xref: /openbmc/linux/kernel/sched/core.c (revision 110e6f26)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 /*
128  * Number of tasks to iterate in a single balance run.
129  * Limited because this is done with IRQs disabled.
130  */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132 
133 /*
134  * period over which we average the RT time consumption, measured
135  * in ms.
136  *
137  * default: 1s
138  */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140 
141 /*
142  * period over which we measure -rt task cpu usage in us.
143  * default: 1s
144  */
145 unsigned int sysctl_sched_rt_period = 1000000;
146 
147 __read_mostly int scheduler_running;
148 
149 /*
150  * part of the period that we allow rt tasks to run in us.
151  * default: 0.95s
152  */
153 int sysctl_sched_rt_runtime = 950000;
154 
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157 
158 /*
159  * this_rq_lock - lock this runqueue and disable interrupts.
160  */
161 static struct rq *this_rq_lock(void)
162 	__acquires(rq->lock)
163 {
164 	struct rq *rq;
165 
166 	local_irq_disable();
167 	rq = this_rq();
168 	raw_spin_lock(&rq->lock);
169 
170 	return rq;
171 }
172 
173 #ifdef CONFIG_SCHED_HRTICK
174 /*
175  * Use HR-timers to deliver accurate preemption points.
176  */
177 
178 static void hrtick_clear(struct rq *rq)
179 {
180 	if (hrtimer_active(&rq->hrtick_timer))
181 		hrtimer_cancel(&rq->hrtick_timer);
182 }
183 
184 /*
185  * High-resolution timer tick.
186  * Runs from hardirq context with interrupts disabled.
187  */
188 static enum hrtimer_restart hrtick(struct hrtimer *timer)
189 {
190 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191 
192 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193 
194 	raw_spin_lock(&rq->lock);
195 	update_rq_clock(rq);
196 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
197 	raw_spin_unlock(&rq->lock);
198 
199 	return HRTIMER_NORESTART;
200 }
201 
202 #ifdef CONFIG_SMP
203 
204 static void __hrtick_restart(struct rq *rq)
205 {
206 	struct hrtimer *timer = &rq->hrtick_timer;
207 
208 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
209 }
210 
211 /*
212  * called from hardirq (IPI) context
213  */
214 static void __hrtick_start(void *arg)
215 {
216 	struct rq *rq = arg;
217 
218 	raw_spin_lock(&rq->lock);
219 	__hrtick_restart(rq);
220 	rq->hrtick_csd_pending = 0;
221 	raw_spin_unlock(&rq->lock);
222 }
223 
224 /*
225  * Called to set the hrtick timer state.
226  *
227  * called with rq->lock held and irqs disabled
228  */
229 void hrtick_start(struct rq *rq, u64 delay)
230 {
231 	struct hrtimer *timer = &rq->hrtick_timer;
232 	ktime_t time;
233 	s64 delta;
234 
235 	/*
236 	 * Don't schedule slices shorter than 10000ns, that just
237 	 * doesn't make sense and can cause timer DoS.
238 	 */
239 	delta = max_t(s64, delay, 10000LL);
240 	time = ktime_add_ns(timer->base->get_time(), delta);
241 
242 	hrtimer_set_expires(timer, time);
243 
244 	if (rq == this_rq()) {
245 		__hrtick_restart(rq);
246 	} else if (!rq->hrtick_csd_pending) {
247 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
248 		rq->hrtick_csd_pending = 1;
249 	}
250 }
251 
252 static int
253 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254 {
255 	int cpu = (int)(long)hcpu;
256 
257 	switch (action) {
258 	case CPU_UP_CANCELED:
259 	case CPU_UP_CANCELED_FROZEN:
260 	case CPU_DOWN_PREPARE:
261 	case CPU_DOWN_PREPARE_FROZEN:
262 	case CPU_DEAD:
263 	case CPU_DEAD_FROZEN:
264 		hrtick_clear(cpu_rq(cpu));
265 		return NOTIFY_OK;
266 	}
267 
268 	return NOTIFY_DONE;
269 }
270 
271 static __init void init_hrtick(void)
272 {
273 	hotcpu_notifier(hotplug_hrtick, 0);
274 }
275 #else
276 /*
277  * Called to set the hrtick timer state.
278  *
279  * called with rq->lock held and irqs disabled
280  */
281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 	/*
284 	 * Don't schedule slices shorter than 10000ns, that just
285 	 * doesn't make sense. Rely on vruntime for fairness.
286 	 */
287 	delay = max_t(u64, delay, 10000LL);
288 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 		      HRTIMER_MODE_REL_PINNED);
290 }
291 
292 static inline void init_hrtick(void)
293 {
294 }
295 #endif /* CONFIG_SMP */
296 
297 static void init_rq_hrtick(struct rq *rq)
298 {
299 #ifdef CONFIG_SMP
300 	rq->hrtick_csd_pending = 0;
301 
302 	rq->hrtick_csd.flags = 0;
303 	rq->hrtick_csd.func = __hrtick_start;
304 	rq->hrtick_csd.info = rq;
305 #endif
306 
307 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 	rq->hrtick_timer.function = hrtick;
309 }
310 #else	/* CONFIG_SCHED_HRTICK */
311 static inline void hrtick_clear(struct rq *rq)
312 {
313 }
314 
315 static inline void init_rq_hrtick(struct rq *rq)
316 {
317 }
318 
319 static inline void init_hrtick(void)
320 {
321 }
322 #endif	/* CONFIG_SCHED_HRTICK */
323 
324 /*
325  * cmpxchg based fetch_or, macro so it works for different integer types
326  */
327 #define fetch_or(ptr, mask)						\
328 	({								\
329 		typeof(ptr) _ptr = (ptr);				\
330 		typeof(mask) _mask = (mask);				\
331 		typeof(*_ptr) _old, _val = *_ptr;			\
332 									\
333 		for (;;) {						\
334 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
335 			if (_old == _val)				\
336 				break;					\
337 			_val = _old;					\
338 		}							\
339 	_old;								\
340 })
341 
342 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
343 /*
344  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345  * this avoids any races wrt polling state changes and thereby avoids
346  * spurious IPIs.
347  */
348 static bool set_nr_and_not_polling(struct task_struct *p)
349 {
350 	struct thread_info *ti = task_thread_info(p);
351 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352 }
353 
354 /*
355  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356  *
357  * If this returns true, then the idle task promises to call
358  * sched_ttwu_pending() and reschedule soon.
359  */
360 static bool set_nr_if_polling(struct task_struct *p)
361 {
362 	struct thread_info *ti = task_thread_info(p);
363 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
364 
365 	for (;;) {
366 		if (!(val & _TIF_POLLING_NRFLAG))
367 			return false;
368 		if (val & _TIF_NEED_RESCHED)
369 			return true;
370 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 		if (old == val)
372 			break;
373 		val = old;
374 	}
375 	return true;
376 }
377 
378 #else
379 static bool set_nr_and_not_polling(struct task_struct *p)
380 {
381 	set_tsk_need_resched(p);
382 	return true;
383 }
384 
385 #ifdef CONFIG_SMP
386 static bool set_nr_if_polling(struct task_struct *p)
387 {
388 	return false;
389 }
390 #endif
391 #endif
392 
393 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394 {
395 	struct wake_q_node *node = &task->wake_q;
396 
397 	/*
398 	 * Atomically grab the task, if ->wake_q is !nil already it means
399 	 * its already queued (either by us or someone else) and will get the
400 	 * wakeup due to that.
401 	 *
402 	 * This cmpxchg() implies a full barrier, which pairs with the write
403 	 * barrier implied by the wakeup in wake_up_list().
404 	 */
405 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 		return;
407 
408 	get_task_struct(task);
409 
410 	/*
411 	 * The head is context local, there can be no concurrency.
412 	 */
413 	*head->lastp = node;
414 	head->lastp = &node->next;
415 }
416 
417 void wake_up_q(struct wake_q_head *head)
418 {
419 	struct wake_q_node *node = head->first;
420 
421 	while (node != WAKE_Q_TAIL) {
422 		struct task_struct *task;
423 
424 		task = container_of(node, struct task_struct, wake_q);
425 		BUG_ON(!task);
426 		/* task can safely be re-inserted now */
427 		node = node->next;
428 		task->wake_q.next = NULL;
429 
430 		/*
431 		 * wake_up_process() implies a wmb() to pair with the queueing
432 		 * in wake_q_add() so as not to miss wakeups.
433 		 */
434 		wake_up_process(task);
435 		put_task_struct(task);
436 	}
437 }
438 
439 /*
440  * resched_curr - mark rq's current task 'to be rescheduled now'.
441  *
442  * On UP this means the setting of the need_resched flag, on SMP it
443  * might also involve a cross-CPU call to trigger the scheduler on
444  * the target CPU.
445  */
446 void resched_curr(struct rq *rq)
447 {
448 	struct task_struct *curr = rq->curr;
449 	int cpu;
450 
451 	lockdep_assert_held(&rq->lock);
452 
453 	if (test_tsk_need_resched(curr))
454 		return;
455 
456 	cpu = cpu_of(rq);
457 
458 	if (cpu == smp_processor_id()) {
459 		set_tsk_need_resched(curr);
460 		set_preempt_need_resched();
461 		return;
462 	}
463 
464 	if (set_nr_and_not_polling(curr))
465 		smp_send_reschedule(cpu);
466 	else
467 		trace_sched_wake_idle_without_ipi(cpu);
468 }
469 
470 void resched_cpu(int cpu)
471 {
472 	struct rq *rq = cpu_rq(cpu);
473 	unsigned long flags;
474 
475 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
476 		return;
477 	resched_curr(rq);
478 	raw_spin_unlock_irqrestore(&rq->lock, flags);
479 }
480 
481 #ifdef CONFIG_SMP
482 #ifdef CONFIG_NO_HZ_COMMON
483 /*
484  * In the semi idle case, use the nearest busy cpu for migrating timers
485  * from an idle cpu.  This is good for power-savings.
486  *
487  * We don't do similar optimization for completely idle system, as
488  * selecting an idle cpu will add more delays to the timers than intended
489  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490  */
491 int get_nohz_timer_target(void)
492 {
493 	int i, cpu = smp_processor_id();
494 	struct sched_domain *sd;
495 
496 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
497 		return cpu;
498 
499 	rcu_read_lock();
500 	for_each_domain(cpu, sd) {
501 		for_each_cpu(i, sched_domain_span(sd)) {
502 			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
503 				cpu = i;
504 				goto unlock;
505 			}
506 		}
507 	}
508 
509 	if (!is_housekeeping_cpu(cpu))
510 		cpu = housekeeping_any_cpu();
511 unlock:
512 	rcu_read_unlock();
513 	return cpu;
514 }
515 /*
516  * When add_timer_on() enqueues a timer into the timer wheel of an
517  * idle CPU then this timer might expire before the next timer event
518  * which is scheduled to wake up that CPU. In case of a completely
519  * idle system the next event might even be infinite time into the
520  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521  * leaves the inner idle loop so the newly added timer is taken into
522  * account when the CPU goes back to idle and evaluates the timer
523  * wheel for the next timer event.
524  */
525 static void wake_up_idle_cpu(int cpu)
526 {
527 	struct rq *rq = cpu_rq(cpu);
528 
529 	if (cpu == smp_processor_id())
530 		return;
531 
532 	if (set_nr_and_not_polling(rq->idle))
533 		smp_send_reschedule(cpu);
534 	else
535 		trace_sched_wake_idle_without_ipi(cpu);
536 }
537 
538 static bool wake_up_full_nohz_cpu(int cpu)
539 {
540 	/*
541 	 * We just need the target to call irq_exit() and re-evaluate
542 	 * the next tick. The nohz full kick at least implies that.
543 	 * If needed we can still optimize that later with an
544 	 * empty IRQ.
545 	 */
546 	if (tick_nohz_full_cpu(cpu)) {
547 		if (cpu != smp_processor_id() ||
548 		    tick_nohz_tick_stopped())
549 			tick_nohz_full_kick_cpu(cpu);
550 		return true;
551 	}
552 
553 	return false;
554 }
555 
556 void wake_up_nohz_cpu(int cpu)
557 {
558 	if (!wake_up_full_nohz_cpu(cpu))
559 		wake_up_idle_cpu(cpu);
560 }
561 
562 static inline bool got_nohz_idle_kick(void)
563 {
564 	int cpu = smp_processor_id();
565 
566 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 		return false;
568 
569 	if (idle_cpu(cpu) && !need_resched())
570 		return true;
571 
572 	/*
573 	 * We can't run Idle Load Balance on this CPU for this time so we
574 	 * cancel it and clear NOHZ_BALANCE_KICK
575 	 */
576 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 	return false;
578 }
579 
580 #else /* CONFIG_NO_HZ_COMMON */
581 
582 static inline bool got_nohz_idle_kick(void)
583 {
584 	return false;
585 }
586 
587 #endif /* CONFIG_NO_HZ_COMMON */
588 
589 #ifdef CONFIG_NO_HZ_FULL
590 bool sched_can_stop_tick(struct rq *rq)
591 {
592 	int fifo_nr_running;
593 
594 	/* Deadline tasks, even if single, need the tick */
595 	if (rq->dl.dl_nr_running)
596 		return false;
597 
598 	/*
599 	 * FIFO realtime policy runs the highest priority task (after DEADLINE).
600 	 * Other runnable tasks are of a lower priority. The scheduler tick
601 	 * isn't needed.
602 	 */
603 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
604 	if (fifo_nr_running)
605 		return true;
606 
607 	/*
608 	 * Round-robin realtime tasks time slice with other tasks at the same
609 	 * realtime priority.
610 	 */
611 	if (rq->rt.rr_nr_running) {
612 		if (rq->rt.rr_nr_running == 1)
613 			return true;
614 		else
615 			return false;
616 	}
617 
618 	/* Normal multitasking need periodic preemption checks */
619 	if (rq->cfs.nr_running > 1)
620 		return false;
621 
622 	return true;
623 }
624 #endif /* CONFIG_NO_HZ_FULL */
625 
626 void sched_avg_update(struct rq *rq)
627 {
628 	s64 period = sched_avg_period();
629 
630 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
631 		/*
632 		 * Inline assembly required to prevent the compiler
633 		 * optimising this loop into a divmod call.
634 		 * See __iter_div_u64_rem() for another example of this.
635 		 */
636 		asm("" : "+rm" (rq->age_stamp));
637 		rq->age_stamp += period;
638 		rq->rt_avg /= 2;
639 	}
640 }
641 
642 #endif /* CONFIG_SMP */
643 
644 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
645 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
646 /*
647  * Iterate task_group tree rooted at *from, calling @down when first entering a
648  * node and @up when leaving it for the final time.
649  *
650  * Caller must hold rcu_lock or sufficient equivalent.
651  */
652 int walk_tg_tree_from(struct task_group *from,
653 			     tg_visitor down, tg_visitor up, void *data)
654 {
655 	struct task_group *parent, *child;
656 	int ret;
657 
658 	parent = from;
659 
660 down:
661 	ret = (*down)(parent, data);
662 	if (ret)
663 		goto out;
664 	list_for_each_entry_rcu(child, &parent->children, siblings) {
665 		parent = child;
666 		goto down;
667 
668 up:
669 		continue;
670 	}
671 	ret = (*up)(parent, data);
672 	if (ret || parent == from)
673 		goto out;
674 
675 	child = parent;
676 	parent = parent->parent;
677 	if (parent)
678 		goto up;
679 out:
680 	return ret;
681 }
682 
683 int tg_nop(struct task_group *tg, void *data)
684 {
685 	return 0;
686 }
687 #endif
688 
689 static void set_load_weight(struct task_struct *p)
690 {
691 	int prio = p->static_prio - MAX_RT_PRIO;
692 	struct load_weight *load = &p->se.load;
693 
694 	/*
695 	 * SCHED_IDLE tasks get minimal weight:
696 	 */
697 	if (idle_policy(p->policy)) {
698 		load->weight = scale_load(WEIGHT_IDLEPRIO);
699 		load->inv_weight = WMULT_IDLEPRIO;
700 		return;
701 	}
702 
703 	load->weight = scale_load(sched_prio_to_weight[prio]);
704 	load->inv_weight = sched_prio_to_wmult[prio];
705 }
706 
707 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
708 {
709 	update_rq_clock(rq);
710 	if (!(flags & ENQUEUE_RESTORE))
711 		sched_info_queued(rq, p);
712 	p->sched_class->enqueue_task(rq, p, flags);
713 }
714 
715 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
716 {
717 	update_rq_clock(rq);
718 	if (!(flags & DEQUEUE_SAVE))
719 		sched_info_dequeued(rq, p);
720 	p->sched_class->dequeue_task(rq, p, flags);
721 }
722 
723 void activate_task(struct rq *rq, struct task_struct *p, int flags)
724 {
725 	if (task_contributes_to_load(p))
726 		rq->nr_uninterruptible--;
727 
728 	enqueue_task(rq, p, flags);
729 }
730 
731 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
732 {
733 	if (task_contributes_to_load(p))
734 		rq->nr_uninterruptible++;
735 
736 	dequeue_task(rq, p, flags);
737 }
738 
739 static void update_rq_clock_task(struct rq *rq, s64 delta)
740 {
741 /*
742  * In theory, the compile should just see 0 here, and optimize out the call
743  * to sched_rt_avg_update. But I don't trust it...
744  */
745 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
746 	s64 steal = 0, irq_delta = 0;
747 #endif
748 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
749 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
750 
751 	/*
752 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
753 	 * this case when a previous update_rq_clock() happened inside a
754 	 * {soft,}irq region.
755 	 *
756 	 * When this happens, we stop ->clock_task and only update the
757 	 * prev_irq_time stamp to account for the part that fit, so that a next
758 	 * update will consume the rest. This ensures ->clock_task is
759 	 * monotonic.
760 	 *
761 	 * It does however cause some slight miss-attribution of {soft,}irq
762 	 * time, a more accurate solution would be to update the irq_time using
763 	 * the current rq->clock timestamp, except that would require using
764 	 * atomic ops.
765 	 */
766 	if (irq_delta > delta)
767 		irq_delta = delta;
768 
769 	rq->prev_irq_time += irq_delta;
770 	delta -= irq_delta;
771 #endif
772 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
773 	if (static_key_false((&paravirt_steal_rq_enabled))) {
774 		steal = paravirt_steal_clock(cpu_of(rq));
775 		steal -= rq->prev_steal_time_rq;
776 
777 		if (unlikely(steal > delta))
778 			steal = delta;
779 
780 		rq->prev_steal_time_rq += steal;
781 		delta -= steal;
782 	}
783 #endif
784 
785 	rq->clock_task += delta;
786 
787 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
788 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
789 		sched_rt_avg_update(rq, irq_delta + steal);
790 #endif
791 }
792 
793 void sched_set_stop_task(int cpu, struct task_struct *stop)
794 {
795 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
796 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
797 
798 	if (stop) {
799 		/*
800 		 * Make it appear like a SCHED_FIFO task, its something
801 		 * userspace knows about and won't get confused about.
802 		 *
803 		 * Also, it will make PI more or less work without too
804 		 * much confusion -- but then, stop work should not
805 		 * rely on PI working anyway.
806 		 */
807 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
808 
809 		stop->sched_class = &stop_sched_class;
810 	}
811 
812 	cpu_rq(cpu)->stop = stop;
813 
814 	if (old_stop) {
815 		/*
816 		 * Reset it back to a normal scheduling class so that
817 		 * it can die in pieces.
818 		 */
819 		old_stop->sched_class = &rt_sched_class;
820 	}
821 }
822 
823 /*
824  * __normal_prio - return the priority that is based on the static prio
825  */
826 static inline int __normal_prio(struct task_struct *p)
827 {
828 	return p->static_prio;
829 }
830 
831 /*
832  * Calculate the expected normal priority: i.e. priority
833  * without taking RT-inheritance into account. Might be
834  * boosted by interactivity modifiers. Changes upon fork,
835  * setprio syscalls, and whenever the interactivity
836  * estimator recalculates.
837  */
838 static inline int normal_prio(struct task_struct *p)
839 {
840 	int prio;
841 
842 	if (task_has_dl_policy(p))
843 		prio = MAX_DL_PRIO-1;
844 	else if (task_has_rt_policy(p))
845 		prio = MAX_RT_PRIO-1 - p->rt_priority;
846 	else
847 		prio = __normal_prio(p);
848 	return prio;
849 }
850 
851 /*
852  * Calculate the current priority, i.e. the priority
853  * taken into account by the scheduler. This value might
854  * be boosted by RT tasks, or might be boosted by
855  * interactivity modifiers. Will be RT if the task got
856  * RT-boosted. If not then it returns p->normal_prio.
857  */
858 static int effective_prio(struct task_struct *p)
859 {
860 	p->normal_prio = normal_prio(p);
861 	/*
862 	 * If we are RT tasks or we were boosted to RT priority,
863 	 * keep the priority unchanged. Otherwise, update priority
864 	 * to the normal priority:
865 	 */
866 	if (!rt_prio(p->prio))
867 		return p->normal_prio;
868 	return p->prio;
869 }
870 
871 /**
872  * task_curr - is this task currently executing on a CPU?
873  * @p: the task in question.
874  *
875  * Return: 1 if the task is currently executing. 0 otherwise.
876  */
877 inline int task_curr(const struct task_struct *p)
878 {
879 	return cpu_curr(task_cpu(p)) == p;
880 }
881 
882 /*
883  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
884  * use the balance_callback list if you want balancing.
885  *
886  * this means any call to check_class_changed() must be followed by a call to
887  * balance_callback().
888  */
889 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
890 				       const struct sched_class *prev_class,
891 				       int oldprio)
892 {
893 	if (prev_class != p->sched_class) {
894 		if (prev_class->switched_from)
895 			prev_class->switched_from(rq, p);
896 
897 		p->sched_class->switched_to(rq, p);
898 	} else if (oldprio != p->prio || dl_task(p))
899 		p->sched_class->prio_changed(rq, p, oldprio);
900 }
901 
902 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
903 {
904 	const struct sched_class *class;
905 
906 	if (p->sched_class == rq->curr->sched_class) {
907 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
908 	} else {
909 		for_each_class(class) {
910 			if (class == rq->curr->sched_class)
911 				break;
912 			if (class == p->sched_class) {
913 				resched_curr(rq);
914 				break;
915 			}
916 		}
917 	}
918 
919 	/*
920 	 * A queue event has occurred, and we're going to schedule.  In
921 	 * this case, we can save a useless back to back clock update.
922 	 */
923 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
924 		rq_clock_skip_update(rq, true);
925 }
926 
927 #ifdef CONFIG_SMP
928 /*
929  * This is how migration works:
930  *
931  * 1) we invoke migration_cpu_stop() on the target CPU using
932  *    stop_one_cpu().
933  * 2) stopper starts to run (implicitly forcing the migrated thread
934  *    off the CPU)
935  * 3) it checks whether the migrated task is still in the wrong runqueue.
936  * 4) if it's in the wrong runqueue then the migration thread removes
937  *    it and puts it into the right queue.
938  * 5) stopper completes and stop_one_cpu() returns and the migration
939  *    is done.
940  */
941 
942 /*
943  * move_queued_task - move a queued task to new rq.
944  *
945  * Returns (locked) new rq. Old rq's lock is released.
946  */
947 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
948 {
949 	lockdep_assert_held(&rq->lock);
950 
951 	p->on_rq = TASK_ON_RQ_MIGRATING;
952 	dequeue_task(rq, p, 0);
953 	set_task_cpu(p, new_cpu);
954 	raw_spin_unlock(&rq->lock);
955 
956 	rq = cpu_rq(new_cpu);
957 
958 	raw_spin_lock(&rq->lock);
959 	BUG_ON(task_cpu(p) != new_cpu);
960 	enqueue_task(rq, p, 0);
961 	p->on_rq = TASK_ON_RQ_QUEUED;
962 	check_preempt_curr(rq, p, 0);
963 
964 	return rq;
965 }
966 
967 struct migration_arg {
968 	struct task_struct *task;
969 	int dest_cpu;
970 };
971 
972 /*
973  * Move (not current) task off this cpu, onto dest cpu. We're doing
974  * this because either it can't run here any more (set_cpus_allowed()
975  * away from this CPU, or CPU going down), or because we're
976  * attempting to rebalance this task on exec (sched_exec).
977  *
978  * So we race with normal scheduler movements, but that's OK, as long
979  * as the task is no longer on this CPU.
980  */
981 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
982 {
983 	if (unlikely(!cpu_active(dest_cpu)))
984 		return rq;
985 
986 	/* Affinity changed (again). */
987 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
988 		return rq;
989 
990 	rq = move_queued_task(rq, p, dest_cpu);
991 
992 	return rq;
993 }
994 
995 /*
996  * migration_cpu_stop - this will be executed by a highprio stopper thread
997  * and performs thread migration by bumping thread off CPU then
998  * 'pushing' onto another runqueue.
999  */
1000 static int migration_cpu_stop(void *data)
1001 {
1002 	struct migration_arg *arg = data;
1003 	struct task_struct *p = arg->task;
1004 	struct rq *rq = this_rq();
1005 
1006 	/*
1007 	 * The original target cpu might have gone down and we might
1008 	 * be on another cpu but it doesn't matter.
1009 	 */
1010 	local_irq_disable();
1011 	/*
1012 	 * We need to explicitly wake pending tasks before running
1013 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1014 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1015 	 */
1016 	sched_ttwu_pending();
1017 
1018 	raw_spin_lock(&p->pi_lock);
1019 	raw_spin_lock(&rq->lock);
1020 	/*
1021 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1022 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1023 	 * we're holding p->pi_lock.
1024 	 */
1025 	if (task_rq(p) == rq && task_on_rq_queued(p))
1026 		rq = __migrate_task(rq, p, arg->dest_cpu);
1027 	raw_spin_unlock(&rq->lock);
1028 	raw_spin_unlock(&p->pi_lock);
1029 
1030 	local_irq_enable();
1031 	return 0;
1032 }
1033 
1034 /*
1035  * sched_class::set_cpus_allowed must do the below, but is not required to
1036  * actually call this function.
1037  */
1038 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1039 {
1040 	cpumask_copy(&p->cpus_allowed, new_mask);
1041 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1042 }
1043 
1044 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1045 {
1046 	struct rq *rq = task_rq(p);
1047 	bool queued, running;
1048 
1049 	lockdep_assert_held(&p->pi_lock);
1050 
1051 	queued = task_on_rq_queued(p);
1052 	running = task_current(rq, p);
1053 
1054 	if (queued) {
1055 		/*
1056 		 * Because __kthread_bind() calls this on blocked tasks without
1057 		 * holding rq->lock.
1058 		 */
1059 		lockdep_assert_held(&rq->lock);
1060 		dequeue_task(rq, p, DEQUEUE_SAVE);
1061 	}
1062 	if (running)
1063 		put_prev_task(rq, p);
1064 
1065 	p->sched_class->set_cpus_allowed(p, new_mask);
1066 
1067 	if (running)
1068 		p->sched_class->set_curr_task(rq);
1069 	if (queued)
1070 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1071 }
1072 
1073 /*
1074  * Change a given task's CPU affinity. Migrate the thread to a
1075  * proper CPU and schedule it away if the CPU it's executing on
1076  * is removed from the allowed bitmask.
1077  *
1078  * NOTE: the caller must have a valid reference to the task, the
1079  * task must not exit() & deallocate itself prematurely. The
1080  * call is not atomic; no spinlocks may be held.
1081  */
1082 static int __set_cpus_allowed_ptr(struct task_struct *p,
1083 				  const struct cpumask *new_mask, bool check)
1084 {
1085 	unsigned long flags;
1086 	struct rq *rq;
1087 	unsigned int dest_cpu;
1088 	int ret = 0;
1089 
1090 	rq = task_rq_lock(p, &flags);
1091 
1092 	/*
1093 	 * Must re-check here, to close a race against __kthread_bind(),
1094 	 * sched_setaffinity() is not guaranteed to observe the flag.
1095 	 */
1096 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1097 		ret = -EINVAL;
1098 		goto out;
1099 	}
1100 
1101 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1102 		goto out;
1103 
1104 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1105 		ret = -EINVAL;
1106 		goto out;
1107 	}
1108 
1109 	do_set_cpus_allowed(p, new_mask);
1110 
1111 	/* Can the task run on the task's current CPU? If so, we're done */
1112 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1113 		goto out;
1114 
1115 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1116 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1117 		struct migration_arg arg = { p, dest_cpu };
1118 		/* Need help from migration thread: drop lock and wait. */
1119 		task_rq_unlock(rq, p, &flags);
1120 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1121 		tlb_migrate_finish(p->mm);
1122 		return 0;
1123 	} else if (task_on_rq_queued(p)) {
1124 		/*
1125 		 * OK, since we're going to drop the lock immediately
1126 		 * afterwards anyway.
1127 		 */
1128 		lockdep_unpin_lock(&rq->lock);
1129 		rq = move_queued_task(rq, p, dest_cpu);
1130 		lockdep_pin_lock(&rq->lock);
1131 	}
1132 out:
1133 	task_rq_unlock(rq, p, &flags);
1134 
1135 	return ret;
1136 }
1137 
1138 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1139 {
1140 	return __set_cpus_allowed_ptr(p, new_mask, false);
1141 }
1142 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1143 
1144 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1145 {
1146 #ifdef CONFIG_SCHED_DEBUG
1147 	/*
1148 	 * We should never call set_task_cpu() on a blocked task,
1149 	 * ttwu() will sort out the placement.
1150 	 */
1151 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1152 			!p->on_rq);
1153 
1154 	/*
1155 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1156 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1157 	 * time relying on p->on_rq.
1158 	 */
1159 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1160 		     p->sched_class == &fair_sched_class &&
1161 		     (p->on_rq && !task_on_rq_migrating(p)));
1162 
1163 #ifdef CONFIG_LOCKDEP
1164 	/*
1165 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1166 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1167 	 *
1168 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1169 	 * see task_group().
1170 	 *
1171 	 * Furthermore, all task_rq users should acquire both locks, see
1172 	 * task_rq_lock().
1173 	 */
1174 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1175 				      lockdep_is_held(&task_rq(p)->lock)));
1176 #endif
1177 #endif
1178 
1179 	trace_sched_migrate_task(p, new_cpu);
1180 
1181 	if (task_cpu(p) != new_cpu) {
1182 		if (p->sched_class->migrate_task_rq)
1183 			p->sched_class->migrate_task_rq(p);
1184 		p->se.nr_migrations++;
1185 		perf_event_task_migrate(p);
1186 	}
1187 
1188 	__set_task_cpu(p, new_cpu);
1189 }
1190 
1191 static void __migrate_swap_task(struct task_struct *p, int cpu)
1192 {
1193 	if (task_on_rq_queued(p)) {
1194 		struct rq *src_rq, *dst_rq;
1195 
1196 		src_rq = task_rq(p);
1197 		dst_rq = cpu_rq(cpu);
1198 
1199 		p->on_rq = TASK_ON_RQ_MIGRATING;
1200 		deactivate_task(src_rq, p, 0);
1201 		set_task_cpu(p, cpu);
1202 		activate_task(dst_rq, p, 0);
1203 		p->on_rq = TASK_ON_RQ_QUEUED;
1204 		check_preempt_curr(dst_rq, p, 0);
1205 	} else {
1206 		/*
1207 		 * Task isn't running anymore; make it appear like we migrated
1208 		 * it before it went to sleep. This means on wakeup we make the
1209 		 * previous cpu our targer instead of where it really is.
