1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #ifdef CONFIG_SCHED_DEBUG 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 #endif 62 63 /* 64 * Number of tasks to iterate in a single balance run. 65 * Limited because this is done with IRQs disabled. 66 */ 67 const_debug unsigned int sysctl_sched_nr_migrate = 32; 68 69 /* 70 * period over which we measure -rt task CPU usage in us. 71 * default: 1s 72 */ 73 unsigned int sysctl_sched_rt_period = 1000000; 74 75 __read_mostly int scheduler_running; 76 77 /* 78 * part of the period that we allow rt tasks to run in us. 79 * default: 0.95s 80 */ 81 int sysctl_sched_rt_runtime = 950000; 82 83 84 /* 85 * Serialization rules: 86 * 87 * Lock order: 88 * 89 * p->pi_lock 90 * rq->lock 91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 92 * 93 * rq1->lock 94 * rq2->lock where: rq1 < rq2 95 * 96 * Regular state: 97 * 98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 99 * local CPU's rq->lock, it optionally removes the task from the runqueue and 100 * always looks at the local rq data structures to find the most eligible task 101 * to run next. 102 * 103 * Task enqueue is also under rq->lock, possibly taken from another CPU. 104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 105 * the local CPU to avoid bouncing the runqueue state around [ see 106 * ttwu_queue_wakelist() ] 107 * 108 * Task wakeup, specifically wakeups that involve migration, are horribly 109 * complicated to avoid having to take two rq->locks. 110 * 111 * Special state: 112 * 113 * System-calls and anything external will use task_rq_lock() which acquires 114 * both p->pi_lock and rq->lock. As a consequence the state they change is 115 * stable while holding either lock: 116 * 117 * - sched_setaffinity()/ 118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 119 * - set_user_nice(): p->se.load, p->*prio 120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 121 * p->se.load, p->rt_priority, 122 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 123 * - sched_setnuma(): p->numa_preferred_nid 124 * - sched_move_task()/ 125 * cpu_cgroup_fork(): p->sched_task_group 126 * - uclamp_update_active() p->uclamp* 127 * 128 * p->state <- TASK_*: 129 * 130 * is changed locklessly using set_current_state(), __set_current_state() or 131 * set_special_state(), see their respective comments, or by 132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 133 * concurrent self. 134 * 135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 136 * 137 * is set by activate_task() and cleared by deactivate_task(), under 138 * rq->lock. Non-zero indicates the task is runnable, the special 139 * ON_RQ_MIGRATING state is used for migration without holding both 140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 141 * 142 * p->on_cpu <- { 0, 1 }: 143 * 144 * is set by prepare_task() and cleared by finish_task() such that it will be 145 * set before p is scheduled-in and cleared after p is scheduled-out, both 146 * under rq->lock. Non-zero indicates the task is running on its CPU. 147 * 148 * [ The astute reader will observe that it is possible for two tasks on one 149 * CPU to have ->on_cpu = 1 at the same time. ] 150 * 151 * task_cpu(p): is changed by set_task_cpu(), the rules are: 152 * 153 * - Don't call set_task_cpu() on a blocked task: 154 * 155 * We don't care what CPU we're not running on, this simplifies hotplug, 156 * the CPU assignment of blocked tasks isn't required to be valid. 157 * 158 * - for try_to_wake_up(), called under p->pi_lock: 159 * 160 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 161 * 162 * - for migration called under rq->lock: 163 * [ see task_on_rq_migrating() in task_rq_lock() ] 164 * 165 * o move_queued_task() 166 * o detach_task() 167 * 168 * - for migration called under double_rq_lock(): 169 * 170 * o __migrate_swap_task() 171 * o push_rt_task() / pull_rt_task() 172 * o push_dl_task() / pull_dl_task() 173 * o dl_task_offline_migration() 174 * 175 */ 176 177 /* 178 * __task_rq_lock - lock the rq @p resides on. 179 */ 180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 181 __acquires(rq->lock) 182 { 183 struct rq *rq; 184 185 lockdep_assert_held(&p->pi_lock); 186 187 for (;;) { 188 rq = task_rq(p); 189 raw_spin_lock(&rq->lock); 190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 191 rq_pin_lock(rq, rf); 192 return rq; 193 } 194 raw_spin_unlock(&rq->lock); 195 196 while (unlikely(task_on_rq_migrating(p))) 197 cpu_relax(); 198 } 199 } 200 201 /* 202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 203 */ 204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 205 __acquires(p->pi_lock) 206 __acquires(rq->lock) 207 { 208 struct rq *rq; 209 210 for (;;) { 211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 212 rq = task_rq(p); 213 raw_spin_lock(&rq->lock); 214 /* 215 * move_queued_task() task_rq_lock() 216 * 217 * ACQUIRE (rq->lock) 218 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 220 * [S] ->cpu = new_cpu [L] task_rq() 221 * [L] ->on_rq 222 * RELEASE (rq->lock) 223 * 224 * If we observe the old CPU in task_rq_lock(), the acquire of 225 * the old rq->lock will fully serialize against the stores. 226 * 227 * If we observe the new CPU in task_rq_lock(), the address 228 * dependency headed by '[L] rq = task_rq()' and the acquire 229 * will pair with the WMB to ensure we then also see migrating. 230 */ 231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 232 rq_pin_lock(rq, rf); 233 return rq; 234 } 235 raw_spin_unlock(&rq->lock); 236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 237 238 while (unlikely(task_on_rq_migrating(p))) 239 cpu_relax(); 240 } 241 } 242 243 /* 244 * RQ-clock updating methods: 245 */ 246 247 static void update_rq_clock_task(struct rq *rq, s64 delta) 248 { 249 /* 250 * In theory, the compile should just see 0 here, and optimize out the call 251 * to sched_rt_avg_update. But I don't trust it... 252 */ 253 s64 __maybe_unused steal = 0, irq_delta = 0; 254 255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 257 258 /* 259 * Since irq_time is only updated on {soft,}irq_exit, we might run into 260 * this case when a previous update_rq_clock() happened inside a 261 * {soft,}irq region. 262 * 263 * When this happens, we stop ->clock_task and only update the 264 * prev_irq_time stamp to account for the part that fit, so that a next 265 * update will consume the rest. This ensures ->clock_task is 266 * monotonic. 267 * 268 * It does however cause some slight miss-attribution of {soft,}irq 269 * time, a more accurate solution would be to update the irq_time using 270 * the current rq->clock timestamp, except that would require using 271 * atomic ops. 272 */ 273 if (irq_delta > delta) 274 irq_delta = delta; 275 276 rq->prev_irq_time += irq_delta; 277 delta -= irq_delta; 278 #endif 279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 280 if (static_key_false((¶virt_steal_rq_enabled))) { 281 steal = paravirt_steal_clock(cpu_of(rq)); 282 steal -= rq->prev_steal_time_rq; 283 284 if (unlikely(steal > delta)) 285 steal = delta; 286 287 rq->prev_steal_time_rq += steal; 288 delta -= steal; 289 } 290 #endif 291 292 rq->clock_task += delta; 293 294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 296 update_irq_load_avg(rq, irq_delta + steal); 297 #endif 298 update_rq_clock_pelt(rq, delta); 299 } 300 301 void update_rq_clock(struct rq *rq) 302 { 303 s64 delta; 304 305 lockdep_assert_held(&rq->lock); 306 307 if (rq->clock_update_flags & RQCF_ACT_SKIP) 308 return; 309 310 #ifdef CONFIG_SCHED_DEBUG 311 if (sched_feat(WARN_DOUBLE_CLOCK)) 312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 313 rq->clock_update_flags |= RQCF_UPDATED; 314 #endif 315 316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 317 if (delta < 0) 318 return; 319 rq->clock += delta; 320 update_rq_clock_task(rq, delta); 321 } 322 323 #ifdef CONFIG_SCHED_HRTICK 324 /* 325 * Use HR-timers to deliver accurate preemption points. 326 */ 327 328 static void hrtick_clear(struct rq *rq) 329 { 330 if (hrtimer_active(&rq->hrtick_timer)) 331 hrtimer_cancel(&rq->hrtick_timer); 332 } 333 334 /* 335 * High-resolution timer tick. 336 * Runs from hardirq context with interrupts disabled. 337 */ 338 static enum hrtimer_restart hrtick(struct hrtimer *timer) 339 { 340 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 341 struct rq_flags rf; 342 343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 344 345 rq_lock(rq, &rf); 346 update_rq_clock(rq); 347 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 348 rq_unlock(rq, &rf); 349 350 return HRTIMER_NORESTART; 351 } 352 353 #ifdef CONFIG_SMP 354 355 static void __hrtick_restart(struct rq *rq) 356 { 357 struct hrtimer *timer = &rq->hrtick_timer; 358 359 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 360 } 361 362 /* 363 * called from hardirq (IPI) context 364 */ 365 static void __hrtick_start(void *arg) 366 { 367 struct rq *rq = arg; 368 struct rq_flags rf; 369 370 rq_lock(rq, &rf); 371 __hrtick_restart(rq); 372 rq_unlock(rq, &rf); 373 } 374 375 /* 376 * Called to set the hrtick timer state. 377 * 378 * called with rq->lock held and irqs disabled 379 */ 380 void hrtick_start(struct rq *rq, u64 delay) 381 { 382 struct hrtimer *timer = &rq->hrtick_timer; 383 ktime_t time; 384 s64 delta; 385 386 /* 387 * Don't schedule slices shorter than 10000ns, that just 388 * doesn't make sense and can cause timer DoS. 389 */ 390 delta = max_t(s64, delay, 10000LL); 391 time = ktime_add_ns(timer->base->get_time(), delta); 392 393 hrtimer_set_expires(timer, time); 394 395 if (rq == this_rq()) 396 __hrtick_restart(rq); 397 else 398 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 399 } 400 401 #else 402 /* 403 * Called to set the hrtick timer state. 404 * 405 * called with rq->lock held and irqs disabled 406 */ 407 void hrtick_start(struct rq *rq, u64 delay) 408 { 409 /* 410 * Don't schedule slices shorter than 10000ns, that just 411 * doesn't make sense. Rely on vruntime for fairness. 412 */ 413 delay = max_t(u64, delay, 10000LL); 414 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 415 HRTIMER_MODE_REL_PINNED_HARD); 416 } 417 418 #endif /* CONFIG_SMP */ 419 420 static void hrtick_rq_init(struct rq *rq) 421 { 422 #ifdef CONFIG_SMP 423 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 424 #endif 425 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 426 rq->hrtick_timer.function = hrtick; 427 } 428 #else /* CONFIG_SCHED_HRTICK */ 429 static inline void hrtick_clear(struct rq *rq) 430 { 431 } 432 433 static inline void hrtick_rq_init(struct rq *rq) 434 { 435 } 436 #endif /* CONFIG_SCHED_HRTICK */ 437 438 /* 439 * cmpxchg based fetch_or, macro so it works for different integer types 440 */ 441 #define fetch_or(ptr, mask) \ 442 ({ \ 443 typeof(ptr) _ptr = (ptr); \ 444 typeof(mask) _mask = (mask); \ 445 typeof(*_ptr) _old, _val = *_ptr; \ 446 \ 447 for (;;) { \ 448 _old = cmpxchg(_ptr, _val, _val | _mask); \ 449 if (_old == _val) \ 450 break; \ 451 _val = _old; \ 452 } \ 453 _old; \ 454 }) 455 456 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 457 /* 458 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 459 * this avoids any races wrt polling state changes and thereby avoids 460 * spurious IPIs. 461 */ 462 static bool set_nr_and_not_polling(struct task_struct *p) 463 { 464 struct thread_info *ti = task_thread_info(p); 465 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 466 } 467 468 /* 469 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 470 * 471 * If this returns true, then the idle task promises to call 472 * sched_ttwu_pending() and reschedule soon. 473 */ 474 static bool set_nr_if_polling(struct task_struct *p) 475 { 476 struct thread_info *ti = task_thread_info(p); 477 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 478 479 for (;;) { 480 if (!(val & _TIF_POLLING_NRFLAG)) 481 return false; 482 if (val & _TIF_NEED_RESCHED) 483 return true; 484 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 485 if (old == val) 486 break; 487 val = old; 488 } 489 return true; 490 } 491 492 #else 493 static bool set_nr_and_not_polling(struct task_struct *p) 494 { 495 set_tsk_need_resched(p); 496 return true; 497 } 498 499 #ifdef CONFIG_SMP 500 static bool set_nr_if_polling(struct task_struct *p) 501 { 502 return false; 503 } 504 #endif 505 #endif 506 507 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 508 { 509 struct wake_q_node *node = &task->wake_q; 510 511 /* 512 * Atomically grab the task, if ->wake_q is !nil already it means 513 * it's already queued (either by us or someone else) and will get the 514 * wakeup due to that. 515 * 516 * In order to ensure that a pending wakeup will observe our pending 517 * state, even in the failed case, an explicit smp_mb() must be used. 518 */ 519 smp_mb__before_atomic(); 520 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 521 return false; 522 523 /* 524 * The head is context local, there can be no concurrency. 525 */ 526 *head->lastp = node; 527 head->lastp = &node->next; 528 return true; 529 } 530 531 /** 532 * wake_q_add() - queue a wakeup for 'later' waking. 533 * @head: the wake_q_head to add @task to 534 * @task: the task to queue for 'later' wakeup 535 * 536 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 537 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 538 * instantly. 539 * 540 * This function must be used as-if it were wake_up_process(); IOW the task 541 * must be ready to be woken at this location. 542 */ 543 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 544 { 545 if (__wake_q_add(head, task)) 546 get_task_struct(task); 547 } 548 549 /** 550 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 551 * @head: the wake_q_head to add @task to 552 * @task: the task to queue for 'later' wakeup 553 * 554 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 555 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 556 * instantly. 557 * 558 * This function must be used as-if it were wake_up_process(); IOW the task 559 * must be ready to be woken at this location. 560 * 561 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 562 * that already hold reference to @task can call the 'safe' version and trust 563 * wake_q to do the right thing depending whether or not the @task is already 564 * queued for wakeup. 565 */ 566 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 567 { 568 if (!__wake_q_add(head, task)) 569 put_task_struct(task); 570 } 571 572 void wake_up_q(struct wake_q_head *head) 573 { 574 struct wake_q_node *node = head->first; 575 576 while (node != WAKE_Q_TAIL) { 577 struct task_struct *task; 578 579 task = container_of(node, struct task_struct, wake_q); 580 BUG_ON(!task); 581 /* Task can safely be re-inserted now: */ 582 node = node->next; 583 task->wake_q.next = NULL; 584 585 /* 586 * wake_up_process() executes a full barrier, which pairs with 587 * the queueing in wake_q_add() so as not to miss wakeups. 588 */ 589 wake_up_process(task); 590 put_task_struct(task); 591 } 592 } 593 594 /* 595 * resched_curr - mark rq's current task 'to be rescheduled now'. 596 * 597 * On UP this means the setting of the need_resched flag, on SMP it 598 * might also involve a cross-CPU call to trigger the scheduler on 599 * the target CPU. 600 */ 601 void resched_curr(struct rq *rq) 602 { 603 struct task_struct *curr = rq->curr; 604 int cpu; 605 606 lockdep_assert_held(&rq->lock); 607 608 if (test_tsk_need_resched(curr)) 609 return; 610 611 cpu = cpu_of(rq); 612 613 if (cpu == smp_processor_id()) { 614 set_tsk_need_resched(curr); 615 set_preempt_need_resched(); 616 return; 617 } 618 619 if (set_nr_and_not_polling(curr)) 620 smp_send_reschedule(cpu); 621 else 622 trace_sched_wake_idle_without_ipi(cpu); 623 } 624 625 void resched_cpu(int cpu) 626 { 627 struct rq *rq = cpu_rq(cpu); 628 unsigned long flags; 629 630 raw_spin_lock_irqsave(&rq->lock, flags); 631 if (cpu_online(cpu) || cpu == smp_processor_id()) 632 resched_curr(rq); 633 raw_spin_unlock_irqrestore(&rq->lock, flags); 634 } 635 636 #ifdef CONFIG_SMP 637 #ifdef CONFIG_NO_HZ_COMMON 638 /* 639 * In the semi idle case, use the nearest busy CPU for migrating timers 640 * from an idle CPU. This is good for power-savings. 641 * 642 * We don't do similar optimization for completely idle system, as 643 * selecting an idle CPU will add more delays to the timers than intended 644 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 645 */ 646 int get_nohz_timer_target(void) 647 { 648 int i, cpu = smp_processor_id(), default_cpu = -1; 649 struct sched_domain *sd; 650 651 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 652 if (!idle_cpu(cpu)) 653 return cpu; 654 default_cpu = cpu; 655 } 656 657 rcu_read_lock(); 658 for_each_domain(cpu, sd) { 659 for_each_cpu_and(i, sched_domain_span(sd), 660 housekeeping_cpumask(HK_FLAG_TIMER)) { 661 if (cpu == i) 662 continue; 663 664 if (!idle_cpu(i)) { 665 cpu = i; 666 goto unlock; 667 } 668 } 669 } 670 671 if (default_cpu == -1) 672 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 673 cpu = default_cpu; 674 unlock: 675 rcu_read_unlock(); 676 return cpu; 677 } 678 679 /* 680 * When add_timer_on() enqueues a timer into the timer wheel of an 681 * idle CPU then this timer might expire before the next timer event 682 * which is scheduled to wake up that CPU. In case of a completely 683 * idle system the next event might even be infinite time into the 684 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 685 * leaves the inner idle loop so the newly added timer is taken into 686 * account when the CPU goes back to idle and evaluates the timer 687 * wheel for the next timer event. 688 */ 689 static void wake_up_idle_cpu(int cpu) 690 { 691 struct rq *rq = cpu_rq(cpu); 692 693 if (cpu == smp_processor_id()) 694 return; 695 696 if (set_nr_and_not_polling(rq->idle)) 697 smp_send_reschedule(cpu); 698 else 699 trace_sched_wake_idle_without_ipi(cpu); 700 } 701 702 static bool wake_up_full_nohz_cpu(int cpu) 703 { 704 /* 705 * We just need the target to call irq_exit() and re-evaluate 706 * the next tick. The nohz full kick at least implies that. 707 * If needed we can still optimize that later with an 708 * empty IRQ. 709 */ 710 if (cpu_is_offline(cpu)) 711 return true; /* Don't try to wake offline CPUs. */ 712 if (tick_nohz_full_cpu(cpu)) { 713 if (cpu != smp_processor_id() || 714 tick_nohz_tick_stopped()) 715 tick_nohz_full_kick_cpu(cpu); 716 return true; 717 } 718 719 return false; 720 } 721 722 /* 723 * Wake up the specified CPU. If the CPU is going offline, it is the 724 * caller's responsibility to deal with the lost wakeup, for example, 725 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 726 */ 727 void wake_up_nohz_cpu(int cpu) 728 { 729 if (!wake_up_full_nohz_cpu(cpu)) 730 wake_up_idle_cpu(cpu); 731 } 732 733 static void nohz_csd_func(void *info) 734 { 735 struct rq *rq = info; 736 int cpu = cpu_of(rq); 737 unsigned int flags; 738 739 /* 740 * Release the rq::nohz_csd. 741 */ 742 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 743 WARN_ON(!(flags & NOHZ_KICK_MASK)); 744 745 rq->idle_balance = idle_cpu(cpu); 746 if (rq->idle_balance && !need_resched()) { 747 rq->nohz_idle_balance = flags; 748 raise_softirq_irqoff(SCHED_SOFTIRQ); 749 } 750 } 751 752 #endif /* CONFIG_NO_HZ_COMMON */ 753 754 #ifdef CONFIG_NO_HZ_FULL 755 bool sched_can_stop_tick(struct rq *rq) 756 { 757 int fifo_nr_running; 758 759 /* Deadline tasks, even if single, need the tick */ 760 if (rq->dl.dl_nr_running) 761 return false; 762 763 /* 764 * If there are more than one RR tasks, we need the tick to affect the 765 * actual RR behaviour. 766 */ 767 if (rq->rt.rr_nr_running) { 768 if (rq->rt.rr_nr_running == 1) 769 return true; 770 else 771 return false; 772 } 773 774 /* 775 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 776 * forced preemption between FIFO tasks. 777 */ 778 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 779 if (fifo_nr_running) 780 return true; 781 782 /* 783 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 784 * if there's more than one we need the tick for involuntary 785 * preemption. 786 */ 787 if (rq->nr_running > 1) 788 return false; 789 790 return true; 791 } 792 #endif /* CONFIG_NO_HZ_FULL */ 793 #endif /* CONFIG_SMP */ 794 795 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 796 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 797 /* 798 * Iterate task_group tree rooted at *from, calling @down when first entering a 799 * node and @up when leaving it for the final time. 800 * 801 * Caller must hold rcu_lock or sufficient equivalent. 802 */ 803 int walk_tg_tree_from(struct task_group *from, 804 tg_visitor down, tg_visitor up, void *data) 805 { 806 struct task_group *parent, *child; 807 int ret; 808 809 parent = from; 810 811 down: 812 ret = (*down)(parent, data); 813 if (ret) 814 goto out; 815 list_for_each_entry_rcu(child, &parent->children, siblings) { 816 parent = child; 817 goto down; 818 819 up: 820 continue; 821 } 822 ret = (*up)(parent, data); 823 if (ret || parent == from) 824 goto out; 825 826 child = parent; 827 parent = parent->parent; 828 if (parent) 829 goto up; 830 out: 831 return ret; 832 } 833 834 int tg_nop(struct task_group *tg, void *data) 835 { 836 return 0; 837 } 838 #endif 839 840 static void set_load_weight(struct task_struct *p, bool update_load) 841 { 842 int prio = p->static_prio - MAX_RT_PRIO; 843 struct load_weight *load = &p->se.load; 844 845 /* 846 * SCHED_IDLE tasks get minimal weight: 847 */ 848 if (task_has_idle_policy(p)) { 849 load->weight = scale_load(WEIGHT_IDLEPRIO); 850 load->inv_weight = WMULT_IDLEPRIO; 851 return; 852 } 853 854 /* 855 * SCHED_OTHER tasks have to update their load when changing their 856 * weight 857 */ 858 if (update_load && p->sched_class == &fair_sched_class) { 859 reweight_task(p, prio); 860 } else { 861 load->weight = scale_load(sched_prio_to_weight[prio]); 862 load->inv_weight = sched_prio_to_wmult[prio]; 863 } 864 } 865 866 #ifdef CONFIG_UCLAMP_TASK 867 /* 868 * Serializes updates of utilization clamp values 869 * 870 * The (slow-path) user-space triggers utilization clamp value updates which 871 * can require updates on (fast-path) scheduler's data structures used to 872 * support enqueue/dequeue operations. 873 * While the per-CPU rq lock protects fast-path update operations, user-space 874 * requests are serialized using a mutex to reduce the risk of conflicting 875 * updates or API abuses. 