xref: /openbmc/linux/kernel/sched/core.c (revision 0eb76ba2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12 
13 #include "sched.h"
14 
15 #include <linux/nospec.h>
16 
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22 
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26 
27 #include "pelt.h"
28 #include "smp.h"
29 
30 /*
31  * Export tracepoints that act as a bare tracehook (ie: have no trace event
32  * associated with them) to allow external modules to probe them.
33  */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44 
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46 
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49  * Debugging: various feature bits
50  *
51  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52  * sysctl_sched_features, defined in sched.h, to allow constants propagation
53  * at compile time and compiler optimization based on features default.
54  */
55 #define SCHED_FEAT(name, enabled)	\
56 	(1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 	0;
60 #undef SCHED_FEAT
61 #endif
62 
63 /*
64  * Number of tasks to iterate in a single balance run.
65  * Limited because this is done with IRQs disabled.
66  */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68 
69 /*
70  * period over which we measure -rt task CPU usage in us.
71  * default: 1s
72  */
73 unsigned int sysctl_sched_rt_period = 1000000;
74 
75 __read_mostly int scheduler_running;
76 
77 /*
78  * part of the period that we allow rt tasks to run in us.
79  * default: 0.95s
80  */
81 int sysctl_sched_rt_runtime = 950000;
82 
83 
84 /*
85  * Serialization rules:
86  *
87  * Lock order:
88  *
89  *   p->pi_lock
90  *     rq->lock
91  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92  *
93  *  rq1->lock
94  *    rq2->lock  where: rq1 < rq2
95  *
96  * Regular state:
97  *
98  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99  * local CPU's rq->lock, it optionally removes the task from the runqueue and
100  * always looks at the local rq data structures to find the most eligible task
101  * to run next.
102  *
103  * Task enqueue is also under rq->lock, possibly taken from another CPU.
104  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105  * the local CPU to avoid bouncing the runqueue state around [ see
106  * ttwu_queue_wakelist() ]
107  *
108  * Task wakeup, specifically wakeups that involve migration, are horribly
109  * complicated to avoid having to take two rq->locks.
110  *
111  * Special state:
112  *
113  * System-calls and anything external will use task_rq_lock() which acquires
114  * both p->pi_lock and rq->lock. As a consequence the state they change is
115  * stable while holding either lock:
116  *
117  *  - sched_setaffinity()/
118  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
119  *  - set_user_nice():		p->se.load, p->*prio
120  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
121  *				p->se.load, p->rt_priority,
122  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
123  *  - sched_setnuma():		p->numa_preferred_nid
124  *  - sched_move_task()/
125  *    cpu_cgroup_fork():	p->sched_task_group
126  *  - uclamp_update_active()	p->uclamp*
127  *
128  * p->state <- TASK_*:
129  *
130  *   is changed locklessly using set_current_state(), __set_current_state() or
131  *   set_special_state(), see their respective comments, or by
132  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
133  *   concurrent self.
134  *
135  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136  *
137  *   is set by activate_task() and cleared by deactivate_task(), under
138  *   rq->lock. Non-zero indicates the task is runnable, the special
139  *   ON_RQ_MIGRATING state is used for migration without holding both
140  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141  *
142  * p->on_cpu <- { 0, 1 }:
143  *
144  *   is set by prepare_task() and cleared by finish_task() such that it will be
145  *   set before p is scheduled-in and cleared after p is scheduled-out, both
146  *   under rq->lock. Non-zero indicates the task is running on its CPU.
147  *
148  *   [ The astute reader will observe that it is possible for two tasks on one
149  *     CPU to have ->on_cpu = 1 at the same time. ]
150  *
151  * task_cpu(p): is changed by set_task_cpu(), the rules are:
152  *
153  *  - Don't call set_task_cpu() on a blocked task:
154  *
155  *    We don't care what CPU we're not running on, this simplifies hotplug,
156  *    the CPU assignment of blocked tasks isn't required to be valid.
157  *
158  *  - for try_to_wake_up(), called under p->pi_lock:
159  *
160  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
161  *
162  *  - for migration called under rq->lock:
163  *    [ see task_on_rq_migrating() in task_rq_lock() ]
164  *
165  *    o move_queued_task()
166  *    o detach_task()
167  *
168  *  - for migration called under double_rq_lock():
169  *
170  *    o __migrate_swap_task()
171  *    o push_rt_task() / pull_rt_task()
172  *    o push_dl_task() / pull_dl_task()
173  *    o dl_task_offline_migration()
174  *
175  */
176 
177 /*
178  * __task_rq_lock - lock the rq @p resides on.
179  */
180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 	__acquires(rq->lock)
182 {
183 	struct rq *rq;
184 
185 	lockdep_assert_held(&p->pi_lock);
186 
187 	for (;;) {
188 		rq = task_rq(p);
189 		raw_spin_lock(&rq->lock);
190 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 			rq_pin_lock(rq, rf);
192 			return rq;
193 		}
194 		raw_spin_unlock(&rq->lock);
195 
196 		while (unlikely(task_on_rq_migrating(p)))
197 			cpu_relax();
198 	}
199 }
200 
201 /*
202  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203  */
204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 	__acquires(p->pi_lock)
206 	__acquires(rq->lock)
207 {
208 	struct rq *rq;
209 
210 	for (;;) {
211 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 		rq = task_rq(p);
213 		raw_spin_lock(&rq->lock);
214 		/*
215 		 *	move_queued_task()		task_rq_lock()
216 		 *
217 		 *	ACQUIRE (rq->lock)
218 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
219 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
220 		 *	[S] ->cpu = new_cpu		[L] task_rq()
221 		 *					[L] ->on_rq
222 		 *	RELEASE (rq->lock)
223 		 *
224 		 * If we observe the old CPU in task_rq_lock(), the acquire of
225 		 * the old rq->lock will fully serialize against the stores.
226 		 *
227 		 * If we observe the new CPU in task_rq_lock(), the address
228 		 * dependency headed by '[L] rq = task_rq()' and the acquire
229 		 * will pair with the WMB to ensure we then also see migrating.
230 		 */
231 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
232 			rq_pin_lock(rq, rf);
233 			return rq;
234 		}
235 		raw_spin_unlock(&rq->lock);
236 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
237 
238 		while (unlikely(task_on_rq_migrating(p)))
239 			cpu_relax();
240 	}
241 }
242 
243 /*
244  * RQ-clock updating methods:
245  */
246 
247 static void update_rq_clock_task(struct rq *rq, s64 delta)
248 {
249 /*
250  * In theory, the compile should just see 0 here, and optimize out the call
251  * to sched_rt_avg_update. But I don't trust it...
252  */
253 	s64 __maybe_unused steal = 0, irq_delta = 0;
254 
255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257 
258 	/*
259 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 	 * this case when a previous update_rq_clock() happened inside a
261 	 * {soft,}irq region.
262 	 *
263 	 * When this happens, we stop ->clock_task and only update the
264 	 * prev_irq_time stamp to account for the part that fit, so that a next
265 	 * update will consume the rest. This ensures ->clock_task is
266 	 * monotonic.
267 	 *
268 	 * It does however cause some slight miss-attribution of {soft,}irq
269 	 * time, a more accurate solution would be to update the irq_time using
270 	 * the current rq->clock timestamp, except that would require using
271 	 * atomic ops.
272 	 */
273 	if (irq_delta > delta)
274 		irq_delta = delta;
275 
276 	rq->prev_irq_time += irq_delta;
277 	delta -= irq_delta;
278 #endif
279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 	if (static_key_false((&paravirt_steal_rq_enabled))) {
281 		steal = paravirt_steal_clock(cpu_of(rq));
282 		steal -= rq->prev_steal_time_rq;
283 
284 		if (unlikely(steal > delta))
285 			steal = delta;
286 
287 		rq->prev_steal_time_rq += steal;
288 		delta -= steal;
289 	}
290 #endif
291 
292 	rq->clock_task += delta;
293 
294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
295 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
296 		update_irq_load_avg(rq, irq_delta + steal);
297 #endif
298 	update_rq_clock_pelt(rq, delta);
299 }
300 
301 void update_rq_clock(struct rq *rq)
302 {
303 	s64 delta;
304 
305 	lockdep_assert_held(&rq->lock);
306 
307 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 		return;
309 
310 #ifdef CONFIG_SCHED_DEBUG
311 	if (sched_feat(WARN_DOUBLE_CLOCK))
312 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
313 	rq->clock_update_flags |= RQCF_UPDATED;
314 #endif
315 
316 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 	if (delta < 0)
318 		return;
319 	rq->clock += delta;
320 	update_rq_clock_task(rq, delta);
321 }
322 
323 #ifdef CONFIG_SCHED_HRTICK
324 /*
325  * Use HR-timers to deliver accurate preemption points.
326  */
327 
328 static void hrtick_clear(struct rq *rq)
329 {
330 	if (hrtimer_active(&rq->hrtick_timer))
331 		hrtimer_cancel(&rq->hrtick_timer);
332 }
333 
334 /*
335  * High-resolution timer tick.
336  * Runs from hardirq context with interrupts disabled.
337  */
338 static enum hrtimer_restart hrtick(struct hrtimer *timer)
339 {
340 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
341 	struct rq_flags rf;
342 
343 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344 
345 	rq_lock(rq, &rf);
346 	update_rq_clock(rq);
347 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 	rq_unlock(rq, &rf);
349 
350 	return HRTIMER_NORESTART;
351 }
352 
353 #ifdef CONFIG_SMP
354 
355 static void __hrtick_restart(struct rq *rq)
356 {
357 	struct hrtimer *timer = &rq->hrtick_timer;
358 
359 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
360 }
361 
362 /*
363  * called from hardirq (IPI) context
364  */
365 static void __hrtick_start(void *arg)
366 {
367 	struct rq *rq = arg;
368 	struct rq_flags rf;
369 
370 	rq_lock(rq, &rf);
371 	__hrtick_restart(rq);
372 	rq_unlock(rq, &rf);
373 }
374 
375 /*
376  * Called to set the hrtick timer state.
377  *
378  * called with rq->lock held and irqs disabled
379  */
380 void hrtick_start(struct rq *rq, u64 delay)
381 {
382 	struct hrtimer *timer = &rq->hrtick_timer;
383 	ktime_t time;
384 	s64 delta;
385 
386 	/*
387 	 * Don't schedule slices shorter than 10000ns, that just
388 	 * doesn't make sense and can cause timer DoS.
389 	 */
390 	delta = max_t(s64, delay, 10000LL);
391 	time = ktime_add_ns(timer->base->get_time(), delta);
392 
393 	hrtimer_set_expires(timer, time);
394 
395 	if (rq == this_rq())
396 		__hrtick_restart(rq);
397 	else
398 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
399 }
400 
401 #else
402 /*
403  * Called to set the hrtick timer state.
404  *
405  * called with rq->lock held and irqs disabled
406  */
407 void hrtick_start(struct rq *rq, u64 delay)
408 {
409 	/*
410 	 * Don't schedule slices shorter than 10000ns, that just
411 	 * doesn't make sense. Rely on vruntime for fairness.
412 	 */
413 	delay = max_t(u64, delay, 10000LL);
414 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
415 		      HRTIMER_MODE_REL_PINNED_HARD);
416 }
417 
418 #endif /* CONFIG_SMP */
419 
420 static void hrtick_rq_init(struct rq *rq)
421 {
422 #ifdef CONFIG_SMP
423 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
424 #endif
425 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
426 	rq->hrtick_timer.function = hrtick;
427 }
428 #else	/* CONFIG_SCHED_HRTICK */
429 static inline void hrtick_clear(struct rq *rq)
430 {
431 }
432 
433 static inline void hrtick_rq_init(struct rq *rq)
434 {
435 }
436 #endif	/* CONFIG_SCHED_HRTICK */
437 
438 /*
439  * cmpxchg based fetch_or, macro so it works for different integer types
440  */
441 #define fetch_or(ptr, mask)						\
442 	({								\
443 		typeof(ptr) _ptr = (ptr);				\
444 		typeof(mask) _mask = (mask);				\
445 		typeof(*_ptr) _old, _val = *_ptr;			\
446 									\
447 		for (;;) {						\
448 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
449 			if (_old == _val)				\
450 				break;					\
451 			_val = _old;					\
452 		}							\
453 	_old;								\
454 })
455 
456 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
457 /*
458  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
459  * this avoids any races wrt polling state changes and thereby avoids
460  * spurious IPIs.
461  */
462 static bool set_nr_and_not_polling(struct task_struct *p)
463 {
464 	struct thread_info *ti = task_thread_info(p);
465 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
466 }
467 
468 /*
469  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
470  *
471  * If this returns true, then the idle task promises to call
472  * sched_ttwu_pending() and reschedule soon.
473  */
474 static bool set_nr_if_polling(struct task_struct *p)
475 {
476 	struct thread_info *ti = task_thread_info(p);
477 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
478 
479 	for (;;) {
480 		if (!(val & _TIF_POLLING_NRFLAG))
481 			return false;
482 		if (val & _TIF_NEED_RESCHED)
483 			return true;
484 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
485 		if (old == val)
486 			break;
487 		val = old;
488 	}
489 	return true;
490 }
491 
492 #else
493 static bool set_nr_and_not_polling(struct task_struct *p)
494 {
495 	set_tsk_need_resched(p);
496 	return true;
497 }
498 
499 #ifdef CONFIG_SMP
500 static bool set_nr_if_polling(struct task_struct *p)
501 {
502 	return false;
503 }
504 #endif
505 #endif
506 
507 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
508 {
509 	struct wake_q_node *node = &task->wake_q;
510 
511 	/*
512 	 * Atomically grab the task, if ->wake_q is !nil already it means
513 	 * it's already queued (either by us or someone else) and will get the
514 	 * wakeup due to that.
515 	 *
516 	 * In order to ensure that a pending wakeup will observe our pending
517 	 * state, even in the failed case, an explicit smp_mb() must be used.
518 	 */
519 	smp_mb__before_atomic();
520 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
521 		return false;
522 
523 	/*
524 	 * The head is context local, there can be no concurrency.
525 	 */
526 	*head->lastp = node;
527 	head->lastp = &node->next;
528 	return true;
529 }
530 
531 /**
532  * wake_q_add() - queue a wakeup for 'later' waking.
533  * @head: the wake_q_head to add @task to
534  * @task: the task to queue for 'later' wakeup
535  *
536  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
537  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
538  * instantly.
539  *
540  * This function must be used as-if it were wake_up_process(); IOW the task
541  * must be ready to be woken at this location.
542  */
543 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
544 {
545 	if (__wake_q_add(head, task))
546 		get_task_struct(task);
547 }
548 
549 /**
550  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
551  * @head: the wake_q_head to add @task to
552  * @task: the task to queue for 'later' wakeup
553  *
554  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
555  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
556  * instantly.
557  *
558  * This function must be used as-if it were wake_up_process(); IOW the task
559  * must be ready to be woken at this location.
560  *
561  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
562  * that already hold reference to @task can call the 'safe' version and trust
563  * wake_q to do the right thing depending whether or not the @task is already
564  * queued for wakeup.
565  */
566 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
567 {
568 	if (!__wake_q_add(head, task))
569 		put_task_struct(task);
570 }
571 
572 void wake_up_q(struct wake_q_head *head)
573 {
574 	struct wake_q_node *node = head->first;
575 
576 	while (node != WAKE_Q_TAIL) {
577 		struct task_struct *task;
578 
579 		task = container_of(node, struct task_struct, wake_q);
580 		BUG_ON(!task);
581 		/* Task can safely be re-inserted now: */
582 		node = node->next;
583 		task->wake_q.next = NULL;
584 
585 		/*
586 		 * wake_up_process() executes a full barrier, which pairs with
587 		 * the queueing in wake_q_add() so as not to miss wakeups.
588 		 */
589 		wake_up_process(task);
590 		put_task_struct(task);
591 	}
592 }
593 
594 /*
595  * resched_curr - mark rq's current task 'to be rescheduled now'.
596  *
597  * On UP this means the setting of the need_resched flag, on SMP it
598  * might also involve a cross-CPU call to trigger the scheduler on
599  * the target CPU.
600  */
601 void resched_curr(struct rq *rq)
602 {
603 	struct task_struct *curr = rq->curr;
604 	int cpu;
605 
606 	lockdep_assert_held(&rq->lock);
607 
608 	if (test_tsk_need_resched(curr))
609 		return;
610 
611 	cpu = cpu_of(rq);
612 
613 	if (cpu == smp_processor_id()) {
614 		set_tsk_need_resched(curr);
615 		set_preempt_need_resched();
616 		return;
617 	}
618 
619 	if (set_nr_and_not_polling(curr))
620 		smp_send_reschedule(cpu);
621 	else
622 		trace_sched_wake_idle_without_ipi(cpu);
623 }
624 
625 void resched_cpu(int cpu)
626 {
627 	struct rq *rq = cpu_rq(cpu);
628 	unsigned long flags;
629 
630 	raw_spin_lock_irqsave(&rq->lock, flags);
631 	if (cpu_online(cpu) || cpu == smp_processor_id())
632 		resched_curr(rq);
633 	raw_spin_unlock_irqrestore(&rq->lock, flags);
634 }
635 
636 #ifdef CONFIG_SMP
637 #ifdef CONFIG_NO_HZ_COMMON
638 /*
639  * In the semi idle case, use the nearest busy CPU for migrating timers
640  * from an idle CPU.  This is good for power-savings.
641  *
642  * We don't do similar optimization for completely idle system, as
643  * selecting an idle CPU will add more delays to the timers than intended
644  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
645  */
646 int get_nohz_timer_target(void)
647 {
648 	int i, cpu = smp_processor_id(), default_cpu = -1;
649 	struct sched_domain *sd;
650 
651 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
652 		if (!idle_cpu(cpu))
653 			return cpu;
654 		default_cpu = cpu;
655 	}
656 
657 	rcu_read_lock();
658 	for_each_domain(cpu, sd) {
659 		for_each_cpu_and(i, sched_domain_span(sd),
660 			housekeeping_cpumask(HK_FLAG_TIMER)) {
661 			if (cpu == i)
662 				continue;
663 
664 			if (!idle_cpu(i)) {
665 				cpu = i;
666 				goto unlock;
667 			}
668 		}
669 	}
670 
671 	if (default_cpu == -1)
672 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
673 	cpu = default_cpu;
674 unlock:
675 	rcu_read_unlock();
676 	return cpu;
677 }
678 
679 /*
680  * When add_timer_on() enqueues a timer into the timer wheel of an
681  * idle CPU then this timer might expire before the next timer event
682  * which is scheduled to wake up that CPU. In case of a completely
683  * idle system the next event might even be infinite time into the
684  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
685  * leaves the inner idle loop so the newly added timer is taken into
686  * account when the CPU goes back to idle and evaluates the timer
687  * wheel for the next timer event.
688  */
689 static void wake_up_idle_cpu(int cpu)
690 {
691 	struct rq *rq = cpu_rq(cpu);
692 
693 	if (cpu == smp_processor_id())
694 		return;
695 
696 	if (set_nr_and_not_polling(rq->idle))
697 		smp_send_reschedule(cpu);
698 	else
699 		trace_sched_wake_idle_without_ipi(cpu);
700 }
701 
702 static bool wake_up_full_nohz_cpu(int cpu)
703 {
704 	/*
705 	 * We just need the target to call irq_exit() and re-evaluate
706 	 * the next tick. The nohz full kick at least implies that.
707 	 * If needed we can still optimize that later with an
708 	 * empty IRQ.
709 	 */
710 	if (cpu_is_offline(cpu))
711 		return true;  /* Don't try to wake offline CPUs. */
712 	if (tick_nohz_full_cpu(cpu)) {
713 		if (cpu != smp_processor_id() ||
714 		    tick_nohz_tick_stopped())
715 			tick_nohz_full_kick_cpu(cpu);
716 		return true;
717 	}
718 
719 	return false;
720 }
721 
722 /*
723  * Wake up the specified CPU.  If the CPU is going offline, it is the
724  * caller's responsibility to deal with the lost wakeup, for example,
725  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
726  */
727 void wake_up_nohz_cpu(int cpu)
728 {
729 	if (!wake_up_full_nohz_cpu(cpu))
730 		wake_up_idle_cpu(cpu);
731 }
732 
733 static void nohz_csd_func(void *info)
734 {
735 	struct rq *rq = info;
736 	int cpu = cpu_of(rq);
737 	unsigned int flags;
738 
739 	/*
740 	 * Release the rq::nohz_csd.
741 	 */
742 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
743 	WARN_ON(!(flags & NOHZ_KICK_MASK));
744 
745 	rq->idle_balance = idle_cpu(cpu);
746 	if (rq->idle_balance && !need_resched()) {
747 		rq->nohz_idle_balance = flags;
748 		raise_softirq_irqoff(SCHED_SOFTIRQ);
749 	}
750 }
751 
752 #endif /* CONFIG_NO_HZ_COMMON */
753 
754 #ifdef CONFIG_NO_HZ_FULL
755 bool sched_can_stop_tick(struct rq *rq)
756 {
757 	int fifo_nr_running;
758 
759 	/* Deadline tasks, even if single, need the tick */
760 	if (rq->dl.dl_nr_running)
761 		return false;
762 
763 	/*
764 	 * If there are more than one RR tasks, we need the tick to affect the
765 	 * actual RR behaviour.
766 	 */
767 	if (rq->rt.rr_nr_running) {
768 		if (rq->rt.rr_nr_running == 1)
769 			return true;
770 		else
771 			return false;
772 	}
773 
774 	/*
775 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
776 	 * forced preemption between FIFO tasks.
777 	 */
778 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
779 	if (fifo_nr_running)
780 		return true;
781 
782 	/*
783 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
784 	 * if there's more than one we need the tick for involuntary
785 	 * preemption.
786 	 */
787 	if (rq->nr_running > 1)
788 		return false;
789 
790 	return true;
791 }
792 #endif /* CONFIG_NO_HZ_FULL */
793 #endif /* CONFIG_SMP */
794 
795 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
796 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
797 /*
798  * Iterate task_group tree rooted at *from, calling @down when first entering a
799  * node and @up when leaving it for the final time.
800  *
801  * Caller must hold rcu_lock or sufficient equivalent.
802  */
803 int walk_tg_tree_from(struct task_group *from,
804 			     tg_visitor down, tg_visitor up, void *data)
805 {
806 	struct task_group *parent, *child;
807 	int ret;
808 
809 	parent = from;
810 
811 down:
812 	ret = (*down)(parent, data);
813 	if (ret)
814 		goto out;
815 	list_for_each_entry_rcu(child, &parent->children, siblings) {
816 		parent = child;
817 		goto down;
818 
819 up:
820 		continue;
821 	}
822 	ret = (*up)(parent, data);
823 	if (ret || parent == from)
824 		goto out;
825 
826 	child = parent;
827 	parent = parent->parent;
828 	if (parent)
829 		goto up;
830 out:
831 	return ret;
832 }
833 
834 int tg_nop(struct task_group *tg, void *data)
835 {
836 	return 0;
837 }
838 #endif
839 
840 static void set_load_weight(struct task_struct *p, bool update_load)
841 {
842 	int prio = p->static_prio - MAX_RT_PRIO;
843 	struct load_weight *load = &p->se.load;
844 
845 	/*
846 	 * SCHED_IDLE tasks get minimal weight:
847 	 */
848 	if (task_has_idle_policy(p)) {
849 		load->weight = scale_load(WEIGHT_IDLEPRIO);
850 		load->inv_weight = WMULT_IDLEPRIO;
851 		return;
852 	}
853 
854 	/*
855 	 * SCHED_OTHER tasks have to update their load when changing their
856 	 * weight
857 	 */
858 	if (update_load && p->sched_class == &fair_sched_class) {
859 		reweight_task(p, prio);
860 	} else {
861 		load->weight = scale_load(sched_prio_to_weight[prio]);
862 		load->inv_weight = sched_prio_to_wmult[prio];
863 	}
864 }
865 
866 #ifdef CONFIG_UCLAMP_TASK
867 /*
868  * Serializes updates of utilization clamp values
869  *
870  * The (slow-path) user-space triggers utilization clamp value updates which
871  * can require updates on (fast-path) scheduler's data structures used to
872  * support enqueue/dequeue operations.
873  * While the per-CPU rq lock protects fast-path update operations, user-space
874  * requests are serialized using a mutex to reduce the risk of conflicting
875  * updates or API abuses.
876  */
877 static DEFINE_MUTEX(uclamp_mutex);
878 
879 /* Max allowed minimum utilization */
880 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
881 
882 /* Max allowed maximum utilization */
883 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
884 
885 /*
886  * By default RT tasks run at the maximum performance point/capacity of the
887  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
888  * SCHED_CAPACITY_SCALE.
889  *
890  * This knob allows admins to change the default behavior when uclamp is being
891  * used. In battery powered devices, particularly, running at the maximum
892  * capacity and frequency will increase energy consumption and shorten the
893  * battery life.
894  *
895  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
896  *
897  * This knob will not override the system default sched_util_clamp_min defined
898  * above.
899  */
900 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
901 
902 /* All clamps are required to be less or equal than these values */
903 static struct uclamp_se uclamp_default[UCLAMP_CNT];
904 
905 /*
906  * This static key is used to reduce the uclamp overhead in the fast path. It
907  * primarily disables the call to uclamp_rq_{inc, dec}() in
908  * enqueue/dequeue_task().
909  *
910  * This allows users to continue to enable uclamp in their kernel config with
911  * minimum uclamp overhead in the fast path.
912  *
913  * As soon as userspace modifies any of the uclamp knobs, the static key is
914  * enabled, since we have an actual users that make use of uclamp
915  * functionality.
916  *
917  * The knobs that would enable this static key are:
918  *
919  *   * A task modifying its uclamp value with sched_setattr().
920  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
921  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
922  */
923 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
924 
925 /* Integer rounded range for each bucket */
926 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
927 
928 #define for_each_clamp_id(clamp_id) \
929 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
930 
931 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
932 {
933 	return clamp_value / UCLAMP_BUCKET_DELTA;
934 }
935 
936 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
937 {
938 	if (clamp_id == UCLAMP_MIN)
939 		return 0;
940 	return SCHED_CAPACITY_SCALE;
941 }
942 
943 static inline void uclamp_se_set(struct uclamp_se *uc_se,
944 				 unsigned int value, bool user_defined)
945 {
946 	uc_se->value = value;
947 	uc_se->bucket_id = uclamp_bucket_id(value);
948 	uc_se->user_defined = user_defined;
949 }
950 
951 static inline unsigned int
952 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
953 		  unsigned int clamp_value)
954 {
955 	/*
956 	 * Avoid blocked utilization pushing up the frequency when we go
957 	 * idle (which drops the max-clamp) by retaining the last known
958 	 * max-clamp.
959 	 */
960 	if (clamp_id == UCLAMP_MAX) {
961 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
962 		return clamp_value;
963 	}
964 
965 	return uclamp_none(UCLAMP_MIN);
966 }
967 
968 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
969 				     unsigned int clamp_value)
970 {
971 	/* Reset max-clamp retention only on idle exit */
972 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
973 		return;
974 
975 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
976 }
977 
978 static inline
979 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
980 				   unsigned int clamp_value)
981 {
982 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
983 	int bucket_id = UCLAMP_BUCKETS - 1;
984 
985 	/*
986 	 * Since both min and max clamps are max aggregated, find the
987 	 * top most bucket with tasks in.
988 	 */
989 	for ( ; bucket_id >= 0; bucket_id--) {
990 		if (!bucket[bucket_id].tasks)
991 			continue;
992 		return bucket[bucket_id].value;
993 	}
994 
995 	/* No tasks -- default clamp values */
996 	return uclamp_idle_value(rq, clamp_id, clamp_value);
997 }
998 
999 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1000 {
1001 	unsigned int default_util_min;
1002 	struct uclamp_se *uc_se;
1003 
1004 	lockdep_assert_held(&p->pi_lock);
1005 
1006 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1007 
1008 	/* Only sync if user didn't override the default */
1009 	if (uc_se->user_defined)
1010 		return;
1011 
1012 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1013 	uclamp_se_set(uc_se, default_util_min, false);
1014 }
1015 
1016 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1017 {
1018 	struct rq_flags rf;
1019 	struct rq *rq;
1020 
1021 	if (!rt_task(p))
1022 		return;
1023 
1024 	/* Protect updates to p->uclamp_* */
1025 	rq = task_rq_lock(p, &rf);
1026 	__uclamp_update_util_min_rt_default(p);
1027 	task_rq_unlock(rq, p, &rf);
1028 }
1029 
1030 static void uclamp_sync_util_min_rt_default(void)
1031 {
1032 	struct task_struct *g, *p;
1033 
1034 	/*
1035 	 * copy_process()			sysctl_uclamp
1036 	 *					  uclamp_min_rt = X;
1037 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1038 	 *   // link thread			  smp_mb__after_spinlock()
1039 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1040 	 *   sched_post_fork()			  for_each_process_thread()
1041 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1042 	 *
1043 	 * Ensures that either sched_post_fork() will observe the new
1044 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1045 	 * task.
1046 	 */
1047 	read_lock(&tasklist_lock);
1048 	smp_mb__after_spinlock();
1049 	read_unlock(&tasklist_lock);
1050 
1051 	rcu_read_lock();
1052 	for_each_process_thread(g, p)
1053 		uclamp_update_util_min_rt_default(p);
1054 	rcu_read_unlock();
1055 }
1056 
1057 static inline struct uclamp_se
1058 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1059 {
1060 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1061 #ifdef CONFIG_UCLAMP_TASK_GROUP
1062 	struct uclamp_se uc_max;
1063 
1064 	/*
1065 	 * Tasks in autogroups or root task group will be
1066 	 * restricted by system defaults.
1067 	 */
1068 	if (task_group_is_autogroup(task_group(p)))
1069 		return uc_req;
1070 	if (task_group(p) == &root_task_group)
1071 		return uc_req;
1072 
1073 	uc_max = task_group(p)->uclamp[clamp_id];
1074 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1075 		return uc_max;
1076 #endif
1077 
1078 	return uc_req;
1079 }
1080 
1081 /*
1082  * The effective clamp bucket index of a task depends on, by increasing
1083  * priority:
1084  * - the task specific clamp value, when explicitly requested from userspace
1085  * - the task group effective clamp value, for tasks not either in the root
1086  *   group or in an autogroup
1087  * - the system default clamp value, defined by the sysadmin
1088  */
1089 static inline struct uclamp_se
1090 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1091 {
1092 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1093 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1094 
1095 	/* System default restrictions always apply */
1096 	if (unlikely(uc_req.value > uc_max.value))
1097 		return uc_max;
1098 
1099 	return uc_req;
1100 }
1101 
1102 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1103 {
1104 	struct uclamp_se uc_eff;
1105 
1106 	/* Task currently refcounted: use back-annotated (effective) value */
1107 	if (p->uclamp[clamp_id].active)
1108 		return (unsigned long)p->uclamp[clamp_id].value;
1109 
1110 	uc_eff = uclamp_eff_get(p, clamp_id);
1111 
1112 	return (unsigned long)uc_eff.value;
1113 }
1114 
1115 /*
1116  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1117  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1118  * updates the rq's clamp value if required.
1119  *
1120  * Tasks can have a task-specific value requested from user-space, track
1121  * within each bucket the maximum value for tasks refcounted in it.
1122  * This "local max aggregation" allows to track the exact "requested" value
1123  * for each bucket when all its RUNNABLE tasks require the same clamp.
1124  */
1125 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1126 				    enum uclamp_id clamp_id)
1127 {
1128 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1129 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1130 	struct uclamp_bucket *bucket;
1131 
1132 	lockdep_assert_held(&rq->lock);
1133 
1134 	/* Update task effective clamp */
1135 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1136 
1137 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1138 	bucket->tasks++;
1139 	uc_se->active = true;
1140 
1141 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1142 
1143 	/*
1144 	 * Local max aggregation: rq buckets always track the max
1145 	 * "requested" clamp value of its RUNNABLE tasks.
1146 	 */
1147 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1148 		bucket->value = uc_se->value;
1149 
1150 	if (uc_se->value > READ_ONCE(uc_rq->value))
1151 		WRITE_ONCE(uc_rq->value, uc_se->value);
1152 }
1153 
1154 /*
1155  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1156  * is released. If this is the last task reference counting the rq's max
1157  * active clamp value, then the rq's clamp value is updated.
1158  *
1159  * Both refcounted tasks and rq's cached clamp values are expected to be
1160  * always valid. If it's detected they are not, as defensive programming,
1161  * enforce the expected state and warn.
1162  */
1163 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1164 				    enum uclamp_id clamp_id)
1165 {
1166 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1167 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1168 	struct uclamp_bucket *bucket;
1169 	unsigned int bkt_clamp;
1170 	unsigned int rq_clamp;
1171 
1172 	lockdep_assert_held(&rq->lock);
1173 
1174 	/*
1175 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1176 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1177 	 *
1178 	 * In this case the uc_se->active flag should be false since no uclamp
1179 	 * accounting was performed at enqueue time and we can just return
1180 	 * here.
1181 	 *
1182 	 * Need to be careful of the following enqueue/dequeue ordering
1183 	 * problem too
1184 	 *
1185 	 *	enqueue(taskA)
1186 	 *	// sched_uclamp_used gets enabled
1187 	 *	enqueue(taskB)
1188 	 *	dequeue(taskA)
1189 	 *	// Must not decrement bucket->tasks here
1190 	 *	dequeue(taskB)
1191 	 *
1192 	 * where we could end up with stale data in uc_se and
1193 	 * bucket[uc_se->bucket_id].
1194 	 *
1195 	 * The following check here eliminates the possibility of such race.
1196 	 */
1197 	if (unlikely(!uc_se->active))
1198 		return;
1199 
1200 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1201 
1202 	SCHED_WARN_ON(!bucket->tasks);
1203 	if (likely(bucket->tasks))
1204 		bucket->tasks--;
1205 
1206 	uc_se->active = false;
1207 
1208 	/*
1209 	 * Keep "local max aggregation" simple and accept to (possibly)
1210 	 * overboost some RUNNABLE tasks in the same bucket.
1211 	 * The rq clamp bucket value is reset to its base value whenever
1212 	 * there are no more RUNNABLE tasks refcounting it.
1213 	 */
1214 	if (likely(bucket->tasks))
1215 		return;
1216 
1217 	rq_clamp = READ_ONCE(uc_rq->value);
1218 	/*
1219 	 * Defensive programming: this should never happen. If it happens,
1220 	 * e.g. due to future modification, warn and fixup the expected value.
1221 	 */
1222 	SCHED_WARN_ON(bucket->value > rq_clamp);
1223 	if (bucket->value >= rq_clamp) {
1224 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1225 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1226 	}
1227 }
1228 
1229 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1230 {
1231 	enum uclamp_id clamp_id;
1232 
1233 	/*
1234 	 * Avoid any overhead until uclamp is actually used by the userspace.
1235 	 *
1236 	 * The condition is constructed such that a NOP is generated when
1237 	 * sched_uclamp_used is disabled.