1210 		 */
1211 		p->wake_cpu = cpu;
1212 	}
1213 }
1214 
1215 struct migration_swap_arg {
1216 	struct task_struct *src_task, *dst_task;
1217 	int src_cpu, dst_cpu;
1218 };
1219 
1220 static int migrate_swap_stop(void *data)
1221 {
1222 	struct migration_swap_arg *arg = data;
1223 	struct rq *src_rq, *dst_rq;
1224 	int ret = -EAGAIN;
1225 
1226 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1227 		return -EAGAIN;
1228 
1229 	src_rq = cpu_rq(arg->src_cpu);
1230 	dst_rq = cpu_rq(arg->dst_cpu);
1231 
1232 	double_raw_lock(&arg->src_task->pi_lock,
1233 			&arg->dst_task->pi_lock);
1234 	double_rq_lock(src_rq, dst_rq);
1235 
1236 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1237 		goto unlock;
1238 
1239 	if (task_cpu(arg->src_task) != arg->src_cpu)
1240 		goto unlock;
1241 
1242 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1243 		goto unlock;
1244 
1245 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1246 		goto unlock;
1247 
1248 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1249 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1250 
1251 	ret = 0;
1252 
1253 unlock:
1254 	double_rq_unlock(src_rq, dst_rq);
1255 	raw_spin_unlock(&arg->dst_task->pi_lock);
1256 	raw_spin_unlock(&arg->src_task->pi_lock);
1257 
1258 	return ret;
1259 }
1260 
1261 /*
1262  * Cross migrate two tasks
1263  */
1264 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1265 {
1266 	struct migration_swap_arg arg;
1267 	int ret = -EINVAL;
1268 
1269 	arg = (struct migration_swap_arg){
1270 		.src_task = cur,
1271 		.src_cpu = task_cpu(cur),
1272 		.dst_task = p,
1273 		.dst_cpu = task_cpu(p),
1274 	};
1275 
1276 	if (arg.src_cpu == arg.dst_cpu)
1277 		goto out;
1278 
1279 	/*
1280 	 * These three tests are all lockless; this is OK since all of them
1281 	 * will be re-checked with proper locks held further down the line.
1282 	 */
1283 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1284 		goto out;
1285 
1286 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1287 		goto out;
1288 
1289 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1290 		goto out;
1291 
1292 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1293 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1294 
1295 out:
1296 	return ret;
1297 }
1298 
1299 /*
1300  * wait_task_inactive - wait for a thread to unschedule.
1301  *
1302  * If @match_state is nonzero, it's the @p->state value just checked and
1303  * not expected to change.  If it changes, i.e. @p might have woken up,
1304  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1305  * we return a positive number (its total switch count).  If a second call
1306  * a short while later returns the same number, the caller can be sure that
1307  * @p has remained unscheduled the whole time.
1308  *
1309  * The caller must ensure that the task *will* unschedule sometime soon,
1310  * else this function might spin for a *long* time. This function can't
1311  * be called with interrupts off, or it may introduce deadlock with
1312  * smp_call_function() if an IPI is sent by the same process we are
1313  * waiting to become inactive.
1314  */
1315 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1316 {
1317 	unsigned long flags;
1318 	int running, queued;
1319 	unsigned long ncsw;
1320 	struct rq *rq;
1321 
1322 	for (;;) {
1323 		/*
1324 		 * We do the initial early heuristics without holding
1325 		 * any task-queue locks at all. We'll only try to get
1326 		 * the runqueue lock when things look like they will
1327 		 * work out!
1328 		 */
1329 		rq = task_rq(p);
1330 
1331 		/*
1332 		 * If the task is actively running on another CPU
1333 		 * still, just relax and busy-wait without holding
1334 		 * any locks.
1335 		 *
1336 		 * NOTE! Since we don't hold any locks, it's not
1337 		 * even sure that "rq" stays as the right runqueue!
1338 		 * But we don't care, since "task_running()" will
1339 		 * return false if the runqueue has changed and p
1340 		 * is actually now running somewhere else!
1341 		 */
1342 		while (task_running(rq, p)) {
1343 			if (match_state && unlikely(p->state != match_state))
1344 				return 0;
1345 			cpu_relax();
1346 		}
1347 
1348 		/*
1349 		 * Ok, time to look more closely! We need the rq
1350 		 * lock now, to be *sure*. If we're wrong, we'll
1351 		 * just go back and repeat.
1352 		 */
1353 		rq = task_rq_lock(p, &flags);
1354 		trace_sched_wait_task(p);
1355 		running = task_running(rq, p);
1356 		queued = task_on_rq_queued(p);
1357 		ncsw = 0;
1358 		if (!match_state || p->state == match_state)
1359 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1360 		task_rq_unlock(rq, p, &flags);
1361 
1362 		/*
1363 		 * If it changed from the expected state, bail out now.
1364 		 */
1365 		if (unlikely(!ncsw))
1366 			break;
1367 
1368 		/*
1369 		 * Was it really running after all now that we
1370 		 * checked with the proper locks actually held?
1371 		 *
1372 		 * Oops. Go back and try again..
1373 		 */
1374 		if (unlikely(running)) {
1375 			cpu_relax();
1376 			continue;
1377 		}
1378 
1379 		/*
1380 		 * It's not enough that it's not actively running,
1381 		 * it must be off the runqueue _entirely_, and not
1382 		 * preempted!
1383 		 *
1384 		 * So if it was still runnable (but just not actively
1385 		 * running right now), it's preempted, and we should
1386 		 * yield - it could be a while.
1387 		 */
1388 		if (unlikely(queued)) {
1389 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1390 
1391 			set_current_state(TASK_UNINTERRUPTIBLE);
1392 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1393 			continue;
1394 		}
1395 
1396 		/*
1397 		 * Ahh, all good. It wasn't running, and it wasn't
1398 		 * runnable, which means that it will never become
1399 		 * running in the future either. We're all done!
1400 		 */
1401 		break;
1402 	}
1403 
1404 	return ncsw;
1405 }
1406 
1407 /***
1408  * kick_process - kick a running thread to enter/exit the kernel
1409  * @p: the to-be-kicked thread
1410  *
1411  * Cause a process which is running on another CPU to enter
1412  * kernel-mode, without any delay. (to get signals handled.)
1413  *
1414  * NOTE: this function doesn't have to take the runqueue lock,
1415  * because all it wants to ensure is that the remote task enters
1416  * the kernel. If the IPI races and the task has been migrated
1417  * to another CPU then no harm is done and the purpose has been
1418  * achieved as well.
1419  */
1420 void kick_process(struct task_struct *p)
1421 {
1422 	int cpu;
1423 
1424 	preempt_disable();
1425 	cpu = task_cpu(p);
1426 	if ((cpu != smp_processor_id()) && task_curr(p))
1427 		smp_send_reschedule(cpu);
1428 	preempt_enable();
1429 }
1430 EXPORT_SYMBOL_GPL(kick_process);
1431 
1432 /*
1433  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1434  */
1435 static int select_fallback_rq(int cpu, struct task_struct *p)
1436 {
1437 	int nid = cpu_to_node(cpu);
1438 	const struct cpumask *nodemask = NULL;
1439 	enum { cpuset, possible, fail } state = cpuset;
1440 	int dest_cpu;
1441 
1442 	/*
1443 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1444 	 * will return -1. There is no cpu on the node, and we should
1445 	 * select the cpu on the other node.
1446 	 */
1447 	if (nid != -1) {
1448 		nodemask = cpumask_of_node(nid);
1449 
1450 		/* Look for allowed, online CPU in same node. */
1451 		for_each_cpu(dest_cpu, nodemask) {
1452 			if (!cpu_online(dest_cpu))
1453 				continue;
1454 			if (!cpu_active(dest_cpu))
1455 				continue;
1456 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1457 				return dest_cpu;
1458 		}
1459 	}
1460 
1461 	for (;;) {
1462 		/* Any allowed, online CPU? */
1463 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1464 			if (!cpu_online(dest_cpu))
1465 				continue;
1466 			if (!cpu_active(dest_cpu))
1467 				continue;
1468 			goto out;
1469 		}
1470 
1471 		/* No more Mr. Nice Guy. */
1472 		switch (state) {
1473 		case cpuset:
1474 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1475 				cpuset_cpus_allowed_fallback(p);
1476 				state = possible;
1477 				break;
1478 			}
1479 			/* fall-through */
1480 		case possible:
1481 			do_set_cpus_allowed(p, cpu_possible_mask);
1482 			state = fail;
1483 			break;
1484 
1485 		case fail:
1486 			BUG();
1487 			break;
1488 		}
1489 	}
1490 
1491 out:
1492 	if (state != cpuset) {
1493 		/*
1494 		 * Don't tell them about moving exiting tasks or
1495 		 * kernel threads (both mm NULL), since they never
1496 		 * leave kernel.
1497 		 */
1498 		if (p->mm && printk_ratelimit()) {
1499 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1500 					task_pid_nr(p), p->comm, cpu);
1501 		}
1502 	}
1503 
1504 	return dest_cpu;
1505 }
1506 
1507 /*
1508  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1509  */
1510 static inline
1511 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1512 {
1513 	lockdep_assert_held(&p->pi_lock);
1514 
1515 	if (p->nr_cpus_allowed > 1)
1516 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1517 
1518 	/*
1519 	 * In order not to call set_task_cpu() on a blocking task we need
1520 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1521 	 * cpu.
1522 	 *
1523 	 * Since this is common to all placement strategies, this lives here.
1524 	 *
1525 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1526 	 *   not worry about this generic constraint ]
1527 	 */
1528 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1529 		     !cpu_online(cpu)))
1530 		cpu = select_fallback_rq(task_cpu(p), p);
1531 
1532 	return cpu;
1533 }
1534 
1535 static void update_avg(u64 *avg, u64 sample)
1536 {
1537 	s64 diff = sample - *avg;
1538 	*avg += diff >> 3;
1539 }
1540 
1541 #else
1542 
1543 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1544 					 const struct cpumask *new_mask, bool check)
1545 {
1546 	return set_cpus_allowed_ptr(p, new_mask);
1547 }
1548 
1549 #endif /* CONFIG_SMP */
1550 
1551 static void
1552 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1553 {
1554 #ifdef CONFIG_SCHEDSTATS
1555 	struct rq *rq = this_rq();
1556 
1557 #ifdef CONFIG_SMP
1558 	int this_cpu = smp_processor_id();
1559 
1560 	if (cpu == this_cpu) {
1561 		schedstat_inc(rq, ttwu_local);
1562 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1563 	} else {
1564 		struct sched_domain *sd;
1565 
1566 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1567 		rcu_read_lock();
1568 		for_each_domain(this_cpu, sd) {
1569 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1570 				schedstat_inc(sd, ttwu_wake_remote);
1571 				break;
1572 			}
1573 		}
1574 		rcu_read_unlock();
1575 	}
1576 
1577 	if (wake_flags & WF_MIGRATED)
1578 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1579 
1580 #endif /* CONFIG_SMP */
1581 
1582 	schedstat_inc(rq, ttwu_count);
1583 	schedstat_inc(p, se.statistics.nr_wakeups);
1584 
1585 	if (wake_flags & WF_SYNC)
1586 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1587 
1588 #endif /* CONFIG_SCHEDSTATS */
1589 }
1590 
1591 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1592 {
1593 	activate_task(rq, p, en_flags);
1594 	p->on_rq = TASK_ON_RQ_QUEUED;
1595 
1596 	/* if a worker is waking up, notify workqueue */
1597 	if (p->flags & PF_WQ_WORKER)
1598 		wq_worker_waking_up(p, cpu_of(rq));
1599 }
1600 
1601 /*
1602  * Mark the task runnable and perform wakeup-preemption.
1603  */
1604 static void
1605 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1606 {
1607 	check_preempt_curr(rq, p, wake_flags);
1608 	p->state = TASK_RUNNING;
1609 	trace_sched_wakeup(p);
1610 
1611 #ifdef CONFIG_SMP
1612 	if (p->sched_class->task_woken) {
1613 		/*
1614 		 * Our task @p is fully woken up and running; so its safe to
1615 		 * drop the rq->lock, hereafter rq is only used for statistics.
1616 		 */
1617 		lockdep_unpin_lock(&rq->lock);
1618 		p->sched_class->task_woken(rq, p);
1619 		lockdep_pin_lock(&rq->lock);
1620 	}
1621 
1622 	if (rq->idle_stamp) {
1623 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1624 		u64 max = 2*rq->max_idle_balance_cost;
1625 
1626 		update_avg(&rq->avg_idle, delta);
1627 
1628 		if (rq->avg_idle > max)
1629 			rq->avg_idle = max;
1630 
1631 		rq->idle_stamp = 0;
1632 	}
1633 #endif
1634 }
1635 
1636 static void
1637 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1638 {
1639 	lockdep_assert_held(&rq->lock);
1640 
1641 #ifdef CONFIG_SMP
1642 	if (p->sched_contributes_to_load)
1643 		rq->nr_uninterruptible--;
1644 #endif
1645 
1646 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1647 	ttwu_do_wakeup(rq, p, wake_flags);
1648 }
1649 
1650 /*
1651  * Called in case the task @p isn't fully descheduled from its runqueue,
1652  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1653  * since all we need to do is flip p->state to TASK_RUNNING, since
1654  * the task is still ->on_rq.
1655  */
1656 static int ttwu_remote(struct task_struct *p, int wake_flags)
1657 {
1658 	struct rq *rq;
1659 	int ret = 0;
1660 
1661 	rq = __task_rq_lock(p);
1662 	if (task_on_rq_queued(p)) {
1663 		/* check_preempt_curr() may use rq clock */
1664 		update_rq_clock(rq);
1665 		ttwu_do_wakeup(rq, p, wake_flags);
1666 		ret = 1;
1667 	}
1668 	__task_rq_unlock(rq);
1669 
1670 	return ret;
1671 }
1672 
1673 #ifdef CONFIG_SMP
1674 void sched_ttwu_pending(void)
1675 {
1676 	struct rq *rq = this_rq();
1677 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1678 	struct task_struct *p;
1679 	unsigned long flags;
1680 
1681 	if (!llist)
1682 		return;
1683 
1684 	raw_spin_lock_irqsave(&rq->lock, flags);
1685 	lockdep_pin_lock(&rq->lock);
1686 
1687 	while (llist) {
1688 		p = llist_entry(llist, struct task_struct, wake_entry);
1689 		llist = llist_next(llist);
1690 		ttwu_do_activate(rq, p, 0);
1691 	}
1692 
1693 	lockdep_unpin_lock(&rq->lock);
1694 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1695 }
1696 
1697 void scheduler_ipi(void)
1698 {
1699 	/*
1700 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1701 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1702 	 * this IPI.
1703 	 */
1704 	preempt_fold_need_resched();
1705 
1706 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1707 		return;
1708 
1709 	/*
1710 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1711 	 * traditionally all their work was done from the interrupt return
1712 	 * path. Now that we actually do some work, we need to make sure
1713 	 * we do call them.
1714 	 *
1715 	 * Some archs already do call them, luckily irq_enter/exit nest
1716 	 * properly.
1717 	 *
1718 	 * Arguably we should visit all archs and update all handlers,
1719 	 * however a fair share of IPIs are still resched only so this would
1720 	 * somewhat pessimize the simple resched case.
1721 	 */
1722 	irq_enter();
1723 	sched_ttwu_pending();
1724 
1725 	/*
1726 	 * Check if someone kicked us for doing the nohz idle load balance.
1727 	 */
1728 	if (unlikely(got_nohz_idle_kick())) {
1729 		this_rq()->idle_balance = 1;
1730 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1731 	}
1732 	irq_exit();
1733 }
1734 
1735 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1736 {
1737 	struct rq *rq = cpu_rq(cpu);
1738 
1739 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1740 		if (!set_nr_if_polling(rq->idle))
1741 			smp_send_reschedule(cpu);
1742 		else
1743 			trace_sched_wake_idle_without_ipi(cpu);
1744 	}
1745 }
1746 
1747 void wake_up_if_idle(int cpu)
1748 {
1749 	struct rq *rq = cpu_rq(cpu);
1750 	unsigned long flags;
1751 
1752 	rcu_read_lock();
1753 
1754 	if (!is_idle_task(rcu_dereference(rq->curr)))
1755 		goto out;
1756 
1757 	if (set_nr_if_polling(rq->idle)) {
1758 		trace_sched_wake_idle_without_ipi(cpu);
1759 	} else {
1760 		raw_spin_lock_irqsave(&rq->lock, flags);
1761 		if (is_idle_task(rq->curr))
1762 			smp_send_reschedule(cpu);
1763 		/* Else cpu is not in idle, do nothing here */
1764 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1765 	}
1766 
1767 out:
1768 	rcu_read_unlock();
1769 }
1770 
1771 bool cpus_share_cache(int this_cpu, int that_cpu)
1772 {
1773 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1774 }
1775 #endif /* CONFIG_SMP */
1776 
1777 static void ttwu_queue(struct task_struct *p, int cpu)
1778 {
1779 	struct rq *rq = cpu_rq(cpu);
1780 
1781 #if defined(CONFIG_SMP)
1782 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1783 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1784 		ttwu_queue_remote(p, cpu);
1785 		return;
1786 	}
1787 #endif
1788 
1789 	raw_spin_lock(&rq->lock);
1790 	lockdep_pin_lock(&rq->lock);
1791 	ttwu_do_activate(rq, p, 0);
1792 	lockdep_unpin_lock(&rq->lock);
1793 	raw_spin_unlock(&rq->lock);
1794 }
1795 
1796 /*
1797  * Notes on Program-Order guarantees on SMP systems.
1798  *
1799  *  MIGRATION
1800  *
1801  * The basic program-order guarantee on SMP systems is that when a task [t]
1802  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1803  * execution on its new cpu [c1].
1804  *
1805  * For migration (of runnable tasks) this is provided by the following means:
1806  *
1807  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1808  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1809  *     rq(c1)->lock (if not at the same time, then in that order).
1810  *  C) LOCK of the rq(c1)->lock scheduling in task
1811  *
1812  * Transitivity guarantees that B happens after A and C after B.
1813  * Note: we only require RCpc transitivity.
1814  * Note: the cpu doing B need not be c0 or c1
1815  *
1816  * Example:
1817  *
1818  *   CPU0            CPU1            CPU2
1819  *
1820  *   LOCK rq(0)->lock
1821  *   sched-out X
1822  *   sched-in Y
1823  *   UNLOCK rq(0)->lock
1824  *
1825  *                                   LOCK rq(0)->lock // orders against CPU0
1826  *                                   dequeue X
1827  *                                   UNLOCK rq(0)->lock
1828  *
1829  *                                   LOCK rq(1)->lock
1830  *                                   enqueue X
1831  *                                   UNLOCK rq(1)->lock
1832  *
1833  *                   LOCK rq(1)->lock // orders against CPU2
1834  *                   sched-out Z
1835  *                   sched-in X
1836  *                   UNLOCK rq(1)->lock
1837  *
1838  *
1839  *  BLOCKING -- aka. SLEEP + WAKEUP
1840  *
1841  * For blocking we (obviously) need to provide the same guarantee as for
1842  * migration. However the means are completely different as there is no lock
1843  * chain to provide order. Instead we do:
1844  *
1845  *   1) smp_store_release(X->on_cpu, 0)
1846  *   2) smp_cond_acquire(!X->on_cpu)
1847  *
1848  * Example:
1849  *
1850  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1851  *
1852  *   LOCK rq(0)->lock LOCK X->pi_lock
1853  *   dequeue X
1854  *   sched-out X
1855  *   smp_store_release(X->on_cpu, 0);
1856  *
1857  *                    smp_cond_acquire(!X->on_cpu);
1858  *                    X->state = WAKING
1859  *                    set_task_cpu(X,2)
1860  *
1861  *                    LOCK rq(2)->lock
1862  *                    enqueue X
1863  *                    X->state = RUNNING
1864  *                    UNLOCK rq(2)->lock
1865  *
1866  *                                          LOCK rq(2)->lock // orders against CPU1
1867  *                                          sched-out Z
1868  *                                          sched-in X
1869  *                                          UNLOCK rq(2)->lock
1870  *
1871  *                    UNLOCK X->pi_lock
1872  *   UNLOCK rq(0)->lock
1873  *
1874  *
1875  * However; for wakeups there is a second guarantee we must provide, namely we
1876  * must observe the state that lead to our wakeup. That is, not only must our
1877  * task observe its own prior state, it must also observe the stores prior to
1878  * its wakeup.
1879  *
1880  * This means that any means of doing remote wakeups must order the CPU doing
1881  * the wakeup against the CPU the task is going to end up running on. This,
1882  * however, is already required for the regular Program-Order guarantee above,
1883  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1884  *
1885  */
1886 
1887 /**
1888  * try_to_wake_up - wake up a thread
1889  * @p: the thread to be awakened
1890  * @state: the mask of task states that can be woken
1891  * @wake_flags: wake modifier flags (WF_*)
1892  *
1893  * Put it on the run-queue if it's not already there. The "current"
1894  * thread is always on the run-queue (except when the actual
1895  * re-schedule is in progress), and as such you're allowed to do
1896  * the simpler "current->state = TASK_RUNNING" to mark yourself
1897  * runnable without the overhead of this.
1898  *
1899  * Return: %true if @p was woken up, %false if it was already running.
1900  * or @state didn't match @p's state.
1901  */
1902 static int
1903 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1904 {
1905 	unsigned long flags;
1906 	int cpu, success = 0;
1907 
1908 	/*
1909 	 * If we are going to wake up a thread waiting for CONDITION we
1910 	 * need to ensure that CONDITION=1 done by the caller can not be
1911 	 * reordered with p->state check below. This pairs with mb() in
1912 	 * set_current_state() the waiting thread does.
1913 	 */
1914 	smp_mb__before_spinlock();
1915 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1916 	if (!(p->state & state))
1917 		goto out;
1918 
1919 	trace_sched_waking(p);
1920 
1921 	success = 1; /* we're going to change ->state */
1922 	cpu = task_cpu(p);
1923 
1924 	if (p->on_rq && ttwu_remote(p, wake_flags))
1925 		goto stat;
1926 
1927 #ifdef CONFIG_SMP
1928 	/*
1929 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1930 	 * possible to, falsely, observe p->on_cpu == 0.
1931 	 *
1932 	 * One must be running (->on_cpu == 1) in order to remove oneself
1933 	 * from the runqueue.
1934 	 *
1935 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
1936 	 *      UNLOCK rq->lock
1937 	 *			RMB
1938 	 *      LOCK   rq->lock
1939 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
1940 	 *
1941 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1942 	 * from the consecutive calls to schedule(); the first switching to our
1943 	 * task, the second putting it to sleep.
1944 	 */
1945 	smp_rmb();
1946 
1947 	/*
1948 	 * If the owning (remote) cpu is still in the middle of schedule() with
1949 	 * this task as prev, wait until its done referencing the task.
1950 	 *
1951 	 * Pairs with the smp_store_release() in finish_lock_switch().
1952 	 *
1953 	 * This ensures that tasks getting woken will be fully ordered against
1954 	 * their previous state and preserve Program Order.
1955 	 */
1956 	smp_cond_acquire(!p->on_cpu);
1957 
1958 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1959 	p->state = TASK_WAKING;
1960 
1961 	if (p->sched_class->task_waking)
1962 		p->sched_class->task_waking(p);
1963 
1964 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1965 	if (task_cpu(p) != cpu) {
1966 		wake_flags |= WF_MIGRATED;
1967 		set_task_cpu(p, cpu);
1968 	}
1969 #endif /* CONFIG_SMP */
1970 
1971 	ttwu_queue(p, cpu);
1972 stat:
1973 	if (schedstat_enabled())
1974 		ttwu_stat(p, cpu, wake_flags);
1975 out:
1976 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1977 
1978 	return success;
1979 }
1980 
1981 /**
1982  * try_to_wake_up_local - try to wake up a local task with rq lock held
1983  * @p: the thread to be awakened
1984  *
1985  * Put @p on the run-queue if it's not already there. The caller must
1986  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1987  * the current task.
1988  */
1989 static void try_to_wake_up_local(struct task_struct *p)
1990 {
1991 	struct rq *rq = task_rq(p);
1992 
1993 	if (WARN_ON_ONCE(rq != this_rq()) ||
1994 	    WARN_ON_ONCE(p == current))
1995 		return;
1996 
1997 	lockdep_assert_held(&rq->lock);
1998 
1999 	if (!raw_spin_trylock(&p->pi_lock)) {
2000 		/*
2001 		 * This is OK, because current is on_cpu, which avoids it being
2002 		 * picked for load-balance and preemption/IRQs are still
2003 		 * disabled avoiding further scheduler activity on it and we've
2004 		 * not yet picked a replacement task.
2005 		 */
2006 		lockdep_unpin_lock(&rq->lock);
2007 		raw_spin_unlock(&rq->lock);
2008 		raw_spin_lock(&p->pi_lock);
2009 		raw_spin_lock(&rq->lock);
2010 		lockdep_pin_lock(&rq->lock);
2011 	}
2012 
2013 	if (!(p->state & TASK_NORMAL))
2014 		goto out;
2015 
2016 	trace_sched_waking(p);
2017 
2018 	if (!task_on_rq_queued(p))
2019 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2020 
2021 	ttwu_do_wakeup(rq, p, 0);
2022 	if (schedstat_enabled())
2023 		ttwu_stat(p, smp_processor_id(), 0);
2024 out:
2025 	raw_spin_unlock(&p->pi_lock);
2026 }
2027 
2028 /**
2029  * wake_up_process - Wake up a specific process
2030  * @p: The process to be woken up.
2031  *
2032  * Attempt to wake up the nominated process and move it to the set of runnable
2033  * processes.
2034  *
2035  * Return: 1 if the process was woken up, 0 if it was already running.
2036  *
2037  * It may be assumed that this function implies a write memory barrier before
2038  * changing the task state if and only if any tasks are woken up.
2039  */
2040 int wake_up_process(struct task_struct *p)
2041 {
2042 	return try_to_wake_up(p, TASK_NORMAL, 0);
2043 }
2044 EXPORT_SYMBOL(wake_up_process);
2045 
2046 int wake_up_state(struct task_struct *p, unsigned int state)
2047 {
2048 	return try_to_wake_up(p, state, 0);
2049 }
2050 
2051 /*
2052  * This function clears the sched_dl_entity static params.
2053  */
2054 void __dl_clear_params(struct task_struct *p)
2055 {
2056 	struct sched_dl_entity *dl_se = &p->dl;
2057 
2058 	dl_se->dl_runtime = 0;
2059 	dl_se->dl_deadline = 0;
2060 	dl_se->dl_period = 0;
2061 	dl_se->flags = 0;
2062 	dl_se->dl_bw = 0;
2063 
2064 	dl_se->dl_throttled = 0;
2065 	dl_se->dl_yielded = 0;
2066 }
2067 
2068 /*
2069  * Perform scheduler related setup for a newly forked process p.
2070  * p is forked by current.
2071  *
2072  * __sched_fork() is basic setup used by init_idle() too:
2073  */
2074 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2075 {
2076 	p->on_rq			= 0;
2077 
2078 	p->se.on_rq			= 0;
2079 	p->se.exec_start		= 0;
2080 	p->se.sum_exec_runtime		= 0;
2081 	p->se.prev_sum_exec_runtime	= 0;
2082 	p->se.nr_migrations		= 0;
2083 	p->se.vruntime			= 0;
2084 	INIT_LIST_HEAD(&p->se.group_node);
2085 
2086 #ifdef CONFIG_FAIR_GROUP_SCHED
2087 	p->se.cfs_rq			= NULL;
2088 #endif
2089 
2090 #ifdef CONFIG_SCHEDSTATS
2091 	/* Even if schedstat is disabled, there should not be garbage */
2092 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2093 #endif
2094 
2095 	RB_CLEAR_NODE(&p->dl.rb_node);
2096 	init_dl_task_timer(&p->dl);
2097 	__dl_clear_params(p);
2098 
2099 	INIT_LIST_HEAD(&p->rt.run_list);
2100 	p->rt.timeout		= 0;
2101 	p->rt.time_slice	= sched_rr_timeslice;
2102 	p->rt.on_rq		= 0;
2103 	p->rt.on_list		= 0;
2104 
2105 #ifdef CONFIG_PREEMPT_NOTIFIERS
2106 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2107 #endif
2108 
2109 #ifdef CONFIG_NUMA_BALANCING
2110 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2111 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2112 		p->mm->numa_scan_seq = 0;
2113 	}
2114 
2115 	if (clone_flags & CLONE_VM)
2116 		p->numa_preferred_nid = current->numa_preferred_nid;
2117 	else
2118 		p->numa_preferred_nid = -1;
2119 
2120 	p->node_stamp = 0ULL;
2121 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2122 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2123 	p->numa_work.next = &p->numa_work;
2124 	p->numa_faults = NULL;
2125 	p->last_task_numa_placement = 0;
2126 	p->last_sum_exec_runtime = 0;
2127 
2128 	p->numa_group = NULL;
2129 #endif /* CONFIG_NUMA_BALANCING */
2130 }
2131 
2132 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2133 
2134 #ifdef CONFIG_NUMA_BALANCING
2135 
2136 void set_numabalancing_state(bool enabled)
2137 {
2138 	if (enabled)
2139 		static_branch_enable(&sched_numa_balancing);
2140 	else
2141 		static_branch_disable(&sched_numa_balancing);
2142 }
2143 
2144 #ifdef CONFIG_PROC_SYSCTL
2145 int sysctl_numa_balancing(struct ctl_table *table, int write,
2146 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2147 {
2148 	struct ctl_table t;
2149 	int err;
2150 	int state = static_branch_likely(&sched_numa_balancing);
2151 
2152 	if (write && !capable(CAP_SYS_ADMIN))
2153 		return -EPERM;
2154 
2155 	t = *table;
2156 	t.data = &state;
2157 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2158 	if (err < 0)
2159 		return err;
2160 	if (write)
2161 		set_numabalancing_state(state);
2162 	return err;
2163 }
2164 #endif
2165 #endif
2166 
2167 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2168 
2169 #ifdef CONFIG_SCHEDSTATS
2170 static void set_schedstats(bool enabled)
2171 {
2172 	if (enabled)
2173 		static_branch_enable(&sched_schedstats);
2174 	else
2175 		static_branch_disable(&sched_schedstats);
2176 }
2177 
2178 void force_schedstat_enabled(void)
2179 {
2180 	if (!schedstat_enabled()) {
2181 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2182 		static_branch_enable(&sched_schedstats);
2183 	}
2184 }
2185 
2186 static int __init setup_schedstats(char *str)
2187 {
2188 	int ret = 0;
2189 	if (!str)
2190 		goto out;
2191 
2192 	if (!strcmp(str, "enable")) {
2193 		set_schedstats(true);
2194 		ret = 1;
2195 	} else if (!strcmp(str, "disable")) {
2196 		set_schedstats(false);
2197 		ret = 1;
2198 	}
2199 out:
2200 	if (!ret)
2201 		pr_warn("Unable to parse schedstats=\n");
2202 
2203 	return ret;
2204 }
2205 __setup("schedstats=", setup_schedstats);
2206 
2207 #ifdef CONFIG_PROC_SYSCTL
2208 int sysctl_schedstats(struct ctl_table *table, int write,
2209 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2210 {
2211 	struct ctl_table t;
2212 	int err;
2213 	int state = static_branch_likely(&sched_schedstats);
2214 
2215 	if (write && !capable(CAP_SYS_ADMIN))
2216 		return -EPERM;
2217 
2218 	t = *table;
2219 	t.data = &state;
2220 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2221 	if (err < 0)
2222 		return err;
2223 	if (write)
2224 		set_schedstats(state);
2225 	return err;
2226 }
2227 #endif
2228 #endif
2229 
2230 /*
2231  * fork()/clone()-time setup:
2232  */
2233 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2234 {
2235 	unsigned long flags;
2236 	int cpu = get_cpu();
2237 
2238 	__sched_fork(clone_flags, p);
2239 	/*
2240 	 * We mark the process as running here. This guarantees that
2241 	 * nobody will actually run it, and a signal or other external
2242 	 * event cannot wake it up and insert it on the runqueue either.
2243 	 */
2244 	p->state = TASK_RUNNING;
2245 
2246 	/*
2247 	 * Make sure we do not leak PI boosting priority to the child.
2248 	 */
2249 	p->prio = current->normal_prio;
2250 
2251 	/*
2252 	 * Revert to default priority/policy on fork if requested.
