched_get_priority_max - return maximum RT priority.
5946  * @policy: scheduling class.
5947  *
5948  * Return: On success, this syscall returns the maximum
5949  * rt_priority that can be used by a given scheduling class.
5950  * On failure, a negative error code is returned.
5951  */
5952 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5953 {
5954 	int ret = -EINVAL;
5955 
5956 	switch (policy) {
5957 	case SCHED_FIFO:
5958 	case SCHED_RR:
5959 		ret = MAX_USER_RT_PRIO-1;
5960 		break;
5961 	case SCHED_DEADLINE:
5962 	case SCHED_NORMAL:
5963 	case SCHED_BATCH:
5964 	case SCHED_IDLE:
5965 		ret = 0;
5966 		break;
5967 	}
5968 	return ret;
5969 }
5970 
5971 /**
5972  * sys_sched_get_priority_min - return minimum RT priority.
5973  * @policy: scheduling class.
5974  *
5975  * Return: On success, this syscall returns the minimum
5976  * rt_priority that can be used by a given scheduling class.
5977  * On failure, a negative error code is returned.
5978  */
5979 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5980 {
5981 	int ret = -EINVAL;
5982 
5983 	switch (policy) {
5984 	case SCHED_FIFO:
5985 	case SCHED_RR:
5986 		ret = 1;
5987 		break;
5988 	case SCHED_DEADLINE:
5989 	case SCHED_NORMAL:
5990 	case SCHED_BATCH:
5991 	case SCHED_IDLE:
5992 		ret = 0;
5993 	}
5994 	return ret;
5995 }
5996 
5997 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5998 {
5999 	struct task_struct *p;
6000 	unsigned int time_slice;
6001 	struct rq_flags rf;
6002 	struct rq *rq;
6003 	int retval;
6004 
6005 	if (pid < 0)
6006 		return -EINVAL;
6007 
6008 	retval = -ESRCH;
6009 	rcu_read_lock();
6010 	p = find_process_by_pid(pid);
6011 	if (!p)
6012 		goto out_unlock;
6013 
6014 	retval = security_task_getscheduler(p);
6015 	if (retval)
6016 		goto out_unlock;
6017 
6018 	rq = task_rq_lock(p, &rf);
6019 	time_slice = 0;
6020 	if (p->sched_class->get_rr_interval)
6021 		time_slice = p->sched_class->get_rr_interval(rq, p);
6022 	task_rq_unlock(rq, p, &rf);
6023 
6024 	rcu_read_unlock();
6025 	jiffies_to_timespec64(time_slice, t);
6026 	return 0;
6027 
6028 out_unlock:
6029 	rcu_read_unlock();
6030 	return retval;
6031 }
6032 
6033 /**
6034  * sys_sched_rr_get_interval - return the default timeslice of a process.
6035  * @pid: pid of the process.
6036  * @interval: userspace pointer to the timeslice value.
6037  *
6038  * this syscall writes the default timeslice value of a given process
6039  * into the user-space timespec buffer. A value of '0' means infinity.
6040  *
6041  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6042  * an error code.
6043  */
6044 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6045 		struct __kernel_timespec __user *, interval)
6046 {
6047 	struct timespec64 t;
6048 	int retval = sched_rr_get_interval(pid, &t);
6049 
6050 	if (retval == 0)
6051 		retval = put_timespec64(&t, interval);
6052 
6053 	return retval;
6054 }
6055 
6056 #ifdef CONFIG_COMPAT_32BIT_TIME
6057 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6058 		struct old_timespec32 __user *, interval)
6059 {
6060 	struct timespec64 t;
6061 	int retval = sched_rr_get_interval(pid, &t);
6062 
6063 	if (retval == 0)
6064 		retval = put_old_timespec32(&t, interval);
6065 	return retval;
6066 }
6067 #endif
6068 
6069 void sched_show_task(struct task_struct *p)
6070 {
6071 	unsigned long free = 0;
6072 	int ppid;
6073 
6074 	if (!try_get_task_stack(p))
6075 		return;
6076 
6077 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
6078 
6079 	if (p->state == TASK_RUNNING)
6080 		printk(KERN_CONT "  running task    ");
6081 #ifdef CONFIG_DEBUG_STACK_USAGE
6082 	free = stack_not_used(p);
6083 #endif
6084 	ppid = 0;
6085 	rcu_read_lock();
6086 	if (pid_alive(p))
6087 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
6088 	rcu_read_unlock();
6089 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6090 		task_pid_nr(p), ppid,
6091 		(unsigned long)task_thread_info(p)->flags);
6092 
6093 	print_worker_info(KERN_INFO, p);
6094 	show_stack(p, NULL, KERN_INFO);
6095 	put_task_stack(p);
6096 }
6097 EXPORT_SYMBOL_GPL(sched_show_task);
6098 
6099 static inline bool
6100 state_filter_match(unsigned long state_filter, struct task_struct *p)
6101 {
6102 	/* no filter, everything matches */
6103 	if (!state_filter)
6104 		return true;
6105 
6106 	/* filter, but doesn't match */
6107 	if (!(p->state & state_filter))
6108 		return false;
6109 
6110 	/*
6111 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6112 	 * TASK_KILLABLE).
6113 	 */
6114 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6115 		return false;
6116 
6117 	return true;
6118 }
6119 
6120 
6121 void show_state_filter(unsigned long state_filter)
6122 {
6123 	struct task_struct *g, *p;
6124 
6125 #if BITS_PER_LONG == 32
6126 	printk(KERN_INFO
6127 		"  task                PC stack   pid father\n");
6128 #else
6129 	printk(KERN_INFO
6130 		"  task                        PC stack   pid father\n");
6131 #endif
6132 	rcu_read_lock();
6133 	for_each_process_thread(g, p) {
6134 		/*
6135 		 * reset the NMI-timeout, listing all files on a slow
6136 		 * console might take a lot of time:
6137 		 * Also, reset softlockup watchdogs on all CPUs, because
6138 		 * another CPU might be blocked waiting for us to process
6139 		 * an IPI.
6140 		 */
6141 		touch_nmi_watchdog();
6142 		touch_all_softlockup_watchdogs();
6143 		if (state_filter_match(state_filter, p))
6144 			sched_show_task(p);
6145 	}
6146 
6147 #ifdef CONFIG_SCHED_DEBUG
6148 	if (!state_filter)
6149 		sysrq_sched_debug_show();
6150 #endif
6151 	rcu_read_unlock();
6152 	/*
6153 	 * Only show locks if all tasks are dumped:
6154 	 */
6155 	if (!state_filter)
6156 		debug_show_all_locks();
6157 }
6158 
6159 /**
6160  * init_idle - set up an idle thread for a given CPU
6161  * @idle: task in question
6162  * @cpu: CPU the idle task belongs to
6163  *
6164  * NOTE: this function does not set the idle thread's NEED_RESCHED
6165  * flag, to make booting more robust.
6166  */
6167 void init_idle(struct task_struct *idle, int cpu)
6168 {
6169 	struct rq *rq = cpu_rq(cpu);
6170 	unsigned long flags;
6171 
6172 	__sched_fork(0, idle);
6173 
6174 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6175 	raw_spin_lock(&rq->lock);
6176 
6177 	idle->state = TASK_RUNNING;
6178 	idle->se.exec_start = sched_clock();
6179 	idle->flags |= PF_IDLE;
6180 
6181 	scs_task_reset(idle);
6182 	kasan_unpoison_task_stack(idle);
6183 
6184 #ifdef CONFIG_SMP
6185 	/*
6186 	 * Its possible that init_idle() gets called multiple times on a task,
6187 	 * in that case do_set_cpus_allowed() will not do the right thing.
6188 	 *
6189 	 * And since this is boot we can forgo the serialization.
6190 	 */
6191 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6192 #endif
6193 	/*
6194 	 * We're having a chicken and egg problem, even though we are
6195 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6196 	 * lockdep check in task_group() will fail.
6197 	 *
6198 	 * Similar case to sched_fork(). / Alternatively we could
6199 	 * use task_rq_lock() here and obtain the other rq->lock.