1238 	 */
1239 	if (!static_branch_unlikely(&sched_uclamp_used))
1240 		return;
1241 
1242 	if (unlikely(!p->sched_class->uclamp_enabled))
1243 		return;
1244 
1245 	for_each_clamp_id(clamp_id)
1246 		uclamp_rq_inc_id(rq, p, clamp_id);
1247 
1248 	/* Reset clamp idle holding when there is one RUNNABLE task */
1249 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1250 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1251 }
1252 
1253 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1254 {
1255 	enum uclamp_id clamp_id;
1256 
1257 	/*
1258 	 * Avoid any overhead until uclamp is actually used by the userspace.
1259 	 *
1260 	 * The condition is constructed such that a NOP is generated when
1261 	 * sched_uclamp_used is disabled.
1262 	 */
1263 	if (!static_branch_unlikely(&sched_uclamp_used))
1264 		return;
1265 
1266 	if (unlikely(!p->sched_class->uclamp_enabled))
1267 		return;
1268 
1269 	for_each_clamp_id(clamp_id)
1270 		uclamp_rq_dec_id(rq, p, clamp_id);
1271 }
1272 
1273 static inline void
1274 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1275 {
1276 	struct rq_flags rf;
1277 	struct rq *rq;
1278 
1279 	/*
1280 	 * Lock the task and the rq where the task is (or was) queued.
1281 	 *
1282 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1283 	 * price to pay to safely serialize util_{min,max} updates with
1284 	 * enqueues, dequeues and migration operations.
1285 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1286 	 */
1287 	rq = task_rq_lock(p, &rf);
1288 
1289 	/*
1290 	 * Setting the clamp bucket is serialized by task_rq_lock().
1291 	 * If the task is not yet RUNNABLE and its task_struct is not
1292 	 * affecting a valid clamp bucket, the next time it's enqueued,
1293 	 * it will already see the updated clamp bucket value.
1294 	 */
1295 	if (p->uclamp[clamp_id].active) {
1296 		uclamp_rq_dec_id(rq, p, clamp_id);
1297 		uclamp_rq_inc_id(rq, p, clamp_id);
1298 	}
1299 
1300 	task_rq_unlock(rq, p, &rf);
1301 }
1302 
1303 #ifdef CONFIG_UCLAMP_TASK_GROUP
1304 static inline void
1305 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1306 			   unsigned int clamps)
1307 {
1308 	enum uclamp_id clamp_id;
1309 	struct css_task_iter it;
1310 	struct task_struct *p;
1311 
1312 	css_task_iter_start(css, 0, &it);
1313 	while ((p = css_task_iter_next(&it))) {
1314 		for_each_clamp_id(clamp_id) {
1315 			if ((0x1 << clamp_id) & clamps)
1316 				uclamp_update_active(p, clamp_id);
1317 		}
1318 	}
1319 	css_task_iter_end(&it);
1320 }
1321 
1322 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1323 static void uclamp_update_root_tg(void)
1324 {
1325 	struct task_group *tg = &root_task_group;
1326 
1327 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1328 		      sysctl_sched_uclamp_util_min, false);
1329 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1330 		      sysctl_sched_uclamp_util_max, false);
1331 
1332 	rcu_read_lock();
1333 	cpu_util_update_eff(&root_task_group.css);
1334 	rcu_read_unlock();
1335 }
1336 #else
1337 static void uclamp_update_root_tg(void) { }
1338 #endif
1339 
1340 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1341 				void *buffer, size_t *lenp, loff_t *ppos)
1342 {
1343 	bool update_root_tg = false;
1344 	int old_min, old_max, old_min_rt;
1345 	int result;
1346 
1347 	mutex_lock(&uclamp_mutex);
1348 	old_min = sysctl_sched_uclamp_util_min;
1349 	old_max = sysctl_sched_uclamp_util_max;
1350 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1351 
1352 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1353 	if (result)
1354 		goto undo;
1355 	if (!write)
1356 		goto done;
1357 
1358 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1359 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1360 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1361 
1362 		result = -EINVAL;
1363 		goto undo;
1364 	}
1365 
1366 	if (old_min != sysctl_sched_uclamp_util_min) {
1367 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1368 			      sysctl_sched_uclamp_util_min, false);
1369 		update_root_tg = true;
1370 	}
1371 	if (old_max != sysctl_sched_uclamp_util_max) {
1372 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1373 			      sysctl_sched_uclamp_util_max, false);
1374 		update_root_tg = true;
1375 	}
1376 
1377 	if (update_root_tg) {
1378 		static_branch_enable(&sched_uclamp_used);
1379 		uclamp_update_root_tg();
1380 	}
1381 
1382 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1383 		static_branch_enable(&sched_uclamp_used);
1384 		uclamp_sync_util_min_rt_default();
1385 	}
1386 
1387 	/*
1388 	 * We update all RUNNABLE tasks only when task groups are in use.
1389 	 * Otherwise, keep it simple and do just a lazy update at each next
1390 	 * task enqueue time.
1391 	 */
1392 
1393 	goto done;
1394 
1395 undo:
1396 	sysctl_sched_uclamp_util_min = old_min;
1397 	sysctl_sched_uclamp_util_max = old_max;
1398 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1399 done:
1400 	mutex_unlock(&uclamp_mutex);
1401 
1402 	return result;
1403 }
1404 
1405 static int uclamp_validate(struct task_struct *p,
1406 			   const struct sched_attr *attr)
1407 {
1408 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1409 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1410 
1411 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1412 		util_min = attr->sched_util_min;
1413 
1414 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1415 			return -EINVAL;
1416 	}
1417 
1418 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1419 		util_max = attr->sched_util_max;
1420 
1421 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1422 			return -EINVAL;
1423 	}
1424 
1425 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1426 		return -EINVAL;
1427 
1428 	/*
1429 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1430 	 *
1431 	 * We need to do that here, because enabling static branches is a
1432 	 * blocking operation which obviously cannot be done while holding
1433 	 * scheduler locks.
1434 	 */
1435 	static_branch_enable(&sched_uclamp_used);
1436 
1437 	return 0;
1438 }
1439 
1440 static bool uclamp_reset(const struct sched_attr *attr,
1441 			 enum uclamp_id clamp_id,
1442 			 struct uclamp_se *uc_se)
1443 {
1444 	/* Reset on sched class change for a non user-defined clamp value. */
1445 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1446 	    !uc_se->user_defined)
1447 		return true;
1448 
1449 	/* Reset on sched_util_{min,max} == -1. */
1450 	if (clamp_id == UCLAMP_MIN &&
1451 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1452 	    attr->sched_util_min == -1) {
1453 		return true;
1454 	}
1455 
1456 	if (clamp_id == UCLAMP_MAX &&
1457 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1458 	    attr->sched_util_max == -1) {
1459 		return true;
1460 	}
1461 
1462 	return false;
1463 }
1464 
1465 static void __setscheduler_uclamp(struct task_struct *p,
1466 				  const struct sched_attr *attr)
1467 {
1468 	enum uclamp_id clamp_id;
1469 
1470 	for_each_clamp_id(clamp_id) {
1471 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1472 		unsigned int value;
1473 
1474 		if (!uclamp_reset(attr, clamp_id, uc_se))
1475 			continue;
1476 
1477 		/*
1478 		 * RT by default have a 100% boost value that could be modified
1479 		 * at runtime.
1480 		 */
1481 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1482 			value = sysctl_sched_uclamp_util_min_rt_default;
1483 		else
1484 			value = uclamp_none(clamp_id);
1485 
1486 		uclamp_se_set(uc_se, value, false);
1487 
1488 	}
1489 
1490 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1491 		return;
1492 
1493 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1494 	    attr->sched_util_min != -1) {
1495 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1496 			      attr->sched_util_min, true);
1497 	}
1498 
1499 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1500 	    attr->sched_util_max != -1) {
1501 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1502 			      attr->sched_util_max, true);
1503 	}
1504 }
1505 
1506 static void uclamp_fork(struct task_struct *p)
1507 {
1508 	enum uclamp_id clamp_id;
1509 
1510 	/*
1511 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1512 	 * as the task is still at its early fork stages.
1513 	 */
1514 	for_each_clamp_id(clamp_id)
1515 		p->uclamp[clamp_id].active = false;
1516 
1517 	if (likely(!p->sched_reset_on_fork))
1518 		return;
1519 
1520 	for_each_clamp_id(clamp_id) {
1521 		uclamp_se_set(&p->uclamp_req[clamp_id],
1522 			      uclamp_none(clamp_id), false);
1523 	}
1524 }
1525 
1526 static void uclamp_post_fork(struct task_struct *p)
1527 {
1528 	uclamp_update_util_min_rt_default(p);
1529 }
1530 
1531 static void __init init_uclamp_rq(struct rq *rq)
1532 {
1533 	enum uclamp_id clamp_id;
1534 	struct uclamp_rq *uc_rq = rq->uclamp;
1535 
1536 	for_each_clamp_id(clamp_id) {
1537 		uc_rq[clamp_id] = (struct uclamp_rq) {
1538 			.value = uclamp_none(clamp_id)
1539 		};
1540 	}
1541 
1542 	rq->uclamp_flags = 0;
1543 }
1544 
1545 static void __init init_uclamp(void)
1546 {
1547 	struct uclamp_se uc_max = {};
1548 	enum uclamp_id clamp_id;
1549 	int cpu;
1550 
1551 	for_each_possible_cpu(cpu)
1552 		init_uclamp_rq(cpu_rq(cpu));
1553 
1554 	for_each_clamp_id(clamp_id) {
1555 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1556 			      uclamp_none(clamp_id), false);
1557 	}
1558 
1559 	/* System defaults allow max clamp values for both indexes */
1560 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1561 	for_each_clamp_id(clamp_id) {
1562 		uclamp_default[clamp_id] = uc_max;
1563 #ifdef CONFIG_UCLAMP_TASK_GROUP
1564 		root_task_group.uclamp_req[clamp_id] = uc_max;
1565 		root_task_group.uclamp[clamp_id] = uc_max;
1566 #endif
1567 	}
1568 }
1569 
1570 #else /* CONFIG_UCLAMP_TASK */
1571 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1572 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1573 static inline int uclamp_validate(struct task_struct *p,
1574 				  const struct sched_attr *attr)
1575 {
1576 	return -EOPNOTSUPP;
1577 }
1578 static void __setscheduler_uclamp(struct task_struct *p,
1579 				  const struct sched_attr *attr) { }
1580 static inline void uclamp_fork(struct task_struct *p) { }
1581 static inline void uclamp_post_fork(struct task_struct *p) { }
1582 static inline void init_uclamp(void) { }
1583 #endif /* CONFIG_UCLAMP_TASK */
1584 
1585 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1586 {
1587 	if (!(flags & ENQUEUE_NOCLOCK))
1588 		update_rq_clock(rq);
1589 
1590 	if (!(flags & ENQUEUE_RESTORE)) {
1591 		sched_info_queued(rq, p);
1592 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1593 	}
1594 
1595 	uclamp_rq_inc(rq, p);
1596 	p->sched_class->enqueue_task(rq, p, flags);
1597 }
1598 
1599 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1600 {
1601 	if (!(flags & DEQUEUE_NOCLOCK))
1602 		update_rq_clock(rq);
1603 
1604 	if (!(flags & DEQUEUE_SAVE)) {
1605 		sched_info_dequeued(rq, p);
1606 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1607 	}
1608 
1609 	uclamp_rq_dec(rq, p);
1610 	p->sched_class->dequeue_task(rq, p, flags);
1611 }
1612 
1613 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1614 {
1615 	enqueue_task(rq, p, flags);
1616 
1617 	p->on_rq = TASK_ON_RQ_QUEUED;
1618 }
1619 
1620 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1621 {
1622 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1623 
1624 	dequeue_task(rq, p, flags);
1625 }
1626 
1627 /*
1628  * __normal_prio - return the priority that is based on the static prio
1629  */
1630 static inline int __normal_prio(struct task_struct *p)
1631 {
1632 	return p->static_prio;
1633 }
1634 
1635 /*
1636  * Calculate the expected normal priority: i.e. priority
1637  * without taking RT-inheritance into account. Might be
1638  * boosted by interactivity modifiers. Changes upon fork,
1639  * setprio syscalls, and whenever the interactivity
1640  * estimator recalculates.
1641  */
1642 static inline int normal_prio(struct task_struct *p)
1643 {
1644 	int prio;
1645 
1646 	if (task_has_dl_policy(p))
1647 		prio = MAX_DL_PRIO-1;
1648 	else if (task_has_rt_policy(p))
1649 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1650 	else
1651 		prio = __normal_prio(p);
1652 	return prio;
1653 }
1654 
1655 /*
1656  * Calculate the current priority, i.e. the priority
1657  * taken into account by the scheduler. This value might
1658  * be boosted by RT tasks, or might be boosted by
1659  * interactivity modifiers. Will be RT if the task got
1660  * RT-boosted. If not then it returns p->normal_prio.
1661  */
1662 static int effective_prio(struct task_struct *p)
1663 {
1664 	p->normal_prio = normal_prio(p);
1665 	/*
1666 	 * If we are RT tasks or we were boosted to RT priority,
1667 	 * keep the priority unchanged. Otherwise, update priority
1668 	 * to the normal priority:
1669 	 */
1670 	if (!rt_prio(p->prio))
1671 		return p->normal_prio;
1672 	return p->prio;
1673 }
1674 
1675 /**
1676  * task_curr - is this task currently executing on a CPU?
1677  * @p: the task in question.
1678  *
1679  * Return: 1 if the task is currently executing. 0 otherwise.
1680  */
1681 inline int task_curr(const struct task_struct *p)
1682 {
1683 	return cpu_curr(task_cpu(p)) == p;
1684 }
1685 
1686 /*
1687  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1688  * use the balance_callback list if you want balancing.
1689  *
1690  * this means any call to check_class_changed() must be followed by a call to
1691  * balance_callback().
1692  */
1693 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1694 				       const struct sched_class *prev_class,
1695 				       int oldprio)
1696 {
1697 	if (prev_class != p->sched_class) {
1698 		if (prev_class->switched_from)
1699 			prev_class->switched_from(rq, p);
1700 
1701 		p->sched_class->switched_to(rq, p);
1702 	} else if (oldprio != p->prio || dl_task(p))
1703 		p->sched_class->prio_changed(rq, p, oldprio);
1704 }
1705 
1706 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1707 {
1708 	if (p->sched_class == rq->curr->sched_class)
1709 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1710 	else if (p->sched_class > rq->curr->sched_class)
1711 		resched_curr(rq);
1712 
1713 	/*
1714 	 * A queue event has occurred, and we're going to schedule.  In
1715 	 * this case, we can save a useless back to back clock update.
1716 	 */
1717 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1718 		rq_clock_skip_update(rq);
1719 }
1720 
1721 #ifdef CONFIG_SMP
1722 
1723 static void
1724 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1725 
1726 static int __set_cpus_allowed_ptr(struct task_struct *p,
1727 				  const struct cpumask *new_mask,
1728 				  u32 flags);
1729 
1730 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1731 {
1732 	if (likely(!p->migration_disabled))
1733 		return;
1734 
1735 	if (p->cpus_ptr != &p->cpus_mask)
1736 		return;
1737 
1738 	/*
1739 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
1740 	 */
1741 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1742 }
1743 
1744 void migrate_disable(void)
1745 {
1746 	struct task_struct *p = current;
1747 
1748 	if (p->migration_disabled) {
1749 		p->migration_disabled++;
1750 		return;
1751 	}
1752 
1753 	preempt_disable();
1754 	this_rq()->nr_pinned++;
1755 	p->migration_disabled = 1;
1756 	preempt_enable();
1757 }
1758 EXPORT_SYMBOL_GPL(migrate_disable);
1759 
1760 void migrate_enable(void)
1761 {
1762 	struct task_struct *p = current;
1763 
1764 	if (p->migration_disabled > 1) {
1765 		p->migration_disabled--;
1766 		return;
1767 	}
1768 
1769 	/*
1770 	 * Ensure stop_task runs either before or after this, and that
1771 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1772 	 */
1773 	preempt_disable();
1774 	if (p->cpus_ptr != &p->cpus_mask)
1775 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1776 	/*
1777 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1778 	 * regular cpus_mask, otherwise things that race (eg.
1779 	 * select_fallback_rq) get confused.
1780 	 */
1781 	barrier();
1782 	p->migration_disabled = 0;
1783 	this_rq()->nr_pinned--;
1784 	preempt_enable();
1785 }
1786 EXPORT_SYMBOL_GPL(migrate_enable);
1787 
1788 static inline bool rq_has_pinned_tasks(struct rq *rq)
1789 {
1790 	return rq->nr_pinned;
1791 }
1792 
1793 /*
1794  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1795  * __set_cpus_allowed_ptr() and select_fallback_rq().
1796  */
1797 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1798 {
1799 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1800 		return false;
1801 
1802 	if (is_per_cpu_kthread(p) || is_migration_disabled(p))
1803 		return cpu_online(cpu);
1804 
1805 	return cpu_active(cpu);
1806 }
1807 
1808 /*
1809  * This is how migration works:
1810  *
1811  * 1) we invoke migration_cpu_stop() on the target CPU using
1812  *    stop_one_cpu().
1813  * 2) stopper starts to run (implicitly forcing the migrated thread
1814  *    off the CPU)
1815  * 3) it checks whether the migrated task is still in the wrong runqueue.
1816  * 4) if it's in the wrong runqueue then the migration thread removes
1817  *    it and puts it into the right queue.
1818  * 5) stopper completes and stop_one_cpu() returns and the migration
1819  *    is done.
1820  */
1821 
1822 /*
1823  * move_queued_task - move a queued task to new rq.
1824  *
1825  * Returns (locked) new rq. Old rq's lock is released.
1826  */
1827 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1828 				   struct task_struct *p, int new_cpu)
1829 {
1830 	lockdep_assert_held(&rq->lock);
1831 
1832 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1833 	set_task_cpu(p, new_cpu);
1834 	rq_unlock(rq, rf);
1835 
1836 	rq = cpu_rq(new_cpu);
1837 
1838 	rq_lock(rq, rf);
1839 	BUG_ON(task_cpu(p) != new_cpu);
1840 	activate_task(rq, p, 0);
1841 	check_preempt_curr(rq, p, 0);
1842 
1843 	return rq;
1844 }
1845 
1846 struct migration_arg {
1847 	struct task_struct		*task;
1848 	int				dest_cpu;
1849 	struct set_affinity_pending	*pending;
1850 };
1851 
1852 struct set_affinity_pending {
1853 	refcount_t		refs;
1854 	struct completion	done;
1855 	struct cpu_stop_work	stop_work;
1856 	struct migration_arg	arg;
1857 };
1858 
1859 /*
1860  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1861  * this because either it can't run here any more (set_cpus_allowed()
1862  * away from this CPU, or CPU going down), or because we're
1863  * attempting to rebalance this task on exec (sched_exec).
1864  *
1865  * So we race with normal scheduler movements, but that's OK, as long
1866  * as the task is no longer on this CPU.
1867  */
1868 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1869 				 struct task_struct *p, int dest_cpu)
1870 {
1871 	/* Affinity changed (again). */
1872 	if (!is_cpu_allowed(p, dest_cpu))
1873 		return rq;
1874 
1875 	update_rq_clock(rq);
1876 	rq = move_queued_task(rq, rf, p, dest_cpu);
1877 
1878 	return rq;
1879 }
1880 
1881 /*
1882  * migration_cpu_stop - this will be executed by a highprio stopper thread
1883  * and performs thread migration by bumping thread off CPU then
1884  * 'pushing' onto another runqueue.
1885  */
1886 static int migration_cpu_stop(void *data)
1887 {
1888 	struct set_affinity_pending *pending;
1889 	struct migration_arg *arg = data;
1890 	struct task_struct *p = arg->task;
1891 	int dest_cpu = arg->dest_cpu;
1892 	struct rq *rq = this_rq();
1893 	bool complete = false;
1894 	struct rq_flags rf;
1895 
1896 	/*
1897 	 * The original target CPU might have gone down and we might
1898 	 * be on another CPU but it doesn't matter.
1899 	 */
1900 	local_irq_save(rf.flags);
1901 	/*
1902 	 * We need to explicitly wake pending tasks before running
1903 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1904 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1905 	 */
1906 	flush_smp_call_function_from_idle();
1907 
1908 	raw_spin_lock(&p->pi_lock);
1909 	rq_lock(rq, &rf);
1910 
1911 	pending = p->migration_pending;
1912 	/*
1913 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1914 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1915 	 * we're holding p->pi_lock.
1916 	 */
1917 	if (task_rq(p) == rq) {
1918 		if (is_migration_disabled(p))
1919 			goto out;
1920 
1921 		if (pending) {
1922 			p->migration_pending = NULL;
1923 			complete = true;
1924 		}
1925 
1926 		/* migrate_enable() --  we must not race against SCA */
1927 		if (dest_cpu < 0) {
1928 			/*
1929 			 * When this was migrate_enable() but we no longer
1930 			 * have a @pending, a concurrent SCA 'fixed' things
1931 			 * and we should be valid again. Nothing to do.
1932 			 */
1933 			if (!pending) {
1934 				WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1935 				goto out;
1936 			}
1937 
1938 			dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1939 		}
1940 
1941 		if (task_on_rq_queued(p))
1942 			rq = __migrate_task(rq, &rf, p, dest_cpu);
1943 		else
1944 			p->wake_cpu = dest_cpu;
1945 
1946 	} else if (dest_cpu < 0 || pending) {
1947 		/*
1948 		 * This happens when we get migrated between migrate_enable()'s
1949 		 * preempt_enable() and scheduling the stopper task. At that
1950 		 * point we're a regular task again and not current anymore.
1951 		 *
1952 		 * A !PREEMPT kernel has a giant hole here, which makes it far
1953 		 * more likely.
1954 		 */
1955 
1956 		/*
1957 		 * The task moved before the stopper got to run. We're holding
1958 		 * ->pi_lock, so the allowed mask is stable - if it got
1959 		 * somewhere allowed, we're done.
1960 		 */
1961 		if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1962 			p->migration_pending = NULL;
1963 			complete = true;
1964 			goto out;
1965 		}
1966 
1967 		/*
1968 		 * When this was migrate_enable() but we no longer have an
1969 		 * @pending, a concurrent SCA 'fixed' things and we should be
1970 		 * valid again. Nothing to do.
1971 		 */
1972 		if (!pending) {
1973 			WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1974 			goto out;
1975 		}
1976 
1977 		/*
1978 		 * When migrate_enable() hits a rq mis-match we can't reliably
1979 		 * determine is_migration_disabled() and so have to chase after
1980 		 * it.
1981 		 */
1982 		task_rq_unlock(rq, p, &rf);
1983 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1984 				    &pending->arg, &pending->stop_work);
1985 		return 0;
1986 	}
1987 out:
1988 	task_rq_unlock(rq, p, &rf);
1989 
1990 	if (complete)
1991 		complete_all(&pending->done);
1992 
1993 	/* For pending->{arg,stop_work} */
1994 	pending = arg->pending;
1995 	if (pending && refcount_dec_and_test(&pending->refs))
1996 		wake_up_var(&pending->refs);
1997 
1998 	return 0;
1999 }
2000 
2001 int push_cpu_stop(void *arg)
2002 {
2003 	struct rq *lowest_rq = NULL, *rq = this_rq();
2004 	struct task_struct *p = arg;
2005 
2006 	raw_spin_lock_irq(&p->pi_lock);
2007 	raw_spin_lock(&rq->lock);
2008 
2009 	if (task_rq(p) != rq)
2010 		goto out_unlock;
2011 
2012 	if (is_migration_disabled(p)) {
2013 		p->migration_flags |= MDF_PUSH;
2014 		goto out_unlock;
2015 	}
2016 
2017 	p->migration_flags &= ~MDF_PUSH;
2018 
2019 	if (p->sched_class->find_lock_rq)
2020 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2021 
2022 	if (!lowest_rq)
2023 		goto out_unlock;
2024 
2025 	// XXX validate p is still the highest prio task
2026 	if (task_rq(p) == rq) {
2027 		deactivate_task(rq, p, 0);
2028 		set_task_cpu(p, lowest_rq->cpu);
2029 		activate_task(lowest_rq, p, 0);
2030 		resched_curr(lowest_rq);
2031 	}
2032 
2033 	double_unlock_balance(rq, lowest_rq);
2034 
2035 out_unlock:
2036 	rq->push_busy = false;
2037 	raw_spin_unlock(&rq->lock);
2038 	raw_spin_unlock_irq(&p->pi_lock);
2039 
2040 	put_task_struct(p);
2041 	return 0;
2042 }
2043 
2044 /*
2045  * sched_class::set_cpus_allowed must do the below, but is not required to
2046  * actually call this function.
2047  */
2048 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2049 {
2050 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2051 		p->cpus_ptr = new_mask;
2052 		return;
2053 	}
2054 
2055 	cpumask_copy(&p->cpus_mask, new_mask);
2056 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2057 }
2058 
2059 static void
2060 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2061 {
2062 	struct rq *rq = task_rq(p);
2063 	bool queued, running;
2064 
2065 	/*
2066 	 * This here violates the locking rules for affinity, since we're only
2067 	 * supposed to change these variables while holding both rq->lock and
2068 	 * p->pi_lock.
2069 	 *
2070 	 * HOWEVER, it magically works, because ttwu() is the only code that
2071 	 * accesses these variables under p->pi_lock and only does so after
2072 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2073 	 * before finish_task().
2074 	 *
2075 	 * XXX do further audits, this smells like something putrid.
2076 	 */
2077 	if (flags & SCA_MIGRATE_DISABLE)
2078 		SCHED_WARN_ON(!p->on_cpu);
2079 	else
2080 		lockdep_assert_held(&p->pi_lock);
2081 
2082 	queued = task_on_rq_queued(p);
2083 	running = task_current(rq, p);
2084 
2085 	if (queued) {
2086 		/*
2087 		 * Because __kthread_bind() calls this on blocked tasks without
2088 		 * holding rq->lock.
2089 		 */
2090 		lockdep_assert_held(&rq->lock);
2091 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2092 	}
2093 	if (running)
2094 		put_prev_task(rq, p);
2095 
2096 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2097 
2098 	if (queued)
2099 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2100 	if (running)
2101 		set_next_task(rq, p);
2102 }
2103 
2104 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2105 {
2106 	__do_set_cpus_allowed(p, new_mask, 0);
2107 }
2108 
2109 /*
2110  * This function is wildly self concurrent; here be dragons.
2111  *
2112  *
2113  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2114  * designated task is enqueued on an allowed CPU. If that task is currently
2115  * running, we have to kick it out using the CPU stopper.
2116  *
2117  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2118  * Consider:
2119  *
2120  *     Initial conditions: P0->cpus_mask = [0, 1]
2121  *
2122  *     P0@CPU0                  P1
2123  *
2124  *     migrate_disable();
2125  *     <preempted>
2126  *                              set_cpus_allowed_ptr(P0, [1]);
2127  *
2128  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2129  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2130  * This means we need the following scheme:
2131  *
2132  *     P0@CPU0                  P1
2133  *
2134  *     migrate_disable();
2135  *     <preempted>
2136  *                              set_cpus_allowed_ptr(P0, [1]);
2137  *                                <blocks>
2138  *     <resumes>
2139  *     migrate_enable();
2140  *       __set_cpus_allowed_ptr();
2141  *       <wakes local stopper>
2142  *                         `--> <woken on migration completion>
2143  *
2144  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2145  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2146  * task p are serialized by p->pi_lock, which we can leverage: the one that
2147  * should come into effect at the end of the Migrate-Disable region is the last
2148  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2149  * but we still need to properly signal those waiting tasks at the appropriate
2150  * moment.
2151  *
2152  * This is implemented using struct set_affinity_pending. The first
2153  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2154  * setup an instance of that struct and install it on the targeted task_struct.
2155  * Any and all further callers will reuse that instance. Those then wait for
2156  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2157  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2158  *
2159  *
2160  * (1) In the cases covered above. There is one more where the completion is
2161  * signaled within affine_move_task() itself: when a subsequent affinity request
2162  * cancels the need for an active migration. Consider:
2163  *
2164  *     Initial conditions: P0->cpus_mask = [0, 1]
2165  *
2166  *     P0@CPU0            P1                             P2
2167  *
2168  *     migrate_disable();
2169  *     <preempted>
2170  *                        set_cpus_allowed_ptr(P0, [1]);
2171  *                          <blocks>
2172  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2173  *                                                         <signal completion>
2174  *                          <awakes>
2175  *
2176  * Note that the above is safe vs a concurrent migrate_enable(), as any
2177  * pending affinity completion is preceded by an uninstallation of
2178  * p->migration_pending done with p->pi_lock held.
2179  */
2180 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2181 			    int dest_cpu, unsigned int flags)
2182 {
2183 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2184 	struct migration_arg arg = {
2185 		.task = p,
2186 		.dest_cpu = dest_cpu,
2187 	};
2188 	bool complete = false;
2189 
2190 	/* Can the task run on the task's current CPU? If so, we're done */
2191 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2192 		struct task_struct *push_task = NULL;
2193 
2194 		if ((flags & SCA_MIGRATE_ENABLE) &&
2195 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2196 			rq->push_busy = true;
2197 			push_task = get_task_struct(p);
2198 		}
2199 
2200 		pending = p->migration_pending;
2201 		if (pending) {
2202 			refcount_inc(&pending->refs);
2203 			p->migration_pending = NULL;
2204 			complete = true;
2205 		}
2206 		task_rq_unlock(rq, p, rf);
2207 
2208 		if (push_task) {
2209 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2210 					    p, &rq->push_work);
2211 		}
2212 
2213 		if (complete)
2214 			goto do_complete;
2215 
2216 		return 0;
2217 	}
2218 
2219 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2220 		/* serialized by p->pi_lock */
2221 		if (!p->migration_pending) {
2222 			/* Install the request */
2223 			refcount_set(&my_pending.refs, 1);
2224 			init_completion(&my_pending.done);
2225 			p->migration_pending = &my_pending;
2226 		} else {
2227 			pending = p->migration_pending;
2228 			refcount_inc(&pending->refs);
2229 		}
2230 	}
2231 	pending = p->migration_pending;
2232 	/*
2233 	 * - !MIGRATE_ENABLE:
2234 	 *   we'll have installed a pending if there wasn't one already.
2235 	 *
2236 	 * - MIGRATE_ENABLE:
2237 	 *   we're here because the current CPU isn't matching anymore,
2238 	 *   the only way that can happen is because of a concurrent
2239 	 *   set_cpus_allowed_ptr() call, which should then still be
2240 	 *   pending completion.
2241 	 *
2242 	 * Either way, we really should have a @pending here.
2243 	 */
2244 	if (WARN_ON_ONCE(!pending)) {
2245 		task_rq_unlock(rq, p, rf);
2246 		return -EINVAL;
2247 	}
2248 
2249 	if (flags & SCA_MIGRATE_ENABLE) {
2250 
2251 		refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2252 		p->migration_flags &= ~MDF_PUSH;
2253 		task_rq_unlock(rq, p, rf);
2254 
2255 		pending->arg = (struct migration_arg) {
2256 			.task = p,
2257 			.dest_cpu = -1,
2258 			.pending = pending,
2259 		};
2260 
2261 		stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2262 				    &pending->arg, &pending->stop_work);
2263 
2264 		return 0;
2265 	}
2266 
2267 	if (task_running(rq, p) || p->state == TASK_WAKING) {
2268 		/*
2269 		 * Lessen races (and headaches) by delegating
2270 		 * is_migration_disabled(p) checks to the stopper, which will
2271 		 * run on the same CPU as said p.
2272 		 */
2273 		task_rq_unlock(rq, p, rf);
2274 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2275 
2276 	} else {
2277 
2278 		if (!is_migration_disabled(p)) {
2279 			if (task_on_rq_queued(p))
2280 				rq = move_queued_task(rq, rf, p, dest_cpu);
2281 
2282 			p->migration_pending = NULL;
2283 			complete = true;
2284 		}
2285 		task_rq_unlock(rq, p, rf);
2286 
2287 do_complete:
2288 		if (complete)
2289 			complete_all(&pending->done);
2290 	}
2291 
2292 	wait_for_completion(&pending->done);
2293 
2294 	if (refcount_dec_and_test(&pending->refs))
2295 		wake_up_var(&pending->refs);
2296 
2297 	/*
2298 	 * Block the original owner of &pending until all subsequent callers
2299 	 * have seen the completion and decremented the refcount
2300 	 */
2301 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2302 
2303 	return 0;
2304 }
2305 
2306 /*
2307  * Change a given task's CPU affinity. Migrate the thread to a
2308  * proper CPU and schedule it away if the CPU it's executing on
2309  * is removed from the allowed bitmask.
2310  *
2311  * NOTE: the caller must have a valid reference to the task, the
2312  * task must not exit() & deallocate itself prematurely. The
2313  * call is not atomic; no spinlocks may be held.
2314  */
2315 static int __set_cpus_allowed_ptr(struct task_struct *p,
2316 				  const struct cpumask *new_mask,
2317 				  u32 flags)
2318 {
2319 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2320 	unsigned int dest_cpu;
2321 	struct rq_flags rf;
2322 	struct rq *rq;
2323 	int ret = 0;
2324 
2325 	rq = task_rq_lock(p, &rf);
2326 	update_rq_clock(rq);
2327 
2328 	if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2329 		/*
2330 		 * Kernel threads are allowed on online && !active CPUs.
2331 		 *
2332 		 * Specifically, migration_disabled() tasks must not fail the
2333 		 * cpumask_any_and_distribute() pick below, esp. so on
2334 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2335 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2336 		 */
2337 		cpu_valid_mask = cpu_online_mask;
2338 	}
2339 
2340 	/*
2341 	 * Must re-check here, to close a race against __kthread_bind(),
2342 	 * sched_setaffinity() is not guaranteed to observe the flag.
2343 	 */
2344 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2345 		ret = -EINVAL;
2346 		goto out;
2347 	}
2348 
2349 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2350 		if (cpumask_equal(&p->cpus_mask, new_mask))
2351 			goto out;
2352 
2353 		if (WARN_ON_ONCE(p == current &&
2354 				 is_migration_disabled(p) &&
2355 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2356 			ret = -EBUSY;
2357 			goto out;
2358 		}
2359 	}
2360 
2361 	/*
2362 	 * Picking a ~random cpu helps in cases where we are changing affinity
2363 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2364 	 * immediately required to distribute the tasks within their new mask.
2365 	 */
2366 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2367 	if (dest_cpu >= nr_cpu_ids) {
2368 		ret = -EINVAL;
2369 		goto out;
2370 	}
2371 
2372 	__do_set_cpus_allowed(p, new_mask, flags);
2373 
2374 	if (p->flags & PF_KTHREAD) {
2375 		/*
2376 		 * For kernel threads that do indeed end up on online &&
2377 		 * !active we want to ensure they are strict per-CPU threads.