876 */ 877 static DEFINE_MUTEX(uclamp_mutex); 878 879 /* Max allowed minimum utilization */ 880 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 881 882 /* Max allowed maximum utilization */ 883 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 884 885 /* 886 * By default RT tasks run at the maximum performance point/capacity of the 887 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 888 * SCHED_CAPACITY_SCALE. 889 * 890 * This knob allows admins to change the default behavior when uclamp is being 891 * used. In battery powered devices, particularly, running at the maximum 892 * capacity and frequency will increase energy consumption and shorten the 893 * battery life. 894 * 895 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 896 * 897 * This knob will not override the system default sched_util_clamp_min defined 898 * above. 899 */ 900 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 901 902 /* All clamps are required to be less or equal than these values */ 903 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 904 905 /* 906 * This static key is used to reduce the uclamp overhead in the fast path. It 907 * primarily disables the call to uclamp_rq_{inc, dec}() in 908 * enqueue/dequeue_task(). 909 * 910 * This allows users to continue to enable uclamp in their kernel config with 911 * minimum uclamp overhead in the fast path. 912 * 913 * As soon as userspace modifies any of the uclamp knobs, the static key is 914 * enabled, since we have an actual users that make use of uclamp 915 * functionality. 916 * 917 * The knobs that would enable this static key are: 918 * 919 * * A task modifying its uclamp value with sched_setattr(). 920 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 921 * * An admin modifying the cgroup cpu.uclamp.{min, max} 922 */ 923 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 924 925 /* Integer rounded range for each bucket */ 926 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 927 928 #define for_each_clamp_id(clamp_id) \ 929 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 930 931 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 932 { 933 return clamp_value / UCLAMP_BUCKET_DELTA; 934 } 935 936 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 937 { 938 if (clamp_id == UCLAMP_MIN) 939 return 0; 940 return SCHED_CAPACITY_SCALE; 941 } 942 943 static inline void uclamp_se_set(struct uclamp_se *uc_se, 944 unsigned int value, bool user_defined) 945 { 946 uc_se->value = value; 947 uc_se->bucket_id = uclamp_bucket_id(value); 948 uc_se->user_defined = user_defined; 949 } 950 951 static inline unsigned int 952 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 953 unsigned int clamp_value) 954 { 955 /* 956 * Avoid blocked utilization pushing up the frequency when we go 957 * idle (which drops the max-clamp) by retaining the last known 958 * max-clamp. 959 */ 960 if (clamp_id == UCLAMP_MAX) { 961 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 962 return clamp_value; 963 } 964 965 return uclamp_none(UCLAMP_MIN); 966 } 967 968 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 969 unsigned int clamp_value) 970 { 971 /* Reset max-clamp retention only on idle exit */ 972 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 973 return; 974 975 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 976 } 977 978 static inline 979 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 980 unsigned int clamp_value) 981 { 982 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 983 int bucket_id = UCLAMP_BUCKETS - 1; 984 985 /* 986 * Since both min and max clamps are max aggregated, find the 987 * top most bucket with tasks in. 988 */ 989 for ( ; bucket_id >= 0; bucket_id--) { 990 if (!bucket[bucket_id].tasks) 991 continue; 992 return bucket[bucket_id].value; 993 } 994 995 /* No tasks -- default clamp values */ 996 return uclamp_idle_value(rq, clamp_id, clamp_value); 997 } 998 999 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1000 { 1001 unsigned int default_util_min; 1002 struct uclamp_se *uc_se; 1003 1004 lockdep_assert_held(&p->pi_lock); 1005 1006 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1007 1008 /* Only sync if user didn't override the default */ 1009 if (uc_se->user_defined) 1010 return; 1011 1012 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1013 uclamp_se_set(uc_se, default_util_min, false); 1014 } 1015 1016 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1017 { 1018 struct rq_flags rf; 1019 struct rq *rq; 1020 1021 if (!rt_task(p)) 1022 return; 1023 1024 /* Protect updates to p->uclamp_* */ 1025 rq = task_rq_lock(p, &rf); 1026 __uclamp_update_util_min_rt_default(p); 1027 task_rq_unlock(rq, p, &rf); 1028 } 1029 1030 static void uclamp_sync_util_min_rt_default(void) 1031 { 1032 struct task_struct *g, *p; 1033 1034 /* 1035 * copy_process() sysctl_uclamp 1036 * uclamp_min_rt = X; 1037 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1038 * // link thread smp_mb__after_spinlock() 1039 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1040 * sched_post_fork() for_each_process_thread() 1041 * __uclamp_sync_rt() __uclamp_sync_rt() 1042 * 1043 * Ensures that either sched_post_fork() will observe the new 1044 * uclamp_min_rt or for_each_process_thread() will observe the new 1045 * task. 1046 */ 1047 read_lock(&tasklist_lock); 1048 smp_mb__after_spinlock(); 1049 read_unlock(&tasklist_lock); 1050 1051 rcu_read_lock(); 1052 for_each_process_thread(g, p) 1053 uclamp_update_util_min_rt_default(p); 1054 rcu_read_unlock(); 1055 } 1056 1057 static inline struct uclamp_se 1058 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1059 { 1060 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1061 #ifdef CONFIG_UCLAMP_TASK_GROUP 1062 struct uclamp_se uc_max; 1063 1064 /* 1065 * Tasks in autogroups or root task group will be 1066 * restricted by system defaults. 1067 */ 1068 if (task_group_is_autogroup(task_group(p))) 1069 return uc_req; 1070 if (task_group(p) == &root_task_group) 1071 return uc_req; 1072 1073 uc_max = task_group(p)->uclamp[clamp_id]; 1074 if (uc_req.value > uc_max.value || !uc_req.user_defined) 1075 return uc_max; 1076 #endif 1077 1078 return uc_req; 1079 } 1080 1081 /* 1082 * The effective clamp bucket index of a task depends on, by increasing 1083 * priority: 1084 * - the task specific clamp value, when explicitly requested from userspace 1085 * - the task group effective clamp value, for tasks not either in the root 1086 * group or in an autogroup 1087 * - the system default clamp value, defined by the sysadmin 1088 */ 1089 static inline struct uclamp_se 1090 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1091 { 1092 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1093 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1094 1095 /* System default restrictions always apply */ 1096 if (unlikely(uc_req.value > uc_max.value)) 1097 return uc_max; 1098 1099 return uc_req; 1100 } 1101 1102 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1103 { 1104 struct uclamp_se uc_eff; 1105 1106 /* Task currently refcounted: use back-annotated (effective) value */ 1107 if (p->uclamp[clamp_id].active) 1108 return (unsigned long)p->uclamp[clamp_id].value; 1109 1110 uc_eff = uclamp_eff_get(p, clamp_id); 1111 1112 return (unsigned long)uc_eff.value; 1113 } 1114 1115 /* 1116 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1117 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1118 * updates the rq's clamp value if required. 1119 * 1120 * Tasks can have a task-specific value requested from user-space, track 1121 * within each bucket the maximum value for tasks refcounted in it. 1122 * This "local max aggregation" allows to track the exact "requested" value 1123 * for each bucket when all its RUNNABLE tasks require the same clamp. 1124 */ 1125 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1126 enum uclamp_id clamp_id) 1127 { 1128 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1129 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1130 struct uclamp_bucket *bucket; 1131 1132 lockdep_assert_held(&rq->lock); 1133 1134 /* Update task effective clamp */ 1135 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1136 1137 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1138 bucket->tasks++; 1139 uc_se->active = true; 1140 1141 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1142 1143 /* 1144 * Local max aggregation: rq buckets always track the max 1145 * "requested" clamp value of its RUNNABLE tasks. 1146 */ 1147 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1148 bucket->value = uc_se->value; 1149 1150 if (uc_se->value > READ_ONCE(uc_rq->value)) 1151 WRITE_ONCE(uc_rq->value, uc_se->value); 1152 } 1153 1154 /* 1155 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1156 * is released. If this is the last task reference counting the rq's max 1157 * active clamp value, then the rq's clamp value is updated. 1158 * 1159 * Both refcounted tasks and rq's cached clamp values are expected to be 1160 * always valid. If it's detected they are not, as defensive programming, 1161 * enforce the expected state and warn. 1162 */ 1163 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1164 enum uclamp_id clamp_id) 1165 { 1166 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1167 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1168 struct uclamp_bucket *bucket; 1169 unsigned int bkt_clamp; 1170 unsigned int rq_clamp; 1171 1172 lockdep_assert_held(&rq->lock); 1173 1174 /* 1175 * If sched_uclamp_used was enabled after task @p was enqueued, 1176 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1177 * 1178 * In this case the uc_se->active flag should be false since no uclamp 1179 * accounting was performed at enqueue time and we can just return 1180 * here. 1181 * 1182 * Need to be careful of the following enqueue/dequeue ordering 1183 * problem too 1184 * 1185 * enqueue(taskA) 1186 * // sched_uclamp_used gets enabled 1187 * enqueue(taskB) 1188 * dequeue(taskA) 1189 * // Must not decrement bucket->tasks here 1190 * dequeue(taskB) 1191 * 1192 * where we could end up with stale data in uc_se and 1193 * bucket[uc_se->bucket_id]. 1194 * 1195 * The following check here eliminates the possibility of such race. 1196 */ 1197 if (unlikely(!uc_se->active)) 1198 return; 1199 1200 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1201 1202 SCHED_WARN_ON(!bucket->tasks); 1203 if (likely(bucket->tasks)) 1204 bucket->tasks--; 1205 1206 uc_se->active = false; 1207 1208 /* 1209 * Keep "local max aggregation" simple and accept to (possibly) 1210 * overboost some RUNNABLE tasks in the same bucket. 1211 * The rq clamp bucket value is reset to its base value whenever 1212 * there are no more RUNNABLE tasks refcounting it. 1213 */ 1214 if (likely(bucket->tasks)) 1215 return; 1216 1217 rq_clamp = READ_ONCE(uc_rq->value); 1218 /* 1219 * Defensive programming: this should never happen. If it happens, 1220 * e.g. due to future modification, warn and fixup the expected value. 1221 */ 1222 SCHED_WARN_ON(bucket->value > rq_clamp); 1223 if (bucket->value >= rq_clamp) { 1224 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1225 WRITE_ONCE(uc_rq->value, bkt_clamp); 1226 } 1227 } 1228 1229 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1230 { 1231 enum uclamp_id clamp_id; 1232 1233 /* 1234 * Avoid any overhead until uclamp is actually used by the userspace. 1235 * 1236 * The condition is constructed such that a NOP is generated when 1237 * sched_uclamp_used is disabled. 1238 */ 1239 if (!static_branch_unlikely(&sched_uclamp_used)) 1240 return; 1241 1242 if (unlikely(!p->sched_class->uclamp_enabled)) 1243 return; 1244 1245 for_each_clamp_id(clamp_id) 1246 uclamp_rq_inc_id(rq, p, clamp_id); 1247 1248 /* Reset clamp idle holding when there is one RUNNABLE task */ 1249 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1250 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1251 } 1252 1253 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1254 { 1255 enum uclamp_id clamp_id; 1256 1257 /* 1258 * Avoid any overhead until uclamp is actually used by the userspace. 1259 * 1260 * The condition is constructed such that a NOP is generated when 1261 * sched_uclamp_used is disabled. 1262 */ 1263 if (!static_branch_unlikely(&sched_uclamp_used)) 1264 return; 1265 1266 if (unlikely(!p->sched_class->uclamp_enabled)) 1267 return; 1268 1269 for_each_clamp_id(clamp_id) 1270 uclamp_rq_dec_id(rq, p, clamp_id); 1271 } 1272 1273 static inline void 1274 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1275 { 1276 struct rq_flags rf; 1277 struct rq *rq; 1278 1279 /* 1280 * Lock the task and the rq where the task is (or was) queued. 1281 * 1282 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1283 * price to pay to safely serialize util_{min,max} updates with 1284 * enqueues, dequeues and migration operations. 1285 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1286 */ 1287 rq = task_rq_lock(p, &rf); 1288 1289 /* 1290 * Setting the clamp bucket is serialized by task_rq_lock(). 1291 * If the task is not yet RUNNABLE and its task_struct is not 1292 * affecting a valid clamp bucket, the next time it's enqueued, 1293 * it will already see the updated clamp bucket value. 1294 */ 1295 if (p->uclamp[clamp_id].active) { 1296 uclamp_rq_dec_id(rq, p, clamp_id); 1297 uclamp_rq_inc_id(rq, p, clamp_id); 1298 } 1299 1300 task_rq_unlock(rq, p, &rf); 1301 } 1302 1303 #ifdef CONFIG_UCLAMP_TASK_GROUP 1304 static inline void 1305 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1306 unsigned int clamps) 1307 { 1308 enum uclamp_id clamp_id; 1309 struct css_task_iter it; 1310 struct task_struct *p; 1311 1312 css_task_iter_start(css, 0, &it); 1313 while ((p = css_task_iter_next(&it))) { 1314 for_each_clamp_id(clamp_id) { 1315 if ((0x1 << clamp_id) & clamps) 1316 uclamp_update_active(p, clamp_id); 1317 } 1318 } 1319 css_task_iter_end(&it); 1320 } 1321 1322 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1323 static void uclamp_update_root_tg(void) 1324 { 1325 struct task_group *tg = &root_task_group; 1326 1327 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1328 sysctl_sched_uclamp_util_min, false); 1329 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1330 sysctl_sched_uclamp_util_max, false); 1331 1332 rcu_read_lock(); 1333 cpu_util_update_eff(&root_task_group.css); 1334 rcu_read_unlock(); 1335 } 1336 #else 1337 static void uclamp_update_root_tg(void) { } 1338 #endif 1339 1340 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1341 void *buffer, size_t *lenp, loff_t *ppos) 1342 { 1343 bool update_root_tg = false; 1344 int old_min, old_max, old_min_rt; 1345 int result; 1346 1347 mutex_lock(&uclamp_mutex); 1348 old_min = sysctl_sched_uclamp_util_min; 1349 old_max = sysctl_sched_uclamp_util_max; 1350 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1351 1352 result = proc_dointvec(table, write, buffer, lenp, ppos); 1353 if (result) 1354 goto undo; 1355 if (!write) 1356 goto done; 1357 1358 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1359 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1360 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1361 1362 result = -EINVAL; 1363 goto undo; 1364 } 1365 1366 if (old_min != sysctl_sched_uclamp_util_min) { 1367 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1368 sysctl_sched_uclamp_util_min, false); 1369 update_root_tg = true; 1370 } 1371 if (old_max != sysctl_sched_uclamp_util_max) { 1372 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1373 sysctl_sched_uclamp_util_max, false); 1374 update_root_tg = true; 1375 } 1376 1377 if (update_root_tg) { 1378 static_branch_enable(&sched_uclamp_used); 1379 uclamp_update_root_tg(); 1380 } 1381 1382 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1383 static_branch_enable(&sched_uclamp_used); 1384 uclamp_sync_util_min_rt_default(); 1385 } 1386 1387 /* 1388 * We update all RUNNABLE tasks only when task groups are in use. 1389 * Otherwise, keep it simple and do just a lazy update at each next 1390 * task enqueue time. 1391 */ 1392 1393 goto done; 1394 1395 undo: 1396 sysctl_sched_uclamp_util_min = old_min; 1397 sysctl_sched_uclamp_util_max = old_max; 1398 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1399 done: 1400 mutex_unlock(&uclamp_mutex); 1401 1402 return result; 1403 } 1404 1405 static int uclamp_validate(struct task_struct *p, 1406 const struct sched_attr *attr) 1407 { 1408 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1409 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1410 1411 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1412 util_min = attr->sched_util_min; 1413 1414 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1415 return -EINVAL; 1416 } 1417 1418 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1419 util_max = attr->sched_util_max; 1420 1421 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1422 return -EINVAL; 1423 } 1424 1425 if (util_min != -1 && util_max != -1 && util_min > util_max) 1426 return -EINVAL; 1427 1428 /* 1429 * We have valid uclamp attributes; make sure uclamp is enabled. 1430 * 1431 * We need to do that here, because enabling static branches is a 1432 * blocking operation which obviously cannot be done while holding 1433 * scheduler locks. 1434 */ 1435 static_branch_enable(&sched_uclamp_used); 1436 1437 return 0; 1438 } 1439 1440 static bool uclamp_reset(const struct sched_attr *attr, 1441 enum uclamp_id clamp_id, 1442 struct uclamp_se *uc_se) 1443 { 1444 /* Reset on sched class change for a non user-defined clamp value. */ 1445 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1446 !uc_se->user_defined) 1447 return true; 1448 1449 /* Reset on sched_util_{min,max} == -1. */ 1450 if (clamp_id == UCLAMP_MIN && 1451 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1452 attr->sched_util_min == -1) { 1453 return true; 1454 } 1455 1456 if (clamp_id == UCLAMP_MAX && 1457 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1458 attr->sched_util_max == -1) { 1459 return true; 1460 } 1461 1462 return false; 1463 } 1464 1465 static void __setscheduler_uclamp(struct task_struct *p, 1466 const struct sched_attr *attr) 1467 { 1468 enum uclamp_id clamp_id; 1469 1470 for_each_clamp_id(clamp_id) { 1471 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1472 unsigned int value; 1473 1474 if (!uclamp_reset(attr, clamp_id, uc_se)) 1475 continue; 1476 1477 /* 1478 * RT by default have a 100% boost value that could be modified 1479 * at runtime. 1480 */ 1481 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1482 value = sysctl_sched_uclamp_util_min_rt_default; 1483 else 1484 value = uclamp_none(clamp_id); 1485 1486 uclamp_se_set(uc_se, value, false); 1487 1488 } 1489 1490 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1491 return; 1492 1493 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1494 attr->sched_util_min != -1) { 1495 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1496 attr->sched_util_min, true); 1497 } 1498 1499 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1500 attr->sched_util_max != -1) { 1501 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1502 attr->sched_util_max, true); 1503 } 1504 } 1505 1506 static void uclamp_fork(struct task_struct *p) 1507 { 1508 enum uclamp_id clamp_id; 1509 1510 /* 1511 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1512 * as the task is still at its early fork stages. 1513 */ 1514 for_each_clamp_id(clamp_id) 1515 p->uclamp[clamp_id].active = false; 1516 1517 if (likely(!p->sched_reset_on_fork)) 1518 return; 1519 1520 for_each_clamp_id(clamp_id) { 1521 uclamp_se_set(&p->uclamp_req[clamp_id], 1522 uclamp_none(clamp_id), false); 1523 } 1524 } 1525 1526 static void uclamp_post_fork(struct task_struct *p) 1527 { 1528 uclamp_update_util_min_rt_default(p); 1529 } 1530 1531 static void __init init_uclamp_rq(struct rq *rq) 1532 { 1533 enum uclamp_id clamp_id; 1534 struct uclamp_rq *uc_rq = rq->uclamp; 1535 1536 for_each_clamp_id(clamp_id) { 1537 uc_rq[clamp_id] = (struct uclamp_rq) { 1538 .value = uclamp_none(clamp_id) 1539 }; 1540 } 1541 1542 rq->uclamp_flags = 0; 1543 } 1544 1545 static void __init init_uclamp(void) 1546 { 1547 struct uclamp_se uc_max = {}; 1548 enum uclamp_id clamp_id; 1549 int cpu; 1550 1551 for_each_possible_cpu(cpu) 1552 init_uclamp_rq(cpu_rq(cpu)); 1553 1554 for_each_clamp_id(clamp_id) { 1555 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1556 uclamp_none(clamp_id), false); 1557 } 1558 1559 /* System defaults allow max clamp values for both indexes */ 1560 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1561 for_each_clamp_id(clamp_id) { 1562 uclamp_default[clamp_id] = uc_max; 1563 #ifdef CONFIG_UCLAMP_TASK_GROUP 1564 root_task_group.uclamp_req[clamp_id] = uc_max; 1565 root_task_group.uclamp[clamp_id] = uc_max; 1566 #endif 1567 } 1568 } 1569 1570 #else /* CONFIG_UCLAMP_TASK */ 1571 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1572 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1573 static inline int uclamp_validate(struct task_struct *p, 1574 const struct sched_attr *attr) 1575 { 1576 return -EOPNOTSUPP; 1577 } 1578 static void __setscheduler_uclamp(struct task_struct *p, 1579 const struct sched_attr *attr) { } 1580 static inline void uclamp_fork(struct task_struct *p) { } 1581 static inline void uclamp_post_fork(struct task_struct *p) { } 1582 static inline void init_uclamp(void) { } 1583 #endif /* CONFIG_UCLAMP_TASK */ 1584 1585 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1586 { 1587 if (!(flags & ENQUEUE_NOCLOCK)) 1588 update_rq_clock(rq); 1589 1590 if (!(flags & ENQUEUE_RESTORE)) { 1591 sched_info_queued(rq, p); 1592 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1593 } 1594 1595 uclamp_rq_inc(rq, p); 1596 p->sched_class->enqueue_task(rq, p, flags); 1597 } 1598 1599 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1600 { 1601 if (!(flags & DEQUEUE_NOCLOCK)) 1602 update_rq_clock(rq); 1603 1604 if (!(flags & DEQUEUE_SAVE)) { 1605 sched_info_dequeued(rq, p); 1606 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1607 } 1608 1609 uclamp_rq_dec(rq, p); 1610 p->sched_class->dequeue_task(rq, p, flags); 1611 } 1612 1613 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1614 { 1615 enqueue_task(rq, p, flags); 1616 1617 p->on_rq = TASK_ON_RQ_QUEUED; 1618 } 1619 1620 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1621 { 1622 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1623 1624 dequeue_task(rq, p, flags); 1625 } 1626 1627 /* 1628 * __normal_prio - return the priority that is based on the static prio 1629 */ 1630 static inline int __normal_prio(struct task_struct *p) 1631 { 1632 return p->static_prio; 1633 } 1634 1635 /* 1636 * Calculate the expected normal priority: i.e. priority 1637 * without taking RT-inheritance into account. Might be 1638 * boosted by interactivity modifiers. Changes upon fork, 1639 * setprio syscalls, and whenever the interactivity 1640 * estimator recalculates. 