6200 	 *
6201 	 * Silence PROVE_RCU
6202 	 */
6203 	rcu_read_lock();
6204 	__set_task_cpu(idle, cpu);
6205 	rcu_read_unlock();
6206 
6207 	rq->idle = idle;
6208 	rcu_assign_pointer(rq->curr, idle);
6209 	idle->on_rq = TASK_ON_RQ_QUEUED;
6210 #ifdef CONFIG_SMP
6211 	idle->on_cpu = 1;
6212 #endif
6213 	raw_spin_unlock(&rq->lock);
6214 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6215 
6216 	/* Set the preempt count _outside_ the spinlocks! */
6217 	init_idle_preempt_count(idle, cpu);
6218 
6219 	/*
6220 	 * The idle tasks have their own, simple scheduling class:
6221 	 */
6222 	idle->sched_class = &idle_sched_class;
6223 	ftrace_graph_init_idle_task(idle, cpu);
6224 	vtime_init_idle(idle, cpu);
6225 #ifdef CONFIG_SMP
6226 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6227 #endif
6228 }
6229 
6230 #ifdef CONFIG_SMP
6231 
6232 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6233 			      const struct cpumask *trial)
6234 {
6235 	int ret = 1;
6236 
6237 	if (!cpumask_weight(cur))
6238 		return ret;
6239 
6240 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6241 
6242 	return ret;
6243 }
6244 
6245 int task_can_attach(struct task_struct *p,
6246 		    const struct cpumask *cs_cpus_allowed)
6247 {
6248 	int ret = 0;
6249 
6250 	/*
6251 	 * Kthreads which disallow setaffinity shouldn't be moved
6252 	 * to a new cpuset; we don't want to change their CPU
6253 	 * affinity and isolating such threads by their set of
6254 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6255 	 * applicable for such threads.  This prevents checking for
6256 	 * success of set_cpus_allowed_ptr() on all attached tasks
6257 	 * before cpus_mask may be changed.
6258 	 */
6259 	if (p->flags & PF_NO_SETAFFINITY) {
6260 		ret = -EINVAL;
6261 		goto out;
6262 	}
6263 
6264 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6265 					      cs_cpus_allowed))
6266 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6267 
6268 out:
6269 	return ret;
6270 }
6271 
6272 bool sched_smp_initialized __read_mostly;
6273 
6274 #ifdef CONFIG_NUMA_BALANCING
6275 /* Migrate current task p to target_cpu */
6276 int migrate_task_to(struct task_struct *p, int target_cpu)
6277 {
6278 	struct migration_arg arg = { p, target_cpu };
6279 	int curr_cpu = task_cpu(p);
6280 
6281 	if (curr_cpu == target_cpu)
6282 		return 0;
6283 
6284 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6285 		return -EINVAL;
6286 
6287 	/* TODO: This is not properly updating schedstats */
6288 
6289 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6290 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6291 }
6292 
6293 /*
6294  * Requeue a task on a given node and accurately track the number of NUMA
6295  * tasks on the runqueues
6296  */
6297 void sched_setnuma(struct task_struct *p, int nid)
6298 {
6299 	bool queued, running;
6300 	struct rq_flags rf;
6301 	struct rq *rq;
6302 
6303 	rq = task_rq_lock(p, &rf);
6304 	queued = task_on_rq_queued(p);
6305 	running = task_current(rq, p);
6306 
6307 	if (queued)
6308 		dequeue_task(rq, p, DEQUEUE_SAVE);
6309 	if (running)
6310 		put_prev_task(rq, p);
6311 
6312 	p->numa_preferred_nid = nid;
6313 
6314 	if (queued)
6315 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6316 	if (running)
6317 		set_next_task(rq, p);
6318 	task_rq_unlock(rq, p, &rf);
6319 }
6320 #endif /* CONFIG_NUMA_BALANCING */
6321 
6322 #ifdef CONFIG_HOTPLUG_CPU
6323 /*
6324  * Ensure that the idle task is using init_mm right before its CPU goes
6325  * offline.
6326  */
6327 void idle_task_exit(void)
6328 {
6329 	struct mm_struct *mm = current->active_mm;
6330 
6331 	BUG_ON(cpu_online(smp_processor_id()));
6332 	BUG_ON(current != this_rq()->idle);
6333 
6334 	if (mm != &init_mm) {
6335 		switch_mm(mm, &init_mm, current);
6336 		finish_arch_post_lock_switch();
6337 	}
6338 
6339 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6340 }
6341 
6342 /*
6343  * Since this CPU is going 'away' for a while, fold any nr_active delta
6344  * we might have. Assumes we're called after migrate_tasks() so that the
6345  * nr_active count is stable. We need to take the teardown thread which
6346  * is calling this into account, so we hand in adjust = 1 to the load
6347  * calculation.
6348  *
6349  * Also see the comment "Global load-average calculations".
6350  */
6351 static void calc_load_migrate(struct rq *rq)
6352 {
6353 	long delta = calc_load_fold_active(rq, 1);
6354 	if (delta)
6355 		atomic_long_add(delta, &calc_load_tasks);
6356 }
6357 
6358 static struct task_struct *__pick_migrate_task(struct rq *rq)
6359 {
6360 	const struct sched_class *class;
6361 	struct task_struct *next;
6362 
6363 	for_each_class(class) {
6364 		next = class->pick_next_task(rq);
6365 		if (next) {
6366 			next->sched_class->put_prev_task(rq, next);
6367 			return next;
6368 		}
6369 	}
6370 
6371 	/* The idle class should always have a runnable task */
6372 	BUG();
6373 }
6374 
6375 /*
6376  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6377  * try_to_wake_up()->select_task_rq().
6378  *
6379  * Called with rq->lock held even though we'er in stop_machine() and
6380  * there's no concurrency possible, we hold the required locks anyway
6381  * because of lock validation efforts.
6382  */
6383 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6384 {
6385 	struct rq *rq = dead_rq;
6386 	struct task_struct *next, *stop = rq->stop;
6387 	struct rq_flags orf = *rf;
6388 	int dest_cpu;
6389 
6390 	/*
6391 	 * Fudge the rq selection such that the below task selection loop
6392 	 * doesn't get stuck on the currently eligible stop task.
6393 	 *
6394 	 * We're currently inside stop_machine() and the rq is either stuck
6395 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6396 	 * either way we should never end up calling schedule() until we're
6397 	 * done here.
6398 	 */
6399 	rq->stop = NULL;
6400 
6401 	/*
6402 	 * put_prev_task() and pick_next_task() sched
6403 	 * class method both need to have an up-to-date
6404 	 * value of rq->clock[_task]
6405 	 */
6406 	update_rq_clock(rq);
6407 
6408 	for (;;) {
6409 		/*
6410 		 * There's this thread running, bail when that's the only
6411 		 * remaining thread:
6412 		 */
6413 		if (rq->nr_running == 1)
6414 			break;
6415 
6416 		next = __pick_migrate_task(rq);
6417 
6418 		/*
6419 		 * Rules for changing task_struct::cpus_mask are holding
6420 		 * both pi_lock and rq->lock, such that holding either
6421 		 * stabilizes the mask.
6422 		 *
6423 		 * Drop rq->lock is not quite as disastrous as it usually is
6424 		 * because !cpu_active at this point, which means load-balance
6425 		 * will not interfere. Also, stop-machine.
6426 		 */
6427 		rq_unlock(rq, rf);
6428 		raw_spin_lock(&next->pi_lock);
6429 		rq_relock(rq, rf);
6430 
6431 		/*
6432 		 * Since we're inside stop-machine, _nothing_ should have
6433 		 * changed the task, WARN if weird stuff happened, because in
6434 		 * that case the above rq->lock drop is a fail too.
6435 		 */
6436 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6437 			raw_spin_unlock(&next->pi_lock);
6438 			continue;
6439 		}
6440 
6441 		/* Find suitable destination for @next, with force if needed. */
6442 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6443 		rq = __migrate_task(rq, rf, next, dest_cpu);
6444 		if (rq != dead_rq) {
6445 			rq_unlock(rq, rf);
6446 			rq = dead_rq;
6447 			*rf = orf;
6448 			rq_relock(rq, rf);
6449 		}
6450 		raw_spin_unlock(&next->pi_lock);
6451 	}
6452 
6453 	rq->stop = stop;
6454 }
6455 #endif /* CONFIG_HOTPLUG_CPU */
6456 
6457 void set_rq_online(struct rq *rq)
6458 {
6459 	if (!rq->online) {
6460 		const struct sched_class *class;
6461 
6462 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6463 		rq->online = 1;
6464 
6465 		for_each_class(class) {
6466 			if (class->rq_online)
6467 				class->rq_online(rq);
6468 		}
6469 	}
6470 }
6471 
6472 void set_rq_offline(struct rq *rq)
6473 {
6474 	if (rq->online) {
6475 		const struct sched_class *class;
6476 
6477 		for_each_class(class) {
6478 			if (class->rq_offline)
6479 				class->rq_offline(rq);
6480 		}
6481 
6482 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6483 		rq->online = 0;
6484 	}
6485 }
6486 
6487 /*
6488  * used to mark begin/end of suspend/resume:
6489  */
6490 static int num_cpus_frozen;
6491 
6492 /*
6493  * Update cpusets according to cpu_active mask.  If cpusets are
6494  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6495  * around partition_sched_domains().