2378 		 */
2379 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
2380 			!cpumask_intersects(new_mask, cpu_active_mask) &&
2381 			p->nr_cpus_allowed != 1);
2382 	}
2383 
2384 	return affine_move_task(rq, p, &rf, dest_cpu, flags);
2385 
2386 out:
2387 	task_rq_unlock(rq, p, &rf);
2388 
2389 	return ret;
2390 }
2391 
2392 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2393 {
2394 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2395 }
2396 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2397 
2398 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2399 {
2400 #ifdef CONFIG_SCHED_DEBUG
2401 	/*
2402 	 * We should never call set_task_cpu() on a blocked task,
2403 	 * ttwu() will sort out the placement.
2404 	 */
2405 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2406 			!p->on_rq);
2407 
2408 	/*
2409 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2410 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2411 	 * time relying on p->on_rq.
2412 	 */
2413 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
2414 		     p->sched_class == &fair_sched_class &&
2415 		     (p->on_rq && !task_on_rq_migrating(p)));
2416 
2417 #ifdef CONFIG_LOCKDEP
2418 	/*
2419 	 * The caller should hold either p->pi_lock or rq->lock, when changing
2420 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2421 	 *
2422 	 * sched_move_task() holds both and thus holding either pins the cgroup,
2423 	 * see task_group().
2424 	 *
2425 	 * Furthermore, all task_rq users should acquire both locks, see
2426 	 * task_rq_lock().
2427 	 */
2428 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2429 				      lockdep_is_held(&task_rq(p)->lock)));
2430 #endif
2431 	/*
2432 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2433 	 */
2434 	WARN_ON_ONCE(!cpu_online(new_cpu));
2435 
2436 	WARN_ON_ONCE(is_migration_disabled(p));
2437 #endif
2438 
2439 	trace_sched_migrate_task(p, new_cpu);
2440 
2441 	if (task_cpu(p) != new_cpu) {
2442 		if (p->sched_class->migrate_task_rq)
2443 			p->sched_class->migrate_task_rq(p, new_cpu);
2444 		p->se.nr_migrations++;
2445 		rseq_migrate(p);
2446 		perf_event_task_migrate(p);
2447 	}
2448 
2449 	__set_task_cpu(p, new_cpu);
2450 }
2451 
2452 #ifdef CONFIG_NUMA_BALANCING
2453 static void __migrate_swap_task(struct task_struct *p, int cpu)
2454 {
2455 	if (task_on_rq_queued(p)) {
2456 		struct rq *src_rq, *dst_rq;
2457 		struct rq_flags srf, drf;
2458 
2459 		src_rq = task_rq(p);
2460 		dst_rq = cpu_rq(cpu);
2461 
2462 		rq_pin_lock(src_rq, &srf);
2463 		rq_pin_lock(dst_rq, &drf);
2464 
2465 		deactivate_task(src_rq, p, 0);
2466 		set_task_cpu(p, cpu);
2467 		activate_task(dst_rq, p, 0);
2468 		check_preempt_curr(dst_rq, p, 0);
2469 
2470 		rq_unpin_lock(dst_rq, &drf);
2471 		rq_unpin_lock(src_rq, &srf);
2472 
2473 	} else {
2474 		/*
2475 		 * Task isn't running anymore; make it appear like we migrated
2476 		 * it before it went to sleep. This means on wakeup we make the
2477 		 * previous CPU our target instead of where it really is.
2478 		 */
2479 		p->wake_cpu = cpu;
2480 	}
2481 }
2482 
2483 struct migration_swap_arg {
2484 	struct task_struct *src_task, *dst_task;
2485 	int src_cpu, dst_cpu;
2486 };
2487 
2488 static int migrate_swap_stop(void *data)
2489 {
2490 	struct migration_swap_arg *arg = data;
2491 	struct rq *src_rq, *dst_rq;
2492 	int ret = -EAGAIN;
2493 
2494 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2495 		return -EAGAIN;
2496 
2497 	src_rq = cpu_rq(arg->src_cpu);
2498 	dst_rq = cpu_rq(arg->dst_cpu);
2499 
2500 	double_raw_lock(&arg->src_task->pi_lock,
2501 			&arg->dst_task->pi_lock);
2502 	double_rq_lock(src_rq, dst_rq);
2503 
2504 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2505 		goto unlock;
2506 
2507 	if (task_cpu(arg->src_task) != arg->src_cpu)
2508 		goto unlock;
2509 
2510 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2511 		goto unlock;
2512 
2513 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2514 		goto unlock;
2515 
2516 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2517 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2518 
2519 	ret = 0;
2520 
2521 unlock:
2522 	double_rq_unlock(src_rq, dst_rq);
2523 	raw_spin_unlock(&arg->dst_task->pi_lock);
2524 	raw_spin_unlock(&arg->src_task->pi_lock);
2525 
2526 	return ret;
2527 }
2528 
2529 /*
2530  * Cross migrate two tasks
2531  */
2532 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2533 		int target_cpu, int curr_cpu)
2534 {
2535 	struct migration_swap_arg arg;
2536 	int ret = -EINVAL;
2537 
2538 	arg = (struct migration_swap_arg){
2539 		.src_task = cur,
2540 		.src_cpu = curr_cpu,
2541 		.dst_task = p,
2542 		.dst_cpu = target_cpu,
2543 	};
2544 
2545 	if (arg.src_cpu == arg.dst_cpu)
2546 		goto out;
2547 
2548 	/*
2549 	 * These three tests are all lockless; this is OK since all of them
2550 	 * will be re-checked with proper locks held further down the line.
2551 	 */
2552 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2553 		goto out;
2554 
2555 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2556 		goto out;
2557 
2558 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2559 		goto out;
2560 
2561 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2562 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2563 
2564 out:
2565 	return ret;
2566 }
2567 #endif /* CONFIG_NUMA_BALANCING */
2568 
2569 /*
2570  * wait_task_inactive - wait for a thread to unschedule.
2571  *
2572  * If @match_state is nonzero, it's the @p->state value just checked and
2573  * not expected to change.  If it changes, i.e. @p might have woken up,
2574  * then return zero.  When we succeed in waiting for @p to be off its CPU,
2575  * we return a positive number (its total switch count).  If a second call
2576  * a short while later returns the same number, the caller can be sure that
2577  * @p has remained unscheduled the whole time.
2578  *
2579  * The caller must ensure that the task *will* unschedule sometime soon,
2580  * else this function might spin for a *long* time. This function can't
2581  * be called with interrupts off, or it may introduce deadlock with
2582  * smp_call_function() if an IPI is sent by the same process we are
2583  * waiting to become inactive.
2584  */
2585 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2586 {
2587 	int running, queued;
2588 	struct rq_flags rf;
2589 	unsigned long ncsw;
2590 	struct rq *rq;
2591 
2592 	for (;;) {
2593 		/*
2594 		 * We do the initial early heuristics without holding
2595 		 * any task-queue locks at all. We'll only try to get
2596 		 * the runqueue lock when things look like they will
2597 		 * work out!
2598 		 */
2599 		rq = task_rq(p);
2600 
2601 		/*
2602 		 * If the task is actively running on another CPU
2603 		 * still, just relax and busy-wait without holding
2604 		 * any locks.
2605 		 *
2606 		 * NOTE! Since we don't hold any locks, it's not
2607 		 * even sure that "rq" stays as the right runqueue!
2608 		 * But we don't care, since "task_running()" will
2609 		 * return false if the runqueue has changed and p
2610 		 * is actually now running somewhere else!
2611 		 */
2612 		while (task_running(rq, p)) {
2613 			if (match_state && unlikely(p->state != match_state))
2614 				return 0;
2615 			cpu_relax();
2616 		}
2617 
2618 		/*
2619 		 * Ok, time to look more closely! We need the rq
2620 		 * lock now, to be *sure*. If we're wrong, we'll
2621 		 * just go back and repeat.
2622 		 */
2623 		rq = task_rq_lock(p, &rf);
2624 		trace_sched_wait_task(p);
2625 		running = task_running(rq, p);
2626 		queued = task_on_rq_queued(p);
2627 		ncsw = 0;
2628 		if (!match_state || p->state == match_state)
2629 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2630 		task_rq_unlock(rq, p, &rf);
2631 
2632 		/*
2633 		 * If it changed from the expected state, bail out now.
2634 		 */
2635 		if (unlikely(!ncsw))
2636 			break;
2637 
2638 		/*
2639 		 * Was it really running after all now that we
2640 		 * checked with the proper locks actually held?
2641 		 *
2642 		 * Oops. Go back and try again..
2643 		 */
2644 		if (unlikely(running)) {
2645 			cpu_relax();
2646 			continue;
2647 		}
2648 
2649 		/*
2650 		 * It's not enough that it's not actively running,
2651 		 * it must be off the runqueue _entirely_, and not
2652 		 * preempted!
2653 		 *
2654 		 * So if it was still runnable (but just not actively
2655 		 * running right now), it's preempted, and we should
2656 		 * yield - it could be a while.
2657 		 */
2658 		if (unlikely(queued)) {
2659 			ktime_t to = NSEC_PER_SEC / HZ;
2660 
2661 			set_current_state(TASK_UNINTERRUPTIBLE);
2662 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2663 			continue;
2664 		}
2665 
2666 		/*
2667 		 * Ahh, all good. It wasn't running, and it wasn't
2668 		 * runnable, which means that it will never become
2669 		 * running in the future either. We're all done!
2670 		 */
2671 		break;
2672 	}
2673 
2674 	return ncsw;
2675 }
2676 
2677 /***
2678  * kick_process - kick a running thread to enter/exit the kernel
2679  * @p: the to-be-kicked thread
2680  *
2681  * Cause a process which is running on another CPU to enter
2682  * kernel-mode, without any delay. (to get signals handled.)
2683  *
2684  * NOTE: this function doesn't have to take the runqueue lock,
2685  * because all it wants to ensure is that the remote task enters
2686  * the kernel. If the IPI races and the task has been migrated
2687  * to another CPU then no harm is done and the purpose has been
2688  * achieved as well.
2689  */
2690 void kick_process(struct task_struct *p)
2691 {
2692 	int cpu;
2693 
2694 	preempt_disable();
2695 	cpu = task_cpu(p);
2696 	if ((cpu != smp_processor_id()) && task_curr(p))
2697 		smp_send_reschedule(cpu);
2698 	preempt_enable();
2699 }
2700 EXPORT_SYMBOL_GPL(kick_process);
2701 
2702 /*
2703  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2704  *
2705  * A few notes on cpu_active vs cpu_online:
2706  *
2707  *  - cpu_active must be a subset of cpu_online
2708  *
2709  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2710  *    see __set_cpus_allowed_ptr(). At this point the newly online
2711  *    CPU isn't yet part of the sched domains, and balancing will not
2712  *    see it.
2713  *
2714  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2715  *    avoid the load balancer to place new tasks on the to be removed
2716  *    CPU. Existing tasks will remain running there and will be taken
2717  *    off.
2718  *
2719  * This means that fallback selection must not select !active CPUs.
2720  * And can assume that any active CPU must be online. Conversely
2721  * select_task_rq() below may allow selection of !active CPUs in order
2722  * to satisfy the above rules.
2723  */
2724 static int select_fallback_rq(int cpu, struct task_struct *p)
2725 {
2726 	int nid = cpu_to_node(cpu);
2727 	const struct cpumask *nodemask = NULL;
2728 	enum { cpuset, possible, fail } state = cpuset;
2729 	int dest_cpu;
2730 
2731 	/*
2732 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2733 	 * will return -1. There is no CPU on the node, and we should
2734 	 * select the CPU on the other node.
2735 	 */
2736 	if (nid != -1) {
2737 		nodemask = cpumask_of_node(nid);
2738 
2739 		/* Look for allowed, online CPU in same node. */
2740 		for_each_cpu(dest_cpu, nodemask) {
2741 			if (!cpu_active(dest_cpu))
2742 				continue;
2743 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2744 				return dest_cpu;
2745 		}
2746 	}
2747 
2748 	for (;;) {
2749 		/* Any allowed, online CPU? */
2750 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2751 			if (!is_cpu_allowed(p, dest_cpu))
2752 				continue;
2753 
2754 			goto out;
2755 		}
2756 
2757 		/* No more Mr. Nice Guy. */
2758 		switch (state) {
2759 		case cpuset:
2760 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2761 				cpuset_cpus_allowed_fallback(p);
2762 				state = possible;
2763 				break;
2764 			}
2765 			fallthrough;
2766 		case possible:
2767 			/*
2768 			 * XXX When called from select_task_rq() we only
2769 			 * hold p->pi_lock and again violate locking order.
2770 			 *
2771 			 * More yuck to audit.
2772 			 */
2773 			do_set_cpus_allowed(p, cpu_possible_mask);
2774 			state = fail;
2775 			break;
2776 
2777 		case fail:
2778 			BUG();
2779 			break;
2780 		}
2781 	}
2782 
2783 out:
2784 	if (state != cpuset) {
2785 		/*
2786 		 * Don't tell them about moving exiting tasks or
2787 		 * kernel threads (both mm NULL), since they never
2788 		 * leave kernel.
2789 		 */
2790 		if (p->mm && printk_ratelimit()) {
2791 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2792 					task_pid_nr(p), p->comm, cpu);
2793 		}
2794 	}
2795 
2796 	return dest_cpu;
2797 }
2798 
2799 /*
2800  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2801  */
2802 static inline
2803 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2804 {
2805 	lockdep_assert_held(&p->pi_lock);
2806 
2807 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2808 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2809 	else
2810 		cpu = cpumask_any(p->cpus_ptr);
2811 
2812 	/*
2813 	 * In order not to call set_task_cpu() on a blocking task we need
2814 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2815 	 * CPU.
2816 	 *
2817 	 * Since this is common to all placement strategies, this lives here.
2818 	 *
2819 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2820 	 *   not worry about this generic constraint ]
2821 	 */
2822 	if (unlikely(!is_cpu_allowed(p, cpu)))
2823 		cpu = select_fallback_rq(task_cpu(p), p);
2824 
2825 	return cpu;
2826 }
2827 
2828 void sched_set_stop_task(int cpu, struct task_struct *stop)
2829 {
2830 	static struct lock_class_key stop_pi_lock;
2831 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2832 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2833 
2834 	if (stop) {
2835 		/*
2836 		 * Make it appear like a SCHED_FIFO task, its something
2837 		 * userspace knows about and won't get confused about.
2838 		 *
2839 		 * Also, it will make PI more or less work without too
2840 		 * much confusion -- but then, stop work should not
2841 		 * rely on PI working anyway.
2842 		 */
2843 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2844 
2845 		stop->sched_class = &stop_sched_class;
2846 
2847 		/*
2848 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2849 		 * adjust the effective priority of a task. As a result,
2850 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
2851 		 * which can then trigger wakeups of the stop thread to push
2852 		 * around the current task.
2853 		 *
2854 		 * The stop task itself will never be part of the PI-chain, it
2855 		 * never blocks, therefore that ->pi_lock recursion is safe.
2856 		 * Tell lockdep about this by placing the stop->pi_lock in its
2857 		 * own class.
2858 		 */
2859 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2860 	}
2861 
2862 	cpu_rq(cpu)->stop = stop;
2863 
2864 	if (old_stop) {
2865 		/*
2866 		 * Reset it back to a normal scheduling class so that
2867 		 * it can die in pieces.
2868 		 */
2869 		old_stop->sched_class = &rt_sched_class;
2870 	}
2871 }
2872 
2873 #else /* CONFIG_SMP */
2874 
2875 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2876 					 const struct cpumask *new_mask,
2877 					 u32 flags)
2878 {
2879 	return set_cpus_allowed_ptr(p, new_mask);
2880 }
2881 
2882 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2883 
2884 static inline bool rq_has_pinned_tasks(struct rq *rq)
2885 {
2886 	return false;
2887 }
2888 
2889 #endif /* !CONFIG_SMP */
2890 
2891 static void
2892 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2893 {
2894 	struct rq *rq;
2895 
2896 	if (!schedstat_enabled())
2897 		return;
2898 
2899 	rq = this_rq();
2900 
2901 #ifdef CONFIG_SMP
2902 	if (cpu == rq->cpu) {
2903 		__schedstat_inc(rq->ttwu_local);
2904 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2905 	} else {
2906 		struct sched_domain *sd;
2907 
2908 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2909 		rcu_read_lock();
2910 		for_each_domain(rq->cpu, sd) {
2911 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2912 				__schedstat_inc(sd->ttwu_wake_remote);
2913 				break;
2914 			}
2915 		}
2916 		rcu_read_unlock();
2917 	}
2918 
2919 	if (wake_flags & WF_MIGRATED)
2920 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2921 #endif /* CONFIG_SMP */
2922 
2923 	__schedstat_inc(rq->ttwu_count);
2924 	__schedstat_inc(p->se.statistics.nr_wakeups);
2925 
2926 	if (wake_flags & WF_SYNC)
2927 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2928 }
2929 
2930 /*
2931  * Mark the task runnable and perform wakeup-preemption.
2932  */
2933 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2934 			   struct rq_flags *rf)
2935 {
2936 	check_preempt_curr(rq, p, wake_flags);
2937 	p->state = TASK_RUNNING;
2938 	trace_sched_wakeup(p);
2939 
2940 #ifdef CONFIG_SMP
2941 	if (p->sched_class->task_woken) {
2942 		/*
2943 		 * Our task @p is fully woken up and running; so it's safe to
2944 		 * drop the rq->lock, hereafter rq is only used for statistics.
2945 		 */
2946 		rq_unpin_lock(rq, rf);
2947 		p->sched_class->task_woken(rq, p);
2948 		rq_repin_lock(rq, rf);
2949 	}
2950 
2951 	if (rq->idle_stamp) {
2952 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2953 		u64 max = 2*rq->max_idle_balance_cost;
2954 
2955 		update_avg(&rq->avg_idle, delta);
2956 
2957 		if (rq->avg_idle > max)
2958 			rq->avg_idle = max;
2959 
2960 		rq->idle_stamp = 0;
2961 	}
2962 #endif
2963 }
2964 
2965 static void
2966 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2967 		 struct rq_flags *rf)
2968 {
2969 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2970 
2971 	lockdep_assert_held(&rq->lock);
2972 
2973 	if (p->sched_contributes_to_load)
2974 		rq->nr_uninterruptible--;
2975 
2976 #ifdef CONFIG_SMP
2977 	if (wake_flags & WF_MIGRATED)
2978 		en_flags |= ENQUEUE_MIGRATED;
2979 	else
2980 #endif
2981 	if (p->in_iowait) {
2982 		delayacct_blkio_end(p);
2983 		atomic_dec(&task_rq(p)->nr_iowait);
2984 	}
2985 
2986 	activate_task(rq, p, en_flags);
2987 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2988 }
2989 
2990 /*
2991  * Consider @p being inside a wait loop:
2992  *
2993  *   for (;;) {
2994  *      set_current_state(TASK_UNINTERRUPTIBLE);
2995  *
2996  *      if (CONDITION)
2997  *         break;
2998  *
2999  *      schedule();
3000  *   }
3001  *   __set_current_state(TASK_RUNNING);
3002  *
3003  * between set_current_state() and schedule(). In this case @p is still
3004  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3005  * an atomic manner.
3006  *
3007  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3008  * then schedule() must still happen and p->state can be changed to
3009  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3010  * need to do a full wakeup with enqueue.
3011  *
3012  * Returns: %true when the wakeup is done,
3013  *          %false otherwise.
3014  */
3015 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3016 {
3017 	struct rq_flags rf;
3018 	struct rq *rq;
3019 	int ret = 0;
3020 
3021 	rq = __task_rq_lock(p, &rf);
3022 	if (task_on_rq_queued(p)) {
3023 		/* check_preempt_curr() may use rq clock */
3024 		update_rq_clock(rq);
3025 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3026 		ret = 1;
3027 	}
3028 	__task_rq_unlock(rq, &rf);
3029 
3030 	return ret;
3031 }
3032 
3033 #ifdef CONFIG_SMP
3034 void sched_ttwu_pending(void *arg)
3035 {
3036 	struct llist_node *llist = arg;
3037 	struct rq *rq = this_rq();
3038 	struct task_struct *p, *t;
3039 	struct rq_flags rf;
3040 
3041 	if (!llist)
3042 		return;
3043 
3044 	/*
3045 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3046 	 * Races such that false-negatives are possible, since they
3047 	 * are shorter lived that false-positives would be.
3048 	 */
3049 	WRITE_ONCE(rq->ttwu_pending, 0);
3050 
3051 	rq_lock_irqsave(rq, &rf);
3052 	update_rq_clock(rq);
3053 
3054 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3055 		if (WARN_ON_ONCE(p->on_cpu))
3056 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3057 
3058 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3059 			set_task_cpu(p, cpu_of(rq));
3060 
3061 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3062 	}
3063 
3064 	rq_unlock_irqrestore(rq, &rf);
3065 }
3066 
3067 void send_call_function_single_ipi(int cpu)
3068 {
3069 	struct rq *rq = cpu_rq(cpu);
3070 
3071 	if (!set_nr_if_polling(rq->idle))
3072 		arch_send_call_function_single_ipi(cpu);
3073 	else
3074 		trace_sched_wake_idle_without_ipi(cpu);
3075 }
3076 
3077 /*
3078  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3079  * necessary. The wakee CPU on receipt of the IPI will queue the task
3080  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3081  * of the wakeup instead of the waker.
3082  */
3083 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3084 {
3085 	struct rq *rq = cpu_rq(cpu);
3086 
3087 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3088 
3089 	WRITE_ONCE(rq->ttwu_pending, 1);
3090 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3091 }
3092 
3093 void wake_up_if_idle(int cpu)
3094 {
3095 	struct rq *rq = cpu_rq(cpu);
3096 	struct rq_flags rf;
3097 
3098 	rcu_read_lock();
3099 
3100 	if (!is_idle_task(rcu_dereference(rq->curr)))
3101 		goto out;
3102 
3103 	if (set_nr_if_polling(rq->idle)) {
3104 		trace_sched_wake_idle_without_ipi(cpu);
3105 	} else {
3106 		rq_lock_irqsave(rq, &rf);
3107 		if (is_idle_task(rq->curr))
3108 			smp_send_reschedule(cpu);
3109 		/* Else CPU is not idle, do nothing here: */
3110 		rq_unlock_irqrestore(rq, &rf);
3111 	}
3112 
3113 out:
3114 	rcu_read_unlock();
3115 }
3116 
3117 bool cpus_share_cache(int this_cpu, int that_cpu)
3118 {
3119 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3120 }
3121 
3122 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3123 {
3124 	/*
3125 	 * If the CPU does not share cache, then queue the task on the
3126 	 * remote rqs wakelist to avoid accessing remote data.
3127 	 */
3128 	if (!cpus_share_cache(smp_processor_id(), cpu))
3129 		return true;
3130 
3131 	/*
3132 	 * If the task is descheduling and the only running task on the
3133 	 * CPU then use the wakelist to offload the task activation to
3134 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3135 	 * nr_running is checked to avoid unnecessary task stacking.
3136 	 */
3137 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3138 		return true;
3139 
3140 	return false;
3141 }
3142 
3143 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3144 {
3145 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3146 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3147 			return false;
3148 
3149 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3150 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3151 		return true;
3152 	}
3153 
3154 	return false;
3155 }
3156 
3157 #else /* !CONFIG_SMP */
3158 
3159 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3160 {
3161 	return false;
3162 }
3163 
3164 #endif /* CONFIG_SMP */
3165 
3166 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3167 {
3168 	struct rq *rq = cpu_rq(cpu);
3169 	struct rq_flags rf;
3170 
3171 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3172 		return;
3173 
3174 	rq_lock(rq, &rf);
3175 	update_rq_clock(rq);
3176 	ttwu_do_activate(rq, p, wake_flags, &rf);
3177 	rq_unlock(rq, &rf);
3178 }
3179 
3180 /*
3181  * Notes on Program-Order guarantees on SMP systems.
3182  *
3183  *  MIGRATION
3184  *
3185  * The basic program-order guarantee on SMP systems is that when a task [t]
3186  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3187  * execution on its new CPU [c1].
3188  *
3189  * For migration (of runnable tasks) this is provided by the following means:
3190  *
3191  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3192  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3193  *     rq(c1)->lock (if not at the same time, then in that order).
3194  *  C) LOCK of the rq(c1)->lock scheduling in task
3195  *
3196  * Release/acquire chaining guarantees that B happens after A and C after B.
3197  * Note: the CPU doing B need not be c0 or c1
3198  *
3199  * Example:
3200  *
3201  *   CPU0            CPU1            CPU2
3202  *
3203  *   LOCK rq(0)->lock
3204  *   sched-out X
3205  *   sched-in Y
3206  *   UNLOCK rq(0)->lock
3207  *
3208  *                                   LOCK rq(0)->lock // orders against CPU0
3209  *                                   dequeue X
3210  *                                   UNLOCK rq(0)->lock
3211  *
3212  *                                   LOCK rq(1)->lock
3213  *                                   enqueue X
3214  *                                   UNLOCK rq(1)->lock
3215  *
3216  *                   LOCK rq(1)->lock // orders against CPU2
3217  *                   sched-out Z
3218  *                   sched-in X
3219  *                   UNLOCK rq(1)->lock
3220  *
3221  *
3222  *  BLOCKING -- aka. SLEEP + WAKEUP
3223  *
3224  * For blocking we (obviously) need to provide the same guarantee as for
3225  * migration. However the means are completely different as there is no lock
3226  * chain to provide order. Instead we do:
3227  *
3228  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3229  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3230  *
3231  * Example:
3232  *
3233  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3234  *
3235  *   LOCK rq(0)->lock LOCK X->pi_lock
3236  *   dequeue X
3237  *   sched-out X
3238  *   smp_store_release(X->on_cpu, 0);
3239  *
3240  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3241  *                    X->state = WAKING
3242  *                    set_task_cpu(X,2)
3243  *
3244  *                    LOCK rq(2)->lock
3245  *                    enqueue X
3246  *                    X->state = RUNNING
3247  *                    UNLOCK rq(2)->lock
3248  *
3249  *                                          LOCK rq(2)->lock // orders against CPU1
3250  *                                          sched-out Z
3251  *                                          sched-in X
3252  *                                          UNLOCK rq(2)->lock
3253  *
3254  *                    UNLOCK X->pi_lock
3255  *   UNLOCK rq(0)->lock
3256  *
3257  *
3258  * However, for wakeups there is a second guarantee we must provide, namely we
3259  * must ensure that CONDITION=1 done by the caller can not be reordered with
3260  * accesses to the task state; see try_to_wake_up() and set_current_state().
3261  */
3262 
3263 /**
3264  * try_to_wake_up - wake up a thread
3265  * @p: the thread to be awakened
3266  * @state: the mask of task states that can be woken
3267  * @wake_flags: wake modifier flags (WF_*)
3268  *
3269  * Conceptually does:
3270  *
3271  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3272  *
3273  * If the task was not queued/runnable, also place it back on a runqueue.
3274  *
3275  * This function is atomic against schedule() which would dequeue the task.
3276  *
3277  * It issues a full memory barrier before accessing @p->state, see the comment
3278  * with set_current_state().
3279  *
3280  * Uses p->pi_lock to serialize against concurrent wake-ups.
3281  *
3282  * Relies on p->pi_lock stabilizing:
3283  *  - p->sched_class
3284  *  - p->cpus_ptr
3285  *  - p->sched_task_group
3286  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3287  *
3288  * Tries really hard to only take one task_rq(p)->lock for performance.
3289  * Takes rq->lock in:
3290  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
3291  *  - ttwu_queue()       -- new rq, for enqueue of the task;
3292  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3293  *
3294  * As a consequence we race really badly with just about everything. See the
3295  * many memory barriers and their comments for details.
3296  *
3297  * Return: %true if @p->state changes (an actual wakeup was done),
3298  *	   %false otherwise.
3299  */
3300 static int
3301 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3302 {
3303 	unsigned long flags;
3304 	int cpu, success = 0;
3305 
3306 	preempt_disable();
3307 	if (p == current) {
3308 		/*
3309 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3310 		 * == smp_processor_id()'. Together this means we can special
3311 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
3312 		 * without taking any locks.
3313 		 *
3314 		 * In particular:
3315 		 *  - we rely on Program-Order guarantees for all the ordering,
3316 		 *  - we're serialized against set_special_state() by virtue of
3317 		 *    it disabling IRQs (this allows not taking ->pi_lock).
3318 		 */
3319 		if (!(p->state & state))
3320 			goto out;
3321 
3322 		success = 1;
3323 		trace_sched_waking(p);
3324 		p->state = TASK_RUNNING;
3325 		trace_sched_wakeup(p);
3326 		goto out;
3327 	}
3328 
3329 	/*
3330 	 * If we are going to wake up a thread waiting for CONDITION we
3331 	 * need to ensure that CONDITION=1 done by the caller can not be
3332 	 * reordered with p->state check below. This pairs with smp_store_mb()
3333 	 * in set_current_state() that the waiting thread does.
3334 	 */
3335 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3336 	smp_mb__after_spinlock();
3337 	if (!(p->state & state))
3338 		goto unlock;
3339 
3340 	trace_sched_waking(p);
3341 
3342 	/* We're going to change ->state: */
3343 	success = 1;
3344 
3345 	/*
3346 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3347 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3348 	 * in smp_cond_load_acquire() below.
3349 	 *
3350 	 * sched_ttwu_pending()			try_to_wake_up()
3351 	 *   STORE p->on_rq = 1			  LOAD p->state
3352 	 *   UNLOCK rq->lock
3353 	 *
3354 	 * __schedule() (switch to task 'p')
3355 	 *   LOCK rq->lock			  smp_rmb();
3356 	 *   smp_mb__after_spinlock();
3357 	 *   UNLOCK rq->lock
3358 	 *
3359 	 * [task p]
3360 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
3361 	 *
3362 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3363 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3364 	 *
3365 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3366 	 */
3367 	smp_rmb();
3368 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3369 		goto unlock;
3370 
3371 #ifdef CONFIG_SMP
3372 	/*
3373 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3374 	 * possible to, falsely, observe p->on_cpu == 0.
3375 	 *
3376 	 * One must be running (->on_cpu == 1) in order to remove oneself
3377 	 * from the runqueue.
3378 	 *
3379 	 * __schedule() (switch to task 'p')	try_to_wake_up()
3380 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
3381 	 *   UNLOCK rq->lock
3382 	 *
3383 	 * __schedule() (put 'p' to sleep)
3384 	 *   LOCK rq->lock			  smp_rmb();
3385 	 *   smp_mb__after_spinlock();
3386 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
3387 	 *
3388 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3389 	 * __schedule().  See the comment for smp_mb__after_spinlock().
3390 	 *
3391 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3392 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
3393 	 * care about it's own p->state. See the comment in __schedule().
3394 	 */
3395 	smp_acquire__after_ctrl_dep();
3396 
3397 	/*
3398 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3399 	 * == 0), which means we need to do an enqueue, change p->state to
3400 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3401 	 * enqueue, such as ttwu_queue_wakelist().
3402 	 */
3403 	p->state = TASK_WAKING;
3404 
3405 	/*
3406 	 * If the owning (remote) CPU is still in the middle of schedule() with
3407 	 * this task as prev, considering queueing p on the remote CPUs wake_list
3408 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
3409 	 * let the waker make forward progress. This is safe because IRQs are
3410 	 * disabled and the IPI will deliver after on_cpu is cleared.
3411 	 *
3412 	 * Ensure we load task_cpu(p) after p->on_cpu:
3413 	 *
3414 	 * set_task_cpu(p, cpu);
3415 	 *   STORE p->cpu = @cpu
3416 	 * __schedule() (switch to task 'p')
3417 	 *   LOCK rq->lock
3418 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
3419 	 *   STORE p->on_cpu = 1		LOAD p->cpu
3420 	 *
3421 	 * to ensure we observe the correct CPU on which the task is currently
3422 	 * scheduling.
3423 	 */
3424 	if (smp_load_acquire(&p->on_cpu) &&
3425 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3426 		goto unlock;
3427 
3428 	/*
3429 	 * If the owning (remote) CPU is still in the middle of schedule() with
3430 	 * this task as prev, wait until it's done referencing the task.
3431 	 *
3432 	 * Pairs with the smp_store_release() in finish_task().
3433 	 *
3434 	 * This ensures that tasks getting woken will be fully ordered against
3435 	 * their previous state and preserve Program Order.
3436 	 */
3437 	smp_cond_load_acquire(&p->on_cpu, !VAL);
3438 
3439 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3440 	if (task_cpu(p) != cpu) {
3441 		if (p->in_iowait) {
3442 			delayacct_blkio_end(p);
3443 			atomic_dec(&task_rq(p)->nr_iowait);
3444 		}
3445 
3446 		wake_flags |= WF_MIGRATED;
3447 		psi_ttwu_dequeue(p);
3448 		set_task_cpu(p, cpu);
3449 	}
3450 #else
3451 	cpu = task_cpu(p);
3452 #endif /* CONFIG_SMP */
3453 
3454 	ttwu_queue(p, cpu, wake_flags);
3455 unlock:
3456 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3457 out:
3458 	if (success)
3459 		ttwu_stat(p, task_cpu(p), wake_flags);
3460 	preempt_enable();
3461 
3462 	return success;
3463 }
3464 
3465 /**
3466  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3467  * @p: Process for which the function is to be invoked.
3468  * @func: Function to invoke.
3469  * @arg: Argument to function.
3470  *
3471  * If the specified task can be quickly locked into a definite state
3472  * (either sleeping or on a given runqueue), arrange to keep it in that
3473  * state while invoking @func(@arg).  This function can use ->on_rq and
3474  * task_curr() to work out what the state is, if required.  Given that
3475  * @func can be invoked with a runqueue lock held, it had better be quite
3476  * lightweight.
3477  *
3478  * Returns:
3479  *	@false if the task slipped out from under the locks.
3480  *	@true if the task was locked onto a runqueue or is sleeping.
3481  *		However, @func can override this by returning @false.
3482  */
3483 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3484 {
3485 	bool ret = false;
3486 	struct rq_flags rf;
3487 	struct rq *rq;
3488 
3489 	lockdep_assert_irqs_enabled();
3490 	raw_spin_lock_irq(&p->pi_lock);
3491 	if (p->on_rq) {
3492 		rq = __task_rq_lock(p, &rf);
3493 		if (task_rq(p) == rq)
3494 			ret = func(p, arg);
3495 		rq_unlock(rq, &rf);
3496 	} else {
3497 		switch (p->state) {
3498 		case TASK_RUNNING:
3499 		case TASK_WAKING:
3500 			break;
3501 		default:
3502 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3503 			if (!p->on_rq)
3504 				ret = func(p, arg);
3505 		}
3506 	}
3507 	raw_spin_unlock_irq(&p->pi_lock);
3508 	return ret;
3509 }
3510 
3511 /**
3512  * wake_up_process - Wake up a specific process
3513  * @p: The process to be woken up.
3514  *
3515  * Attempt to wake up the nominated process and move it to the set of runnable
3516  * processes.