1641 */ 1642 static inline int normal_prio(struct task_struct *p) 1643 { 1644 int prio; 1645 1646 if (task_has_dl_policy(p)) 1647 prio = MAX_DL_PRIO-1; 1648 else if (task_has_rt_policy(p)) 1649 prio = MAX_RT_PRIO-1 - p->rt_priority; 1650 else 1651 prio = __normal_prio(p); 1652 return prio; 1653 } 1654 1655 /* 1656 * Calculate the current priority, i.e. the priority 1657 * taken into account by the scheduler. This value might 1658 * be boosted by RT tasks, or might be boosted by 1659 * interactivity modifiers. Will be RT if the task got 1660 * RT-boosted. If not then it returns p->normal_prio. 1661 */ 1662 static int effective_prio(struct task_struct *p) 1663 { 1664 p->normal_prio = normal_prio(p); 1665 /* 1666 * If we are RT tasks or we were boosted to RT priority, 1667 * keep the priority unchanged. Otherwise, update priority 1668 * to the normal priority: 1669 */ 1670 if (!rt_prio(p->prio)) 1671 return p->normal_prio; 1672 return p->prio; 1673 } 1674 1675 /** 1676 * task_curr - is this task currently executing on a CPU? 1677 * @p: the task in question. 1678 * 1679 * Return: 1 if the task is currently executing. 0 otherwise. 1680 */ 1681 inline int task_curr(const struct task_struct *p) 1682 { 1683 return cpu_curr(task_cpu(p)) == p; 1684 } 1685 1686 /* 1687 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1688 * use the balance_callback list if you want balancing. 1689 * 1690 * this means any call to check_class_changed() must be followed by a call to 1691 * balance_callback(). 1692 */ 1693 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1694 const struct sched_class *prev_class, 1695 int oldprio) 1696 { 1697 if (prev_class != p->sched_class) { 1698 if (prev_class->switched_from) 1699 prev_class->switched_from(rq, p); 1700 1701 p->sched_class->switched_to(rq, p); 1702 } else if (oldprio != p->prio || dl_task(p)) 1703 p->sched_class->prio_changed(rq, p, oldprio); 1704 } 1705 1706 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1707 { 1708 if (p->sched_class == rq->curr->sched_class) 1709 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1710 else if (p->sched_class > rq->curr->sched_class) 1711 resched_curr(rq); 1712 1713 /* 1714 * A queue event has occurred, and we're going to schedule. In 1715 * this case, we can save a useless back to back clock update. 1716 */ 1717 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1718 rq_clock_skip_update(rq); 1719 } 1720 1721 #ifdef CONFIG_SMP 1722 1723 static void 1724 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 1725 1726 static int __set_cpus_allowed_ptr(struct task_struct *p, 1727 const struct cpumask *new_mask, 1728 u32 flags); 1729 1730 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 1731 { 1732 if (likely(!p->migration_disabled)) 1733 return; 1734 1735 if (p->cpus_ptr != &p->cpus_mask) 1736 return; 1737 1738 /* 1739 * Violates locking rules! see comment in __do_set_cpus_allowed(). 1740 */ 1741 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 1742 } 1743 1744 void migrate_disable(void) 1745 { 1746 struct task_struct *p = current; 1747 1748 if (p->migration_disabled) { 1749 p->migration_disabled++; 1750 return; 1751 } 1752 1753 preempt_disable(); 1754 this_rq()->nr_pinned++; 1755 p->migration_disabled = 1; 1756 preempt_enable(); 1757 } 1758 EXPORT_SYMBOL_GPL(migrate_disable); 1759 1760 void migrate_enable(void) 1761 { 1762 struct task_struct *p = current; 1763 1764 if (p->migration_disabled > 1) { 1765 p->migration_disabled--; 1766 return; 1767 } 1768 1769 /* 1770 * Ensure stop_task runs either before or after this, and that 1771 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 1772 */ 1773 preempt_disable(); 1774 if (p->cpus_ptr != &p->cpus_mask) 1775 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 1776 /* 1777 * Mustn't clear migration_disabled() until cpus_ptr points back at the 1778 * regular cpus_mask, otherwise things that race (eg. 1779 * select_fallback_rq) get confused. 1780 */ 1781 barrier(); 1782 p->migration_disabled = 0; 1783 this_rq()->nr_pinned--; 1784 preempt_enable(); 1785 } 1786 EXPORT_SYMBOL_GPL(migrate_enable); 1787 1788 static inline bool rq_has_pinned_tasks(struct rq *rq) 1789 { 1790 return rq->nr_pinned; 1791 } 1792 1793 /* 1794 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1795 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1796 */ 1797 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1798 { 1799 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1800 return false; 1801 1802 if (is_per_cpu_kthread(p) || is_migration_disabled(p)) 1803 return cpu_online(cpu); 1804 1805 return cpu_active(cpu); 1806 } 1807 1808 /* 1809 * This is how migration works: 1810 * 1811 * 1) we invoke migration_cpu_stop() on the target CPU using 1812 * stop_one_cpu(). 1813 * 2) stopper starts to run (implicitly forcing the migrated thread 1814 * off the CPU) 1815 * 3) it checks whether the migrated task is still in the wrong runqueue. 1816 * 4) if it's in the wrong runqueue then the migration thread removes 1817 * it and puts it into the right queue. 1818 * 5) stopper completes and stop_one_cpu() returns and the migration 1819 * is done. 1820 */ 1821 1822 /* 1823 * move_queued_task - move a queued task to new rq. 1824 * 1825 * Returns (locked) new rq. Old rq's lock is released. 1826 */ 1827 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1828 struct task_struct *p, int new_cpu) 1829 { 1830 lockdep_assert_held(&rq->lock); 1831 1832 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 1833 set_task_cpu(p, new_cpu); 1834 rq_unlock(rq, rf); 1835 1836 rq = cpu_rq(new_cpu); 1837 1838 rq_lock(rq, rf); 1839 BUG_ON(task_cpu(p) != new_cpu); 1840 activate_task(rq, p, 0); 1841 check_preempt_curr(rq, p, 0); 1842 1843 return rq; 1844 } 1845 1846 struct migration_arg { 1847 struct task_struct *task; 1848 int dest_cpu; 1849 struct set_affinity_pending *pending; 1850 }; 1851 1852 struct set_affinity_pending { 1853 refcount_t refs; 1854 struct completion done; 1855 struct cpu_stop_work stop_work; 1856 struct migration_arg arg; 1857 }; 1858 1859 /* 1860 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1861 * this because either it can't run here any more (set_cpus_allowed() 1862 * away from this CPU, or CPU going down), or because we're 1863 * attempting to rebalance this task on exec (sched_exec). 1864 * 1865 * So we race with normal scheduler movements, but that's OK, as long 1866 * as the task is no longer on this CPU. 1867 */ 1868 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1869 struct task_struct *p, int dest_cpu) 1870 { 1871 /* Affinity changed (again). */ 1872 if (!is_cpu_allowed(p, dest_cpu)) 1873 return rq; 1874 1875 update_rq_clock(rq); 1876 rq = move_queued_task(rq, rf, p, dest_cpu); 1877 1878 return rq; 1879 } 1880 1881 /* 1882 * migration_cpu_stop - this will be executed by a highprio stopper thread 1883 * and performs thread migration by bumping thread off CPU then 1884 * 'pushing' onto another runqueue. 1885 */ 1886 static int migration_cpu_stop(void *data) 1887 { 1888 struct set_affinity_pending *pending; 1889 struct migration_arg *arg = data; 1890 struct task_struct *p = arg->task; 1891 int dest_cpu = arg->dest_cpu; 1892 struct rq *rq = this_rq(); 1893 bool complete = false; 1894 struct rq_flags rf; 1895 1896 /* 1897 * The original target CPU might have gone down and we might 1898 * be on another CPU but it doesn't matter. 1899 */ 1900 local_irq_save(rf.flags); 1901 /* 1902 * We need to explicitly wake pending tasks before running 1903 * __migrate_task() such that we will not miss enforcing cpus_ptr 1904 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1905 */ 1906 flush_smp_call_function_from_idle(); 1907 1908 raw_spin_lock(&p->pi_lock); 1909 rq_lock(rq, &rf); 1910 1911 pending = p->migration_pending; 1912 /* 1913 * If task_rq(p) != rq, it cannot be migrated here, because we're 1914 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1915 * we're holding p->pi_lock. 1916 */ 1917 if (task_rq(p) == rq) { 1918 if (is_migration_disabled(p)) 1919 goto out; 1920 1921 if (pending) { 1922 p->migration_pending = NULL; 1923 complete = true; 1924 } 1925 1926 /* migrate_enable() -- we must not race against SCA */ 1927 if (dest_cpu < 0) { 1928 /* 1929 * When this was migrate_enable() but we no longer 1930 * have a @pending, a concurrent SCA 'fixed' things 1931 * and we should be valid again. Nothing to do. 1932 */ 1933 if (!pending) { 1934 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask)); 1935 goto out; 1936 } 1937 1938 dest_cpu = cpumask_any_distribute(&p->cpus_mask); 1939 } 1940 1941 if (task_on_rq_queued(p)) 1942 rq = __migrate_task(rq, &rf, p, dest_cpu); 1943 else 1944 p->wake_cpu = dest_cpu; 1945 1946 } else if (dest_cpu < 0 || pending) { 1947 /* 1948 * This happens when we get migrated between migrate_enable()'s 1949 * preempt_enable() and scheduling the stopper task. At that 1950 * point we're a regular task again and not current anymore. 1951 * 1952 * A !PREEMPT kernel has a giant hole here, which makes it far 1953 * more likely. 1954 */ 1955 1956 /* 1957 * The task moved before the stopper got to run. We're holding 1958 * ->pi_lock, so the allowed mask is stable - if it got 1959 * somewhere allowed, we're done. 1960 */ 1961 if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 1962 p->migration_pending = NULL; 1963 complete = true; 1964 goto out; 1965 } 1966 1967 /* 1968 * When this was migrate_enable() but we no longer have an 1969 * @pending, a concurrent SCA 'fixed' things and we should be 1970 * valid again. Nothing to do. 1971 */ 1972 if (!pending) { 1973 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask)); 1974 goto out; 1975 } 1976 1977 /* 1978 * When migrate_enable() hits a rq mis-match we can't reliably 1979 * determine is_migration_disabled() and so have to chase after 1980 * it. 1981 */ 1982 task_rq_unlock(rq, p, &rf); 1983 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 1984 &pending->arg, &pending->stop_work); 1985 return 0; 1986 } 1987 out: 1988 task_rq_unlock(rq, p, &rf); 1989 1990 if (complete) 1991 complete_all(&pending->done); 1992 1993 /* For pending->{arg,stop_work} */ 1994 pending = arg->pending; 1995 if (pending && refcount_dec_and_test(&pending->refs)) 1996 wake_up_var(&pending->refs); 1997 1998 return 0; 1999 } 2000 2001 int push_cpu_stop(void *arg) 2002 { 2003 struct rq *lowest_rq = NULL, *rq = this_rq(); 2004 struct task_struct *p = arg; 2005 2006 raw_spin_lock_irq(&p->pi_lock); 2007 raw_spin_lock(&rq->lock); 2008 2009 if (task_rq(p) != rq) 2010 goto out_unlock; 2011 2012 if (is_migration_disabled(p)) { 2013 p->migration_flags |= MDF_PUSH; 2014 goto out_unlock; 2015 } 2016 2017 p->migration_flags &= ~MDF_PUSH; 2018 2019 if (p->sched_class->find_lock_rq) 2020 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2021 2022 if (!lowest_rq) 2023 goto out_unlock; 2024 2025 // XXX validate p is still the highest prio task 2026 if (task_rq(p) == rq) { 2027 deactivate_task(rq, p, 0); 2028 set_task_cpu(p, lowest_rq->cpu); 2029 activate_task(lowest_rq, p, 0); 2030 resched_curr(lowest_rq); 2031 } 2032 2033 double_unlock_balance(rq, lowest_rq); 2034 2035 out_unlock: 2036 rq->push_busy = false; 2037 raw_spin_unlock(&rq->lock); 2038 raw_spin_unlock_irq(&p->pi_lock); 2039 2040 put_task_struct(p); 2041 return 0; 2042 } 2043 2044 /* 2045 * sched_class::set_cpus_allowed must do the below, but is not required to 2046 * actually call this function. 2047 */ 2048 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2049 { 2050 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2051 p->cpus_ptr = new_mask; 2052 return; 2053 } 2054 2055 cpumask_copy(&p->cpus_mask, new_mask); 2056 p->nr_cpus_allowed = cpumask_weight(new_mask); 2057 } 2058 2059 static void 2060 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2061 { 2062 struct rq *rq = task_rq(p); 2063 bool queued, running; 2064 2065 /* 2066 * This here violates the locking rules for affinity, since we're only 2067 * supposed to change these variables while holding both rq->lock and 2068 * p->pi_lock. 2069 * 2070 * HOWEVER, it magically works, because ttwu() is the only code that 2071 * accesses these variables under p->pi_lock and only does so after 2072 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2073 * before finish_task(). 2074 * 2075 * XXX do further audits, this smells like something putrid. 2076 */ 2077 if (flags & SCA_MIGRATE_DISABLE) 2078 SCHED_WARN_ON(!p->on_cpu); 2079 else 2080 lockdep_assert_held(&p->pi_lock); 2081 2082 queued = task_on_rq_queued(p); 2083 running = task_current(rq, p); 2084 2085 if (queued) { 2086 /* 2087 * Because __kthread_bind() calls this on blocked tasks without 2088 * holding rq->lock. 2089 */ 2090 lockdep_assert_held(&rq->lock); 2091 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2092 } 2093 if (running) 2094 put_prev_task(rq, p); 2095 2096 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2097 2098 if (queued) 2099 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2100 if (running) 2101 set_next_task(rq, p); 2102 } 2103 2104 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2105 { 2106 __do_set_cpus_allowed(p, new_mask, 0); 2107 } 2108 2109 /* 2110 * This function is wildly self concurrent; here be dragons. 2111 * 2112 * 2113 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2114 * designated task is enqueued on an allowed CPU. If that task is currently 2115 * running, we have to kick it out using the CPU stopper. 2116 * 2117 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2118 * Consider: 2119 * 2120 * Initial conditions: P0->cpus_mask = [0, 1] 2121 * 2122 * P0@CPU0 P1 2123 * 2124 * migrate_disable(); 2125 * <preempted> 2126 * set_cpus_allowed_ptr(P0, [1]); 2127 * 2128 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2129 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2130 * This means we need the following scheme: 2131 * 2132 * P0@CPU0 P1 2133 * 2134 * migrate_disable(); 2135 * <preempted> 2136 * set_cpus_allowed_ptr(P0, [1]); 2137 * <blocks> 2138 * <resumes> 2139 * migrate_enable(); 2140 * __set_cpus_allowed_ptr(); 2141 * <wakes local stopper> 2142 * `--> <woken on migration completion> 2143 * 2144 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2145 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2146 * task p are serialized by p->pi_lock, which we can leverage: the one that 2147 * should come into effect at the end of the Migrate-Disable region is the last 2148 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2149 * but we still need to properly signal those waiting tasks at the appropriate 2150 * moment. 2151 * 2152 * This is implemented using struct set_affinity_pending. The first 2153 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2154 * setup an instance of that struct and install it on the targeted task_struct. 2155 * Any and all further callers will reuse that instance. Those then wait for 2156 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2157 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2158 * 2159 * 2160 * (1) In the cases covered above. There is one more where the completion is 2161 * signaled within affine_move_task() itself: when a subsequent affinity request 2162 * cancels the need for an active migration. Consider: 2163 * 2164 * Initial conditions: P0->cpus_mask = [0, 1] 2165 * 2166 * P0@CPU0 P1 P2 2167 * 2168 * migrate_disable(); 2169 * <preempted> 2170 * set_cpus_allowed_ptr(P0, [1]); 2171 * <blocks> 2172 * set_cpus_allowed_ptr(P0, [0, 1]); 2173 * <signal completion> 2174 * <awakes> 2175 * 2176 * Note that the above is safe vs a concurrent migrate_enable(), as any 2177 * pending affinity completion is preceded by an uninstallation of 2178 * p->migration_pending done with p->pi_lock held. 2179 */ 2180 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2181 int dest_cpu, unsigned int flags) 2182 { 2183 struct set_affinity_pending my_pending = { }, *pending = NULL; 2184 struct migration_arg arg = { 2185 .task = p, 2186 .dest_cpu = dest_cpu, 2187 }; 2188 bool complete = false; 2189 2190 /* Can the task run on the task's current CPU? If so, we're done */ 2191 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2192 struct task_struct *push_task = NULL; 2193 2194 if ((flags & SCA_MIGRATE_ENABLE) && 2195 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2196 rq->push_busy = true; 2197 push_task = get_task_struct(p); 2198 } 2199 2200 pending = p->migration_pending; 2201 if (pending) { 2202 refcount_inc(&pending->refs); 2203 p->migration_pending = NULL; 2204 complete = true; 2205 } 2206 task_rq_unlock(rq, p, rf); 2207 2208 if (push_task) { 2209 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2210 p, &rq->push_work); 2211 } 2212 2213 if (complete) 2214 goto do_complete; 2215 2216 return 0; 2217 } 2218 2219 if (!(flags & SCA_MIGRATE_ENABLE)) { 2220 /* serialized by p->pi_lock */ 2221 if (!p->migration_pending) { 2222 /* Install the request */ 2223 refcount_set(&my_pending.refs, 1); 2224 init_completion(&my_pending.done); 2225 p->migration_pending = &my_pending; 2226 } else { 2227 pending = p->migration_pending; 2228 refcount_inc(&pending->refs); 2229 } 2230 } 2231 pending = p->migration_pending; 2232 /* 2233 * - !MIGRATE_ENABLE: 2234 * we'll have installed a pending if there wasn't one already. 2235 * 2236 * - MIGRATE_ENABLE: 2237 * we're here because the current CPU isn't matching anymore, 2238 * the only way that can happen is because of a concurrent 2239 * set_cpus_allowed_ptr() call, which should then still be 2240 * pending completion. 2241 * 2242 * Either way, we really should have a @pending here. 2243 */ 2244 if (WARN_ON_ONCE(!pending)) { 2245 task_rq_unlock(rq, p, rf); 2246 return -EINVAL; 2247 } 2248 2249 if (flags & SCA_MIGRATE_ENABLE) { 2250 2251 refcount_inc(&pending->refs); /* pending->{arg,stop_work} */ 2252 p->migration_flags &= ~MDF_PUSH; 2253 task_rq_unlock(rq, p, rf); 2254 2255 pending->arg = (struct migration_arg) { 2256 .task = p, 2257 .dest_cpu = -1, 2258 .pending = pending, 2259 }; 2260 2261 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2262 &pending->arg, &pending->stop_work); 2263 2264 return 0; 2265 } 2266 2267 if (task_running(rq, p) || p->state == TASK_WAKING) { 2268 /* 2269 * Lessen races (and headaches) by delegating 2270 * is_migration_disabled(p) checks to the stopper, which will 2271 * run on the same CPU as said p. 2272 */ 2273 task_rq_unlock(rq, p, rf); 2274 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 2275 2276 } else { 2277 2278 if (!is_migration_disabled(p)) { 2279 if (task_on_rq_queued(p)) 2280 rq = move_queued_task(rq, rf, p, dest_cpu); 2281 2282 p->migration_pending = NULL; 2283 complete = true; 2284 } 2285 task_rq_unlock(rq, p, rf); 2286 2287 do_complete: 2288 if (complete) 2289 complete_all(&pending->done); 2290 } 2291 2292 wait_for_completion(&pending->done); 2293 2294 if (refcount_dec_and_test(&pending->refs)) 2295 wake_up_var(&pending->refs); 2296 2297 /* 2298 * Block the original owner of &pending until all subsequent callers 2299 * have seen the completion and decremented the refcount 2300 */ 2301 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2302 2303 return 0; 2304 } 2305 2306 /* 2307 * Change a given task's CPU affinity. Migrate the thread to a 2308 * proper CPU and schedule it away if the CPU it's executing on 2309 * is removed from the allowed bitmask. 2310 * 2311 * NOTE: the caller must have a valid reference to the task, the 2312 * task must not exit() & deallocate itself prematurely. The 2313 * call is not atomic; no spinlocks may be held. 2314 */ 2315 static int __set_cpus_allowed_ptr(struct task_struct *p, 2316 const struct cpumask *new_mask, 2317 u32 flags) 2318 { 2319 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2320 unsigned int dest_cpu; 2321 struct rq_flags rf; 2322 struct rq *rq; 2323 int ret = 0; 2324 2325 rq = task_rq_lock(p, &rf); 2326 update_rq_clock(rq); 2327 2328 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) { 2329 /* 2330 * Kernel threads are allowed on online && !active CPUs. 2331 * 2332 * Specifically, migration_disabled() tasks must not fail the 2333 * cpumask_any_and_distribute() pick below, esp. so on 2334 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2335 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2336 */ 2337 cpu_valid_mask = cpu_online_mask; 2338 } 2339 2340 /* 2341 * Must re-check here, to close a race against __kthread_bind(), 2342 * sched_setaffinity() is not guaranteed to observe the flag. 2343 */ 2344 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2345 ret = -EINVAL; 2346 goto out; 2347 } 2348 2349 if (!(flags & SCA_MIGRATE_ENABLE)) { 2350 if (cpumask_equal(&p->cpus_mask, new_mask)) 2351 goto out; 2352 2353 if (WARN_ON_ONCE(p == current && 2354 is_migration_disabled(p) && 2355 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2356 ret = -EBUSY; 2357 goto out; 2358 } 2359 } 2360 2361 /* 2362 * Picking a ~random cpu helps in cases where we are changing affinity 2363 * for groups of tasks (ie. cpuset), so that load balancing is not 2364 * immediately required to distribute the tasks within their new mask. 2365 */ 2366 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2367 if (dest_cpu >= nr_cpu_ids) { 2368 ret = -EINVAL; 2369 goto out; 2370 } 2371 2372 __do_set_cpus_allowed(p, new_mask, flags); 2373 2374 if (p->flags & PF_KTHREAD) { 2375 /* 2376 * For kernel threads that do indeed end up on online && 2377 * !active we want to ensure they are strict per-CPU threads. 2378 */ 2379 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 2380 !cpumask_intersects(new_mask, cpu_active_mask) && 2381 p->nr_cpus_allowed != 1); 2382 } 2383 2384 return affine_move_task(rq, p, &rf, dest_cpu, flags); 2385 2386 out: 2387 task_rq_unlock(rq, p, &rf); 2388 2389 return ret; 2390 } 2391 2392 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2393 { 2394 return __set_cpus_allowed_ptr(p, new_mask, 0); 2395 } 2396 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2397 2398 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 2399 { 2400 #ifdef CONFIG_SCHED_DEBUG 2401 /* 2402 * We should never call set_task_cpu() on a blocked task, 2403 * ttwu() will sort out the placement. 