6496  *
6497  * If we come here as part of a suspend/resume, don't touch cpusets because we
6498  * want to restore it back to its original state upon resume anyway.
6499  */
6500 static void cpuset_cpu_active(void)
6501 {
6502 	if (cpuhp_tasks_frozen) {
6503 		/*
6504 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6505 		 * resume sequence. As long as this is not the last online
6506 		 * operation in the resume sequence, just build a single sched
6507 		 * domain, ignoring cpusets.
6508 		 */
6509 		partition_sched_domains(1, NULL, NULL);
6510 		if (--num_cpus_frozen)
6511 			return;
6512 		/*
6513 		 * This is the last CPU online operation. So fall through and
6514 		 * restore the original sched domains by considering the
6515 		 * cpuset configurations.
6516 		 */
6517 		cpuset_force_rebuild();
6518 	}
6519 	cpuset_update_active_cpus();
6520 }
6521 
6522 static int cpuset_cpu_inactive(unsigned int cpu)
6523 {
6524 	if (!cpuhp_tasks_frozen) {
6525 		if (dl_cpu_busy(cpu))
6526 			return -EBUSY;
6527 		cpuset_update_active_cpus();
6528 	} else {
6529 		num_cpus_frozen++;
6530 		partition_sched_domains(1, NULL, NULL);
6531 	}
6532 	return 0;
6533 }
6534 
6535 int sched_cpu_activate(unsigned int cpu)
6536 {
6537 	struct rq *rq = cpu_rq(cpu);
6538 	struct rq_flags rf;
6539 
6540 #ifdef CONFIG_SCHED_SMT
6541 	/*
6542 	 * When going up, increment the number of cores with SMT present.
6543 	 */
6544 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6545 		static_branch_inc_cpuslocked(&sched_smt_present);
6546 #endif
6547 	set_cpu_active(cpu, true);
6548 
6549 	if (sched_smp_initialized) {
6550 		sched_domains_numa_masks_set(cpu);
6551 		cpuset_cpu_active();
6552 	}
6553 
6554 	/*
6555 	 * Put the rq online, if not already. This happens:
6556 	 *
6557 	 * 1) In the early boot process, because we build the real domains
6558 	 *    after all CPUs have been brought up.
6559 	 *
6560 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6561 	 *    domains.
6562 	 */
6563 	rq_lock_irqsave(rq, &rf);
6564 	if (rq->rd) {
6565 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6566 		set_rq_online(rq);
6567 	}
6568 	rq_unlock_irqrestore(rq, &rf);
6569 
6570 	return 0;
6571 }
6572 
6573 int sched_cpu_deactivate(unsigned int cpu)
6574 {
6575 	int ret;
6576 
6577 	set_cpu_active(cpu, false);
6578 	/*
6579 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6580 	 * users of this state to go away such that all new such users will
6581 	 * observe it.
6582 	 *
6583 	 * Do sync before park smpboot threads to take care the rcu boost case.
6584 	 */
6585 	synchronize_rcu();
6586 
6587 #ifdef CONFIG_SCHED_SMT
6588 	/*
6589 	 * When going down, decrement the number of cores with SMT present.
6590 	 */
6591 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6592 		static_branch_dec_cpuslocked(&sched_smt_present);
6593 #endif
6594 
6595 	if (!sched_smp_initialized)
6596 		return 0;
6597 
6598 	ret = cpuset_cpu_inactive(cpu);
6599 	if (ret) {
6600 		set_cpu_active(cpu, true);
6601 		return ret;
6602 	}
6603 	sched_domains_numa_masks_clear(cpu);
6604 	return 0;
6605 }
6606 
6607 static void sched_rq_cpu_starting(unsigned int cpu)
6608 {
6609 	struct rq *rq = cpu_rq(cpu);
6610 
6611 	rq->calc_load_update = calc_load_update;
6612 	update_max_interval();
6613 }
6614 
6615 int sched_cpu_starting(unsigned int cpu)
6616 {
6617 	sched_rq_cpu_starting(cpu);
6618 	sched_tick_start(cpu);
6619 	return 0;
6620 }
6621 
6622 #ifdef CONFIG_HOTPLUG_CPU
6623 int sched_cpu_dying(unsigned int cpu)
6624 {
6625 	struct rq *rq = cpu_rq(cpu);
6626 	struct rq_flags rf;
6627 
6628 	/* Handle pending wakeups and then migrate everything off */
6629 	sched_tick_stop(cpu);
6630 
6631 	rq_lock_irqsave(rq, &rf);
6632 	if (rq->rd) {
6633 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6634 		set_rq_offline(rq);
6635 	}
6636 	migrate_tasks(rq, &rf);
6637 	BUG_ON(rq->nr_running != 1);
6638 	rq_unlock_irqrestore(rq, &rf);
6639 
6640 	calc_load_migrate(rq);
6641 	update_max_interval();
6642 	nohz_balance_exit_idle(rq);
6643 	hrtick_clear(rq);
6644 	return 0;
6645 }
6646 #endif
6647 
6648 void __init sched_init_smp(void)
6649 {
6650 	sched_init_numa();
6651 
6652 	/*
6653 	 * There's no userspace yet to cause hotplug operations; hence all the
6654 	 * CPU masks are stable and all blatant races in the below code cannot
6655 	 * happen.
6656 	 */
6657 	mutex_lock(&sched_domains_mutex);
6658 	sched_init_domains(cpu_active_mask);
6659 	mutex_unlock(&sched_domains_mutex);
6660 
6661 	/* Move init over to a non-isolated CPU */
6662 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6663 		BUG();
6664 	sched_init_granularity();
6665 
6666 	init_sched_rt_class();
6667 	init_sched_dl_class();
6668 
6669 	sched_smp_initialized = true;
6670 }
6671 
6672 static int __init migration_init(void)
6673 {
6674 	sched_cpu_starting(smp_processor_id());
6675 	return 0;
6676 }
6677 early_initcall(migration_init);
6678 
6679 #else
6680 void __init sched_init_smp(void)
6681 {
6682 	sched_init_granularity();
6683 }
6684 #endif /* CONFIG_SMP */
6685 
6686 int in_sched_functions(unsigned long addr)
6687 {
6688 	return in_lock_functions(addr) ||
6689 		(addr >= (unsigned long)__sched_text_start
6690 		&& addr < (unsigned long)__sched_text_end);
6691 }
6692 
6693 #ifdef CONFIG_CGROUP_SCHED
6694 /*
6695  * Default task group.
6696  * Every task in system belongs to this group at bootup.
6697  */
6698 struct task_group root_task_group;
6699 LIST_HEAD(task_groups);
6700 
6701 /* Cacheline aligned slab cache for task_group */
6702 static struct kmem_cache *task_group_cache __read_mostly;
6703 #endif
6704 
6705 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6706 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6707 
6708 void __init sched_init(void)
6709 {
6710 	unsigned long ptr = 0;
6711 	int i;
6712 
6713 	wait_bit_init();
6714 
6715 #ifdef CONFIG_FAIR_GROUP_SCHED
6716 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6717 #endif
6718 #ifdef CONFIG_RT_GROUP_SCHED
6719 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6720 #endif
6721 	if (ptr) {
6722 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6723 
6724 #ifdef CONFIG_FAIR_GROUP_SCHED
6725 		root_task_group.se = (struct sched_entity **)ptr;
6726 		ptr += nr_cpu_ids * sizeof(void **);
6727 
6728 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6729 		ptr += nr_cpu_ids * sizeof(void **);
6730 
6731 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6732 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6733 #endif /* CONFIG_FAIR_GROUP_SCHED */
6734 #ifdef CONFIG_RT_GROUP_SCHED
6735 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6736 		ptr += nr_cpu_ids * sizeof(void **);
6737 
6738 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6739 		ptr += nr_cpu_ids * sizeof(void **);
6740 
6741 #endif /* CONFIG_RT_GROUP_SCHED */
6742 	}
6743 #ifdef CONFIG_CPUMASK_OFFSTACK
6744 	for_each_possible_cpu(i) {
6745 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6746 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6747 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6748 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6749 	}
6750 #endif /* CONFIG_CPUMASK_OFFSTACK */
6751 
6752 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6753 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6754 
6755 #ifdef CONFIG_SMP
6756 	init_defrootdomain();
6757 #endif
6758 
6759 #ifdef CONFIG_RT_GROUP_SCHED
6760 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6761 			global_rt_period(), global_rt_runtime());
6762 #endif /* CONFIG_RT_GROUP_SCHED */
6763 
6764 #ifdef CONFIG_CGROUP_SCHED
6765 	task_group_cache = KMEM_CACHE(task_group, 0);
6766 
6767 	list_add(&root_task_group.list, &task_groups);
6768 	INIT_LIST_HEAD(&root_task_group.children);
6769 	INIT_LIST_HEAD(&root_task_group.siblings);
6770 	autogroup_init(&init_task);
6771 #endif /* CONFIG_CGROUP_SCHED */
6772 
6773 	for_each_possible_cpu(i) {
6774 		struct rq *rq;
6775 
6776 		rq = cpu_rq(i);
6777 		raw_spin_lock_init(&rq->lock);
6778 		rq->nr_running = 0;
6779 		rq->calc_load_active = 0;
6780 		rq->calc_load_update = jiffies + LOAD_FREQ;
6781 		init_cfs_rq(&rq->cfs);
6782 		init_rt_rq(&rq->rt);
6783 		init_dl_rq(&rq->dl);
6784 #ifdef CONFIG_FAIR_GROUP_SCHED
6785 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6786 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6787 		/*
6788 		 * How much CPU bandwidth does root_task_group get?