3517  *
3518  * Return: 1 if the process was woken up, 0 if it was already running.
3519  *
3520  * This function executes a full memory barrier before accessing the task state.
3521  */
3522 int wake_up_process(struct task_struct *p)
3523 {
3524 	return try_to_wake_up(p, TASK_NORMAL, 0);
3525 }
3526 EXPORT_SYMBOL(wake_up_process);
3527 
3528 int wake_up_state(struct task_struct *p, unsigned int state)
3529 {
3530 	return try_to_wake_up(p, state, 0);
3531 }
3532 
3533 /*
3534  * Perform scheduler related setup for a newly forked process p.
3535  * p is forked by current.
3536  *
3537  * __sched_fork() is basic setup used by init_idle() too:
3538  */
3539 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3540 {
3541 	p->on_rq			= 0;
3542 
3543 	p->se.on_rq			= 0;
3544 	p->se.exec_start		= 0;
3545 	p->se.sum_exec_runtime		= 0;
3546 	p->se.prev_sum_exec_runtime	= 0;
3547 	p->se.nr_migrations		= 0;
3548 	p->se.vruntime			= 0;
3549 	INIT_LIST_HEAD(&p->se.group_node);
3550 
3551 #ifdef CONFIG_FAIR_GROUP_SCHED
3552 	p->se.cfs_rq			= NULL;
3553 #endif
3554 
3555 #ifdef CONFIG_SCHEDSTATS
3556 	/* Even if schedstat is disabled, there should not be garbage */
3557 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3558 #endif
3559 
3560 	RB_CLEAR_NODE(&p->dl.rb_node);
3561 	init_dl_task_timer(&p->dl);
3562 	init_dl_inactive_task_timer(&p->dl);
3563 	__dl_clear_params(p);
3564 
3565 	INIT_LIST_HEAD(&p->rt.run_list);
3566 	p->rt.timeout		= 0;
3567 	p->rt.time_slice	= sched_rr_timeslice;
3568 	p->rt.on_rq		= 0;
3569 	p->rt.on_list		= 0;
3570 
3571 #ifdef CONFIG_PREEMPT_NOTIFIERS
3572 	INIT_HLIST_HEAD(&p->preempt_notifiers);
3573 #endif
3574 
3575 #ifdef CONFIG_COMPACTION
3576 	p->capture_control = NULL;
3577 #endif
3578 	init_numa_balancing(clone_flags, p);
3579 #ifdef CONFIG_SMP
3580 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3581 	p->migration_pending = NULL;
3582 #endif
3583 }
3584 
3585 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3586 
3587 #ifdef CONFIG_NUMA_BALANCING
3588 
3589 void set_numabalancing_state(bool enabled)
3590 {
3591 	if (enabled)
3592 		static_branch_enable(&sched_numa_balancing);
3593 	else
3594 		static_branch_disable(&sched_numa_balancing);
3595 }
3596 
3597 #ifdef CONFIG_PROC_SYSCTL
3598 int sysctl_numa_balancing(struct ctl_table *table, int write,
3599 			  void *buffer, size_t *lenp, loff_t *ppos)
3600 {
3601 	struct ctl_table t;
3602 	int err;
3603 	int state = static_branch_likely(&sched_numa_balancing);
3604 
3605 	if (write && !capable(CAP_SYS_ADMIN))
3606 		return -EPERM;
3607 
3608 	t = *table;
3609 	t.data = &state;
3610 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3611 	if (err < 0)
3612 		return err;
3613 	if (write)
3614 		set_numabalancing_state(state);
3615 	return err;
3616 }
3617 #endif
3618 #endif
3619 
3620 #ifdef CONFIG_SCHEDSTATS
3621 
3622 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3623 static bool __initdata __sched_schedstats = false;
3624 
3625 static void set_schedstats(bool enabled)
3626 {
3627 	if (enabled)
3628 		static_branch_enable(&sched_schedstats);
3629 	else
3630 		static_branch_disable(&sched_schedstats);
3631 }
3632 
3633 void force_schedstat_enabled(void)
3634 {
3635 	if (!schedstat_enabled()) {
3636 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3637 		static_branch_enable(&sched_schedstats);
3638 	}
3639 }
3640 
3641 static int __init setup_schedstats(char *str)
3642 {
3643 	int ret = 0;
3644 	if (!str)
3645 		goto out;
3646 
3647 	/*
3648 	 * This code is called before jump labels have been set up, so we can't
3649 	 * change the static branch directly just yet.  Instead set a temporary
3650 	 * variable so init_schedstats() can do it later.
3651 	 */
3652 	if (!strcmp(str, "enable")) {
3653 		__sched_schedstats = true;
3654 		ret = 1;
3655 	} else if (!strcmp(str, "disable")) {
3656 		__sched_schedstats = false;
3657 		ret = 1;
3658 	}
3659 out:
3660 	if (!ret)
3661 		pr_warn("Unable to parse schedstats=\n");
3662 
3663 	return ret;
3664 }
3665 __setup("schedstats=", setup_schedstats);
3666 
3667 static void __init init_schedstats(void)
3668 {
3669 	set_schedstats(__sched_schedstats);
3670 }
3671 
3672 #ifdef CONFIG_PROC_SYSCTL
3673 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3674 		size_t *lenp, loff_t *ppos)
3675 {
3676 	struct ctl_table t;
3677 	int err;
3678 	int state = static_branch_likely(&sched_schedstats);
3679 
3680 	if (write && !capable(CAP_SYS_ADMIN))
3681 		return -EPERM;
3682 
3683 	t = *table;
3684 	t.data = &state;
3685 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3686 	if (err < 0)
3687 		return err;
3688 	if (write)
3689 		set_schedstats(state);
3690 	return err;
3691 }
3692 #endif /* CONFIG_PROC_SYSCTL */
3693 #else  /* !CONFIG_SCHEDSTATS */
3694 static inline void init_schedstats(void) {}
3695 #endif /* CONFIG_SCHEDSTATS */
3696 
3697 /*
3698  * fork()/clone()-time setup:
3699  */
3700 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3701 {
3702 	unsigned long flags;
3703 
3704 	__sched_fork(clone_flags, p);
3705 	/*
3706 	 * We mark the process as NEW here. This guarantees that
3707 	 * nobody will actually run it, and a signal or other external
3708 	 * event cannot wake it up and insert it on the runqueue either.
3709 	 */
3710 	p->state = TASK_NEW;
3711 
3712 	/*
3713 	 * Make sure we do not leak PI boosting priority to the child.
3714 	 */
3715 	p->prio = current->normal_prio;
3716 
3717 	uclamp_fork(p);
3718 
3719 	/*
3720 	 * Revert to default priority/policy on fork if requested.
3721 	 */
3722 	if (unlikely(p->sched_reset_on_fork)) {
3723 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3724 			p->policy = SCHED_NORMAL;
3725 			p->static_prio = NICE_TO_PRIO(0);
3726 			p->rt_priority = 0;
3727 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3728 			p->static_prio = NICE_TO_PRIO(0);
3729 
3730 		p->prio = p->normal_prio = __normal_prio(p);
3731 		set_load_weight(p, false);
3732 
3733 		/*
3734 		 * We don't need the reset flag anymore after the fork. It has
3735 		 * fulfilled its duty:
3736 		 */
3737 		p->sched_reset_on_fork = 0;
3738 	}
3739 
3740 	if (dl_prio(p->prio))
3741 		return -EAGAIN;
3742 	else if (rt_prio(p->prio))
3743 		p->sched_class = &rt_sched_class;
3744 	else
3745 		p->sched_class = &fair_sched_class;
3746 
3747 	init_entity_runnable_average(&p->se);
3748 
3749 	/*
3750 	 * The child is not yet in the pid-hash so no cgroup attach races,
3751 	 * and the cgroup is pinned to this child due to cgroup_fork()
3752 	 * is ran before sched_fork().
3753 	 *
3754 	 * Silence PROVE_RCU.
3755 	 */
3756 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3757 	rseq_migrate(p);
3758 	/*
3759 	 * We're setting the CPU for the first time, we don't migrate,
3760 	 * so use __set_task_cpu().
3761 	 */
3762 	__set_task_cpu(p, smp_processor_id());
3763 	if (p->sched_class->task_fork)
3764 		p->sched_class->task_fork(p);
3765 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3766 
3767 #ifdef CONFIG_SCHED_INFO
3768 	if (likely(sched_info_on()))
3769 		memset(&p->sched_info, 0, sizeof(p->sched_info));
3770 #endif
3771 #if defined(CONFIG_SMP)
3772 	p->on_cpu = 0;
3773 #endif
3774 	init_task_preempt_count(p);
3775 #ifdef CONFIG_SMP
3776 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3777 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3778 #endif
3779 	return 0;
3780 }
3781 
3782 void sched_post_fork(struct task_struct *p)
3783 {
3784 	uclamp_post_fork(p);
3785 }
3786 
3787 unsigned long to_ratio(u64 period, u64 runtime)
3788 {
3789 	if (runtime == RUNTIME_INF)
3790 		return BW_UNIT;
3791 
3792 	/*
3793 	 * Doing this here saves a lot of checks in all
3794 	 * the calling paths, and returning zero seems
3795 	 * safe for them anyway.
3796 	 */
3797 	if (period == 0)
3798 		return 0;
3799 
3800 	return div64_u64(runtime << BW_SHIFT, period);
3801 }
3802 
3803 /*
3804  * wake_up_new_task - wake up a newly created task for the first time.
3805  *
3806  * This function will do some initial scheduler statistics housekeeping
3807  * that must be done for every newly created context, then puts the task
3808  * on the runqueue and wakes it.
3809  */
3810 void wake_up_new_task(struct task_struct *p)
3811 {
3812 	struct rq_flags rf;
3813 	struct rq *rq;
3814 
3815 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3816 	p->state = TASK_RUNNING;
3817 #ifdef CONFIG_SMP
3818 	/*
3819 	 * Fork balancing, do it here and not earlier because:
3820 	 *  - cpus_ptr can change in the fork path
3821 	 *  - any previously selected CPU might disappear through hotplug
3822 	 *
3823 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3824 	 * as we're not fully set-up yet.
3825 	 */
3826 	p->recent_used_cpu = task_cpu(p);
3827 	rseq_migrate(p);
3828 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3829 #endif
3830 	rq = __task_rq_lock(p, &rf);
3831 	update_rq_clock(rq);
3832 	post_init_entity_util_avg(p);
3833 
3834 	activate_task(rq, p, ENQUEUE_NOCLOCK);
3835 	trace_sched_wakeup_new(p);
3836 	check_preempt_curr(rq, p, WF_FORK);
3837 #ifdef CONFIG_SMP
3838 	if (p->sched_class->task_woken) {
3839 		/*
3840 		 * Nothing relies on rq->lock after this, so it's fine to
3841 		 * drop it.
3842 		 */
3843 		rq_unpin_lock(rq, &rf);
3844 		p->sched_class->task_woken(rq, p);
3845 		rq_repin_lock(rq, &rf);
3846 	}
3847 #endif
3848 	task_rq_unlock(rq, p, &rf);
3849 }
3850 
3851 #ifdef CONFIG_PREEMPT_NOTIFIERS
3852 
3853 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3854 
3855 void preempt_notifier_inc(void)
3856 {
3857 	static_branch_inc(&preempt_notifier_key);
3858 }
3859 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3860 
3861 void preempt_notifier_dec(void)
3862 {
3863 	static_branch_dec(&preempt_notifier_key);
3864 }
3865 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3866 
3867 /**
3868  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3869  * @notifier: notifier struct to register
3870  */
3871 void preempt_notifier_register(struct preempt_notifier *notifier)
3872 {
3873 	if (!static_branch_unlikely(&preempt_notifier_key))
3874 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3875 
3876 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3877 }
3878 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3879 
3880 /**
3881  * preempt_notifier_unregister - no longer interested in preemption notifications
3882  * @notifier: notifier struct to unregister
3883  *
3884  * This is *not* safe to call from within a preemption notifier.
3885  */
3886 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3887 {
3888 	hlist_del(&notifier->link);
3889 }
3890 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3891 
3892 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3893 {
3894 	struct preempt_notifier *notifier;
3895 
3896 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3897 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3898 }
3899 
3900 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3901 {
3902 	if (static_branch_unlikely(&preempt_notifier_key))
3903 		__fire_sched_in_preempt_notifiers(curr);
3904 }
3905 
3906 static void
3907 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3908 				   struct task_struct *next)
3909 {
3910 	struct preempt_notifier *notifier;
3911 
3912 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3913 		notifier->ops->sched_out(notifier, next);
3914 }
3915 
3916 static __always_inline void
3917 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3918 				 struct task_struct *next)
3919 {
3920 	if (static_branch_unlikely(&preempt_notifier_key))
3921 		__fire_sched_out_preempt_notifiers(curr, next);
3922 }
3923 
3924 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3925 
3926 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3927 {
3928 }
3929 
3930 static inline void
3931 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3932 				 struct task_struct *next)
3933 {
3934 }
3935 
3936 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3937 
3938 static inline void prepare_task(struct task_struct *next)
3939 {
3940 #ifdef CONFIG_SMP
3941 	/*
3942 	 * Claim the task as running, we do this before switching to it
3943 	 * such that any running task will have this set.
3944 	 *
3945 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3946 	 */
3947 	WRITE_ONCE(next->on_cpu, 1);
3948 #endif
3949 }
3950 
3951 static inline void finish_task(struct task_struct *prev)
3952 {
3953 #ifdef CONFIG_SMP
3954 	/*
3955 	 * This must be the very last reference to @prev from this CPU. After
3956 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3957 	 * must ensure this doesn't happen until the switch is completely
3958 	 * finished.
3959 	 *
3960 	 * In particular, the load of prev->state in finish_task_switch() must
3961 	 * happen before this.
3962 	 *
3963 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3964 	 */
3965 	smp_store_release(&prev->on_cpu, 0);
3966 #endif
3967 }
3968 
3969 #ifdef CONFIG_SMP
3970 
3971 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3972 {
3973 	void (*func)(struct rq *rq);
3974 	struct callback_head *next;
3975 
3976 	lockdep_assert_held(&rq->lock);
3977 
3978 	while (head) {
3979 		func = (void (*)(struct rq *))head->func;
3980 		next = head->next;
3981 		head->next = NULL;
3982 		head = next;
3983 
3984 		func(rq);
3985 	}
3986 }
3987 
3988 static void balance_push(struct rq *rq);
3989 
3990 struct callback_head balance_push_callback = {
3991 	.next = NULL,
3992 	.func = (void (*)(struct callback_head *))balance_push,
3993 };
3994 
3995 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
3996 {
3997 	struct callback_head *head = rq->balance_callback;
3998 
3999 	lockdep_assert_held(&rq->lock);
4000 	if (head)
4001 		rq->balance_callback = NULL;
4002 
4003 	return head;
4004 }
4005 
4006 static void __balance_callbacks(struct rq *rq)
4007 {
4008 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4009 }
4010 
4011 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4012 {
4013 	unsigned long flags;
4014 
4015 	if (unlikely(head)) {
4016 		raw_spin_lock_irqsave(&rq->lock, flags);
4017 		do_balance_callbacks(rq, head);
4018 		raw_spin_unlock_irqrestore(&rq->lock, flags);
4019 	}
4020 }
4021 
4022 #else
4023 
4024 static inline void __balance_callbacks(struct rq *rq)
4025 {
4026 }
4027 
4028 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4029 {
4030 	return NULL;
4031 }
4032 
4033 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4034 {
4035 }
4036 
4037 #endif
4038 
4039 static inline void
4040 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4041 {
4042 	/*
4043 	 * Since the runqueue lock will be released by the next
4044 	 * task (which is an invalid locking op but in the case
4045 	 * of the scheduler it's an obvious special-case), so we
4046 	 * do an early lockdep release here:
4047 	 */
4048 	rq_unpin_lock(rq, rf);
4049 	spin_release(&rq->lock.dep_map, _THIS_IP_);
4050 #ifdef CONFIG_DEBUG_SPINLOCK
4051 	/* this is a valid case when another task releases the spinlock */
4052 	rq->lock.owner = next;
4053 #endif
4054 }
4055 
4056 static inline void finish_lock_switch(struct rq *rq)
4057 {
4058 	/*
4059 	 * If we are tracking spinlock dependencies then we have to
4060 	 * fix up the runqueue lock - which gets 'carried over' from
4061 	 * prev into current:
4062 	 */
4063 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4064 	__balance_callbacks(rq);
4065 	raw_spin_unlock_irq(&rq->lock);
4066 }
4067 
4068 /*
4069  * NOP if the arch has not defined these:
4070  */
4071 
4072 #ifndef prepare_arch_switch
4073 # define prepare_arch_switch(next)	do { } while (0)
4074 #endif
4075 
4076 #ifndef finish_arch_post_lock_switch
4077 # define finish_arch_post_lock_switch()	do { } while (0)
4078 #endif
4079 
4080 static inline void kmap_local_sched_out(void)
4081 {
4082 #ifdef CONFIG_KMAP_LOCAL
4083 	if (unlikely(current->kmap_ctrl.idx))
4084 		__kmap_local_sched_out();
4085 #endif
4086 }
4087 
4088 static inline void kmap_local_sched_in(void)
4089 {
4090 #ifdef CONFIG_KMAP_LOCAL
4091 	if (unlikely(current->kmap_ctrl.idx))
4092 		__kmap_local_sched_in();
4093 #endif
4094 }
4095 
4096 /**
4097  * prepare_task_switch - prepare to switch tasks
4098  * @rq: the runqueue preparing to switch
4099  * @prev: the current task that is being switched out
4100  * @next: the task we are going to switch to.
4101  *
4102  * This is called with the rq lock held and interrupts off. It must
4103  * be paired with a subsequent finish_task_switch after the context
4104  * switch.
4105  *
4106  * prepare_task_switch sets up locking and calls architecture specific
4107  * hooks.
4108  */
4109 static inline void
4110 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4111 		    struct task_struct *next)
4112 {
4113 	kcov_prepare_switch(prev);
4114 	sched_info_switch(rq, prev, next);
4115 	perf_event_task_sched_out(prev, next);
4116 	rseq_preempt(prev);
4117 	fire_sched_out_preempt_notifiers(prev, next);
4118 	kmap_local_sched_out();
4119 	prepare_task(next);
4120 	prepare_arch_switch(next);
4121 }
4122 
4123 /**
4124  * finish_task_switch - clean up after a task-switch
4125  * @prev: the thread we just switched away from.
4126  *
4127  * finish_task_switch must be called after the context switch, paired
4128  * with a prepare_task_switch call before the context switch.
4129  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4130  * and do any other architecture-specific cleanup actions.
4131  *
4132  * Note that we may have delayed dropping an mm in context_switch(). If
4133  * so, we finish that here outside of the runqueue lock. (Doing it
4134  * with the lock held can cause deadlocks; see schedule() for
4135  * details.)
4136  *
4137  * The context switch have flipped the stack from under us and restored the
4138  * local variables which were saved when this task called schedule() in the
4139  * past. prev == current is still correct but we need to recalculate this_rq
4140  * because prev may have moved to another CPU.
4141  */
4142 static struct rq *finish_task_switch(struct task_struct *prev)
4143 	__releases(rq->lock)
4144 {
4145 	struct rq *rq = this_rq();
4146 	struct mm_struct *mm = rq->prev_mm;
4147 	long prev_state;
4148 
4149 	/*
4150 	 * The previous task will have left us with a preempt_count of 2
4151 	 * because it left us after:
4152 	 *
4153 	 *	schedule()
4154 	 *	  preempt_disable();			// 1
4155 	 *	  __schedule()
4156 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4157 	 *
4158 	 * Also, see FORK_PREEMPT_COUNT.
4159 	 */
4160 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4161 		      "corrupted preempt_count: %s/%d/0x%x\n",
4162 		      current->comm, current->pid, preempt_count()))
4163 		preempt_count_set(FORK_PREEMPT_COUNT);
4164 
4165 	rq->prev_mm = NULL;
4166 
4167 	/*
4168 	 * A task struct has one reference for the use as "current".
4169 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4170 	 * schedule one last time. The schedule call will never return, and
4171 	 * the scheduled task must drop that reference.
4172 	 *
4173 	 * We must observe prev->state before clearing prev->on_cpu (in
4174 	 * finish_task), otherwise a concurrent wakeup can get prev
4175 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4176 	 * transition, resulting in a double drop.
4177 	 */
4178 	prev_state = prev->state;
4179 	vtime_task_switch(prev);
4180 	perf_event_task_sched_in(prev, current);
4181 	finish_task(prev);
4182 	finish_lock_switch(rq);
4183 	finish_arch_post_lock_switch();
4184 	kcov_finish_switch(current);
4185 	/*
4186 	 * kmap_local_sched_out() is invoked with rq::lock held and
4187 	 * interrupts disabled. There is no requirement for that, but the
4188 	 * sched out code does not have an interrupt enabled section.
4189 	 * Restoring the maps on sched in does not require interrupts being
4190 	 * disabled either.
4191 	 */
4192 	kmap_local_sched_in();
4193 
4194 	fire_sched_in_preempt_notifiers(current);
4195 	/*
4196 	 * When switching through a kernel thread, the loop in
4197 	 * membarrier_{private,global}_expedited() may have observed that
4198 	 * kernel thread and not issued an IPI. It is therefore possible to
4199 	 * schedule between user->kernel->user threads without passing though
4200 	 * switch_mm(). Membarrier requires a barrier after storing to
4201 	 * rq->curr, before returning to userspace, so provide them here:
4202 	 *
4203 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4204 	 *   provided by mmdrop(),
4205 	 * - a sync_core for SYNC_CORE.
4206 	 */
4207 	if (mm) {
4208 		membarrier_mm_sync_core_before_usermode(mm);
4209 		mmdrop(mm);
4210 	}
4211 	if (unlikely(prev_state == TASK_DEAD)) {
4212 		if (prev->sched_class->task_dead)
4213 			prev->sched_class->task_dead(prev);
4214 
4215 		/*
4216 		 * Remove function-return probe instances associated with this
4217 		 * task and put them back on the free list.
4218 		 */
4219 		kprobe_flush_task(prev);
4220 
4221 		/* Task is done with its stack. */
4222 		put_task_stack(prev);
4223 
4224 		put_task_struct_rcu_user(prev);
4225 	}
4226 
4227 	tick_nohz_task_switch();
4228 	return rq;
4229 }
4230 
4231 /**
4232  * schedule_tail - first thing a freshly forked thread must call.
4233  * @prev: the thread we just switched away from.
4234  */
4235 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4236 	__releases(rq->lock)
4237 {
4238 	struct rq *rq;
4239 
4240 	/*
4241 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
4242 	 * finish_task_switch() for details.
4243 	 *
4244 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
4245 	 * and the preempt_enable() will end up enabling preemption (on
4246 	 * PREEMPT_COUNT kernels).
4247 	 */
4248 
4249 	rq = finish_task_switch(prev);
4250 	preempt_enable();
4251 
4252 	if (current->set_child_tid)
4253 		put_user(task_pid_vnr(current), current->set_child_tid);
4254 
4255 	calculate_sigpending();
4256 }
4257 
4258 /*
4259  * context_switch - switch to the new MM and the new thread's register state.
4260  */
4261 static __always_inline struct rq *
4262 context_switch(struct rq *rq, struct task_struct *prev,
4263 	       struct task_struct *next, struct rq_flags *rf)
4264 {
4265 	prepare_task_switch(rq, prev, next);
4266 
4267 	/*
4268 	 * For paravirt, this is coupled with an exit in switch_to to
4269 	 * combine the page table reload and the switch backend into
4270 	 * one hypercall.
4271 	 */
4272 	arch_start_context_switch(prev);
4273 
4274 	/*
4275 	 * kernel -> kernel   lazy + transfer active
4276 	 *   user -> kernel   lazy + mmgrab() active
4277 	 *
4278 	 * kernel ->   user   switch + mmdrop() active
4279 	 *   user ->   user   switch
4280 	 */
4281 	if (!next->mm) {                                // to kernel
4282 		enter_lazy_tlb(prev->active_mm, next);
4283 
4284 		next->active_mm = prev->active_mm;
4285 		if (prev->mm)                           // from user
4286 			mmgrab(prev->active_mm);
4287 		else
4288 			prev->active_mm = NULL;
4289 	} else {                                        // to user
4290 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
4291 		/*
4292 		 * sys_membarrier() requires an smp_mb() between setting
4293 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
4294 		 *
4295 		 * The below provides this either through switch_mm(), or in
4296 		 * case 'prev->active_mm == next->mm' through
4297 		 * finish_task_switch()'s mmdrop().
4298 		 */
4299 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
4300 
4301 		if (!prev->mm) {                        // from kernel
4302 			/* will mmdrop() in finish_task_switch(). */
4303 			rq->prev_mm = prev->active_mm;
4304 			prev->active_mm = NULL;
4305 		}
4306 	}
4307 
4308 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4309 
4310 	prepare_lock_switch(rq, next, rf);
4311 
4312 	/* Here we just switch the register state and the stack. */
4313 	switch_to(prev, next, prev);
4314 	barrier();
4315 
4316 	return finish_task_switch(prev);
4317 }
4318 
4319 /*
4320  * nr_running and nr_context_switches:
4321  *
4322  * externally visible scheduler statistics: current number of runnable
4323  * threads, total number of context switches performed since bootup.
4324  */
4325 unsigned long nr_running(void)
4326 {
4327 	unsigned long i, sum = 0;
4328 
4329 	for_each_online_cpu(i)
4330 		sum += cpu_rq(i)->nr_running;
4331 
4332 	return sum;
4333 }
4334 
4335 /*
4336  * Check if only the current task is running on the CPU.
4337  *
4338  * Caution: this function does not check that the caller has disabled
4339  * preemption, thus the result might have a time-of-check-to-time-of-use
4340  * race.  The caller is responsible to use it correctly, for example:
4341  *
4342  * - from a non-preemptible section (of course)
4343  *
4344  * - from a thread that is bound to a single CPU
4345  *
4346  * - in a loop with very short iterations (e.g. a polling loop)
4347  */
4348 bool single_task_running(void)
4349 {
4350 	return raw_rq()->nr_running == 1;
4351 }
4352 EXPORT_SYMBOL(single_task_running);
4353 
4354 unsigned long long nr_context_switches(void)
4355 {
4356 	int i;
4357 	unsigned long long sum = 0;
4358 
4359 	for_each_possible_cpu(i)
4360 		sum += cpu_rq(i)->nr_switches;
4361 
4362 	return sum;
4363 }
4364 
4365 /*
4366  * Consumers of these two interfaces, like for example the cpuidle menu
4367  * governor, are using nonsensical data. Preferring shallow idle state selection
4368  * for a CPU that has IO-wait which might not even end up running the task when
4369  * it does become runnable.
4370  */
4371 
4372 unsigned long nr_iowait_cpu(int cpu)
4373 {
4374 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
4375 }
4376 
4377 /*
4378  * IO-wait accounting, and how it's mostly bollocks (on SMP).
4379  *
4380  * The idea behind IO-wait account is to account the idle time that we could
4381  * have spend running if it were not for IO. That is, if we were to improve the
4382  * storage performance, we'd have a proportional reduction in IO-wait time.
4383  *
4384  * This all works nicely on UP, where, when a task blocks on IO, we account
4385  * idle time as IO-wait, because if the storage were faster, it could've been
4386  * running and we'd not be idle.
4387  *
4388  * This has been extended to SMP, by doing the same for each CPU. This however
4389  * is broken.
4390  *
4391  * Imagine for instance the case where two tasks block on one CPU, only the one
4392  * CPU will have IO-wait accounted, while the other has regular idle. Even
4393  * though, if the storage were faster, both could've ran at the same time,
4394  * utilising both CPUs.
4395  *
4396  * This means, that when looking globally, the current IO-wait accounting on
4397  * SMP is a lower bound, by reason of under accounting.
4398  *
4399  * Worse, since the numbers are provided per CPU, they are sometimes
4400  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4401  * associated with any one particular CPU, it can wake to another CPU than it
4402  * blocked on. This means the per CPU IO-wait number is meaningless.
4403  *
4404  * Task CPU affinities can make all that even more 'interesting'.
4405  */
4406 
4407 unsigned long nr_iowait(void)
4408 {
4409 	unsigned long i, sum = 0;
4410 
4411 	for_each_possible_cpu(i)
4412 		sum += nr_iowait_cpu(i);
4413 
4414 	return sum;
4415 }
4416 
4417 #ifdef CONFIG_SMP
4418 
4419 /*
4420  * sched_exec - execve() is a valuable balancing opportunity, because at
4421  * this point the task has the smallest effective memory and cache footprint.
4422  */
4423 void sched_exec(void)
4424 {
4425 	struct task_struct *p = current;
4426 	unsigned long flags;
4427 	int dest_cpu;
4428 
4429 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4430 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4431 	if (dest_cpu == smp_processor_id())
4432 		goto unlock;
4433 
4434 	if (likely(cpu_active(dest_cpu))) {
4435 		struct migration_arg arg = { p, dest_cpu };
4436 
4437 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4438 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4439 		return;
4440 	}
4441 unlock:
4442 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4443 }
4444 
4445 #endif
4446 
4447 DEFINE_PER_CPU(struct kernel_stat, kstat);
4448 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4449 
4450 EXPORT_PER_CPU_SYMBOL(kstat);
4451 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4452 
4453 /*
4454  * The function fair_sched_class.update_curr accesses the struct curr
4455  * and its field curr->exec_start; when called from task_sched_runtime(),
4456  * we observe a high rate of cache misses in practice.
4457  * Prefetching this data results in improved performance.
4458  */
4459 static inline void prefetch_curr_exec_start(struct task_struct *p)
4460 {
4461 #ifdef CONFIG_FAIR_GROUP_SCHED
4462 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4463 #else
4464 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4465 #endif
4466 	prefetch(curr);
4467 	prefetch(&curr->exec_start);
4468 }
4469 
4470 /*
4471  * Return accounted runtime for the task.
4472  * In case the task is currently running, return the runtime plus current's
4473  * pending runtime that have not been accounted yet.
4474  */
4475 unsigned long long task_sched_runtime(struct task_struct *p)
4476 {
4477 	struct rq_flags rf;
4478 	struct rq *rq;
4479 	u64 ns;
4480 
4481 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4482 	/*
4483 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
4484 	 * So we have a optimization chance when the task's delta_exec is 0.
4485 	 * Reading ->on_cpu is racy, but this is ok.
4486 	 *
4487 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4488 	 * If we race with it entering CPU, unaccounted time is 0. This is
4489 	 * indistinguishable from the read occurring a few cycles earlier.
4490 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4491 	 * been accounted, so we're correct here as well.
4492 	 */
4493 	if (!p->on_cpu || !task_on_rq_queued(p))
4494 		return p->se.sum_exec_runtime;
4495 #endif
4496 
4497 	rq = task_rq_lock(p, &rf);
4498 	/*
4499 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
4500 	 * project cycles that may never be accounted to this
4501 	 * thread, breaking clock_gettime().
4502 	 */
4503 	if (task_current(rq, p) && task_on_rq_queued(p)) {
4504 		prefetch_curr_exec_start(p);
4505 		update_rq_clock(rq);
4506 		p->sched_class->update_curr(rq);
4507 	}
4508 	ns = p->se.sum_exec_runtime;
4509 	task_rq_unlock(rq, p, &rf);
4510 
4511 	return ns;
4512 }
4513 
4514 /*
4515  * This function gets called by the timer code, with HZ frequency.
4516  * We call it with interrupts disabled.
4517  */
4518 void scheduler_tick(void)
4519 {
4520 	int cpu = smp_processor_id();
4521 	struct rq *rq = cpu_rq(cpu);
4522 	struct task_struct *curr = rq->curr;
4523 	struct rq_flags rf;
4524 	unsigned long thermal_pressure;
4525 
4526 	arch_scale_freq_tick();
4527 	sched_clock_tick();
4528 
4529 	rq_lock(rq, &rf);
4530 
4531 	update_rq_clock(rq);
4532 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4533 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4534 	curr->sched_class->task_tick(rq, curr, 0);
4535 	calc_global_load_tick(rq);
4536 	psi_task_tick(rq);
4537 
4538 	rq_unlock(rq, &rf);
4539 
4540 	perf_event_task_tick();
4541 
4542 #ifdef CONFIG_SMP
4543 	rq->idle_balance = idle_cpu(cpu);
4544 	trigger_load_balance(rq);
4545 #endif
4546 }
4547 
4548 #ifdef CONFIG_NO_HZ_FULL
4549 
4550 struct tick_work {
4551 	int			cpu;
4552 	atomic_t		state;
4553 	struct delayed_work	work;
4554 };
4555 /* Values for ->state, see diagram below. */
4556 #define TICK_SCHED_REMOTE_OFFLINE	0
4557 #define TICK_SCHED_REMOTE_OFFLINING	1
4558 #define TICK_SCHED_REMOTE_RUNNING	2
4559 
4560 /*
4561  * State diagram for ->state:
4562  *
4563  *
4564  *          TICK_SCHED_REMOTE_OFFLINE
4565  *                    |   ^
4566  *                    |   |
4567  *                    |   | sched_tick_remote()
4568  *                    |   |
4569  *                    |   |
4570  *                    +--TICK_SCHED_REMOTE_OFFLINING
4571  *                    |   ^
4572  *                    |   |
4573  * sched_tick_start() |   | sched_tick_stop()
4574  *                    |   |
4575  *                    V   |
4576  *          TICK_SCHED_REMOTE_RUNNING
4577  *
4578  *
4579  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4580  * and sched_tick_start() are happy to leave the state in RUNNING.
4581  */
4582 
4583 static struct tick_work __percpu *tick_work_cpu;
4584 
4585 static void sched_tick_remote(struct work_struct *work)
4586 {
4587 	struct delayed_work *dwork = to_delayed_work(work);
4588 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4589 	int cpu = twork->cpu;
4590 	struct rq *rq = cpu_rq(cpu);
4591 	struct task_struct *curr;
4592 	struct rq_flags rf;
4593 	u64 delta;
4594 	int os;
4595 
4596 	/*
4597 	 * Handle the tick only if it appears the remote CPU is running in full
4598 	 * dynticks mode. The check is racy by nature, but missing a tick or
4599 	 * having one too much is no big deal because the scheduler tick updates
4600 	 * statistics and checks timeslices in a time-independent way, regardless
4601 	 * of when exactly it is running.
4602 	 */
4603 	if (!tick_nohz_tick_stopped_cpu(cpu))
4604 		goto out_requeue;
4605 
4606 	rq_lock_irq(rq, &rf);
4607 	curr = rq->curr;
4608 	if (cpu_is_offline(cpu))
4609 		goto out_unlock;
4610 
4611 	update_rq_clock(rq);
4612 
4613 	if (!is_idle_task(curr)) {
4614 		/*
4615 		 * Make sure the next tick runs within a reasonable
4616 		 * amount of time.