2253 	 */
2254 	if (unlikely(p->sched_reset_on_fork)) {
2255 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2256 			p->policy = SCHED_NORMAL;
2257 			p->static_prio = NICE_TO_PRIO(0);
2258 			p->rt_priority = 0;
2259 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2260 			p->static_prio = NICE_TO_PRIO(0);
2261 
2262 		p->prio = p->normal_prio = __normal_prio(p);
2263 		set_load_weight(p);
2264 
2265 		/*
2266 		 * We don't need the reset flag anymore after the fork. It has
2267 		 * fulfilled its duty:
2268 		 */
2269 		p->sched_reset_on_fork = 0;
2270 	}
2271 
2272 	if (dl_prio(p->prio)) {
2273 		put_cpu();
2274 		return -EAGAIN;
2275 	} else if (rt_prio(p->prio)) {
2276 		p->sched_class = &rt_sched_class;
2277 	} else {
2278 		p->sched_class = &fair_sched_class;
2279 	}
2280 
2281 	if (p->sched_class->task_fork)
2282 		p->sched_class->task_fork(p);
2283 
2284 	/*
2285 	 * The child is not yet in the pid-hash so no cgroup attach races,
2286 	 * and the cgroup is pinned to this child due to cgroup_fork()
2287 	 * is ran before sched_fork().
2288 	 *
2289 	 * Silence PROVE_RCU.
2290 	 */
2291 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2292 	set_task_cpu(p, cpu);
2293 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2294 
2295 #ifdef CONFIG_SCHED_INFO
2296 	if (likely(sched_info_on()))
2297 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2298 #endif
2299 #if defined(CONFIG_SMP)
2300 	p->on_cpu = 0;
2301 #endif
2302 	init_task_preempt_count(p);
2303 #ifdef CONFIG_SMP
2304 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2305 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2306 #endif
2307 
2308 	put_cpu();
2309 	return 0;
2310 }
2311 
2312 unsigned long to_ratio(u64 period, u64 runtime)
2313 {
2314 	if (runtime == RUNTIME_INF)
2315 		return 1ULL << 20;
2316 
2317 	/*
2318 	 * Doing this here saves a lot of checks in all
2319 	 * the calling paths, and returning zero seems
2320 	 * safe for them anyway.
2321 	 */
2322 	if (period == 0)
2323 		return 0;
2324 
2325 	return div64_u64(runtime << 20, period);
2326 }
2327 
2328 #ifdef CONFIG_SMP
2329 inline struct dl_bw *dl_bw_of(int i)
2330 {
2331 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2332 			 "sched RCU must be held");
2333 	return &cpu_rq(i)->rd->dl_bw;
2334 }
2335 
2336 static inline int dl_bw_cpus(int i)
2337 {
2338 	struct root_domain *rd = cpu_rq(i)->rd;
2339 	int cpus = 0;
2340 
2341 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2342 			 "sched RCU must be held");
2343 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2344 		cpus++;
2345 
2346 	return cpus;
2347 }
2348 #else
2349 inline struct dl_bw *dl_bw_of(int i)
2350 {
2351 	return &cpu_rq(i)->dl.dl_bw;
2352 }
2353 
2354 static inline int dl_bw_cpus(int i)
2355 {
2356 	return 1;
2357 }
2358 #endif
2359 
2360 /*
2361  * We must be sure that accepting a new task (or allowing changing the
2362  * parameters of an existing one) is consistent with the bandwidth
2363  * constraints. If yes, this function also accordingly updates the currently
2364  * allocated bandwidth to reflect the new situation.
2365  *
2366  * This function is called while holding p's rq->lock.
2367  *
2368  * XXX we should delay bw change until the task's 0-lag point, see
2369  * __setparam_dl().
2370  */
2371 static int dl_overflow(struct task_struct *p, int policy,
2372 		       const struct sched_attr *attr)
2373 {
2374 
2375 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2376 	u64 period = attr->sched_period ?: attr->sched_deadline;
2377 	u64 runtime = attr->sched_runtime;
2378 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2379 	int cpus, err = -1;
2380 
2381 	if (new_bw == p->dl.dl_bw)
2382 		return 0;
2383 
2384 	/*
2385 	 * Either if a task, enters, leave, or stays -deadline but changes
2386 	 * its parameters, we may need to update accordingly the total
2387 	 * allocated bandwidth of the container.
2388 	 */
2389 	raw_spin_lock(&dl_b->lock);
2390 	cpus = dl_bw_cpus(task_cpu(p));
2391 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2392 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2393 		__dl_add(dl_b, new_bw);
2394 		err = 0;
2395 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2396 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2397 		__dl_clear(dl_b, p->dl.dl_bw);
2398 		__dl_add(dl_b, new_bw);
2399 		err = 0;
2400 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2401 		__dl_clear(dl_b, p->dl.dl_bw);
2402 		err = 0;
2403 	}
2404 	raw_spin_unlock(&dl_b->lock);
2405 
2406 	return err;
2407 }
2408 
2409 extern void init_dl_bw(struct dl_bw *dl_b);
2410 
2411 /*
2412  * wake_up_new_task - wake up a newly created task for the first time.
2413  *
2414  * This function will do some initial scheduler statistics housekeeping
2415  * that must be done for every newly created context, then puts the task
2416  * on the runqueue and wakes it.
2417  */
2418 void wake_up_new_task(struct task_struct *p)
2419 {
2420 	unsigned long flags;
2421 	struct rq *rq;
2422 
2423 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2424 	/* Initialize new task's runnable average */
2425 	init_entity_runnable_average(&p->se);
2426 #ifdef CONFIG_SMP
2427 	/*
2428 	 * Fork balancing, do it here and not earlier because:
2429 	 *  - cpus_allowed can change in the fork path
2430 	 *  - any previously selected cpu might disappear through hotplug
2431 	 */
2432 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2433 #endif
2434 
2435 	rq = __task_rq_lock(p);
2436 	activate_task(rq, p, 0);
2437 	p->on_rq = TASK_ON_RQ_QUEUED;
2438 	trace_sched_wakeup_new(p);
2439 	check_preempt_curr(rq, p, WF_FORK);
2440 #ifdef CONFIG_SMP
2441 	if (p->sched_class->task_woken) {
2442 		/*
2443 		 * Nothing relies on rq->lock after this, so its fine to
2444 		 * drop it.
2445 		 */
2446 		lockdep_unpin_lock(&rq->lock);
2447 		p->sched_class->task_woken(rq, p);
2448 		lockdep_pin_lock(&rq->lock);
2449 	}
2450 #endif
2451 	task_rq_unlock(rq, p, &flags);
2452 }
2453 
2454 #ifdef CONFIG_PREEMPT_NOTIFIERS
2455 
2456 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2457 
2458 void preempt_notifier_inc(void)
2459 {
2460 	static_key_slow_inc(&preempt_notifier_key);
2461 }
2462 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2463 
2464 void preempt_notifier_dec(void)
2465 {
2466 	static_key_slow_dec(&preempt_notifier_key);
2467 }
2468 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2469 
2470 /**
2471  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2472  * @notifier: notifier struct to register
2473  */
2474 void preempt_notifier_register(struct preempt_notifier *notifier)
2475 {
2476 	if (!static_key_false(&preempt_notifier_key))
2477 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2478 
2479 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2480 }
2481 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2482 
2483 /**
2484  * preempt_notifier_unregister - no longer interested in preemption notifications
2485  * @notifier: notifier struct to unregister
2486  *
2487  * This is *not* safe to call from within a preemption notifier.
2488  */
2489 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2490 {
2491 	hlist_del(&notifier->link);
2492 }
2493 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2494 
2495 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2496 {
2497 	struct preempt_notifier *notifier;
2498 
2499 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2500 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2501 }
2502 
2503 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2504 {
2505 	if (static_key_false(&preempt_notifier_key))
2506 		__fire_sched_in_preempt_notifiers(curr);
2507 }
2508 
2509 static void
2510 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2511 				   struct task_struct *next)
2512 {
2513 	struct preempt_notifier *notifier;
2514 
2515 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2516 		notifier->ops->sched_out(notifier, next);
2517 }
2518 
2519 static __always_inline void
2520 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2521 				 struct task_struct *next)
2522 {
2523 	if (static_key_false(&preempt_notifier_key))
2524 		__fire_sched_out_preempt_notifiers(curr, next);
2525 }
2526 
2527 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2528 
2529 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2530 {
2531 }
2532 
2533 static inline void
2534 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2535 				 struct task_struct *next)
2536 {
2537 }
2538 
2539 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2540 
2541 /**
2542  * prepare_task_switch - prepare to switch tasks
2543  * @rq: the runqueue preparing to switch
2544  * @prev: the current task that is being switched out
2545  * @next: the task we are going to switch to.
2546  *
2547  * This is called with the rq lock held and interrupts off. It must
2548  * be paired with a subsequent finish_task_switch after the context
2549  * switch.
2550  *
2551  * prepare_task_switch sets up locking and calls architecture specific
2552  * hooks.
2553  */
2554 static inline void
2555 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2556 		    struct task_struct *next)
2557 {
2558 	sched_info_switch(rq, prev, next);
2559 	perf_event_task_sched_out(prev, next);
2560 	fire_sched_out_preempt_notifiers(prev, next);
2561 	prepare_lock_switch(rq, next);
2562 	prepare_arch_switch(next);
2563 }
2564 
2565 /**
2566  * finish_task_switch - clean up after a task-switch
2567  * @prev: the thread we just switched away from.
2568  *
2569  * finish_task_switch must be called after the context switch, paired
2570  * with a prepare_task_switch call before the context switch.
2571  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2572  * and do any other architecture-specific cleanup actions.
2573  *
2574  * Note that we may have delayed dropping an mm in context_switch(). If
2575  * so, we finish that here outside of the runqueue lock. (Doing it
2576  * with the lock held can cause deadlocks; see schedule() for
2577  * details.)
2578  *
2579  * The context switch have flipped the stack from under us and restored the
2580  * local variables which were saved when this task called schedule() in the
2581  * past. prev == current is still correct but we need to recalculate this_rq
2582  * because prev may have moved to another CPU.
2583  */
2584 static struct rq *finish_task_switch(struct task_struct *prev)
2585 	__releases(rq->lock)
2586 {
2587 	struct rq *rq = this_rq();
2588 	struct mm_struct *mm = rq->prev_mm;
2589 	long prev_state;
2590 
2591 	/*
2592 	 * The previous task will have left us with a preempt_count of 2
2593 	 * because it left us after:
2594 	 *
2595 	 *	schedule()
2596 	 *	  preempt_disable();			// 1
2597 	 *	  __schedule()
2598 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2599 	 *
2600 	 * Also, see FORK_PREEMPT_COUNT.
2601 	 */
2602 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2603 		      "corrupted preempt_count: %s/%d/0x%x\n",
2604 		      current->comm, current->pid, preempt_count()))
2605 		preempt_count_set(FORK_PREEMPT_COUNT);
2606 
2607 	rq->prev_mm = NULL;
2608 
2609 	/*
2610 	 * A task struct has one reference for the use as "current".
2611 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2612 	 * schedule one last time. The schedule call will never return, and
2613 	 * the scheduled task must drop that reference.
2614 	 *
2615 	 * We must observe prev->state before clearing prev->on_cpu (in
2616 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2617 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2618 	 * transition, resulting in a double drop.
2619 	 */
2620 	prev_state = prev->state;
2621 	vtime_task_switch(prev);
2622 	perf_event_task_sched_in(prev, current);
2623 	finish_lock_switch(rq, prev);
2624 	finish_arch_post_lock_switch();
2625 
2626 	fire_sched_in_preempt_notifiers(current);
2627 	if (mm)
2628 		mmdrop(mm);
2629 	if (unlikely(prev_state == TASK_DEAD)) {
2630 		if (prev->sched_class->task_dead)
2631 			prev->sched_class->task_dead(prev);
2632 
2633 		/*
2634 		 * Remove function-return probe instances associated with this
2635 		 * task and put them back on the free list.
2636 		 */
2637 		kprobe_flush_task(prev);
2638 		put_task_struct(prev);
2639 	}
2640 
2641 	tick_nohz_task_switch();
2642 	return rq;
2643 }
2644 
2645 #ifdef CONFIG_SMP
2646 
2647 /* rq->lock is NOT held, but preemption is disabled */
2648 static void __balance_callback(struct rq *rq)
2649 {
2650 	struct callback_head *head, *next;
2651 	void (*func)(struct rq *rq);
2652 	unsigned long flags;
2653 
2654 	raw_spin_lock_irqsave(&rq->lock, flags);
2655 	head = rq->balance_callback;
2656 	rq->balance_callback = NULL;
2657 	while (head) {
2658 		func = (void (*)(struct rq *))head->func;
2659 		next = head->next;
2660 		head->next = NULL;
2661 		head = next;
2662 
2663 		func(rq);
2664 	}
2665 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2666 }
2667 
2668 static inline void balance_callback(struct rq *rq)
2669 {
2670 	if (unlikely(rq->balance_callback))
2671 		__balance_callback(rq);
2672 }
2673 
2674 #else
2675 
2676 static inline void balance_callback(struct rq *rq)
2677 {
2678 }
2679 
2680 #endif
2681 
2682 /**
2683  * schedule_tail - first thing a freshly forked thread must call.
2684  * @prev: the thread we just switched away from.
2685  */
2686 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2687 	__releases(rq->lock)
2688 {
2689 	struct rq *rq;
2690 
2691 	/*
2692 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2693 	 * finish_task_switch() for details.
2694 	 *
2695 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2696 	 * and the preempt_enable() will end up enabling preemption (on
2697 	 * PREEMPT_COUNT kernels).
2698 	 */
2699 
2700 	rq = finish_task_switch(prev);
2701 	balance_callback(rq);
2702 	preempt_enable();
2703 
2704 	if (current->set_child_tid)
2705 		put_user(task_pid_vnr(current), current->set_child_tid);
2706 }
2707 
2708 /*
2709  * context_switch - switch to the new MM and the new thread's register state.
2710  */
2711 static __always_inline struct rq *
2712 context_switch(struct rq *rq, struct task_struct *prev,
2713 	       struct task_struct *next)
2714 {
2715 	struct mm_struct *mm, *oldmm;
2716 
2717 	prepare_task_switch(rq, prev, next);
2718 
2719 	mm = next->mm;
2720 	oldmm = prev->active_mm;
2721 	/*
2722 	 * For paravirt, this is coupled with an exit in switch_to to
2723 	 * combine the page table reload and the switch backend into
2724 	 * one hypercall.
2725 	 */
2726 	arch_start_context_switch(prev);
2727 
2728 	if (!mm) {
2729 		next->active_mm = oldmm;
2730 		atomic_inc(&oldmm->mm_count);
2731 		enter_lazy_tlb(oldmm, next);
2732 	} else
2733 		switch_mm(oldmm, mm, next);
2734 
2735 	if (!prev->mm) {
2736 		prev->active_mm = NULL;
2737 		rq->prev_mm = oldmm;
2738 	}
2739 	/*
2740 	 * Since the runqueue lock will be released by the next
2741 	 * task (which is an invalid locking op but in the case
2742 	 * of the scheduler it's an obvious special-case), so we
2743 	 * do an early lockdep release here:
2744 	 */
2745 	lockdep_unpin_lock(&rq->lock);
2746 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2747 
2748 	/* Here we just switch the register state and the stack. */
2749 	switch_to(prev, next, prev);
2750 	barrier();
2751 
2752 	return finish_task_switch(prev);
2753 }
2754 
2755 /*
2756  * nr_running and nr_context_switches:
2757  *
2758  * externally visible scheduler statistics: current number of runnable
2759  * threads, total number of context switches performed since bootup.
2760  */
2761 unsigned long nr_running(void)
2762 {
2763 	unsigned long i, sum = 0;
2764 
2765 	for_each_online_cpu(i)
2766 		sum += cpu_rq(i)->nr_running;
2767 
2768 	return sum;
2769 }
2770 
2771 /*
2772  * Check if only the current task is running on the cpu.
2773  *
2774  * Caution: this function does not check that the caller has disabled
2775  * preemption, thus the result might have a time-of-check-to-time-of-use
2776  * race.  The caller is responsible to use it correctly, for example:
2777  *
2778  * - from a non-preemptable section (of course)
2779  *
2780  * - from a thread that is bound to a single CPU
2781  *
2782  * - in a loop with very short iterations (e.g. a polling loop)
2783  */
2784 bool single_task_running(void)
2785 {
2786 	return raw_rq()->nr_running == 1;
2787 }
2788 EXPORT_SYMBOL(single_task_running);
2789 
2790 unsigned long long nr_context_switches(void)
2791 {
2792 	int i;
2793 	unsigned long long sum = 0;
2794 
2795 	for_each_possible_cpu(i)
2796 		sum += cpu_rq(i)->nr_switches;
2797 
2798 	return sum;
2799 }
2800 
2801 unsigned long nr_iowait(void)
2802 {
2803 	unsigned long i, sum = 0;
2804 
2805 	for_each_possible_cpu(i)
2806 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2807 
2808 	return sum;
2809 }
2810 
2811 unsigned long nr_iowait_cpu(int cpu)
2812 {
2813 	struct rq *this = cpu_rq(cpu);
2814 	return atomic_read(&this->nr_iowait);
2815 }
2816 
2817 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2818 {
2819 	struct rq *rq = this_rq();
2820 	*nr_waiters = atomic_read(&rq->nr_iowait);
2821 	*load = rq->load.weight;
2822 }
2823 
2824 #ifdef CONFIG_SMP
2825 
2826 /*
2827  * sched_exec - execve() is a valuable balancing opportunity, because at
2828  * this point the task has the smallest effective memory and cache footprint.
2829  */
2830 void sched_exec(void)
2831 {
2832 	struct task_struct *p = current;
2833 	unsigned long flags;
2834 	int dest_cpu;
2835 
2836 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2837 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2838 	if (dest_cpu == smp_processor_id())
2839 		goto unlock;
2840 
2841 	if (likely(cpu_active(dest_cpu))) {
2842 		struct migration_arg arg = { p, dest_cpu };
2843 
2844 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2845 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2846 		return;
2847 	}
2848 unlock:
2849 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2850 }
2851 
2852 #endif
2853 
2854 DEFINE_PER_CPU(struct kernel_stat, kstat);
2855 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2856 
2857 EXPORT_PER_CPU_SYMBOL(kstat);
2858 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2859 
2860 /*
2861  * Return accounted runtime for the task.
2862  * In case the task is currently running, return the runtime plus current's
2863  * pending runtime that have not been accounted yet.
2864  */
2865 unsigned long long task_sched_runtime(struct task_struct *p)
2866 {
2867 	unsigned long flags;
2868 	struct rq *rq;
2869 	u64 ns;
2870 
2871 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2872 	/*
2873 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2874 	 * So we have a optimization chance when the task's delta_exec is 0.
2875 	 * Reading ->on_cpu is racy, but this is ok.
2876 	 *
2877 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2878 	 * If we race with it entering cpu, unaccounted time is 0. This is
2879 	 * indistinguishable from the read occurring a few cycles earlier.
2880 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2881 	 * been accounted, so we're correct here as well.
2882 	 */
2883 	if (!p->on_cpu || !task_on_rq_queued(p))
2884 		return p->se.sum_exec_runtime;
2885 #endif
2886 
2887 	rq = task_rq_lock(p, &flags);
2888 	/*
2889 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2890 	 * project cycles that may never be accounted to this
2891 	 * thread, breaking clock_gettime().
2892 	 */
2893 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2894 		update_rq_clock(rq);
2895 		p->sched_class->update_curr(rq);
2896 	}
2897 	ns = p->se.sum_exec_runtime;
2898 	task_rq_unlock(rq, p, &flags);
2899 
2900 	return ns;
2901 }
2902 
2903 /*
2904  * This function gets called by the timer code, with HZ frequency.
2905  * We call it with interrupts disabled.
2906  */
2907 void scheduler_tick(void)
2908 {
2909 	int cpu = smp_processor_id();
2910 	struct rq *rq = cpu_rq(cpu);
2911 	struct task_struct *curr = rq->curr;
2912 
2913 	sched_clock_tick();
2914 
2915 	raw_spin_lock(&rq->lock);
2916 	update_rq_clock(rq);
2917 	curr->sched_class->task_tick(rq, curr, 0);
2918 	update_cpu_load_active(rq);
2919 	calc_global_load_tick(rq);
2920 	raw_spin_unlock(&rq->lock);
2921 
2922 	perf_event_task_tick();
2923 
2924 #ifdef CONFIG_SMP
2925 	rq->idle_balance = idle_cpu(cpu);
2926 	trigger_load_balance(rq);
2927 #endif
2928 	rq_last_tick_reset(rq);
2929 }
2930 
2931 #ifdef CONFIG_NO_HZ_FULL
2932 /**
2933  * scheduler_tick_max_deferment
2934  *
2935  * Keep at least one tick per second when a single
2936  * active task is running because the scheduler doesn't
2937  * yet completely support full dynticks environment.
2938  *
2939  * This makes sure that uptime, CFS vruntime, load
2940  * balancing, etc... continue to move forward, even
2941  * with a very low granularity.
2942  *
2943  * Return: Maximum deferment in nanoseconds.
2944  */
2945 u64 scheduler_tick_max_deferment(void)
2946 {
2947 	struct rq *rq = this_rq();
2948 	unsigned long next, now = READ_ONCE(jiffies);
2949 
2950 	next = rq->last_sched_tick + HZ;
2951 
2952 	if (time_before_eq(next, now))
2953 		return 0;
2954 
2955 	return jiffies_to_nsecs(next - now);
2956 }
2957 #endif
2958 
2959 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2960 				defined(CONFIG_PREEMPT_TRACER))
2961 
2962 void preempt_count_add(int val)
2963 {
2964 #ifdef CONFIG_DEBUG_PREEMPT
2965 	/*
2966 	 * Underflow?
2967 	 */
2968 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2969 		return;
2970 #endif
2971 	__preempt_count_add(val);
2972 #ifdef CONFIG_DEBUG_PREEMPT
2973 	/*
2974 	 * Spinlock count overflowing soon?
2975 	 */
2976 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2977 				PREEMPT_MASK - 10);
2978 #endif
2979 	if (preempt_count() == val) {
2980 		unsigned long ip = get_lock_parent_ip();
2981 #ifdef CONFIG_DEBUG_PREEMPT
2982 		current->preempt_disable_ip = ip;
2983 #endif
2984 		trace_preempt_off(CALLER_ADDR0, ip);
2985 	}
2986 }
2987 EXPORT_SYMBOL(preempt_count_add);
2988 NOKPROBE_SYMBOL(preempt_count_add);
2989 
2990 void preempt_count_sub(int val)
2991 {
2992 #ifdef CONFIG_DEBUG_PREEMPT
2993 	/*
2994 	 * Underflow?
2995 	 */
2996 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2997 		return;
2998 	/*
2999 	 * Is the spinlock portion underflowing?
3000 	 */
3001 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3002 			!(preempt_count() & PREEMPT_MASK)))
3003 		return;
3004 #endif
3005 
3006 	if (preempt_count() == val)
3007 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3008 	__preempt_count_sub(val);
3009 }
3010 EXPORT_SYMBOL(preempt_count_sub);
3011 NOKPROBE_SYMBOL(preempt_count_sub);
3012 
3013 #endif
3014 
3015 /*
3016  * Print scheduling while atomic bug:
3017  */
3018 static noinline void __schedule_bug(struct task_struct *prev)
3019 {
3020 	if (oops_in_progress)
3021 		return;
3022 
3023 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3024 		prev->comm, prev->pid, preempt_count());
3025 
3026 	debug_show_held_locks(prev);
3027 	print_modules();
3028 	if (irqs_disabled())
3029 		print_irqtrace_events(prev);
3030 #ifdef CONFIG_DEBUG_PREEMPT
3031 	if (in_atomic_preempt_off()) {
3032 		pr_err("Preemption disabled at:");
3033 		print_ip_sym(current->preempt_disable_ip);
3034 		pr_cont("\n");
3035 	}
3036 #endif
3037 	dump_stack();
3038 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3039 }
3040 
3041 /*
3042  * Various schedule()-time debugging checks and statistics:
3043  */
3044 static inline void schedule_debug(struct task_struct *prev)
3045 {
3046 #ifdef CONFIG_SCHED_STACK_END_CHECK
3047 	BUG_ON(task_stack_end_corrupted(prev));
3048 #endif
3049 
3050 	if (unlikely(in_atomic_preempt_off())) {
3051 		__schedule_bug(prev);
3052 		preempt_count_set(PREEMPT_DISABLED);
3053 	}
3054 	rcu_sleep_check();
3055 
3056 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3057 
3058 	schedstat_inc(this_rq(), sched_count);
3059 }
3060 
3061 /*
3062  * Pick up the highest-prio task:
3063  */
3064 static inline struct task_struct *
3065 pick_next_task(struct rq *rq, struct task_struct *prev)
3066 {
3067 	const struct sched_class *class = &fair_sched_class;
3068 	struct task_struct *p;
3069 
3070 	/*
3071 	 * Optimization: we know that if all tasks are in
3072 	 * the fair class we can call that function directly:
3073 	 */
3074 	if (likely(prev->sched_class == class &&
3075 		   rq->nr_running == rq->cfs.h_nr_running)) {
3076 		p = fair_sched_class.pick_next_task(rq, prev);
3077 		if (unlikely(p == RETRY_TASK))
3078 			goto again;
3079 
3080 		/* assumes fair_sched_class->next == idle_sched_class */
3081 		if (unlikely(!p))
3082 			p = idle_sched_class.pick_next_task(rq, prev);
3083 
3084 		return p;
3085 	}
3086 
3087 again:
3088 	for_each_class(class) {
3089 		p = class->pick_next_task(rq, prev);
3090 		if (p) {
3091 			if (unlikely(p == RETRY_TASK))
3092 				goto again;
3093 			return p;
3094 		}
3095 	}
3096 
3097 	BUG(); /* the idle class will always have a runnable task */
3098 }
3099 
3100 /*
3101  * __schedule() is the main scheduler function.
3102  *
3103  * The main means of driving the scheduler and thus entering this function are:
3104  *
3105  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3106  *
3107  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3108  *      paths. For example, see arch/x86/entry_64.S.
3109  *
3110  *      To drive preemption between tasks, the scheduler sets the flag in timer
3111  *      interrupt handler scheduler_tick().
3112  *
3113  *   3. Wakeups don't really cause entry into schedule(). They add a
3114  *      task to the run-queue and that's it.
3115  *
3116  *      Now, if the new task added to the run-queue preempts the current
3117  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3118  *      called on the nearest possible occasion:
3119  *
3120  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3121  *
3122  *         - in syscall or exception context, at the next outmost
3123  *           preempt_enable(). (this might be as soon as the wake_up()'s
3124  *           spin_unlock()!)
3125  *
3126  *         - in IRQ context, return from interrupt-handler to
3127  *           preemptible context
3128  *
3129  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3130  *         then at the next:
3131  *
3132  *          - cond_resched() call
3133  *          - explicit schedule() call
3134  *          - return from syscall or exception to user-space
3135  *          - return from interrupt-handler to user-space
3136  *
3137  * WARNING: must be called with preemption disabled!
3138  */
3139 static void __sched notrace __schedule(bool preempt)
3140 {
3141 	struct task_struct *prev, *next;
3142 	unsigned long *switch_count;
3143 	struct rq *rq;
3144 	int cpu;
3145 
3146 	cpu = smp_processor_id();
3147 	rq = cpu_rq(cpu);
3148 	prev = rq->curr;
3149 
3150 	/*
3151 	 * do_exit() calls schedule() with preemption disabled as an exception;
3152 	 * however we must fix that up, otherwise the next task will see an
3153 	 * inconsistent (higher) preempt count.
3154 	 *
3155 	 * It also avoids the below schedule_debug() test from complaining
3156 	 * about this.
3157 	 */
3158 	if (unlikely(prev->state == TASK_DEAD))
3159 		preempt_enable_no_resched_notrace();
3160 
3161 	schedule_debug(prev);
3162 
3163 	if (sched_feat(HRTICK))
3164 		hrtick_clear(rq);
3165 
3166 	local_irq_disable();
3167 	rcu_note_context_switch();
3168 
3169 	/*
3170 	 * Make sure that signal_pending_state()->signal_pending() below
3171 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3172 	 * done by the caller to avoid the race with signal_wake_up().
3173 	 */
3174 	smp_mb__before_spinlock();
3175 	raw_spin_lock(&rq->lock);
3176 	lockdep_pin_lock(&rq->lock);
3177 
3178 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3179 
3180 	switch_count = &prev->nivcsw;
3181 	if (!preempt && prev->state) {
3182 		if (unlikely(signal_pending_state(prev->state, prev))) {
3183 			prev->state = TASK_RUNNING;
3184 		} else {
3185 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3186 			prev->on_rq = 0;
3187 
3188 			/*
3189 			 * If a worker went to sleep, notify and ask workqueue
3190 			 * whether it wants to wake up a task to maintain
3191 			 * concurrency.
3192 			 */
3193 			if (prev->flags & PF_WQ_WORKER) {
3194 				struct task_struct *to_wakeup;
3195 
3196 				to_wakeup = wq_worker_sleeping(prev);
3197 				if (to_wakeup)
3198 					try_to_wake_up_local(to_wakeup);
3199 			}
3200 		}
3201 		switch_count = &prev->nvcsw;
3202 	}
3203 
3204 	if (task_on_rq_queued(prev))
3205 		update_rq_clock(rq);
3206 
3207 	next = pick_next_task(rq, prev);
3208 	clear_tsk_need_resched(prev);
3209 	clear_preempt_need_resched();
3210 	rq->clock_skip_update = 0;
3211 
3212 	if (likely(prev != next)) {
3213 		rq->nr_switches++;
3214 		rq->curr = next;
3215 		++*switch_count;
3216 
3217 		trace_sched_switch(preempt, prev, next);
3218 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3219 	} else {
3220 		lockdep_unpin_lock(&rq->lock);
3221 		raw_spin_unlock_irq(&rq->lock);
3222 	}
3223 
3224 	balance_callback(rq);
3225 }
3226 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3227 
3228 static inline void sched_submit_work(struct task_struct *tsk)
3229 {
3230 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3231 		return;
3232 	/*
3233 	 * If we are going to sleep and we have plugged IO queued,
3234 	 * make sure to submit it to avoid deadlocks.
3235 	 */
3236 	if (blk_needs_flush_plug(tsk))
3237 		blk_schedule_flush_plug(tsk);
3238 }
3239 
3240 asmlinkage __visible void __sched schedule(void)
3241 {
3242 	struct task_struct *tsk = current;
3243 
3244 	sched_submit_work(tsk);
3245 	do {
3246 		preempt_disable();
3247 		__schedule(false);
3248 		sched_preempt_enable_no_resched();
3249 	} while (need_resched());
3250 }
3251 EXPORT_SYMBOL(schedule);
3252 
3253 #ifdef CONFIG_CONTEXT_TRACKING
3254 asmlinkage __visible void __sched schedule_user(void)
3255 {
3256 	/*
3257 	 * If we come here after a random call to set_need_resched(),
3258 	 * or we have been woken up remotely but the IPI has not yet arrived,
3259 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3260 	 * we find a better solution.
3261 	 *
3262 	 * NB: There are buggy callers of this function.  Ideally we
3263 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3264 	 * too frequently to make sense yet.
3265 	 */
3266 	enum ctx_state prev_state = exception_enter();
3267 	schedule();
3268 	exception_exit(prev_state);
3269 }
3270 #endif
3271 
3272 /**
3273  * schedule_preempt_disabled - called with preemption disabled
3274  *
3275  * Returns with preemption disabled. Note: preempt_count must be 1
3276  */
3277 void __sched schedule_preempt_disabled(void)
3278 {
3279 	sched_preempt_enable_no_resched();
3280 	schedule();
3281 	preempt_disable();
3282 }
3283 
3284 static void __sched notrace preempt_schedule_common(void)
3285 {
3286 	do {
3287 		preempt_disable_notrace();
3288 		__schedule(true);
3289 		preempt_enable_no_resched_notrace();
3290 
3291 		/*
3292 		 * Check again in case we missed a preemption opportunity
3293 		 * between schedule and now.