6789 		 *
6790 		 * In case of task-groups formed thr' the cgroup filesystem, it
6791 		 * gets 100% of the CPU resources in the system. This overall
6792 		 * system CPU resource is divided among the tasks of
6793 		 * root_task_group and its child task-groups in a fair manner,
6794 		 * based on each entity's (task or task-group's) weight
6795 		 * (se->load.weight).
6796 		 *
6797 		 * In other words, if root_task_group has 10 tasks of weight
6798 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6799 		 * then A0's share of the CPU resource is:
6800 		 *
6801 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6802 		 *
6803 		 * We achieve this by letting root_task_group's tasks sit
6804 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6805 		 */
6806 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6807 #endif /* CONFIG_FAIR_GROUP_SCHED */
6808 
6809 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6810 #ifdef CONFIG_RT_GROUP_SCHED
6811 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6812 #endif
6813 #ifdef CONFIG_SMP
6814 		rq->sd = NULL;
6815 		rq->rd = NULL;
6816 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6817 		rq->balance_callback = NULL;
6818 		rq->active_balance = 0;
6819 		rq->next_balance = jiffies;
6820 		rq->push_cpu = 0;
6821 		rq->cpu = i;
6822 		rq->online = 0;
6823 		rq->idle_stamp = 0;
6824 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6825 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6826 
6827 		INIT_LIST_HEAD(&rq->cfs_tasks);
6828 
6829 		rq_attach_root(rq, &def_root_domain);
6830 #ifdef CONFIG_NO_HZ_COMMON
6831 		rq->last_blocked_load_update_tick = jiffies;
6832 		atomic_set(&rq->nohz_flags, 0);
6833 
6834 		rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
6835 #endif
6836 #endif /* CONFIG_SMP */
6837 		hrtick_rq_init(rq);
6838 		atomic_set(&rq->nr_iowait, 0);
6839 	}
6840 
6841 	set_load_weight(&init_task, false);
6842 
6843 	/*
6844 	 * The boot idle thread does lazy MMU switching as well:
6845 	 */
6846 	mmgrab(&init_mm);
6847 	enter_lazy_tlb(&init_mm, current);
6848 
6849 	/*
6850 	 * Make us the idle thread. Technically, schedule() should not be
6851 	 * called from this thread, however somewhere below it might be,
6852 	 * but because we are the idle thread, we just pick up running again
6853 	 * when this runqueue becomes "idle".
6854 	 */
6855 	init_idle(current, smp_processor_id());
6856 
6857 	calc_load_update = jiffies + LOAD_FREQ;
6858 
6859 #ifdef CONFIG_SMP
6860 	idle_thread_set_boot_cpu();
6861 #endif
6862 	init_sched_fair_class();
6863 
6864 	init_schedstats();
6865 
6866 	psi_init();
6867 
6868 	init_uclamp();
6869 
6870 	scheduler_running = 1;
6871 }
6872 
6873 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6874 static inline int preempt_count_equals(int preempt_offset)
6875 {
6876 	int nested = preempt_count() + rcu_preempt_depth();
6877 
6878 	return (nested == preempt_offset);
6879 }
6880 
6881 void __might_sleep(const char *file, int line, int preempt_offset)
6882 {
6883 	/*
6884 	 * Blocking primitives will set (and therefore destroy) current->state,
6885 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6886 	 * otherwise we will destroy state.
6887 	 */
6888 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6889 			"do not call blocking ops when !TASK_RUNNING; "
6890 			"state=%lx set at [<%p>] %pS\n",
6891 			current->state,
6892 			(void *)current->task_state_change,
6893 			(void *)current->task_state_change);
6894 
6895 	___might_sleep(file, line, preempt_offset);
6896 }
6897 EXPORT_SYMBOL(__might_sleep);
6898 
6899 void ___might_sleep(const char *file, int line, int preempt_offset)
6900 {
6901 	/* Ratelimiting timestamp: */
6902 	static unsigned long prev_jiffy;
6903 
6904 	unsigned long preempt_disable_ip;
6905 
6906 	/* WARN_ON_ONCE() by default, no rate limit required: */
6907 	rcu_sleep_check();
6908 
6909 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6910 	     !is_idle_task(current) && !current->non_block_count) ||
6911 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6912 	    oops_in_progress)
6913 		return;
6914 
6915 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6916 		return;
6917 	prev_jiffy = jiffies;
6918 
6919 	/* Save this before calling printk(), since that will clobber it: */
6920 	preempt_disable_ip = get_preempt_disable_ip(current);
6921 
6922 	printk(KERN_ERR
6923 		"BUG: sleeping function called from invalid context at %s:%d\n",
6924 			file, line);
6925 	printk(KERN_ERR
6926 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6927 			in_atomic(), irqs_disabled(), current->non_block_count,
6928 			current->pid, current->comm);
6929 
6930 	if (task_stack_end_corrupted(current))
6931 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6932 
6933 	debug_show_held_locks(current);
6934 	if (irqs_disabled())
6935 		print_irqtrace_events(current);
6936 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6937 	    && !preempt_count_equals(preempt_offset)) {
6938 		pr_err("Preemption disabled at:");
6939 		print_ip_sym(KERN_ERR, preempt_disable_ip);
6940 	}
6941 	dump_stack();
6942 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6943 }
6944 EXPORT_SYMBOL(___might_sleep);
6945 
6946 void __cant_sleep(const char *file, int line, int preempt_offset)
6947 {
6948 	static unsigned long prev_jiffy;
6949 
6950 	if (irqs_disabled())
6951 		return;
6952 
6953 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6954 		return;
6955 
6956 	if (preempt_count() > preempt_offset)
6957 		return;
6958 
6959 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6960 		return;
6961 	prev_jiffy = jiffies;
6962 
6963 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6964 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6965 			in_atomic(), irqs_disabled(),
6966 			current->pid, current->comm);
6967 
6968 	debug_show_held_locks(current);
6969 	dump_stack();
6970 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6971 }
6972 EXPORT_SYMBOL_GPL(__cant_sleep);
6973 #endif
6974 
6975 #ifdef CONFIG_MAGIC_SYSRQ
6976 void normalize_rt_tasks(void)
6977 {
6978 	struct task_struct *g, *p;
6979 	struct sched_attr attr = {
6980 		.sched_policy = SCHED_NORMAL,
6981 	};
6982 
6983 	read_lock(&tasklist_lock);
6984 	for_each_process_thread(g, p) {
6985 		/*
6986 		 * Only normalize user tasks:
6987 		 */
6988 		if (p->flags & PF_KTHREAD)
6989 			continue;
6990 
6991 		p->se.exec_start = 0;
6992 		schedstat_set(p->se.statistics.wait_start,  0);
6993 		schedstat_set(p->se.statistics.sleep_start, 0);
6994 		schedstat_set(p->se.statistics.block_start, 0);
6995 
6996 		if (!dl_task(p) && !rt_task(p)) {
6997 			/*
6998 			 * Renice negative nice level userspace
6999 			 * tasks back to 0:
7000 			 */
7001 			if (task_nice(p) < 0)
7002 				set_user_nice(p, 0);
7003 			continue;
7004 		}
7005 
7006 		__sched_setscheduler(p, &attr, false, false);
7007 	}
7008 	read_unlock(&tasklist_lock);
7009 }
7010 
7011 #endif /* CONFIG_MAGIC_SYSRQ */
7012 
7013 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7014 /*
7015  * These functions are only useful for the IA64 MCA handling, or kdb.
7016  *
7017  * They can only be called when the whole system has been
7018  * stopped - every CPU needs to be quiescent, and no scheduling
7019  * activity can take place. Using them for anything else would
7020  * be a serious bug, and as a result, they aren't even visible
7021  * under any other configuration.