4617 		 */
4618 		delta = rq_clock_task(rq) - curr->se.exec_start;
4619 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4620 	}
4621 	curr->sched_class->task_tick(rq, curr, 0);
4622 
4623 	calc_load_nohz_remote(rq);
4624 out_unlock:
4625 	rq_unlock_irq(rq, &rf);
4626 out_requeue:
4627 
4628 	/*
4629 	 * Run the remote tick once per second (1Hz). This arbitrary
4630 	 * frequency is large enough to avoid overload but short enough
4631 	 * to keep scheduler internal stats reasonably up to date.  But
4632 	 * first update state to reflect hotplug activity if required.
4633 	 */
4634 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4635 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4636 	if (os == TICK_SCHED_REMOTE_RUNNING)
4637 		queue_delayed_work(system_unbound_wq, dwork, HZ);
4638 }
4639 
4640 static void sched_tick_start(int cpu)
4641 {
4642 	int os;
4643 	struct tick_work *twork;
4644 
4645 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4646 		return;
4647 
4648 	WARN_ON_ONCE(!tick_work_cpu);
4649 
4650 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4651 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4652 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4653 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4654 		twork->cpu = cpu;
4655 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4656 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4657 	}
4658 }
4659 
4660 #ifdef CONFIG_HOTPLUG_CPU
4661 static void sched_tick_stop(int cpu)
4662 {
4663 	struct tick_work *twork;
4664 	int os;
4665 
4666 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4667 		return;
4668 
4669 	WARN_ON_ONCE(!tick_work_cpu);
4670 
4671 	twork = per_cpu_ptr(tick_work_cpu, cpu);
4672 	/* There cannot be competing actions, but don't rely on stop-machine. */
4673 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4674 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4675 	/* Don't cancel, as this would mess up the state machine. */
4676 }
4677 #endif /* CONFIG_HOTPLUG_CPU */
4678 
4679 int __init sched_tick_offload_init(void)
4680 {
4681 	tick_work_cpu = alloc_percpu(struct tick_work);
4682 	BUG_ON(!tick_work_cpu);
4683 	return 0;
4684 }
4685 
4686 #else /* !CONFIG_NO_HZ_FULL */
4687 static inline void sched_tick_start(int cpu) { }
4688 static inline void sched_tick_stop(int cpu) { }
4689 #endif
4690 
4691 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4692 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4693 /*
4694  * If the value passed in is equal to the current preempt count
4695  * then we just disabled preemption. Start timing the latency.
4696  */
4697 static inline void preempt_latency_start(int val)
4698 {
4699 	if (preempt_count() == val) {
4700 		unsigned long ip = get_lock_parent_ip();
4701 #ifdef CONFIG_DEBUG_PREEMPT
4702 		current->preempt_disable_ip = ip;
4703 #endif
4704 		trace_preempt_off(CALLER_ADDR0, ip);
4705 	}
4706 }
4707 
4708 void preempt_count_add(int val)
4709 {
4710 #ifdef CONFIG_DEBUG_PREEMPT
4711 	/*
4712 	 * Underflow?
4713 	 */
4714 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4715 		return;
4716 #endif
4717 	__preempt_count_add(val);
4718 #ifdef CONFIG_DEBUG_PREEMPT
4719 	/*
4720 	 * Spinlock count overflowing soon?
4721 	 */
4722 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4723 				PREEMPT_MASK - 10);
4724 #endif
4725 	preempt_latency_start(val);
4726 }
4727 EXPORT_SYMBOL(preempt_count_add);
4728 NOKPROBE_SYMBOL(preempt_count_add);
4729 
4730 /*
4731  * If the value passed in equals to the current preempt count
4732  * then we just enabled preemption. Stop timing the latency.
4733  */
4734 static inline void preempt_latency_stop(int val)
4735 {
4736 	if (preempt_count() == val)
4737 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4738 }
4739 
4740 void preempt_count_sub(int val)
4741 {
4742 #ifdef CONFIG_DEBUG_PREEMPT
4743 	/*
4744 	 * Underflow?
4745 	 */
4746 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4747 		return;
4748 	/*
4749 	 * Is the spinlock portion underflowing?
4750 	 */
4751 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4752 			!(preempt_count() & PREEMPT_MASK)))
4753 		return;
4754 #endif
4755 
4756 	preempt_latency_stop(val);
4757 	__preempt_count_sub(val);
4758 }
4759 EXPORT_SYMBOL(preempt_count_sub);
4760 NOKPROBE_SYMBOL(preempt_count_sub);
4761 
4762 #else
4763 static inline void preempt_latency_start(int val) { }
4764 static inline void preempt_latency_stop(int val) { }
4765 #endif
4766 
4767 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4768 {
4769 #ifdef CONFIG_DEBUG_PREEMPT
4770 	return p->preempt_disable_ip;
4771 #else
4772 	return 0;
4773 #endif
4774 }
4775 
4776 /*
4777  * Print scheduling while atomic bug:
4778  */
4779 static noinline void __schedule_bug(struct task_struct *prev)
4780 {
4781 	/* Save this before calling printk(), since that will clobber it */
4782 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4783 
4784 	if (oops_in_progress)
4785 		return;
4786 
4787 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4788 		prev->comm, prev->pid, preempt_count());
4789 
4790 	debug_show_held_locks(prev);
4791 	print_modules();
4792 	if (irqs_disabled())
4793 		print_irqtrace_events(prev);
4794 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4795 	    && in_atomic_preempt_off()) {
4796 		pr_err("Preemption disabled at:");
4797 		print_ip_sym(KERN_ERR, preempt_disable_ip);
4798 	}
4799 	if (panic_on_warn)
4800 		panic("scheduling while atomic\n");
4801 
4802 	dump_stack();
4803 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4804 }
4805 
4806 /*
4807  * Various schedule()-time debugging checks and statistics:
4808  */
4809 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4810 {
4811 #ifdef CONFIG_SCHED_STACK_END_CHECK
4812 	if (task_stack_end_corrupted(prev))
4813 		panic("corrupted stack end detected inside scheduler\n");
4814 
4815 	if (task_scs_end_corrupted(prev))
4816 		panic("corrupted shadow stack detected inside scheduler\n");
4817 #endif
4818 
4819 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4820 	if (!preempt && prev->state && prev->non_block_count) {
4821 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4822 			prev->comm, prev->pid, prev->non_block_count);
4823 		dump_stack();
4824 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4825 	}
4826 #endif
4827 
4828 	if (unlikely(in_atomic_preempt_off())) {
4829 		__schedule_bug(prev);
4830 		preempt_count_set(PREEMPT_DISABLED);
4831 	}
4832 	rcu_sleep_check();
4833 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
4834 
4835 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4836 
4837 	schedstat_inc(this_rq()->sched_count);
4838 }
4839 
4840 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4841 				  struct rq_flags *rf)
4842 {
4843 #ifdef CONFIG_SMP
4844 	const struct sched_class *class;
4845 	/*
4846 	 * We must do the balancing pass before put_prev_task(), such
4847 	 * that when we release the rq->lock the task is in the same
4848 	 * state as before we took rq->lock.
4849 	 *
4850 	 * We can terminate the balance pass as soon as we know there is
4851 	 * a runnable task of @class priority or higher.
4852 	 */
4853 	for_class_range(class, prev->sched_class, &idle_sched_class) {
4854 		if (class->balance(rq, prev, rf))
4855 			break;
4856 	}
4857 #endif
4858 
4859 	put_prev_task(rq, prev);
4860 }
4861 
4862 /*
4863  * Pick up the highest-prio task:
4864  */
4865 static inline struct task_struct *
4866 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4867 {
4868 	const struct sched_class *class;
4869 	struct task_struct *p;
4870 
4871 	/*
4872 	 * Optimization: we know that if all tasks are in the fair class we can
4873 	 * call that function directly, but only if the @prev task wasn't of a
4874 	 * higher scheduling class, because otherwise those lose the
4875 	 * opportunity to pull in more work from other CPUs.
4876 	 */
4877 	if (likely(prev->sched_class <= &fair_sched_class &&
4878 		   rq->nr_running == rq->cfs.h_nr_running)) {
4879 
4880 		p = pick_next_task_fair(rq, prev, rf);
4881 		if (unlikely(p == RETRY_TASK))
4882 			goto restart;
4883 
4884 		/* Assumes fair_sched_class->next == idle_sched_class */
4885 		if (!p) {
4886 			put_prev_task(rq, prev);
4887 			p = pick_next_task_idle(rq);
4888 		}
4889 
4890 		return p;
4891 	}
4892 
4893 restart:
4894 	put_prev_task_balance(rq, prev, rf);
4895 
4896 	for_each_class(class) {
4897 		p = class->pick_next_task(rq);
4898 		if (p)
4899 			return p;
4900 	}
4901 
4902 	/* The idle class should always have a runnable task: */
4903 	BUG();
4904 }
4905 
4906 /*
4907  * __schedule() is the main scheduler function.
4908  *
4909  * The main means of driving the scheduler and thus entering this function are:
4910  *
4911  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4912  *
4913  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4914  *      paths. For example, see arch/x86/entry_64.S.
4915  *
4916  *      To drive preemption between tasks, the scheduler sets the flag in timer
4917  *      interrupt handler scheduler_tick().
4918  *
4919  *   3. Wakeups don't really cause entry into schedule(). They add a
4920  *      task to the run-queue and that's it.
4921  *
4922  *      Now, if the new task added to the run-queue preempts the current
4923  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4924  *      called on the nearest possible occasion:
4925  *
4926  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4927  *
4928  *         - in syscall or exception context, at the next outmost
4929  *           preempt_enable(). (this might be as soon as the wake_up()'s
4930  *           spin_unlock()!)
4931  *
4932  *         - in IRQ context, return from interrupt-handler to
4933  *           preemptible context
4934  *
4935  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4936  *         then at the next:
4937  *
4938  *          - cond_resched() call
4939  *          - explicit schedule() call
4940  *          - return from syscall or exception to user-space
4941  *          - return from interrupt-handler to user-space
4942  *
4943  * WARNING: must be called with preemption disabled!
4944  */
4945 static void __sched notrace __schedule(bool preempt)
4946 {
4947 	struct task_struct *prev, *next;
4948 	unsigned long *switch_count;
4949 	unsigned long prev_state;
4950 	struct rq_flags rf;
4951 	struct rq *rq;
4952 	int cpu;
4953 
4954 	cpu = smp_processor_id();
4955 	rq = cpu_rq(cpu);
4956 	prev = rq->curr;
4957 
4958 	schedule_debug(prev, preempt);
4959 
4960 	if (sched_feat(HRTICK))
4961 		hrtick_clear(rq);
4962 
4963 	local_irq_disable();
4964 	rcu_note_context_switch(preempt);
4965 
4966 	/*
4967 	 * Make sure that signal_pending_state()->signal_pending() below
4968 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4969 	 * done by the caller to avoid the race with signal_wake_up():
4970 	 *
4971 	 * __set_current_state(@state)		signal_wake_up()
4972 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4973 	 *					  wake_up_state(p, state)
4974 	 *   LOCK rq->lock			    LOCK p->pi_state
4975 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4976 	 *     if (signal_pending_state())	    if (p->state & @state)
4977 	 *
4978 	 * Also, the membarrier system call requires a full memory barrier
4979 	 * after coming from user-space, before storing to rq->curr.
4980 	 */
4981 	rq_lock(rq, &rf);
4982 	smp_mb__after_spinlock();
4983 
4984 	/* Promote REQ to ACT */
4985 	rq->clock_update_flags <<= 1;
4986 	update_rq_clock(rq);
4987 
4988 	switch_count = &prev->nivcsw;
4989 
4990 	/*
4991 	 * We must load prev->state once (task_struct::state is volatile), such
4992 	 * that:
4993 	 *
4994 	 *  - we form a control dependency vs deactivate_task() below.
4995 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4996 	 */
4997 	prev_state = prev->state;
4998 	if (!preempt && prev_state) {
4999 		if (signal_pending_state(prev_state, prev)) {
5000 			prev->state = TASK_RUNNING;
5001 		} else {
5002 			prev->sched_contributes_to_load =
5003 				(prev_state & TASK_UNINTERRUPTIBLE) &&
5004 				!(prev_state & TASK_NOLOAD) &&
5005 				!(prev->flags & PF_FROZEN);
5006 
5007 			if (prev->sched_contributes_to_load)
5008 				rq->nr_uninterruptible++;
5009 
5010 			/*
5011 			 * __schedule()			ttwu()
5012 			 *   prev_state = prev->state;    if (p->on_rq && ...)
5013 			 *   if (prev_state)		    goto out;
5014 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
5015 			 *				  p->state = TASK_WAKING
5016 			 *
5017 			 * Where __schedule() and ttwu() have matching control dependencies.
5018 			 *
5019 			 * After this, schedule() must not care about p->state any more.
5020 			 */
5021 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5022 
5023 			if (prev->in_iowait) {
5024 				atomic_inc(&rq->nr_iowait);
5025 				delayacct_blkio_start();
5026 			}
5027 		}
5028 		switch_count = &prev->nvcsw;
5029 	}
5030 
5031 	next = pick_next_task(rq, prev, &rf);
5032 	clear_tsk_need_resched(prev);
5033 	clear_preempt_need_resched();
5034 
5035 	if (likely(prev != next)) {
5036 		rq->nr_switches++;
5037 		/*
5038 		 * RCU users of rcu_dereference(rq->curr) may not see
5039 		 * changes to task_struct made by pick_next_task().
5040 		 */
5041 		RCU_INIT_POINTER(rq->curr, next);
5042 		/*
5043 		 * The membarrier system call requires each architecture
5044 		 * to have a full memory barrier after updating
5045 		 * rq->curr, before returning to user-space.
5046 		 *
5047 		 * Here are the schemes providing that barrier on the
5048 		 * various architectures:
5049 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5050 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5051 		 * - finish_lock_switch() for weakly-ordered
5052 		 *   architectures where spin_unlock is a full barrier,
5053 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5054 		 *   is a RELEASE barrier),
5055 		 */
5056 		++*switch_count;
5057 
5058 		migrate_disable_switch(rq, prev);
5059 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5060 
5061 		trace_sched_switch(preempt, prev, next);
5062 
5063 		/* Also unlocks the rq: */
5064 		rq = context_switch(rq, prev, next, &rf);
5065 	} else {
5066 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5067 
5068 		rq_unpin_lock(rq, &rf);
5069 		__balance_callbacks(rq);
5070 		raw_spin_unlock_irq(&rq->lock);
5071 	}
5072 }
5073 
5074 void __noreturn do_task_dead(void)
5075 {
5076 	/* Causes final put_task_struct in finish_task_switch(): */
5077 	set_special_state(TASK_DEAD);
5078 
5079 	/* Tell freezer to ignore us: */
5080 	current->flags |= PF_NOFREEZE;
5081 
5082 	__schedule(false);
5083 	BUG();
5084 
5085 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5086 	for (;;)
5087 		cpu_relax();
5088 }
5089 
5090 static inline void sched_submit_work(struct task_struct *tsk)
5091 {
5092 	unsigned int task_flags;
5093 
5094 	if (!tsk->state)
5095 		return;
5096 
5097 	task_flags = tsk->flags;
5098 	/*
5099 	 * If a worker went to sleep, notify and ask workqueue whether
5100 	 * it wants to wake up a task to maintain concurrency.
5101 	 * As this function is called inside the schedule() context,
5102 	 * we disable preemption to avoid it calling schedule() again
5103 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5104 	 * requires it.
5105 	 */
5106 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5107 		preempt_disable();
5108 		if (task_flags & PF_WQ_WORKER)
5109 			wq_worker_sleeping(tsk);
5110 		else
5111 			io_wq_worker_sleeping(tsk);
5112 		preempt_enable_no_resched();
5113 	}
5114 
5115 	if (tsk_is_pi_blocked(tsk))
5116 		return;
5117 
5118 	/*
5119 	 * If we are going to sleep and we have plugged IO queued,
5120 	 * make sure to submit it to avoid deadlocks.
5121 	 */
5122 	if (blk_needs_flush_plug(tsk))
5123 		blk_schedule_flush_plug(tsk);
5124 }
5125 
5126 static void sched_update_worker(struct task_struct *tsk)
5127 {
5128 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5129 		if (tsk->flags & PF_WQ_WORKER)
5130 			wq_worker_running(tsk);
5131 		else
5132 			io_wq_worker_running(tsk);
5133 	}
5134 }
5135 
5136 asmlinkage __visible void __sched schedule(void)
5137 {
5138 	struct task_struct *tsk = current;
5139 
5140 	sched_submit_work(tsk);
5141 	do {
5142 		preempt_disable();
5143 		__schedule(false);
5144 		sched_preempt_enable_no_resched();
5145 	} while (need_resched());
5146 	sched_update_worker(tsk);
5147 }
5148 EXPORT_SYMBOL(schedule);
5149 
5150 /*
5151  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5152  * state (have scheduled out non-voluntarily) by making sure that all
5153  * tasks have either left the run queue or have gone into user space.
5154  * As idle tasks do not do either, they must not ever be preempted
5155  * (schedule out non-voluntarily).
5156  *
5157  * schedule_idle() is similar to schedule_preempt_disable() except that it
5158  * never enables preemption because it does not call sched_submit_work().
5159  */
5160 void __sched schedule_idle(void)
5161 {
5162 	/*
5163 	 * As this skips calling sched_submit_work(), which the idle task does
5164 	 * regardless because that function is a nop when the task is in a
5165 	 * TASK_RUNNING state, make sure this isn't used someplace that the
5166 	 * current task can be in any other state. Note, idle is always in the
5167 	 * TASK_RUNNING state.
5168 	 */
5169 	WARN_ON_ONCE(current->state);
5170 	do {
5171 		__schedule(false);
5172 	} while (need_resched());
5173 }
5174 
5175 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
5176 asmlinkage __visible void __sched schedule_user(void)
5177 {
5178 	/*
5179 	 * If we come here after a random call to set_need_resched(),
5180 	 * or we have been woken up remotely but the IPI has not yet arrived,
5181 	 * we haven't yet exited the RCU idle mode. Do it here manually until
5182 	 * we find a better solution.
5183 	 *
5184 	 * NB: There are buggy callers of this function.  Ideally we
5185 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
5186 	 * too frequently to make sense yet.
5187 	 */
5188 	enum ctx_state prev_state = exception_enter();
5189 	schedule();
5190 	exception_exit(prev_state);
5191 }
5192 #endif
5193 
5194 /**
5195  * schedule_preempt_disabled - called with preemption disabled
5196  *
5197  * Returns with preemption disabled. Note: preempt_count must be 1
5198  */
5199 void __sched schedule_preempt_disabled(void)
5200 {
5201 	sched_preempt_enable_no_resched();
5202 	schedule();
5203 	preempt_disable();
5204 }
5205 
5206 static void __sched notrace preempt_schedule_common(void)
5207 {
5208 	do {
5209 		/*
5210 		 * Because the function tracer can trace preempt_count_sub()
5211 		 * and it also uses preempt_enable/disable_notrace(), if
5212 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5213 		 * by the function tracer will call this function again and
5214 		 * cause infinite recursion.
5215 		 *
5216 		 * Preemption must be disabled here before the function
5217 		 * tracer can trace. Break up preempt_disable() into two
5218 		 * calls. One to disable preemption without fear of being
5219 		 * traced. The other to still record the preemption latency,
5220 		 * which can also be traced by the function tracer.
5221 		 */
5222 		preempt_disable_notrace();
5223 		preempt_latency_start(1);
5224 		__schedule(true);
5225 		preempt_latency_stop(1);
5226 		preempt_enable_no_resched_notrace();
5227 
5228 		/*
5229 		 * Check again in case we missed a preemption opportunity
5230 		 * between schedule and now.
5231 		 */
5232 	} while (need_resched());
5233 }
5234 
5235 #ifdef CONFIG_PREEMPTION
5236 /*
5237  * This is the entry point to schedule() from in-kernel preemption
5238  * off of preempt_enable.
5239  */
5240 asmlinkage __visible void __sched notrace preempt_schedule(void)
5241 {
5242 	/*
5243 	 * If there is a non-zero preempt_count or interrupts are disabled,
5244 	 * we do not want to preempt the current task. Just return..
5245 	 */
5246 	if (likely(!preemptible()))
5247 		return;
5248 
5249 	preempt_schedule_common();
5250 }
5251 NOKPROBE_SYMBOL(preempt_schedule);
5252 EXPORT_SYMBOL(preempt_schedule);
5253 
5254 /**
5255  * preempt_schedule_notrace - preempt_schedule called by tracing
5256  *
5257  * The tracing infrastructure uses preempt_enable_notrace to prevent
5258  * recursion and tracing preempt enabling caused by the tracing
5259  * infrastructure itself. But as tracing can happen in areas coming
5260  * from userspace or just about to enter userspace, a preempt enable
5261  * can occur before user_exit() is called. This will cause the scheduler
5262  * to be called when the system is still in usermode.
5263  *
5264  * To prevent this, the preempt_enable_notrace will use this function
5265  * instead of preempt_schedule() to exit user context if needed before
5266  * calling the scheduler.
5267  */
5268 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5269 {
5270 	enum ctx_state prev_ctx;
5271 
5272 	if (likely(!preemptible()))
5273 		return;
5274 
5275 	do {
5276 		/*
5277 		 * Because the function tracer can trace preempt_count_sub()
5278 		 * and it also uses preempt_enable/disable_notrace(), if
5279 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
5280 		 * by the function tracer will call this function again and
5281 		 * cause infinite recursion.
5282 		 *
5283 		 * Preemption must be disabled here before the function
5284 		 * tracer can trace. Break up preempt_disable() into two
5285 		 * calls. One to disable preemption without fear of being
5286 		 * traced. The other to still record the preemption latency,
5287 		 * which can also be traced by the function tracer.
5288 		 */
5289 		preempt_disable_notrace();
5290 		preempt_latency_start(1);
5291 		/*
5292 		 * Needs preempt disabled in case user_exit() is traced
5293 		 * and the tracer calls preempt_enable_notrace() causing
5294 		 * an infinite recursion.
5295 		 */
5296 		prev_ctx = exception_enter();
5297 		__schedule(true);
5298 		exception_exit(prev_ctx);
5299 
5300 		preempt_latency_stop(1);
5301 		preempt_enable_no_resched_notrace();
5302 	} while (need_resched());
5303 }
5304 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5305 
5306 #endif /* CONFIG_PREEMPTION */
5307 
5308 /*
5309  * This is the entry point to schedule() from kernel preemption
5310  * off of irq context.
5311  * Note, that this is called and return with irqs disabled. This will
5312  * protect us against recursive calling from irq.
5313  */
5314 asmlinkage __visible void __sched preempt_schedule_irq(void)
5315 {
5316 	enum ctx_state prev_state;
5317 
5318 	/* Catch callers which need to be fixed */
5319 	BUG_ON(preempt_count() || !irqs_disabled());
5320 
5321 	prev_state = exception_enter();
5322 
5323 	do {
5324 		preempt_disable();
5325 		local_irq_enable();
5326 		__schedule(true);
5327 		local_irq_disable();
5328 		sched_preempt_enable_no_resched();
5329 	} while (need_resched());
5330 
5331 	exception_exit(prev_state);
5332 }
5333 
5334 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5335 			  void *key)
5336 {
5337 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5338 	return try_to_wake_up(curr->private, mode, wake_flags);
5339 }
5340 EXPORT_SYMBOL(default_wake_function);
5341 
5342 #ifdef CONFIG_RT_MUTEXES
5343 
5344 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5345 {
5346 	if (pi_task)
5347 		prio = min(prio, pi_task->prio);
5348 
5349 	return prio;
5350 }
5351 
5352 static inline int rt_effective_prio(struct task_struct *p, int prio)
5353 {
5354 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
5355 
5356 	return __rt_effective_prio(pi_task, prio);
5357 }
5358 
5359 /*
5360  * rt_mutex_setprio - set the current priority of a task
5361  * @p: task to boost
5362  * @pi_task: donor task
5363  *
5364  * This function changes the 'effective' priority of a task. It does
5365  * not touch ->normal_prio like __setscheduler().
5366  *
5367  * Used by the rt_mutex code to implement priority inheritance
5368  * logic. Call site only calls if the priority of the task changed.
5369  */
5370 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5371 {
5372 	int prio, oldprio, queued, running, queue_flag =
5373 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5374 	const struct sched_class *prev_class;
5375 	struct rq_flags rf;
5376 	struct rq *rq;
5377 
5378 	/* XXX used to be waiter->prio, not waiter->task->prio */
5379 	prio = __rt_effective_prio(pi_task, p->normal_prio);
5380 
5381 	/*
5382 	 * If nothing changed; bail early.
5383 	 */
5384 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5385 		return;
5386 
5387 	rq = __task_rq_lock(p, &rf);
5388 	update_rq_clock(rq);
5389 	/*
5390 	 * Set under pi_lock && rq->lock, such that the value can be used under
5391 	 * either lock.
5392 	 *
5393 	 * Note that there is loads of tricky to make this pointer cache work
5394 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5395 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
5396 	 * task is allowed to run again (and can exit). This ensures the pointer
5397 	 * points to a blocked task -- which guarantees the task is present.
5398 	 */
5399 	p->pi_top_task = pi_task;
5400 
5401 	/*
5402 	 * For FIFO/RR we only need to set prio, if that matches we're done.
5403 	 */
5404 	if (prio == p->prio && !dl_prio(prio))
5405 		goto out_unlock;
5406 
5407 	/*
5408 	 * Idle task boosting is a nono in general. There is one
5409 	 * exception, when PREEMPT_RT and NOHZ is active:
5410 	 *
5411 	 * The idle task calls get_next_timer_interrupt() and holds
5412 	 * the timer wheel base->lock on the CPU and another CPU wants
5413 	 * to access the timer (probably to cancel it). We can safely
5414 	 * ignore the boosting request, as the idle CPU runs this code
5415 	 * with interrupts disabled and will complete the lock
5416 	 * protected section without being interrupted. So there is no
5417 	 * real need to boost.
5418 	 */
5419 	if (unlikely(p == rq->idle)) {
5420 		WARN_ON(p != rq->curr);
5421 		WARN_ON(p->pi_blocked_on);
5422 		goto out_unlock;
5423 	}
5424 
5425 	trace_sched_pi_setprio(p, pi_task);
5426 	oldprio = p->prio;
5427 
5428 	if (oldprio == prio)
5429 		queue_flag &= ~DEQUEUE_MOVE;
5430 
5431 	prev_class = p->sched_class;
5432 	queued = task_on_rq_queued(p);
5433 	running = task_current(rq, p);
5434 	if (queued)
5435 		dequeue_task(rq, p, queue_flag);
5436 	if (running)
5437 		put_prev_task(rq, p);
5438 
5439 	/*
5440 	 * Boosting condition are:
5441 	 * 1. -rt task is running and holds mutex A
5442 	 *      --> -dl task blocks on mutex A
5443 	 *
5444 	 * 2. -dl task is running and holds mutex A
5445 	 *      --> -dl task blocks on mutex A and could preempt the
5446 	 *          running task
5447 	 */
5448 	if (dl_prio(prio)) {
5449 		if (!dl_prio(p->normal_prio) ||
5450 		    (pi_task && dl_prio(pi_task->prio) &&
5451 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
5452 			p->dl.pi_se = pi_task->dl.pi_se;
5453 			queue_flag |= ENQUEUE_REPLENISH;
5454 		} else {
5455 			p->dl.pi_se = &p->dl;
5456 		}
5457 		p->sched_class = &dl_sched_class;
5458 	} else if (rt_prio(prio)) {
5459 		if (dl_prio(oldprio))
5460 			p->dl.pi_se = &p->dl;
5461 		if (oldprio < prio)
5462 			queue_flag |= ENQUEUE_HEAD;
5463 		p->sched_class = &rt_sched_class;
5464 	} else {
5465 		if (dl_prio(oldprio))
5466 			p->dl.pi_se = &p->dl;
5467 		if (rt_prio(oldprio))
5468 			p->rt.timeout = 0;
5469 		p->sched_class = &fair_sched_class;
5470 	}
5471 
5472 	p->prio = prio;
5473 
5474 	if (queued)
5475 		enqueue_task(rq, p, queue_flag);
5476 	if (running)
5477 		set_next_task(rq, p);
5478 
5479 	check_class_changed(rq, p, prev_class, oldprio);
5480 out_unlock:
5481 	/* Avoid rq from going away on us: */
5482 	preempt_disable();
5483 
5484 	rq_unpin_lock(rq, &rf);
5485 	__balance_callbacks(rq);
5486 	raw_spin_unlock(&rq->lock);
5487 
5488 	preempt_enable();
5489 }
5490 #else
5491 static inline int rt_effective_prio(struct task_struct *p, int prio)
5492 {
5493 	return prio;
5494 }
5495 #endif
5496 
5497 void set_user_nice(struct task_struct *p, long nice)
5498 {
5499 	bool queued, running;
5500 	int old_prio;
5501 	struct rq_flags rf;
5502 	struct rq *rq;
5503 
5504 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5505 		return;
5506 	/*
5507 	 * We have to be careful, if called from sys_setpriority(),
5508 	 * the task might be in the middle of scheduling on another CPU.
5509 	 */
5510 	rq = task_rq_lock(p, &rf);
5511 	update_rq_clock(rq);
5512 
5513 	/*
5514 	 * The RT priorities are set via sched_setscheduler(), but we still
5515 	 * allow the 'normal' nice value to be set - but as expected
5516 	 * it won't have any effect on scheduling until the task is
5517 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5518 	 */
5519 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5520 		p->static_prio = NICE_TO_PRIO(nice);
5521 		goto out_unlock;
5522 	}
5523 	queued = task_on_rq_queued(p);
5524 	running = task_current(rq, p);
5525 	if (queued)
5526 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5527 	if (running)
5528 		put_prev_task(rq, p);
5529 
5530 	p->static_prio = NICE_TO_PRIO(nice);
5531 	set_load_weight(p, true);
5532 	old_prio = p->prio;
5533 	p->prio = effective_prio(p);
5534 
5535 	if (queued)
5536 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5537 	if (running)
5538 		set_next_task(rq, p);
5539 
5540 	/*
5541 	 * If the task increased its priority or is running and
5542 	 * lowered its priority, then reschedule its CPU:
5543 	 */
5544 	p->sched_class->prio_changed(rq, p, old_prio);
5545 
5546 out_unlock:
5547 	task_rq_unlock(rq, p, &rf);
5548 }
5549 EXPORT_SYMBOL(set_user_nice);
5550 
5551 /*
5552  * can_nice - check if a task can reduce its nice value
5553  * @p: task
5554  * @nice: nice value
5555  */
5556 int can_nice(const struct task_struct *p, const int nice)
5557 {
5558 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5559 	int nice_rlim = nice_to_rlimit(nice);
5560 
5561 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5562 		capable(CAP_SYS_NICE));
5563 }
5564 
5565 #ifdef __ARCH_WANT_SYS_NICE
5566 
5567 /*
5568  * sys_nice - change the priority of the current process.
5569  * @increment: priority increment
5570  *
5571  * sys_setpriority is a more generic, but much slower function that
5572  * does similar things.
5573  */
5574 SYSCALL_DEFINE1(nice, int, increment)
5575 {
5576 	long nice, retval;
5577 
5578 	/*
5579 	 * Setpriority might change our priority at the same moment.
5580 	 * We don't have to worry. Conceptually one call occurs first
5581 	 * and we have a single winner.
5582 	 */
5583 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5584 	nice = task_nice(current) + increment;
5585 
5586 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5587 	if (increment < 0 && !can_nice(current, nice))
5588 		return -EPERM;
5589 
5590 	retval = security_task_setnice(current, nice);
5591 	if (retval)
5592 		return retval;
5593 
5594 	set_user_nice(current, nice);
5595 	return 0;
5596 }
5597 
5598 #endif
5599 
5600 /**
5601  * task_prio - return the priority value of a given task.
5602  * @p: the task in question.
5603  *
5604  * Return: The priority value as seen by users in /proc.
5605  * RT tasks are offset by -200. Normal tasks are centered
5606  * around 0, value goes from -16 to +15.
5607  */
5608 int task_prio(const struct task_struct *p)
5609 {
5610 	return p->prio - MAX_RT_PRIO;
5611 }
5612 
5613 /**
5614  * idle_cpu - is a given CPU idle currently?
5615  * @cpu: the processor in question.
5616  *
5617  * Return: 1 if the CPU is currently idle. 0 otherwise.
5618  */
5619 int idle_cpu(int cpu)
5620 {
5621 	struct rq *rq = cpu_rq(cpu);
5622 
5623 	if (rq->curr != rq->idle)
5624 		return 0;
5625 
5626 	if (rq->nr_running)
5627 		return 0;
5628 
5629 #ifdef CONFIG_SMP
5630 	if (rq->ttwu_pending)
5631 		return 0;
5632 #endif
5633 
5634 	return 1;
5635 }
5636 
5637 /**
5638  * available_idle_cpu - is a given CPU idle for enqueuing work.
5639  * @cpu: the CPU in question.
5640  *
5641  * Return: 1 if the CPU is currently idle. 0 otherwise.
5642  */
5643 int available_idle_cpu(int cpu)
5644 {
5645 	if (!idle_cpu(cpu))
5646 		return 0;
5647 
5648 	if (vcpu_is_preempted(cpu))
5649 		return 0;
5650 
5651 	return 1;
5652 }
5653 
5654 /**
5655  * idle_task - return the idle task for a given CPU.
5656  * @cpu: the processor in question.
5657  *
5658  * Return: The idle task for the CPU @cpu.
5659  */
5660 struct task_struct *idle_task(int cpu)
5661 {
5662 	return cpu_rq(cpu)->idle;
5663 }
5664 
5665 /**
5666  * find_process_by_pid - find a process with a matching PID value.
5667  * @pid: the pid in question.
5668  *
5669  * The task of @pid, if found. %NULL otherwise.
5670  */
5671 static struct task_struct *find_process_by_pid(pid_t pid)
5672 {
5673 	return pid ? find_task_by_vpid(pid) : current;
5674 }
5675 
5676 /*
5677  * sched_setparam() passes in -1 for its policy, to let the functions
5678  * it calls know not to change it.
5679  */
5680 #define SETPARAM_POLICY	-1
5681 
5682 static void __setscheduler_params(struct task_struct *p,
5683 		const struct sched_attr *attr)
5684 {
5685 	int policy = attr->sched_policy;
5686 
5687 	if (policy == SETPARAM_POLICY)
5688 		policy = p->policy;
5689 
5690 	p->policy = policy;
5691 
5692 	if (dl_policy(policy))
5693 		__setparam_dl(p, attr);
5694 	else if (fair_policy(policy))
5695 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5696 
5697 	/*
5698 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5699 	 * !rt_policy. Always setting this ensures that things like
5700 	 * getparam()/getattr() don't report silly values for !rt tasks.
5701 	 */
5702 	p->rt_priority = attr->sched_priority;
5703 	p->normal_prio = normal_prio(p);
5704 	set_load_weight(p, true);
5705 }
5706 
5707 /* Actually do priority change: must hold pi & rq lock. */
5708 static void __setscheduler(struct rq *rq, struct task_struct *p,
5709 			   const struct sched_attr *attr, bool keep_boost)
5710 {
5711 	/*
5712 	 * If params can't change scheduling class changes aren't allowed
5713 	 * either.