2404 */ 2405 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 2406 !p->on_rq); 2407 2408 /* 2409 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 2410 * because schedstat_wait_{start,end} rebase migrating task's wait_start 2411 * time relying on p->on_rq. 2412 */ 2413 WARN_ON_ONCE(p->state == TASK_RUNNING && 2414 p->sched_class == &fair_sched_class && 2415 (p->on_rq && !task_on_rq_migrating(p))); 2416 2417 #ifdef CONFIG_LOCKDEP 2418 /* 2419 * The caller should hold either p->pi_lock or rq->lock, when changing 2420 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 2421 * 2422 * sched_move_task() holds both and thus holding either pins the cgroup, 2423 * see task_group(). 2424 * 2425 * Furthermore, all task_rq users should acquire both locks, see 2426 * task_rq_lock(). 2427 */ 2428 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 2429 lockdep_is_held(&task_rq(p)->lock))); 2430 #endif 2431 /* 2432 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 2433 */ 2434 WARN_ON_ONCE(!cpu_online(new_cpu)); 2435 2436 WARN_ON_ONCE(is_migration_disabled(p)); 2437 #endif 2438 2439 trace_sched_migrate_task(p, new_cpu); 2440 2441 if (task_cpu(p) != new_cpu) { 2442 if (p->sched_class->migrate_task_rq) 2443 p->sched_class->migrate_task_rq(p, new_cpu); 2444 p->se.nr_migrations++; 2445 rseq_migrate(p); 2446 perf_event_task_migrate(p); 2447 } 2448 2449 __set_task_cpu(p, new_cpu); 2450 } 2451 2452 #ifdef CONFIG_NUMA_BALANCING 2453 static void __migrate_swap_task(struct task_struct *p, int cpu) 2454 { 2455 if (task_on_rq_queued(p)) { 2456 struct rq *src_rq, *dst_rq; 2457 struct rq_flags srf, drf; 2458 2459 src_rq = task_rq(p); 2460 dst_rq = cpu_rq(cpu); 2461 2462 rq_pin_lock(src_rq, &srf); 2463 rq_pin_lock(dst_rq, &drf); 2464 2465 deactivate_task(src_rq, p, 0); 2466 set_task_cpu(p, cpu); 2467 activate_task(dst_rq, p, 0); 2468 check_preempt_curr(dst_rq, p, 0); 2469 2470 rq_unpin_lock(dst_rq, &drf); 2471 rq_unpin_lock(src_rq, &srf); 2472 2473 } else { 2474 /* 2475 * Task isn't running anymore; make it appear like we migrated 2476 * it before it went to sleep. This means on wakeup we make the 2477 * previous CPU our target instead of where it really is. 2478 */ 2479 p->wake_cpu = cpu; 2480 } 2481 } 2482 2483 struct migration_swap_arg { 2484 struct task_struct *src_task, *dst_task; 2485 int src_cpu, dst_cpu; 2486 }; 2487 2488 static int migrate_swap_stop(void *data) 2489 { 2490 struct migration_swap_arg *arg = data; 2491 struct rq *src_rq, *dst_rq; 2492 int ret = -EAGAIN; 2493 2494 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 2495 return -EAGAIN; 2496 2497 src_rq = cpu_rq(arg->src_cpu); 2498 dst_rq = cpu_rq(arg->dst_cpu); 2499 2500 double_raw_lock(&arg->src_task->pi_lock, 2501 &arg->dst_task->pi_lock); 2502 double_rq_lock(src_rq, dst_rq); 2503 2504 if (task_cpu(arg->dst_task) != arg->dst_cpu) 2505 goto unlock; 2506 2507 if (task_cpu(arg->src_task) != arg->src_cpu) 2508 goto unlock; 2509 2510 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 2511 goto unlock; 2512 2513 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 2514 goto unlock; 2515 2516 __migrate_swap_task(arg->src_task, arg->dst_cpu); 2517 __migrate_swap_task(arg->dst_task, arg->src_cpu); 2518 2519 ret = 0; 2520 2521 unlock: 2522 double_rq_unlock(src_rq, dst_rq); 2523 raw_spin_unlock(&arg->dst_task->pi_lock); 2524 raw_spin_unlock(&arg->src_task->pi_lock); 2525 2526 return ret; 2527 } 2528 2529 /* 2530 * Cross migrate two tasks 2531 */ 2532 int migrate_swap(struct task_struct *cur, struct task_struct *p, 2533 int target_cpu, int curr_cpu) 2534 { 2535 struct migration_swap_arg arg; 2536 int ret = -EINVAL; 2537 2538 arg = (struct migration_swap_arg){ 2539 .src_task = cur, 2540 .src_cpu = curr_cpu, 2541 .dst_task = p, 2542 .dst_cpu = target_cpu, 2543 }; 2544 2545 if (arg.src_cpu == arg.dst_cpu) 2546 goto out; 2547 2548 /* 2549 * These three tests are all lockless; this is OK since all of them 2550 * will be re-checked with proper locks held further down the line. 2551 */ 2552 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 2553 goto out; 2554 2555 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 2556 goto out; 2557 2558 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 2559 goto out; 2560 2561 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 2562 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 2563 2564 out: 2565 return ret; 2566 } 2567 #endif /* CONFIG_NUMA_BALANCING */ 2568 2569 /* 2570 * wait_task_inactive - wait for a thread to unschedule. 2571 * 2572 * If @match_state is nonzero, it's the @p->state value just checked and 2573 * not expected to change. If it changes, i.e. @p might have woken up, 2574 * then return zero. When we succeed in waiting for @p to be off its CPU, 2575 * we return a positive number (its total switch count). If a second call 2576 * a short while later returns the same number, the caller can be sure that 2577 * @p has remained unscheduled the whole time. 2578 * 2579 * The caller must ensure that the task *will* unschedule sometime soon, 2580 * else this function might spin for a *long* time. This function can't 2581 * be called with interrupts off, or it may introduce deadlock with 2582 * smp_call_function() if an IPI is sent by the same process we are 2583 * waiting to become inactive. 2584 */ 2585 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 2586 { 2587 int running, queued; 2588 struct rq_flags rf; 2589 unsigned long ncsw; 2590 struct rq *rq; 2591 2592 for (;;) { 2593 /* 2594 * We do the initial early heuristics without holding 2595 * any task-queue locks at all. We'll only try to get 2596 * the runqueue lock when things look like they will 2597 * work out! 2598 */ 2599 rq = task_rq(p); 2600 2601 /* 2602 * If the task is actively running on another CPU 2603 * still, just relax and busy-wait without holding 2604 * any locks. 2605 * 2606 * NOTE! Since we don't hold any locks, it's not 2607 * even sure that "rq" stays as the right runqueue! 2608 * But we don't care, since "task_running()" will 2609 * return false if the runqueue has changed and p 2610 * is actually now running somewhere else! 2611 */ 2612 while (task_running(rq, p)) { 2613 if (match_state && unlikely(p->state != match_state)) 2614 return 0; 2615 cpu_relax(); 2616 } 2617 2618 /* 2619 * Ok, time to look more closely! We need the rq 2620 * lock now, to be *sure*. If we're wrong, we'll 2621 * just go back and repeat. 2622 */ 2623 rq = task_rq_lock(p, &rf); 2624 trace_sched_wait_task(p); 2625 running = task_running(rq, p); 2626 queued = task_on_rq_queued(p); 2627 ncsw = 0; 2628 if (!match_state || p->state == match_state) 2629 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2630 task_rq_unlock(rq, p, &rf); 2631 2632 /* 2633 * If it changed from the expected state, bail out now. 2634 */ 2635 if (unlikely(!ncsw)) 2636 break; 2637 2638 /* 2639 * Was it really running after all now that we 2640 * checked with the proper locks actually held? 2641 * 2642 * Oops. Go back and try again.. 2643 */ 2644 if (unlikely(running)) { 2645 cpu_relax(); 2646 continue; 2647 } 2648 2649 /* 2650 * It's not enough that it's not actively running, 2651 * it must be off the runqueue _entirely_, and not 2652 * preempted! 2653 * 2654 * So if it was still runnable (but just not actively 2655 * running right now), it's preempted, and we should 2656 * yield - it could be a while. 2657 */ 2658 if (unlikely(queued)) { 2659 ktime_t to = NSEC_PER_SEC / HZ; 2660 2661 set_current_state(TASK_UNINTERRUPTIBLE); 2662 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 2663 continue; 2664 } 2665 2666 /* 2667 * Ahh, all good. It wasn't running, and it wasn't 2668 * runnable, which means that it will never become 2669 * running in the future either. We're all done! 2670 */ 2671 break; 2672 } 2673 2674 return ncsw; 2675 } 2676 2677 /*** 2678 * kick_process - kick a running thread to enter/exit the kernel 2679 * @p: the to-be-kicked thread 2680 * 2681 * Cause a process which is running on another CPU to enter 2682 * kernel-mode, without any delay. (to get signals handled.) 2683 * 2684 * NOTE: this function doesn't have to take the runqueue lock, 2685 * because all it wants to ensure is that the remote task enters 2686 * the kernel. If the IPI races and the task has been migrated 2687 * to another CPU then no harm is done and the purpose has been 2688 * achieved as well. 2689 */ 2690 void kick_process(struct task_struct *p) 2691 { 2692 int cpu; 2693 2694 preempt_disable(); 2695 cpu = task_cpu(p); 2696 if ((cpu != smp_processor_id()) && task_curr(p)) 2697 smp_send_reschedule(cpu); 2698 preempt_enable(); 2699 } 2700 EXPORT_SYMBOL_GPL(kick_process); 2701 2702 /* 2703 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 2704 * 2705 * A few notes on cpu_active vs cpu_online: 2706 * 2707 * - cpu_active must be a subset of cpu_online 2708 * 2709 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2710 * see __set_cpus_allowed_ptr(). At this point the newly online 2711 * CPU isn't yet part of the sched domains, and balancing will not 2712 * see it. 2713 * 2714 * - on CPU-down we clear cpu_active() to mask the sched domains and 2715 * avoid the load balancer to place new tasks on the to be removed 2716 * CPU. Existing tasks will remain running there and will be taken 2717 * off. 2718 * 2719 * This means that fallback selection must not select !active CPUs. 2720 * And can assume that any active CPU must be online. Conversely 2721 * select_task_rq() below may allow selection of !active CPUs in order 2722 * to satisfy the above rules. 2723 */ 2724 static int select_fallback_rq(int cpu, struct task_struct *p) 2725 { 2726 int nid = cpu_to_node(cpu); 2727 const struct cpumask *nodemask = NULL; 2728 enum { cpuset, possible, fail } state = cpuset; 2729 int dest_cpu; 2730 2731 /* 2732 * If the node that the CPU is on has been offlined, cpu_to_node() 2733 * will return -1. There is no CPU on the node, and we should 2734 * select the CPU on the other node. 2735 */ 2736 if (nid != -1) { 2737 nodemask = cpumask_of_node(nid); 2738 2739 /* Look for allowed, online CPU in same node. */ 2740 for_each_cpu(dest_cpu, nodemask) { 2741 if (!cpu_active(dest_cpu)) 2742 continue; 2743 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2744 return dest_cpu; 2745 } 2746 } 2747 2748 for (;;) { 2749 /* Any allowed, online CPU? */ 2750 for_each_cpu(dest_cpu, p->cpus_ptr) { 2751 if (!is_cpu_allowed(p, dest_cpu)) 2752 continue; 2753 2754 goto out; 2755 } 2756 2757 /* No more Mr. Nice Guy. */ 2758 switch (state) { 2759 case cpuset: 2760 if (IS_ENABLED(CONFIG_CPUSETS)) { 2761 cpuset_cpus_allowed_fallback(p); 2762 state = possible; 2763 break; 2764 } 2765 fallthrough; 2766 case possible: 2767 /* 2768 * XXX When called from select_task_rq() we only 2769 * hold p->pi_lock and again violate locking order. 2770 * 2771 * More yuck to audit. 2772 */ 2773 do_set_cpus_allowed(p, cpu_possible_mask); 2774 state = fail; 2775 break; 2776 2777 case fail: 2778 BUG(); 2779 break; 2780 } 2781 } 2782 2783 out: 2784 if (state != cpuset) { 2785 /* 2786 * Don't tell them about moving exiting tasks or 2787 * kernel threads (both mm NULL), since they never 2788 * leave kernel. 2789 */ 2790 if (p->mm && printk_ratelimit()) { 2791 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2792 task_pid_nr(p), p->comm, cpu); 2793 } 2794 } 2795 2796 return dest_cpu; 2797 } 2798 2799 /* 2800 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2801 */ 2802 static inline 2803 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 2804 { 2805 lockdep_assert_held(&p->pi_lock); 2806 2807 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 2808 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 2809 else 2810 cpu = cpumask_any(p->cpus_ptr); 2811 2812 /* 2813 * In order not to call set_task_cpu() on a blocking task we need 2814 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2815 * CPU. 2816 * 2817 * Since this is common to all placement strategies, this lives here. 2818 * 2819 * [ this allows ->select_task() to simply return task_cpu(p) and 2820 * not worry about this generic constraint ] 2821 */ 2822 if (unlikely(!is_cpu_allowed(p, cpu))) 2823 cpu = select_fallback_rq(task_cpu(p), p); 2824 2825 return cpu; 2826 } 2827 2828 void sched_set_stop_task(int cpu, struct task_struct *stop) 2829 { 2830 static struct lock_class_key stop_pi_lock; 2831 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2832 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2833 2834 if (stop) { 2835 /* 2836 * Make it appear like a SCHED_FIFO task, its something 2837 * userspace knows about and won't get confused about. 2838 * 2839 * Also, it will make PI more or less work without too 2840 * much confusion -- but then, stop work should not 2841 * rely on PI working anyway. 2842 */ 2843 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2844 2845 stop->sched_class = &stop_sched_class; 2846 2847 /* 2848 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 2849 * adjust the effective priority of a task. As a result, 2850 * rt_mutex_setprio() can trigger (RT) balancing operations, 2851 * which can then trigger wakeups of the stop thread to push 2852 * around the current task. 2853 * 2854 * The stop task itself will never be part of the PI-chain, it 2855 * never blocks, therefore that ->pi_lock recursion is safe. 2856 * Tell lockdep about this by placing the stop->pi_lock in its 2857 * own class. 2858 */ 2859 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 2860 } 2861 2862 cpu_rq(cpu)->stop = stop; 2863 2864 if (old_stop) { 2865 /* 2866 * Reset it back to a normal scheduling class so that 2867 * it can die in pieces. 2868 */ 2869 old_stop->sched_class = &rt_sched_class; 2870 } 2871 } 2872 2873 #else /* CONFIG_SMP */ 2874 2875 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2876 const struct cpumask *new_mask, 2877 u32 flags) 2878 { 2879 return set_cpus_allowed_ptr(p, new_mask); 2880 } 2881 2882 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 2883 2884 static inline bool rq_has_pinned_tasks(struct rq *rq) 2885 { 2886 return false; 2887 } 2888 2889 #endif /* !CONFIG_SMP */ 2890 2891 static void 2892 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2893 { 2894 struct rq *rq; 2895 2896 if (!schedstat_enabled()) 2897 return; 2898 2899 rq = this_rq(); 2900 2901 #ifdef CONFIG_SMP 2902 if (cpu == rq->cpu) { 2903 __schedstat_inc(rq->ttwu_local); 2904 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2905 } else { 2906 struct sched_domain *sd; 2907 2908 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2909 rcu_read_lock(); 2910 for_each_domain(rq->cpu, sd) { 2911 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2912 __schedstat_inc(sd->ttwu_wake_remote); 2913 break; 2914 } 2915 } 2916 rcu_read_unlock(); 2917 } 2918 2919 if (wake_flags & WF_MIGRATED) 2920 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2921 #endif /* CONFIG_SMP */ 2922 2923 __schedstat_inc(rq->ttwu_count); 2924 __schedstat_inc(p->se.statistics.nr_wakeups); 2925 2926 if (wake_flags & WF_SYNC) 2927 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2928 } 2929 2930 /* 2931 * Mark the task runnable and perform wakeup-preemption. 2932 */ 2933 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2934 struct rq_flags *rf) 2935 { 2936 check_preempt_curr(rq, p, wake_flags); 2937 p->state = TASK_RUNNING; 2938 trace_sched_wakeup(p); 2939 2940 #ifdef CONFIG_SMP 2941 if (p->sched_class->task_woken) { 2942 /* 2943 * Our task @p is fully woken up and running; so it's safe to 2944 * drop the rq->lock, hereafter rq is only used for statistics. 2945 */ 2946 rq_unpin_lock(rq, rf); 2947 p->sched_class->task_woken(rq, p); 2948 rq_repin_lock(rq, rf); 2949 } 2950 2951 if (rq->idle_stamp) { 2952 u64 delta = rq_clock(rq) - rq->idle_stamp; 2953 u64 max = 2*rq->max_idle_balance_cost; 2954 2955 update_avg(&rq->avg_idle, delta); 2956 2957 if (rq->avg_idle > max) 2958 rq->avg_idle = max; 2959 2960 rq->idle_stamp = 0; 2961 } 2962 #endif 2963 } 2964 2965 static void 2966 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2967 struct rq_flags *rf) 2968 { 2969 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2970 2971 lockdep_assert_held(&rq->lock); 2972 2973 if (p->sched_contributes_to_load) 2974 rq->nr_uninterruptible--; 2975 2976 #ifdef CONFIG_SMP 2977 if (wake_flags & WF_MIGRATED) 2978 en_flags |= ENQUEUE_MIGRATED; 2979 else 2980 #endif 2981 if (p->in_iowait) { 2982 delayacct_blkio_end(p); 2983 atomic_dec(&task_rq(p)->nr_iowait); 2984 } 2985 2986 activate_task(rq, p, en_flags); 2987 ttwu_do_wakeup(rq, p, wake_flags, rf); 2988 } 2989 2990 /* 2991 * Consider @p being inside a wait loop: 2992 * 2993 * for (;;) { 2994 * set_current_state(TASK_UNINTERRUPTIBLE); 2995 * 2996 * if (CONDITION) 2997 * break; 2998 * 2999 * schedule(); 3000 * } 3001 * __set_current_state(TASK_RUNNING); 3002 * 3003 * between set_current_state() and schedule(). In this case @p is still 3004 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3005 * an atomic manner. 3006 * 3007 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3008 * then schedule() must still happen and p->state can be changed to 3009 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3010 * need to do a full wakeup with enqueue. 3011 * 3012 * Returns: %true when the wakeup is done, 3013 * %false otherwise. 3014 */ 3015 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3016 { 3017 struct rq_flags rf; 3018 struct rq *rq; 3019 int ret = 0; 3020 3021 rq = __task_rq_lock(p, &rf); 3022 if (task_on_rq_queued(p)) { 3023 /* check_preempt_curr() may use rq clock */ 3024 update_rq_clock(rq); 3025 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3026 ret = 1; 3027 } 3028 __task_rq_unlock(rq, &rf); 3029 3030 return ret; 3031 } 3032 3033 #ifdef CONFIG_SMP 3034 void sched_ttwu_pending(void *arg) 3035 { 3036 struct llist_node *llist = arg; 3037 struct rq *rq = this_rq(); 3038 struct task_struct *p, *t; 3039 struct rq_flags rf; 3040 3041 if (!llist) 3042 return; 3043 3044 /* 3045 * rq::ttwu_pending racy indication of out-standing wakeups. 3046 * Races such that false-negatives are possible, since they 3047 * are shorter lived that false-positives would be. 3048 */ 3049 WRITE_ONCE(rq->ttwu_pending, 0); 3050 3051 rq_lock_irqsave(rq, &rf); 3052 update_rq_clock(rq); 3053 3054 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3055 if (WARN_ON_ONCE(p->on_cpu)) 3056 smp_cond_load_acquire(&p->on_cpu, !VAL); 3057 3058 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3059 set_task_cpu(p, cpu_of(rq)); 3060 3061 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3062 } 3063 3064 rq_unlock_irqrestore(rq, &rf); 3065 } 3066 3067 void send_call_function_single_ipi(int cpu) 3068 { 3069 struct rq *rq = cpu_rq(cpu); 3070 3071 if (!set_nr_if_polling(rq->idle)) 3072 arch_send_call_function_single_ipi(cpu); 3073 else 3074 trace_sched_wake_idle_without_ipi(cpu); 3075 } 3076 3077 /* 3078 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3079 * necessary. The wakee CPU on receipt of the IPI will queue the task 3080 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3081 * of the wakeup instead of the waker. 3082 */ 3083 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3084 { 3085 struct rq *rq = cpu_rq(cpu); 3086 3087 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3088 3089 WRITE_ONCE(rq->ttwu_pending, 1); 3090 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3091 } 3092 3093 void wake_up_if_idle(int cpu) 3094 { 3095 struct rq *rq = cpu_rq(cpu); 3096 struct rq_flags rf; 3097 3098 rcu_read_lock(); 3099 3100 if (!is_idle_task(rcu_dereference(rq->curr))) 3101 goto out; 3102 3103 if (set_nr_if_polling(rq->idle)) { 3104 trace_sched_wake_idle_without_ipi(cpu); 3105 } else { 3106 rq_lock_irqsave(rq, &rf); 3107 if (is_idle_task(rq->curr)) 3108 smp_send_reschedule(cpu); 3109 /* Else CPU is not idle, do nothing here: */ 3110 rq_unlock_irqrestore(rq, &rf); 3111 } 3112 3113 out: 3114 rcu_read_unlock(); 3115 } 3116 3117 bool cpus_share_cache(int this_cpu, int that_cpu) 3118 { 3119 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3120 } 3121 3122 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 3123 { 3124 /* 3125 * If the CPU does not share cache, then queue the task on the 3126 * remote rqs wakelist to avoid accessing remote data. 3127 */ 3128 if (!cpus_share_cache(smp_processor_id(), cpu)) 3129 return true; 3130 3131 /* 3132 * If the task is descheduling and the only running task on the 3133 * CPU then use the wakelist to offload the task activation to 3134 * the soon-to-be-idle CPU as the current CPU is likely busy. 3135 * nr_running is checked to avoid unnecessary task stacking. 3136 */ 3137 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 3138 return true; 3139 3140 return false; 3141 } 3142 3143 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3144 { 3145 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 3146 if (WARN_ON_ONCE(cpu == smp_processor_id())) 3147 return false; 3148 3149 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3150 __ttwu_queue_wakelist(p, cpu, wake_flags); 3151 return true; 3152 } 3153 3154 return false; 3155 } 3156 3157 #else /* !CONFIG_SMP */ 3158 3159 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3160 { 3161 return false; 3162 } 3163 3164 #endif /* CONFIG_SMP */ 3165 3166 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3167 { 3168 struct rq *rq = cpu_rq(cpu); 3169 struct rq_flags rf; 3170 3171 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3172 return; 3173 3174 rq_lock(rq, &rf); 3175 update_rq_clock(rq); 3176 ttwu_do_activate(rq, p, wake_flags, &rf); 3177 rq_unlock(rq, &rf); 3178 } 3179 3180 /* 3181 * Notes on Program-Order guarantees on SMP systems. 3182 * 3183 * MIGRATION 3184 * 3185 * The basic program-order guarantee on SMP systems is that when a task [t] 3186 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3187 * execution on its new CPU [c1]. 3188 * 3189 * For migration (of runnable tasks) this is provided by the following means: 3190 * 3191 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3192 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3193 * rq(c1)->lock (if not at the same time, then in that order). 