7022  */
7023 
7024 /**
7025  * curr_task - return the current task for a given CPU.
7026  * @cpu: the processor in question.
7027  *
7028  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7029  *
7030  * Return: The current task for @cpu.
7031  */
7032 struct task_struct *curr_task(int cpu)
7033 {
7034 	return cpu_curr(cpu);
7035 }
7036 
7037 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7038 
7039 #ifdef CONFIG_IA64
7040 /**
7041  * ia64_set_curr_task - set the current task for a given CPU.
7042  * @cpu: the processor in question.
7043  * @p: the task pointer to set.
7044  *
7045  * Description: This function must only be used when non-maskable interrupts
7046  * are serviced on a separate stack. It allows the architecture to switch the
7047  * notion of the current task on a CPU in a non-blocking manner. This function
7048  * must be called with all CPU's synchronized, and interrupts disabled, the
7049  * and caller must save the original value of the current task (see
7050  * curr_task() above) and restore that value before reenabling interrupts and
7051  * re-starting the system.
7052  *
7053  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7054  */
7055 void ia64_set_curr_task(int cpu, struct task_struct *p)
7056 {
7057 	cpu_curr(cpu) = p;
7058 }
7059 
7060 #endif
7061 
7062 #ifdef CONFIG_CGROUP_SCHED
7063 /* task_group_lock serializes the addition/removal of task groups */
7064 static DEFINE_SPINLOCK(task_group_lock);
7065 
7066 static inline void alloc_uclamp_sched_group(struct task_group *tg,
7067 					    struct task_group *parent)
7068 {
7069 #ifdef CONFIG_UCLAMP_TASK_GROUP
7070 	enum uclamp_id clamp_id;
7071 
7072 	for_each_clamp_id(clamp_id) {
7073 		uclamp_se_set(&tg->uclamp_req[clamp_id],
7074 			      uclamp_none(clamp_id), false);
7075 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7076 	}
7077 #endif
7078 }
7079 
7080 static void sched_free_group(struct task_group *tg)
7081 {
7082 	free_fair_sched_group(tg);
7083 	free_rt_sched_group(tg);
7084 	autogroup_free(tg);
7085 	kmem_cache_free(task_group_cache, tg);
7086 }
7087 
7088 /* allocate runqueue etc for a new task group */
7089 struct task_group *sched_create_group(struct task_group *parent)
7090 {
7091 	struct task_group *tg;
7092 
7093 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7094 	if (!tg)
7095 		return ERR_PTR(-ENOMEM);
7096 
7097 	if (!alloc_fair_sched_group(tg, parent))
7098 		goto err;
7099 
7100 	if (!alloc_rt_sched_group(tg, parent))
7101 		goto err;
7102 
7103 	alloc_uclamp_sched_group(tg, parent);
7104 
7105 	return tg;
7106 
7107 err:
7108 	sched_free_group(tg);
7109 	return ERR_PTR(-ENOMEM);
7110 }
7111 
7112 void sched_online_group(struct task_group *tg, struct task_group *parent)
7113 {
7114 	unsigned long flags;
7115 
7116 	spin_lock_irqsave(&task_group_lock, flags);
7117 	list_add_rcu(&tg->list, &task_groups);
7118 
7119 	/* Root should already exist: */
7120 	WARN_ON(!parent);
7121 
7122 	tg->parent = parent;
7123 	INIT_LIST_HEAD(&tg->children);
7124 	list_add_rcu(&tg->siblings, &parent->children);
7125 	spin_unlock_irqrestore(&task_group_lock, flags);
7126 
7127 	online_fair_sched_group(tg);
7128 }
7129 
7130 /* rcu callback to free various structures associated with a task group */
7131 static void sched_free_group_rcu(struct rcu_head *rhp)
7132 {
7133 	/* Now it should be safe to free those cfs_rqs: */
7134 	sched_free_group(container_of(rhp, struct task_group, rcu));
7135 }
7136 
7137 void sched_destroy_group(struct task_group *tg)
7138 {
7139 	/* Wait for possible concurrent references to cfs_rqs complete: */
7140 	call_rcu(&tg->rcu, sched_free_group_rcu);
7141 }
7142 
7143 void sched_offline_group(struct task_group *tg)
7144 {
7145 	unsigned long flags;
7146 
7147 	/* End participation in shares distribution: */
7148 	unregister_fair_sched_group(tg);
7149 
7150 	spin_lock_irqsave(&task_group_lock, flags);
7151 	list_del_rcu(&tg->list);
7152 	list_del_rcu(&tg->siblings);
7153 	spin_unlock_irqrestore(&task_group_lock, flags);
7154 }
7155 
7156 static void sched_change_group(struct task_struct *tsk, int type)
7157 {
7158 	struct task_group *tg;
7159 
7160 	/*
7161 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7162 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7163 	 * to prevent lockdep warnings.
7164 	 */
7165 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7166 			  struct task_group, css);
7167 	tg = autogroup_task_group(tsk, tg);
7168 	tsk->sched_task_group = tg;
7169 
7170 #ifdef CONFIG_FAIR_GROUP_SCHED
7171 	if (tsk->sched_class->task_change_group)
7172 		tsk->sched_class->task_change_group(tsk, type);
7173 	else
7174 #endif
7175 		set_task_rq(tsk, task_cpu(tsk));
7176 }
7177 
7178 /*
7179  * Change task's runqueue when it moves between groups.
7180  *
7181  * The caller of this function should have put the task in its new group by
7182  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7183  * its new group.
7184  */
7185 void sched_move_task(struct task_struct *tsk)
7186 {
7187 	int queued, running, queue_flags =
7188 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7189 	struct rq_flags rf;
7190 	struct rq *rq;
7191 
7192 	rq = task_rq_lock(tsk, &rf);
7193 	update_rq_clock(rq);
7194 
7195 	running = task_current(rq, tsk);
7196 	queued = task_on_rq_queued(tsk);
7197 
7198 	if (queued)
7199 		dequeue_task(rq, tsk, queue_flags);
7200 	if (running)
7201 		put_prev_task(rq, tsk);
7202 
7203 	sched_change_group(tsk, TASK_MOVE_GROUP);
7204 
7205 	if (queued)
7206 		enqueue_task(rq, tsk, queue_flags);
7207 	if (running) {
7208 		set_next_task(rq, tsk);
7209 		/*
7210 		 * After changing group, the running task may have joined a
7211 		 * throttled one but it's still the running task. Trigger a
7212 		 * resched to make sure that task can still run.
7213 		 */
7214 		resched_curr(rq);
7215 	}
7216 
7217 	task_rq_unlock(rq, tsk, &rf);
7218 }
7219 
7220 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7221 {
7222 	return css ? container_of(css, struct task_group, css) : NULL;
7223 }
7224 
7225 static struct cgroup_subsys_state *
7226 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7227 {
7228 	struct task_group *parent = css_tg(parent_css);
7229 	struct task_group *tg;
7230 
7231 	if (!parent) {
7232 		/* This is early initialization for the top cgroup */
7233 		return &root_task_group.css;
7234 	}
7235 
7236 	tg = sched_create_group(parent);
7237 	if (IS_ERR(tg))
7238 		return ERR_PTR(-ENOMEM);
7239 
7240 	return &tg->css;
7241 }
7242 
7243 /* Expose task group only after completing cgroup initialization */
7244 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7245 {
7246 	struct task_group *tg = css_tg(css);
7247 	struct task_group *parent = css_tg(css->parent);
7248 
7249 	if (parent)
7250 		sched_online_group(tg, parent);
7251 
7252 #ifdef CONFIG_UCLAMP_TASK_GROUP
7253 	/* Propagate the effective uclamp value for the new group */
7254 	cpu_util_update_eff(css);
7255 #endif
7256 
7257 	return 0;
7258 }
7259 
7260 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7261 {
7262 	struct task_group *tg = css_tg(css);
7263 
7264 	sched_offline_group(tg);
7265 }
7266 
7267 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7268 {
7269 	struct task_group *tg = css_tg(css);
7270 
7271 	/*
7272 	 * Relies on the RCU grace period between css_released() and this.
7273 	 */
7274 	sched_free_group(tg);
7275 }
7276 
7277 /*
7278  * This is called before wake_up_new_task(), therefore we really only
7279  * have to set its group bits, all the other stuff does not apply.