5714 	 */
5715 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5716 		return;
5717 
5718 	__setscheduler_params(p, attr);
5719 
5720 	/*
5721 	 * Keep a potential priority boosting if called from
5722 	 * sched_setscheduler().
5723 	 */
5724 	p->prio = normal_prio(p);
5725 	if (keep_boost)
5726 		p->prio = rt_effective_prio(p, p->prio);
5727 
5728 	if (dl_prio(p->prio))
5729 		p->sched_class = &dl_sched_class;
5730 	else if (rt_prio(p->prio))
5731 		p->sched_class = &rt_sched_class;
5732 	else
5733 		p->sched_class = &fair_sched_class;
5734 }
5735 
5736 /*
5737  * Check the target process has a UID that matches the current process's:
5738  */
5739 static bool check_same_owner(struct task_struct *p)
5740 {
5741 	const struct cred *cred = current_cred(), *pcred;
5742 	bool match;
5743 
5744 	rcu_read_lock();
5745 	pcred = __task_cred(p);
5746 	match = (uid_eq(cred->euid, pcred->euid) ||
5747 		 uid_eq(cred->euid, pcred->uid));
5748 	rcu_read_unlock();
5749 	return match;
5750 }
5751 
5752 static int __sched_setscheduler(struct task_struct *p,
5753 				const struct sched_attr *attr,
5754 				bool user, bool pi)
5755 {
5756 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5757 		      MAX_RT_PRIO - 1 - attr->sched_priority;
5758 	int retval, oldprio, oldpolicy = -1, queued, running;
5759 	int new_effective_prio, policy = attr->sched_policy;
5760 	const struct sched_class *prev_class;
5761 	struct callback_head *head;
5762 	struct rq_flags rf;
5763 	int reset_on_fork;
5764 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5765 	struct rq *rq;
5766 
5767 	/* The pi code expects interrupts enabled */
5768 	BUG_ON(pi && in_interrupt());
5769 recheck:
5770 	/* Double check policy once rq lock held: */
5771 	if (policy < 0) {
5772 		reset_on_fork = p->sched_reset_on_fork;
5773 		policy = oldpolicy = p->policy;
5774 	} else {
5775 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5776 
5777 		if (!valid_policy(policy))
5778 			return -EINVAL;
5779 	}
5780 
5781 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5782 		return -EINVAL;
5783 
5784 	/*
5785 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
5786 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5787 	 * SCHED_BATCH and SCHED_IDLE is 0.
5788 	 */
5789 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5790 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5791 		return -EINVAL;
5792 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5793 	    (rt_policy(policy) != (attr->sched_priority != 0)))
5794 		return -EINVAL;
5795 
5796 	/*
5797 	 * Allow unprivileged RT tasks to decrease priority:
5798 	 */
5799 	if (user && !capable(CAP_SYS_NICE)) {
5800 		if (fair_policy(policy)) {
5801 			if (attr->sched_nice < task_nice(p) &&
5802 			    !can_nice(p, attr->sched_nice))
5803 				return -EPERM;
5804 		}
5805 
5806 		if (rt_policy(policy)) {
5807 			unsigned long rlim_rtprio =
5808 					task_rlimit(p, RLIMIT_RTPRIO);
5809 
5810 			/* Can't set/change the rt policy: */
5811 			if (policy != p->policy && !rlim_rtprio)
5812 				return -EPERM;
5813 
5814 			/* Can't increase priority: */
5815 			if (attr->sched_priority > p->rt_priority &&
5816 			    attr->sched_priority > rlim_rtprio)
5817 				return -EPERM;
5818 		}
5819 
5820 		 /*
5821 		  * Can't set/change SCHED_DEADLINE policy at all for now
5822 		  * (safest behavior); in the future we would like to allow
5823 		  * unprivileged DL tasks to increase their relative deadline
5824 		  * or reduce their runtime (both ways reducing utilization)
5825 		  */
5826 		if (dl_policy(policy))
5827 			return -EPERM;
5828 
5829 		/*
5830 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5831 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5832 		 */
5833 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
5834 			if (!can_nice(p, task_nice(p)))
5835 				return -EPERM;
5836 		}
5837 
5838 		/* Can't change other user's priorities: */
5839 		if (!check_same_owner(p))
5840 			return -EPERM;
5841 
5842 		/* Normal users shall not reset the sched_reset_on_fork flag: */
5843 		if (p->sched_reset_on_fork && !reset_on_fork)
5844 			return -EPERM;
5845 	}
5846 
5847 	if (user) {
5848 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
5849 			return -EINVAL;
5850 
5851 		retval = security_task_setscheduler(p);
5852 		if (retval)
5853 			return retval;
5854 	}
5855 
5856 	/* Update task specific "requested" clamps */
5857 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5858 		retval = uclamp_validate(p, attr);
5859 		if (retval)
5860 			return retval;
5861 	}
5862 
5863 	if (pi)
5864 		cpuset_read_lock();
5865 
5866 	/*
5867 	 * Make sure no PI-waiters arrive (or leave) while we are
5868 	 * changing the priority of the task:
5869 	 *
5870 	 * To be able to change p->policy safely, the appropriate
5871 	 * runqueue lock must be held.
5872 	 */
5873 	rq = task_rq_lock(p, &rf);
5874 	update_rq_clock(rq);
5875 
5876 	/*
5877 	 * Changing the policy of the stop threads its a very bad idea:
5878 	 */
5879 	if (p == rq->stop) {
5880 		retval = -EINVAL;
5881 		goto unlock;
5882 	}
5883 
5884 	/*
5885 	 * If not changing anything there's no need to proceed further,
5886 	 * but store a possible modification of reset_on_fork.
5887 	 */
5888 	if (unlikely(policy == p->policy)) {
5889 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5890 			goto change;
5891 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5892 			goto change;
5893 		if (dl_policy(policy) && dl_param_changed(p, attr))
5894 			goto change;
5895 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5896 			goto change;
5897 
5898 		p->sched_reset_on_fork = reset_on_fork;
5899 		retval = 0;
5900 		goto unlock;
5901 	}
5902 change:
5903 
5904 	if (user) {
5905 #ifdef CONFIG_RT_GROUP_SCHED
5906 		/*
5907 		 * Do not allow realtime tasks into groups that have no runtime
5908 		 * assigned.
5909 		 */
5910 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5911 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5912 				!task_group_is_autogroup(task_group(p))) {
5913 			retval = -EPERM;
5914 			goto unlock;
5915 		}
5916 #endif
5917 #ifdef CONFIG_SMP
5918 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5919 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5920 			cpumask_t *span = rq->rd->span;
5921 
5922 			/*
5923 			 * Don't allow tasks with an affinity mask smaller than
5924 			 * the entire root_domain to become SCHED_DEADLINE. We
5925 			 * will also fail if there's no bandwidth available.
5926 			 */
5927 			if (!cpumask_subset(span, p->cpus_ptr) ||
5928 			    rq->rd->dl_bw.bw == 0) {
5929 				retval = -EPERM;
5930 				goto unlock;
5931 			}
5932 		}
5933 #endif
5934 	}
5935 
5936 	/* Re-check policy now with rq lock held: */
5937 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5938 		policy = oldpolicy = -1;
5939 		task_rq_unlock(rq, p, &rf);
5940 		if (pi)
5941 			cpuset_read_unlock();
5942 		goto recheck;
5943 	}
5944 
5945 	/*
5946 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5947 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5948 	 * is available.
5949 	 */
5950 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5951 		retval = -EBUSY;
5952 		goto unlock;
5953 	}
5954 
5955 	p->sched_reset_on_fork = reset_on_fork;
5956 	oldprio = p->prio;
5957 
5958 	if (pi) {
5959 		/*
5960 		 * Take priority boosted tasks into account. If the new
5961 		 * effective priority is unchanged, we just store the new
5962 		 * normal parameters and do not touch the scheduler class and
5963 		 * the runqueue. This will be done when the task deboost
5964 		 * itself.
5965 		 */
5966 		new_effective_prio = rt_effective_prio(p, newprio);
5967 		if (new_effective_prio == oldprio)
5968 			queue_flags &= ~DEQUEUE_MOVE;
5969 	}
5970 
5971 	queued = task_on_rq_queued(p);
5972 	running = task_current(rq, p);
5973 	if (queued)
5974 		dequeue_task(rq, p, queue_flags);
5975 	if (running)
5976 		put_prev_task(rq, p);
5977 
5978 	prev_class = p->sched_class;
5979 
5980 	__setscheduler(rq, p, attr, pi);
5981 	__setscheduler_uclamp(p, attr);
5982 
5983 	if (queued) {
5984 		/*
5985 		 * We enqueue to tail when the priority of a task is
5986 		 * increased (user space view).
5987 		 */
5988 		if (oldprio < p->prio)
5989 			queue_flags |= ENQUEUE_HEAD;
5990 
5991 		enqueue_task(rq, p, queue_flags);
5992 	}
5993 	if (running)
5994 		set_next_task(rq, p);
5995 
5996 	check_class_changed(rq, p, prev_class, oldprio);
5997 
5998 	/* Avoid rq from going away on us: */
5999 	preempt_disable();
6000 	head = splice_balance_callbacks(rq);
6001 	task_rq_unlock(rq, p, &rf);
6002 
6003 	if (pi) {
6004 		cpuset_read_unlock();
6005 		rt_mutex_adjust_pi(p);
6006 	}
6007 
6008 	/* Run balance callbacks after we've adjusted the PI chain: */
6009 	balance_callbacks(rq, head);
6010 	preempt_enable();
6011 
6012 	return 0;
6013 
6014 unlock:
6015 	task_rq_unlock(rq, p, &rf);
6016 	if (pi)
6017 		cpuset_read_unlock();
6018 	return retval;
6019 }
6020 
6021 static int _sched_setscheduler(struct task_struct *p, int policy,
6022 			       const struct sched_param *param, bool check)
6023 {
6024 	struct sched_attr attr = {
6025 		.sched_policy   = policy,
6026 		.sched_priority = param->sched_priority,
6027 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
6028 	};
6029 
6030 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6031 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6032 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6033 		policy &= ~SCHED_RESET_ON_FORK;
6034 		attr.sched_policy = policy;
6035 	}
6036 
6037 	return __sched_setscheduler(p, &attr, check, true);
6038 }
6039 /**
6040  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6041  * @p: the task in question.
6042  * @policy: new policy.
6043  * @param: structure containing the new RT priority.
6044  *
6045  * Use sched_set_fifo(), read its comment.
6046  *
6047  * Return: 0 on success. An error code otherwise.
6048  *
6049  * NOTE that the task may be already dead.
6050  */
6051 int sched_setscheduler(struct task_struct *p, int policy,
6052 		       const struct sched_param *param)
6053 {
6054 	return _sched_setscheduler(p, policy, param, true);
6055 }
6056 
6057 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6058 {
6059 	return __sched_setscheduler(p, attr, true, true);
6060 }
6061 
6062 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6063 {
6064 	return __sched_setscheduler(p, attr, false, true);
6065 }
6066 
6067 /**
6068  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6069  * @p: the task in question.
6070  * @policy: new policy.
6071  * @param: structure containing the new RT priority.
6072  *
6073  * Just like sched_setscheduler, only don't bother checking if the
6074  * current context has permission.  For example, this is needed in
6075  * stop_machine(): we create temporary high priority worker threads,
6076  * but our caller might not have that capability.
6077  *
6078  * Return: 0 on success. An error code otherwise.
6079  */
6080 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6081 			       const struct sched_param *param)
6082 {
6083 	return _sched_setscheduler(p, policy, param, false);
6084 }
6085 
6086 /*
6087  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6088  * incapable of resource management, which is the one thing an OS really should
6089  * be doing.
6090  *
6091  * This is of course the reason it is limited to privileged users only.
6092  *
6093  * Worse still; it is fundamentally impossible to compose static priority
6094  * workloads. You cannot take two correctly working static prio workloads
6095  * and smash them together and still expect them to work.
6096  *
6097  * For this reason 'all' FIFO tasks the kernel creates are basically at:
6098  *
6099  *   MAX_RT_PRIO / 2
6100  *
6101  * The administrator _MUST_ configure the system, the kernel simply doesn't
6102  * know enough information to make a sensible choice.
6103  */
6104 void sched_set_fifo(struct task_struct *p)
6105 {
6106 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6107 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6108 }
6109 EXPORT_SYMBOL_GPL(sched_set_fifo);
6110 
6111 /*
6112  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6113  */
6114 void sched_set_fifo_low(struct task_struct *p)
6115 {
6116 	struct sched_param sp = { .sched_priority = 1 };
6117 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6118 }
6119 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6120 
6121 void sched_set_normal(struct task_struct *p, int nice)
6122 {
6123 	struct sched_attr attr = {
6124 		.sched_policy = SCHED_NORMAL,
6125 		.sched_nice = nice,
6126 	};
6127 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6128 }
6129 EXPORT_SYMBOL_GPL(sched_set_normal);
6130 
6131 static int
6132 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6133 {
6134 	struct sched_param lparam;
6135 	struct task_struct *p;
6136 	int retval;
6137 
6138 	if (!param || pid < 0)
6139 		return -EINVAL;
6140 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6141 		return -EFAULT;
6142 
6143 	rcu_read_lock();
6144 	retval = -ESRCH;
6145 	p = find_process_by_pid(pid);
6146 	if (likely(p))
6147 		get_task_struct(p);
6148 	rcu_read_unlock();
6149 
6150 	if (likely(p)) {
6151 		retval = sched_setscheduler(p, policy, &lparam);
6152 		put_task_struct(p);
6153 	}
6154 
6155 	return retval;
6156 }
6157 
6158 /*
6159  * Mimics kernel/events/core.c perf_copy_attr().
6160  */
6161 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6162 {
6163 	u32 size;
6164 	int ret;
6165 
6166 	/* Zero the full structure, so that a short copy will be nice: */
6167 	memset(attr, 0, sizeof(*attr));
6168 
6169 	ret = get_user(size, &uattr->size);
6170 	if (ret)
6171 		return ret;
6172 
6173 	/* ABI compatibility quirk: */
6174 	if (!size)
6175 		size = SCHED_ATTR_SIZE_VER0;
6176 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6177 		goto err_size;
6178 
6179 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6180 	if (ret) {
6181 		if (ret == -E2BIG)
6182 			goto err_size;
6183 		return ret;
6184 	}
6185 
6186 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6187 	    size < SCHED_ATTR_SIZE_VER1)
6188 		return -EINVAL;
6189 
6190 	/*
6191 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
6192 	 * to be strict and return an error on out-of-bounds values?
6193 	 */
6194 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6195 
6196 	return 0;
6197 
6198 err_size:
6199 	put_user(sizeof(*attr), &uattr->size);
6200 	return -E2BIG;
6201 }
6202 
6203 /**
6204  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6205  * @pid: the pid in question.
6206  * @policy: new policy.
6207  * @param: structure containing the new RT priority.
6208  *
6209  * Return: 0 on success. An error code otherwise.
6210  */
6211 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6212 {
6213 	if (policy < 0)
6214 		return -EINVAL;
6215 
6216 	return do_sched_setscheduler(pid, policy, param);
6217 }
6218 
6219 /**
6220  * sys_sched_setparam - set/change the RT priority of a thread
6221  * @pid: the pid in question.
6222  * @param: structure containing the new RT priority.
6223  *
6224  * Return: 0 on success. An error code otherwise.
6225  */
6226 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6227 {
6228 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6229 }
6230 
6231 /**
6232  * sys_sched_setattr - same as above, but with extended sched_attr
6233  * @pid: the pid in question.
6234  * @uattr: structure containing the extended parameters.
6235  * @flags: for future extension.
6236  */
6237 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6238 			       unsigned int, flags)
6239 {
6240 	struct sched_attr attr;
6241 	struct task_struct *p;
6242 	int retval;
6243 
6244 	if (!uattr || pid < 0 || flags)
6245 		return -EINVAL;
6246 
6247 	retval = sched_copy_attr(uattr, &attr);
6248 	if (retval)
6249 		return retval;
6250 
6251 	if ((int)attr.sched_policy < 0)
6252 		return -EINVAL;
6253 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6254 		attr.sched_policy = SETPARAM_POLICY;
6255 
6256 	rcu_read_lock();
6257 	retval = -ESRCH;
6258 	p = find_process_by_pid(pid);
6259 	if (likely(p))
6260 		get_task_struct(p);
6261 	rcu_read_unlock();
6262 
6263 	if (likely(p)) {
6264 		retval = sched_setattr(p, &attr);
6265 		put_task_struct(p);
6266 	}
6267 
6268 	return retval;
6269 }
6270 
6271 /**
6272  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6273  * @pid: the pid in question.
6274  *
6275  * Return: On success, the policy of the thread. Otherwise, a negative error
6276  * code.
6277  */
6278 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6279 {
6280 	struct task_struct *p;
6281 	int retval;
6282 
6283 	if (pid < 0)
6284 		return -EINVAL;
6285 
6286 	retval = -ESRCH;
6287 	rcu_read_lock();
6288 	p = find_process_by_pid(pid);
6289 	if (p) {
6290 		retval = security_task_getscheduler(p);
6291 		if (!retval)
6292 			retval = p->policy
6293 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6294 	}
6295 	rcu_read_unlock();
6296 	return retval;
6297 }
6298 
6299 /**
6300  * sys_sched_getparam - get the RT priority of a thread
6301  * @pid: the pid in question.
6302  * @param: structure containing the RT priority.
6303  *
6304  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6305  * code.
6306  */
6307 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6308 {
6309 	struct sched_param lp = { .sched_priority = 0 };
6310 	struct task_struct *p;
6311 	int retval;
6312 
6313 	if (!param || pid < 0)
6314 		return -EINVAL;
6315 
6316 	rcu_read_lock();
6317 	p = find_process_by_pid(pid);
6318 	retval = -ESRCH;
6319 	if (!p)
6320 		goto out_unlock;
6321 
6322 	retval = security_task_getscheduler(p);
6323 	if (retval)
6324 		goto out_unlock;
6325 
6326 	if (task_has_rt_policy(p))
6327 		lp.sched_priority = p->rt_priority;
6328 	rcu_read_unlock();
6329 
6330 	/*
6331 	 * This one might sleep, we cannot do it with a spinlock held ...
6332 	 */
6333 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6334 
6335 	return retval;
6336 
6337 out_unlock:
6338 	rcu_read_unlock();
6339 	return retval;
6340 }
6341 
6342 /*
6343  * Copy the kernel size attribute structure (which might be larger
6344  * than what user-space knows about) to user-space.
6345  *
6346  * Note that all cases are valid: user-space buffer can be larger or
6347  * smaller than the kernel-space buffer. The usual case is that both
6348  * have the same size.
6349  */
6350 static int
6351 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6352 			struct sched_attr *kattr,
6353 			unsigned int usize)
6354 {
6355 	unsigned int ksize = sizeof(*kattr);
6356 
6357 	if (!access_ok(uattr, usize))
6358 		return -EFAULT;
6359 
6360 	/*
6361 	 * sched_getattr() ABI forwards and backwards compatibility:
6362 	 *
6363 	 * If usize == ksize then we just copy everything to user-space and all is good.
6364 	 *
6365 	 * If usize < ksize then we only copy as much as user-space has space for,
6366 	 * this keeps ABI compatibility as well. We skip the rest.
6367 	 *
6368 	 * If usize > ksize then user-space is using a newer version of the ABI,
6369 	 * which part the kernel doesn't know about. Just ignore it - tooling can
6370 	 * detect the kernel's knowledge of attributes from the attr->size value
6371 	 * which is set to ksize in this case.
6372 	 */
6373 	kattr->size = min(usize, ksize);
6374 
6375 	if (copy_to_user(uattr, kattr, kattr->size))
6376 		return -EFAULT;
6377 
6378 	return 0;
6379 }
6380 
6381 /**
6382  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6383  * @pid: the pid in question.
6384  * @uattr: structure containing the extended parameters.
6385  * @usize: sizeof(attr) for fwd/bwd comp.
6386  * @flags: for future extension.
6387  */
6388 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6389 		unsigned int, usize, unsigned int, flags)
6390 {
6391 	struct sched_attr kattr = { };
6392 	struct task_struct *p;
6393 	int retval;
6394 
6395 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6396 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
6397 		return -EINVAL;
6398 
6399 	rcu_read_lock();
6400 	p = find_process_by_pid(pid);
6401 	retval = -ESRCH;
6402 	if (!p)
6403 		goto out_unlock;
6404 
6405 	retval = security_task_getscheduler(p);
6406 	if (retval)
6407 		goto out_unlock;
6408 
6409 	kattr.sched_policy = p->policy;
6410 	if (p->sched_reset_on_fork)
6411 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6412 	if (task_has_dl_policy(p))
6413 		__getparam_dl(p, &kattr);
6414 	else if (task_has_rt_policy(p))
6415 		kattr.sched_priority = p->rt_priority;
6416 	else
6417 		kattr.sched_nice = task_nice(p);
6418 
6419 #ifdef CONFIG_UCLAMP_TASK
6420 	/*
6421 	 * This could race with another potential updater, but this is fine
6422 	 * because it'll correctly read the old or the new value. We don't need
6423 	 * to guarantee who wins the race as long as it doesn't return garbage.
6424 	 */
6425 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6426 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6427 #endif
6428 
6429 	rcu_read_unlock();
6430 
6431 	return sched_attr_copy_to_user(uattr, &kattr, usize);
6432 
6433 out_unlock:
6434 	rcu_read_unlock();
6435 	return retval;
6436 }
6437 
6438 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6439 {
6440 	cpumask_var_t cpus_allowed, new_mask;
6441 	struct task_struct *p;
6442 	int retval;
6443 
6444 	rcu_read_lock();
6445 
6446 	p = find_process_by_pid(pid);
6447 	if (!p) {
6448 		rcu_read_unlock();
6449 		return -ESRCH;
6450 	}
6451 
6452 	/* Prevent p going away */
6453 	get_task_struct(p);
6454 	rcu_read_unlock();
6455 
6456 	if (p->flags & PF_NO_SETAFFINITY) {
6457 		retval = -EINVAL;
6458 		goto out_put_task;
6459 	}
6460 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6461 		retval = -ENOMEM;
6462 		goto out_put_task;
6463 	}
6464 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6465 		retval = -ENOMEM;
6466 		goto out_free_cpus_allowed;
6467 	}
6468 	retval = -EPERM;
6469 	if (!check_same_owner(p)) {
6470 		rcu_read_lock();
6471 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6472 			rcu_read_unlock();
6473 			goto out_free_new_mask;
6474 		}
6475 		rcu_read_unlock();
6476 	}
6477 
6478 	retval = security_task_setscheduler(p);
6479 	if (retval)
6480 		goto out_free_new_mask;
6481 
6482 
6483 	cpuset_cpus_allowed(p, cpus_allowed);
6484 	cpumask_and(new_mask, in_mask, cpus_allowed);
6485 
6486 	/*
6487 	 * Since bandwidth control happens on root_domain basis,
6488 	 * if admission test is enabled, we only admit -deadline
6489 	 * tasks allowed to run on all the CPUs in the task's
6490 	 * root_domain.
6491 	 */
6492 #ifdef CONFIG_SMP
6493 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6494 		rcu_read_lock();
6495 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6496 			retval = -EBUSY;
6497 			rcu_read_unlock();
6498 			goto out_free_new_mask;
6499 		}
6500 		rcu_read_unlock();
6501 	}
6502 #endif
6503 again:
6504 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6505 
6506 	if (!retval) {
6507 		cpuset_cpus_allowed(p, cpus_allowed);
6508 		if (!cpumask_subset(new_mask, cpus_allowed)) {
6509 			/*
6510 			 * We must have raced with a concurrent cpuset
6511 			 * update. Just reset the cpus_allowed to the
6512 			 * cpuset's cpus_allowed
6513 			 */
6514 			cpumask_copy(new_mask, cpus_allowed);
6515 			goto again;
6516 		}
6517 	}
6518 out_free_new_mask:
6519 	free_cpumask_var(new_mask);
6520 out_free_cpus_allowed:
6521 	free_cpumask_var(cpus_allowed);
6522 out_put_task:
6523 	put_task_struct(p);
6524 	return retval;
6525 }
6526 
6527 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6528 			     struct cpumask *new_mask)
6529 {
6530 	if (len < cpumask_size())
6531 		cpumask_clear(new_mask);
6532 	else if (len > cpumask_size())
6533 		len = cpumask_size();
6534 
6535 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6536 }
6537 
6538 /**
6539  * sys_sched_setaffinity - set the CPU affinity of a process
6540  * @pid: pid of the process
6541  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6542  * @user_mask_ptr: user-space pointer to the new CPU mask
6543  *
6544  * Return: 0 on success. An error code otherwise.
6545  */
6546 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6547 		unsigned long __user *, user_mask_ptr)
6548 {
6549 	cpumask_var_t new_mask;
6550 	int retval;
6551 
6552 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6553 		return -ENOMEM;
6554 
6555 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6556 	if (retval == 0)
6557 		retval = sched_setaffinity(pid, new_mask);
6558 	free_cpumask_var(new_mask);
6559 	return retval;
6560 }
6561 
6562 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6563 {
6564 	struct task_struct *p;
6565 	unsigned long flags;
6566 	int retval;
6567 
6568 	rcu_read_lock();
6569 
6570 	retval = -ESRCH;
6571 	p = find_process_by_pid(pid);
6572 	if (!p)
6573 		goto out_unlock;
6574 
6575 	retval = security_task_getscheduler(p);
6576 	if (retval)
6577 		goto out_unlock;
6578 
6579 	raw_spin_lock_irqsave(&p->pi_lock, flags);
6580 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6581 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6582 
6583 out_unlock:
6584 	rcu_read_unlock();
6585 
6586 	return retval;
6587 }
6588 
6589 /**
6590  * sys_sched_getaffinity - get the CPU affinity of a process
6591  * @pid: pid of the process
6592  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6593  * @user_mask_ptr: user-space pointer to hold the current CPU mask
6594  *
6595  * Return: size of CPU mask copied to user_mask_ptr on success. An
6596  * error code otherwise.
6597  */
6598 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6599 		unsigned long __user *, user_mask_ptr)
6600 {
6601 	int ret;
6602 	cpumask_var_t mask;
6603 
6604 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6605 		return -EINVAL;
6606 	if (len & (sizeof(unsigned long)-1))
6607 		return -EINVAL;
6608 
6609 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6610 		return -ENOMEM;
6611 
6612 	ret = sched_getaffinity(pid, mask);
6613 	if (ret == 0) {
6614 		unsigned int retlen = min(len, cpumask_size());
6615 
6616 		if (copy_to_user(user_mask_ptr, mask, retlen))
6617 			ret = -EFAULT;
6618 		else
6619 			ret = retlen;
6620 	}
6621 	free_cpumask_var(mask);
6622 
6623 	return ret;
6624 }
6625 
6626 static void do_sched_yield(void)
6627 {
6628 	struct rq_flags rf;
6629 	struct rq *rq;
6630 
6631 	rq = this_rq_lock_irq(&rf);
6632 
6633 	schedstat_inc(rq->yld_count);
6634 	current->sched_class->yield_task(rq);
6635 
6636 	preempt_disable();
6637 	rq_unlock_irq(rq, &rf);
6638 	sched_preempt_enable_no_resched();
6639 
6640 	schedule();
6641 }
6642 
6643 /**
6644  * sys_sched_yield - yield the current processor to other threads.
6645  *
6646  * This function yields the current CPU to other tasks. If there are no
6647  * other threads running on this CPU then this function will return.
6648  *
6649  * Return: 0.
6650  */
6651 SYSCALL_DEFINE0(sched_yield)
6652 {
6653 	do_sched_yield();
6654 	return 0;
6655 }
6656 
6657 #ifndef CONFIG_PREEMPTION
6658 int __sched _cond_resched(void)
6659 {
6660 	if (should_resched(0)) {
6661 		preempt_schedule_common();
6662 		return 1;
6663 	}
6664 	rcu_all_qs();
6665 	return 0;
6666 }
6667 EXPORT_SYMBOL(_cond_resched);
6668 #endif
6669 
6670 /*
6671  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6672  * call schedule, and on return reacquire the lock.
6673  *
6674  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6675  * operations here to prevent schedule() from being called twice (once via
6676  * spin_unlock(), once by hand).
6677  */
6678 int __cond_resched_lock(spinlock_t *lock)
6679 {
6680 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
6681 	int ret = 0;
6682 
6683 	lockdep_assert_held(lock);
6684 
6685 	if (spin_needbreak(lock) || resched) {
6686 		spin_unlock(lock);
6687 		if (resched)
6688 			preempt_schedule_common();
6689 		else
6690 			cpu_relax();
6691 		ret = 1;
6692 		spin_lock(lock);
6693 	}
6694 	return ret;
6695 }
6696 EXPORT_SYMBOL(__cond_resched_lock);
6697 
6698 /**
6699  * yield - yield the current processor to other threads.
6700  *
6701  * Do not ever use this function, there's a 99% chance you're doing it wrong.
6702  *
6703  * The scheduler is at all times free to pick the calling task as the most
6704  * eligible task to run, if removing the yield() call from your code breaks
6705  * it, it's already broken.
6706  *
6707  * Typical broken usage is:
6708  *
6709  * while (!event)
6710  *	yield();
6711  *
6712  * where one assumes that yield() will let 'the other' process run that will
6713  * make event true. If the current task is a SCHED_FIFO task that will never
6714  * happen. Never use yield() as a progress guarantee!!
6715  *
6716  * If you want to use yield() to wait for something, use wait_event().
6717  * If you want to use yield() to be 'nice' for others, use cond_resched().
6718  * If you still want to use yield(), do not!
6719  */
6720 void __sched yield(void)
6721 {
6722 	set_current_state(TASK_RUNNING);
6723 	do_sched_yield();
6724 }
6725 EXPORT_SYMBOL(yield);
6726 
6727 /**
6728  * yield_to - yield the current processor to another thread in
6729  * your thread group, or accelerate that thread toward the
6730  * processor it's on.
6731  * @p: target task
6732  * @preempt: whether task preemption is allowed or not
6733  *
6734  * It's the caller's job to ensure that the target task struct
6735  * can't go away on us before we can do any checks.
6736  *
6737  * Return:
6738  *	true (>0) if we indeed boosted the target task.
6739  *	false (0) if we failed to boost the target.
6740  *	-ESRCH if there's no task to yield to.
6741  */
6742 int __sched yield_to(struct task_struct *p, bool preempt)
6743 {
6744 	struct task_struct *curr = current;
6745 	struct rq *rq, *p_rq;
6746 	unsigned long flags;
6747 	int yielded = 0;
6748 
6749 	local_irq_save(flags);
6750 	rq = this_rq();
6751 
6752 again:
6753 	p_rq = task_rq(p);
6754 	/*
6755 	 * If we're the only runnable task on the rq and target rq also
6756 	 * has only one task, there's absolutely no point in yielding.
6757 	 */
6758 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6759 		yielded = -ESRCH;
6760 		goto out_irq;
6761 	}
6762 
6763 	double_rq_lock(rq, p_rq);
6764 	if (task_rq(p) != p_rq) {
6765 		double_rq_unlock(rq, p_rq);
6766 		goto again;
6767 	}
6768 
6769 	if (!curr->sched_class->yield_to_task)
6770 		goto out_unlock;
6771 
6772 	if (curr->sched_class != p->sched_class)
6773 		goto out_unlock;
6774 
6775 	if (task_running(p_rq, p) || p->state)
6776 		goto out_unlock;
6777 
6778 	yielded = curr->sched_class->yield_to_task(rq, p);
6779 	if (yielded) {
6780 		schedstat_inc(rq->yld_count);
6781 		/*
6782 		 * Make p's CPU reschedule; pick_next_entity takes care of
6783 		 * fairness.
6784 		 */
6785 		if (preempt && rq != p_rq)
6786 			resched_curr(p_rq);
6787 	}
6788 
6789 out_unlock:
6790 	double_rq_unlock(rq, p_rq);
6791 out_irq:
6792 	local_irq_restore(flags);
6793 
6794 	if (yielded > 0)
6795 		schedule();
6796 
6797 	return yielded;
6798 }
6799 EXPORT_SYMBOL_GPL(yield_to);
6800 
6801 int io_schedule_prepare(void)
6802 {
6803 	int old_iowait = current->in_iowait;
6804 
6805 	current->in_iowait = 1;
6806 	blk_schedule_flush_plug(current);
6807 
6808 	return old_iowait;
6809 }
6810 
6811 void io_schedule_finish(int token)
6812 {
6813 	current->in_iowait = token;
6814 }
6815 
6816 /*
6817  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6818  * that process accounting knows that this is a task in IO wait state.
6819  */
6820 long __sched io_schedule_timeout(long timeout)
6821 {
6822 	int token;
6823 	long ret;
6824 
6825 	token = io_schedule_prepare();
6826 	ret = schedule_timeout(timeout);
6827 	io_schedule_finish(token);
6828 
6829 	return ret;
6830 }
6831 EXPORT_SYMBOL(io_schedule_timeout);
6832 
6833 void __sched io_schedule(void)
6834 {
6835 	int token;
6836 
6837 	token = io_schedule_prepare();
6838 	schedule();
6839 	io_schedule_finish(token);
6840 }
6841 EXPORT_SYMBOL(io_schedule);
6842 
6843 /**
6844  * sys_sched_get_priority_max - return maximum RT priority.
6845  * @policy: scheduling class.
6846  *
6847  * Return: On success, this syscall returns the maximum
6848  * rt_priority that can be used by a given scheduling class.
6849  * On failure, a negative error code is returned.
6850  */
6851 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6852 {
6853 	int ret = -EINVAL;
6854 
6855 	switch (policy) {
6856 	case SCHED_FIFO:
6857 	case SCHED_RR:
6858 		ret = MAX_USER_RT_PRIO-1;
6859 		break;
6860 	case SCHED_DEADLINE:
6861 	case SCHED_NORMAL:
6862 	case SCHED_BATCH:
6863 	case SCHED_IDLE:
6864 		ret = 0;
6865 		break;
6866 	}
6867 	return ret;
6868 }
6869 
6870 /**
6871  * sys_sched_get_priority_min - return minimum RT priority.
6872  * @policy: scheduling class.
6873  *
6874  * Return: On success, this syscall returns the minimum
6875  * rt_priority that can be used by a given scheduling class.
6876  * On failure, a negative error code is returned.