3294 		 */
3295 	} while (need_resched());
3296 }
3297 
3298 #ifdef CONFIG_PREEMPT
3299 /*
3300  * this is the entry point to schedule() from in-kernel preemption
3301  * off of preempt_enable. Kernel preemptions off return from interrupt
3302  * occur there and call schedule directly.
3303  */
3304 asmlinkage __visible void __sched notrace preempt_schedule(void)
3305 {
3306 	/*
3307 	 * If there is a non-zero preempt_count or interrupts are disabled,
3308 	 * we do not want to preempt the current task. Just return..
3309 	 */
3310 	if (likely(!preemptible()))
3311 		return;
3312 
3313 	preempt_schedule_common();
3314 }
3315 NOKPROBE_SYMBOL(preempt_schedule);
3316 EXPORT_SYMBOL(preempt_schedule);
3317 
3318 /**
3319  * preempt_schedule_notrace - preempt_schedule called by tracing
3320  *
3321  * The tracing infrastructure uses preempt_enable_notrace to prevent
3322  * recursion and tracing preempt enabling caused by the tracing
3323  * infrastructure itself. But as tracing can happen in areas coming
3324  * from userspace or just about to enter userspace, a preempt enable
3325  * can occur before user_exit() is called. This will cause the scheduler
3326  * to be called when the system is still in usermode.
3327  *
3328  * To prevent this, the preempt_enable_notrace will use this function
3329  * instead of preempt_schedule() to exit user context if needed before
3330  * calling the scheduler.
3331  */
3332 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3333 {
3334 	enum ctx_state prev_ctx;
3335 
3336 	if (likely(!preemptible()))
3337 		return;
3338 
3339 	do {
3340 		preempt_disable_notrace();
3341 		/*
3342 		 * Needs preempt disabled in case user_exit() is traced
3343 		 * and the tracer calls preempt_enable_notrace() causing
3344 		 * an infinite recursion.
3345 		 */
3346 		prev_ctx = exception_enter();
3347 		__schedule(true);
3348 		exception_exit(prev_ctx);
3349 
3350 		preempt_enable_no_resched_notrace();
3351 	} while (need_resched());
3352 }
3353 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3354 
3355 #endif /* CONFIG_PREEMPT */
3356 
3357 /*
3358  * this is the entry point to schedule() from kernel preemption
3359  * off of irq context.
3360  * Note, that this is called and return with irqs disabled. This will
3361  * protect us against recursive calling from irq.
3362  */
3363 asmlinkage __visible void __sched preempt_schedule_irq(void)
3364 {
3365 	enum ctx_state prev_state;
3366 
3367 	/* Catch callers which need to be fixed */
3368 	BUG_ON(preempt_count() || !irqs_disabled());
3369 
3370 	prev_state = exception_enter();
3371 
3372 	do {
3373 		preempt_disable();
3374 		local_irq_enable();
3375 		__schedule(true);
3376 		local_irq_disable();
3377 		sched_preempt_enable_no_resched();
3378 	} while (need_resched());
3379 
3380 	exception_exit(prev_state);
3381 }
3382 
3383 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3384 			  void *key)
3385 {
3386 	return try_to_wake_up(curr->private, mode, wake_flags);
3387 }
3388 EXPORT_SYMBOL(default_wake_function);
3389 
3390 #ifdef CONFIG_RT_MUTEXES
3391 
3392 /*
3393  * rt_mutex_setprio - set the current priority of a task
3394  * @p: task
3395  * @prio: prio value (kernel-internal form)
3396  *
3397  * This function changes the 'effective' priority of a task. It does
3398  * not touch ->normal_prio like __setscheduler().
3399  *
3400  * Used by the rt_mutex code to implement priority inheritance
3401  * logic. Call site only calls if the priority of the task changed.
3402  */
3403 void rt_mutex_setprio(struct task_struct *p, int prio)
3404 {
3405 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3406 	struct rq *rq;
3407 	const struct sched_class *prev_class;
3408 
3409 	BUG_ON(prio > MAX_PRIO);
3410 
3411 	rq = __task_rq_lock(p);
3412 
3413 	/*
3414 	 * Idle task boosting is a nono in general. There is one
3415 	 * exception, when PREEMPT_RT and NOHZ is active:
3416 	 *
3417 	 * The idle task calls get_next_timer_interrupt() and holds
3418 	 * the timer wheel base->lock on the CPU and another CPU wants
3419 	 * to access the timer (probably to cancel it). We can safely
3420 	 * ignore the boosting request, as the idle CPU runs this code
3421 	 * with interrupts disabled and will complete the lock
3422 	 * protected section without being interrupted. So there is no
3423 	 * real need to boost.
3424 	 */
3425 	if (unlikely(p == rq->idle)) {
3426 		WARN_ON(p != rq->curr);
3427 		WARN_ON(p->pi_blocked_on);
3428 		goto out_unlock;
3429 	}
3430 
3431 	trace_sched_pi_setprio(p, prio);
3432 	oldprio = p->prio;
3433 
3434 	if (oldprio == prio)
3435 		queue_flag &= ~DEQUEUE_MOVE;
3436 
3437 	prev_class = p->sched_class;
3438 	queued = task_on_rq_queued(p);
3439 	running = task_current(rq, p);
3440 	if (queued)
3441 		dequeue_task(rq, p, queue_flag);
3442 	if (running)
3443 		put_prev_task(rq, p);
3444 
3445 	/*
3446 	 * Boosting condition are:
3447 	 * 1. -rt task is running and holds mutex A
3448 	 *      --> -dl task blocks on mutex A
3449 	 *
3450 	 * 2. -dl task is running and holds mutex A
3451 	 *      --> -dl task blocks on mutex A and could preempt the
3452 	 *          running task
3453 	 */
3454 	if (dl_prio(prio)) {
3455 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3456 		if (!dl_prio(p->normal_prio) ||
3457 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3458 			p->dl.dl_boosted = 1;
3459 			queue_flag |= ENQUEUE_REPLENISH;
3460 		} else
3461 			p->dl.dl_boosted = 0;
3462 		p->sched_class = &dl_sched_class;
3463 	} else if (rt_prio(prio)) {
3464 		if (dl_prio(oldprio))
3465 			p->dl.dl_boosted = 0;
3466 		if (oldprio < prio)
3467 			queue_flag |= ENQUEUE_HEAD;
3468 		p->sched_class = &rt_sched_class;
3469 	} else {
3470 		if (dl_prio(oldprio))
3471 			p->dl.dl_boosted = 0;
3472 		if (rt_prio(oldprio))
3473 			p->rt.timeout = 0;
3474 		p->sched_class = &fair_sched_class;
3475 	}
3476 
3477 	p->prio = prio;
3478 
3479 	if (running)
3480 		p->sched_class->set_curr_task(rq);
3481 	if (queued)
3482 		enqueue_task(rq, p, queue_flag);
3483 
3484 	check_class_changed(rq, p, prev_class, oldprio);
3485 out_unlock:
3486 	preempt_disable(); /* avoid rq from going away on us */
3487 	__task_rq_unlock(rq);
3488 
3489 	balance_callback(rq);
3490 	preempt_enable();
3491 }
3492 #endif
3493 
3494 void set_user_nice(struct task_struct *p, long nice)
3495 {
3496 	int old_prio, delta, queued;
3497 	unsigned long flags;
3498 	struct rq *rq;
3499 
3500 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3501 		return;
3502 	/*
3503 	 * We have to be careful, if called from sys_setpriority(),
3504 	 * the task might be in the middle of scheduling on another CPU.
3505 	 */
3506 	rq = task_rq_lock(p, &flags);
3507 	/*
3508 	 * The RT priorities are set via sched_setscheduler(), but we still
3509 	 * allow the 'normal' nice value to be set - but as expected
3510 	 * it wont have any effect on scheduling until the task is
3511 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3512 	 */
3513 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3514 		p->static_prio = NICE_TO_PRIO(nice);
3515 		goto out_unlock;
3516 	}
3517 	queued = task_on_rq_queued(p);
3518 	if (queued)
3519 		dequeue_task(rq, p, DEQUEUE_SAVE);
3520 
3521 	p->static_prio = NICE_TO_PRIO(nice);
3522 	set_load_weight(p);
3523 	old_prio = p->prio;
3524 	p->prio = effective_prio(p);
3525 	delta = p->prio - old_prio;
3526 
3527 	if (queued) {
3528 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3529 		/*
3530 		 * If the task increased its priority or is running and
3531 		 * lowered its priority, then reschedule its CPU:
3532 		 */
3533 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3534 			resched_curr(rq);
3535 	}
3536 out_unlock:
3537 	task_rq_unlock(rq, p, &flags);
3538 }
3539 EXPORT_SYMBOL(set_user_nice);
3540 
3541 /*
3542  * can_nice - check if a task can reduce its nice value
3543  * @p: task
3544  * @nice: nice value
3545  */
3546 int can_nice(const struct task_struct *p, const int nice)
3547 {
3548 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3549 	int nice_rlim = nice_to_rlimit(nice);
3550 
3551 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3552 		capable(CAP_SYS_NICE));
3553 }
3554 
3555 #ifdef __ARCH_WANT_SYS_NICE
3556 
3557 /*
3558  * sys_nice - change the priority of the current process.
3559  * @increment: priority increment
3560  *
3561  * sys_setpriority is a more generic, but much slower function that
3562  * does similar things.
3563  */
3564 SYSCALL_DEFINE1(nice, int, increment)
3565 {
3566 	long nice, retval;
3567 
3568 	/*
3569 	 * Setpriority might change our priority at the same moment.
3570 	 * We don't have to worry. Conceptually one call occurs first
3571 	 * and we have a single winner.
3572 	 */
3573 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3574 	nice = task_nice(current) + increment;
3575 
3576 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3577 	if (increment < 0 && !can_nice(current, nice))
3578 		return -EPERM;
3579 
3580 	retval = security_task_setnice(current, nice);
3581 	if (retval)
3582 		return retval;
3583 
3584 	set_user_nice(current, nice);
3585 	return 0;
3586 }
3587 
3588 #endif
3589 
3590 /**
3591  * task_prio - return the priority value of a given task.
3592  * @p: the task in question.
3593  *
3594  * Return: The priority value as seen by users in /proc.
3595  * RT tasks are offset by -200. Normal tasks are centered
3596  * around 0, value goes from -16 to +15.
3597  */
3598 int task_prio(const struct task_struct *p)
3599 {
3600 	return p->prio - MAX_RT_PRIO;
3601 }
3602 
3603 /**
3604  * idle_cpu - is a given cpu idle currently?
3605  * @cpu: the processor in question.
3606  *
3607  * Return: 1 if the CPU is currently idle. 0 otherwise.
3608  */
3609 int idle_cpu(int cpu)
3610 {
3611 	struct rq *rq = cpu_rq(cpu);
3612 
3613 	if (rq->curr != rq->idle)
3614 		return 0;
3615 
3616 	if (rq->nr_running)
3617 		return 0;
3618 
3619 #ifdef CONFIG_SMP
3620 	if (!llist_empty(&rq->wake_list))
3621 		return 0;
3622 #endif
3623 
3624 	return 1;
3625 }
3626 
3627 /**
3628  * idle_task - return the idle task for a given cpu.
3629  * @cpu: the processor in question.
3630  *
3631  * Return: The idle task for the cpu @cpu.
3632  */
3633 struct task_struct *idle_task(int cpu)
3634 {
3635 	return cpu_rq(cpu)->idle;
3636 }
3637 
3638 /**
3639  * find_process_by_pid - find a process with a matching PID value.
3640  * @pid: the pid in question.
3641  *
3642  * The task of @pid, if found. %NULL otherwise.
3643  */
3644 static struct task_struct *find_process_by_pid(pid_t pid)
3645 {
3646 	return pid ? find_task_by_vpid(pid) : current;
3647 }
3648 
3649 /*
3650  * This function initializes the sched_dl_entity of a newly becoming
3651  * SCHED_DEADLINE task.
3652  *
3653  * Only the static values are considered here, the actual runtime and the
3654  * absolute deadline will be properly calculated when the task is enqueued
3655  * for the first time with its new policy.
3656  */
3657 static void
3658 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3659 {
3660 	struct sched_dl_entity *dl_se = &p->dl;
3661 
3662 	dl_se->dl_runtime = attr->sched_runtime;
3663 	dl_se->dl_deadline = attr->sched_deadline;
3664 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3665 	dl_se->flags = attr->sched_flags;
3666 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3667 
3668 	/*
3669 	 * Changing the parameters of a task is 'tricky' and we're not doing
3670 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3671 	 *
3672 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3673 	 * point. This would include retaining the task_struct until that time
3674 	 * and change dl_overflow() to not immediately decrement the current
3675 	 * amount.
3676 	 *
3677 	 * Instead we retain the current runtime/deadline and let the new
3678 	 * parameters take effect after the current reservation period lapses.
3679 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3680 	 * before the current scheduling deadline.
3681 	 *
3682 	 * We can still have temporary overloads because we do not delay the
3683 	 * change in bandwidth until that time; so admission control is
3684 	 * not on the safe side. It does however guarantee tasks will never
3685 	 * consume more than promised.
3686 	 */
3687 }
3688 
3689 /*
3690  * sched_setparam() passes in -1 for its policy, to let the functions
3691  * it calls know not to change it.
3692  */
3693 #define SETPARAM_POLICY	-1
3694 
3695 static void __setscheduler_params(struct task_struct *p,
3696 		const struct sched_attr *attr)
3697 {
3698 	int policy = attr->sched_policy;
3699 
3700 	if (policy == SETPARAM_POLICY)
3701 		policy = p->policy;
3702 
3703 	p->policy = policy;
3704 
3705 	if (dl_policy(policy))
3706 		__setparam_dl(p, attr);
3707 	else if (fair_policy(policy))
3708 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3709 
3710 	/*
3711 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3712 	 * !rt_policy. Always setting this ensures that things like
3713 	 * getparam()/getattr() don't report silly values for !rt tasks.
3714 	 */
3715 	p->rt_priority = attr->sched_priority;
3716 	p->normal_prio = normal_prio(p);
3717 	set_load_weight(p);
3718 }
3719 
3720 /* Actually do priority change: must hold pi & rq lock. */
3721 static void __setscheduler(struct rq *rq, struct task_struct *p,
3722 			   const struct sched_attr *attr, bool keep_boost)
3723 {
3724 	__setscheduler_params(p, attr);
3725 
3726 	/*
3727 	 * Keep a potential priority boosting if called from
3728 	 * sched_setscheduler().
3729 	 */
3730 	if (keep_boost)
3731 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3732 	else
3733 		p->prio = normal_prio(p);
3734 
3735 	if (dl_prio(p->prio))
3736 		p->sched_class = &dl_sched_class;
3737 	else if (rt_prio(p->prio))
3738 		p->sched_class = &rt_sched_class;
3739 	else
3740 		p->sched_class = &fair_sched_class;
3741 }
3742 
3743 static void
3744 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3745 {
3746 	struct sched_dl_entity *dl_se = &p->dl;
3747 
3748 	attr->sched_priority = p->rt_priority;
3749 	attr->sched_runtime = dl_se->dl_runtime;
3750 	attr->sched_deadline = dl_se->dl_deadline;
3751 	attr->sched_period = dl_se->dl_period;
3752 	attr->sched_flags = dl_se->flags;
3753 }
3754 
3755 /*
3756  * This function validates the new parameters of a -deadline task.
3757  * We ask for the deadline not being zero, and greater or equal
3758  * than the runtime, as well as the period of being zero or
3759  * greater than deadline. Furthermore, we have to be sure that
3760  * user parameters are above the internal resolution of 1us (we
3761  * check sched_runtime only since it is always the smaller one) and
3762  * below 2^63 ns (we have to check both sched_deadline and
3763  * sched_period, as the latter can be zero).
3764  */
3765 static bool
3766 __checkparam_dl(const struct sched_attr *attr)
3767 {
3768 	/* deadline != 0 */
3769 	if (attr->sched_deadline == 0)
3770 		return false;
3771 
3772 	/*
3773 	 * Since we truncate DL_SCALE bits, make sure we're at least
3774 	 * that big.
3775 	 */
3776 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3777 		return false;
3778 
3779 	/*
3780 	 * Since we use the MSB for wrap-around and sign issues, make
3781 	 * sure it's not set (mind that period can be equal to zero).
3782 	 */
3783 	if (attr->sched_deadline & (1ULL << 63) ||
3784 	    attr->sched_period & (1ULL << 63))
3785 		return false;
3786 
3787 	/* runtime <= deadline <= period (if period != 0) */
3788 	if ((attr->sched_period != 0 &&
3789 	     attr->sched_period < attr->sched_deadline) ||
3790 	    attr->sched_deadline < attr->sched_runtime)
3791 		return false;
3792 
3793 	return true;
3794 }
3795 
3796 /*
3797  * check the target process has a UID that matches the current process's
3798  */
3799 static bool check_same_owner(struct task_struct *p)
3800 {
3801 	const struct cred *cred = current_cred(), *pcred;
3802 	bool match;
3803 
3804 	rcu_read_lock();
3805 	pcred = __task_cred(p);
3806 	match = (uid_eq(cred->euid, pcred->euid) ||
3807 		 uid_eq(cred->euid, pcred->uid));
3808 	rcu_read_unlock();
3809 	return match;
3810 }
3811 
3812 static bool dl_param_changed(struct task_struct *p,
3813 		const struct sched_attr *attr)
3814 {
3815 	struct sched_dl_entity *dl_se = &p->dl;
3816 
3817 	if (dl_se->dl_runtime != attr->sched_runtime ||
3818 		dl_se->dl_deadline != attr->sched_deadline ||
3819 		dl_se->dl_period != attr->sched_period ||
3820 		dl_se->flags != attr->sched_flags)
3821 		return true;
3822 
3823 	return false;
3824 }
3825 
3826 static int __sched_setscheduler(struct task_struct *p,
3827 				const struct sched_attr *attr,
3828 				bool user, bool pi)
3829 {
3830 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3831 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3832 	int retval, oldprio, oldpolicy = -1, queued, running;
3833 	int new_effective_prio, policy = attr->sched_policy;
3834 	unsigned long flags;
3835 	const struct sched_class *prev_class;
3836 	struct rq *rq;
3837 	int reset_on_fork;
3838 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3839 
3840 	/* may grab non-irq protected spin_locks */
3841 	BUG_ON(in_interrupt());
3842 recheck:
3843 	/* double check policy once rq lock held */
3844 	if (policy < 0) {
3845 		reset_on_fork = p->sched_reset_on_fork;
3846 		policy = oldpolicy = p->policy;
3847 	} else {
3848 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3849 
3850 		if (!valid_policy(policy))
3851 			return -EINVAL;
3852 	}
3853 
3854 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3855 		return -EINVAL;
3856 
3857 	/*
3858 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3859 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3860 	 * SCHED_BATCH and SCHED_IDLE is 0.
3861 	 */
3862 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3863 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3864 		return -EINVAL;
3865 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3866 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3867 		return -EINVAL;
3868 
3869 	/*
3870 	 * Allow unprivileged RT tasks to decrease priority:
3871 	 */
3872 	if (user && !capable(CAP_SYS_NICE)) {
3873 		if (fair_policy(policy)) {
3874 			if (attr->sched_nice < task_nice(p) &&
3875 			    !can_nice(p, attr->sched_nice))
3876 				return -EPERM;
3877 		}
3878 
3879 		if (rt_policy(policy)) {
3880 			unsigned long rlim_rtprio =
3881 					task_rlimit(p, RLIMIT_RTPRIO);
3882 
3883 			/* can't set/change the rt policy */
3884 			if (policy != p->policy && !rlim_rtprio)
3885 				return -EPERM;
3886 
3887 			/* can't increase priority */
3888 			if (attr->sched_priority > p->rt_priority &&
3889 			    attr->sched_priority > rlim_rtprio)
3890 				return -EPERM;
3891 		}
3892 
3893 		 /*
3894 		  * Can't set/change SCHED_DEADLINE policy at all for now
3895 		  * (safest behavior); in the future we would like to allow
3896 		  * unprivileged DL tasks to increase their relative deadline
3897 		  * or reduce their runtime (both ways reducing utilization)
3898 		  */
3899 		if (dl_policy(policy))
3900 			return -EPERM;
3901 
3902 		/*
3903 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3904 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3905 		 */
3906 		if (idle_policy(p->policy) && !idle_policy(policy)) {
3907 			if (!can_nice(p, task_nice(p)))
3908 				return -EPERM;
3909 		}
3910 
3911 		/* can't change other user's priorities */
3912 		if (!check_same_owner(p))
3913 			return -EPERM;
3914 
3915 		/* Normal users shall not reset the sched_reset_on_fork flag */
3916 		if (p->sched_reset_on_fork && !reset_on_fork)
3917 			return -EPERM;
3918 	}
3919 
3920 	if (user) {
3921 		retval = security_task_setscheduler(p);
3922 		if (retval)
3923 			return retval;
3924 	}
3925 
3926 	/*
3927 	 * make sure no PI-waiters arrive (or leave) while we are
3928 	 * changing the priority of the task:
3929 	 *
3930 	 * To be able to change p->policy safely, the appropriate
3931 	 * runqueue lock must be held.
3932 	 */
3933 	rq = task_rq_lock(p, &flags);
3934 
3935 	/*
3936 	 * Changing the policy of the stop threads its a very bad idea
3937 	 */
3938 	if (p == rq->stop) {
3939 		task_rq_unlock(rq, p, &flags);
3940 		return -EINVAL;
3941 	}
3942 
3943 	/*
3944 	 * If not changing anything there's no need to proceed further,
3945 	 * but store a possible modification of reset_on_fork.
3946 	 */
3947 	if (unlikely(policy == p->policy)) {
3948 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3949 			goto change;
3950 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3951 			goto change;
3952 		if (dl_policy(policy) && dl_param_changed(p, attr))
3953 			goto change;
3954 
3955 		p->sched_reset_on_fork = reset_on_fork;
3956 		task_rq_unlock(rq, p, &flags);
3957 		return 0;
3958 	}
3959 change:
3960 
3961 	if (user) {
3962 #ifdef CONFIG_RT_GROUP_SCHED
3963 		/*
3964 		 * Do not allow realtime tasks into groups that have no runtime
3965 		 * assigned.
3966 		 */
3967 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3968 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3969 				!task_group_is_autogroup(task_group(p))) {
3970 			task_rq_unlock(rq, p, &flags);
3971 			return -EPERM;
3972 		}
3973 #endif
3974 #ifdef CONFIG_SMP
3975 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3976 			cpumask_t *span = rq->rd->span;
3977 
3978 			/*
3979 			 * Don't allow tasks with an affinity mask smaller than
3980 			 * the entire root_domain to become SCHED_DEADLINE. We
3981 			 * will also fail if there's no bandwidth available.
3982 			 */
3983 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3984 			    rq->rd->dl_bw.bw == 0) {
3985 				task_rq_unlock(rq, p, &flags);
3986 				return -EPERM;
3987 			}
3988 		}
3989 #endif
3990 	}
3991 
3992 	/* recheck policy now with rq lock held */
3993 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3994 		policy = oldpolicy = -1;
3995 		task_rq_unlock(rq, p, &flags);
3996 		goto recheck;
3997 	}
3998 
3999 	/*
4000 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4001 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4002 	 * is available.
4003 	 */
4004 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4005 		task_rq_unlock(rq, p, &flags);
4006 		return -EBUSY;
4007 	}
4008 
4009 	p->sched_reset_on_fork = reset_on_fork;
4010 	oldprio = p->prio;
4011 
4012 	if (pi) {
4013 		/*
4014 		 * Take priority boosted tasks into account. If the new
4015 		 * effective priority is unchanged, we just store the new
4016 		 * normal parameters and do not touch the scheduler class and
4017 		 * the runqueue. This will be done when the task deboost
4018 		 * itself.
4019 		 */
4020 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4021 		if (new_effective_prio == oldprio)
4022 			queue_flags &= ~DEQUEUE_MOVE;
4023 	}
4024 
4025 	queued = task_on_rq_queued(p);
4026 	running = task_current(rq, p);
4027 	if (queued)
4028 		dequeue_task(rq, p, queue_flags);
4029 	if (running)
4030 		put_prev_task(rq, p);
4031 
4032 	prev_class = p->sched_class;
4033 	__setscheduler(rq, p, attr, pi);
4034 
4035 	if (running)
4036 		p->sched_class->set_curr_task(rq);
4037 	if (queued) {
4038 		/*
4039 		 * We enqueue to tail when the priority of a task is
4040 		 * increased (user space view).
4041 		 */
4042 		if (oldprio < p->prio)
4043 			queue_flags |= ENQUEUE_HEAD;
4044 
4045 		enqueue_task(rq, p, queue_flags);
4046 	}
4047 
4048 	check_class_changed(rq, p, prev_class, oldprio);
4049 	preempt_disable(); /* avoid rq from going away on us */
4050 	task_rq_unlock(rq, p, &flags);
4051 
4052 	if (pi)
4053 		rt_mutex_adjust_pi(p);
4054 
4055 	/*
4056 	 * Run balance callbacks after we've adjusted the PI chain.
4057 	 */
4058 	balance_callback(rq);
4059 	preempt_enable();
4060 
4061 	return 0;
4062 }
4063 
4064 static int _sched_setscheduler(struct task_struct *p, int policy,
4065 			       const struct sched_param *param, bool check)
4066 {
4067 	struct sched_attr attr = {
4068 		.sched_policy   = policy,
4069 		.sched_priority = param->sched_priority,
4070 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4071 	};
4072 
4073 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4074 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4075 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4076 		policy &= ~SCHED_RESET_ON_FORK;
4077 		attr.sched_policy = policy;
4078 	}
4079 
4080 	return __sched_setscheduler(p, &attr, check, true);
4081 }
4082 /**
4083  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4084  * @p: the task in question.
4085  * @policy: new policy.
4086  * @param: structure containing the new RT priority.
4087  *
4088  * Return: 0 on success. An error code otherwise.
4089  *
4090  * NOTE that the task may be already dead.
4091  */
4092 int sched_setscheduler(struct task_struct *p, int policy,
4093 		       const struct sched_param *param)
4094 {
4095 	return _sched_setscheduler(p, policy, param, true);
4096 }
4097 EXPORT_SYMBOL_GPL(sched_setscheduler);
4098 
4099 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4100 {
4101 	return __sched_setscheduler(p, attr, true, true);
4102 }
4103 EXPORT_SYMBOL_GPL(sched_setattr);
4104 
4105 /**
4106  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4107  * @p: the task in question.
4108  * @policy: new policy.
4109  * @param: structure containing the new RT priority.
4110  *
4111  * Just like sched_setscheduler, only don't bother checking if the
4112  * current context has permission.  For example, this is needed in
4113  * stop_machine(): we create temporary high priority worker threads,
4114  * but our caller might not have that capability.
4115  *
4116  * Return: 0 on success. An error code otherwise.
4117  */
4118 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4119 			       const struct sched_param *param)
4120 {
4121 	return _sched_setscheduler(p, policy, param, false);
4122 }
4123 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4124 
4125 static int
4126 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4127 {
4128 	struct sched_param lparam;
4129 	struct task_struct *p;
4130 	int retval;
4131 
4132 	if (!param || pid < 0)
4133 		return -EINVAL;
4134 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4135 		return -EFAULT;
4136 
4137 	rcu_read_lock();
4138 	retval = -ESRCH;
4139 	p = find_process_by_pid(pid);
4140 	if (p != NULL)
4141 		retval = sched_setscheduler(p, policy, &lparam);
4142 	rcu_read_unlock();
4143 
4144 	return retval;
4145 }
4146 
4147 /*
4148  * Mimics kernel/events/core.c perf_copy_attr().
4149  */
4150 static int sched_copy_attr(struct sched_attr __user *uattr,
4151 			   struct sched_attr *attr)
4152 {
4153 	u32 size;
4154 	int ret;
4155 
4156 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4157 		return -EFAULT;
4158 
4159 	/*
4160 	 * zero the full structure, so that a short copy will be nice.
4161 	 */
4162 	memset(attr, 0, sizeof(*attr));
4163 
4164 	ret = get_user(size, &uattr->size);
4165 	if (ret)
4166 		return ret;
4167 
4168 	if (size > PAGE_SIZE)	/* silly large */
4169 		goto err_size;
4170 
4171 	if (!size)		/* abi compat */
4172 		size = SCHED_ATTR_SIZE_VER0;
4173 
4174 	if (size < SCHED_ATTR_SIZE_VER0)
4175 		goto err_size;
4176 
4177 	/*
4178 	 * If we're handed a bigger struct than we know of,
4179 	 * ensure all the unknown bits are 0 - i.e. new
4180 	 * user-space does not rely on any kernel feature
4181 	 * extensions we dont know about yet.
4182 	 */
4183 	if (size > sizeof(*attr)) {
4184 		unsigned char __user *addr;
4185 		unsigned char __user *end;
4186 		unsigned char val;
4187 
4188 		addr = (void __user *)uattr + sizeof(*attr);
4189 		end  = (void __user *)uattr + size;
4190 
4191 		for (; addr < end; addr++) {
4192 			ret = get_user(val, addr);
4193 			if (ret)
4194 				return ret;
4195 			if (val)
4196 				goto err_size;
4197 		}
4198 		size = sizeof(*attr);
4199 	}
4200 
4201 	ret = copy_from_user(attr, uattr, size);
4202 	if (ret)
4203 		return -EFAULT;
4204 
4205 	/*
4206 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4207 	 * to be strict and return an error on out-of-bounds values?
4208 	 */
4209 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4210 
4211 	return 0;
4212 
4213 err_size:
4214 	put_user(sizeof(*attr), &uattr->size);
4215 	return -E2BIG;
4216 }
4217 
4218 /**
4219  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4220  * @pid: the pid in question.
4221  * @policy: new policy.
4222  * @param: structure containing the new RT priority.
4223  *
4224  * Return: 0 on success. An error code otherwise.
4225  */
4226 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4227 		struct sched_param __user *, param)
4228 {
4229 	/* negative values for policy are not valid */
4230 	if (policy < 0)
4231 		return -EINVAL;
4232 
4233 	return do_sched_setscheduler(pid, policy, param);
4234 }
4235 
4236 /**
4237  * sys_sched_setparam - set/change the RT priority of a thread
4238  * @pid: the pid in question.
4239  * @param: structure containing the new RT priority.
4240  *
4241  * Return: 0 on success. An error code otherwise.
4242  */
4243 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4244 {
4245 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4246 }
4247 
4248 /**
4249  * sys_sched_setattr - same as above, but with extended sched_attr
4250  * @pid: the pid in question.
4251  * @uattr: structure containing the extended parameters.
4252  * @flags: for future extension.
4253  */
4254 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4255 			       unsigned int, flags)
4256 {
4257 	struct sched_attr attr;
4258 	struct task_struct *p;
4259 	int retval;
4260 
4261 	if (!uattr || pid < 0 || flags)
4262 		return -EINVAL;
4263 
4264 	retval = sched_copy_attr(uattr, &attr);
4265 	if (retval)
4266 		return retval;
4267 
4268 	if ((int)attr.sched_policy < 0)
4269 		return -EINVAL;
4270 
4271 	rcu_read_lock();
4272 	retval = -ESRCH;
4273 	p = find_process_by_pid(pid);
4274 	if (p != NULL)
4275 		retval = sched_setattr(p, &attr);
4276 	rcu_read_unlock();
4277 
4278 	return retval;
4279 }
4280 
4281 /**
4282  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4283  * @pid: the pid in question.
4284  *
4285  * Return: On success, the policy of the thread. Otherwise, a negative error
4286  * code.