7280  */
7281 static void cpu_cgroup_fork(struct task_struct *task)
7282 {
7283 	struct rq_flags rf;
7284 	struct rq *rq;
7285 
7286 	rq = task_rq_lock(task, &rf);
7287 
7288 	update_rq_clock(rq);
7289 	sched_change_group(task, TASK_SET_GROUP);
7290 
7291 	task_rq_unlock(rq, task, &rf);
7292 }
7293 
7294 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7295 {
7296 	struct task_struct *task;
7297 	struct cgroup_subsys_state *css;
7298 	int ret = 0;
7299 
7300 	cgroup_taskset_for_each(task, css, tset) {
7301 #ifdef CONFIG_RT_GROUP_SCHED
7302 		if (!sched_rt_can_attach(css_tg(css), task))
7303 			return -EINVAL;
7304 #endif
7305 		/*
7306 		 * Serialize against wake_up_new_task() such that if its
7307 		 * running, we're sure to observe its full state.
7308 		 */
7309 		raw_spin_lock_irq(&task->pi_lock);
7310 		/*
7311 		 * Avoid calling sched_move_task() before wake_up_new_task()
7312 		 * has happened. This would lead to problems with PELT, due to
7313 		 * move wanting to detach+attach while we're not attached yet.
7314 		 */
7315 		if (task->state == TASK_NEW)
7316 			ret = -EINVAL;
7317 		raw_spin_unlock_irq(&task->pi_lock);
7318 
7319 		if (ret)
7320 			break;
7321 	}
7322 	return ret;
7323 }
7324 
7325 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7326 {
7327 	struct task_struct *task;
7328 	struct cgroup_subsys_state *css;
7329 
7330 	cgroup_taskset_for_each(task, css, tset)
7331 		sched_move_task(task);
7332 }
7333 
7334 #ifdef CONFIG_UCLAMP_TASK_GROUP
7335 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7336 {
7337 	struct cgroup_subsys_state *top_css = css;
7338 	struct uclamp_se *uc_parent = NULL;
7339 	struct uclamp_se *uc_se = NULL;
7340 	unsigned int eff[UCLAMP_CNT];
7341 	enum uclamp_id clamp_id;
7342 	unsigned int clamps;
7343 
7344 	css_for_each_descendant_pre(css, top_css) {
7345 		uc_parent = css_tg(css)->parent
7346 			? css_tg(css)->parent->uclamp : NULL;
7347 
7348 		for_each_clamp_id(clamp_id) {
7349 			/* Assume effective clamps matches requested clamps */
7350 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7351 			/* Cap effective clamps with parent's effective clamps */
7352 			if (uc_parent &&
7353 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7354 				eff[clamp_id] = uc_parent[clamp_id].value;
7355 			}
7356 		}
7357 		/* Ensure protection is always capped by limit */
7358 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7359 
7360 		/* Propagate most restrictive effective clamps */
7361 		clamps = 0x0;
7362 		uc_se = css_tg(css)->uclamp;
7363 		for_each_clamp_id(clamp_id) {
7364 			if (eff[clamp_id] == uc_se[clamp_id].value)
7365 				continue;
7366 			uc_se[clamp_id].value = eff[clamp_id];
7367 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7368 			clamps |= (0x1 << clamp_id);
7369 		}
7370 		if (!clamps) {
7371 			css = css_rightmost_descendant(css);
7372 			continue;
7373 		}
7374 
7375 		/* Immediately update descendants RUNNABLE tasks */
7376 		uclamp_update_active_tasks(css, clamps);
7377 	}
7378 }
7379 
7380 /*
7381  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7382  * C expression. Since there is no way to convert a macro argument (N) into a
7383  * character constant, use two levels of macros.
7384  */
7385 #define _POW10(exp) ((unsigned int)1e##exp)
7386 #define POW10(exp) _POW10(exp)
7387 
7388 struct uclamp_request {
7389 #define UCLAMP_PERCENT_SHIFT	2
7390 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7391 	s64 percent;
7392 	u64 util;
7393 	int ret;
7394 };
7395 
7396 static inline struct uclamp_request
7397 capacity_from_percent(char *buf)
7398 {
7399 	struct uclamp_request req = {
7400 		.percent = UCLAMP_PERCENT_SCALE,
7401 		.util = SCHED_CAPACITY_SCALE,
7402 		.ret = 0,
7403 	};
7404 
7405 	buf = strim(buf);
7406 	if (strcmp(buf, "max")) {
7407 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7408 					     &req.percent);
7409 		if (req.ret)
7410 			return req;
7411 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7412 			req.ret = -ERANGE;
7413 			return req;
7414 		}
7415 
7416 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7417 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7418 	}
7419 
7420 	return req;
7421 }
7422 
7423 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7424 				size_t nbytes, loff_t off,
7425 				enum uclamp_id clamp_id)
7426 {
7427 	struct uclamp_request req;
7428 	struct task_group *tg;
7429 
7430 	req = capacity_from_percent(buf);
7431 	if (req.ret)
7432 		return req.ret;
7433 
7434 	mutex_lock(&uclamp_mutex);
7435 	rcu_read_lock();
7436 
7437 	tg = css_tg(of_css(of));
7438 	if (tg->uclamp_req[clamp_id].value != req.util)
7439 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7440 
7441 	/*
7442 	 * Because of not recoverable conversion rounding we keep track of the
7443 	 * exact requested value
7444 	 */
7445 	tg->uclamp_pct[clamp_id] = req.percent;
7446 
7447 	/* Update effective clamps to track the most restrictive value */
7448 	cpu_util_update_eff(of_css(of));
7449 
7450 	rcu_read_unlock();
7451 	mutex_unlock(&uclamp_mutex);
7452 
7453 	return nbytes;
7454 }
7455 
7456 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7457 				    char *buf, size_t nbytes,
7458 				    loff_t off)
7459 {
7460 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7461 }
7462 
7463 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7464 				    char *buf, size_t nbytes,
7465 				    loff_t off)
7466 {
7467 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7468 }
7469 
7470 static inline void cpu_uclamp_print(struct seq_file *sf,
7471 				    enum uclamp_id clamp_id)
7472 {
7473 	struct task_group *tg;
7474 	u64 util_clamp;
7475 	u64 percent;
7476 	u32 rem;
7477 
7478 	rcu_read_lock();
7479 	tg = css_tg(seq_css(sf));
7480 	util_clamp = tg->uclamp_req[clamp_id].value;
7481 	rcu_read_unlock();
7482 
7483 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7484 		seq_puts(sf, "max\n");
7485 		return;
7486 	}
7487 
7488 	percent = tg->uclamp_pct[clamp_id];
7489 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7490 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7491 }
7492 
7493 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7494 {
7495 	cpu_uclamp_print(sf, UCLAMP_MIN);
7496 	return 0;
7497 }
7498 
7499 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7500 {
7501 	cpu_uclamp_print(sf, UCLAMP_MAX);
7502 	return 0;
7503 }
7504 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7505 
7506 #ifdef CONFIG_FAIR_GROUP_SCHED
7507 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7508 				struct cftype *cftype, u64 shareval)
7509 {
7510 	if (shareval > scale_load_down(ULONG_MAX))
7511 		shareval = MAX_SHARES;
7512 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7513 }
7514 
7515 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7516 			       struct cftype *cft)
7517 {
7518 	struct task_group *tg = css_tg(css);
7519 
7520 	return (u64) scale_load_down(tg->shares);
7521 }
7522 
7523 #ifdef CONFIG_CFS_BANDWIDTH
7524 static DEFINE_MUTEX(cfs_constraints_mutex);
7525 
7526 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7527 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7528 /* More than 203 days if BW_SHIFT equals 20. */
7529 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7530 
7531 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7532 
7533 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7534 {
7535 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7536 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7537 
7538 	if (tg == &root_task_group)
7539 		return -EINVAL;
7540 
7541 	/*
7542 	 * Ensure we have at some amount of bandwidth every period.  This is
7543 	 * to prevent reaching a state of large arrears when throttled via
7544 	 * entity_tick() resulting in prolonged exit starvation.
7545 	 */
7546 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7547 		return -EINVAL;
7548 
7549 	/*
7550 	 * Likewise, bound things on the otherside by preventing insane quota
7551 	 * periods.  This also allows us to normalize in computing quota
7552 	 * feasibility.
7553 	 */
7554 	if (period > max_cfs_quota_period)
7555 		return -EINVAL;
7556 
7557 	/*
7558 	 * Bound quota to defend quota against overflow during bandwidth shift.
7559 	 */
7560 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7561 		return -EINVAL;
7562 
7563 	/*
7564 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7565 	 * unthrottle_offline_cfs_rqs().