3194 * C) LOCK of the rq(c1)->lock scheduling in task 3195 * 3196 * Release/acquire chaining guarantees that B happens after A and C after B. 3197 * Note: the CPU doing B need not be c0 or c1 3198 * 3199 * Example: 3200 * 3201 * CPU0 CPU1 CPU2 3202 * 3203 * LOCK rq(0)->lock 3204 * sched-out X 3205 * sched-in Y 3206 * UNLOCK rq(0)->lock 3207 * 3208 * LOCK rq(0)->lock // orders against CPU0 3209 * dequeue X 3210 * UNLOCK rq(0)->lock 3211 * 3212 * LOCK rq(1)->lock 3213 * enqueue X 3214 * UNLOCK rq(1)->lock 3215 * 3216 * LOCK rq(1)->lock // orders against CPU2 3217 * sched-out Z 3218 * sched-in X 3219 * UNLOCK rq(1)->lock 3220 * 3221 * 3222 * BLOCKING -- aka. SLEEP + WAKEUP 3223 * 3224 * For blocking we (obviously) need to provide the same guarantee as for 3225 * migration. However the means are completely different as there is no lock 3226 * chain to provide order. Instead we do: 3227 * 3228 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3229 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3230 * 3231 * Example: 3232 * 3233 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3234 * 3235 * LOCK rq(0)->lock LOCK X->pi_lock 3236 * dequeue X 3237 * sched-out X 3238 * smp_store_release(X->on_cpu, 0); 3239 * 3240 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3241 * X->state = WAKING 3242 * set_task_cpu(X,2) 3243 * 3244 * LOCK rq(2)->lock 3245 * enqueue X 3246 * X->state = RUNNING 3247 * UNLOCK rq(2)->lock 3248 * 3249 * LOCK rq(2)->lock // orders against CPU1 3250 * sched-out Z 3251 * sched-in X 3252 * UNLOCK rq(2)->lock 3253 * 3254 * UNLOCK X->pi_lock 3255 * UNLOCK rq(0)->lock 3256 * 3257 * 3258 * However, for wakeups there is a second guarantee we must provide, namely we 3259 * must ensure that CONDITION=1 done by the caller can not be reordered with 3260 * accesses to the task state; see try_to_wake_up() and set_current_state(). 3261 */ 3262 3263 /** 3264 * try_to_wake_up - wake up a thread 3265 * @p: the thread to be awakened 3266 * @state: the mask of task states that can be woken 3267 * @wake_flags: wake modifier flags (WF_*) 3268 * 3269 * Conceptually does: 3270 * 3271 * If (@state & @p->state) @p->state = TASK_RUNNING. 3272 * 3273 * If the task was not queued/runnable, also place it back on a runqueue. 3274 * 3275 * This function is atomic against schedule() which would dequeue the task. 3276 * 3277 * It issues a full memory barrier before accessing @p->state, see the comment 3278 * with set_current_state(). 3279 * 3280 * Uses p->pi_lock to serialize against concurrent wake-ups. 3281 * 3282 * Relies on p->pi_lock stabilizing: 3283 * - p->sched_class 3284 * - p->cpus_ptr 3285 * - p->sched_task_group 3286 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 3287 * 3288 * Tries really hard to only take one task_rq(p)->lock for performance. 3289 * Takes rq->lock in: 3290 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 3291 * - ttwu_queue() -- new rq, for enqueue of the task; 3292 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 3293 * 3294 * As a consequence we race really badly with just about everything. See the 3295 * many memory barriers and their comments for details. 3296 * 3297 * Return: %true if @p->state changes (an actual wakeup was done), 3298 * %false otherwise. 3299 */ 3300 static int 3301 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 3302 { 3303 unsigned long flags; 3304 int cpu, success = 0; 3305 3306 preempt_disable(); 3307 if (p == current) { 3308 /* 3309 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 3310 * == smp_processor_id()'. Together this means we can special 3311 * case the whole 'p->on_rq && ttwu_runnable()' case below 3312 * without taking any locks. 3313 * 3314 * In particular: 3315 * - we rely on Program-Order guarantees for all the ordering, 3316 * - we're serialized against set_special_state() by virtue of 3317 * it disabling IRQs (this allows not taking ->pi_lock). 3318 */ 3319 if (!(p->state & state)) 3320 goto out; 3321 3322 success = 1; 3323 trace_sched_waking(p); 3324 p->state = TASK_RUNNING; 3325 trace_sched_wakeup(p); 3326 goto out; 3327 } 3328 3329 /* 3330 * If we are going to wake up a thread waiting for CONDITION we 3331 * need to ensure that CONDITION=1 done by the caller can not be 3332 * reordered with p->state check below. This pairs with smp_store_mb() 3333 * in set_current_state() that the waiting thread does. 3334 */ 3335 raw_spin_lock_irqsave(&p->pi_lock, flags); 3336 smp_mb__after_spinlock(); 3337 if (!(p->state & state)) 3338 goto unlock; 3339 3340 trace_sched_waking(p); 3341 3342 /* We're going to change ->state: */ 3343 success = 1; 3344 3345 /* 3346 * Ensure we load p->on_rq _after_ p->state, otherwise it would 3347 * be possible to, falsely, observe p->on_rq == 0 and get stuck 3348 * in smp_cond_load_acquire() below. 3349 * 3350 * sched_ttwu_pending() try_to_wake_up() 3351 * STORE p->on_rq = 1 LOAD p->state 3352 * UNLOCK rq->lock 3353 * 3354 * __schedule() (switch to task 'p') 3355 * LOCK rq->lock smp_rmb(); 3356 * smp_mb__after_spinlock(); 3357 * UNLOCK rq->lock 3358 * 3359 * [task p] 3360 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 3361 * 3362 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3363 * __schedule(). See the comment for smp_mb__after_spinlock(). 3364 * 3365 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 3366 */ 3367 smp_rmb(); 3368 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 3369 goto unlock; 3370 3371 #ifdef CONFIG_SMP 3372 /* 3373 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 3374 * possible to, falsely, observe p->on_cpu == 0. 3375 * 3376 * One must be running (->on_cpu == 1) in order to remove oneself 3377 * from the runqueue. 3378 * 3379 * __schedule() (switch to task 'p') try_to_wake_up() 3380 * STORE p->on_cpu = 1 LOAD p->on_rq 3381 * UNLOCK rq->lock 3382 * 3383 * __schedule() (put 'p' to sleep) 3384 * LOCK rq->lock smp_rmb(); 3385 * smp_mb__after_spinlock(); 3386 * STORE p->on_rq = 0 LOAD p->on_cpu 3387 * 3388 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3389 * __schedule(). See the comment for smp_mb__after_spinlock(). 3390 * 3391 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 3392 * schedule()'s deactivate_task() has 'happened' and p will no longer 3393 * care about it's own p->state. See the comment in __schedule(). 3394 */ 3395 smp_acquire__after_ctrl_dep(); 3396 3397 /* 3398 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 3399 * == 0), which means we need to do an enqueue, change p->state to 3400 * TASK_WAKING such that we can unlock p->pi_lock before doing the 3401 * enqueue, such as ttwu_queue_wakelist(). 3402 */ 3403 p->state = TASK_WAKING; 3404 3405 /* 3406 * If the owning (remote) CPU is still in the middle of schedule() with 3407 * this task as prev, considering queueing p on the remote CPUs wake_list 3408 * which potentially sends an IPI instead of spinning on p->on_cpu to 3409 * let the waker make forward progress. This is safe because IRQs are 3410 * disabled and the IPI will deliver after on_cpu is cleared. 3411 * 3412 * Ensure we load task_cpu(p) after p->on_cpu: 3413 * 3414 * set_task_cpu(p, cpu); 3415 * STORE p->cpu = @cpu 3416 * __schedule() (switch to task 'p') 3417 * LOCK rq->lock 3418 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 3419 * STORE p->on_cpu = 1 LOAD p->cpu 3420 * 3421 * to ensure we observe the correct CPU on which the task is currently 3422 * scheduling. 3423 */ 3424 if (smp_load_acquire(&p->on_cpu) && 3425 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 3426 goto unlock; 3427 3428 /* 3429 * If the owning (remote) CPU is still in the middle of schedule() with 3430 * this task as prev, wait until it's done referencing the task. 3431 * 3432 * Pairs with the smp_store_release() in finish_task(). 3433 * 3434 * This ensures that tasks getting woken will be fully ordered against 3435 * their previous state and preserve Program Order. 3436 */ 3437 smp_cond_load_acquire(&p->on_cpu, !VAL); 3438 3439 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 3440 if (task_cpu(p) != cpu) { 3441 if (p->in_iowait) { 3442 delayacct_blkio_end(p); 3443 atomic_dec(&task_rq(p)->nr_iowait); 3444 } 3445 3446 wake_flags |= WF_MIGRATED; 3447 psi_ttwu_dequeue(p); 3448 set_task_cpu(p, cpu); 3449 } 3450 #else 3451 cpu = task_cpu(p); 3452 #endif /* CONFIG_SMP */ 3453 3454 ttwu_queue(p, cpu, wake_flags); 3455 unlock: 3456 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3457 out: 3458 if (success) 3459 ttwu_stat(p, task_cpu(p), wake_flags); 3460 preempt_enable(); 3461 3462 return success; 3463 } 3464 3465 /** 3466 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state 3467 * @p: Process for which the function is to be invoked. 3468 * @func: Function to invoke. 3469 * @arg: Argument to function. 3470 * 3471 * If the specified task can be quickly locked into a definite state 3472 * (either sleeping or on a given runqueue), arrange to keep it in that 3473 * state while invoking @func(@arg). This function can use ->on_rq and 3474 * task_curr() to work out what the state is, if required. Given that 3475 * @func can be invoked with a runqueue lock held, it had better be quite 3476 * lightweight. 3477 * 3478 * Returns: 3479 * @false if the task slipped out from under the locks. 3480 * @true if the task was locked onto a runqueue or is sleeping. 3481 * However, @func can override this by returning @false. 3482 */ 3483 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg) 3484 { 3485 bool ret = false; 3486 struct rq_flags rf; 3487 struct rq *rq; 3488 3489 lockdep_assert_irqs_enabled(); 3490 raw_spin_lock_irq(&p->pi_lock); 3491 if (p->on_rq) { 3492 rq = __task_rq_lock(p, &rf); 3493 if (task_rq(p) == rq) 3494 ret = func(p, arg); 3495 rq_unlock(rq, &rf); 3496 } else { 3497 switch (p->state) { 3498 case TASK_RUNNING: 3499 case TASK_WAKING: 3500 break; 3501 default: 3502 smp_rmb(); // See smp_rmb() comment in try_to_wake_up(). 3503 if (!p->on_rq) 3504 ret = func(p, arg); 3505 } 3506 } 3507 raw_spin_unlock_irq(&p->pi_lock); 3508 return ret; 3509 } 3510 3511 /** 3512 * wake_up_process - Wake up a specific process 3513 * @p: The process to be woken up. 3514 * 3515 * Attempt to wake up the nominated process and move it to the set of runnable 3516 * processes. 3517 * 3518 * Return: 1 if the process was woken up, 0 if it was already running. 3519 * 3520 * This function executes a full memory barrier before accessing the task state. 3521 */ 3522 int wake_up_process(struct task_struct *p) 3523 { 3524 return try_to_wake_up(p, TASK_NORMAL, 0); 3525 } 3526 EXPORT_SYMBOL(wake_up_process); 3527 3528 int wake_up_state(struct task_struct *p, unsigned int state) 3529 { 3530 return try_to_wake_up(p, state, 0); 3531 } 3532 3533 /* 3534 * Perform scheduler related setup for a newly forked process p. 3535 * p is forked by current. 3536 * 3537 * __sched_fork() is basic setup used by init_idle() too: 3538 */ 3539 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 3540 { 3541 p->on_rq = 0; 3542 3543 p->se.on_rq = 0; 3544 p->se.exec_start = 0; 3545 p->se.sum_exec_runtime = 0; 3546 p->se.prev_sum_exec_runtime = 0; 3547 p->se.nr_migrations = 0; 3548 p->se.vruntime = 0; 3549 INIT_LIST_HEAD(&p->se.group_node); 3550 3551 #ifdef CONFIG_FAIR_GROUP_SCHED 3552 p->se.cfs_rq = NULL; 3553 #endif 3554 3555 #ifdef CONFIG_SCHEDSTATS 3556 /* Even if schedstat is disabled, there should not be garbage */ 3557 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 3558 #endif 3559 3560 RB_CLEAR_NODE(&p->dl.rb_node); 3561 init_dl_task_timer(&p->dl); 3562 init_dl_inactive_task_timer(&p->dl); 3563 __dl_clear_params(p); 3564 3565 INIT_LIST_HEAD(&p->rt.run_list); 3566 p->rt.timeout = 0; 3567 p->rt.time_slice = sched_rr_timeslice; 3568 p->rt.on_rq = 0; 3569 p->rt.on_list = 0; 3570 3571 #ifdef CONFIG_PREEMPT_NOTIFIERS 3572 INIT_HLIST_HEAD(&p->preempt_notifiers); 3573 #endif 3574 3575 #ifdef CONFIG_COMPACTION 3576 p->capture_control = NULL; 3577 #endif 3578 init_numa_balancing(clone_flags, p); 3579 #ifdef CONFIG_SMP 3580 p->wake_entry.u_flags = CSD_TYPE_TTWU; 3581 p->migration_pending = NULL; 3582 #endif 3583 } 3584 3585 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 3586 3587 #ifdef CONFIG_NUMA_BALANCING 3588 3589 void set_numabalancing_state(bool enabled) 3590 { 3591 if (enabled) 3592 static_branch_enable(&sched_numa_balancing); 3593 else 3594 static_branch_disable(&sched_numa_balancing); 3595 } 3596 3597 #ifdef CONFIG_PROC_SYSCTL 3598 int sysctl_numa_balancing(struct ctl_table *table, int write, 3599 void *buffer, size_t *lenp, loff_t *ppos) 3600 { 3601 struct ctl_table t; 3602 int err; 3603 int state = static_branch_likely(&sched_numa_balancing); 3604 3605 if (write && !capable(CAP_SYS_ADMIN)) 3606 return -EPERM; 3607 3608 t = *table; 3609 t.data = &state; 3610 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3611 if (err < 0) 3612 return err; 3613 if (write) 3614 set_numabalancing_state(state); 3615 return err; 3616 } 3617 #endif 3618 #endif 3619 3620 #ifdef CONFIG_SCHEDSTATS 3621 3622 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 3623 static bool __initdata __sched_schedstats = false; 3624 3625 static void set_schedstats(bool enabled) 3626 { 3627 if (enabled) 3628 static_branch_enable(&sched_schedstats); 3629 else 3630 static_branch_disable(&sched_schedstats); 3631 } 3632 3633 void force_schedstat_enabled(void) 3634 { 3635 if (!schedstat_enabled()) { 3636 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 3637 static_branch_enable(&sched_schedstats); 3638 } 3639 } 3640 3641 static int __init setup_schedstats(char *str) 3642 { 3643 int ret = 0; 3644 if (!str) 3645 goto out; 3646 3647 /* 3648 * This code is called before jump labels have been set up, so we can't 3649 * change the static branch directly just yet. Instead set a temporary 3650 * variable so init_schedstats() can do it later. 3651 */ 3652 if (!strcmp(str, "enable")) { 3653 __sched_schedstats = true; 3654 ret = 1; 3655 } else if (!strcmp(str, "disable")) { 3656 __sched_schedstats = false; 3657 ret = 1; 3658 } 3659 out: 3660 if (!ret) 3661 pr_warn("Unable to parse schedstats=\n"); 3662 3663 return ret; 3664 } 3665 __setup("schedstats=", setup_schedstats); 3666 3667 static void __init init_schedstats(void) 3668 { 3669 set_schedstats(__sched_schedstats); 3670 } 3671 3672 #ifdef CONFIG_PROC_SYSCTL 3673 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 3674 size_t *lenp, loff_t *ppos) 3675 { 3676 struct ctl_table t; 3677 int err; 3678 int state = static_branch_likely(&sched_schedstats); 3679 3680 if (write && !capable(CAP_SYS_ADMIN)) 3681 return -EPERM; 3682 3683 t = *table; 3684 t.data = &state; 3685 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3686 if (err < 0) 3687 return err; 3688 if (write) 3689 set_schedstats(state); 3690 return err; 3691 } 3692 #endif /* CONFIG_PROC_SYSCTL */ 3693 #else /* !CONFIG_SCHEDSTATS */ 3694 static inline void init_schedstats(void) {} 3695 #endif /* CONFIG_SCHEDSTATS */ 3696 3697 /* 3698 * fork()/clone()-time setup: 3699 */ 3700 int sched_fork(unsigned long clone_flags, struct task_struct *p) 3701 { 3702 unsigned long flags; 3703 3704 __sched_fork(clone_flags, p); 3705 /* 3706 * We mark the process as NEW here. This guarantees that 3707 * nobody will actually run it, and a signal or other external 3708 * event cannot wake it up and insert it on the runqueue either. 3709 */ 3710 p->state = TASK_NEW; 3711 3712 /* 3713 * Make sure we do not leak PI boosting priority to the child. 3714 */ 3715 p->prio = current->normal_prio; 3716 3717 uclamp_fork(p); 3718 3719 /* 3720 * Revert to default priority/policy on fork if requested. 3721 */ 3722 if (unlikely(p->sched_reset_on_fork)) { 3723 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3724 p->policy = SCHED_NORMAL; 3725 p->static_prio = NICE_TO_PRIO(0); 3726 p->rt_priority = 0; 3727 } else if (PRIO_TO_NICE(p->static_prio) < 0) 3728 p->static_prio = NICE_TO_PRIO(0); 3729 3730 p->prio = p->normal_prio = __normal_prio(p); 3731 set_load_weight(p, false); 3732 3733 /* 3734 * We don't need the reset flag anymore after the fork. It has 3735 * fulfilled its duty: 3736 */ 3737 p->sched_reset_on_fork = 0; 3738 } 3739 3740 if (dl_prio(p->prio)) 3741 return -EAGAIN; 3742 else if (rt_prio(p->prio)) 3743 p->sched_class = &rt_sched_class; 3744 else 3745 p->sched_class = &fair_sched_class; 3746 3747 init_entity_runnable_average(&p->se); 3748 3749 /* 3750 * The child is not yet in the pid-hash so no cgroup attach races, 3751 * and the cgroup is pinned to this child due to cgroup_fork() 3752 * is ran before sched_fork(). 3753 * 3754 * Silence PROVE_RCU. 3755 */ 3756 raw_spin_lock_irqsave(&p->pi_lock, flags); 3757 rseq_migrate(p); 3758 /* 3759 * We're setting the CPU for the first time, we don't migrate, 3760 * so use __set_task_cpu(). 3761 */ 3762 __set_task_cpu(p, smp_processor_id()); 3763 if (p->sched_class->task_fork) 3764 p->sched_class->task_fork(p); 3765 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3766 3767 #ifdef CONFIG_SCHED_INFO 3768 if (likely(sched_info_on())) 3769 memset(&p->sched_info, 0, sizeof(p->sched_info)); 3770 #endif 3771 #if defined(CONFIG_SMP) 3772 p->on_cpu = 0; 3773 #endif 3774 init_task_preempt_count(p); 3775 #ifdef CONFIG_SMP 3776 plist_node_init(&p->pushable_tasks, MAX_PRIO); 3777 RB_CLEAR_NODE(&p->pushable_dl_tasks); 3778 #endif 3779 return 0; 3780 } 3781 3782 void sched_post_fork(struct task_struct *p) 3783 { 3784 uclamp_post_fork(p); 3785 } 3786 3787 unsigned long to_ratio(u64 period, u64 runtime) 3788 { 3789 if (runtime == RUNTIME_INF) 3790 return BW_UNIT; 3791 3792 /* 3793 * Doing this here saves a lot of checks in all 3794 * the calling paths, and returning zero seems 3795 * safe for them anyway. 3796 */ 3797 if (period == 0) 3798 return 0; 3799 3800 return div64_u64(runtime << BW_SHIFT, period); 3801 } 3802 3803 /* 3804 * wake_up_new_task - wake up a newly created task for the first time. 3805 * 3806 * This function will do some initial scheduler statistics housekeeping 3807 * that must be done for every newly created context, then puts the task 3808 * on the runqueue and wakes it. 3809 */ 3810 void wake_up_new_task(struct task_struct *p) 3811 { 3812 struct rq_flags rf; 3813 struct rq *rq; 3814 3815 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3816 p->state = TASK_RUNNING; 3817 #ifdef CONFIG_SMP 3818 /* 3819 * Fork balancing, do it here and not earlier because: 3820 * - cpus_ptr can change in the fork path 3821 * - any previously selected CPU might disappear through hotplug 3822 * 3823 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 3824 * as we're not fully set-up yet. 3825 */ 3826 p->recent_used_cpu = task_cpu(p); 3827 rseq_migrate(p); 3828 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 3829 #endif 3830 rq = __task_rq_lock(p, &rf); 3831 update_rq_clock(rq); 3832 post_init_entity_util_avg(p); 3833 3834 activate_task(rq, p, ENQUEUE_NOCLOCK); 3835 trace_sched_wakeup_new(p); 3836 check_preempt_curr(rq, p, WF_FORK); 3837 #ifdef CONFIG_SMP 3838 if (p->sched_class->task_woken) { 3839 /* 3840 * Nothing relies on rq->lock after this, so it's fine to 3841 * drop it. 3842 */ 3843 rq_unpin_lock(rq, &rf); 3844 p->sched_class->task_woken(rq, p); 3845 rq_repin_lock(rq, &rf); 3846 } 3847 #endif 3848 task_rq_unlock(rq, p, &rf); 3849 } 3850 3851 #ifdef CONFIG_PREEMPT_NOTIFIERS 3852 3853 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 3854 3855 void preempt_notifier_inc(void) 3856 { 3857 static_branch_inc(&preempt_notifier_key); 3858 } 3859 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 3860 3861 void preempt_notifier_dec(void) 3862 { 3863 static_branch_dec(&preempt_notifier_key); 3864 } 3865 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 3866 3867 /** 3868 * preempt_notifier_register - tell me when current is being preempted & rescheduled 3869 * @notifier: notifier struct to register 3870 */ 3871 void preempt_notifier_register(struct preempt_notifier *notifier) 3872 { 3873 if (!static_branch_unlikely(&preempt_notifier_key)) 3874 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3875 3876 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3877 } 3878 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3879 3880 /** 3881 * preempt_notifier_unregister - no longer interested in preemption notifications 3882 * @notifier: notifier struct to unregister 3883 * 3884 * This is *not* safe to call from within a preemption notifier. 3885 */ 3886 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3887 { 3888 hlist_del(¬ifier->link); 3889 } 3890 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3891 3892 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3893 { 3894 struct preempt_notifier *notifier; 3895 3896 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3897 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3898 } 3899 3900 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3901 { 3902 if (static_branch_unlikely(&preempt_notifier_key)) 3903 __fire_sched_in_preempt_notifiers(curr); 3904 } 3905 3906 static void 3907 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3908 struct task_struct *next) 3909 { 3910 struct preempt_notifier *notifier; 3911 3912 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3913 notifier->ops->sched_out(notifier, next); 3914 } 3915 3916 static __always_inline void 3917 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3918 struct task_struct *next) 3919 { 3920 if (static_branch_unlikely(&preempt_notifier_key)) 3921 __fire_sched_out_preempt_notifiers(curr, next); 3922 } 3923 3924 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3925 3926 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3927 { 3928 } 3929 3930 static inline void 3931 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3932 struct task_struct *next) 3933 { 3934 } 3935 3936 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3937 3938 static inline void prepare_task(struct task_struct *next) 3939 { 3940 #ifdef CONFIG_SMP 3941 /* 3942 * Claim the task as running, we do this before switching to it 3943 * such that any running task will have this set. 3944 * 3945 * See the ttwu() WF_ON_CPU case and its ordering comment. 3946 */ 3947 WRITE_ONCE(next->on_cpu, 1); 3948 #endif 3949 } 3950 3951 static inline void finish_task(struct task_struct *prev) 3952 { 3953 #ifdef CONFIG_SMP 3954 /* 3955 * This must be the very last reference to @prev from this CPU. After 3956 * p->on_cpu is cleared, the task can be moved to a different CPU. We 3957 * must ensure this doesn't happen until the switch is completely 3958 * finished. 