4287  */
4288 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4289 {
4290 	struct task_struct *p;
4291 	int retval;
4292 
4293 	if (pid < 0)
4294 		return -EINVAL;
4295 
4296 	retval = -ESRCH;
4297 	rcu_read_lock();
4298 	p = find_process_by_pid(pid);
4299 	if (p) {
4300 		retval = security_task_getscheduler(p);
4301 		if (!retval)
4302 			retval = p->policy
4303 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4304 	}
4305 	rcu_read_unlock();
4306 	return retval;
4307 }
4308 
4309 /**
4310  * sys_sched_getparam - get the RT priority of a thread
4311  * @pid: the pid in question.
4312  * @param: structure containing the RT priority.
4313  *
4314  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4315  * code.
4316  */
4317 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4318 {
4319 	struct sched_param lp = { .sched_priority = 0 };
4320 	struct task_struct *p;
4321 	int retval;
4322 
4323 	if (!param || pid < 0)
4324 		return -EINVAL;
4325 
4326 	rcu_read_lock();
4327 	p = find_process_by_pid(pid);
4328 	retval = -ESRCH;
4329 	if (!p)
4330 		goto out_unlock;
4331 
4332 	retval = security_task_getscheduler(p);
4333 	if (retval)
4334 		goto out_unlock;
4335 
4336 	if (task_has_rt_policy(p))
4337 		lp.sched_priority = p->rt_priority;
4338 	rcu_read_unlock();
4339 
4340 	/*
4341 	 * This one might sleep, we cannot do it with a spinlock held ...
4342 	 */
4343 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4344 
4345 	return retval;
4346 
4347 out_unlock:
4348 	rcu_read_unlock();
4349 	return retval;
4350 }
4351 
4352 static int sched_read_attr(struct sched_attr __user *uattr,
4353 			   struct sched_attr *attr,
4354 			   unsigned int usize)
4355 {
4356 	int ret;
4357 
4358 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4359 		return -EFAULT;
4360 
4361 	/*
4362 	 * If we're handed a smaller struct than we know of,
4363 	 * ensure all the unknown bits are 0 - i.e. old
4364 	 * user-space does not get uncomplete information.
4365 	 */
4366 	if (usize < sizeof(*attr)) {
4367 		unsigned char *addr;
4368 		unsigned char *end;
4369 
4370 		addr = (void *)attr + usize;
4371 		end  = (void *)attr + sizeof(*attr);
4372 
4373 		for (; addr < end; addr++) {
4374 			if (*addr)
4375 				return -EFBIG;
4376 		}
4377 
4378 		attr->size = usize;
4379 	}
4380 
4381 	ret = copy_to_user(uattr, attr, attr->size);
4382 	if (ret)
4383 		return -EFAULT;
4384 
4385 	return 0;
4386 }
4387 
4388 /**
4389  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4390  * @pid: the pid in question.
4391  * @uattr: structure containing the extended parameters.
4392  * @size: sizeof(attr) for fwd/bwd comp.
4393  * @flags: for future extension.
4394  */
4395 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4396 		unsigned int, size, unsigned int, flags)
4397 {
4398 	struct sched_attr attr = {
4399 		.size = sizeof(struct sched_attr),
4400 	};
4401 	struct task_struct *p;
4402 	int retval;
4403 
4404 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4405 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4406 		return -EINVAL;
4407 
4408 	rcu_read_lock();
4409 	p = find_process_by_pid(pid);
4410 	retval = -ESRCH;
4411 	if (!p)
4412 		goto out_unlock;
4413 
4414 	retval = security_task_getscheduler(p);
4415 	if (retval)
4416 		goto out_unlock;
4417 
4418 	attr.sched_policy = p->policy;
4419 	if (p->sched_reset_on_fork)
4420 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4421 	if (task_has_dl_policy(p))
4422 		__getparam_dl(p, &attr);
4423 	else if (task_has_rt_policy(p))
4424 		attr.sched_priority = p->rt_priority;
4425 	else
4426 		attr.sched_nice = task_nice(p);
4427 
4428 	rcu_read_unlock();
4429 
4430 	retval = sched_read_attr(uattr, &attr, size);
4431 	return retval;
4432 
4433 out_unlock:
4434 	rcu_read_unlock();
4435 	return retval;
4436 }
4437 
4438 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4439 {
4440 	cpumask_var_t cpus_allowed, new_mask;
4441 	struct task_struct *p;
4442 	int retval;
4443 
4444 	rcu_read_lock();
4445 
4446 	p = find_process_by_pid(pid);
4447 	if (!p) {
4448 		rcu_read_unlock();
4449 		return -ESRCH;
4450 	}
4451 
4452 	/* Prevent p going away */
4453 	get_task_struct(p);
4454 	rcu_read_unlock();
4455 
4456 	if (p->flags & PF_NO_SETAFFINITY) {
4457 		retval = -EINVAL;
4458 		goto out_put_task;
4459 	}
4460 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4461 		retval = -ENOMEM;
4462 		goto out_put_task;
4463 	}
4464 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4465 		retval = -ENOMEM;
4466 		goto out_free_cpus_allowed;
4467 	}
4468 	retval = -EPERM;
4469 	if (!check_same_owner(p)) {
4470 		rcu_read_lock();
4471 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4472 			rcu_read_unlock();
4473 			goto out_free_new_mask;
4474 		}
4475 		rcu_read_unlock();
4476 	}
4477 
4478 	retval = security_task_setscheduler(p);
4479 	if (retval)
4480 		goto out_free_new_mask;
4481 
4482 
4483 	cpuset_cpus_allowed(p, cpus_allowed);
4484 	cpumask_and(new_mask, in_mask, cpus_allowed);
4485 
4486 	/*
4487 	 * Since bandwidth control happens on root_domain basis,
4488 	 * if admission test is enabled, we only admit -deadline
4489 	 * tasks allowed to run on all the CPUs in the task's
4490 	 * root_domain.
4491 	 */
4492 #ifdef CONFIG_SMP
4493 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4494 		rcu_read_lock();
4495 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4496 			retval = -EBUSY;
4497 			rcu_read_unlock();
4498 			goto out_free_new_mask;
4499 		}
4500 		rcu_read_unlock();
4501 	}
4502 #endif
4503 again:
4504 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4505 
4506 	if (!retval) {
4507 		cpuset_cpus_allowed(p, cpus_allowed);
4508 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4509 			/*
4510 			 * We must have raced with a concurrent cpuset
4511 			 * update. Just reset the cpus_allowed to the
4512 			 * cpuset's cpus_allowed
4513 			 */
4514 			cpumask_copy(new_mask, cpus_allowed);
4515 			goto again;
4516 		}
4517 	}
4518 out_free_new_mask:
4519 	free_cpumask_var(new_mask);
4520 out_free_cpus_allowed:
4521 	free_cpumask_var(cpus_allowed);
4522 out_put_task:
4523 	put_task_struct(p);
4524 	return retval;
4525 }
4526 
4527 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4528 			     struct cpumask *new_mask)
4529 {
4530 	if (len < cpumask_size())
4531 		cpumask_clear(new_mask);
4532 	else if (len > cpumask_size())
4533 		len = cpumask_size();
4534 
4535 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4536 }
4537 
4538 /**
4539  * sys_sched_setaffinity - set the cpu affinity of a process
4540  * @pid: pid of the process
4541  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4542  * @user_mask_ptr: user-space pointer to the new cpu mask
4543  *
4544  * Return: 0 on success. An error code otherwise.
4545  */
4546 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4547 		unsigned long __user *, user_mask_ptr)
4548 {
4549 	cpumask_var_t new_mask;
4550 	int retval;
4551 
4552 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4553 		return -ENOMEM;
4554 
4555 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4556 	if (retval == 0)
4557 		retval = sched_setaffinity(pid, new_mask);
4558 	free_cpumask_var(new_mask);
4559 	return retval;
4560 }
4561 
4562 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4563 {
4564 	struct task_struct *p;
4565 	unsigned long flags;
4566 	int retval;
4567 
4568 	rcu_read_lock();
4569 
4570 	retval = -ESRCH;
4571 	p = find_process_by_pid(pid);
4572 	if (!p)
4573 		goto out_unlock;
4574 
4575 	retval = security_task_getscheduler(p);
4576 	if (retval)
4577 		goto out_unlock;
4578 
4579 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4580 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4581 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4582 
4583 out_unlock:
4584 	rcu_read_unlock();
4585 
4586 	return retval;
4587 }
4588 
4589 /**
4590  * sys_sched_getaffinity - get the cpu affinity of a process
4591  * @pid: pid of the process
4592  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4593  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4594  *
4595  * Return: 0 on success. An error code otherwise.
4596  */
4597 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4598 		unsigned long __user *, user_mask_ptr)
4599 {
4600 	int ret;
4601 	cpumask_var_t mask;
4602 
4603 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4604 		return -EINVAL;
4605 	if (len & (sizeof(unsigned long)-1))
4606 		return -EINVAL;
4607 
4608 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4609 		return -ENOMEM;
4610 
4611 	ret = sched_getaffinity(pid, mask);
4612 	if (ret == 0) {
4613 		size_t retlen = min_t(size_t, len, cpumask_size());
4614 
4615 		if (copy_to_user(user_mask_ptr, mask, retlen))
4616 			ret = -EFAULT;
4617 		else
4618 			ret = retlen;
4619 	}
4620 	free_cpumask_var(mask);
4621 
4622 	return ret;
4623 }
4624 
4625 /**
4626  * sys_sched_yield - yield the current processor to other threads.
4627  *
4628  * This function yields the current CPU to other tasks. If there are no
4629  * other threads running on this CPU then this function will return.
4630  *
4631  * Return: 0.
4632  */
4633 SYSCALL_DEFINE0(sched_yield)
4634 {
4635 	struct rq *rq = this_rq_lock();
4636 
4637 	schedstat_inc(rq, yld_count);
4638 	current->sched_class->yield_task(rq);
4639 
4640 	/*
4641 	 * Since we are going to call schedule() anyway, there's
4642 	 * no need to preempt or enable interrupts:
4643 	 */
4644 	__release(rq->lock);
4645 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4646 	do_raw_spin_unlock(&rq->lock);
4647 	sched_preempt_enable_no_resched();
4648 
4649 	schedule();
4650 
4651 	return 0;
4652 }
4653 
4654 int __sched _cond_resched(void)
4655 {
4656 	if (should_resched(0)) {
4657 		preempt_schedule_common();
4658 		return 1;
4659 	}
4660 	return 0;
4661 }
4662 EXPORT_SYMBOL(_cond_resched);
4663 
4664 /*
4665  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4666  * call schedule, and on return reacquire the lock.
4667  *
4668  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4669  * operations here to prevent schedule() from being called twice (once via
4670  * spin_unlock(), once by hand).
4671  */
4672 int __cond_resched_lock(spinlock_t *lock)
4673 {
4674 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4675 	int ret = 0;
4676 
4677 	lockdep_assert_held(lock);
4678 
4679 	if (spin_needbreak(lock) || resched) {
4680 		spin_unlock(lock);
4681 		if (resched)
4682 			preempt_schedule_common();
4683 		else
4684 			cpu_relax();
4685 		ret = 1;
4686 		spin_lock(lock);
4687 	}
4688 	return ret;
4689 }
4690 EXPORT_SYMBOL(__cond_resched_lock);
4691 
4692 int __sched __cond_resched_softirq(void)
4693 {
4694 	BUG_ON(!in_softirq());
4695 
4696 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4697 		local_bh_enable();
4698 		preempt_schedule_common();
4699 		local_bh_disable();
4700 		return 1;
4701 	}
4702 	return 0;
4703 }
4704 EXPORT_SYMBOL(__cond_resched_softirq);
4705 
4706 /**
4707  * yield - yield the current processor to other threads.
4708  *
4709  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4710  *
4711  * The scheduler is at all times free to pick the calling task as the most
4712  * eligible task to run, if removing the yield() call from your code breaks
4713  * it, its already broken.
4714  *
4715  * Typical broken usage is:
4716  *
4717  * while (!event)
4718  * 	yield();
4719  *
4720  * where one assumes that yield() will let 'the other' process run that will
4721  * make event true. If the current task is a SCHED_FIFO task that will never
4722  * happen. Never use yield() as a progress guarantee!!
4723  *
4724  * If you want to use yield() to wait for something, use wait_event().
4725  * If you want to use yield() to be 'nice' for others, use cond_resched().
4726  * If you still want to use yield(), do not!
4727  */
4728 void __sched yield(void)
4729 {
4730 	set_current_state(TASK_RUNNING);
4731 	sys_sched_yield();
4732 }
4733 EXPORT_SYMBOL(yield);
4734 
4735 /**
4736  * yield_to - yield the current processor to another thread in
4737  * your thread group, or accelerate that thread toward the
4738  * processor it's on.
4739  * @p: target task
4740  * @preempt: whether task preemption is allowed or not
4741  *
4742  * It's the caller's job to ensure that the target task struct
4743  * can't go away on us before we can do any checks.
4744  *
4745  * Return:
4746  *	true (>0) if we indeed boosted the target task.
4747  *	false (0) if we failed to boost the target.
4748  *	-ESRCH if there's no task to yield to.
4749  */
4750 int __sched yield_to(struct task_struct *p, bool preempt)
4751 {
4752 	struct task_struct *curr = current;
4753 	struct rq *rq, *p_rq;
4754 	unsigned long flags;
4755 	int yielded = 0;
4756 
4757 	local_irq_save(flags);
4758 	rq = this_rq();
4759 
4760 again:
4761 	p_rq = task_rq(p);
4762 	/*
4763 	 * If we're the only runnable task on the rq and target rq also
4764 	 * has only one task, there's absolutely no point in yielding.
4765 	 */
4766 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4767 		yielded = -ESRCH;
4768 		goto out_irq;
4769 	}
4770 
4771 	double_rq_lock(rq, p_rq);
4772 	if (task_rq(p) != p_rq) {
4773 		double_rq_unlock(rq, p_rq);
4774 		goto again;
4775 	}
4776 
4777 	if (!curr->sched_class->yield_to_task)
4778 		goto out_unlock;
4779 
4780 	if (curr->sched_class != p->sched_class)
4781 		goto out_unlock;
4782 
4783 	if (task_running(p_rq, p) || p->state)
4784 		goto out_unlock;
4785 
4786 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4787 	if (yielded) {
4788 		schedstat_inc(rq, yld_count);
4789 		/*
4790 		 * Make p's CPU reschedule; pick_next_entity takes care of
4791 		 * fairness.
4792 		 */
4793 		if (preempt && rq != p_rq)
4794 			resched_curr(p_rq);
4795 	}
4796 
4797 out_unlock:
4798 	double_rq_unlock(rq, p_rq);
4799 out_irq:
4800 	local_irq_restore(flags);
4801 
4802 	if (yielded > 0)
4803 		schedule();
4804 
4805 	return yielded;
4806 }
4807 EXPORT_SYMBOL_GPL(yield_to);
4808 
4809 /*
4810  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4811  * that process accounting knows that this is a task in IO wait state.
4812  */
4813 long __sched io_schedule_timeout(long timeout)
4814 {
4815 	int old_iowait = current->in_iowait;
4816 	struct rq *rq;
4817 	long ret;
4818 
4819 	current->in_iowait = 1;
4820 	blk_schedule_flush_plug(current);
4821 
4822 	delayacct_blkio_start();
4823 	rq = raw_rq();
4824 	atomic_inc(&rq->nr_iowait);
4825 	ret = schedule_timeout(timeout);
4826 	current->in_iowait = old_iowait;
4827 	atomic_dec(&rq->nr_iowait);
4828 	delayacct_blkio_end();
4829 
4830 	return ret;
4831 }
4832 EXPORT_SYMBOL(io_schedule_timeout);
4833 
4834 /**
4835  * sys_sched_get_priority_max - return maximum RT priority.
4836  * @policy: scheduling class.
4837  *
4838  * Return: On success, this syscall returns the maximum
4839  * rt_priority that can be used by a given scheduling class.
4840  * On failure, a negative error code is returned.
4841  */
4842 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4843 {
4844 	int ret = -EINVAL;
4845 
4846 	switch (policy) {
4847 	case SCHED_FIFO:
4848 	case SCHED_RR:
4849 		ret = MAX_USER_RT_PRIO-1;
4850 		break;
4851 	case SCHED_DEADLINE:
4852 	case SCHED_NORMAL:
4853 	case SCHED_BATCH:
4854 	case SCHED_IDLE:
4855 		ret = 0;
4856 		break;
4857 	}
4858 	return ret;
4859 }
4860 
4861 /**
4862  * sys_sched_get_priority_min - return minimum RT priority.
4863  * @policy: scheduling class.
4864  *
4865  * Return: On success, this syscall returns the minimum
4866  * rt_priority that can be used by a given scheduling class.
4867  * On failure, a negative error code is returned.
4868  */
4869 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4870 {
4871 	int ret = -EINVAL;
4872 
4873 	switch (policy) {
4874 	case SCHED_FIFO:
4875 	case SCHED_RR:
4876 		ret = 1;
4877 		break;
4878 	case SCHED_DEADLINE:
4879 	case SCHED_NORMAL:
4880 	case SCHED_BATCH:
4881 	case SCHED_IDLE:
4882 		ret = 0;
4883 	}
4884 	return ret;
4885 }
4886 
4887 /**
4888  * sys_sched_rr_get_interval - return the default timeslice of a process.
4889  * @pid: pid of the process.
4890  * @interval: userspace pointer to the timeslice value.
4891  *
4892  * this syscall writes the default timeslice value of a given process
4893  * into the user-space timespec buffer. A value of '0' means infinity.
4894  *
4895  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4896  * an error code.
4897  */
4898 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4899 		struct timespec __user *, interval)
4900 {
4901 	struct task_struct *p;
4902 	unsigned int time_slice;
4903 	unsigned long flags;
4904 	struct rq *rq;
4905 	int retval;
4906 	struct timespec t;
4907 
4908 	if (pid < 0)
4909 		return -EINVAL;
4910 
4911 	retval = -ESRCH;
4912 	rcu_read_lock();
4913 	p = find_process_by_pid(pid);
4914 	if (!p)
4915 		goto out_unlock;
4916 
4917 	retval = security_task_getscheduler(p);
4918 	if (retval)
4919 		goto out_unlock;
4920 
4921 	rq = task_rq_lock(p, &flags);
4922 	time_slice = 0;
4923 	if (p->sched_class->get_rr_interval)
4924 		time_slice = p->sched_class->get_rr_interval(rq, p);
4925 	task_rq_unlock(rq, p, &flags);
4926 
4927 	rcu_read_unlock();
4928 	jiffies_to_timespec(time_slice, &t);
4929 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4930 	return retval;
4931 
4932 out_unlock:
4933 	rcu_read_unlock();
4934 	return retval;
4935 }
4936 
4937 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4938 
4939 void sched_show_task(struct task_struct *p)
4940 {
4941 	unsigned long free = 0;
4942 	int ppid;
4943 	unsigned long state = p->state;
4944 
4945 	if (state)
4946 		state = __ffs(state) + 1;
4947 	printk(KERN_INFO "%-15.15s %c", p->comm,
4948 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4949 #if BITS_PER_LONG == 32
4950 	if (state == TASK_RUNNING)
4951 		printk(KERN_CONT " running  ");
4952 	else
4953 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4954 #else
4955 	if (state == TASK_RUNNING)
4956 		printk(KERN_CONT "  running task    ");
4957 	else
4958 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4959 #endif
4960 #ifdef CONFIG_DEBUG_STACK_USAGE
4961 	free = stack_not_used(p);
4962 #endif
4963 	ppid = 0;
4964 	rcu_read_lock();
4965 	if (pid_alive(p))
4966 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4967 	rcu_read_unlock();
4968 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4969 		task_pid_nr(p), ppid,
4970 		(unsigned long)task_thread_info(p)->flags);
4971 
4972 	print_worker_info(KERN_INFO, p);
4973 	show_stack(p, NULL);
4974 }
4975 
4976 void show_state_filter(unsigned long state_filter)
4977 {
4978 	struct task_struct *g, *p;
4979 
4980 #if BITS_PER_LONG == 32
4981 	printk(KERN_INFO
4982 		"  task                PC stack   pid father\n");
4983 #else
4984 	printk(KERN_INFO
4985 		"  task                        PC stack   pid father\n");
4986 #endif
4987 	rcu_read_lock();
4988 	for_each_process_thread(g, p) {
4989 		/*
4990 		 * reset the NMI-timeout, listing all files on a slow
4991 		 * console might take a lot of time:
4992 		 */
4993 		touch_nmi_watchdog();
4994 		if (!state_filter || (p->state & state_filter))
4995 			sched_show_task(p);
4996 	}
4997 
4998 	touch_all_softlockup_watchdogs();
4999 
5000 #ifdef CONFIG_SCHED_DEBUG
5001 	sysrq_sched_debug_show();
5002 #endif
5003 	rcu_read_unlock();
5004 	/*
5005 	 * Only show locks if all tasks are dumped:
5006 	 */
5007 	if (!state_filter)
5008 		debug_show_all_locks();
5009 }
5010 
5011 void init_idle_bootup_task(struct task_struct *idle)
5012 {
5013 	idle->sched_class = &idle_sched_class;
5014 }
5015 
5016 /**
5017  * init_idle - set up an idle thread for a given CPU
5018  * @idle: task in question
5019  * @cpu: cpu the idle task belongs to
5020  *
5021  * NOTE: this function does not set the idle thread's NEED_RESCHED
5022  * flag, to make booting more robust.
5023  */
5024 void init_idle(struct task_struct *idle, int cpu)
5025 {
5026 	struct rq *rq = cpu_rq(cpu);
5027 	unsigned long flags;
5028 
5029 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5030 	raw_spin_lock(&rq->lock);
5031 
5032 	__sched_fork(0, idle);
5033 	idle->state = TASK_RUNNING;
5034 	idle->se.exec_start = sched_clock();
5035 
5036 	kasan_unpoison_task_stack(idle);
5037 
5038 #ifdef CONFIG_SMP
5039 	/*
5040 	 * Its possible that init_idle() gets called multiple times on a task,
5041 	 * in that case do_set_cpus_allowed() will not do the right thing.
5042 	 *
5043 	 * And since this is boot we can forgo the serialization.
5044 	 */
5045 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5046 #endif
5047 	/*
5048 	 * We're having a chicken and egg problem, even though we are
5049 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5050 	 * lockdep check in task_group() will fail.
5051 	 *
5052 	 * Similar case to sched_fork(). / Alternatively we could
5053 	 * use task_rq_lock() here and obtain the other rq->lock.
5054 	 *
5055 	 * Silence PROVE_RCU
5056 	 */
5057 	rcu_read_lock();
5058 	__set_task_cpu(idle, cpu);
5059 	rcu_read_unlock();
5060 
5061 	rq->curr = rq->idle = idle;
5062 	idle->on_rq = TASK_ON_RQ_QUEUED;
5063 #ifdef CONFIG_SMP
5064 	idle->on_cpu = 1;
5065 #endif
5066 	raw_spin_unlock(&rq->lock);
5067 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5068 
5069 	/* Set the preempt count _outside_ the spinlocks! */
5070 	init_idle_preempt_count(idle, cpu);
5071 
5072 	/*
5073 	 * The idle tasks have their own, simple scheduling class:
5074 	 */
5075 	idle->sched_class = &idle_sched_class;
5076 	ftrace_graph_init_idle_task(idle, cpu);
5077 	vtime_init_idle(idle, cpu);
5078 #ifdef CONFIG_SMP
5079 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5080 #endif
5081 }
5082 
5083 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5084 			      const struct cpumask *trial)
5085 {
5086 	int ret = 1, trial_cpus;
5087 	struct dl_bw *cur_dl_b;
5088 	unsigned long flags;
5089 
5090 	if (!cpumask_weight(cur))
5091 		return ret;
5092 
5093 	rcu_read_lock_sched();
5094 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5095 	trial_cpus = cpumask_weight(trial);
5096 
5097 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5098 	if (cur_dl_b->bw != -1 &&
5099 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5100 		ret = 0;
5101 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5102 	rcu_read_unlock_sched();
5103 
5104 	return ret;
5105 }
5106 
5107 int task_can_attach(struct task_struct *p,
5108 		    const struct cpumask *cs_cpus_allowed)
5109 {
5110 	int ret = 0;
5111 
5112 	/*
5113 	 * Kthreads which disallow setaffinity shouldn't be moved
5114 	 * to a new cpuset; we don't want to change their cpu
5115 	 * affinity and isolating such threads by their set of
5116 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5117 	 * applicable for such threads.  This prevents checking for
5118 	 * success of set_cpus_allowed_ptr() on all attached tasks
5119 	 * before cpus_allowed may be changed.
5120 	 */
5121 	if (p->flags & PF_NO_SETAFFINITY) {
5122 		ret = -EINVAL;
5123 		goto out;
5124 	}
5125 
5126 #ifdef CONFIG_SMP
5127 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5128 					      cs_cpus_allowed)) {
5129 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5130 							cs_cpus_allowed);
5131 		struct dl_bw *dl_b;
5132 		bool overflow;
5133 		int cpus;
5134 		unsigned long flags;
5135 
5136 		rcu_read_lock_sched();
5137 		dl_b = dl_bw_of(dest_cpu);
5138 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5139 		cpus = dl_bw_cpus(dest_cpu);
5140 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5141 		if (overflow)
5142 			ret = -EBUSY;
5143 		else {
5144 			/*
5145 			 * We reserve space for this task in the destination
5146 			 * root_domain, as we can't fail after this point.
5147 			 * We will free resources in the source root_domain
5148 			 * later on (see set_cpus_allowed_dl()).
5149 			 */
5150 			__dl_add(dl_b, p->dl.dl_bw);
5151 		}
5152 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5153 		rcu_read_unlock_sched();
5154 
5155 	}
5156 #endif
5157 out:
5158 	return ret;
5159 }
5160 
5161 #ifdef CONFIG_SMP
5162 
5163 #ifdef CONFIG_NUMA_BALANCING
5164 /* Migrate current task p to target_cpu */
5165 int migrate_task_to(struct task_struct *p, int target_cpu)
5166 {
5167 	struct migration_arg arg = { p, target_cpu };
5168 	int curr_cpu = task_cpu(p);
5169 
5170 	if (curr_cpu == target_cpu)
5171 		return 0;
5172 
5173 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5174 		return -EINVAL;
5175 
5176 	/* TODO: This is not properly updating schedstats */
5177 
5178 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5179 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5180 }
5181 
5182 /*
5183  * Requeue a task on a given node and accurately track the number of NUMA
5184  * tasks on the runqueues
5185  */
5186 void sched_setnuma(struct task_struct *p, int nid)
5187 {
5188 	struct rq *rq;
5189 	unsigned long flags;
5190 	bool queued, running;
5191 
5192 	rq = task_rq_lock(p, &flags);
5193 	queued = task_on_rq_queued(p);
5194 	running = task_current(rq, p);
5195 
5196 	if (queued)
5197 		dequeue_task(rq, p, DEQUEUE_SAVE);
5198 	if (running)
5199 		put_prev_task(rq, p);
5200 
5201 	p->numa_preferred_nid = nid;
5202 
5203 	if (running)
5204 		p->sched_class->set_curr_task(rq);
5205 	if (queued)
5206 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5207 	task_rq_unlock(rq, p, &flags);
5208 }
5209 #endif /* CONFIG_NUMA_BALANCING */
5210 
5211 #ifdef CONFIG_HOTPLUG_CPU
5212 /*
5213  * Ensures that the idle task is using init_mm right before its cpu goes
5214  * offline.
5215  */
5216 void idle_task_exit(void)
5217 {
5218 	struct mm_struct *mm = current->active_mm;
5219 
5220 	BUG_ON(cpu_online(smp_processor_id()));
5221 
5222 	if (mm != &init_mm) {
5223 		switch_mm(mm, &init_mm, current);
5224 		finish_arch_post_lock_switch();
5225 	}
5226 	mmdrop(mm);
5227 }
5228 
5229 /*
5230  * Since this CPU is going 'away' for a while, fold any nr_active delta
5231  * we might have. Assumes we're called after migrate_tasks() so that the
5232  * nr_active count is stable.
5233  *
5234  * Also see the comment "Global load-average calculations".
5235  */
5236 static void calc_load_migrate(struct rq *rq)
5237 {
5238 	long delta = calc_load_fold_active(rq);
5239 	if (delta)
5240 		atomic_long_add(delta, &calc_load_tasks);
5241 }
5242 
5243 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5244 {
5245 }
5246 
5247 static const struct sched_class fake_sched_class = {
5248 	.put_prev_task = put_prev_task_fake,
5249 };
5250 
5251 static struct task_struct fake_task = {
5252 	/*
5253 	 * Avoid pull_{rt,dl}_task()
5254 	 */
5255 	.prio = MAX_PRIO + 1,
5256 	.sched_class = &fake_sched_class,
5257 };
5258 
5259 /*
5260  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5261  * try_to_wake_up()->select_task_rq().
5262  *
5263  * Called with rq->lock held even though we'er in stop_machine() and
5264  * there's no concurrency possible, we hold the required locks anyway
5265  * because of lock validation efforts.
5266  */
5267 static void migrate_tasks(struct rq *dead_rq)
5268 {
5269 	struct rq *rq = dead_rq;
5270 	struct task_struct *next, *stop = rq->stop;
5271 	int dest_cpu;
5272 
5273 	/*
5274 	 * Fudge the rq selection such that the below task selection loop
5275 	 * doesn't get stuck on the currently eligible stop task.
5276 	 *
5277 	 * We're currently inside stop_machine() and the rq is either stuck
5278 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5279 	 * either way we should never end up calling schedule() until we're
5280 	 * done here.
5281 	 */
5282 	rq->stop = NULL;
5283 
5284 	/*
5285 	 * put_prev_task() and pick_next_task() sched
5286 	 * class method both need to have an up-to-date
5287 	 * value of rq->clock[_task]
5288 	 */
5289 	update_rq_clock(rq);
5290 
5291 	for (;;) {
5292 		/*
5293 		 * There's this thread running, bail when that's the only
5294 		 * remaining thread.
5295 		 */
5296 		if (rq->nr_running == 1)
5297 			break;
5298 
5299 		/*
5300 		 * pick_next_task assumes pinned rq->lock.
5301 		 */
5302 		lockdep_pin_lock(&rq->lock);
5303 		next = pick_next_task(rq, &fake_task);
5304 		BUG_ON(!next);
5305 		next->sched_class->put_prev_task(rq, next);
5306 
5307 		/*
5308 		 * Rules for changing task_struct::cpus_allowed are holding
5309 		 * both pi_lock and rq->lock, such that holding either
5310 		 * stabilizes the mask.
5311 		 *
5312 		 * Drop rq->lock is not quite as disastrous as it usually is
5313 		 * because !cpu_active at this point, which means load-balance
5314 		 * will not interfere. Also, stop-machine.
5315 		 */
5316 		lockdep_unpin_lock(&rq->lock);
5317 		raw_spin_unlock(&rq->lock);
5318 		raw_spin_lock(&next->pi_lock);
5319 		raw_spin_lock(&rq->lock);
5320 
5321 		/*
5322 		 * Since we're inside stop-machine, _nothing_ should have
5323 		 * changed the task, WARN if weird stuff happened, because in
5324 		 * that case the above rq->lock drop is a fail too.