7566 	 */
7567 	get_online_cpus();
7568 	mutex_lock(&cfs_constraints_mutex);
7569 	ret = __cfs_schedulable(tg, period, quota);
7570 	if (ret)
7571 		goto out_unlock;
7572 
7573 	runtime_enabled = quota != RUNTIME_INF;
7574 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7575 	/*
7576 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7577 	 * before making related changes, and on->off must occur afterwards
7578 	 */
7579 	if (runtime_enabled && !runtime_was_enabled)
7580 		cfs_bandwidth_usage_inc();
7581 	raw_spin_lock_irq(&cfs_b->lock);
7582 	cfs_b->period = ns_to_ktime(period);
7583 	cfs_b->quota = quota;
7584 
7585 	__refill_cfs_bandwidth_runtime(cfs_b);
7586 
7587 	/* Restart the period timer (if active) to handle new period expiry: */
7588 	if (runtime_enabled)
7589 		start_cfs_bandwidth(cfs_b);
7590 
7591 	raw_spin_unlock_irq(&cfs_b->lock);
7592 
7593 	for_each_online_cpu(i) {
7594 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7595 		struct rq *rq = cfs_rq->rq;
7596 		struct rq_flags rf;
7597 
7598 		rq_lock_irq(rq, &rf);
7599 		cfs_rq->runtime_enabled = runtime_enabled;
7600 		cfs_rq->runtime_remaining = 0;
7601 
7602 		if (cfs_rq->throttled)
7603 			unthrottle_cfs_rq(cfs_rq);
7604 		rq_unlock_irq(rq, &rf);
7605 	}
7606 	if (runtime_was_enabled && !runtime_enabled)
7607 		cfs_bandwidth_usage_dec();
7608 out_unlock:
7609 	mutex_unlock(&cfs_constraints_mutex);
7610 	put_online_cpus();
7611 
7612 	return ret;
7613 }
7614 
7615 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7616 {
7617 	u64 quota, period;
7618 
7619 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7620 	if (cfs_quota_us < 0)
7621 		quota = RUNTIME_INF;
7622 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7623 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7624 	else
7625 		return -EINVAL;
7626 
7627 	return tg_set_cfs_bandwidth(tg, period, quota);
7628 }
7629 
7630 static long tg_get_cfs_quota(struct task_group *tg)
7631 {
7632 	u64 quota_us;
7633 
7634 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7635 		return -1;
7636 
7637 	quota_us = tg->cfs_bandwidth.quota;
7638 	do_div(quota_us, NSEC_PER_USEC);
7639 
7640 	return quota_us;
7641 }
7642 
7643 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7644 {
7645 	u64 quota, period;
7646 
7647 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7648 		return -EINVAL;
7649 
7650 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7651 	quota = tg->cfs_bandwidth.quota;
7652 
7653 	return tg_set_cfs_bandwidth(tg, period, quota);
7654 }
7655 
7656 static long tg_get_cfs_period(struct task_group *tg)
7657 {
7658 	u64 cfs_period_us;
7659 
7660 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7661 	do_div(cfs_period_us, NSEC_PER_USEC);
7662 
7663 	return cfs_period_us;
7664 }
7665 
7666 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7667 				  struct cftype *cft)
7668 {
7669 	return tg_get_cfs_quota(css_tg(css));
7670 }
7671 
7672 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7673 				   struct cftype *cftype, s64 cfs_quota_us)
7674 {
7675 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7676 }
7677 
7678 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7679 				   struct cftype *cft)
7680 {
7681 	return tg_get_cfs_period(css_tg(css));
7682 }
7683 
7684 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7685 				    struct cftype *cftype, u64 cfs_period_us)
7686 {
7687 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7688 }
7689 
7690 struct cfs_schedulable_data {
7691 	struct task_group *tg;
7692 	u64 period, quota;
7693 };
7694 
7695 /*
7696  * normalize group quota/period to be quota/max_period
7697  * note: units are usecs
7698  */
7699 static u64 normalize_cfs_quota(struct task_group *tg,
7700 			       struct cfs_schedulable_data *d)
7701 {
7702 	u64 quota, period;
7703 
7704 	if (tg == d->tg) {
7705 		period = d->period;
7706 		quota = d->quota;
7707 	} else {
7708 		period = tg_get_cfs_period(tg);
7709 		quota = tg_get_cfs_quota(tg);
7710 	}
7711 
7712 	/* note: these should typically be equivalent */
7713 	if (quota == RUNTIME_INF || quota == -1)
7714 		return RUNTIME_INF;
7715 
7716 	return to_ratio(period, quota);
7717 }
7718 
7719 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7720 {
7721 	struct cfs_schedulable_data *d = data;
7722 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7723 	s64 quota = 0, parent_quota = -1;
7724 
7725 	if (!tg->parent) {
7726 		quota = RUNTIME_INF;
7727 	} else {
7728 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7729 
7730 		quota = normalize_cfs_quota(tg, d);
7731 		parent_quota = parent_b->hierarchical_quota;
7732 
7733 		/*
7734 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7735 		 * always take the min.  On cgroup1, only inherit when no
7736 		 * limit is set:
7737 		 */
7738 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7739 			quota = min(quota, parent_quota);
7740 		} else {
7741 			if (quota == RUNTIME_INF)
7742 				quota = parent_quota;
7743 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7744 				return -EINVAL;
7745 		}
7746 	}
7747 	cfs_b->hierarchical_quota = quota;
7748 
7749 	return 0;
7750 }
7751 
7752 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7753 {
7754 	int ret;
7755 	struct cfs_schedulable_data data = {
7756 		.tg = tg,
7757 		.period = period,
7758 		.quota = quota,
7759 	};
7760 
7761 	if (quota != RUNTIME_INF) {
7762 		do_div(data.period, NSEC_PER_USEC);
7763 		do_div(data.quota, NSEC_PER_USEC);
7764 	}
7765 
7766 	rcu_read_lock();
7767 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7768 	rcu_read_unlock();
7769 
7770 	return ret;
7771 }
7772 
7773 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7774 {
7775 	struct task_group *tg = css_tg(seq_css(sf));
7776 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7777 
7778 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7779 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7780 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7781 
7782 	if (schedstat_enabled() && tg != &root_task_group) {
7783 		u64 ws = 0;
7784 		int i;
7785 
7786 		for_each_possible_cpu(i)
7787 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7788 
7789 		seq_printf(sf, "wait_sum %llu\n", ws);
7790 	}
7791 
7792 	return 0;
7793 }
7794 #endif /* CONFIG_CFS_BANDWIDTH */
7795 #endif /* CONFIG_FAIR_GROUP_SCHED */
7796 
7797 #ifdef CONFIG_RT_GROUP_SCHED
7798 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7799 				struct cftype *cft, s64 val)
7800 {
7801 	return sched_group_set_rt_runtime(css_tg(css), val);
7802 }
7803 
7804 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7805 			       struct cftype *cft)
7806 {
7807 	return sched_group_rt_runtime(css_tg(css));
7808 }
7809 
7810 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7811 				    struct cftype *cftype, u64 rt_period_us)
7812 {
7813 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7814 }
7815 
7816 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7817 				   struct cftype *cft)
7818 {
7819 	return sched_group_rt_period(css_tg(css));
7820 }
7821 #endif /* CONFIG_RT_GROUP_SCHED */
7822 
7823 static struct cftype cpu_legacy_files[] = {
7824 #ifdef CONFIG_FAIR_GROUP_SCHED
7825 	{
7826 		.name = "shares",
7827 		.read_u64 = cpu_shares_read_u64,
7828 		.write_u64 = cpu_shares_write_u64,
7829 	},
7830 #endif
7831 #ifdef CONFIG_CFS_BANDWIDTH
7832 	{
7833 		.name = "cfs_quota_us",
7834 		.read_s64 = cpu_cfs_quota_read_s64,
7835 		.write_s64 = cpu_cfs_quota_write_s64,
7836 	},
7837 	{
7838 		.name = "cfs_period_us",
7839 		.read_u64 = cpu_cfs_period_read_u64,
7840 		.write_u64 = cpu_cfs_period_write_u64,
7841 	},
7842 	{
7843 		.name = "stat",
7844 		.seq_show = cpu_cfs_stat_show,
7845 	},
7846 #endif
7847 #ifdef CONFIG_RT_GROUP_SCHED
7848 	{
7849 		.name = "rt_runtime_us",
7850 		.read_s64 = cpu_rt_runtime_read,
7851 		.write_s64 = cpu_rt_runtime_write,
7852 	},
7853 	{
7854 		.name = "rt_period_us",
7855 		.read_u64 = cpu_rt_period_read_uint,
7856 		.write_u64 = cpu_rt_period_write_uint,
7857 	},
7858 #endif
7859 #ifdef CONFIG_UCLAMP_TASK_GROUP
7860 	{
7861 		.name = "uclamp.min",
7862 		.flags = CFTYPE_NOT_ON_ROOT,
7863 		.seq_show = cpu_uclamp_min_show,
7864 		.write = cpu_uclamp_min_write,
7865 	},
7866 	{
7867 		.name = "uclamp.max",
7868 		.flags = CFTYPE_NOT_ON_ROOT,
7869 		.seq_show = cpu_uclamp_max_show,
7870 		.write = cpu_uclamp_max_write,
7871 	},
7872 #endif
7873 	{ }	/* Terminate */
7874 };
7875 
7876 static int cpu_extra_stat_show(struct seq_file *sf,
7877 			       struct cgroup_subsys_state *css)
7878 {
7879 #ifdef CONFIG_CFS_BANDWIDTH
7880 	{
7881 		struct task_group *tg = css_tg(css);
7882 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7883 		u64 throttled_usec;
7884 
7885 		throttled_usec = cfs_b->throttled_time;
7886 		do_div(throttled_usec, NSEC_PER_USEC);
7887 
7888 		seq_printf(sf, "nr_periods %d\n"
7889 			   "nr_throttled %d\n"
7890 			   "throttled_usec %llu\n",
7891 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7892 			   throttled_usec);
7893 	}
7894 #endif
7895 	return 0;
7896 }
7897 
7898 #ifdef CONFIG_FAIR_GROUP_SCHED
7899 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7900 			       struct cftype *cft)
7901 {
7902 	struct task_group *tg = css_tg(css);
7903 	u64 weight = scale_load_down(tg->shares);
7904 
7905 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7906 }
7907 
7908 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7909 				struct cftype *cft, u64 weight)
7910 {
7911 	/*
7912 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7913 	 * values which are 1, 100 and 10000 respectively.  While it loses
7914 	 * a bit of range on both ends, it maps pretty well onto the shares
7915 	 * value used by scheduler and the round-trip conversions preserve
7916 	 * the original value over the entire range.