6877  */
6878 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6879 {
6880 	int ret = -EINVAL;
6881 
6882 	switch (policy) {
6883 	case SCHED_FIFO:
6884 	case SCHED_RR:
6885 		ret = 1;
6886 		break;
6887 	case SCHED_DEADLINE:
6888 	case SCHED_NORMAL:
6889 	case SCHED_BATCH:
6890 	case SCHED_IDLE:
6891 		ret = 0;
6892 	}
6893 	return ret;
6894 }
6895 
6896 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6897 {
6898 	struct task_struct *p;
6899 	unsigned int time_slice;
6900 	struct rq_flags rf;
6901 	struct rq *rq;
6902 	int retval;
6903 
6904 	if (pid < 0)
6905 		return -EINVAL;
6906 
6907 	retval = -ESRCH;
6908 	rcu_read_lock();
6909 	p = find_process_by_pid(pid);
6910 	if (!p)
6911 		goto out_unlock;
6912 
6913 	retval = security_task_getscheduler(p);
6914 	if (retval)
6915 		goto out_unlock;
6916 
6917 	rq = task_rq_lock(p, &rf);
6918 	time_slice = 0;
6919 	if (p->sched_class->get_rr_interval)
6920 		time_slice = p->sched_class->get_rr_interval(rq, p);
6921 	task_rq_unlock(rq, p, &rf);
6922 
6923 	rcu_read_unlock();
6924 	jiffies_to_timespec64(time_slice, t);
6925 	return 0;
6926 
6927 out_unlock:
6928 	rcu_read_unlock();
6929 	return retval;
6930 }
6931 
6932 /**
6933  * sys_sched_rr_get_interval - return the default timeslice of a process.
6934  * @pid: pid of the process.
6935  * @interval: userspace pointer to the timeslice value.
6936  *
6937  * this syscall writes the default timeslice value of a given process
6938  * into the user-space timespec buffer. A value of '0' means infinity.
6939  *
6940  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6941  * an error code.
6942  */
6943 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6944 		struct __kernel_timespec __user *, interval)
6945 {
6946 	struct timespec64 t;
6947 	int retval = sched_rr_get_interval(pid, &t);
6948 
6949 	if (retval == 0)
6950 		retval = put_timespec64(&t, interval);
6951 
6952 	return retval;
6953 }
6954 
6955 #ifdef CONFIG_COMPAT_32BIT_TIME
6956 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6957 		struct old_timespec32 __user *, interval)
6958 {
6959 	struct timespec64 t;
6960 	int retval = sched_rr_get_interval(pid, &t);
6961 
6962 	if (retval == 0)
6963 		retval = put_old_timespec32(&t, interval);
6964 	return retval;
6965 }
6966 #endif
6967 
6968 void sched_show_task(struct task_struct *p)
6969 {
6970 	unsigned long free = 0;
6971 	int ppid;
6972 
6973 	if (!try_get_task_stack(p))
6974 		return;
6975 
6976 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6977 
6978 	if (p->state == TASK_RUNNING)
6979 		pr_cont("  running task    ");
6980 #ifdef CONFIG_DEBUG_STACK_USAGE
6981 	free = stack_not_used(p);
6982 #endif
6983 	ppid = 0;
6984 	rcu_read_lock();
6985 	if (pid_alive(p))
6986 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
6987 	rcu_read_unlock();
6988 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6989 		free, task_pid_nr(p), ppid,
6990 		(unsigned long)task_thread_info(p)->flags);
6991 
6992 	print_worker_info(KERN_INFO, p);
6993 	print_stop_info(KERN_INFO, p);
6994 	show_stack(p, NULL, KERN_INFO);
6995 	put_task_stack(p);
6996 }
6997 EXPORT_SYMBOL_GPL(sched_show_task);
6998 
6999 static inline bool
7000 state_filter_match(unsigned long state_filter, struct task_struct *p)
7001 {
7002 	/* no filter, everything matches */
7003 	if (!state_filter)
7004 		return true;
7005 
7006 	/* filter, but doesn't match */
7007 	if (!(p->state & state_filter))
7008 		return false;
7009 
7010 	/*
7011 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7012 	 * TASK_KILLABLE).
7013 	 */
7014 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7015 		return false;
7016 
7017 	return true;
7018 }
7019 
7020 
7021 void show_state_filter(unsigned long state_filter)
7022 {
7023 	struct task_struct *g, *p;
7024 
7025 	rcu_read_lock();
7026 	for_each_process_thread(g, p) {
7027 		/*
7028 		 * reset the NMI-timeout, listing all files on a slow
7029 		 * console might take a lot of time:
7030 		 * Also, reset softlockup watchdogs on all CPUs, because
7031 		 * another CPU might be blocked waiting for us to process
7032 		 * an IPI.
7033 		 */
7034 		touch_nmi_watchdog();
7035 		touch_all_softlockup_watchdogs();
7036 		if (state_filter_match(state_filter, p))
7037 			sched_show_task(p);
7038 	}
7039 
7040 #ifdef CONFIG_SCHED_DEBUG
7041 	if (!state_filter)
7042 		sysrq_sched_debug_show();
7043 #endif
7044 	rcu_read_unlock();
7045 	/*
7046 	 * Only show locks if all tasks are dumped:
7047 	 */
7048 	if (!state_filter)
7049 		debug_show_all_locks();
7050 }
7051 
7052 /**
7053  * init_idle - set up an idle thread for a given CPU
7054  * @idle: task in question
7055  * @cpu: CPU the idle task belongs to
7056  *
7057  * NOTE: this function does not set the idle thread's NEED_RESCHED
7058  * flag, to make booting more robust.
7059  */
7060 void init_idle(struct task_struct *idle, int cpu)
7061 {
7062 	struct rq *rq = cpu_rq(cpu);
7063 	unsigned long flags;
7064 
7065 	__sched_fork(0, idle);
7066 
7067 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7068 	raw_spin_lock(&rq->lock);
7069 
7070 	idle->state = TASK_RUNNING;
7071 	idle->se.exec_start = sched_clock();
7072 	idle->flags |= PF_IDLE;
7073 
7074 	scs_task_reset(idle);
7075 	kasan_unpoison_task_stack(idle);
7076 
7077 #ifdef CONFIG_SMP
7078 	/*
7079 	 * It's possible that init_idle() gets called multiple times on a task,
7080 	 * in that case do_set_cpus_allowed() will not do the right thing.
7081 	 *
7082 	 * And since this is boot we can forgo the serialization.
7083 	 */
7084 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7085 #endif
7086 	/*
7087 	 * We're having a chicken and egg problem, even though we are
7088 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7089 	 * lockdep check in task_group() will fail.
7090 	 *
7091 	 * Similar case to sched_fork(). / Alternatively we could
7092 	 * use task_rq_lock() here and obtain the other rq->lock.
7093 	 *
7094 	 * Silence PROVE_RCU
7095 	 */
7096 	rcu_read_lock();
7097 	__set_task_cpu(idle, cpu);
7098 	rcu_read_unlock();
7099 
7100 	rq->idle = idle;
7101 	rcu_assign_pointer(rq->curr, idle);
7102 	idle->on_rq = TASK_ON_RQ_QUEUED;
7103 #ifdef CONFIG_SMP
7104 	idle->on_cpu = 1;
7105 #endif
7106 	raw_spin_unlock(&rq->lock);
7107 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7108 
7109 	/* Set the preempt count _outside_ the spinlocks! */
7110 	init_idle_preempt_count(idle, cpu);
7111 
7112 	/*
7113 	 * The idle tasks have their own, simple scheduling class:
7114 	 */
7115 	idle->sched_class = &idle_sched_class;
7116 	ftrace_graph_init_idle_task(idle, cpu);
7117 	vtime_init_idle(idle, cpu);
7118 #ifdef CONFIG_SMP
7119 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7120 #endif
7121 }
7122 
7123 #ifdef CONFIG_SMP
7124 
7125 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7126 			      const struct cpumask *trial)
7127 {
7128 	int ret = 1;
7129 
7130 	if (!cpumask_weight(cur))
7131 		return ret;
7132 
7133 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7134 
7135 	return ret;
7136 }
7137 
7138 int task_can_attach(struct task_struct *p,
7139 		    const struct cpumask *cs_cpus_allowed)
7140 {
7141 	int ret = 0;
7142 
7143 	/*
7144 	 * Kthreads which disallow setaffinity shouldn't be moved
7145 	 * to a new cpuset; we don't want to change their CPU
7146 	 * affinity and isolating such threads by their set of
7147 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7148 	 * applicable for such threads.  This prevents checking for
7149 	 * success of set_cpus_allowed_ptr() on all attached tasks
7150 	 * before cpus_mask may be changed.
7151 	 */
7152 	if (p->flags & PF_NO_SETAFFINITY) {
7153 		ret = -EINVAL;
7154 		goto out;
7155 	}
7156 
7157 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7158 					      cs_cpus_allowed))
7159 		ret = dl_task_can_attach(p, cs_cpus_allowed);
7160 
7161 out:
7162 	return ret;
7163 }
7164 
7165 bool sched_smp_initialized __read_mostly;
7166 
7167 #ifdef CONFIG_NUMA_BALANCING
7168 /* Migrate current task p to target_cpu */
7169 int migrate_task_to(struct task_struct *p, int target_cpu)
7170 {
7171 	struct migration_arg arg = { p, target_cpu };
7172 	int curr_cpu = task_cpu(p);
7173 
7174 	if (curr_cpu == target_cpu)
7175 		return 0;
7176 
7177 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7178 		return -EINVAL;
7179 
7180 	/* TODO: This is not properly updating schedstats */
7181 
7182 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7183 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7184 }
7185 
7186 /*
7187  * Requeue a task on a given node and accurately track the number of NUMA
7188  * tasks on the runqueues
7189  */
7190 void sched_setnuma(struct task_struct *p, int nid)
7191 {
7192 	bool queued, running;
7193 	struct rq_flags rf;
7194 	struct rq *rq;
7195 
7196 	rq = task_rq_lock(p, &rf);
7197 	queued = task_on_rq_queued(p);
7198 	running = task_current(rq, p);
7199 
7200 	if (queued)
7201 		dequeue_task(rq, p, DEQUEUE_SAVE);
7202 	if (running)
7203 		put_prev_task(rq, p);
7204 
7205 	p->numa_preferred_nid = nid;
7206 
7207 	if (queued)
7208 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7209 	if (running)
7210 		set_next_task(rq, p);
7211 	task_rq_unlock(rq, p, &rf);
7212 }
7213 #endif /* CONFIG_NUMA_BALANCING */
7214 
7215 #ifdef CONFIG_HOTPLUG_CPU
7216 /*
7217  * Ensure that the idle task is using init_mm right before its CPU goes
7218  * offline.
7219  */
7220 void idle_task_exit(void)
7221 {
7222 	struct mm_struct *mm = current->active_mm;
7223 
7224 	BUG_ON(cpu_online(smp_processor_id()));
7225 	BUG_ON(current != this_rq()->idle);
7226 
7227 	if (mm != &init_mm) {
7228 		switch_mm(mm, &init_mm, current);
7229 		finish_arch_post_lock_switch();
7230 	}
7231 
7232 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7233 }
7234 
7235 static int __balance_push_cpu_stop(void *arg)
7236 {
7237 	struct task_struct *p = arg;
7238 	struct rq *rq = this_rq();
7239 	struct rq_flags rf;
7240 	int cpu;
7241 
7242 	raw_spin_lock_irq(&p->pi_lock);
7243 	rq_lock(rq, &rf);
7244 
7245 	update_rq_clock(rq);
7246 
7247 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7248 		cpu = select_fallback_rq(rq->cpu, p);
7249 		rq = __migrate_task(rq, &rf, p, cpu);
7250 	}
7251 
7252 	rq_unlock(rq, &rf);
7253 	raw_spin_unlock_irq(&p->pi_lock);
7254 
7255 	put_task_struct(p);
7256 
7257 	return 0;
7258 }
7259 
7260 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7261 
7262 /*
7263  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7264  */
7265 static void balance_push(struct rq *rq)
7266 {
7267 	struct task_struct *push_task = rq->curr;
7268 
7269 	lockdep_assert_held(&rq->lock);
7270 	SCHED_WARN_ON(rq->cpu != smp_processor_id());
7271 	/*
7272 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7273 	 */
7274 	rq->balance_callback = &balance_push_callback;
7275 
7276 	/*
7277 	 * Both the cpu-hotplug and stop task are in this case and are
7278 	 * required to complete the hotplug process.
7279 	 */
7280 	if (is_per_cpu_kthread(push_task) || is_migration_disabled(push_task)) {
7281 		/*
7282 		 * If this is the idle task on the outgoing CPU try to wake
7283 		 * up the hotplug control thread which might wait for the
7284 		 * last task to vanish. The rcuwait_active() check is
7285 		 * accurate here because the waiter is pinned on this CPU
7286 		 * and can't obviously be running in parallel.
7287 		 *
7288 		 * On RT kernels this also has to check whether there are
7289 		 * pinned and scheduled out tasks on the runqueue. They
7290 		 * need to leave the migrate disabled section first.
7291 		 */
7292 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7293 		    rcuwait_active(&rq->hotplug_wait)) {
7294 			raw_spin_unlock(&rq->lock);
7295 			rcuwait_wake_up(&rq->hotplug_wait);
7296 			raw_spin_lock(&rq->lock);
7297 		}
7298 		return;
7299 	}
7300 
7301 	get_task_struct(push_task);
7302 	/*
7303 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7304 	 * Both preemption and IRQs are still disabled.
7305 	 */
7306 	raw_spin_unlock(&rq->lock);
7307 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7308 			    this_cpu_ptr(&push_work));
7309 	/*
7310 	 * At this point need_resched() is true and we'll take the loop in
7311 	 * schedule(). The next pick is obviously going to be the stop task
7312 	 * which is_per_cpu_kthread() and will push this task away.
7313 	 */
7314 	raw_spin_lock(&rq->lock);
7315 }
7316 
7317 static void balance_push_set(int cpu, bool on)
7318 {
7319 	struct rq *rq = cpu_rq(cpu);
7320 	struct rq_flags rf;
7321 
7322 	rq_lock_irqsave(rq, &rf);
7323 	if (on)
7324 		rq->balance_callback = &balance_push_callback;
7325 	else
7326 		rq->balance_callback = NULL;
7327 	rq_unlock_irqrestore(rq, &rf);
7328 }
7329 
7330 /*
7331  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7332  * inactive. All tasks which are not per CPU kernel threads are either
7333  * pushed off this CPU now via balance_push() or placed on a different CPU
7334  * during wakeup. Wait until the CPU is quiescent.
7335  */
7336 static void balance_hotplug_wait(void)
7337 {
7338 	struct rq *rq = this_rq();
7339 
7340 	rcuwait_wait_event(&rq->hotplug_wait,
7341 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7342 			   TASK_UNINTERRUPTIBLE);
7343 }
7344 
7345 #else
7346 
7347 static inline void balance_push(struct rq *rq)
7348 {
7349 }
7350 
7351 static inline void balance_push_set(int cpu, bool on)
7352 {
7353 }
7354 
7355 static inline void balance_hotplug_wait(void)
7356 {
7357 }
7358 
7359 #endif /* CONFIG_HOTPLUG_CPU */
7360 
7361 void set_rq_online(struct rq *rq)
7362 {
7363 	if (!rq->online) {
7364 		const struct sched_class *class;
7365 
7366 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7367 		rq->online = 1;
7368 
7369 		for_each_class(class) {
7370 			if (class->rq_online)
7371 				class->rq_online(rq);
7372 		}
7373 	}
7374 }
7375 
7376 void set_rq_offline(struct rq *rq)
7377 {
7378 	if (rq->online) {
7379 		const struct sched_class *class;
7380 
7381 		for_each_class(class) {
7382 			if (class->rq_offline)
7383 				class->rq_offline(rq);
7384 		}
7385 
7386 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7387 		rq->online = 0;
7388 	}
7389 }
7390 
7391 /*
7392  * used to mark begin/end of suspend/resume:
7393  */
7394 static int num_cpus_frozen;
7395 
7396 /*
7397  * Update cpusets according to cpu_active mask.  If cpusets are
7398  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7399  * around partition_sched_domains().
7400  *
7401  * If we come here as part of a suspend/resume, don't touch cpusets because we
7402  * want to restore it back to its original state upon resume anyway.
7403  */
7404 static void cpuset_cpu_active(void)
7405 {
7406 	if (cpuhp_tasks_frozen) {
7407 		/*
7408 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7409 		 * resume sequence. As long as this is not the last online
7410 		 * operation in the resume sequence, just build a single sched
7411 		 * domain, ignoring cpusets.
7412 		 */
7413 		partition_sched_domains(1, NULL, NULL);
7414 		if (--num_cpus_frozen)
7415 			return;
7416 		/*
7417 		 * This is the last CPU online operation. So fall through and
7418 		 * restore the original sched domains by considering the
7419 		 * cpuset configurations.
7420 		 */
7421 		cpuset_force_rebuild();
7422 	}
7423 	cpuset_update_active_cpus();
7424 }
7425 
7426 static int cpuset_cpu_inactive(unsigned int cpu)
7427 {
7428 	if (!cpuhp_tasks_frozen) {
7429 		if (dl_cpu_busy(cpu))
7430 			return -EBUSY;
7431 		cpuset_update_active_cpus();
7432 	} else {
7433 		num_cpus_frozen++;
7434 		partition_sched_domains(1, NULL, NULL);
7435 	}
7436 	return 0;
7437 }
7438 
7439 int sched_cpu_activate(unsigned int cpu)
7440 {
7441 	struct rq *rq = cpu_rq(cpu);
7442 	struct rq_flags rf;
7443 
7444 	balance_push_set(cpu, false);
7445 
7446 #ifdef CONFIG_SCHED_SMT
7447 	/*
7448 	 * When going up, increment the number of cores with SMT present.
7449 	 */
7450 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7451 		static_branch_inc_cpuslocked(&sched_smt_present);
7452 #endif
7453 	set_cpu_active(cpu, true);
7454 
7455 	if (sched_smp_initialized) {
7456 		sched_domains_numa_masks_set(cpu);
7457 		cpuset_cpu_active();
7458 	}
7459 
7460 	/*
7461 	 * Put the rq online, if not already. This happens:
7462 	 *
7463 	 * 1) In the early boot process, because we build the real domains
7464 	 *    after all CPUs have been brought up.
7465 	 *
7466 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7467 	 *    domains.
7468 	 */
7469 	rq_lock_irqsave(rq, &rf);
7470 	if (rq->rd) {
7471 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7472 		set_rq_online(rq);
7473 	}
7474 	rq_unlock_irqrestore(rq, &rf);
7475 
7476 	return 0;
7477 }
7478 
7479 int sched_cpu_deactivate(unsigned int cpu)
7480 {
7481 	struct rq *rq = cpu_rq(cpu);
7482 	struct rq_flags rf;
7483 	int ret;
7484 
7485 	set_cpu_active(cpu, false);
7486 	/*
7487 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7488 	 * users of this state to go away such that all new such users will
7489 	 * observe it.
7490 	 *
7491 	 * Do sync before park smpboot threads to take care the rcu boost case.
7492 	 */
7493 	synchronize_rcu();
7494 
7495 	balance_push_set(cpu, true);
7496 
7497 	rq_lock_irqsave(rq, &rf);
7498 	if (rq->rd) {
7499 		update_rq_clock(rq);
7500 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7501 		set_rq_offline(rq);
7502 	}
7503 	rq_unlock_irqrestore(rq, &rf);
7504 
7505 #ifdef CONFIG_SCHED_SMT
7506 	/*
7507 	 * When going down, decrement the number of cores with SMT present.
7508 	 */
7509 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7510 		static_branch_dec_cpuslocked(&sched_smt_present);
7511 #endif
7512 
7513 	if (!sched_smp_initialized)
7514 		return 0;
7515 
7516 	ret = cpuset_cpu_inactive(cpu);
7517 	if (ret) {
7518 		balance_push_set(cpu, false);
7519 		set_cpu_active(cpu, true);
7520 		return ret;
7521 	}
7522 	sched_domains_numa_masks_clear(cpu);
7523 	return 0;
7524 }
7525 
7526 static void sched_rq_cpu_starting(unsigned int cpu)
7527 {
7528 	struct rq *rq = cpu_rq(cpu);
7529 
7530 	rq->calc_load_update = calc_load_update;
7531 	update_max_interval();
7532 }
7533 
7534 int sched_cpu_starting(unsigned int cpu)
7535 {
7536 	sched_rq_cpu_starting(cpu);
7537 	sched_tick_start(cpu);
7538 	return 0;
7539 }
7540 
7541 #ifdef CONFIG_HOTPLUG_CPU
7542 
7543 /*
7544  * Invoked immediately before the stopper thread is invoked to bring the
7545  * CPU down completely. At this point all per CPU kthreads except the
7546  * hotplug thread (current) and the stopper thread (inactive) have been
7547  * either parked or have been unbound from the outgoing CPU. Ensure that
7548  * any of those which might be on the way out are gone.
7549  *
7550  * If after this point a bound task is being woken on this CPU then the
7551  * responsible hotplug callback has failed to do it's job.
7552  * sched_cpu_dying() will catch it with the appropriate fireworks.
7553  */
7554 int sched_cpu_wait_empty(unsigned int cpu)
7555 {
7556 	balance_hotplug_wait();
7557 	return 0;
7558 }
7559 
7560 /*
7561  * Since this CPU is going 'away' for a while, fold any nr_active delta we
7562  * might have. Called from the CPU stopper task after ensuring that the
7563  * stopper is the last running task on the CPU, so nr_active count is
7564  * stable. We need to take the teardown thread which is calling this into
7565  * account, so we hand in adjust = 1 to the load calculation.
7566  *
7567  * Also see the comment "Global load-average calculations".
7568  */
7569 static void calc_load_migrate(struct rq *rq)
7570 {
7571 	long delta = calc_load_fold_active(rq, 1);
7572 
7573 	if (delta)
7574 		atomic_long_add(delta, &calc_load_tasks);
7575 }
7576 
7577 int sched_cpu_dying(unsigned int cpu)
7578 {
7579 	struct rq *rq = cpu_rq(cpu);
7580 	struct rq_flags rf;
7581 
7582 	/* Handle pending wakeups and then migrate everything off */
7583 	sched_tick_stop(cpu);
7584 
7585 	rq_lock_irqsave(rq, &rf);
7586 	BUG_ON(rq->nr_running != 1 || rq_has_pinned_tasks(rq));
7587 	rq_unlock_irqrestore(rq, &rf);
7588 
7589 	calc_load_migrate(rq);
7590 	update_max_interval();
7591 	nohz_balance_exit_idle(rq);
7592 	hrtick_clear(rq);
7593 	return 0;
7594 }
7595 #endif
7596 
7597 void __init sched_init_smp(void)
7598 {
7599 	sched_init_numa();
7600 
7601 	/*
7602 	 * There's no userspace yet to cause hotplug operations; hence all the
7603 	 * CPU masks are stable and all blatant races in the below code cannot
7604 	 * happen.
7605 	 */
7606 	mutex_lock(&sched_domains_mutex);
7607 	sched_init_domains(cpu_active_mask);
7608 	mutex_unlock(&sched_domains_mutex);
7609 
7610 	/* Move init over to a non-isolated CPU */
7611 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7612 		BUG();
7613 	sched_init_granularity();
7614 
7615 	init_sched_rt_class();
7616 	init_sched_dl_class();
7617 
7618 	sched_smp_initialized = true;
7619 }
7620 
7621 static int __init migration_init(void)
7622 {
7623 	sched_cpu_starting(smp_processor_id());
7624 	return 0;
7625 }
7626 early_initcall(migration_init);
7627 
7628 #else
7629 void __init sched_init_smp(void)
7630 {
7631 	sched_init_granularity();
7632 }
7633 #endif /* CONFIG_SMP */
7634 
7635 int in_sched_functions(unsigned long addr)
7636 {
7637 	return in_lock_functions(addr) ||
7638 		(addr >= (unsigned long)__sched_text_start
7639 		&& addr < (unsigned long)__sched_text_end);
7640 }
7641 
7642 #ifdef CONFIG_CGROUP_SCHED
7643 /*
7644  * Default task group.
7645  * Every task in system belongs to this group at bootup.
7646  */
7647 struct task_group root_task_group;
7648 LIST_HEAD(task_groups);
7649 
7650 /* Cacheline aligned slab cache for task_group */
7651 static struct kmem_cache *task_group_cache __read_mostly;
7652 #endif
7653 
7654 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7655 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7656 
7657 void __init sched_init(void)
7658 {
7659 	unsigned long ptr = 0;
7660 	int i;
7661 
7662 	/* Make sure the linker didn't screw up */
7663 	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7664 	       &fair_sched_class + 1 != &rt_sched_class ||
7665 	       &rt_sched_class + 1   != &dl_sched_class);
7666 #ifdef CONFIG_SMP
7667 	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7668 #endif
7669 
7670 	wait_bit_init();
7671 
7672 #ifdef CONFIG_FAIR_GROUP_SCHED
7673 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7674 #endif
7675 #ifdef CONFIG_RT_GROUP_SCHED
7676 	ptr += 2 * nr_cpu_ids * sizeof(void **);
7677 #endif
7678 	if (ptr) {
7679 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7680 
7681 #ifdef CONFIG_FAIR_GROUP_SCHED
7682 		root_task_group.se = (struct sched_entity **)ptr;
7683 		ptr += nr_cpu_ids * sizeof(void **);
7684 
7685 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7686 		ptr += nr_cpu_ids * sizeof(void **);
7687 
7688 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7689 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7690 #endif /* CONFIG_FAIR_GROUP_SCHED */
7691 #ifdef CONFIG_RT_GROUP_SCHED
7692 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7693 		ptr += nr_cpu_ids * sizeof(void **);
7694 
7695 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7696 		ptr += nr_cpu_ids * sizeof(void **);
7697 
7698 #endif /* CONFIG_RT_GROUP_SCHED */
7699 	}
7700 #ifdef CONFIG_CPUMASK_OFFSTACK
7701 	for_each_possible_cpu(i) {
7702 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7703 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7704 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7705 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7706 	}
7707 #endif /* CONFIG_CPUMASK_OFFSTACK */
7708 
7709 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7710 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7711 
7712 #ifdef CONFIG_SMP
7713 	init_defrootdomain();
7714 #endif
7715 
7716 #ifdef CONFIG_RT_GROUP_SCHED
7717 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7718 			global_rt_period(), global_rt_runtime());
7719 #endif /* CONFIG_RT_GROUP_SCHED */
7720 
7721 #ifdef CONFIG_CGROUP_SCHED
7722 	task_group_cache = KMEM_CACHE(task_group, 0);
7723 
7724 	list_add(&root_task_group.list, &task_groups);
7725 	INIT_LIST_HEAD(&root_task_group.children);
7726 	INIT_LIST_HEAD(&root_task_group.siblings);
7727 	autogroup_init(&init_task);
7728 #endif /* CONFIG_CGROUP_SCHED */
7729 
7730 	for_each_possible_cpu(i) {
7731 		struct rq *rq;
7732 
7733 		rq = cpu_rq(i);
7734 		raw_spin_lock_init(&rq->lock);
7735 		rq->nr_running = 0;
7736 		rq->calc_load_active = 0;
7737 		rq->calc_load_update = jiffies + LOAD_FREQ;
7738 		init_cfs_rq(&rq->cfs);
7739 		init_rt_rq(&rq->rt);
7740 		init_dl_rq(&rq->dl);
7741 #ifdef CONFIG_FAIR_GROUP_SCHED
7742 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7743 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7744 		/*
7745 		 * How much CPU bandwidth does root_task_group get?
7746 		 *
7747 		 * In case of task-groups formed thr' the cgroup filesystem, it
7748 		 * gets 100% of the CPU resources in the system. This overall
7749 		 * system CPU resource is divided among the tasks of
7750 		 * root_task_group and its child task-groups in a fair manner,
7751 		 * based on each entity's (task or task-group's) weight
7752 		 * (se->load.weight).
7753 		 *
7754 		 * In other words, if root_task_group has 10 tasks of weight
7755 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7756 		 * then A0's share of the CPU resource is:
7757 		 *
7758 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7759 		 *
7760 		 * We achieve this by letting root_task_group's tasks sit
7761 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7762 		 */
7763 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7764 #endif /* CONFIG_FAIR_GROUP_SCHED */
7765 
7766 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7767 #ifdef CONFIG_RT_GROUP_SCHED
7768 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7769 #endif
7770 #ifdef CONFIG_SMP
7771 		rq->sd = NULL;
7772 		rq->rd = NULL;
7773 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7774 		rq->balance_callback = NULL;
7775 		rq->active_balance = 0;
7776 		rq->next_balance = jiffies;
7777 		rq->push_cpu = 0;
7778 		rq->cpu = i;
7779 		rq->online = 0;
7780 		rq->idle_stamp = 0;
7781 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7782 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7783 
7784 		INIT_LIST_HEAD(&rq->cfs_tasks);
7785 
7786 		rq_attach_root(rq, &def_root_domain);
7787 #ifdef CONFIG_NO_HZ_COMMON
7788 		rq->last_blocked_load_update_tick = jiffies;
7789 		atomic_set(&rq->nohz_flags, 0);
7790 
7791 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
7792 #endif
7793 #ifdef CONFIG_HOTPLUG_CPU
7794 		rcuwait_init(&rq->hotplug_wait);
7795 #endif
7796 #endif /* CONFIG_SMP */
7797 		hrtick_rq_init(rq);
7798 		atomic_set(&rq->nr_iowait, 0);
7799 	}
7800 
7801 	set_load_weight(&init_task, false);
7802 
7803 	/*
7804 	 * The boot idle thread does lazy MMU switching as well:
7805 	 */
7806 	mmgrab(&init_mm);
7807 	enter_lazy_tlb(&init_mm, current);
7808 
7809 	/*
7810 	 * Make us the idle thread. Technically, schedule() should not be
7811 	 * called from this thread, however somewhere below it might be,
7812 	 * but because we are the idle thread, we just pick up running again
7813 	 * when this runqueue becomes "idle".
7814 	 */
7815 	init_idle(current, smp_processor_id());
7816 
7817 	calc_load_update = jiffies + LOAD_FREQ;
7818 
7819 #ifdef CONFIG_SMP
7820 	idle_thread_set_boot_cpu();
7821 #endif
7822 	init_sched_fair_class();
7823 
7824 	init_schedstats();
7825 
7826 	psi_init();
7827 
7828 	init_uclamp();
7829 
7830 	scheduler_running = 1;
7831 }
7832 
7833 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7834 static inline int preempt_count_equals(int preempt_offset)
7835 {
7836 	int nested = preempt_count() + rcu_preempt_depth();
7837 
7838 	return (nested == preempt_offset);
7839 }
7840 
7841 void __might_sleep(const char *file, int line, int preempt_offset)
7842 {
7843 	/*
7844 	 * Blocking primitives will set (and therefore destroy) current->state,
7845 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7846 	 * otherwise we will destroy state.
7847 	 */
7848 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7849 			"do not call blocking ops when !TASK_RUNNING; "
7850 			"state=%lx set at [<%p>] %pS\n",
7851 			current->state,
7852 			(void *)current->task_state_change,
7853 			(void *)current->task_state_change);
7854 
7855 	___might_sleep(file, line, preempt_offset);
7856 }
7857 EXPORT_SYMBOL(__might_sleep);
7858 
7859 void ___might_sleep(const char *file, int line, int preempt_offset)
7860 {
7861 	/* Ratelimiting timestamp: */
7862 	static unsigned long prev_jiffy;
7863 
7864 	unsigned long preempt_disable_ip;
7865 
7866 	/* WARN_ON_ONCE() by default, no rate limit required: */
7867 	rcu_sleep_check();
7868 
7869 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7870 	     !is_idle_task(current) && !current->non_block_count) ||
7871 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7872 	    oops_in_progress)
7873 		return;
7874 
7875 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7876 		return;
7877 	prev_jiffy = jiffies;
7878 
7879 	/* Save this before calling printk(), since that will clobber it: */
7880 	preempt_disable_ip = get_preempt_disable_ip(current);
7881 
7882 	printk(KERN_ERR
7883 		"BUG: sleeping function called from invalid context at %s:%d\n",
7884 			file, line);
7885 	printk(KERN_ERR
7886 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7887 			in_atomic(), irqs_disabled(), current->non_block_count,
7888 			current->pid, current->comm);
7889 
7890 	if (task_stack_end_corrupted(current))
7891 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7892 
7893 	debug_show_held_locks(current);
7894 	if (irqs_disabled())
7895 		print_irqtrace_events(current);
7896 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7897 	    && !preempt_count_equals(preempt_offset)) {
7898 		pr_err("Preemption disabled at:");
7899 		print_ip_sym(KERN_ERR, preempt_disable_ip);
7900 	}
7901 	dump_stack();
7902 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7903 }
7904 EXPORT_SYMBOL(___might_sleep);
7905 
7906 void __cant_sleep(const char *file, int line, int preempt_offset)
7907 {
7908 	static unsigned long prev_jiffy;
7909 
7910 	if (irqs_disabled())
7911 		return;
7912 
7913 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7914 		return;
7915 
7916 	if (preempt_count() > preempt_offset)
7917 		return;
7918 
7919 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7920 		return;
7921 	prev_jiffy = jiffies;
7922 
7923 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7924 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7925 			in_atomic(), irqs_disabled(),
7926 			current->pid, current->comm);
7927 
7928 	debug_show_held_locks(current);
7929 	dump_stack();
7930 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7931 }
7932 EXPORT_SYMBOL_GPL(__cant_sleep);
7933 
7934 #ifdef CONFIG_SMP
7935 void __cant_migrate(const char *file, int line)
7936 {
7937 	static unsigned long prev_jiffy;
7938 
7939 	if (irqs_disabled())
7940 		return;
7941 
7942 	if (is_migration_disabled(current))
7943 		return;
7944 
7945 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7946 		return;
7947 
7948 	if (preempt_count() > 0)
7949 		return;
7950 
7951 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7952 		return;
7953 	prev_jiffy = jiffies;
7954 
7955 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
7956 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
7957 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
7958 	       current->pid, current->comm);
7959 
7960 	debug_show_held_locks(current);
7961 	dump_stack();
7962 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7963 }
7964 EXPORT_SYMBOL_GPL(__cant_migrate);
7965 #endif
7966 #endif
7967 
7968 #ifdef CONFIG_MAGIC_SYSRQ
7969 void normalize_rt_tasks(void)
7970 {
7971 	struct task_struct *g, *p;
7972 	struct sched_attr attr = {
7973 		.sched_policy = SCHED_NORMAL,
7974 	};
7975 
7976 	read_lock(&tasklist_lock);
7977 	for_each_process_thread(g, p) {
7978 		/*
7979 		 * Only normalize user tasks:
7980 		 */
7981 		if (p->flags & PF_KTHREAD)
7982 			continue;
7983 
7984 		p->se.exec_start = 0;
7985 		schedstat_set(p->se.statistics.wait_start,  0);
7986 		schedstat_set(p->se.statistics.sleep_start, 0);
7987 		schedstat_set(p->se.statistics.block_start, 0);
7988 
7989 		if (!dl_task(p) && !rt_task(p)) {
7990 			/*
7991 			 * Renice negative nice level userspace
7992 			 * tasks back to 0:
7993 			 */
7994 			if (task_nice(p) < 0)
7995 				set_user_nice(p, 0);
7996 			continue;
7997 		}
7998 
7999 		__sched_setscheduler(p, &attr, false, false);
8000 	}
8001 	read_unlock(&tasklist_lock);
8002 }
8003 
8004 #endif /* CONFIG_MAGIC_SYSRQ */
8005 
8006 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8007 /*
8008  * These functions are only useful for the IA64 MCA handling, or kdb.