5325 		 */
5326 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5327 			raw_spin_unlock(&next->pi_lock);
5328 			continue;
5329 		}
5330 
5331 		/* Find suitable destination for @next, with force if needed. */
5332 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5333 
5334 		rq = __migrate_task(rq, next, dest_cpu);
5335 		if (rq != dead_rq) {
5336 			raw_spin_unlock(&rq->lock);
5337 			rq = dead_rq;
5338 			raw_spin_lock(&rq->lock);
5339 		}
5340 		raw_spin_unlock(&next->pi_lock);
5341 	}
5342 
5343 	rq->stop = stop;
5344 }
5345 #endif /* CONFIG_HOTPLUG_CPU */
5346 
5347 static void set_rq_online(struct rq *rq)
5348 {
5349 	if (!rq->online) {
5350 		const struct sched_class *class;
5351 
5352 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5353 		rq->online = 1;
5354 
5355 		for_each_class(class) {
5356 			if (class->rq_online)
5357 				class->rq_online(rq);
5358 		}
5359 	}
5360 }
5361 
5362 static void set_rq_offline(struct rq *rq)
5363 {
5364 	if (rq->online) {
5365 		const struct sched_class *class;
5366 
5367 		for_each_class(class) {
5368 			if (class->rq_offline)
5369 				class->rq_offline(rq);
5370 		}
5371 
5372 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5373 		rq->online = 0;
5374 	}
5375 }
5376 
5377 /*
5378  * migration_call - callback that gets triggered when a CPU is added.
5379  * Here we can start up the necessary migration thread for the new CPU.
5380  */
5381 static int
5382 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5383 {
5384 	int cpu = (long)hcpu;
5385 	unsigned long flags;
5386 	struct rq *rq = cpu_rq(cpu);
5387 
5388 	switch (action & ~CPU_TASKS_FROZEN) {
5389 
5390 	case CPU_UP_PREPARE:
5391 		rq->calc_load_update = calc_load_update;
5392 		account_reset_rq(rq);
5393 		break;
5394 
5395 	case CPU_ONLINE:
5396 		/* Update our root-domain */
5397 		raw_spin_lock_irqsave(&rq->lock, flags);
5398 		if (rq->rd) {
5399 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5400 
5401 			set_rq_online(rq);
5402 		}
5403 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5404 		break;
5405 
5406 #ifdef CONFIG_HOTPLUG_CPU
5407 	case CPU_DYING:
5408 		sched_ttwu_pending();
5409 		/* Update our root-domain */
5410 		raw_spin_lock_irqsave(&rq->lock, flags);
5411 		if (rq->rd) {
5412 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5413 			set_rq_offline(rq);
5414 		}
5415 		migrate_tasks(rq);
5416 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5417 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5418 		break;
5419 
5420 	case CPU_DEAD:
5421 		calc_load_migrate(rq);
5422 		break;
5423 #endif
5424 	}
5425 
5426 	update_max_interval();
5427 
5428 	return NOTIFY_OK;
5429 }
5430 
5431 /*
5432  * Register at high priority so that task migration (migrate_all_tasks)
5433  * happens before everything else.  This has to be lower priority than
5434  * the notifier in the perf_event subsystem, though.
5435  */
5436 static struct notifier_block migration_notifier = {
5437 	.notifier_call = migration_call,
5438 	.priority = CPU_PRI_MIGRATION,
5439 };
5440 
5441 static void set_cpu_rq_start_time(void)
5442 {
5443 	int cpu = smp_processor_id();
5444 	struct rq *rq = cpu_rq(cpu);
5445 	rq->age_stamp = sched_clock_cpu(cpu);
5446 }
5447 
5448 static int sched_cpu_active(struct notifier_block *nfb,
5449 				      unsigned long action, void *hcpu)
5450 {
5451 	int cpu = (long)hcpu;
5452 
5453 	switch (action & ~CPU_TASKS_FROZEN) {
5454 	case CPU_STARTING:
5455 		set_cpu_rq_start_time();
5456 		return NOTIFY_OK;
5457 
5458 	case CPU_DOWN_FAILED:
5459 		set_cpu_active(cpu, true);
5460 		return NOTIFY_OK;
5461 
5462 	default:
5463 		return NOTIFY_DONE;
5464 	}
5465 }
5466 
5467 static int sched_cpu_inactive(struct notifier_block *nfb,
5468 					unsigned long action, void *hcpu)
5469 {
5470 	switch (action & ~CPU_TASKS_FROZEN) {
5471 	case CPU_DOWN_PREPARE:
5472 		set_cpu_active((long)hcpu, false);
5473 		return NOTIFY_OK;
5474 	default:
5475 		return NOTIFY_DONE;
5476 	}
5477 }
5478 
5479 static int __init migration_init(void)
5480 {
5481 	void *cpu = (void *)(long)smp_processor_id();
5482 	int err;
5483 
5484 	/* Initialize migration for the boot CPU */
5485 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5486 	BUG_ON(err == NOTIFY_BAD);
5487 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5488 	register_cpu_notifier(&migration_notifier);
5489 
5490 	/* Register cpu active notifiers */
5491 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5492 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5493 
5494 	return 0;
5495 }
5496 early_initcall(migration_init);
5497 
5498 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5499 
5500 #ifdef CONFIG_SCHED_DEBUG
5501 
5502 static __read_mostly int sched_debug_enabled;
5503 
5504 static int __init sched_debug_setup(char *str)
5505 {
5506 	sched_debug_enabled = 1;
5507 
5508 	return 0;
5509 }
5510 early_param("sched_debug", sched_debug_setup);
5511 
5512 static inline bool sched_debug(void)
5513 {
5514 	return sched_debug_enabled;
5515 }
5516 
5517 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5518 				  struct cpumask *groupmask)
5519 {
5520 	struct sched_group *group = sd->groups;
5521 
5522 	cpumask_clear(groupmask);
5523 
5524 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5525 
5526 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5527 		printk("does not load-balance\n");
5528 		if (sd->parent)
5529 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5530 					" has parent");
5531 		return -1;
5532 	}
5533 
5534 	printk(KERN_CONT "span %*pbl level %s\n",
5535 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5536 
5537 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5538 		printk(KERN_ERR "ERROR: domain->span does not contain "
5539 				"CPU%d\n", cpu);
5540 	}
5541 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5542 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5543 				" CPU%d\n", cpu);
5544 	}
5545 
5546 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5547 	do {
5548 		if (!group) {
5549 			printk("\n");
5550 			printk(KERN_ERR "ERROR: group is NULL\n");
5551 			break;
5552 		}
5553 
5554 		if (!cpumask_weight(sched_group_cpus(group))) {
5555 			printk(KERN_CONT "\n");
5556 			printk(KERN_ERR "ERROR: empty group\n");
5557 			break;
5558 		}
5559 
5560 		if (!(sd->flags & SD_OVERLAP) &&
5561 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5562 			printk(KERN_CONT "\n");
5563 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5564 			break;
5565 		}
5566 
5567 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5568 
5569 		printk(KERN_CONT " %*pbl",
5570 		       cpumask_pr_args(sched_group_cpus(group)));
5571 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5572 			printk(KERN_CONT " (cpu_capacity = %d)",
5573 				group->sgc->capacity);
5574 		}
5575 
5576 		group = group->next;
5577 	} while (group != sd->groups);
5578 	printk(KERN_CONT "\n");
5579 
5580 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5581 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5582 
5583 	if (sd->parent &&
5584 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5585 		printk(KERN_ERR "ERROR: parent span is not a superset "
5586 			"of domain->span\n");
5587 	return 0;
5588 }
5589 
5590 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5591 {
5592 	int level = 0;
5593 
5594 	if (!sched_debug_enabled)
5595 		return;
5596 
5597 	if (!sd) {
5598 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5599 		return;
5600 	}
5601 
5602 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5603 
5604 	for (;;) {
5605 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5606 			break;
5607 		level++;
5608 		sd = sd->parent;
5609 		if (!sd)
5610 			break;
5611 	}
5612 }
5613 #else /* !CONFIG_SCHED_DEBUG */
5614 # define sched_domain_debug(sd, cpu) do { } while (0)
5615 static inline bool sched_debug(void)
5616 {
5617 	return false;
5618 }
5619 #endif /* CONFIG_SCHED_DEBUG */
5620 
5621 static int sd_degenerate(struct sched_domain *sd)
5622 {
5623 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5624 		return 1;
5625 
5626 	/* Following flags need at least 2 groups */
5627 	if (sd->flags & (SD_LOAD_BALANCE |
5628 			 SD_BALANCE_NEWIDLE |
5629 			 SD_BALANCE_FORK |
5630 			 SD_BALANCE_EXEC |
5631 			 SD_SHARE_CPUCAPACITY |
5632 			 SD_SHARE_PKG_RESOURCES |
5633 			 SD_SHARE_POWERDOMAIN)) {
5634 		if (sd->groups != sd->groups->next)
5635 			return 0;
5636 	}
5637 
5638 	/* Following flags don't use groups */
5639 	if (sd->flags & (SD_WAKE_AFFINE))
5640 		return 0;
5641 
5642 	return 1;
5643 }
5644 
5645 static int
5646 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5647 {
5648 	unsigned long cflags = sd->flags, pflags = parent->flags;
5649 
5650 	if (sd_degenerate(parent))
5651 		return 1;
5652 
5653 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5654 		return 0;
5655 
5656 	/* Flags needing groups don't count if only 1 group in parent */
5657 	if (parent->groups == parent->groups->next) {
5658 		pflags &= ~(SD_LOAD_BALANCE |
5659 				SD_BALANCE_NEWIDLE |
5660 				SD_BALANCE_FORK |
5661 				SD_BALANCE_EXEC |
5662 				SD_SHARE_CPUCAPACITY |
5663 				SD_SHARE_PKG_RESOURCES |
5664 				SD_PREFER_SIBLING |
5665 				SD_SHARE_POWERDOMAIN);
5666 		if (nr_node_ids == 1)
5667 			pflags &= ~SD_SERIALIZE;
5668 	}
5669 	if (~cflags & pflags)
5670 		return 0;
5671 
5672 	return 1;
5673 }
5674 
5675 static void free_rootdomain(struct rcu_head *rcu)
5676 {
5677 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5678 
5679 	cpupri_cleanup(&rd->cpupri);
5680 	cpudl_cleanup(&rd->cpudl);
5681 	free_cpumask_var(rd->dlo_mask);
5682 	free_cpumask_var(rd->rto_mask);
5683 	free_cpumask_var(rd->online);
5684 	free_cpumask_var(rd->span);
5685 	kfree(rd);
5686 }
5687 
5688 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5689 {
5690 	struct root_domain *old_rd = NULL;
5691 	unsigned long flags;
5692 
5693 	raw_spin_lock_irqsave(&rq->lock, flags);
5694 
5695 	if (rq->rd) {
5696 		old_rd = rq->rd;
5697 
5698 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5699 			set_rq_offline(rq);
5700 
5701 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5702 
5703 		/*
5704 		 * If we dont want to free the old_rd yet then
5705 		 * set old_rd to NULL to skip the freeing later
5706 		 * in this function:
5707 		 */
5708 		if (!atomic_dec_and_test(&old_rd->refcount))
5709 			old_rd = NULL;
5710 	}
5711 
5712 	atomic_inc(&rd->refcount);
5713 	rq->rd = rd;
5714 
5715 	cpumask_set_cpu(rq->cpu, rd->span);
5716 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5717 		set_rq_online(rq);
5718 
5719 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5720 
5721 	if (old_rd)
5722 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5723 }
5724 
5725 static int init_rootdomain(struct root_domain *rd)
5726 {
5727 	memset(rd, 0, sizeof(*rd));
5728 
5729 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5730 		goto out;
5731 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5732 		goto free_span;
5733 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5734 		goto free_online;
5735 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5736 		goto free_dlo_mask;
5737 
5738 	init_dl_bw(&rd->dl_bw);
5739 	if (cpudl_init(&rd->cpudl) != 0)
5740 		goto free_dlo_mask;
5741 
5742 	if (cpupri_init(&rd->cpupri) != 0)
5743 		goto free_rto_mask;
5744 	return 0;
5745 
5746 free_rto_mask:
5747 	free_cpumask_var(rd->rto_mask);
5748 free_dlo_mask:
5749 	free_cpumask_var(rd->dlo_mask);
5750 free_online:
5751 	free_cpumask_var(rd->online);
5752 free_span:
5753 	free_cpumask_var(rd->span);
5754 out:
5755 	return -ENOMEM;
5756 }
5757 
5758 /*
5759  * By default the system creates a single root-domain with all cpus as
5760  * members (mimicking the global state we have today).
5761  */
5762 struct root_domain def_root_domain;
5763 
5764 static void init_defrootdomain(void)
5765 {
5766 	init_rootdomain(&def_root_domain);
5767 
5768 	atomic_set(&def_root_domain.refcount, 1);
5769 }
5770 
5771 static struct root_domain *alloc_rootdomain(void)
5772 {
5773 	struct root_domain *rd;
5774 
5775 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5776 	if (!rd)
5777 		return NULL;
5778 
5779 	if (init_rootdomain(rd) != 0) {
5780 		kfree(rd);
5781 		return NULL;
5782 	}
5783 
5784 	return rd;
5785 }
5786 
5787 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5788 {
5789 	struct sched_group *tmp, *first;
5790 
5791 	if (!sg)
5792 		return;
5793 
5794 	first = sg;
5795 	do {
5796 		tmp = sg->next;
5797 
5798 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5799 			kfree(sg->sgc);
5800 
5801 		kfree(sg);
5802 		sg = tmp;
5803 	} while (sg != first);
5804 }
5805 
5806 static void free_sched_domain(struct rcu_head *rcu)
5807 {
5808 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5809 
5810 	/*
5811 	 * If its an overlapping domain it has private groups, iterate and
5812 	 * nuke them all.
5813 	 */
5814 	if (sd->flags & SD_OVERLAP) {
5815 		free_sched_groups(sd->groups, 1);
5816 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5817 		kfree(sd->groups->sgc);
5818 		kfree(sd->groups);
5819 	}
5820 	kfree(sd);
5821 }
5822 
5823 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5824 {
5825 	call_rcu(&sd->rcu, free_sched_domain);
5826 }
5827 
5828 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5829 {
5830 	for (; sd; sd = sd->parent)
5831 		destroy_sched_domain(sd, cpu);
5832 }
5833 
5834 /*
5835  * Keep a special pointer to the highest sched_domain that has
5836  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5837  * allows us to avoid some pointer chasing select_idle_sibling().
5838  *
5839  * Also keep a unique ID per domain (we use the first cpu number in
5840  * the cpumask of the domain), this allows us to quickly tell if
5841  * two cpus are in the same cache domain, see cpus_share_cache().
5842  */
5843 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5844 DEFINE_PER_CPU(int, sd_llc_size);
5845 DEFINE_PER_CPU(int, sd_llc_id);
5846 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5847 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5848 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5849 
5850 static void update_top_cache_domain(int cpu)
5851 {
5852 	struct sched_domain *sd;
5853 	struct sched_domain *busy_sd = NULL;
5854 	int id = cpu;
5855 	int size = 1;
5856 
5857 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5858 	if (sd) {
5859 		id = cpumask_first(sched_domain_span(sd));
5860 		size = cpumask_weight(sched_domain_span(sd));
5861 		busy_sd = sd->parent; /* sd_busy */
5862 	}
5863 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5864 
5865 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5866 	per_cpu(sd_llc_size, cpu) = size;
5867 	per_cpu(sd_llc_id, cpu) = id;
5868 
5869 	sd = lowest_flag_domain(cpu, SD_NUMA);
5870 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5871 
5872 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5873 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5874 }
5875 
5876 /*
5877  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5878  * hold the hotplug lock.
5879  */
5880 static void
5881 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5882 {
5883 	struct rq *rq = cpu_rq(cpu);
5884 	struct sched_domain *tmp;
5885 
5886 	/* Remove the sched domains which do not contribute to scheduling. */
5887 	for (tmp = sd; tmp; ) {
5888 		struct sched_domain *parent = tmp->parent;
5889 		if (!parent)
5890 			break;
5891 
5892 		if (sd_parent_degenerate(tmp, parent)) {
5893 			tmp->parent = parent->parent;
5894 			if (parent->parent)
5895 				parent->parent->child = tmp;
5896 			/*
5897 			 * Transfer SD_PREFER_SIBLING down in case of a
5898 			 * degenerate parent; the spans match for this
5899 			 * so the property transfers.
5900 			 */
5901 			if (parent->flags & SD_PREFER_SIBLING)
5902 				tmp->flags |= SD_PREFER_SIBLING;
5903 			destroy_sched_domain(parent, cpu);
5904 		} else
5905 			tmp = tmp->parent;
5906 	}
5907 
5908 	if (sd && sd_degenerate(sd)) {
5909 		tmp = sd;
5910 		sd = sd->parent;
5911 		destroy_sched_domain(tmp, cpu);
5912 		if (sd)
5913 			sd->child = NULL;
5914 	}
5915 
5916 	sched_domain_debug(sd, cpu);
5917 
5918 	rq_attach_root(rq, rd);
5919 	tmp = rq->sd;
5920 	rcu_assign_pointer(rq->sd, sd);
5921 	destroy_sched_domains(tmp, cpu);
5922 
5923 	update_top_cache_domain(cpu);
5924 }
5925 
5926 /* Setup the mask of cpus configured for isolated domains */
5927 static int __init isolated_cpu_setup(char *str)
5928 {
5929 	int ret;
5930 
5931 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5932 	ret = cpulist_parse(str, cpu_isolated_map);
5933 	if (ret) {
5934 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5935 		return 0;
5936 	}
5937 	return 1;
5938 }
5939 __setup("isolcpus=", isolated_cpu_setup);
5940 
5941 struct s_data {
5942 	struct sched_domain ** __percpu sd;
5943 	struct root_domain	*rd;
5944 };
5945 
5946 enum s_alloc {
5947 	sa_rootdomain,
5948 	sa_sd,
5949 	sa_sd_storage,
5950 	sa_none,
5951 };
5952 
5953 /*
5954  * Build an iteration mask that can exclude certain CPUs from the upwards
5955  * domain traversal.
5956  *
5957  * Asymmetric node setups can result in situations where the domain tree is of
5958  * unequal depth, make sure to skip domains that already cover the entire
5959  * range.
5960  *
5961  * In that case build_sched_domains() will have terminated the iteration early
5962  * and our sibling sd spans will be empty. Domains should always include the
5963  * cpu they're built on, so check that.
5964  *
5965  */
5966 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5967 {
5968 	const struct cpumask *span = sched_domain_span(sd);
5969 	struct sd_data *sdd = sd->private;
5970 	struct sched_domain *sibling;
5971 	int i;
5972 
5973 	for_each_cpu(i, span) {
5974 		sibling = *per_cpu_ptr(sdd->sd, i);
5975 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5976 			continue;
5977 
5978 		cpumask_set_cpu(i, sched_group_mask(sg));
5979 	}
5980 }
5981 
5982 /*
5983  * Return the canonical balance cpu for this group, this is the first cpu
5984  * of this group that's also in the iteration mask.
5985  */
5986 int group_balance_cpu(struct sched_group *sg)
5987 {
5988 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5989 }
5990 
5991 static int
5992 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5993 {
5994 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5995 	const struct cpumask *span = sched_domain_span(sd);
5996 	struct cpumask *covered = sched_domains_tmpmask;
5997 	struct sd_data *sdd = sd->private;
5998 	struct sched_domain *sibling;
5999 	int i;
6000 
6001 	cpumask_clear(covered);
6002 
6003 	for_each_cpu(i, span) {
6004 		struct cpumask *sg_span;
6005 
6006 		if (cpumask_test_cpu(i, covered))
6007 			continue;
6008 
6009 		sibling = *per_cpu_ptr(sdd->sd, i);
6010 
6011 		/* See the comment near build_group_mask(). */
6012 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6013 			continue;
6014 
6015 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6016 				GFP_KERNEL, cpu_to_node(cpu));
6017 
6018 		if (!sg)
6019 			goto fail;
6020 
6021 		sg_span = sched_group_cpus(sg);
6022 		if (sibling->child)
6023 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6024 		else
6025 			cpumask_set_cpu(i, sg_span);
6026 
6027 		cpumask_or(covered, covered, sg_span);
6028 
6029 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6030 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6031 			build_group_mask(sd, sg);
6032 
6033 		/*
6034 		 * Initialize sgc->capacity such that even if we mess up the
6035 		 * domains and no possible iteration will get us here, we won't
6036 		 * die on a /0 trap.
6037 		 */
6038 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6039 
6040 		/*
6041 		 * Make sure the first group of this domain contains the
6042 		 * canonical balance cpu. Otherwise the sched_domain iteration
6043 		 * breaks. See update_sg_lb_stats().
6044 		 */
6045 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6046 		    group_balance_cpu(sg) == cpu)
6047 			groups = sg;
6048 
6049 		if (!first)
6050 			first = sg;
6051 		if (last)
6052 			last->next = sg;
6053 		last = sg;
6054 		last->next = first;
6055 	}
6056 	sd->groups = groups;
6057 
6058 	return 0;
6059 
6060 fail:
6061 	free_sched_groups(first, 0);
6062 
6063 	return -ENOMEM;
6064 }
6065 
6066 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6067 {
6068 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6069 	struct sched_domain *child = sd->child;
6070 
6071 	if (child)
6072 		cpu = cpumask_first(sched_domain_span(child));
6073 
6074 	if (sg) {
6075 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6076 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6077 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6078 	}
6079 
6080 	return cpu;
6081 }
6082 
6083 /*
6084  * build_sched_groups will build a circular linked list of the groups
6085  * covered by the given span, and will set each group's ->cpumask correctly,
6086  * and ->cpu_capacity to 0.
6087  *
6088  * Assumes the sched_domain tree is fully constructed
6089  */
6090 static int
6091 build_sched_groups(struct sched_domain *sd, int cpu)
6092 {
6093 	struct sched_group *first = NULL, *last = NULL;
6094 	struct sd_data *sdd = sd->private;
6095 	const struct cpumask *span = sched_domain_span(sd);
6096 	struct cpumask *covered;
6097 	int i;
6098 
6099 	get_group(cpu, sdd, &sd->groups);
6100 	atomic_inc(&sd->groups->ref);
6101 
6102 	if (cpu != cpumask_first(span))
6103 		return 0;
6104 
6105 	lockdep_assert_held(&sched_domains_mutex);
6106 	covered = sched_domains_tmpmask;
6107 
6108 	cpumask_clear(covered);
6109 
6110 	for_each_cpu(i, span) {
6111 		struct sched_group *sg;
6112 		int group, j;
6113 
6114 		if (cpumask_test_cpu(i, covered))
6115 			continue;
6116 
6117 		group = get_group(i, sdd, &sg);
6118 		cpumask_setall(sched_group_mask(sg));
6119 
6120 		for_each_cpu(j, span) {
6121 			if (get_group(j, sdd, NULL) != group)
6122 				continue;
6123 
6124 			cpumask_set_cpu(j, covered);
6125 			cpumask_set_cpu(j, sched_group_cpus(sg));
6126 		}
6127 
6128 		if (!first)
6129 			first = sg;
6130 		if (last)
6131 			last->next = sg;
6132 		last = sg;
6133 	}
6134 	last->next = first;
6135 
6136 	return 0;
6137 }
6138 
6139 /*
6140  * Initialize sched groups cpu_capacity.
6141  *
6142  * cpu_capacity indicates the capacity of sched group, which is used while
6143  * distributing the load between different sched groups in a sched domain.
6144  * Typically cpu_capacity for all the groups in a sched domain will be same
6145  * unless there are asymmetries in the topology. If there are asymmetries,
6146  * group having more cpu_capacity will pickup more load compared to the
6147  * group having less cpu_capacity.
6148  */
6149 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6150 {
6151 	struct sched_group *sg = sd->groups;
6152 
6153 	WARN_ON(!sg);
6154 
6155 	do {
6156 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6157 		sg = sg->next;
6158 	} while (sg != sd->groups);
6159 
6160 	if (cpu != group_balance_cpu(sg))
6161 		return;
6162 
6163 	update_group_capacity(sd, cpu);
6164 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6165 }
6166 
6167 /*
6168  * Initializers for schedule domains
6169  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6170  */
6171 
6172 static int default_relax_domain_level = -1;
6173 int sched_domain_level_max;
6174 
6175 static int __init setup_relax_domain_level(char *str)
6176 {
6177 	if (kstrtoint(str, 0, &default_relax_domain_level))
6178 		pr_warn("Unable to set relax_domain_level\n");
6179 
6180 	return 1;
6181 }
6182 __setup("relax_domain_level=", setup_relax_domain_level);
6183 
6184 static void set_domain_attribute(struct sched_domain *sd,
6185 				 struct sched_domain_attr *attr)
6186 {
6187 	int request;
6188 
6189 	if (!attr || attr->relax_domain_level < 0) {
6190 		if (default_relax_domain_level < 0)
6191 			return;
6192 		else
6193 			request = default_relax_domain_level;
6194 	} else
6195 		request = attr->relax_domain_level;
6196 	if (request < sd->level) {
6197 		/* turn off idle balance on this domain */
6198 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6199 	} else {
6200 		/* turn on idle balance on this domain */
6201 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6202 	}
6203 }
6204 
6205 static void __sdt_free(const struct cpumask *cpu_map);
6206 static int __sdt_alloc(const struct cpumask *cpu_map);
6207 
6208 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6209 				 const struct cpumask *cpu_map)
6210 {
6211 	switch (what) {
6212 	case sa_rootdomain:
6213 		if (!atomic_read(&d->rd->refcount))
6214 			free_rootdomain(&d->rd->rcu); /* fall through */
6215 	case sa_sd:
6216 		free_percpu(d->sd); /* fall through */
6217 	case sa_sd_storage:
6218 		__sdt_free(cpu_map); /* fall through */
6219 	case sa_none:
6220 		break;
6221 	}
6222 }
6223 
6224 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6225 						   const struct cpumask *cpu_map)
6226 {
6227 	memset(d, 0, sizeof(*d));
6228 
6229 	if (__sdt_alloc(cpu_map))
6230 		return sa_sd_storage;
6231 	d->sd = alloc_percpu(struct sched_domain *);
6232 	if (!d->sd)
6233 		return sa_sd_storage;
6234 	d->rd = alloc_rootdomain();
6235 	if (!d->rd)
6236 		return sa_sd;
6237 	return sa_rootdomain;
6238 }
6239 
6240 /*
6241  * NULL the sd_data elements we've used to build the sched_domain and
6242  * sched_group structure so that the subsequent __free_domain_allocs()
6243  * will not free the data we're using.
6244  */
6245 static void claim_allocations(int cpu, struct sched_domain *sd)
6246 {
6247 	struct sd_data *sdd = sd->private;
6248 
6249 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6250 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6251 
6252 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6253 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6254 
6255 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6256 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6257 }
6258 
6259 #ifdef CONFIG_NUMA
6260 static int sched_domains_numa_levels;
6261 enum numa_topology_type sched_numa_topology_type;
6262 static int *sched_domains_numa_distance;
6263 int sched_max_numa_distance;
6264 static struct cpumask ***sched_domains_numa_masks;
6265 static int sched_domains_curr_level;
6266 #endif
6267 
6268 /*
6269  * SD_flags allowed in topology descriptions.
6270  *
6271  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6272  * SD_SHARE_PKG_RESOURCES - describes shared caches
6273  * SD_NUMA                - describes NUMA topologies
6274  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6275  *
6276  * Odd one out:
6277  * SD_ASYM_PACKING        - describes SMT quirks
6278  */
6279 #define TOPOLOGY_SD_FLAGS		\
6280 	(SD_SHARE_CPUCAPACITY |		\
6281 	 SD_SHARE_PKG_RESOURCES |	\
6282 	 SD_NUMA |			\
6283 	 SD_ASYM_PACKING |		\
6284 	 SD_SHARE_POWERDOMAIN)
6285 
6286 static struct sched_domain *
6287 sd_init(struct sched_domain_topology_level *tl, int cpu)
6288 {
6289 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6290 	int sd_weight, sd_flags = 0;
6291 
6292 #ifdef CONFIG_NUMA
6293 	/*
6294 	 * Ugly hack to pass state to sd_numa_mask()...
6295 	 */
6296 	sched_domains_curr_level = tl->numa_level;
6297 #endif
6298 
6299 	sd_weight = cpumask_weight(tl->mask(cpu));
6300 
6301 	if (tl->sd_flags)
6302 		sd_flags = (*tl->sd_flags)();
6303 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6304 			"wrong sd_flags in topology description\n"))
6305 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6306 
6307 	*sd = (struct sched_domain){
6308 		.min_interval		= sd_weight,
6309 		.max_interval		= 2*sd_weight,
6310 		.busy_factor		= 32,
6311 		.imbalance_pct		= 125,
6312 
6313 		.cache_nice_tries	= 0,
6314 		.busy_idx		= 0,
6315 		.idle_idx		= 0,
6316 		.newidle_idx		= 0,
6317 		.wake_idx		= 0,
6318 		.forkexec_idx		= 0,
6319 
6320 		.flags			= 1*SD_LOAD_BALANCE
6321 					| 1*SD_BALANCE_NEWIDLE
6322 					| 1*SD_BALANCE_EXEC
6323 					| 1*SD_BALANCE_FORK
6324 					| 0*SD_BALANCE_WAKE
6325 					| 1*SD_WAKE_AFFINE
6326 					| 0*SD_SHARE_CPUCAPACITY
6327 					| 0*SD_SHARE_PKG_RESOURCES
6328 					| 0*SD_SERIALIZE
6329 					| 0*SD_PREFER_SIBLING
6330 					| 0*SD_NUMA
6331 					| sd_flags
6332 					,
6333 
6334 		.last_balance		= jiffies,
6335 		.balance_interval	= sd_weight,
6336 		.smt_gain		= 0,
6337 		.max_newidle_lb_cost	= 0,
6338 		.next_decay_max_lb_cost	= jiffies,
6339 #ifdef CONFIG_SCHED_DEBUG
6340 		.name			= tl->name,
6341 #endif
6342 	};
6343 
6344 	/*
6345 	 * Convert topological properties into behaviour.
6346 	 */
6347 
6348 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6349 		sd->flags |= SD_PREFER_SIBLING;
6350 		sd->imbalance_pct = 110;
6351 		sd->smt_gain = 1178; /* ~15% */
6352 
6353 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6354 		sd->imbalance_pct = 117;
6355 		sd->cache_nice_tries = 1;
6356 		sd->busy_idx = 2;
6357 
6358 #ifdef CONFIG_NUMA
6359 	} else if (sd->flags & SD_NUMA) {
6360 		sd->cache_nice_tries = 2;
6361 		sd->busy_idx = 3;
6362 		sd->idle_idx = 2;
6363 
6364 		sd->flags |= SD_SERIALIZE;
6365 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6366 			sd->flags &= ~(SD_BALANCE_EXEC |
6367 				       SD_BALANCE_FORK |
6368 				       SD_WAKE_AFFINE);
6369 		}
6370 
6371 #endif
6372 	} else {
6373 		sd->flags |= SD_PREFER_SIBLING;
6374 		sd->cache_nice_tries = 1;
6375 		sd->busy_idx = 2;
6376 		sd->idle_idx = 1;
6377 	}
6378 
6379 	sd->private = &tl->data;
6380 
6381 	return sd;
6382 }
6383 
6384 /*
6385  * Topology list, bottom-up.