7917 	 */
7918 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7919 		return -ERANGE;
7920 
7921 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7922 
7923 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7924 }
7925 
7926 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7927 				    struct cftype *cft)
7928 {
7929 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7930 	int last_delta = INT_MAX;
7931 	int prio, delta;
7932 
7933 	/* find the closest nice value to the current weight */
7934 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7935 		delta = abs(sched_prio_to_weight[prio] - weight);
7936 		if (delta >= last_delta)
7937 			break;
7938 		last_delta = delta;
7939 	}
7940 
7941 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7942 }
7943 
7944 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7945 				     struct cftype *cft, s64 nice)
7946 {
7947 	unsigned long weight;
7948 	int idx;
7949 
7950 	if (nice < MIN_NICE || nice > MAX_NICE)
7951 		return -ERANGE;
7952 
7953 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7954 	idx = array_index_nospec(idx, 40);
7955 	weight = sched_prio_to_weight[idx];
7956 
7957 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7958 }
7959 #endif
7960 
7961 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7962 						  long period, long quota)
7963 {
7964 	if (quota < 0)
7965 		seq_puts(sf, "max");
7966 	else
7967 		seq_printf(sf, "%ld", quota);
7968 
7969 	seq_printf(sf, " %ld\n", period);
7970 }
7971 
7972 /* caller should put the current value in *@periodp before calling */
7973 static int __maybe_unused cpu_period_quota_parse(char *buf,
7974 						 u64 *periodp, u64 *quotap)
7975 {
7976 	char tok[21];	/* U64_MAX */
7977 
7978 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7979 		return -EINVAL;
7980 
7981 	*periodp *= NSEC_PER_USEC;
7982 
7983 	if (sscanf(tok, "%llu", quotap))
7984 		*quotap *= NSEC_PER_USEC;
7985 	else if (!strcmp(tok, "max"))
7986 		*quotap = RUNTIME_INF;
7987 	else
7988 		return -EINVAL;
7989 
7990 	return 0;
7991 }
7992 
7993 #ifdef CONFIG_CFS_BANDWIDTH
7994 static int cpu_max_show(struct seq_file *sf, void *v)
7995 {
7996 	struct task_group *tg = css_tg(seq_css(sf));
7997 
7998 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7999 	return 0;
8000 }
8001 
8002 static ssize_t cpu_max_write(struct kernfs_open_file *of,
8003 			     char *buf, size_t nbytes, loff_t off)
8004 {
8005 	struct task_group *tg = css_tg(of_css(of));
8006 	u64 period = tg_get_cfs_period(tg);
8007 	u64 quota;
8008 	int ret;
8009 
8010 	ret = cpu_period_quota_parse(buf, &period, &quota);
8011 	if (!ret)
8012 		ret = tg_set_cfs_bandwidth(tg, period, quota);
8013 	return ret ?: nbytes;
8014 }
8015 #endif
8016 
8017 static struct cftype cpu_files[] = {
8018 #ifdef CONFIG_FAIR_GROUP_SCHED
8019 	{
8020 		.name = "weight",
8021 		.flags = CFTYPE_NOT_ON_ROOT,
8022 		.read_u64 = cpu_weight_read_u64,
8023 		.write_u64 = cpu_weight_write_u64,
8024 	},
8025 	{
8026 		.name = "weight.nice",
8027 		.flags = CFTYPE_NOT_ON_ROOT,
8028 		.read_s64 = cpu_weight_nice_read_s64,
8029 		.write_s64 = cpu_weight_nice_write_s64,
8030 	},
8031 #endif
8032 #ifdef CONFIG_CFS_BANDWIDTH
8033 	{
8034 		.name = "max",
8035 		.flags = CFTYPE_NOT_ON_ROOT,
8036 		.seq_show = cpu_max_show,
8037 		.write = cpu_max_write,
8038 	},
8039 #endif
8040 #ifdef CONFIG_UCLAMP_TASK_GROUP
8041 	{
8042 		.name = "uclamp.min",
8043 		.flags = CFTYPE_NOT_ON_ROOT,
8044 		.seq_show = cpu_uclamp_min_show,
8045 		.write = cpu_uclamp_min_write,
8046 	},
8047 	{
8048 		.name = "uclamp.max",
8049 		.flags = CFTYPE_NOT_ON_ROOT,
8050 		.seq_show = cpu_uclamp_max_show,
8051 		.write = cpu_uclamp_max_write,
8052 	},
8053 #endif
8054 	{ }	/* terminate */
8055 };
8056 
8057 struct cgroup_subsys cpu_cgrp_subsys = {
8058 	.css_alloc	= cpu_cgroup_css_alloc,
8059 	.css_online	= cpu_cgroup_css_online,
8060 	.css_released	= cpu_cgroup_css_released,
8061 	.css_free	= cpu_cgroup_css_free,
8062 	.css_extra_stat_show = cpu_extra_stat_show,
8063 	.fork		= cpu_cgroup_fork,
8064 	.can_attach	= cpu_cgroup_can_attach,
8065 	.attach		= cpu_cgroup_attach,
8066 	.legacy_cftypes	= cpu_legacy_files,
8067 	.dfl_cftypes	= cpu_files,
8068 	.early_init	= true,
8069 	.threaded	= true,
8070 };
8071 
8072 #endif	/* CONFIG_CGROUP_SCHED */
8073 
8074 void dump_cpu_task(int cpu)
8075 {
8076 	pr_info("Task dump for CPU %d:\n", cpu);
8077 	sched_show_task(cpu_curr(cpu));
8078 }
8079 
8080 /*
8081  * Nice levels are multiplicative, with a gentle 10% change for every
8082  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8083  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8084  * that remained on nice 0.
8085  *
8086  * The "10% effect" is relative and cumulative: from _any_ nice level,
8087  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8088  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8089  * If a task goes up by ~10% and another task goes down by ~10% then
8090  * the relative distance between them is ~25%.)
8091  */
8092 const int sched_prio_to_weight[40] = {
8093  /* -20 */     88761,     71755,     56483,     46273,     36291,
8094  /* -15 */     29154,     23254,     18705,     14949,     11916,
8095  /* -10 */      9548,      7620,      6100,      4904,      3906,
8096  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8097  /*   0 */      1024,       820,       655,       526,       423,
8098  /*   5 */       335,       272,       215,       172,       137,
8099  /*  10 */       110,        87,        70,        56,        45,
8100  /*  15 */        36,        29,        23,        18,        15,
8101 };
8102 
8103 /*
8104  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8105  *
8106  * In cases where the weight does not change often, we can use the
8107  * precalculated inverse to speed up arithmetics by turning divisions
8108  * into multiplications:
8109  */
8110 const u32 sched_prio_to_wmult[40] = {
8111  /* -20 */     48388,     59856,     76040,     92818,    118348,
8112  /* -15 */    147320,    184698,    229616,    287308,    360437,
8113  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8114  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8115  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8116  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8117  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8118  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8119 };
8120 
8121 #undef CREATE_TRACE_POINTS
8122