8009  *
8010  * They can only be called when the whole system has been
8011  * stopped - every CPU needs to be quiescent, and no scheduling
8012  * activity can take place. Using them for anything else would
8013  * be a serious bug, and as a result, they aren't even visible
8014  * under any other configuration.
8015  */
8016 
8017 /**
8018  * curr_task - return the current task for a given CPU.
8019  * @cpu: the processor in question.
8020  *
8021  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8022  *
8023  * Return: The current task for @cpu.
8024  */
8025 struct task_struct *curr_task(int cpu)
8026 {
8027 	return cpu_curr(cpu);
8028 }
8029 
8030 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8031 
8032 #ifdef CONFIG_IA64
8033 /**
8034  * ia64_set_curr_task - set the current task for a given CPU.
8035  * @cpu: the processor in question.
8036  * @p: the task pointer to set.
8037  *
8038  * Description: This function must only be used when non-maskable interrupts
8039  * are serviced on a separate stack. It allows the architecture to switch the
8040  * notion of the current task on a CPU in a non-blocking manner. This function
8041  * must be called with all CPU's synchronized, and interrupts disabled, the
8042  * and caller must save the original value of the current task (see
8043  * curr_task() above) and restore that value before reenabling interrupts and
8044  * re-starting the system.
8045  *
8046  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8047  */
8048 void ia64_set_curr_task(int cpu, struct task_struct *p)
8049 {
8050 	cpu_curr(cpu) = p;
8051 }
8052 
8053 #endif
8054 
8055 #ifdef CONFIG_CGROUP_SCHED
8056 /* task_group_lock serializes the addition/removal of task groups */
8057 static DEFINE_SPINLOCK(task_group_lock);
8058 
8059 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8060 					    struct task_group *parent)
8061 {
8062 #ifdef CONFIG_UCLAMP_TASK_GROUP
8063 	enum uclamp_id clamp_id;
8064 
8065 	for_each_clamp_id(clamp_id) {
8066 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8067 			      uclamp_none(clamp_id), false);
8068 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8069 	}
8070 #endif
8071 }
8072 
8073 static void sched_free_group(struct task_group *tg)
8074 {
8075 	free_fair_sched_group(tg);
8076 	free_rt_sched_group(tg);
8077 	autogroup_free(tg);
8078 	kmem_cache_free(task_group_cache, tg);
8079 }
8080 
8081 /* allocate runqueue etc for a new task group */
8082 struct task_group *sched_create_group(struct task_group *parent)
8083 {
8084 	struct task_group *tg;
8085 
8086 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8087 	if (!tg)
8088 		return ERR_PTR(-ENOMEM);
8089 
8090 	if (!alloc_fair_sched_group(tg, parent))
8091 		goto err;
8092 
8093 	if (!alloc_rt_sched_group(tg, parent))
8094 		goto err;
8095 
8096 	alloc_uclamp_sched_group(tg, parent);
8097 
8098 	return tg;
8099 
8100 err:
8101 	sched_free_group(tg);
8102 	return ERR_PTR(-ENOMEM);
8103 }
8104 
8105 void sched_online_group(struct task_group *tg, struct task_group *parent)
8106 {
8107 	unsigned long flags;
8108 
8109 	spin_lock_irqsave(&task_group_lock, flags);
8110 	list_add_rcu(&tg->list, &task_groups);
8111 
8112 	/* Root should already exist: */
8113 	WARN_ON(!parent);
8114 
8115 	tg->parent = parent;
8116 	INIT_LIST_HEAD(&tg->children);
8117 	list_add_rcu(&tg->siblings, &parent->children);
8118 	spin_unlock_irqrestore(&task_group_lock, flags);
8119 
8120 	online_fair_sched_group(tg);
8121 }
8122 
8123 /* rcu callback to free various structures associated with a task group */
8124 static void sched_free_group_rcu(struct rcu_head *rhp)
8125 {
8126 	/* Now it should be safe to free those cfs_rqs: */
8127 	sched_free_group(container_of(rhp, struct task_group, rcu));
8128 }
8129 
8130 void sched_destroy_group(struct task_group *tg)
8131 {
8132 	/* Wait for possible concurrent references to cfs_rqs complete: */
8133 	call_rcu(&tg->rcu, sched_free_group_rcu);
8134 }
8135 
8136 void sched_offline_group(struct task_group *tg)
8137 {
8138 	unsigned long flags;
8139 
8140 	/* End participation in shares distribution: */
8141 	unregister_fair_sched_group(tg);
8142 
8143 	spin_lock_irqsave(&task_group_lock, flags);
8144 	list_del_rcu(&tg->list);
8145 	list_del_rcu(&tg->siblings);
8146 	spin_unlock_irqrestore(&task_group_lock, flags);
8147 }
8148 
8149 static void sched_change_group(struct task_struct *tsk, int type)
8150 {
8151 	struct task_group *tg;
8152 
8153 	/*
8154 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8155 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8156 	 * to prevent lockdep warnings.
8157 	 */
8158 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8159 			  struct task_group, css);
8160 	tg = autogroup_task_group(tsk, tg);
8161 	tsk->sched_task_group = tg;
8162 
8163 #ifdef CONFIG_FAIR_GROUP_SCHED
8164 	if (tsk->sched_class->task_change_group)
8165 		tsk->sched_class->task_change_group(tsk, type);
8166 	else
8167 #endif
8168 		set_task_rq(tsk, task_cpu(tsk));
8169 }
8170 
8171 /*
8172  * Change task's runqueue when it moves between groups.
8173  *
8174  * The caller of this function should have put the task in its new group by
8175  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8176  * its new group.
8177  */
8178 void sched_move_task(struct task_struct *tsk)
8179 {
8180 	int queued, running, queue_flags =
8181 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8182 	struct rq_flags rf;
8183 	struct rq *rq;
8184 
8185 	rq = task_rq_lock(tsk, &rf);
8186 	update_rq_clock(rq);
8187 
8188 	running = task_current(rq, tsk);
8189 	queued = task_on_rq_queued(tsk);
8190 
8191 	if (queued)
8192 		dequeue_task(rq, tsk, queue_flags);
8193 	if (running)
8194 		put_prev_task(rq, tsk);
8195 
8196 	sched_change_group(tsk, TASK_MOVE_GROUP);
8197 
8198 	if (queued)
8199 		enqueue_task(rq, tsk, queue_flags);
8200 	if (running) {
8201 		set_next_task(rq, tsk);
8202 		/*
8203 		 * After changing group, the running task may have joined a
8204 		 * throttled one but it's still the running task. Trigger a
8205 		 * resched to make sure that task can still run.
8206 		 */
8207 		resched_curr(rq);
8208 	}
8209 
8210 	task_rq_unlock(rq, tsk, &rf);
8211 }
8212 
8213 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8214 {
8215 	return css ? container_of(css, struct task_group, css) : NULL;
8216 }
8217 
8218 static struct cgroup_subsys_state *
8219 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8220 {
8221 	struct task_group *parent = css_tg(parent_css);
8222 	struct task_group *tg;
8223 
8224 	if (!parent) {
8225 		/* This is early initialization for the top cgroup */
8226 		return &root_task_group.css;
8227 	}
8228 
8229 	tg = sched_create_group(parent);
8230 	if (IS_ERR(tg))
8231 		return ERR_PTR(-ENOMEM);
8232 
8233 	return &tg->css;
8234 }
8235 
8236 /* Expose task group only after completing cgroup initialization */
8237 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8238 {
8239 	struct task_group *tg = css_tg(css);
8240 	struct task_group *parent = css_tg(css->parent);
8241 
8242 	if (parent)
8243 		sched_online_group(tg, parent);
8244 
8245 #ifdef CONFIG_UCLAMP_TASK_GROUP
8246 	/* Propagate the effective uclamp value for the new group */
8247 	cpu_util_update_eff(css);
8248 #endif
8249 
8250 	return 0;
8251 }
8252 
8253 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8254 {
8255 	struct task_group *tg = css_tg(css);
8256 
8257 	sched_offline_group(tg);
8258 }
8259 
8260 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8261 {
8262 	struct task_group *tg = css_tg(css);
8263 
8264 	/*
8265 	 * Relies on the RCU grace period between css_released() and this.
8266 	 */
8267 	sched_free_group(tg);
8268 }
8269 
8270 /*
8271  * This is called before wake_up_new_task(), therefore we really only
8272  * have to set its group bits, all the other stuff does not apply.
8273  */
8274 static void cpu_cgroup_fork(struct task_struct *task)
8275 {
8276 	struct rq_flags rf;
8277 	struct rq *rq;
8278 
8279 	rq = task_rq_lock(task, &rf);
8280 
8281 	update_rq_clock(rq);
8282 	sched_change_group(task, TASK_SET_GROUP);
8283 
8284 	task_rq_unlock(rq, task, &rf);
8285 }
8286 
8287 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8288 {
8289 	struct task_struct *task;
8290 	struct cgroup_subsys_state *css;
8291 	int ret = 0;
8292 
8293 	cgroup_taskset_for_each(task, css, tset) {
8294 #ifdef CONFIG_RT_GROUP_SCHED
8295 		if (!sched_rt_can_attach(css_tg(css), task))
8296 			return -EINVAL;
8297 #endif
8298 		/*
8299 		 * Serialize against wake_up_new_task() such that if it's
8300 		 * running, we're sure to observe its full state.
8301 		 */
8302 		raw_spin_lock_irq(&task->pi_lock);
8303 		/*
8304 		 * Avoid calling sched_move_task() before wake_up_new_task()
8305 		 * has happened. This would lead to problems with PELT, due to
8306 		 * move wanting to detach+attach while we're not attached yet.
8307 		 */
8308 		if (task->state == TASK_NEW)
8309 			ret = -EINVAL;
8310 		raw_spin_unlock_irq(&task->pi_lock);
8311 
8312 		if (ret)
8313 			break;
8314 	}
8315 	return ret;
8316 }
8317 
8318 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8319 {
8320 	struct task_struct *task;
8321 	struct cgroup_subsys_state *css;
8322 
8323 	cgroup_taskset_for_each(task, css, tset)
8324 		sched_move_task(task);
8325 }
8326 
8327 #ifdef CONFIG_UCLAMP_TASK_GROUP
8328 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8329 {
8330 	struct cgroup_subsys_state *top_css = css;
8331 	struct uclamp_se *uc_parent = NULL;
8332 	struct uclamp_se *uc_se = NULL;
8333 	unsigned int eff[UCLAMP_CNT];
8334 	enum uclamp_id clamp_id;
8335 	unsigned int clamps;
8336 
8337 	css_for_each_descendant_pre(css, top_css) {
8338 		uc_parent = css_tg(css)->parent
8339 			? css_tg(css)->parent->uclamp : NULL;
8340 
8341 		for_each_clamp_id(clamp_id) {
8342 			/* Assume effective clamps matches requested clamps */
8343 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8344 			/* Cap effective clamps with parent's effective clamps */
8345 			if (uc_parent &&
8346 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8347 				eff[clamp_id] = uc_parent[clamp_id].value;
8348 			}
8349 		}
8350 		/* Ensure protection is always capped by limit */
8351 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8352 
8353 		/* Propagate most restrictive effective clamps */
8354 		clamps = 0x0;
8355 		uc_se = css_tg(css)->uclamp;
8356 		for_each_clamp_id(clamp_id) {
8357 			if (eff[clamp_id] == uc_se[clamp_id].value)
8358 				continue;
8359 			uc_se[clamp_id].value = eff[clamp_id];
8360 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8361 			clamps |= (0x1 << clamp_id);
8362 		}
8363 		if (!clamps) {
8364 			css = css_rightmost_descendant(css);
8365 			continue;
8366 		}
8367 
8368 		/* Immediately update descendants RUNNABLE tasks */
8369 		uclamp_update_active_tasks(css, clamps);
8370 	}
8371 }
8372 
8373 /*
8374  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8375  * C expression. Since there is no way to convert a macro argument (N) into a
8376  * character constant, use two levels of macros.
8377  */
8378 #define _POW10(exp) ((unsigned int)1e##exp)
8379 #define POW10(exp) _POW10(exp)
8380 
8381 struct uclamp_request {
8382 #define UCLAMP_PERCENT_SHIFT	2
8383 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8384 	s64 percent;
8385 	u64 util;
8386 	int ret;
8387 };
8388 
8389 static inline struct uclamp_request
8390 capacity_from_percent(char *buf)
8391 {
8392 	struct uclamp_request req = {
8393 		.percent = UCLAMP_PERCENT_SCALE,
8394 		.util = SCHED_CAPACITY_SCALE,
8395 		.ret = 0,
8396 	};
8397 
8398 	buf = strim(buf);
8399 	if (strcmp(buf, "max")) {
8400 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8401 					     &req.percent);
8402 		if (req.ret)
8403 			return req;
8404 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8405 			req.ret = -ERANGE;
8406 			return req;
8407 		}
8408 
8409 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
8410 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8411 	}
8412 
8413 	return req;
8414 }
8415 
8416 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8417 				size_t nbytes, loff_t off,
8418 				enum uclamp_id clamp_id)
8419 {
8420 	struct uclamp_request req;
8421 	struct task_group *tg;
8422 
8423 	req = capacity_from_percent(buf);
8424 	if (req.ret)
8425 		return req.ret;
8426 
8427 	static_branch_enable(&sched_uclamp_used);
8428 
8429 	mutex_lock(&uclamp_mutex);
8430 	rcu_read_lock();
8431 
8432 	tg = css_tg(of_css(of));
8433 	if (tg->uclamp_req[clamp_id].value != req.util)
8434 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8435 
8436 	/*
8437 	 * Because of not recoverable conversion rounding we keep track of the
8438 	 * exact requested value
8439 	 */
8440 	tg->uclamp_pct[clamp_id] = req.percent;
8441 
8442 	/* Update effective clamps to track the most restrictive value */
8443 	cpu_util_update_eff(of_css(of));
8444 
8445 	rcu_read_unlock();
8446 	mutex_unlock(&uclamp_mutex);
8447 
8448 	return nbytes;
8449 }
8450 
8451 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8452 				    char *buf, size_t nbytes,
8453 				    loff_t off)
8454 {
8455 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8456 }
8457 
8458 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8459 				    char *buf, size_t nbytes,
8460 				    loff_t off)
8461 {
8462 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8463 }
8464 
8465 static inline void cpu_uclamp_print(struct seq_file *sf,
8466 				    enum uclamp_id clamp_id)
8467 {
8468 	struct task_group *tg;
8469 	u64 util_clamp;
8470 	u64 percent;
8471 	u32 rem;
8472 
8473 	rcu_read_lock();
8474 	tg = css_tg(seq_css(sf));
8475 	util_clamp = tg->uclamp_req[clamp_id].value;
8476 	rcu_read_unlock();
8477 
8478 	if (util_clamp == SCHED_CAPACITY_SCALE) {
8479 		seq_puts(sf, "max\n");
8480 		return;
8481 	}
8482 
8483 	percent = tg->uclamp_pct[clamp_id];
8484 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8485 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8486 }
8487 
8488 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8489 {
8490 	cpu_uclamp_print(sf, UCLAMP_MIN);
8491 	return 0;
8492 }
8493 
8494 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8495 {
8496 	cpu_uclamp_print(sf, UCLAMP_MAX);
8497 	return 0;
8498 }
8499 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8500 
8501 #ifdef CONFIG_FAIR_GROUP_SCHED
8502 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8503 				struct cftype *cftype, u64 shareval)
8504 {
8505 	if (shareval > scale_load_down(ULONG_MAX))
8506 		shareval = MAX_SHARES;
8507 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8508 }
8509 
8510 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8511 			       struct cftype *cft)
8512 {
8513 	struct task_group *tg = css_tg(css);
8514 
8515 	return (u64) scale_load_down(tg->shares);
8516 }
8517 
8518 #ifdef CONFIG_CFS_BANDWIDTH
8519 static DEFINE_MUTEX(cfs_constraints_mutex);
8520 
8521 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8522 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8523 /* More than 203 days if BW_SHIFT equals 20. */
8524 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8525 
8526 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8527 
8528 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8529 {
8530 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8531 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8532 
8533 	if (tg == &root_task_group)
8534 		return -EINVAL;
8535 
8536 	/*
8537 	 * Ensure we have at some amount of bandwidth every period.  This is
8538 	 * to prevent reaching a state of large arrears when throttled via
8539 	 * entity_tick() resulting in prolonged exit starvation.
8540 	 */
8541 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8542 		return -EINVAL;
8543 
8544 	/*
8545 	 * Likewise, bound things on the otherside by preventing insane quota
8546 	 * periods.  This also allows us to normalize in computing quota
8547 	 * feasibility.
8548 	 */
8549 	if (period > max_cfs_quota_period)
8550 		return -EINVAL;
8551 
8552 	/*
8553 	 * Bound quota to defend quota against overflow during bandwidth shift.
8554 	 */
8555 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8556 		return -EINVAL;
8557 
8558 	/*
8559 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8560 	 * unthrottle_offline_cfs_rqs().
8561 	 */
8562 	get_online_cpus();
8563 	mutex_lock(&cfs_constraints_mutex);
8564 	ret = __cfs_schedulable(tg, period, quota);
8565 	if (ret)
8566 		goto out_unlock;
8567 
8568 	runtime_enabled = quota != RUNTIME_INF;
8569 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8570 	/*
8571 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8572 	 * before making related changes, and on->off must occur afterwards
8573 	 */
8574 	if (runtime_enabled && !runtime_was_enabled)
8575 		cfs_bandwidth_usage_inc();
8576 	raw_spin_lock_irq(&cfs_b->lock);
8577 	cfs_b->period = ns_to_ktime(period);
8578 	cfs_b->quota = quota;
8579 
8580 	__refill_cfs_bandwidth_runtime(cfs_b);
8581 
8582 	/* Restart the period timer (if active) to handle new period expiry: */
8583 	if (runtime_enabled)
8584 		start_cfs_bandwidth(cfs_b);
8585 
8586 	raw_spin_unlock_irq(&cfs_b->lock);
8587 
8588 	for_each_online_cpu(i) {
8589 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8590 		struct rq *rq = cfs_rq->rq;
8591 		struct rq_flags rf;
8592 
8593 		rq_lock_irq(rq, &rf);
8594 		cfs_rq->runtime_enabled = runtime_enabled;
8595 		cfs_rq->runtime_remaining = 0;
8596 
8597 		if (cfs_rq->throttled)
8598 			unthrottle_cfs_rq(cfs_rq);
8599 		rq_unlock_irq(rq, &rf);
8600 	}
8601 	if (runtime_was_enabled && !runtime_enabled)
8602 		cfs_bandwidth_usage_dec();
8603 out_unlock:
8604 	mutex_unlock(&cfs_constraints_mutex);
8605 	put_online_cpus();
8606 
8607 	return ret;
8608 }
8609 
8610 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8611 {
8612 	u64 quota, period;
8613 
8614 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8615 	if (cfs_quota_us < 0)
8616 		quota = RUNTIME_INF;
8617 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8618 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8619 	else
8620 		return -EINVAL;
8621 
8622 	return tg_set_cfs_bandwidth(tg, period, quota);
8623 }
8624 
8625 static long tg_get_cfs_quota(struct task_group *tg)
8626 {
8627 	u64 quota_us;
8628 
8629 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8630 		return -1;
8631 
8632 	quota_us = tg->cfs_bandwidth.quota;
8633 	do_div(quota_us, NSEC_PER_USEC);
8634 
8635 	return quota_us;
8636 }
8637 
8638 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8639 {
8640 	u64 quota, period;
8641 
8642 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8643 		return -EINVAL;
8644 
8645 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8646 	quota = tg->cfs_bandwidth.quota;
8647 
8648 	return tg_set_cfs_bandwidth(tg, period, quota);
8649 }
8650 
8651 static long tg_get_cfs_period(struct task_group *tg)
8652 {
8653 	u64 cfs_period_us;
8654 
8655 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8656 	do_div(cfs_period_us, NSEC_PER_USEC);
8657 
8658 	return cfs_period_us;
8659 }
8660 
8661 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8662 				  struct cftype *cft)
8663 {
8664 	return tg_get_cfs_quota(css_tg(css));
8665 }
8666 
8667 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8668 				   struct cftype *cftype, s64 cfs_quota_us)
8669 {
8670 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8671 }
8672 
8673 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8674 				   struct cftype *cft)
8675 {
8676 	return tg_get_cfs_period(css_tg(css));
8677 }
8678 
8679 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8680 				    struct cftype *cftype, u64 cfs_period_us)
8681 {
8682 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8683 }
8684 
8685 struct cfs_schedulable_data {
8686 	struct task_group *tg;
8687 	u64 period, quota;
8688 };
8689 
8690 /*
8691  * normalize group quota/period to be quota/max_period
8692  * note: units are usecs
8693  */
8694 static u64 normalize_cfs_quota(struct task_group *tg,
8695 			       struct cfs_schedulable_data *d)
8696 {
8697 	u64 quota, period;
8698 
8699 	if (tg == d->tg) {
8700 		period = d->period;
8701 		quota = d->quota;
8702 	} else {
8703 		period = tg_get_cfs_period(tg);
8704 		quota = tg_get_cfs_quota(tg);
8705 	}
8706 
8707 	/* note: these should typically be equivalent */
8708 	if (quota == RUNTIME_INF || quota == -1)
8709 		return RUNTIME_INF;
8710 
8711 	return to_ratio(period, quota);
8712 }
8713 
8714 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8715 {
8716 	struct cfs_schedulable_data *d = data;
8717 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8718 	s64 quota = 0, parent_quota = -1;
8719 
8720 	if (!tg->parent) {
8721 		quota = RUNTIME_INF;
8722 	} else {
8723 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8724 
8725 		quota = normalize_cfs_quota(tg, d);
8726 		parent_quota = parent_b->hierarchical_quota;
8727 
8728 		/*
8729 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
8730 		 * always take the min.  On cgroup1, only inherit when no
8731 		 * limit is set:
8732 		 */
8733 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8734 			quota = min(quota, parent_quota);
8735 		} else {
8736 			if (quota == RUNTIME_INF)
8737 				quota = parent_quota;
8738 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8739 				return -EINVAL;
8740 		}
8741 	}
8742 	cfs_b->hierarchical_quota = quota;
8743 
8744 	return 0;
8745 }
8746 
8747 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8748 {
8749 	int ret;
8750 	struct cfs_schedulable_data data = {
8751 		.tg = tg,
8752 		.period = period,
8753 		.quota = quota,
8754 	};
8755 
8756 	if (quota != RUNTIME_INF) {
8757 		do_div(data.period, NSEC_PER_USEC);
8758 		do_div(data.quota, NSEC_PER_USEC);
8759 	}
8760 
8761 	rcu_read_lock();
8762 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8763 	rcu_read_unlock();
8764 
8765 	return ret;
8766 }
8767 
8768 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8769 {
8770 	struct task_group *tg = css_tg(seq_css(sf));
8771 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8772 
8773 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8774 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8775 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8776 
8777 	if (schedstat_enabled() && tg != &root_task_group) {
8778 		u64 ws = 0;
8779 		int i;
8780 
8781 		for_each_possible_cpu(i)
8782 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8783 
8784 		seq_printf(sf, "wait_sum %llu\n", ws);
8785 	}
8786 
8787 	return 0;
8788 }
8789 #endif /* CONFIG_CFS_BANDWIDTH */
8790 #endif /* CONFIG_FAIR_GROUP_SCHED */
8791 
8792 #ifdef CONFIG_RT_GROUP_SCHED
8793 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8794 				struct cftype *cft, s64 val)
8795 {
8796 	return sched_group_set_rt_runtime(css_tg(css), val);
8797 }
8798 
8799 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8800 			       struct cftype *cft)
8801 {
8802 	return sched_group_rt_runtime(css_tg(css));
8803 }
8804 
8805 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8806 				    struct cftype *cftype, u64 rt_period_us)
8807 {
8808 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8809 }
8810 
8811 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8812 				   struct cftype *cft)
8813 {
8814 	return sched_group_rt_period(css_tg(css));
8815 }
8816 #endif /* CONFIG_RT_GROUP_SCHED */
8817 
8818 static struct cftype cpu_legacy_files[] = {
8819 #ifdef CONFIG_FAIR_GROUP_SCHED
8820 	{
8821 		.name = "shares",
8822 		.read_u64 = cpu_shares_read_u64,
8823 		.write_u64 = cpu_shares_write_u64,
8824 	},
8825 #endif
8826 #ifdef CONFIG_CFS_BANDWIDTH
8827 	{
8828 		.name = "cfs_quota_us",
8829 		.read_s64 = cpu_cfs_quota_read_s64,
8830 		.write_s64 = cpu_cfs_quota_write_s64,
8831 	},
8832 	{
8833 		.name = "cfs_period_us",
8834 		.read_u64 = cpu_cfs_period_read_u64,
8835 		.write_u64 = cpu_cfs_period_write_u64,
8836 	},
8837 	{
8838 		.name = "stat",
8839 		.seq_show = cpu_cfs_stat_show,
8840 	},
8841 #endif
8842 #ifdef CONFIG_RT_GROUP_SCHED
8843 	{
8844 		.name = "rt_runtime_us",
8845 		.read_s64 = cpu_rt_runtime_read,
8846 		.write_s64 = cpu_rt_runtime_write,
8847 	},
8848 	{
8849 		.name = "rt_period_us",
8850 		.read_u64 = cpu_rt_period_read_uint,
8851 		.write_u64 = cpu_rt_period_write_uint,
8852 	},
8853 #endif
8854 #ifdef CONFIG_UCLAMP_TASK_GROUP
8855 	{
8856 		.name = "uclamp.min",
8857 		.flags = CFTYPE_NOT_ON_ROOT,
8858 		.seq_show = cpu_uclamp_min_show,
8859 		.write = cpu_uclamp_min_write,
8860 	},
8861 	{
8862 		.name = "uclamp.max",
8863 		.flags = CFTYPE_NOT_ON_ROOT,
8864 		.seq_show = cpu_uclamp_max_show,
8865 		.write = cpu_uclamp_max_write,
8866 	},
8867 #endif
8868 	{ }	/* Terminate */
8869 };
8870 
8871 static int cpu_extra_stat_show(struct seq_file *sf,
8872 			       struct cgroup_subsys_state *css)
8873 {
8874 #ifdef CONFIG_CFS_BANDWIDTH
8875 	{
8876 		struct task_group *tg = css_tg(css);
8877 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8878 		u64 throttled_usec;
8879 
8880 		throttled_usec = cfs_b->throttled_time;
8881 		do_div(throttled_usec, NSEC_PER_USEC);
8882 
8883 		seq_printf(sf, "nr_periods %d\n"
8884 			   "nr_throttled %d\n"
8885 			   "throttled_usec %llu\n",
8886 			   cfs_b->nr_periods, cfs_b->nr_throttled,
8887 			   throttled_usec);
8888 	}
8889 #endif
8890 	return 0;
8891 }
8892 
8893 #ifdef CONFIG_FAIR_GROUP_SCHED
8894 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8895 			       struct cftype *cft)
8896 {
8897 	struct task_group *tg = css_tg(css);
8898 	u64 weight = scale_load_down(tg->shares);
8899 
8900 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8901 }
8902 
8903 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8904 				struct cftype *cft, u64 weight)
8905 {
8906 	/*
8907 	 * cgroup weight knobs should use the common MIN, DFL and MAX
8908 	 * values which are 1, 100 and 10000 respectively.  While it loses
8909 	 * a bit of range on both ends, it maps pretty well onto the shares
8910 	 * value used by scheduler and the round-trip conversions preserve
8911 	 * the original value over the entire range.
8912 	 */
8913 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8914 		return -ERANGE;
8915 
8916 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8917 
8918 	return sched_group_set_shares(css_tg(css), scale_load(weight));
8919 }
8920 
8921 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8922 				    struct cftype *cft)
8923 {
8924 	unsigned long weight = scale_load_down(css_tg(css)->shares);
8925 	int last_delta = INT_MAX;
8926 	int prio, delta;
8927 
8928 	/* find the closest nice value to the current weight */
8929 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8930 		delta = abs(sched_prio_to_weight[prio] - weight);
8931 		if (delta >= last_delta)
8932 			break;
8933 		last_delta = delta;
8934 	}
8935 
8936 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8937 }
8938 
8939 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8940 				     struct cftype *cft, s64 nice)
8941 {
8942 	unsigned long weight;
8943 	int idx;
8944 
8945 	if (nice < MIN_NICE || nice > MAX_NICE)
8946 		return -ERANGE;
8947 
8948 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8949 	idx = array_index_nospec(idx, 40);
8950 	weight = sched_prio_to_weight[idx];
8951 
8952 	return sched_group_set_shares(css_tg(css), scale_load(weight));
8953 }
8954 #endif
8955 
8956 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8957 						  long period, long quota)
8958 {
8959 	if (quota < 0)
8960 		seq_puts(sf, "max");
8961 	else
8962 		seq_printf(sf, "%ld", quota);
8963 
8964 	seq_printf(sf, " %ld\n", period);
8965 }
8966 
8967 /* caller should put the current value in *@periodp before calling */
8968 static int __maybe_unused cpu_period_quota_parse(char *buf,
8969 						 u64 *periodp, u64 *quotap)
8970 {
8971 	char tok[21];	/* U64_MAX */
8972 
8973 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8974 		return -EINVAL;
8975 
8976 	*periodp *= NSEC_PER_USEC;
8977 
8978 	if (sscanf(tok, "%llu", quotap))
8979 		*quotap *= NSEC_PER_USEC;
8980 	else if (!strcmp(tok, "max"))
8981 		*quotap = RUNTIME_INF;
8982 	else
8983 		return -EINVAL;
8984 
8985 	return 0;
8986 }
8987 
8988 #ifdef CONFIG_CFS_BANDWIDTH
8989 static int cpu_max_show(struct seq_file *sf, void *v)
8990 {
8991 	struct task_group *tg = css_tg(seq_css(sf));
8992 
8993 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8994 	return 0;
8995 }
8996 
8997 static ssize_t cpu_max_write(struct kernfs_open_file *of,
8998 			     char *buf, size_t nbytes, loff_t off)
8999 {
9000 	struct task_group *tg = css_tg(of_css(of));
9001 	u64 period = tg_get_cfs_period(tg);
9002 	u64 quota;
9003 	int ret;
9004 
9005 	ret = cpu_period_quota_parse(buf, &period, &quota);
9006 	if (!ret)
9007 		ret = tg_set_cfs_bandwidth(tg, period, quota);
9008 	return ret ?: nbytes;
9009 }
9010 #endif
9011 
9012 static struct cftype cpu_files[] = {
9013 #ifdef CONFIG_FAIR_GROUP_SCHED
9014 	{
9015 		.name = "weight",
9016 		.flags = CFTYPE_NOT_ON_ROOT,
9017 		.read_u64 = cpu_weight_read_u64,
9018 		.write_u64 = cpu_weight_write_u64,
9019 	},
9020 	{
9021 		.name = "weight.nice",
9022 		.flags = CFTYPE_NOT_ON_ROOT,
9023 		.read_s64 = cpu_weight_nice_read_s64,
9024 		.write_s64 = cpu_weight_nice_write_s64,
9025 	},
9026 #endif
9027 #ifdef CONFIG_CFS_BANDWIDTH
9028 	{
9029 		.name = "max",
9030 		.flags = CFTYPE_NOT_ON_ROOT,
9031 		.seq_show = cpu_max_show,
9032 		.write = cpu_max_write,
9033 	},
9034 #endif
9035 #ifdef CONFIG_UCLAMP_TASK_GROUP
9036 	{
9037 		.name = "uclamp.min",
9038 		.flags = CFTYPE_NOT_ON_ROOT,
9039 		.seq_show = cpu_uclamp_min_show,
9040 		.write = cpu_uclamp_min_write,
9041 	},
9042 	{
9043 		.name = "uclamp.max",
9044 		.flags = CFTYPE_NOT_ON_ROOT,
9045 		.seq_show = cpu_uclamp_max_show,
9046 		.write = cpu_uclamp_max_write,
9047 	},
9048 #endif
9049 	{ }	/* terminate */
9050 };
9051 
9052 struct cgroup_subsys cpu_cgrp_subsys = {
9053 	.css_alloc	= cpu_cgroup_css_alloc,
9054 	.css_online	= cpu_cgroup_css_online,
9055 	.css_released	= cpu_cgroup_css_released,
9056 	.css_free	= cpu_cgroup_css_free,
9057 	.css_extra_stat_show = cpu_extra_stat_show,
9058 	.fork		= cpu_cgroup_fork,
9059 	.can_attach	= cpu_cgroup_can_attach,
9060 	.attach		= cpu_cgroup_attach,
9061 	.legacy_cftypes	= cpu_legacy_files,
9062 	.dfl_cftypes	= cpu_files,
9063 	.early_init	= true,
9064 	.threaded	= true,
9065 };
9066 
9067 #endif	/* CONFIG_CGROUP_SCHED */
9068 
9069 void dump_cpu_task(int cpu)
9070 {
9071 	pr_info("Task dump for CPU %d:\n", cpu);
9072 	sched_show_task(cpu_curr(cpu));
9073 }
9074 
9075 /*
9076  * Nice levels are multiplicative, with a gentle 10% change for every
9077  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9078  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9079  * that remained on nice 0.
9080  *
9081  * The "10% effect" is relative and cumulative: from _any_ nice level,
9082  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9083  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9084  * If a task goes up by ~10% and another task goes down by ~10% then
9085  * the relative distance between them is ~25%.)
9086  */
9087 const int sched_prio_to_weight[40] = {
9088  /* -20 */     88761,     71755,     56483,     46273,     36291,
9089  /* -15 */     29154,     23254,     18705,     14949,     11916,
9090  /* -10 */      9548,      7620,      6100,      4904,      3906,
9091  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9092  /*   0 */      1024,       820,       655,       526,       423,
9093  /*   5 */       335,       272,       215,       172,       137,
9094  /*  10 */       110,        87,        70,        56,        45,
9095  /*  15 */        36,        29,        23,        18,        15,
9096 };
9097 
9098 /*
9099  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9100  *
9101  * In cases where the weight does not change often, we can use the
9102  * precalculated inverse to speed up arithmetics by turning divisions
9103  * into multiplications:
9104  */
9105 const u32 sched_prio_to_wmult[40] = {
9106  /* -20 */     48388,     59856,     76040,     92818,    118348,
9107  /* -15 */    147320,    184698,    229616,    287308,    360437,
9108  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9109  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9110  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9111  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9112  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9113  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9114 };
9115 
9116 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9117 {
9118         trace_sched_update_nr_running_tp(rq, count);
9119 }
9120