6386  */
6387 static struct sched_domain_topology_level default_topology[] = {
6388 #ifdef CONFIG_SCHED_SMT
6389 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6390 #endif
6391 #ifdef CONFIG_SCHED_MC
6392 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6393 #endif
6394 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6395 	{ NULL, },
6396 };
6397 
6398 static struct sched_domain_topology_level *sched_domain_topology =
6399 	default_topology;
6400 
6401 #define for_each_sd_topology(tl)			\
6402 	for (tl = sched_domain_topology; tl->mask; tl++)
6403 
6404 void set_sched_topology(struct sched_domain_topology_level *tl)
6405 {
6406 	sched_domain_topology = tl;
6407 }
6408 
6409 #ifdef CONFIG_NUMA
6410 
6411 static const struct cpumask *sd_numa_mask(int cpu)
6412 {
6413 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6414 }
6415 
6416 static void sched_numa_warn(const char *str)
6417 {
6418 	static int done = false;
6419 	int i,j;
6420 
6421 	if (done)
6422 		return;
6423 
6424 	done = true;
6425 
6426 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6427 
6428 	for (i = 0; i < nr_node_ids; i++) {
6429 		printk(KERN_WARNING "  ");
6430 		for (j = 0; j < nr_node_ids; j++)
6431 			printk(KERN_CONT "%02d ", node_distance(i,j));
6432 		printk(KERN_CONT "\n");
6433 	}
6434 	printk(KERN_WARNING "\n");
6435 }
6436 
6437 bool find_numa_distance(int distance)
6438 {
6439 	int i;
6440 
6441 	if (distance == node_distance(0, 0))
6442 		return true;
6443 
6444 	for (i = 0; i < sched_domains_numa_levels; i++) {
6445 		if (sched_domains_numa_distance[i] == distance)
6446 			return true;
6447 	}
6448 
6449 	return false;
6450 }
6451 
6452 /*
6453  * A system can have three types of NUMA topology:
6454  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6455  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6456  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6457  *
6458  * The difference between a glueless mesh topology and a backplane
6459  * topology lies in whether communication between not directly
6460  * connected nodes goes through intermediary nodes (where programs
6461  * could run), or through backplane controllers. This affects
6462  * placement of programs.
6463  *
6464  * The type of topology can be discerned with the following tests:
6465  * - If the maximum distance between any nodes is 1 hop, the system
6466  *   is directly connected.
6467  * - If for two nodes A and B, located N > 1 hops away from each other,
6468  *   there is an intermediary node C, which is < N hops away from both
6469  *   nodes A and B, the system is a glueless mesh.
6470  */
6471 static void init_numa_topology_type(void)
6472 {
6473 	int a, b, c, n;
6474 
6475 	n = sched_max_numa_distance;
6476 
6477 	if (sched_domains_numa_levels <= 1) {
6478 		sched_numa_topology_type = NUMA_DIRECT;
6479 		return;
6480 	}
6481 
6482 	for_each_online_node(a) {
6483 		for_each_online_node(b) {
6484 			/* Find two nodes furthest removed from each other. */
6485 			if (node_distance(a, b) < n)
6486 				continue;
6487 
6488 			/* Is there an intermediary node between a and b? */
6489 			for_each_online_node(c) {
6490 				if (node_distance(a, c) < n &&
6491 				    node_distance(b, c) < n) {
6492 					sched_numa_topology_type =
6493 							NUMA_GLUELESS_MESH;
6494 					return;
6495 				}
6496 			}
6497 
6498 			sched_numa_topology_type = NUMA_BACKPLANE;
6499 			return;
6500 		}
6501 	}
6502 }
6503 
6504 static void sched_init_numa(void)
6505 {
6506 	int next_distance, curr_distance = node_distance(0, 0);
6507 	struct sched_domain_topology_level *tl;
6508 	int level = 0;
6509 	int i, j, k;
6510 
6511 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6512 	if (!sched_domains_numa_distance)
6513 		return;
6514 
6515 	/*
6516 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6517 	 * unique distances in the node_distance() table.
6518 	 *
6519 	 * Assumes node_distance(0,j) includes all distances in
6520 	 * node_distance(i,j) in order to avoid cubic time.
6521 	 */
6522 	next_distance = curr_distance;
6523 	for (i = 0; i < nr_node_ids; i++) {
6524 		for (j = 0; j < nr_node_ids; j++) {
6525 			for (k = 0; k < nr_node_ids; k++) {
6526 				int distance = node_distance(i, k);
6527 
6528 				if (distance > curr_distance &&
6529 				    (distance < next_distance ||
6530 				     next_distance == curr_distance))
6531 					next_distance = distance;
6532 
6533 				/*
6534 				 * While not a strong assumption it would be nice to know
6535 				 * about cases where if node A is connected to B, B is not
6536 				 * equally connected to A.
6537 				 */
6538 				if (sched_debug() && node_distance(k, i) != distance)
6539 					sched_numa_warn("Node-distance not symmetric");
6540 
6541 				if (sched_debug() && i && !find_numa_distance(distance))
6542 					sched_numa_warn("Node-0 not representative");
6543 			}
6544 			if (next_distance != curr_distance) {
6545 				sched_domains_numa_distance[level++] = next_distance;
6546 				sched_domains_numa_levels = level;
6547 				curr_distance = next_distance;
6548 			} else break;
6549 		}
6550 
6551 		/*
6552 		 * In case of sched_debug() we verify the above assumption.
6553 		 */
6554 		if (!sched_debug())
6555 			break;
6556 	}
6557 
6558 	if (!level)
6559 		return;
6560 
6561 	/*
6562 	 * 'level' contains the number of unique distances, excluding the
6563 	 * identity distance node_distance(i,i).
6564 	 *
6565 	 * The sched_domains_numa_distance[] array includes the actual distance
6566 	 * numbers.
6567 	 */
6568 
6569 	/*
6570 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6571 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6572 	 * the array will contain less then 'level' members. This could be
6573 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6574 	 * in other functions.
6575 	 *
6576 	 * We reset it to 'level' at the end of this function.
6577 	 */
6578 	sched_domains_numa_levels = 0;
6579 
6580 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6581 	if (!sched_domains_numa_masks)
6582 		return;
6583 
6584 	/*
6585 	 * Now for each level, construct a mask per node which contains all
6586 	 * cpus of nodes that are that many hops away from us.
6587 	 */
6588 	for (i = 0; i < level; i++) {
6589 		sched_domains_numa_masks[i] =
6590 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6591 		if (!sched_domains_numa_masks[i])
6592 			return;
6593 
6594 		for (j = 0; j < nr_node_ids; j++) {
6595 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6596 			if (!mask)
6597 				return;
6598 
6599 			sched_domains_numa_masks[i][j] = mask;
6600 
6601 			for_each_node(k) {
6602 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6603 					continue;
6604 
6605 				cpumask_or(mask, mask, cpumask_of_node(k));
6606 			}
6607 		}
6608 	}
6609 
6610 	/* Compute default topology size */
6611 	for (i = 0; sched_domain_topology[i].mask; i++);
6612 
6613 	tl = kzalloc((i + level + 1) *
6614 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6615 	if (!tl)
6616 		return;
6617 
6618 	/*
6619 	 * Copy the default topology bits..
6620 	 */
6621 	for (i = 0; sched_domain_topology[i].mask; i++)
6622 		tl[i] = sched_domain_topology[i];
6623 
6624 	/*
6625 	 * .. and append 'j' levels of NUMA goodness.
6626 	 */
6627 	for (j = 0; j < level; i++, j++) {
6628 		tl[i] = (struct sched_domain_topology_level){
6629 			.mask = sd_numa_mask,
6630 			.sd_flags = cpu_numa_flags,
6631 			.flags = SDTL_OVERLAP,
6632 			.numa_level = j,
6633 			SD_INIT_NAME(NUMA)
6634 		};
6635 	}
6636 
6637 	sched_domain_topology = tl;
6638 
6639 	sched_domains_numa_levels = level;
6640 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6641 
6642 	init_numa_topology_type();
6643 }
6644 
6645 static void sched_domains_numa_masks_set(int cpu)
6646 {
6647 	int i, j;
6648 	int node = cpu_to_node(cpu);
6649 
6650 	for (i = 0; i < sched_domains_numa_levels; i++) {
6651 		for (j = 0; j < nr_node_ids; j++) {
6652 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6653 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6654 		}
6655 	}
6656 }
6657 
6658 static void sched_domains_numa_masks_clear(int cpu)
6659 {
6660 	int i, j;
6661 	for (i = 0; i < sched_domains_numa_levels; i++) {
6662 		for (j = 0; j < nr_node_ids; j++)
6663 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6664 	}
6665 }
6666 
6667 /*
6668  * Update sched_domains_numa_masks[level][node] array when new cpus
6669  * are onlined.
6670  */
6671 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6672 					   unsigned long action,
6673 					   void *hcpu)
6674 {
6675 	int cpu = (long)hcpu;
6676 
6677 	switch (action & ~CPU_TASKS_FROZEN) {
6678 	case CPU_ONLINE:
6679 		sched_domains_numa_masks_set(cpu);
6680 		break;
6681 
6682 	case CPU_DEAD:
6683 		sched_domains_numa_masks_clear(cpu);
6684 		break;
6685 
6686 	default:
6687 		return NOTIFY_DONE;
6688 	}
6689 
6690 	return NOTIFY_OK;
6691 }
6692 #else
6693 static inline void sched_init_numa(void)
6694 {
6695 }
6696 
6697 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6698 					   unsigned long action,
6699 					   void *hcpu)
6700 {
6701 	return 0;
6702 }
6703 #endif /* CONFIG_NUMA */
6704 
6705 static int __sdt_alloc(const struct cpumask *cpu_map)
6706 {
6707 	struct sched_domain_topology_level *tl;
6708 	int j;
6709 
6710 	for_each_sd_topology(tl) {
6711 		struct sd_data *sdd = &tl->data;
6712 
6713 		sdd->sd = alloc_percpu(struct sched_domain *);
6714 		if (!sdd->sd)
6715 			return -ENOMEM;
6716 
6717 		sdd->sg = alloc_percpu(struct sched_group *);
6718 		if (!sdd->sg)
6719 			return -ENOMEM;
6720 
6721 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6722 		if (!sdd->sgc)
6723 			return -ENOMEM;
6724 
6725 		for_each_cpu(j, cpu_map) {
6726 			struct sched_domain *sd;
6727 			struct sched_group *sg;
6728 			struct sched_group_capacity *sgc;
6729 
6730 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6731 					GFP_KERNEL, cpu_to_node(j));
6732 			if (!sd)
6733 				return -ENOMEM;
6734 
6735 			*per_cpu_ptr(sdd->sd, j) = sd;
6736 
6737 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6738 					GFP_KERNEL, cpu_to_node(j));
6739 			if (!sg)
6740 				return -ENOMEM;
6741 
6742 			sg->next = sg;
6743 
6744 			*per_cpu_ptr(sdd->sg, j) = sg;
6745 
6746 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6747 					GFP_KERNEL, cpu_to_node(j));
6748 			if (!sgc)
6749 				return -ENOMEM;
6750 
6751 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6752 		}
6753 	}
6754 
6755 	return 0;
6756 }
6757 
6758 static void __sdt_free(const struct cpumask *cpu_map)
6759 {
6760 	struct sched_domain_topology_level *tl;
6761 	int j;
6762 
6763 	for_each_sd_topology(tl) {
6764 		struct sd_data *sdd = &tl->data;
6765 
6766 		for_each_cpu(j, cpu_map) {
6767 			struct sched_domain *sd;
6768 
6769 			if (sdd->sd) {
6770 				sd = *per_cpu_ptr(sdd->sd, j);
6771 				if (sd && (sd->flags & SD_OVERLAP))
6772 					free_sched_groups(sd->groups, 0);
6773 				kfree(*per_cpu_ptr(sdd->sd, j));
6774 			}
6775 
6776 			if (sdd->sg)
6777 				kfree(*per_cpu_ptr(sdd->sg, j));
6778 			if (sdd->sgc)
6779 				kfree(*per_cpu_ptr(sdd->sgc, j));
6780 		}
6781 		free_percpu(sdd->sd);
6782 		sdd->sd = NULL;
6783 		free_percpu(sdd->sg);
6784 		sdd->sg = NULL;
6785 		free_percpu(sdd->sgc);
6786 		sdd->sgc = NULL;
6787 	}
6788 }
6789 
6790 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6791 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6792 		struct sched_domain *child, int cpu)
6793 {
6794 	struct sched_domain *sd = sd_init(tl, cpu);
6795 	if (!sd)
6796 		return child;
6797 
6798 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6799 	if (child) {
6800 		sd->level = child->level + 1;
6801 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6802 		child->parent = sd;
6803 		sd->child = child;
6804 
6805 		if (!cpumask_subset(sched_domain_span(child),
6806 				    sched_domain_span(sd))) {
6807 			pr_err("BUG: arch topology borken\n");
6808 #ifdef CONFIG_SCHED_DEBUG
6809 			pr_err("     the %s domain not a subset of the %s domain\n",
6810 					child->name, sd->name);
6811 #endif
6812 			/* Fixup, ensure @sd has at least @child cpus. */
6813 			cpumask_or(sched_domain_span(sd),
6814 				   sched_domain_span(sd),
6815 				   sched_domain_span(child));
6816 		}
6817 
6818 	}
6819 	set_domain_attribute(sd, attr);
6820 
6821 	return sd;
6822 }
6823 
6824 /*
6825  * Build sched domains for a given set of cpus and attach the sched domains
6826  * to the individual cpus
6827  */
6828 static int build_sched_domains(const struct cpumask *cpu_map,
6829 			       struct sched_domain_attr *attr)
6830 {
6831 	enum s_alloc alloc_state;
6832 	struct sched_domain *sd;
6833 	struct s_data d;
6834 	int i, ret = -ENOMEM;
6835 
6836 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6837 	if (alloc_state != sa_rootdomain)
6838 		goto error;
6839 
6840 	/* Set up domains for cpus specified by the cpu_map. */
6841 	for_each_cpu(i, cpu_map) {
6842 		struct sched_domain_topology_level *tl;
6843 
6844 		sd = NULL;
6845 		for_each_sd_topology(tl) {
6846 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6847 			if (tl == sched_domain_topology)
6848 				*per_cpu_ptr(d.sd, i) = sd;
6849 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6850 				sd->flags |= SD_OVERLAP;
6851 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6852 				break;
6853 		}
6854 	}
6855 
6856 	/* Build the groups for the domains */
6857 	for_each_cpu(i, cpu_map) {
6858 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6859 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6860 			if (sd->flags & SD_OVERLAP) {
6861 				if (build_overlap_sched_groups(sd, i))
6862 					goto error;
6863 			} else {
6864 				if (build_sched_groups(sd, i))
6865 					goto error;
6866 			}
6867 		}
6868 	}
6869 
6870 	/* Calculate CPU capacity for physical packages and nodes */
6871 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6872 		if (!cpumask_test_cpu(i, cpu_map))
6873 			continue;
6874 
6875 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6876 			claim_allocations(i, sd);
6877 			init_sched_groups_capacity(i, sd);
6878 		}
6879 	}
6880 
6881 	/* Attach the domains */
6882 	rcu_read_lock();
6883 	for_each_cpu(i, cpu_map) {
6884 		sd = *per_cpu_ptr(d.sd, i);
6885 		cpu_attach_domain(sd, d.rd, i);
6886 	}
6887 	rcu_read_unlock();
6888 
6889 	ret = 0;
6890 error:
6891 	__free_domain_allocs(&d, alloc_state, cpu_map);
6892 	return ret;
6893 }
6894 
6895 static cpumask_var_t *doms_cur;	/* current sched domains */
6896 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6897 static struct sched_domain_attr *dattr_cur;
6898 				/* attribues of custom domains in 'doms_cur' */
6899 
6900 /*
6901  * Special case: If a kmalloc of a doms_cur partition (array of
6902  * cpumask) fails, then fallback to a single sched domain,
6903  * as determined by the single cpumask fallback_doms.
6904  */
6905 static cpumask_var_t fallback_doms;
6906 
6907 /*
6908  * arch_update_cpu_topology lets virtualized architectures update the
6909  * cpu core maps. It is supposed to return 1 if the topology changed
6910  * or 0 if it stayed the same.
6911  */
6912 int __weak arch_update_cpu_topology(void)
6913 {
6914 	return 0;
6915 }
6916 
6917 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6918 {
6919 	int i;
6920 	cpumask_var_t *doms;
6921 
6922 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6923 	if (!doms)
6924 		return NULL;
6925 	for (i = 0; i < ndoms; i++) {
6926 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6927 			free_sched_domains(doms, i);
6928 			return NULL;
6929 		}
6930 	}
6931 	return doms;
6932 }
6933 
6934 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6935 {
6936 	unsigned int i;
6937 	for (i = 0; i < ndoms; i++)
6938 		free_cpumask_var(doms[i]);
6939 	kfree(doms);
6940 }
6941 
6942 /*
6943  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6944  * For now this just excludes isolated cpus, but could be used to
6945  * exclude other special cases in the future.
6946  */
6947 static int init_sched_domains(const struct cpumask *cpu_map)
6948 {
6949 	int err;
6950 
6951 	arch_update_cpu_topology();
6952 	ndoms_cur = 1;
6953 	doms_cur = alloc_sched_domains(ndoms_cur);
6954 	if (!doms_cur)
6955 		doms_cur = &fallback_doms;
6956 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6957 	err = build_sched_domains(doms_cur[0], NULL);
6958 	register_sched_domain_sysctl();
6959 
6960 	return err;
6961 }
6962 
6963 /*
6964  * Detach sched domains from a group of cpus specified in cpu_map
6965  * These cpus will now be attached to the NULL domain
6966  */
6967 static void detach_destroy_domains(const struct cpumask *cpu_map)
6968 {
6969 	int i;
6970 
6971 	rcu_read_lock();
6972 	for_each_cpu(i, cpu_map)
6973 		cpu_attach_domain(NULL, &def_root_domain, i);
6974 	rcu_read_unlock();
6975 }
6976 
6977 /* handle null as "default" */
6978 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6979 			struct sched_domain_attr *new, int idx_new)
6980 {
6981 	struct sched_domain_attr tmp;
6982 
6983 	/* fast path */
6984 	if (!new && !cur)
6985 		return 1;
6986 
6987 	tmp = SD_ATTR_INIT;
6988 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6989 			new ? (new + idx_new) : &tmp,
6990 			sizeof(struct sched_domain_attr));
6991 }
6992 
6993 /*
6994  * Partition sched domains as specified by the 'ndoms_new'
6995  * cpumasks in the array doms_new[] of cpumasks. This compares
6996  * doms_new[] to the current sched domain partitioning, doms_cur[].
6997  * It destroys each deleted domain and builds each new domain.
6998  *
6999  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7000  * The masks don't intersect (don't overlap.) We should setup one
7001  * sched domain for each mask. CPUs not in any of the cpumasks will
7002  * not be load balanced. If the same cpumask appears both in the
7003  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7004  * it as it is.
7005  *
7006  * The passed in 'doms_new' should be allocated using
7007  * alloc_sched_domains.  This routine takes ownership of it and will
7008  * free_sched_domains it when done with it. If the caller failed the
7009  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7010  * and partition_sched_domains() will fallback to the single partition
7011  * 'fallback_doms', it also forces the domains to be rebuilt.
7012  *
7013  * If doms_new == NULL it will be replaced with cpu_online_mask.
7014  * ndoms_new == 0 is a special case for destroying existing domains,
7015  * and it will not create the default domain.
7016  *
7017  * Call with hotplug lock held
7018  */
7019 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7020 			     struct sched_domain_attr *dattr_new)
7021 {
7022 	int i, j, n;
7023 	int new_topology;
7024 
7025 	mutex_lock(&sched_domains_mutex);
7026 
7027 	/* always unregister in case we don't destroy any domains */
7028 	unregister_sched_domain_sysctl();
7029 
7030 	/* Let architecture update cpu core mappings. */
7031 	new_topology = arch_update_cpu_topology();
7032 
7033 	n = doms_new ? ndoms_new : 0;
7034 
7035 	/* Destroy deleted domains */
7036 	for (i = 0; i < ndoms_cur; i++) {
7037 		for (j = 0; j < n && !new_topology; j++) {
7038 			if (cpumask_equal(doms_cur[i], doms_new[j])
7039 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7040 				goto match1;
7041 		}
7042 		/* no match - a current sched domain not in new doms_new[] */
7043 		detach_destroy_domains(doms_cur[i]);
7044 match1:
7045 		;
7046 	}
7047 
7048 	n = ndoms_cur;
7049 	if (doms_new == NULL) {
7050 		n = 0;
7051 		doms_new = &fallback_doms;
7052 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7053 		WARN_ON_ONCE(dattr_new);
7054 	}
7055 
7056 	/* Build new domains */
7057 	for (i = 0; i < ndoms_new; i++) {
7058 		for (j = 0; j < n && !new_topology; j++) {
7059 			if (cpumask_equal(doms_new[i], doms_cur[j])
7060 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7061 				goto match2;
7062 		}
7063 		/* no match - add a new doms_new */
7064 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7065 match2:
7066 		;
7067 	}
7068 
7069 	/* Remember the new sched domains */
7070 	if (doms_cur != &fallback_doms)
7071 		free_sched_domains(doms_cur, ndoms_cur);
7072 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7073 	doms_cur = doms_new;
7074 	dattr_cur = dattr_new;
7075 	ndoms_cur = ndoms_new;
7076 
7077 	register_sched_domain_sysctl();
7078 
7079 	mutex_unlock(&sched_domains_mutex);
7080 }
7081 
7082 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7083 
7084 /*
7085  * Update cpusets according to cpu_active mask.  If cpusets are
7086  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7087  * around partition_sched_domains().
7088  *
7089  * If we come here as part of a suspend/resume, don't touch cpusets because we
7090  * want to restore it back to its original state upon resume anyway.
7091  */
7092 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7093 			     void *hcpu)
7094 {
7095 	switch (action) {
7096 	case CPU_ONLINE_FROZEN:
7097 	case CPU_DOWN_FAILED_FROZEN:
7098 
7099 		/*
7100 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7101 		 * resume sequence. As long as this is not the last online
7102 		 * operation in the resume sequence, just build a single sched
7103 		 * domain, ignoring cpusets.
7104 		 */
7105 		num_cpus_frozen--;
7106 		if (likely(num_cpus_frozen)) {
7107 			partition_sched_domains(1, NULL, NULL);
7108 			break;
7109 		}
7110 
7111 		/*
7112 		 * This is the last CPU online operation. So fall through and
7113 		 * restore the original sched domains by considering the
7114 		 * cpuset configurations.
7115 		 */
7116 
7117 	case CPU_ONLINE:
7118 		cpuset_update_active_cpus(true);
7119 		break;
7120 	default:
7121 		return NOTIFY_DONE;
7122 	}
7123 	return NOTIFY_OK;
7124 }
7125 
7126 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7127 			       void *hcpu)
7128 {
7129 	unsigned long flags;
7130 	long cpu = (long)hcpu;
7131 	struct dl_bw *dl_b;
7132 	bool overflow;
7133 	int cpus;
7134 
7135 	switch (action) {
7136 	case CPU_DOWN_PREPARE:
7137 		rcu_read_lock_sched();
7138 		dl_b = dl_bw_of(cpu);
7139 
7140 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7141 		cpus = dl_bw_cpus(cpu);
7142 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7143 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7144 
7145 		rcu_read_unlock_sched();
7146 
7147 		if (overflow)
7148 			return notifier_from_errno(-EBUSY);
7149 		cpuset_update_active_cpus(false);
7150 		break;
7151 	case CPU_DOWN_PREPARE_FROZEN:
7152 		num_cpus_frozen++;
7153 		partition_sched_domains(1, NULL, NULL);
7154 		break;
7155 	default:
7156 		return NOTIFY_DONE;
7157 	}
7158 	return NOTIFY_OK;
7159 }
7160 
7161 void __init sched_init_smp(void)
7162 {
7163 	cpumask_var_t non_isolated_cpus;
7164 
7165 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7166 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7167 
7168 	sched_init_numa();
7169 
7170 	/*
7171 	 * There's no userspace yet to cause hotplug operations; hence all the
7172 	 * cpu masks are stable and all blatant races in the below code cannot
7173 	 * happen.
7174 	 */
7175 	mutex_lock(&sched_domains_mutex);
7176 	init_sched_domains(cpu_active_mask);
7177 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7178 	if (cpumask_empty(non_isolated_cpus))
7179 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7180 	mutex_unlock(&sched_domains_mutex);
7181 
7182 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7183 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7184 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7185 
7186 	init_hrtick();
7187 
7188 	/* Move init over to a non-isolated CPU */
7189 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7190 		BUG();
7191 	sched_init_granularity();
7192 	free_cpumask_var(non_isolated_cpus);
7193 
7194 	init_sched_rt_class();
7195 	init_sched_dl_class();
7196 }
7197 #else
7198 void __init sched_init_smp(void)
7199 {
7200 	sched_init_granularity();
7201 }
7202 #endif /* CONFIG_SMP */
7203 
7204 int in_sched_functions(unsigned long addr)
7205 {
7206 	return in_lock_functions(addr) ||
7207 		(addr >= (unsigned long)__sched_text_start
7208 		&& addr < (unsigned long)__sched_text_end);
7209 }
7210 
7211 #ifdef CONFIG_CGROUP_SCHED
7212 /*
7213  * Default task group.
7214  * Every task in system belongs to this group at bootup.
7215  */
7216 struct task_group root_task_group;
7217 LIST_HEAD(task_groups);
7218 
7219 /* Cacheline aligned slab cache for task_group */
7220 static struct kmem_cache *task_group_cache __read_mostly;
7221 #endif
7222 
7223 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7224 
7225 void __init sched_init(void)
7226 {
7227 	int i, j;
7228 	unsigned long alloc_size = 0, ptr;
7229 
7230 #ifdef CONFIG_FAIR_GROUP_SCHED
7231 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7232 #endif
7233 #ifdef CONFIG_RT_GROUP_SCHED
7234 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7235 #endif
7236 	if (alloc_size) {
7237 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7238 
7239 #ifdef CONFIG_FAIR_GROUP_SCHED
7240 		root_task_group.se = (struct sched_entity **)ptr;
7241 		ptr += nr_cpu_ids * sizeof(void **);
7242 
7243 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7244 		ptr += nr_cpu_ids * sizeof(void **);
7245 
7246 #endif /* CONFIG_FAIR_GROUP_SCHED */
7247 #ifdef CONFIG_RT_GROUP_SCHED
7248 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7249 		ptr += nr_cpu_ids * sizeof(void **);
7250 
7251 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7252 		ptr += nr_cpu_ids * sizeof(void **);
7253 
7254 #endif /* CONFIG_RT_GROUP_SCHED */
7255 	}
7256 #ifdef CONFIG_CPUMASK_OFFSTACK
7257 	for_each_possible_cpu(i) {
7258 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7259 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7260 	}
7261 #endif /* CONFIG_CPUMASK_OFFSTACK */
7262 
7263 	init_rt_bandwidth(&def_rt_bandwidth,
7264 			global_rt_period(), global_rt_runtime());
7265 	init_dl_bandwidth(&def_dl_bandwidth,
7266 			global_rt_period(), global_rt_runtime());
7267 
7268 #ifdef CONFIG_SMP
7269 	init_defrootdomain();
7270 #endif
7271 
7272 #ifdef CONFIG_RT_GROUP_SCHED
7273 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7274 			global_rt_period(), global_rt_runtime());
7275 #endif /* CONFIG_RT_GROUP_SCHED */
7276 
7277 #ifdef CONFIG_CGROUP_SCHED
7278 	task_group_cache = KMEM_CACHE(task_group, 0);
7279 
7280 	list_add(&root_task_group.list, &task_groups);
7281 	INIT_LIST_HEAD(&root_task_group.children);
7282 	INIT_LIST_HEAD(&root_task_group.siblings);
7283 	autogroup_init(&init_task);
7284 #endif /* CONFIG_CGROUP_SCHED */
7285 
7286 	for_each_possible_cpu(i) {
7287 		struct rq *rq;
7288 
7289 		rq = cpu_rq(i);
7290 		raw_spin_lock_init(&rq->lock);
7291 		rq->nr_running = 0;
7292 		rq->calc_load_active = 0;
7293 		rq->calc_load_update = jiffies + LOAD_FREQ;
7294 		init_cfs_rq(&rq->cfs);
7295 		init_rt_rq(&rq->rt);
7296 		init_dl_rq(&rq->dl);
7297 #ifdef CONFIG_FAIR_GROUP_SCHED
7298 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7299 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7300 		/*
7301 		 * How much cpu bandwidth does root_task_group get?
7302 		 *
7303 		 * In case of task-groups formed thr' the cgroup filesystem, it
7304 		 * gets 100% of the cpu resources in the system. This overall
7305 		 * system cpu resource is divided among the tasks of
7306 		 * root_task_group and its child task-groups in a fair manner,
7307 		 * based on each entity's (task or task-group's) weight
7308 		 * (se->load.weight).
7309 		 *
7310 		 * In other words, if root_task_group has 10 tasks of weight
7311 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7312 		 * then A0's share of the cpu resource is:
7313 		 *
7314 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7315 		 *
7316 		 * We achieve this by letting root_task_group's tasks sit
7317 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7318 		 */
7319 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7320 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7321 #endif /* CONFIG_FAIR_GROUP_SCHED */
7322 
7323 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7324 #ifdef CONFIG_RT_GROUP_SCHED
7325 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7326 #endif
7327 
7328 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7329 			rq->cpu_load[j] = 0;
7330 
7331 		rq->last_load_update_tick = jiffies;
7332 
7333 #ifdef CONFIG_SMP
7334 		rq->sd = NULL;
7335 		rq->rd = NULL;
7336 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7337 		rq->balance_callback = NULL;
7338 		rq->active_balance = 0;
7339 		rq->next_balance = jiffies;
7340 		rq->push_cpu = 0;
7341 		rq->cpu = i;
7342 		rq->online = 0;
7343 		rq->idle_stamp = 0;
7344 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7345 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7346 
7347 		INIT_LIST_HEAD(&rq->cfs_tasks);
7348 
7349 		rq_attach_root(rq, &def_root_domain);
7350 #ifdef CONFIG_NO_HZ_COMMON
7351 		rq->nohz_flags = 0;
7352 #endif
7353 #ifdef CONFIG_NO_HZ_FULL
7354 		rq->last_sched_tick = 0;
7355 #endif
7356 #endif
7357 		init_rq_hrtick(rq);
7358 		atomic_set(&rq->nr_iowait, 0);
7359 	}
7360 
7361 	set_load_weight(&init_task);
7362 
7363 #ifdef CONFIG_PREEMPT_NOTIFIERS
7364 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7365 #endif
7366 
7367 	/*
7368 	 * The boot idle thread does lazy MMU switching as well:
7369 	 */
7370 	atomic_inc(&init_mm.mm_count);
7371 	enter_lazy_tlb(&init_mm, current);
7372 
7373 	/*
7374 	 * During early bootup we pretend to be a normal task:
7375 	 */
7376 	current->sched_class = &fair_sched_class;
7377 
7378 	/*
7379 	 * Make us the idle thread. Technically, schedule() should not be
7380 	 * called from this thread, however somewhere below it might be,
7381 	 * but because we are the idle thread, we just pick up running again
7382 	 * when this runqueue becomes "idle".
7383 	 */
7384 	init_idle(current, smp_processor_id());
7385 
7386 	calc_load_update = jiffies + LOAD_FREQ;
7387 
7388 #ifdef CONFIG_SMP
7389 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7390 	/* May be allocated at isolcpus cmdline parse time */
7391 	if (cpu_isolated_map == NULL)
7392 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7393 	idle_thread_set_boot_cpu();
7394 	set_cpu_rq_start_time();
7395 #endif
7396 	init_sched_fair_class();
7397 
7398 	scheduler_running = 1;
7399 }
7400 
7401 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7402 static inline int preempt_count_equals(int preempt_offset)
7403 {
7404 	int nested = preempt_count() + rcu_preempt_depth();
7405 
7406 	return (nested == preempt_offset);
7407 }
7408 
7409 void __might_sleep(const char *file, int line, int preempt_offset)
7410 {
7411 	/*
7412 	 * Blocking primitives will set (and therefore destroy) current->state,
7413 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7414 	 * otherwise we will destroy state.