3959 * 3960 * In particular, the load of prev->state in finish_task_switch() must 3961 * happen before this. 3962 * 3963 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3964 */ 3965 smp_store_release(&prev->on_cpu, 0); 3966 #endif 3967 } 3968 3969 #ifdef CONFIG_SMP 3970 3971 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 3972 { 3973 void (*func)(struct rq *rq); 3974 struct callback_head *next; 3975 3976 lockdep_assert_held(&rq->lock); 3977 3978 while (head) { 3979 func = (void (*)(struct rq *))head->func; 3980 next = head->next; 3981 head->next = NULL; 3982 head = next; 3983 3984 func(rq); 3985 } 3986 } 3987 3988 static void balance_push(struct rq *rq); 3989 3990 struct callback_head balance_push_callback = { 3991 .next = NULL, 3992 .func = (void (*)(struct callback_head *))balance_push, 3993 }; 3994 3995 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 3996 { 3997 struct callback_head *head = rq->balance_callback; 3998 3999 lockdep_assert_held(&rq->lock); 4000 if (head) 4001 rq->balance_callback = NULL; 4002 4003 return head; 4004 } 4005 4006 static void __balance_callbacks(struct rq *rq) 4007 { 4008 do_balance_callbacks(rq, splice_balance_callbacks(rq)); 4009 } 4010 4011 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4012 { 4013 unsigned long flags; 4014 4015 if (unlikely(head)) { 4016 raw_spin_lock_irqsave(&rq->lock, flags); 4017 do_balance_callbacks(rq, head); 4018 raw_spin_unlock_irqrestore(&rq->lock, flags); 4019 } 4020 } 4021 4022 #else 4023 4024 static inline void __balance_callbacks(struct rq *rq) 4025 { 4026 } 4027 4028 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4029 { 4030 return NULL; 4031 } 4032 4033 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4034 { 4035 } 4036 4037 #endif 4038 4039 static inline void 4040 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4041 { 4042 /* 4043 * Since the runqueue lock will be released by the next 4044 * task (which is an invalid locking op but in the case 4045 * of the scheduler it's an obvious special-case), so we 4046 * do an early lockdep release here: 4047 */ 4048 rq_unpin_lock(rq, rf); 4049 spin_release(&rq->lock.dep_map, _THIS_IP_); 4050 #ifdef CONFIG_DEBUG_SPINLOCK 4051 /* this is a valid case when another task releases the spinlock */ 4052 rq->lock.owner = next; 4053 #endif 4054 } 4055 4056 static inline void finish_lock_switch(struct rq *rq) 4057 { 4058 /* 4059 * If we are tracking spinlock dependencies then we have to 4060 * fix up the runqueue lock - which gets 'carried over' from 4061 * prev into current: 4062 */ 4063 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 4064 __balance_callbacks(rq); 4065 raw_spin_unlock_irq(&rq->lock); 4066 } 4067 4068 /* 4069 * NOP if the arch has not defined these: 4070 */ 4071 4072 #ifndef prepare_arch_switch 4073 # define prepare_arch_switch(next) do { } while (0) 4074 #endif 4075 4076 #ifndef finish_arch_post_lock_switch 4077 # define finish_arch_post_lock_switch() do { } while (0) 4078 #endif 4079 4080 static inline void kmap_local_sched_out(void) 4081 { 4082 #ifdef CONFIG_KMAP_LOCAL 4083 if (unlikely(current->kmap_ctrl.idx)) 4084 __kmap_local_sched_out(); 4085 #endif 4086 } 4087 4088 static inline void kmap_local_sched_in(void) 4089 { 4090 #ifdef CONFIG_KMAP_LOCAL 4091 if (unlikely(current->kmap_ctrl.idx)) 4092 __kmap_local_sched_in(); 4093 #endif 4094 } 4095 4096 /** 4097 * prepare_task_switch - prepare to switch tasks 4098 * @rq: the runqueue preparing to switch 4099 * @prev: the current task that is being switched out 4100 * @next: the task we are going to switch to. 4101 * 4102 * This is called with the rq lock held and interrupts off. It must 4103 * be paired with a subsequent finish_task_switch after the context 4104 * switch. 4105 * 4106 * prepare_task_switch sets up locking and calls architecture specific 4107 * hooks. 4108 */ 4109 static inline void 4110 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4111 struct task_struct *next) 4112 { 4113 kcov_prepare_switch(prev); 4114 sched_info_switch(rq, prev, next); 4115 perf_event_task_sched_out(prev, next); 4116 rseq_preempt(prev); 4117 fire_sched_out_preempt_notifiers(prev, next); 4118 kmap_local_sched_out(); 4119 prepare_task(next); 4120 prepare_arch_switch(next); 4121 } 4122 4123 /** 4124 * finish_task_switch - clean up after a task-switch 4125 * @prev: the thread we just switched away from. 4126 * 4127 * finish_task_switch must be called after the context switch, paired 4128 * with a prepare_task_switch call before the context switch. 4129 * finish_task_switch will reconcile locking set up by prepare_task_switch, 4130 * and do any other architecture-specific cleanup actions. 4131 * 4132 * Note that we may have delayed dropping an mm in context_switch(). If 4133 * so, we finish that here outside of the runqueue lock. (Doing it 4134 * with the lock held can cause deadlocks; see schedule() for 4135 * details.) 4136 * 4137 * The context switch have flipped the stack from under us and restored the 4138 * local variables which were saved when this task called schedule() in the 4139 * past. prev == current is still correct but we need to recalculate this_rq 4140 * because prev may have moved to another CPU. 4141 */ 4142 static struct rq *finish_task_switch(struct task_struct *prev) 4143 __releases(rq->lock) 4144 { 4145 struct rq *rq = this_rq(); 4146 struct mm_struct *mm = rq->prev_mm; 4147 long prev_state; 4148 4149 /* 4150 * The previous task will have left us with a preempt_count of 2 4151 * because it left us after: 4152 * 4153 * schedule() 4154 * preempt_disable(); // 1 4155 * __schedule() 4156 * raw_spin_lock_irq(&rq->lock) // 2 4157 * 4158 * Also, see FORK_PREEMPT_COUNT. 4159 */ 4160 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 4161 "corrupted preempt_count: %s/%d/0x%x\n", 4162 current->comm, current->pid, preempt_count())) 4163 preempt_count_set(FORK_PREEMPT_COUNT); 4164 4165 rq->prev_mm = NULL; 4166 4167 /* 4168 * A task struct has one reference for the use as "current". 4169 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 4170 * schedule one last time. The schedule call will never return, and 4171 * the scheduled task must drop that reference. 4172 * 4173 * We must observe prev->state before clearing prev->on_cpu (in 4174 * finish_task), otherwise a concurrent wakeup can get prev 4175 * running on another CPU and we could rave with its RUNNING -> DEAD 4176 * transition, resulting in a double drop. 4177 */ 4178 prev_state = prev->state; 4179 vtime_task_switch(prev); 4180 perf_event_task_sched_in(prev, current); 4181 finish_task(prev); 4182 finish_lock_switch(rq); 4183 finish_arch_post_lock_switch(); 4184 kcov_finish_switch(current); 4185 /* 4186 * kmap_local_sched_out() is invoked with rq::lock held and 4187 * interrupts disabled. There is no requirement for that, but the 4188 * sched out code does not have an interrupt enabled section. 4189 * Restoring the maps on sched in does not require interrupts being 4190 * disabled either. 4191 */ 4192 kmap_local_sched_in(); 4193 4194 fire_sched_in_preempt_notifiers(current); 4195 /* 4196 * When switching through a kernel thread, the loop in 4197 * membarrier_{private,global}_expedited() may have observed that 4198 * kernel thread and not issued an IPI. It is therefore possible to 4199 * schedule between user->kernel->user threads without passing though 4200 * switch_mm(). Membarrier requires a barrier after storing to 4201 * rq->curr, before returning to userspace, so provide them here: 4202 * 4203 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 4204 * provided by mmdrop(), 4205 * - a sync_core for SYNC_CORE. 4206 */ 4207 if (mm) { 4208 membarrier_mm_sync_core_before_usermode(mm); 4209 mmdrop(mm); 4210 } 4211 if (unlikely(prev_state == TASK_DEAD)) { 4212 if (prev->sched_class->task_dead) 4213 prev->sched_class->task_dead(prev); 4214 4215 /* 4216 * Remove function-return probe instances associated with this 4217 * task and put them back on the free list. 4218 */ 4219 kprobe_flush_task(prev); 4220 4221 /* Task is done with its stack. */ 4222 put_task_stack(prev); 4223 4224 put_task_struct_rcu_user(prev); 4225 } 4226 4227 tick_nohz_task_switch(); 4228 return rq; 4229 } 4230 4231 /** 4232 * schedule_tail - first thing a freshly forked thread must call. 4233 * @prev: the thread we just switched away from. 4234 */ 4235 asmlinkage __visible void schedule_tail(struct task_struct *prev) 4236 __releases(rq->lock) 4237 { 4238 struct rq *rq; 4239 4240 /* 4241 * New tasks start with FORK_PREEMPT_COUNT, see there and 4242 * finish_task_switch() for details. 4243 * 4244 * finish_task_switch() will drop rq->lock() and lower preempt_count 4245 * and the preempt_enable() will end up enabling preemption (on 4246 * PREEMPT_COUNT kernels). 4247 */ 4248 4249 rq = finish_task_switch(prev); 4250 preempt_enable(); 4251 4252 if (current->set_child_tid) 4253 put_user(task_pid_vnr(current), current->set_child_tid); 4254 4255 calculate_sigpending(); 4256 } 4257 4258 /* 4259 * context_switch - switch to the new MM and the new thread's register state. 4260 */ 4261 static __always_inline struct rq * 4262 context_switch(struct rq *rq, struct task_struct *prev, 4263 struct task_struct *next, struct rq_flags *rf) 4264 { 4265 prepare_task_switch(rq, prev, next); 4266 4267 /* 4268 * For paravirt, this is coupled with an exit in switch_to to 4269 * combine the page table reload and the switch backend into 4270 * one hypercall. 4271 */ 4272 arch_start_context_switch(prev); 4273 4274 /* 4275 * kernel -> kernel lazy + transfer active 4276 * user -> kernel lazy + mmgrab() active 4277 * 4278 * kernel -> user switch + mmdrop() active 4279 * user -> user switch 4280 */ 4281 if (!next->mm) { // to kernel 4282 enter_lazy_tlb(prev->active_mm, next); 4283 4284 next->active_mm = prev->active_mm; 4285 if (prev->mm) // from user 4286 mmgrab(prev->active_mm); 4287 else 4288 prev->active_mm = NULL; 4289 } else { // to user 4290 membarrier_switch_mm(rq, prev->active_mm, next->mm); 4291 /* 4292 * sys_membarrier() requires an smp_mb() between setting 4293 * rq->curr / membarrier_switch_mm() and returning to userspace. 4294 * 4295 * The below provides this either through switch_mm(), or in 4296 * case 'prev->active_mm == next->mm' through 4297 * finish_task_switch()'s mmdrop(). 4298 */ 4299 switch_mm_irqs_off(prev->active_mm, next->mm, next); 4300 4301 if (!prev->mm) { // from kernel 4302 /* will mmdrop() in finish_task_switch(). */ 4303 rq->prev_mm = prev->active_mm; 4304 prev->active_mm = NULL; 4305 } 4306 } 4307 4308 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4309 4310 prepare_lock_switch(rq, next, rf); 4311 4312 /* Here we just switch the register state and the stack. */ 4313 switch_to(prev, next, prev); 4314 barrier(); 4315 4316 return finish_task_switch(prev); 4317 } 4318 4319 /* 4320 * nr_running and nr_context_switches: 4321 * 4322 * externally visible scheduler statistics: current number of runnable 4323 * threads, total number of context switches performed since bootup. 4324 */ 4325 unsigned long nr_running(void) 4326 { 4327 unsigned long i, sum = 0; 4328 4329 for_each_online_cpu(i) 4330 sum += cpu_rq(i)->nr_running; 4331 4332 return sum; 4333 } 4334 4335 /* 4336 * Check if only the current task is running on the CPU. 4337 * 4338 * Caution: this function does not check that the caller has disabled 4339 * preemption, thus the result might have a time-of-check-to-time-of-use 4340 * race. The caller is responsible to use it correctly, for example: 4341 * 4342 * - from a non-preemptible section (of course) 4343 * 4344 * - from a thread that is bound to a single CPU 4345 * 4346 * - in a loop with very short iterations (e.g. a polling loop) 4347 */ 4348 bool single_task_running(void) 4349 { 4350 return raw_rq()->nr_running == 1; 4351 } 4352 EXPORT_SYMBOL(single_task_running); 4353 4354 unsigned long long nr_context_switches(void) 4355 { 4356 int i; 4357 unsigned long long sum = 0; 4358 4359 for_each_possible_cpu(i) 4360 sum += cpu_rq(i)->nr_switches; 4361 4362 return sum; 4363 } 4364 4365 /* 4366 * Consumers of these two interfaces, like for example the cpuidle menu 4367 * governor, are using nonsensical data. Preferring shallow idle state selection 4368 * for a CPU that has IO-wait which might not even end up running the task when 4369 * it does become runnable. 4370 */ 4371 4372 unsigned long nr_iowait_cpu(int cpu) 4373 { 4374 return atomic_read(&cpu_rq(cpu)->nr_iowait); 4375 } 4376 4377 /* 4378 * IO-wait accounting, and how it's mostly bollocks (on SMP). 4379 * 4380 * The idea behind IO-wait account is to account the idle time that we could 4381 * have spend running if it were not for IO. That is, if we were to improve the 4382 * storage performance, we'd have a proportional reduction in IO-wait time. 4383 * 4384 * This all works nicely on UP, where, when a task blocks on IO, we account 4385 * idle time as IO-wait, because if the storage were faster, it could've been 4386 * running and we'd not be idle. 4387 * 4388 * This has been extended to SMP, by doing the same for each CPU. This however 4389 * is broken. 4390 * 4391 * Imagine for instance the case where two tasks block on one CPU, only the one 4392 * CPU will have IO-wait accounted, while the other has regular idle. Even 4393 * though, if the storage were faster, both could've ran at the same time, 4394 * utilising both CPUs. 4395 * 4396 * This means, that when looking globally, the current IO-wait accounting on 4397 * SMP is a lower bound, by reason of under accounting. 4398 * 4399 * Worse, since the numbers are provided per CPU, they are sometimes 4400 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 4401 * associated with any one particular CPU, it can wake to another CPU than it 4402 * blocked on. This means the per CPU IO-wait number is meaningless. 4403 * 4404 * Task CPU affinities can make all that even more 'interesting'. 4405 */ 4406 4407 unsigned long nr_iowait(void) 4408 { 4409 unsigned long i, sum = 0; 4410 4411 for_each_possible_cpu(i) 4412 sum += nr_iowait_cpu(i); 4413 4414 return sum; 4415 } 4416 4417 #ifdef CONFIG_SMP 4418 4419 /* 4420 * sched_exec - execve() is a valuable balancing opportunity, because at 4421 * this point the task has the smallest effective memory and cache footprint. 4422 */ 4423 void sched_exec(void) 4424 { 4425 struct task_struct *p = current; 4426 unsigned long flags; 4427 int dest_cpu; 4428 4429 raw_spin_lock_irqsave(&p->pi_lock, flags); 4430 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 4431 if (dest_cpu == smp_processor_id()) 4432 goto unlock; 4433 4434 if (likely(cpu_active(dest_cpu))) { 4435 struct migration_arg arg = { p, dest_cpu }; 4436 4437 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4438 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 4439 return; 4440 } 4441 unlock: 4442 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4443 } 4444 4445 #endif 4446 4447 DEFINE_PER_CPU(struct kernel_stat, kstat); 4448 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 4449 4450 EXPORT_PER_CPU_SYMBOL(kstat); 4451 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 4452 4453 /* 4454 * The function fair_sched_class.update_curr accesses the struct curr 4455 * and its field curr->exec_start; when called from task_sched_runtime(), 4456 * we observe a high rate of cache misses in practice. 4457 * Prefetching this data results in improved performance. 4458 */ 4459 static inline void prefetch_curr_exec_start(struct task_struct *p) 4460 { 4461 #ifdef CONFIG_FAIR_GROUP_SCHED 4462 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 4463 #else 4464 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 4465 #endif 4466 prefetch(curr); 4467 prefetch(&curr->exec_start); 4468 } 4469 4470 /* 4471 * Return accounted runtime for the task. 4472 * In case the task is currently running, return the runtime plus current's 4473 * pending runtime that have not been accounted yet. 4474 */ 4475 unsigned long long task_sched_runtime(struct task_struct *p) 4476 { 4477 struct rq_flags rf; 4478 struct rq *rq; 4479 u64 ns; 4480 4481 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 4482 /* 4483 * 64-bit doesn't need locks to atomically read a 64-bit value. 4484 * So we have a optimization chance when the task's delta_exec is 0. 4485 * Reading ->on_cpu is racy, but this is ok. 4486 * 4487 * If we race with it leaving CPU, we'll take a lock. So we're correct. 4488 * If we race with it entering CPU, unaccounted time is 0. This is 4489 * indistinguishable from the read occurring a few cycles earlier. 4490 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 4491 * been accounted, so we're correct here as well. 4492 */ 4493 if (!p->on_cpu || !task_on_rq_queued(p)) 4494 return p->se.sum_exec_runtime; 4495 #endif 4496 4497 rq = task_rq_lock(p, &rf); 4498 /* 4499 * Must be ->curr _and_ ->on_rq. If dequeued, we would 4500 * project cycles that may never be accounted to this 4501 * thread, breaking clock_gettime(). 4502 */ 4503 if (task_current(rq, p) && task_on_rq_queued(p)) { 4504 prefetch_curr_exec_start(p); 4505 update_rq_clock(rq); 4506 p->sched_class->update_curr(rq); 4507 } 4508 ns = p->se.sum_exec_runtime; 4509 task_rq_unlock(rq, p, &rf); 4510 4511 return ns; 4512 } 4513 4514 /* 4515 * This function gets called by the timer code, with HZ frequency. 4516 * We call it with interrupts disabled. 4517 */ 4518 void scheduler_tick(void) 4519 { 4520 int cpu = smp_processor_id(); 4521 struct rq *rq = cpu_rq(cpu); 4522 struct task_struct *curr = rq->curr; 4523 struct rq_flags rf; 4524 unsigned long thermal_pressure; 4525 4526 arch_scale_freq_tick(); 4527 sched_clock_tick(); 4528 4529 rq_lock(rq, &rf); 4530 4531 update_rq_clock(rq); 4532 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 4533 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 4534 curr->sched_class->task_tick(rq, curr, 0); 4535 calc_global_load_tick(rq); 4536 psi_task_tick(rq); 4537 4538 rq_unlock(rq, &rf); 4539 4540 perf_event_task_tick(); 4541 4542 #ifdef CONFIG_SMP 4543 rq->idle_balance = idle_cpu(cpu); 4544 trigger_load_balance(rq); 4545 #endif 4546 } 4547 4548 #ifdef CONFIG_NO_HZ_FULL 4549 4550 struct tick_work { 4551 int cpu; 4552 atomic_t state; 4553 struct delayed_work work; 4554 }; 4555 /* Values for ->state, see diagram below. */ 4556 #define TICK_SCHED_REMOTE_OFFLINE 0 4557 #define TICK_SCHED_REMOTE_OFFLINING 1 4558 #define TICK_SCHED_REMOTE_RUNNING 2 4559 4560 /* 4561 * State diagram for ->state: 4562 * 4563 * 4564 * TICK_SCHED_REMOTE_OFFLINE 4565 * | ^ 4566 * | | 4567 * | | sched_tick_remote() 4568 * | | 4569 * | | 4570 * +--TICK_SCHED_REMOTE_OFFLINING 4571 * | ^ 4572 * | | 4573 * sched_tick_start() | | sched_tick_stop() 4574 * | | 4575 * V | 4576 * TICK_SCHED_REMOTE_RUNNING 4577 * 4578 * 4579 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 4580 * and sched_tick_start() are happy to leave the state in RUNNING. 4581 */ 4582 4583 static struct tick_work __percpu *tick_work_cpu; 4584 4585 static void sched_tick_remote(struct work_struct *work) 4586 { 4587 struct delayed_work *dwork = to_delayed_work(work); 4588 struct tick_work *twork = container_of(dwork, struct tick_work, work); 4589 int cpu = twork->cpu; 4590 struct rq *rq = cpu_rq(cpu); 4591 struct task_struct *curr; 4592 struct rq_flags rf; 4593 u64 delta; 4594 int os; 4595 4596 /* 4597 * Handle the tick only if it appears the remote CPU is running in full 4598 * dynticks mode. The check is racy by nature, but missing a tick or 4599 * having one too much is no big deal because the scheduler tick updates 4600 * statistics and checks timeslices in a time-independent way, regardless 4601 * of when exactly it is running. 4602 */ 4603 if (!tick_nohz_tick_stopped_cpu(cpu)) 4604 goto out_requeue; 4605 4606 rq_lock_irq(rq, &rf); 4607 curr = rq->curr; 4608 if (cpu_is_offline(cpu)) 4609 goto out_unlock; 4610 4611 update_rq_clock(rq); 4612 4613 if (!is_idle_task(curr)) { 4614 /* 4615 * Make sure the next tick runs within a reasonable 4616 * amount of time. 4617 */ 4618 delta = rq_clock_task(rq) - curr->se.exec_start; 4619 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 4620 } 4621 curr->sched_class->task_tick(rq, curr, 0); 4622 4623 calc_load_nohz_remote(rq); 4624 out_unlock: 4625 rq_unlock_irq(rq, &rf); 4626 out_requeue: 4627 4628 /* 4629 * Run the remote tick once per second (1Hz). This arbitrary 4630 * frequency is large enough to avoid overload but short enough 4631 * to keep scheduler internal stats reasonably up to date. But 4632 * first update state to reflect hotplug activity if required. 4633 */ 4634 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 4635 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 4636 if (os == TICK_SCHED_REMOTE_RUNNING) 4637 queue_delayed_work(system_unbound_wq, dwork, HZ); 4638 } 4639 4640 static void sched_tick_start(int cpu) 4641 { 4642 int os; 4643 struct tick_work *twork; 4644 4645 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4646 return; 4647 4648 WARN_ON_ONCE(!tick_work_cpu); 4649 4650 twork = per_cpu_ptr(tick_work_cpu, cpu); 4651 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 4652 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 4653 if (os == TICK_SCHED_REMOTE_OFFLINE) { 4654 twork->cpu = cpu; 4655 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 4656 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 4657 } 4658 } 4659 4660 #ifdef CONFIG_HOTPLUG_CPU 4661 static void sched_tick_stop(int cpu) 4662 { 4663 struct tick_work *twork; 4664 int os; 4665 4666 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 4667 return; 4668 4669 WARN_ON_ONCE(!tick_work_cpu); 4670 4671 twork = per_cpu_ptr(tick_work_cpu, cpu); 4672 /* There cannot be competing actions, but don't rely on stop-machine. */ 4673 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 4674 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 4675 /* Don't cancel, as this would mess up the state machine. */ 4676 } 4677 #endif /* CONFIG_HOTPLUG_CPU */ 4678 4679 int __init sched_tick_offload_init(void) 4680 { 4681 tick_work_cpu = alloc_percpu(struct tick_work); 4682 BUG_ON(!tick_work_cpu); 4683 return 0; 4684 } 4685 4686 #else /* !CONFIG_NO_HZ_FULL */ 4687 static inline void sched_tick_start(int cpu) { } 4688 static inline void sched_tick_stop(int cpu) { } 4689 #endif 4690 4691 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 4692 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 4693 /* 4694 * If the value passed in is equal to the current preempt count 4695 * then we just disabled preemption. Start timing the latency. 