7415 	 */
7416 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7417 			"do not call blocking ops when !TASK_RUNNING; "
7418 			"state=%lx set at [<%p>] %pS\n",
7419 			current->state,
7420 			(void *)current->task_state_change,
7421 			(void *)current->task_state_change);
7422 
7423 	___might_sleep(file, line, preempt_offset);
7424 }
7425 EXPORT_SYMBOL(__might_sleep);
7426 
7427 void ___might_sleep(const char *file, int line, int preempt_offset)
7428 {
7429 	static unsigned long prev_jiffy;	/* ratelimiting */
7430 
7431 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7432 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7433 	     !is_idle_task(current)) ||
7434 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7435 		return;
7436 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7437 		return;
7438 	prev_jiffy = jiffies;
7439 
7440 	printk(KERN_ERR
7441 		"BUG: sleeping function called from invalid context at %s:%d\n",
7442 			file, line);
7443 	printk(KERN_ERR
7444 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7445 			in_atomic(), irqs_disabled(),
7446 			current->pid, current->comm);
7447 
7448 	if (task_stack_end_corrupted(current))
7449 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7450 
7451 	debug_show_held_locks(current);
7452 	if (irqs_disabled())
7453 		print_irqtrace_events(current);
7454 #ifdef CONFIG_DEBUG_PREEMPT
7455 	if (!preempt_count_equals(preempt_offset)) {
7456 		pr_err("Preemption disabled at:");
7457 		print_ip_sym(current->preempt_disable_ip);
7458 		pr_cont("\n");
7459 	}
7460 #endif
7461 	dump_stack();
7462 }
7463 EXPORT_SYMBOL(___might_sleep);
7464 #endif
7465 
7466 #ifdef CONFIG_MAGIC_SYSRQ
7467 void normalize_rt_tasks(void)
7468 {
7469 	struct task_struct *g, *p;
7470 	struct sched_attr attr = {
7471 		.sched_policy = SCHED_NORMAL,
7472 	};
7473 
7474 	read_lock(&tasklist_lock);
7475 	for_each_process_thread(g, p) {
7476 		/*
7477 		 * Only normalize user tasks:
7478 		 */
7479 		if (p->flags & PF_KTHREAD)
7480 			continue;
7481 
7482 		p->se.exec_start		= 0;
7483 #ifdef CONFIG_SCHEDSTATS
7484 		p->se.statistics.wait_start	= 0;
7485 		p->se.statistics.sleep_start	= 0;
7486 		p->se.statistics.block_start	= 0;
7487 #endif
7488 
7489 		if (!dl_task(p) && !rt_task(p)) {
7490 			/*
7491 			 * Renice negative nice level userspace
7492 			 * tasks back to 0:
7493 			 */
7494 			if (task_nice(p) < 0)
7495 				set_user_nice(p, 0);
7496 			continue;
7497 		}
7498 
7499 		__sched_setscheduler(p, &attr, false, false);
7500 	}
7501 	read_unlock(&tasklist_lock);
7502 }
7503 
7504 #endif /* CONFIG_MAGIC_SYSRQ */
7505 
7506 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7507 /*
7508  * These functions are only useful for the IA64 MCA handling, or kdb.
7509  *
7510  * They can only be called when the whole system has been
7511  * stopped - every CPU needs to be quiescent, and no scheduling
7512  * activity can take place. Using them for anything else would
7513  * be a serious bug, and as a result, they aren't even visible
7514  * under any other configuration.
7515  */
7516 
7517 /**
7518  * curr_task - return the current task for a given cpu.
7519  * @cpu: the processor in question.
7520  *
7521  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7522  *
7523  * Return: The current task for @cpu.
7524  */
7525 struct task_struct *curr_task(int cpu)
7526 {
7527 	return cpu_curr(cpu);
7528 }
7529 
7530 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7531 
7532 #ifdef CONFIG_IA64
7533 /**
7534  * set_curr_task - set the current task for a given cpu.
7535  * @cpu: the processor in question.
7536  * @p: the task pointer to set.
7537  *
7538  * Description: This function must only be used when non-maskable interrupts
7539  * are serviced on a separate stack. It allows the architecture to switch the
7540  * notion of the current task on a cpu in a non-blocking manner. This function
7541  * must be called with all CPU's synchronized, and interrupts disabled, the
7542  * and caller must save the original value of the current task (see
7543  * curr_task() above) and restore that value before reenabling interrupts and
7544  * re-starting the system.
7545  *
7546  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7547  */
7548 void set_curr_task(int cpu, struct task_struct *p)
7549 {
7550 	cpu_curr(cpu) = p;
7551 }
7552 
7553 #endif
7554 
7555 #ifdef CONFIG_CGROUP_SCHED
7556 /* task_group_lock serializes the addition/removal of task groups */
7557 static DEFINE_SPINLOCK(task_group_lock);
7558 
7559 static void sched_free_group(struct task_group *tg)
7560 {
7561 	free_fair_sched_group(tg);
7562 	free_rt_sched_group(tg);
7563 	autogroup_free(tg);
7564 	kmem_cache_free(task_group_cache, tg);
7565 }
7566 
7567 /* allocate runqueue etc for a new task group */
7568 struct task_group *sched_create_group(struct task_group *parent)
7569 {
7570 	struct task_group *tg;
7571 
7572 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7573 	if (!tg)
7574 		return ERR_PTR(-ENOMEM);
7575 
7576 	if (!alloc_fair_sched_group(tg, parent))
7577 		goto err;
7578 
7579 	if (!alloc_rt_sched_group(tg, parent))
7580 		goto err;
7581 
7582 	return tg;
7583 
7584 err:
7585 	sched_free_group(tg);
7586 	return ERR_PTR(-ENOMEM);
7587 }
7588 
7589 void sched_online_group(struct task_group *tg, struct task_group *parent)
7590 {
7591 	unsigned long flags;
7592 
7593 	spin_lock_irqsave(&task_group_lock, flags);
7594 	list_add_rcu(&tg->list, &task_groups);
7595 
7596 	WARN_ON(!parent); /* root should already exist */
7597 
7598 	tg->parent = parent;
7599 	INIT_LIST_HEAD(&tg->children);
7600 	list_add_rcu(&tg->siblings, &parent->children);
7601 	spin_unlock_irqrestore(&task_group_lock, flags);
7602 }
7603 
7604 /* rcu callback to free various structures associated with a task group */
7605 static void sched_free_group_rcu(struct rcu_head *rhp)
7606 {
7607 	/* now it should be safe to free those cfs_rqs */
7608 	sched_free_group(container_of(rhp, struct task_group, rcu));
7609 }
7610 
7611 void sched_destroy_group(struct task_group *tg)
7612 {
7613 	/* wait for possible concurrent references to cfs_rqs complete */
7614 	call_rcu(&tg->rcu, sched_free_group_rcu);
7615 }
7616 
7617 void sched_offline_group(struct task_group *tg)
7618 {
7619 	unsigned long flags;
7620 
7621 	/* end participation in shares distribution */
7622 	unregister_fair_sched_group(tg);
7623 
7624 	spin_lock_irqsave(&task_group_lock, flags);
7625 	list_del_rcu(&tg->list);
7626 	list_del_rcu(&tg->siblings);
7627 	spin_unlock_irqrestore(&task_group_lock, flags);
7628 }
7629 
7630 /* change task's runqueue when it moves between groups.
7631  *	The caller of this function should have put the task in its new group
7632  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7633  *	reflect its new group.
7634  */
7635 void sched_move_task(struct task_struct *tsk)
7636 {
7637 	struct task_group *tg;
7638 	int queued, running;
7639 	unsigned long flags;
7640 	struct rq *rq;
7641 
7642 	rq = task_rq_lock(tsk, &flags);
7643 
7644 	running = task_current(rq, tsk);
7645 	queued = task_on_rq_queued(tsk);
7646 
7647 	if (queued)
7648 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7649 	if (unlikely(running))
7650 		put_prev_task(rq, tsk);
7651 
7652 	/*
7653 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7654 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7655 	 * to prevent lockdep warnings.
7656 	 */
7657 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7658 			  struct task_group, css);
7659 	tg = autogroup_task_group(tsk, tg);
7660 	tsk->sched_task_group = tg;
7661 
7662 #ifdef CONFIG_FAIR_GROUP_SCHED
7663 	if (tsk->sched_class->task_move_group)
7664 		tsk->sched_class->task_move_group(tsk);
7665 	else
7666 #endif
7667 		set_task_rq(tsk, task_cpu(tsk));
7668 
7669 	if (unlikely(running))
7670 		tsk->sched_class->set_curr_task(rq);
7671 	if (queued)
7672 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7673 
7674 	task_rq_unlock(rq, tsk, &flags);
7675 }
7676 #endif /* CONFIG_CGROUP_SCHED */
7677 
7678 #ifdef CONFIG_RT_GROUP_SCHED
7679 /*
7680  * Ensure that the real time constraints are schedulable.
7681  */
7682 static DEFINE_MUTEX(rt_constraints_mutex);
7683 
7684 /* Must be called with tasklist_lock held */
7685 static inline int tg_has_rt_tasks(struct task_group *tg)
7686 {
7687 	struct task_struct *g, *p;
7688 
7689 	/*
7690 	 * Autogroups do not have RT tasks; see autogroup_create().
7691 	 */
7692 	if (task_group_is_autogroup(tg))
7693 		return 0;
7694 
7695 	for_each_process_thread(g, p) {
7696 		if (rt_task(p) && task_group(p) == tg)
7697 			return 1;
7698 	}
7699 
7700 	return 0;
7701 }
7702 
7703 struct rt_schedulable_data {
7704 	struct task_group *tg;
7705 	u64 rt_period;
7706 	u64 rt_runtime;
7707 };
7708 
7709 static int tg_rt_schedulable(struct task_group *tg, void *data)
7710 {
7711 	struct rt_schedulable_data *d = data;
7712 	struct task_group *child;
7713 	unsigned long total, sum = 0;
7714 	u64 period, runtime;
7715 
7716 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7717 	runtime = tg->rt_bandwidth.rt_runtime;
7718 
7719 	if (tg == d->tg) {
7720 		period = d->rt_period;
7721 		runtime = d->rt_runtime;
7722 	}
7723 
7724 	/*
7725 	 * Cannot have more runtime than the period.
7726 	 */
7727 	if (runtime > period && runtime != RUNTIME_INF)
7728 		return -EINVAL;
7729 
7730 	/*
7731 	 * Ensure we don't starve existing RT tasks.
7732 	 */
7733 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7734 		return -EBUSY;
7735 
7736 	total = to_ratio(period, runtime);
7737 
7738 	/*
7739 	 * Nobody can have more than the global setting allows.
7740 	 */
7741 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7742 		return -EINVAL;
7743 
7744 	/*
7745 	 * The sum of our children's runtime should not exceed our own.
7746 	 */
7747 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7748 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7749 		runtime = child->rt_bandwidth.rt_runtime;
7750 
7751 		if (child == d->tg) {
7752 			period = d->rt_period;
7753 			runtime = d->rt_runtime;
7754 		}
7755 
7756 		sum += to_ratio(period, runtime);
7757 	}
7758 
7759 	if (sum > total)
7760 		return -EINVAL;
7761 
7762 	return 0;
7763 }
7764 
7765 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7766 {
7767 	int ret;
7768 
7769 	struct rt_schedulable_data data = {
7770 		.tg = tg,
7771 		.rt_period = period,
7772 		.rt_runtime = runtime,
7773 	};
7774 
7775 	rcu_read_lock();
7776 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7777 	rcu_read_unlock();
7778 
7779 	return ret;
7780 }
7781 
7782 static int tg_set_rt_bandwidth(struct task_group *tg,
7783 		u64 rt_period, u64 rt_runtime)
7784 {
7785 	int i, err = 0;
7786 
7787 	/*
7788 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7789 	 * kernel creating (and or operating) RT threads.
7790 	 */
7791 	if (tg == &root_task_group && rt_runtime == 0)
7792 		return -EINVAL;
7793 
7794 	/* No period doesn't make any sense. */
7795 	if (rt_period == 0)
7796 		return -EINVAL;
7797 
7798 	mutex_lock(&rt_constraints_mutex);
7799 	read_lock(&tasklist_lock);
7800 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7801 	if (err)
7802 		goto unlock;
7803 
7804 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7805 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7806 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7807 
7808 	for_each_possible_cpu(i) {
7809 		struct rt_rq *rt_rq = tg->rt_rq[i];
7810 
7811 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7812 		rt_rq->rt_runtime = rt_runtime;
7813 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7814 	}
7815 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7816 unlock:
7817 	read_unlock(&tasklist_lock);
7818 	mutex_unlock(&rt_constraints_mutex);
7819 
7820 	return err;
7821 }
7822 
7823 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7824 {
7825 	u64 rt_runtime, rt_period;
7826 
7827 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7828 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7829 	if (rt_runtime_us < 0)
7830 		rt_runtime = RUNTIME_INF;
7831 
7832 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7833 }
7834 
7835 static long sched_group_rt_runtime(struct task_group *tg)
7836 {
7837 	u64 rt_runtime_us;
7838 
7839 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7840 		return -1;
7841 
7842 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7843 	do_div(rt_runtime_us, NSEC_PER_USEC);
7844 	return rt_runtime_us;
7845 }
7846 
7847 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7848 {
7849 	u64 rt_runtime, rt_period;
7850 
7851 	rt_period = rt_period_us * NSEC_PER_USEC;
7852 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7853 
7854 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7855 }
7856 
7857 static long sched_group_rt_period(struct task_group *tg)
7858 {
7859 	u64 rt_period_us;
7860 
7861 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7862 	do_div(rt_period_us, NSEC_PER_USEC);
7863 	return rt_period_us;
7864 }
7865 #endif /* CONFIG_RT_GROUP_SCHED */
7866 
7867 #ifdef CONFIG_RT_GROUP_SCHED
7868 static int sched_rt_global_constraints(void)
7869 {
7870 	int ret = 0;
7871 
7872 	mutex_lock(&rt_constraints_mutex);
7873 	read_lock(&tasklist_lock);
7874 	ret = __rt_schedulable(NULL, 0, 0);
7875 	read_unlock(&tasklist_lock);
7876 	mutex_unlock(&rt_constraints_mutex);
7877 
7878 	return ret;
7879 }
7880 
7881 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7882 {
7883 	/* Don't accept realtime tasks when there is no way for them to run */
7884 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7885 		return 0;
7886 
7887 	return 1;
7888 }
7889 
7890 #else /* !CONFIG_RT_GROUP_SCHED */
7891 static int sched_rt_global_constraints(void)
7892 {
7893 	unsigned long flags;
7894 	int i, ret = 0;
7895 
7896 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7897 	for_each_possible_cpu(i) {
7898 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7899 
7900 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7901 		rt_rq->rt_runtime = global_rt_runtime();
7902 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7903 	}
7904 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7905 
7906 	return ret;
7907 }
7908 #endif /* CONFIG_RT_GROUP_SCHED */
7909 
7910 static int sched_dl_global_validate(void)
7911 {
7912 	u64 runtime = global_rt_runtime();
7913 	u64 period = global_rt_period();
7914 	u64 new_bw = to_ratio(period, runtime);
7915 	struct dl_bw *dl_b;
7916 	int cpu, ret = 0;
7917 	unsigned long flags;
7918 
7919 	/*
7920 	 * Here we want to check the bandwidth not being set to some
7921 	 * value smaller than the currently allocated bandwidth in
7922 	 * any of the root_domains.
7923 	 *
7924 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7925 	 * cycling on root_domains... Discussion on different/better
7926 	 * solutions is welcome!
7927 	 */
7928 	for_each_possible_cpu(cpu) {
7929 		rcu_read_lock_sched();
7930 		dl_b = dl_bw_of(cpu);
7931 
7932 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7933 		if (new_bw < dl_b->total_bw)
7934 			ret = -EBUSY;
7935 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7936 
7937 		rcu_read_unlock_sched();
7938 
7939 		if (ret)
7940 			break;
7941 	}
7942 
7943 	return ret;
7944 }
7945 
7946 static void sched_dl_do_global(void)
7947 {
7948 	u64 new_bw = -1;
7949 	struct dl_bw *dl_b;
7950 	int cpu;
7951 	unsigned long flags;
7952 
7953 	def_dl_bandwidth.dl_period = global_rt_period();
7954 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7955 
7956 	if (global_rt_runtime() != RUNTIME_INF)
7957 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7958 
7959 	/*
7960 	 * FIXME: As above...
7961 	 */
7962 	for_each_possible_cpu(cpu) {
7963 		rcu_read_lock_sched();
7964 		dl_b = dl_bw_of(cpu);
7965 
7966 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7967 		dl_b->bw = new_bw;
7968 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7969 
7970 		rcu_read_unlock_sched();
7971 	}
7972 }
7973 
7974 static int sched_rt_global_validate(void)
7975 {
7976 	if (sysctl_sched_rt_period <= 0)
7977 		return -EINVAL;
7978 
7979 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7980 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7981 		return -EINVAL;
7982 
7983 	return 0;
7984 }
7985 
7986 static void sched_rt_do_global(void)
7987 {
7988 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7989 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7990 }
7991 
7992 int sched_rt_handler(struct ctl_table *table, int write,
7993 		void __user *buffer, size_t *lenp,
7994 		loff_t *ppos)
7995 {
7996 	int old_period, old_runtime;
7997 	static DEFINE_MUTEX(mutex);
7998 	int ret;
7999 
8000 	mutex_lock(&mutex);
8001 	old_period = sysctl_sched_rt_period;
8002 	old_runtime = sysctl_sched_rt_runtime;
8003 
8004 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8005 
8006 	if (!ret && write) {
8007 		ret = sched_rt_global_validate();
8008 		if (ret)
8009 			goto undo;
8010 
8011 		ret = sched_dl_global_validate();
8012 		if (ret)
8013 			goto undo;
8014 
8015 		ret = sched_rt_global_constraints();
8016 		if (ret)
8017 			goto undo;
8018 
8019 		sched_rt_do_global();
8020 		sched_dl_do_global();
8021 	}
8022 	if (0) {
8023 undo:
8024 		sysctl_sched_rt_period = old_period;
8025 		sysctl_sched_rt_runtime = old_runtime;
8026 	}
8027 	mutex_unlock(&mutex);
8028 
8029 	return ret;
8030 }
8031 
8032 int sched_rr_handler(struct ctl_table *table, int write,
8033 		void __user *buffer, size_t *lenp,
8034 		loff_t *ppos)
8035 {
8036 	int ret;
8037 	static DEFINE_MUTEX(mutex);
8038 
8039 	mutex_lock(&mutex);
8040 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8041 	/* make sure that internally we keep jiffies */
8042 	/* also, writing zero resets timeslice to default */
8043 	if (!ret && write) {
8044 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8045 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8046 	}
8047 	mutex_unlock(&mutex);
8048 	return ret;
8049 }
8050 
8051 #ifdef CONFIG_CGROUP_SCHED
8052 
8053 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8054 {
8055 	return css ? container_of(css, struct task_group, css) : NULL;
8056 }
8057 
8058 static struct cgroup_subsys_state *
8059 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8060 {
8061 	struct task_group *parent = css_tg(parent_css);
8062 	struct task_group *tg;
8063 
8064 	if (!parent) {
8065 		/* This is early initialization for the top cgroup */
8066 		return &root_task_group.css;
8067 	}
8068 
8069 	tg = sched_create_group(parent);
8070 	if (IS_ERR(tg))
8071 		return ERR_PTR(-ENOMEM);
8072 
8073 	sched_online_group(tg, parent);
8074 
8075 	return &tg->css;
8076 }
8077 
8078 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8079 {
8080 	struct task_group *tg = css_tg(css);
8081 
8082 	sched_offline_group(tg);
8083 }
8084 
8085 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8086 {
8087 	struct task_group *tg = css_tg(css);
8088 
8089 	/*
8090 	 * Relies on the RCU grace period between css_released() and this.
8091 	 */
8092 	sched_free_group(tg);
8093 }
8094 
8095 static void cpu_cgroup_fork(struct task_struct *task)
8096 {
8097 	sched_move_task(task);
8098 }
8099 
8100 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8101 {
8102 	struct task_struct *task;
8103 	struct cgroup_subsys_state *css;
8104 
8105 	cgroup_taskset_for_each(task, css, tset) {
8106 #ifdef CONFIG_RT_GROUP_SCHED
8107 		if (!sched_rt_can_attach(css_tg(css), task))
8108 			return -EINVAL;
8109 #else
8110 		/* We don't support RT-tasks being in separate groups */
8111 		if (task->sched_class != &fair_sched_class)
8112 			return -EINVAL;
8113 #endif
8114 	}
8115 	return 0;
8116 }
8117 
8118 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8119 {
8120 	struct task_struct *task;
8121 	struct cgroup_subsys_state *css;
8122 
8123 	cgroup_taskset_for_each(task, css, tset)
8124 		sched_move_task(task);
8125 }
8126 
8127 #ifdef CONFIG_FAIR_GROUP_SCHED
8128 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8129 				struct cftype *cftype, u64 shareval)
8130 {
8131 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8132 }
8133 
8134 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8135 			       struct cftype *cft)
8136 {
8137 	struct task_group *tg = css_tg(css);
8138 
8139 	return (u64) scale_load_down(tg->shares);
8140 }
8141 
8142 #ifdef CONFIG_CFS_BANDWIDTH
8143 static DEFINE_MUTEX(cfs_constraints_mutex);
8144 
8145 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8146 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8147 
8148 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8149 
8150 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8151 {
8152 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8153 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8154 
8155 	if (tg == &root_task_group)
8156 		return -EINVAL;
8157 
8158 	/*
8159 	 * Ensure we have at some amount of bandwidth every period.  This is
8160 	 * to prevent reaching a state of large arrears when throttled via
8161 	 * entity_tick() resulting in prolonged exit starvation.
8162 	 */
8163 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8164 		return -EINVAL;
8165 
8166 	/*
8167 	 * Likewise, bound things on the otherside by preventing insane quota
8168 	 * periods.  This also allows us to normalize in computing quota
8169 	 * feasibility.
8170 	 */
8171 	if (period > max_cfs_quota_period)
8172 		return -EINVAL;
8173 
8174 	/*
8175 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8176 	 * unthrottle_offline_cfs_rqs().
8177 	 */
8178 	get_online_cpus();
8179 	mutex_lock(&cfs_constraints_mutex);
8180 	ret = __cfs_schedulable(tg, period, quota);
8181 	if (ret)
8182 		goto out_unlock;
8183 
8184 	runtime_enabled = quota != RUNTIME_INF;
8185 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8186 	/*
8187 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8188 	 * before making related changes, and on->off must occur afterwards
8189 	 */
8190 	if (runtime_enabled && !runtime_was_enabled)
8191 		cfs_bandwidth_usage_inc();
8192 	raw_spin_lock_irq(&cfs_b->lock);
8193 	cfs_b->period = ns_to_ktime(period);
8194 	cfs_b->quota = quota;
8195 
8196 	__refill_cfs_bandwidth_runtime(cfs_b);
8197 	/* restart the period timer (if active) to handle new period expiry */
8198 	if (runtime_enabled)
8199 		start_cfs_bandwidth(cfs_b);
8200 	raw_spin_unlock_irq(&cfs_b->lock);
8201 
8202 	for_each_online_cpu(i) {
8203 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8204 		struct rq *rq = cfs_rq->rq;
8205 
8206 		raw_spin_lock_irq(&rq->lock);
8207 		cfs_rq->runtime_enabled = runtime_enabled;
8208 		cfs_rq->runtime_remaining = 0;
8209 
8210 		if (cfs_rq->throttled)
8211 			unthrottle_cfs_rq(cfs_rq);
8212 		raw_spin_unlock_irq(&rq->lock);
8213 	}
8214 	if (runtime_was_enabled && !runtime_enabled)
8215 		cfs_bandwidth_usage_dec();
8216 out_unlock:
8217 	mutex_unlock(&cfs_constraints_mutex);
8218 	put_online_cpus();
8219 
8220 	return ret;
8221 }
8222 
8223 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8224 {
8225 	u64 quota, period;
8226 
8227 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8228 	if (cfs_quota_us < 0)
8229 		quota = RUNTIME_INF;
8230 	else
8231 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8232 
8233 	return tg_set_cfs_bandwidth(tg, period, quota);
8234 }
8235 
8236 long tg_get_cfs_quota(struct task_group *tg)
8237 {
8238 	u64 quota_us;
8239 
8240 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8241 		return -1;
8242 
8243 	quota_us = tg->cfs_bandwidth.quota;
8244 	do_div(quota_us, NSEC_PER_USEC);
8245 
8246 	return quota_us;
8247 }
8248 
8249 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8250 {
8251 	u64 quota, period;
8252 
8253 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8254 	quota = tg->cfs_bandwidth.quota;
8255 
8256 	return tg_set_cfs_bandwidth(tg, period, quota);
8257 }
8258 
8259 long tg_get_cfs_period(struct task_group *tg)
8260 {
8261 	u64 cfs_period_us;
8262 
8263 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8264 	do_div(cfs_period_us, NSEC_PER_USEC);
8265 
8266 	return cfs_period_us;
8267 }
8268 
8269 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8270 				  struct cftype *cft)
8271 {
8272 	return tg_get_cfs_quota(css_tg(css));
8273 }
8274 
8275 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8276 				   struct cftype *cftype, s64 cfs_quota_us)
8277 {
8278 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8279 }
8280 
8281 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8282 				   struct cftype *cft)
8283 {
8284 	return tg_get_cfs_period(css_tg(css));
8285 }
8286 
8287 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8288 				    struct cftype *cftype, u64 cfs_period_us)
8289 {
8290 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8291 }
8292 
8293 struct cfs_schedulable_data {
8294 	struct task_group *tg;
8295 	u64 period, quota;
8296 };
8297 
8298 /*
8299  * normalize group quota/period to be quota/max_period
8300  * note: units are usecs
8301  */
8302 static u64 normalize_cfs_quota(struct task_group *tg,
8303 			       struct cfs_schedulable_data *d)
8304 {
8305 	u64 quota, period;
8306 
8307 	if (tg == d->tg) {
8308 		period = d->period;
8309 		quota = d->quota;
8310 	} else {
8311 		period = tg_get_cfs_period(tg);
8312 		quota = tg_get_cfs_quota(tg);
8313 	}
8314 
8315 	/* note: these should typically be equivalent */
8316 	if (quota == RUNTIME_INF || quota == -1)
8317 		return RUNTIME_INF;
8318 
8319 	return to_ratio(period, quota);
8320 }
8321 
8322 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8323 {
8324 	struct cfs_schedulable_data *d = data;
8325 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8326 	s64 quota = 0, parent_quota = -1;
8327 
8328 	if (!tg->parent) {
8329 		quota = RUNTIME_INF;
8330 	} else {
8331 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8332 
8333 		quota = normalize_cfs_quota(tg, d);
8334 		parent_quota = parent_b->hierarchical_quota;
8335 
8336 		/*
8337 		 * ensure max(child_quota) <= parent_quota, inherit when no
8338 		 * limit is set
8339 		 */
8340 		if (quota == RUNTIME_INF)
8341 			quota = parent_quota;
8342 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8343 			return -EINVAL;
8344 	}
8345 	cfs_b->hierarchical_quota = quota;
8346 
8347 	return 0;
8348 }
8349 
8350 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8351 {
8352 	int ret;
8353 	struct cfs_schedulable_data data = {
8354 		.tg = tg,
8355 		.period = period,
8356 		.quota = quota,
8357 	};
8358 
8359 	if (quota != RUNTIME_INF) {
8360 		do_div(data.period, NSEC_PER_USEC);
8361 		do_div(data.quota, NSEC_PER_USEC);
8362 	}
8363 
8364 	rcu_read_lock();
8365 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8366 	rcu_read_unlock();
8367 
8368 	return ret;
8369 }
8370 
8371 static int cpu_stats_show(struct seq_file *sf, void *v)
8372 {
8373 	struct task_group *tg = css_tg(seq_css(sf));
8374 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8375 
8376 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8377 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8378 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8379 
8380 	return 0;
8381 }
8382 #endif /* CONFIG_CFS_BANDWIDTH */
8383 #endif /* CONFIG_FAIR_GROUP_SCHED */
8384 
8385 #ifdef CONFIG_RT_GROUP_SCHED
8386 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8387 				struct cftype *cft, s64 val)
8388 {
8389 	return sched_group_set_rt_runtime(css_tg(css), val);
8390 }
8391 
8392 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8393 			       struct cftype *cft)
8394 {
8395 	return sched_group_rt_runtime(css_tg(css));
8396 }
8397 
8398 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8399 				    struct cftype *cftype, u64 rt_period_us)
8400 {
8401 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8402 }
8403 
8404 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8405 				   struct cftype *cft)
8406 {
8407 	return sched_group_rt_period(css_tg(css));
8408 }
8409 #endif /* CONFIG_RT_GROUP_SCHED */
8410 
8411 static struct cftype cpu_files[] = {
8412 #ifdef CONFIG_FAIR_GROUP_SCHED
8413 	{
8414 		.name = "shares",
8415 		.read_u64 = cpu_shares_read_u64,
8416 		.write_u64 = cpu_shares_write_u64,
8417 	},
8418 #endif
8419 #ifdef CONFIG_CFS_BANDWIDTH
8420 	{
8421 		.name = "cfs_quota_us",
8422 		.read_s64 = cpu_cfs_quota_read_s64,
8423 		.write_s64 = cpu_cfs_quota_write_s64,
8424 	},
8425 	{
8426 		.name = "cfs_period_us",
8427 		.read_u64 = cpu_cfs_period_read_u64,
8428 		.write_u64 = cpu_cfs_period_write_u64,
8429 	},
8430 	{
8431 		.name = "stat",
8432 		.seq_show = cpu_stats_show,
8433 	},
8434 #endif
8435 #ifdef CONFIG_RT_GROUP_SCHED
8436 	{
8437 		.name = "rt_runtime_us",
8438 		.read_s64 = cpu_rt_runtime_read,
8439 		.write_s64 = cpu_rt_runtime_write,
8440 	},
8441 	{
8442 		.name = "rt_period_us",
8443 		.read_u64 = cpu_rt_period_read_uint,
8444 		.write_u64 = cpu_rt_period_write_uint,
8445 	},
8446 #endif
8447 	{ }	/* terminate */
8448 };
8449 
8450 struct cgroup_subsys cpu_cgrp_subsys = {
8451 	.css_alloc	= cpu_cgroup_css_alloc,
8452 	.css_released	= cpu_cgroup_css_released,
8453 	.css_free	= cpu_cgroup_css_free,
8454 	.fork		= cpu_cgroup_fork,
8455 	.can_attach	= cpu_cgroup_can_attach,
8456 	.attach		= cpu_cgroup_attach,
8457 	.legacy_cftypes	= cpu_files,
8458 	.early_init	= true,
8459 };
8460 
8461 #endif	/* CONFIG_CGROUP_SCHED */
8462 
8463 void dump_cpu_task(int cpu)
8464 {
8465 	pr_info("Task dump for CPU %d:\n", cpu);
8466 	sched_show_task(cpu_curr(cpu));
8467 }
8468 
8469 /*
8470  * Nice levels are multiplicative, with a gentle 10% change for every
8471  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8472  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8473  * that remained on nice 0.
8474  *
8475  * The "10% effect" is relative and cumulative: from _any_ nice level,
8476  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8477  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8478  * If a task goes up by ~10% and another task goes down by ~10% then
8479  * the relative distance between them is ~25%.)
8480  */
8481 const int sched_prio_to_weight[40] = {
8482  /* -20 */     88761,     71755,     56483,     46273,     36291,
8483  /* -15 */     29154,     23254,     18705,     14949,     11916,
8484  /* -10 */      9548,      7620,      6100,      4904,      3906,
8485  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8486  /*   0 */      1024,       820,       655,       526,       423,
8487  /*   5 */       335,       272,       215,       172,       137,
8488  /*  10 */       110,        87,        70,        56,        45,
8489  /*  15 */        36,        29,        23,        18,        15,
8490 };
8491 
8492 /*
8493  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8494  *
8495  * In cases where the weight does not change often, we can use the
8496  * precalculated inverse to speed up arithmetics by turning divisions
8497  * into multiplications:
8498  */
8499 const u32 sched_prio_to_wmult[40] = {
8500  /* -20 */     48388,     59856,     76040,     92818,    118348,
8501  /* -15 */    147320,    184698,    229616,    287308,    360437,
8502  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8503  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8504  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8505  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8506  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8507  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8508 };
8509