4696 */ 4697 static inline void preempt_latency_start(int val) 4698 { 4699 if (preempt_count() == val) { 4700 unsigned long ip = get_lock_parent_ip(); 4701 #ifdef CONFIG_DEBUG_PREEMPT 4702 current->preempt_disable_ip = ip; 4703 #endif 4704 trace_preempt_off(CALLER_ADDR0, ip); 4705 } 4706 } 4707 4708 void preempt_count_add(int val) 4709 { 4710 #ifdef CONFIG_DEBUG_PREEMPT 4711 /* 4712 * Underflow? 4713 */ 4714 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 4715 return; 4716 #endif 4717 __preempt_count_add(val); 4718 #ifdef CONFIG_DEBUG_PREEMPT 4719 /* 4720 * Spinlock count overflowing soon? 4721 */ 4722 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 4723 PREEMPT_MASK - 10); 4724 #endif 4725 preempt_latency_start(val); 4726 } 4727 EXPORT_SYMBOL(preempt_count_add); 4728 NOKPROBE_SYMBOL(preempt_count_add); 4729 4730 /* 4731 * If the value passed in equals to the current preempt count 4732 * then we just enabled preemption. Stop timing the latency. 4733 */ 4734 static inline void preempt_latency_stop(int val) 4735 { 4736 if (preempt_count() == val) 4737 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 4738 } 4739 4740 void preempt_count_sub(int val) 4741 { 4742 #ifdef CONFIG_DEBUG_PREEMPT 4743 /* 4744 * Underflow? 4745 */ 4746 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 4747 return; 4748 /* 4749 * Is the spinlock portion underflowing? 4750 */ 4751 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 4752 !(preempt_count() & PREEMPT_MASK))) 4753 return; 4754 #endif 4755 4756 preempt_latency_stop(val); 4757 __preempt_count_sub(val); 4758 } 4759 EXPORT_SYMBOL(preempt_count_sub); 4760 NOKPROBE_SYMBOL(preempt_count_sub); 4761 4762 #else 4763 static inline void preempt_latency_start(int val) { } 4764 static inline void preempt_latency_stop(int val) { } 4765 #endif 4766 4767 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 4768 { 4769 #ifdef CONFIG_DEBUG_PREEMPT 4770 return p->preempt_disable_ip; 4771 #else 4772 return 0; 4773 #endif 4774 } 4775 4776 /* 4777 * Print scheduling while atomic bug: 4778 */ 4779 static noinline void __schedule_bug(struct task_struct *prev) 4780 { 4781 /* Save this before calling printk(), since that will clobber it */ 4782 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 4783 4784 if (oops_in_progress) 4785 return; 4786 4787 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 4788 prev->comm, prev->pid, preempt_count()); 4789 4790 debug_show_held_locks(prev); 4791 print_modules(); 4792 if (irqs_disabled()) 4793 print_irqtrace_events(prev); 4794 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 4795 && in_atomic_preempt_off()) { 4796 pr_err("Preemption disabled at:"); 4797 print_ip_sym(KERN_ERR, preempt_disable_ip); 4798 } 4799 if (panic_on_warn) 4800 panic("scheduling while atomic\n"); 4801 4802 dump_stack(); 4803 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4804 } 4805 4806 /* 4807 * Various schedule()-time debugging checks and statistics: 4808 */ 4809 static inline void schedule_debug(struct task_struct *prev, bool preempt) 4810 { 4811 #ifdef CONFIG_SCHED_STACK_END_CHECK 4812 if (task_stack_end_corrupted(prev)) 4813 panic("corrupted stack end detected inside scheduler\n"); 4814 4815 if (task_scs_end_corrupted(prev)) 4816 panic("corrupted shadow stack detected inside scheduler\n"); 4817 #endif 4818 4819 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 4820 if (!preempt && prev->state && prev->non_block_count) { 4821 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 4822 prev->comm, prev->pid, prev->non_block_count); 4823 dump_stack(); 4824 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 4825 } 4826 #endif 4827 4828 if (unlikely(in_atomic_preempt_off())) { 4829 __schedule_bug(prev); 4830 preempt_count_set(PREEMPT_DISABLED); 4831 } 4832 rcu_sleep_check(); 4833 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 4834 4835 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 4836 4837 schedstat_inc(this_rq()->sched_count); 4838 } 4839 4840 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 4841 struct rq_flags *rf) 4842 { 4843 #ifdef CONFIG_SMP 4844 const struct sched_class *class; 4845 /* 4846 * We must do the balancing pass before put_prev_task(), such 4847 * that when we release the rq->lock the task is in the same 4848 * state as before we took rq->lock. 4849 * 4850 * We can terminate the balance pass as soon as we know there is 4851 * a runnable task of @class priority or higher. 4852 */ 4853 for_class_range(class, prev->sched_class, &idle_sched_class) { 4854 if (class->balance(rq, prev, rf)) 4855 break; 4856 } 4857 #endif 4858 4859 put_prev_task(rq, prev); 4860 } 4861 4862 /* 4863 * Pick up the highest-prio task: 4864 */ 4865 static inline struct task_struct * 4866 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 4867 { 4868 const struct sched_class *class; 4869 struct task_struct *p; 4870 4871 /* 4872 * Optimization: we know that if all tasks are in the fair class we can 4873 * call that function directly, but only if the @prev task wasn't of a 4874 * higher scheduling class, because otherwise those lose the 4875 * opportunity to pull in more work from other CPUs. 4876 */ 4877 if (likely(prev->sched_class <= &fair_sched_class && 4878 rq->nr_running == rq->cfs.h_nr_running)) { 4879 4880 p = pick_next_task_fair(rq, prev, rf); 4881 if (unlikely(p == RETRY_TASK)) 4882 goto restart; 4883 4884 /* Assumes fair_sched_class->next == idle_sched_class */ 4885 if (!p) { 4886 put_prev_task(rq, prev); 4887 p = pick_next_task_idle(rq); 4888 } 4889 4890 return p; 4891 } 4892 4893 restart: 4894 put_prev_task_balance(rq, prev, rf); 4895 4896 for_each_class(class) { 4897 p = class->pick_next_task(rq); 4898 if (p) 4899 return p; 4900 } 4901 4902 /* The idle class should always have a runnable task: */ 4903 BUG(); 4904 } 4905 4906 /* 4907 * __schedule() is the main scheduler function. 4908 * 4909 * The main means of driving the scheduler and thus entering this function are: 4910 * 4911 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 4912 * 4913 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 4914 * paths. For example, see arch/x86/entry_64.S. 4915 * 4916 * To drive preemption between tasks, the scheduler sets the flag in timer 4917 * interrupt handler scheduler_tick(). 4918 * 4919 * 3. Wakeups don't really cause entry into schedule(). They add a 4920 * task to the run-queue and that's it. 4921 * 4922 * Now, if the new task added to the run-queue preempts the current 4923 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 4924 * called on the nearest possible occasion: 4925 * 4926 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 4927 * 4928 * - in syscall or exception context, at the next outmost 4929 * preempt_enable(). (this might be as soon as the wake_up()'s 4930 * spin_unlock()!) 4931 * 4932 * - in IRQ context, return from interrupt-handler to 4933 * preemptible context 4934 * 4935 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 4936 * then at the next: 4937 * 4938 * - cond_resched() call 4939 * - explicit schedule() call 4940 * - return from syscall or exception to user-space 4941 * - return from interrupt-handler to user-space 4942 * 4943 * WARNING: must be called with preemption disabled! 4944 */ 4945 static void __sched notrace __schedule(bool preempt) 4946 { 4947 struct task_struct *prev, *next; 4948 unsigned long *switch_count; 4949 unsigned long prev_state; 4950 struct rq_flags rf; 4951 struct rq *rq; 4952 int cpu; 4953 4954 cpu = smp_processor_id(); 4955 rq = cpu_rq(cpu); 4956 prev = rq->curr; 4957 4958 schedule_debug(prev, preempt); 4959 4960 if (sched_feat(HRTICK)) 4961 hrtick_clear(rq); 4962 4963 local_irq_disable(); 4964 rcu_note_context_switch(preempt); 4965 4966 /* 4967 * Make sure that signal_pending_state()->signal_pending() below 4968 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4969 * done by the caller to avoid the race with signal_wake_up(): 4970 * 4971 * __set_current_state(@state) signal_wake_up() 4972 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 4973 * wake_up_state(p, state) 4974 * LOCK rq->lock LOCK p->pi_state 4975 * smp_mb__after_spinlock() smp_mb__after_spinlock() 4976 * if (signal_pending_state()) if (p->state & @state) 4977 * 4978 * Also, the membarrier system call requires a full memory barrier 4979 * after coming from user-space, before storing to rq->curr. 4980 */ 4981 rq_lock(rq, &rf); 4982 smp_mb__after_spinlock(); 4983 4984 /* Promote REQ to ACT */ 4985 rq->clock_update_flags <<= 1; 4986 update_rq_clock(rq); 4987 4988 switch_count = &prev->nivcsw; 4989 4990 /* 4991 * We must load prev->state once (task_struct::state is volatile), such 4992 * that: 4993 * 4994 * - we form a control dependency vs deactivate_task() below. 4995 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 4996 */ 4997 prev_state = prev->state; 4998 if (!preempt && prev_state) { 4999 if (signal_pending_state(prev_state, prev)) { 5000 prev->state = TASK_RUNNING; 5001 } else { 5002 prev->sched_contributes_to_load = 5003 (prev_state & TASK_UNINTERRUPTIBLE) && 5004 !(prev_state & TASK_NOLOAD) && 5005 !(prev->flags & PF_FROZEN); 5006 5007 if (prev->sched_contributes_to_load) 5008 rq->nr_uninterruptible++; 5009 5010 /* 5011 * __schedule() ttwu() 5012 * prev_state = prev->state; if (p->on_rq && ...) 5013 * if (prev_state) goto out; 5014 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 5015 * p->state = TASK_WAKING 5016 * 5017 * Where __schedule() and ttwu() have matching control dependencies. 5018 * 5019 * After this, schedule() must not care about p->state any more. 5020 */ 5021 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 5022 5023 if (prev->in_iowait) { 5024 atomic_inc(&rq->nr_iowait); 5025 delayacct_blkio_start(); 5026 } 5027 } 5028 switch_count = &prev->nvcsw; 5029 } 5030 5031 next = pick_next_task(rq, prev, &rf); 5032 clear_tsk_need_resched(prev); 5033 clear_preempt_need_resched(); 5034 5035 if (likely(prev != next)) { 5036 rq->nr_switches++; 5037 /* 5038 * RCU users of rcu_dereference(rq->curr) may not see 5039 * changes to task_struct made by pick_next_task(). 5040 */ 5041 RCU_INIT_POINTER(rq->curr, next); 5042 /* 5043 * The membarrier system call requires each architecture 5044 * to have a full memory barrier after updating 5045 * rq->curr, before returning to user-space. 5046 * 5047 * Here are the schemes providing that barrier on the 5048 * various architectures: 5049 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 5050 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 5051 * - finish_lock_switch() for weakly-ordered 5052 * architectures where spin_unlock is a full barrier, 5053 * - switch_to() for arm64 (weakly-ordered, spin_unlock 5054 * is a RELEASE barrier), 5055 */ 5056 ++*switch_count; 5057 5058 migrate_disable_switch(rq, prev); 5059 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 5060 5061 trace_sched_switch(preempt, prev, next); 5062 5063 /* Also unlocks the rq: */ 5064 rq = context_switch(rq, prev, next, &rf); 5065 } else { 5066 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5067 5068 rq_unpin_lock(rq, &rf); 5069 __balance_callbacks(rq); 5070 raw_spin_unlock_irq(&rq->lock); 5071 } 5072 } 5073 5074 void __noreturn do_task_dead(void) 5075 { 5076 /* Causes final put_task_struct in finish_task_switch(): */ 5077 set_special_state(TASK_DEAD); 5078 5079 /* Tell freezer to ignore us: */ 5080 current->flags |= PF_NOFREEZE; 5081 5082 __schedule(false); 5083 BUG(); 5084 5085 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 5086 for (;;) 5087 cpu_relax(); 5088 } 5089 5090 static inline void sched_submit_work(struct task_struct *tsk) 5091 { 5092 unsigned int task_flags; 5093 5094 if (!tsk->state) 5095 return; 5096 5097 task_flags = tsk->flags; 5098 /* 5099 * If a worker went to sleep, notify and ask workqueue whether 5100 * it wants to wake up a task to maintain concurrency. 5101 * As this function is called inside the schedule() context, 5102 * we disable preemption to avoid it calling schedule() again 5103 * in the possible wakeup of a kworker and because wq_worker_sleeping() 5104 * requires it. 5105 */ 5106 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 5107 preempt_disable(); 5108 if (task_flags & PF_WQ_WORKER) 5109 wq_worker_sleeping(tsk); 5110 else 5111 io_wq_worker_sleeping(tsk); 5112 preempt_enable_no_resched(); 5113 } 5114 5115 if (tsk_is_pi_blocked(tsk)) 5116 return; 5117 5118 /* 5119 * If we are going to sleep and we have plugged IO queued, 5120 * make sure to submit it to avoid deadlocks. 5121 */ 5122 if (blk_needs_flush_plug(tsk)) 5123 blk_schedule_flush_plug(tsk); 5124 } 5125 5126 static void sched_update_worker(struct task_struct *tsk) 5127 { 5128 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 5129 if (tsk->flags & PF_WQ_WORKER) 5130 wq_worker_running(tsk); 5131 else 5132 io_wq_worker_running(tsk); 5133 } 5134 } 5135 5136 asmlinkage __visible void __sched schedule(void) 5137 { 5138 struct task_struct *tsk = current; 5139 5140 sched_submit_work(tsk); 5141 do { 5142 preempt_disable(); 5143 __schedule(false); 5144 sched_preempt_enable_no_resched(); 5145 } while (need_resched()); 5146 sched_update_worker(tsk); 5147 } 5148 EXPORT_SYMBOL(schedule); 5149 5150 /* 5151 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 5152 * state (have scheduled out non-voluntarily) by making sure that all 5153 * tasks have either left the run queue or have gone into user space. 5154 * As idle tasks do not do either, they must not ever be preempted 5155 * (schedule out non-voluntarily). 5156 * 5157 * schedule_idle() is similar to schedule_preempt_disable() except that it 5158 * never enables preemption because it does not call sched_submit_work(). 5159 */ 5160 void __sched schedule_idle(void) 5161 { 5162 /* 5163 * As this skips calling sched_submit_work(), which the idle task does 5164 * regardless because that function is a nop when the task is in a 5165 * TASK_RUNNING state, make sure this isn't used someplace that the 5166 * current task can be in any other state. Note, idle is always in the 5167 * TASK_RUNNING state. 5168 */ 5169 WARN_ON_ONCE(current->state); 5170 do { 5171 __schedule(false); 5172 } while (need_resched()); 5173 } 5174 5175 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK) 5176 asmlinkage __visible void __sched schedule_user(void) 5177 { 5178 /* 5179 * If we come here after a random call to set_need_resched(), 5180 * or we have been woken up remotely but the IPI has not yet arrived, 5181 * we haven't yet exited the RCU idle mode. Do it here manually until 5182 * we find a better solution. 5183 * 5184 * NB: There are buggy callers of this function. Ideally we 5185 * should warn if prev_state != CONTEXT_USER, but that will trigger 5186 * too frequently to make sense yet. 5187 */ 5188 enum ctx_state prev_state = exception_enter(); 5189 schedule(); 5190 exception_exit(prev_state); 5191 } 5192 #endif 5193 5194 /** 5195 * schedule_preempt_disabled - called with preemption disabled 5196 * 5197 * Returns with preemption disabled. Note: preempt_count must be 1 5198 */ 5199 void __sched schedule_preempt_disabled(void) 5200 { 5201 sched_preempt_enable_no_resched(); 5202 schedule(); 5203 preempt_disable(); 5204 } 5205 5206 static void __sched notrace preempt_schedule_common(void) 5207 { 5208 do { 5209 /* 5210 * Because the function tracer can trace preempt_count_sub() 5211 * and it also uses preempt_enable/disable_notrace(), if 5212 * NEED_RESCHED is set, the preempt_enable_notrace() called 5213 * by the function tracer will call this function again and 5214 * cause infinite recursion. 5215 * 5216 * Preemption must be disabled here before the function 5217 * tracer can trace. Break up preempt_disable() into two 5218 * calls. One to disable preemption without fear of being 5219 * traced. The other to still record the preemption latency, 5220 * which can also be traced by the function tracer. 5221 */ 5222 preempt_disable_notrace(); 5223 preempt_latency_start(1); 5224 __schedule(true); 5225 preempt_latency_stop(1); 5226 preempt_enable_no_resched_notrace(); 5227 5228 /* 5229 * Check again in case we missed a preemption opportunity 5230 * between schedule and now. 5231 */ 5232 } while (need_resched()); 5233 } 5234 5235 #ifdef CONFIG_PREEMPTION 5236 /* 5237 * This is the entry point to schedule() from in-kernel preemption 5238 * off of preempt_enable. 5239 */ 5240 asmlinkage __visible void __sched notrace preempt_schedule(void) 5241 { 5242 /* 5243 * If there is a non-zero preempt_count or interrupts are disabled, 5244 * we do not want to preempt the current task. Just return.. 5245 */ 5246 if (likely(!preemptible())) 5247 return; 5248 5249 preempt_schedule_common(); 5250 } 5251 NOKPROBE_SYMBOL(preempt_schedule); 5252 EXPORT_SYMBOL(preempt_schedule); 5253 5254 /** 5255 * preempt_schedule_notrace - preempt_schedule called by tracing 5256 * 5257 * The tracing infrastructure uses preempt_enable_notrace to prevent 5258 * recursion and tracing preempt enabling caused by the tracing 5259 * infrastructure itself. But as tracing can happen in areas coming 5260 * from userspace or just about to enter userspace, a preempt enable 5261 * can occur before user_exit() is called. This will cause the scheduler 5262 * to be called when the system is still in usermode. 5263 * 5264 * To prevent this, the preempt_enable_notrace will use this function 5265 * instead of preempt_schedule() to exit user context if needed before 5266 * calling the scheduler. 5267 */ 5268 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 5269 { 5270 enum ctx_state prev_ctx; 5271 5272 if (likely(!preemptible())) 5273 return; 5274 5275 do { 5276 /* 5277 * Because the function tracer can trace preempt_count_sub() 5278 * and it also uses preempt_enable/disable_notrace(), if 5279 * NEED_RESCHED is set, the preempt_enable_notrace() called 5280 * by the function tracer will call this function again and 5281 * cause infinite recursion. 5282 * 5283 * Preemption must be disabled here before the function 5284 * tracer can trace. Break up preempt_disable() into two 5285 * calls. One to disable preemption without fear of being 5286 * traced. The other to still record the preemption latency, 5287 * which can also be traced by the function tracer. 5288 */ 5289 preempt_disable_notrace(); 5290 preempt_latency_start(1); 5291 /* 5292 * Needs preempt disabled in case user_exit() is traced 5293 * and the tracer calls preempt_enable_notrace() causing 5294 * an infinite recursion. 5295 */ 5296 prev_ctx = exception_enter(); 5297 __schedule(true); 5298 exception_exit(prev_ctx); 5299 5300 preempt_latency_stop(1); 5301 preempt_enable_no_resched_notrace(); 5302 } while (need_resched()); 5303 } 5304 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 5305 5306 #endif /* CONFIG_PREEMPTION */ 5307 5308 /* 5309 * This is the entry point to schedule() from kernel preemption 5310 * off of irq context. 5311 * Note, that this is called and return with irqs disabled. This will 5312 * protect us against recursive calling from irq. 5313 */ 5314 asmlinkage __visible void __sched preempt_schedule_irq(void) 5315 { 5316 enum ctx_state prev_state; 5317 5318 /* Catch callers which need to be fixed */ 5319 BUG_ON(preempt_count() || !irqs_disabled()); 5320 5321 prev_state = exception_enter(); 5322 5323 do { 5324 preempt_disable(); 5325 local_irq_enable(); 5326 __schedule(true); 5327 local_irq_disable(); 5328 sched_preempt_enable_no_resched(); 5329 } while (need_resched()); 5330 5331 exception_exit(prev_state); 5332 } 5333 5334 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 5335 void *key) 5336 { 5337 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 5338 return try_to_wake_up(curr->private, mode, wake_flags); 5339 } 5340 EXPORT_SYMBOL(default_wake_function); 5341 5342 #ifdef CONFIG_RT_MUTEXES 5343 5344 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 5345 { 5346 if (pi_task) 5347 prio = min(prio, pi_task->prio); 5348 5349 return prio; 5350 } 5351 5352 static inline int rt_effective_prio(struct task_struct *p, int prio) 5353 { 5354 struct task_struct *pi_task = rt_mutex_get_top_task(p); 5355 5356 return __rt_effective_prio(pi_task, prio); 5357 } 5358 5359 /* 5360 * rt_mutex_setprio - set the current priority of a task 5361 * @p: task to boost 5362 * @pi_task: donor task 5363 * 5364 * This function changes the 'effective' priority of a task. It does 5365 * not touch ->normal_prio like __setscheduler(). 5366 * 5367 * Used by the rt_mutex code to implement priority inheritance 5368 * logic. Call site only calls if the priority of the task changed. 5369 */ 5370 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 5371 { 5372 int prio, oldprio, queued, running, queue_flag = 5373 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 5374 const struct sched_class *prev_class; 5375 struct rq_flags rf; 5376 struct rq *rq; 5377 5378 /* XXX used to be waiter->prio, not waiter->task->prio */ 5379 prio = __rt_effective_prio(pi_task, p->normal_prio); 5380 5381 /* 5382 * If nothing changed; bail early. 5383 */ 5384 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 5385 return; 5386 5387 rq = __task_rq_lock(p, &rf); 5388 update_rq_clock(rq); 5389 /* 5390 * Set under pi_lock && rq->lock, such that the value can be used under 5391 * either lock. 5392 * 5393 * Note that there is loads of tricky to make this pointer cache work 5394 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 5395 * ensure a task is de-boosted (pi_task is set to NULL) before the 5396 * task is allowed to run again (and can exit). This ensures the pointer 5397 * points to a blocked task -- which guarantees the task is present. 5398 */ 5399 p->pi_top_task = pi_task; 5400 5401 /* 5402 * For FIFO/RR we only need to set prio, if that matches we're done. 5403 */ 5404 if (prio == p->prio && !dl_prio(prio)) 5405 goto out_unlock; 5406 5407 /* 5408 * Idle task boosting is a nono in general. There is one 5409 * exception, when PREEMPT_RT and NOHZ is active: 5410 * 5411 * The idle task calls get_next_timer_interrupt() and holds 5412 * the timer wheel base->lock on the CPU and another CPU wants 5413 * to access the timer (probably to cancel it). We can safely 5414 * ignore the boosting request, as the idle CPU runs this code 5415 * with interrupts disabled and will complete the lock 5416 * protected section without being interrupted. So there is no 5417 * real need to boost. 5418 */ 5419 if (unlikely(p == rq->idle)) { 5420 WARN_ON(p != rq->curr); 5421 WARN_ON(p->pi_blocked_on); 5422 goto out_unlock; 5423 } 5424 5425 trace_sched_pi_setprio(p, pi_task); 5426 oldprio = p->prio; 5427 5428 if (oldprio == prio) 5429 queue_flag &= ~DEQUEUE_MOVE; 5430 5431 prev_class = p->sched_class; 5432 queued = task_on_rq_queued(p); 5433 running = task_current(rq, p); 5434 if (queued) 5435 dequeue_task(rq, p, queue_flag); 5436 if (running) 5437 put_prev_task(rq, p); 5438 5439 /* 5440 * Boosting condition are: 5441 * 1. -rt task is running and holds mutex A 5442 * --> -dl task blocks on mutex A 5443 * 5444 * 2. -dl task is running and holds mutex A 5445 * --> -dl task blocks on mutex A and could preempt the 5446 * running task 5447 */ 5448 if (dl_prio(prio)) { 5449 if (!dl_prio(p->normal_prio) || 5450 (pi_task && dl_prio(pi_task->prio) && 5451 dl_entity_preempt(&pi_task->dl, &p->dl))) { 5452 p->dl.pi_se = pi_task->dl.pi_se; 5453 queue_flag |= ENQUEUE_REPLENISH; 5454 } else { 5455 p->dl.pi_se = &p->dl; 5456 } 5457 p->sched_class = &dl_sched_class; 5458 } else if (rt_prio(prio)) { 5459 if (dl_prio(oldprio)) 5460 p->dl.pi_se = &p->dl; 5461 if (oldprio < prio) 5462 queue_flag |= ENQUEUE_HEAD; 5463 p->sched_class = &rt_sched_class; 5464 } else { 5465 if (dl_prio(oldprio)) 5466 p->dl.pi_se = &p->dl; 5467 if (rt_prio(oldprio)) 5468 p->rt.timeout = 0; 5469 p->sched_class = &fair_sched_class; 5470 } 5471 5472 p->prio = prio; 5473 5474 if (queued) 5475 enqueue_task(rq, p, queue_flag); 5476 if (running) 5477 set_next_task(rq, p); 5478 5479 check_class_changed(rq, p, prev_class, oldprio); 5480 out_unlock: 5481 /* Avoid rq from going away on us: */ 5482 preempt_disable(); 5483 5484 rq_unpin_lock(rq, &rf); 5485 __balance_callbacks(rq); 5486 raw_spin_unlock(&rq->lock); 5487 5488 preempt_enable(); 5489 } 5490 #else 5491 static inline int rt_effective_prio(struct task_struct *p, int prio) 5492 { 5493 return prio; 5494 } 5495 #endif 5496 5497 void set_user_nice(struct task_struct *p, long nice) 5498 { 5499 bool queued, running; 5500 int old_prio; 5501 struct rq_flags rf; 5502 struct rq *rq; 5503 5504 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 5505 return; 5506 /* 5507 * We have to be careful, if called from sys_setpriority(), 5508 * the task might be in the middle of scheduling on another CPU. 5509 */ 5510 rq = task_rq_lock(p, &rf); 5511 update_rq_clock(rq); 5512 5513 /* 5514 * The RT priorities are set via sched_setscheduler(), but we still 5515 * allow the 'normal' nice value to be set - but as expected 5516 * it won't have any effect on scheduling until the task is 5517 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 5518 */ 5519 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 5520 p->static_prio = NICE_TO_PRIO(nice); 5521 goto out_unlock; 5522 } 5523 queued = task_on_rq_queued(p); 5524 running = task_current(rq, p); 5525 if (queued) 5526 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 5527 if (running) 5528 put_prev_task(rq, p); 5529 5530 p->static_prio = NICE_TO_PRIO(nice); 5531 set_load_weight(p, true); 5532 old_prio = p->prio; 5533 p->prio = effective_prio(p); 5534 5535 if (queued) 5536 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5537 if (running) 5538 set_next_task(rq, p); 5539 5540 /* 5541 * If the task increased its priority or is running and 5542 * lowered its priority, then reschedule its CPU: 5543 */ 5544 p->sched_class->prio_changed(rq, p, old_prio); 5545 5546 out_unlock: 5547 task_rq_unlock(rq, p, &rf); 5548 } 5549 EXPORT_SYMBOL(set_user_nice); 5550 5551 /* 5552 * can_nice - check if a task can reduce its nice value 5553 * @p: task 5554 * @nice: nice value 5555 */ 5556 int can_nice(const struct task_struct *p, const int nice) 5557 { 5558 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 5559 int nice_rlim = nice_to_rlimit(nice); 5560 5561 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 5562 capable(CAP_SYS_NICE)); 5563 } 5564 5565 #ifdef __ARCH_WANT_SYS_NICE 5566 5567 /* 5568 * sys_nice - change the priority of the current process. 5569 * @increment: priority increment 5570 * 5571 * sys_setpriority is a more generic, but much slower function that 5572 * does similar things. 5573 */ 5574 SYSCALL_DEFINE1(nice, int, increment) 5575 { 5576 long nice, retval; 5577 5578 /* 5579 * Setpriority might change our priority at the same moment. 5580 * We don't have to worry. Conceptually one call occurs first 5581 * and we have a single winner. 5582 */ 5583 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 5584 nice = task_nice(current) + increment; 5585 5586 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 5587 if (increment < 0 && !can_nice(current, nice)) 5588 return -EPERM; 5589 5590 retval = security_task_setnice(current, nice); 5591 if (retval) 5592 return retval; 5593 5594 set_user_nice(current, nice); 5595 return 0; 5596 } 5597 5598 #endif 5599 5600 /** 5601 * task_prio - return the priority value of a given task. 5602 * @p: the task in question. 5603 * 5604 * Return: The priority value as seen by users in /proc. 5605 * RT tasks are offset by -200. Normal tasks are centered 5606 * around 0, value goes from -16 to +15. 5607 */ 5608 int task_prio(const struct task_struct *p) 5609 { 5610 return p->prio - MAX_RT_PRIO; 5611 } 5612 5613 /** 5614 * idle_cpu - is a given CPU idle currently? 5615 * @cpu: the processor in question. 5616 * 5617 * Return: 1 if the CPU is currently idle. 0 otherwise. 5618 */ 5619 int idle_cpu(int cpu) 5620 { 5621 struct rq *rq = cpu_rq(cpu); 5622 5623 if (rq->curr != rq->idle) 5624 return 0; 5625 5626 if (rq->nr_running) 5627 return 0; 5628 5629 #ifdef CONFIG_SMP 5630 if (rq->ttwu_pending) 5631 return 0; 5632 #endif 5633 5634 return 1; 5635 } 5636 5637 /** 5638 * available_idle_cpu - is a given CPU idle for enqueuing work. 5639 * @cpu: the CPU in question. 5640 * 5641 * Return: 1 if the CPU is currently idle. 0 otherwise. 5642 */ 5643 int available_idle_cpu(int cpu) 5644 { 5645 if (!idle_cpu(cpu)) 5646 return 0; 5647 5648 if (vcpu_is_preempted(cpu)) 5649 return 0; 5650 5651 return 1; 5652 } 5653 5654 /** 5655 * idle_task - return the idle task for a given CPU. 5656 * @cpu: the processor in question. 5657 * 5658 * Return: The idle task for the CPU @cpu. 5659 */ 5660 struct task_struct *idle_task(int cpu) 5661 { 5662 return cpu_rq(cpu)->idle; 5663 } 5664 5665 /** 5666 * find_process_by_pid - find a process with a matching PID value. 5667 * @pid: the pid in question. 5668 * 5669 * The task of @pid, if found. %NULL otherwise. 5670 */ 5671 static struct task_struct *find_process_by_pid(pid_t pid) 5672 { 5673 return pid ? find_task_by_vpid(pid) : current; 5674 } 5675 5676 /* 5677 * sched_setparam() passes in -1 for its policy, to let the functions 5678 * it calls know not to change it. 5679 */ 5680 #define SETPARAM_POLICY -1 5681 5682 static void __setscheduler_params(struct task_struct *p, 5683 const struct sched_attr *attr) 5684 { 5685 int policy = attr->sched_policy; 5686 5687 if (policy == SETPARAM_POLICY) 5688 policy = p->policy; 5689 5690 p->policy = policy; 5691 5692 if (dl_policy(policy)) 5693 __setparam_dl(p, attr); 5694 else if (fair_policy(policy)) 5695 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5696 5697 /* 5698 * __sched_setscheduler() ensures attr->sched_priority == 0 when 5699 * !rt_policy. Always setting this ensures that things like 5700 * getparam()/getattr() don't report silly values for !rt tasks. 5701 */ 5702 p->rt_priority = attr->sched_priority; 5703 p->normal_prio = normal_prio(p); 5704 set_load_weight(p, true); 5705 } 5706 5707 /* Actually do priority change: must hold pi & rq lock. */ 5708 static void __setscheduler(struct rq *rq, struct task_struct *p, 5709 const struct sched_attr *attr, bool keep_boost) 5710 { 5711 /* 5712 * If params can't change scheduling class changes aren't allowed 5713 * either. 5714 */ 5715 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 5716 return; 5717 5718 __setscheduler_params(p, attr); 5719 5720 /* 5721 * Keep a potential priority boosting if called from 5722 * sched_setscheduler(). 5723 */ 5724 p->prio = normal_prio(p); 5725 if (keep_boost) 5726 p->prio = rt_effective_prio(p, p->prio); 5727 5728 if (dl_prio(p->prio)) 5729 p->sched_class = &dl_sched_class; 5730 else if (rt_prio(p->prio)) 5731 p->sched_class = &rt_sched_class; 5732 else 5733 p->sched_class = &fair_sched_class; 5734 } 5735 5736 /* 5737 * Check the target process has a UID that matches the current process's: 5738 */ 5739 static bool check_same_owner(struct task_struct *p) 5740 { 5741 const struct cred *cred = current_cred(), *pcred; 5742 bool match; 5743 5744 rcu_read_lock(); 5745 pcred = __task_cred(p); 5746 match = (uid_eq(cred->euid, pcred->euid) || 5747 uid_eq(cred->euid, pcred->uid)); 5748 rcu_read_unlock(); 5749 return match; 5750 } 5751 5752 static int __sched_setscheduler(struct task_struct *p, 5753 const struct sched_attr *attr, 5754 bool user, bool pi) 5755 { 5756 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 5757 MAX_RT_PRIO - 1 - attr->sched_priority; 5758 int retval, oldprio, oldpolicy = -1, queued, running; 5759 int new_effective_prio, policy = attr->sched_policy; 5760 const struct sched_class *prev_class; 5761 struct callback_head *head; 5762 struct rq_flags rf; 5763 int reset_on_fork; 5764 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 5765 struct rq *rq; 5766 5767 /* The pi code expects interrupts enabled */ 5768 BUG_ON(pi && in_interrupt()); 5769 recheck: 5770 /* Double check policy once rq lock held: */ 5771 if (policy < 0) { 5772 reset_on_fork = p->sched_reset_on_fork; 5773 policy = oldpolicy = p->policy; 5774 } else { 5775 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 5776 5777 if (!valid_policy(policy)) 5778 return -EINVAL; 5779 } 5780 5781 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 5782 return -EINVAL; 5783 5784 /* 5785 * Valid priorities for SCHED_FIFO and SCHED_RR are 5786 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 5787 * SCHED_BATCH and SCHED_IDLE is 0. 5788 */ 5789 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 5790 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 5791 return -EINVAL; 5792 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 5793 (rt_policy(policy) != (attr->sched_priority != 0))) 5794 return -EINVAL; 5795 5796 /* 5797 * Allow unprivileged RT tasks to decrease priority: 5798 */ 5799 if (user && !capable(CAP_SYS_NICE)) { 5800 if (fair_policy(policy)) { 5801 if (attr->sched_nice < task_nice(p) && 5802 !can_nice(p, attr->sched_nice)) 5803 return -EPERM; 5804 } 5805 5806 if (rt_policy(policy)) { 5807 unsigned long rlim_rtprio = 5808 task_rlimit(p, RLIMIT_RTPRIO); 5809 5810 /* Can't set/change the rt policy: */ 5811 if (policy != p->policy && !rlim_rtprio) 5812 return -EPERM; 5813 5814 /* Can't increase priority: */ 5815 if (attr->sched_priority > p->rt_priority && 5816 attr->sched_priority > rlim_rtprio) 5817 return -EPERM; 5818 } 5819 5820 /* 5821 * Can't set/change SCHED_DEADLINE policy at all for now 5822 * (safest behavior); in the future we would like to allow 5823 * unprivileged DL tasks to increase their relative deadline 5824 * or reduce their runtime (both ways reducing utilization) 5825 */ 5826 if (dl_policy(policy)) 5827 return -EPERM; 5828 5829 /* 5830 * Treat SCHED_IDLE as nice 20. Only allow a switch to 5831 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 5832 */ 5833 if (task_has_idle_policy(p) && !idle_policy(policy)) { 5834 if (!can_nice(p, task_nice(p))) 5835 return -EPERM; 5836 } 5837 5838 /* Can't change other user's priorities: */ 5839 if (!check_same_owner(p)) 5840 return -EPERM; 5841 5842 /* Normal users shall not reset the sched_reset_on_fork flag: */ 5843 if (p->sched_reset_on_fork && !reset_on_fork) 5844 return -EPERM; 5845 } 5846 5847 if (user) { 5848 if (attr->sched_flags & SCHED_FLAG_SUGOV) 5849 return -EINVAL; 5850 5851 retval = security_task_setscheduler(p); 5852 if (retval) 5853 return retval; 5854 } 5855 5856 /* Update task specific "requested" clamps */ 5857 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 5858 retval = uclamp_validate(p, attr); 5859 if (retval) 5860 return retval; 5861 } 5862 5863 if (pi) 5864 cpuset_read_lock(); 5865 5866 /* 5867 * Make sure no PI-waiters arrive (or leave) while we are 5868 * changing the priority of the task: 5869 * 5870 * To be able to change p->policy safely, the appropriate 5871 * runqueue lock must be held. 5872 */ 5873 rq = task_rq_lock(p, &rf); 5874 update_rq_clock(rq); 5875 5876 /* 5877 * Changing the policy of the stop threads its a very bad idea: 5878 */ 5879 if (p == rq->stop) { 5880 retval = -EINVAL; 5881 goto unlock; 5882 } 5883 5884 /* 5885 * If not changing anything there's no need to proceed further, 5886 * but store a possible modification of reset_on_fork. 5887 */ 5888 if (unlikely(policy == p->policy)) { 5889 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 5890 goto change; 5891 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 5892 goto change; 5893 if (dl_policy(policy) && dl_param_changed(p, attr)) 5894 goto change; 5895 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 5896 goto change; 5897 5898 p->sched_reset_on_fork = reset_on_fork; 5899 retval = 0; 5900 goto unlock; 5901 } 5902 change: 5903 5904 if (user) { 5905 #ifdef CONFIG_RT_GROUP_SCHED 5906 /* 5907 * Do not allow realtime tasks into groups that have no runtime 5908 * assigned. 5909 */ 5910 if (rt_bandwidth_enabled() && rt_policy(policy) && 5911 task_group(p)->rt_bandwidth.rt_runtime == 0 && 5912 !task_group_is_autogroup(task_group(p))) { 5913 retval = -EPERM; 5914 goto unlock; 5915 } 5916 #endif 5917 #ifdef CONFIG_SMP 5918 if (dl_bandwidth_enabled() && dl_policy(policy) && 5919 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 5920 cpumask_t *span = rq->rd->span; 5921 5922 /* 5923 * Don't allow tasks with an affinity mask smaller than 5924 * the entire root_domain to become SCHED_DEADLINE. We 5925 * will also fail if there's no bandwidth available. 5926 */ 5927 if (!cpumask_subset(span, p->cpus_ptr) || 5928 rq->rd->dl_bw.bw == 0) { 5929 retval = -EPERM; 5930 goto unlock; 5931 } 5932 } 5933 #endif 5934 } 5935 5936 /* Re-check policy now with rq lock held: */ 5937 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 5938 policy = oldpolicy = -1; 5939 task_rq_unlock(rq, p, &rf); 5940 if (pi) 5941 cpuset_read_unlock(); 5942 goto recheck; 5943 } 5944 5945 /* 5946 * If setscheduling to SCHED_DEADLINE (or changing the parameters 5947 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 5948 * is available. 5949 */ 5950 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 5951 retval = -EBUSY; 5952 goto unlock; 5953 } 5954 5955 p->sched_reset_on_fork = reset_on_fork; 5956 oldprio = p->prio; 5957 5958 if (pi) { 5959 /* 5960 * Take priority boosted tasks into account. If the new 5961 * effective priority is unchanged, we just store the new 5962 * normal parameters and do not touch the scheduler class and 5963 * the runqueue. This will be done when the task deboost 5964 * itself. 5965 */ 5966 new_effective_prio = rt_effective_prio(p, newprio); 5967 if (new_effective_prio == oldprio) 5968 queue_flags &= ~DEQUEUE_MOVE; 5969 } 5970 5971 queued = task_on_rq_queued(p); 5972 running = task_current(rq, p); 5973 if (queued) 5974 dequeue_task(rq, p, queue_flags); 5975 if (running) 5976 put_prev_task(rq, p); 5977 5978 prev_class = p->sched_class; 5979 5980 __setscheduler(rq, p, attr, pi); 5981 __setscheduler_uclamp(p, attr); 5982 5983 if (queued) { 5984 /* 5985 * We enqueue to tail when the priority of a task is 5986 * increased (user space view). 5987 */ 5988 if (oldprio < p->prio) 5989 queue_flags |= ENQUEUE_HEAD; 5990 5991 enqueue_task(rq, p, queue_flags); 5992 } 5993 if (running) 5994 set_next_task(rq, p); 5995 5996 check_class_changed(rq, p, prev_class, oldprio); 5997 5998 /* Avoid rq from going away on us: */ 5999 preempt_disable(); 6000 head = splice_balance_callbacks(rq); 6001 task_rq_unlock(rq, p, &rf); 6002 6003 if (pi) { 6004 cpuset_read_unlock(); 6005 rt_mutex_adjust_pi(p); 6006 } 6007 6008 /* Run balance callbacks after we've adjusted the PI chain: */ 6009 balance_callbacks(rq, head); 6010 preempt_enable(); 6011 6012 return 0; 6013 6014 unlock: 6015 task_rq_unlock(rq, p, &rf); 6016 if (pi) 6017 cpuset_read_unlock(); 6018 return retval; 6019 } 6020 6021 static int _sched_setscheduler(struct task_struct *p, int policy, 6022 const struct sched_param *param, bool check) 6023 { 6024 struct sched_attr attr = { 6025 .sched_policy = policy, 6026 .sched_priority = param->sched_priority, 6027 .sched_nice = PRIO_TO_NICE(p->static_prio), 6028 }; 6029 6030 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 6031 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 6032 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 6033 policy &= ~SCHED_RESET_ON_FORK; 6034 attr.sched_policy = policy; 6035 } 6036 6037 return __sched_setscheduler(p, &attr, check, true); 6038 } 6039 /** 6040 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 6041 * @p: the task in question. 6042 * @policy: new policy. 6043 * @param: structure containing the new RT priority. 6044 * 6045 * Use sched_set_fifo(), read its comment. 6046 * 6047 * Return: 0 on success. An error code otherwise. 6048 * 6049 * NOTE that the task may be already dead. 6050 */ 6051 int sched_setscheduler(struct task_struct *p, int policy, 6052 const struct sched_param *param) 6053 { 6054 return _sched_setscheduler(p, policy, param, true); 6055 } 6056 6057 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 6058 { 6059 return __sched_setscheduler(p, attr, true, true); 6060 } 6061 6062 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 6063 { 6064 return __sched_setscheduler(p, attr, false, true); 6065 } 6066 6067 /** 6068 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 6069 * @p: the task in question. 6070 * @policy: new policy. 6071 * @param: structure containing the new RT priority. 6072 * 6073 * Just like sched_setscheduler, only don't bother checking if the 6074 * current context has permission. For example, this is needed in 6075 * stop_machine(): we create temporary high priority worker threads, 6076 * but our caller might not have that capability. 6077 * 6078 * Return: 0 on success. An error code otherwise. 6079 */ 6080 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 6081 const struct sched_param *param) 6082 { 6083 return _sched_setscheduler(p, policy, param, false); 6084 } 6085 6086 /* 6087 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 6088 * incapable of resource management, which is the one thing an OS really should 6089 * be doing. 6090 * 6091 * This is of course the reason it is limited to privileged users only. 6092 * 6093 * Worse still; it is fundamentally impossible to compose static priority 6094 * workloads. You cannot take two correctly working static prio workloads 6095 * and smash them together and still expect them to work. 6096 * 6097 * For this reason 'all' FIFO tasks the kernel creates are basically at: 6098 * 6099 * MAX_RT_PRIO / 2 6100 * 6101 * The administrator _MUST_ configure the system, the kernel simply doesn't 6102 * know enough information to make a sensible choice. 6103 */ 6104 void sched_set_fifo(struct task_struct *p) 6105 { 6106 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 6107 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 6108 } 6109 EXPORT_SYMBOL_GPL(sched_set_fifo); 6110 6111 /* 6112 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 6113 */ 6114 void sched_set_fifo_low(struct task_struct *p) 6115 { 6116 struct sched_param sp = { .sched_priority = 1 }; 6117 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 6118 } 6119 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 6120 6121 void sched_set_normal(struct task_struct *p, int nice) 6122 { 6123 struct sched_attr attr = { 6124 .sched_policy = SCHED_NORMAL, 6125 .sched_nice = nice, 6126 }; 6127 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 6128 } 6129 EXPORT_SYMBOL_GPL(sched_set_normal); 6130 6131 static int 6132 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 6133 { 6134 struct sched_param lparam; 6135 struct task_struct *p; 6136 int retval; 6137 6138 if (!param || pid < 0) 6139 return -EINVAL; 6140 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 6141 return -EFAULT; 6142 6143 rcu_read_lock(); 6144 retval = -ESRCH; 6145 p = find_process_by_pid(pid); 6146 if (likely(p)) 6147 get_task_struct(p); 6148 rcu_read_unlock(); 6149 6150 if (likely(p)) { 6151 retval = sched_setscheduler(p, policy, &lparam); 6152 put_task_struct(p); 6153 } 6154 6155 return retval; 6156 } 6157 6158 /* 6159 * Mimics kernel/events/core.c perf_copy_attr(). 6160 */ 6161 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 6162 { 6163 u32 size; 6164 int ret; 6165 6166 /* Zero the full structure, so that a short copy will be nice: */ 6167 memset(attr, 0, sizeof(*attr)); 6168 6169 ret = get_user(size, &uattr->size); 6170 if (ret) 6171 return ret; 6172 6173 /* ABI compatibility quirk: */ 6174 if (!size) 6175 size = SCHED_ATTR_SIZE_VER0; 6176 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 6177 goto err_size; 6178 6179 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 6180 if (ret) { 6181 if (ret == -E2BIG) 6182 goto err_size; 6183 return ret; 6184 } 6185 6186 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 6187 size < SCHED_ATTR_SIZE_VER1) 6188 return -EINVAL; 6189 6190 /* 6191 * XXX: Do we want to be lenient like existing syscalls; or do we want 6192 * to be strict and return an error on out-of-bounds values? 6193 */ 6194 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 6195 6196 return 0; 6197 6198 err_size: 6199 put_user(sizeof(*attr), &uattr->size); 6200 return -E2BIG; 6201 } 6202 6203 /** 6204 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 6205 * @pid: the pid in question. 6206 * @policy: new policy. 6207 * @param: structure containing the new RT priority. 6208 * 6209 * Return: 0 on success. An error code otherwise. 6210 */ 6211 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 6212 { 6213 if (policy < 0) 6214 return -EINVAL; 6215 6216 return do_sched_setscheduler(pid, policy, param); 6217 } 6218 6219 /** 6220 * sys_sched_setparam - set/change the RT priority of a thread 6221 * @pid: the pid in question. 6222 * @param: structure containing the new RT priority. 6223 * 6224 * Return: 0 on success. An error code otherwise. 6225 */ 6226 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 6227 { 6228 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 6229 } 6230 6231 /** 6232 * sys_sched_setattr - same as above, but with extended sched_attr 6233 * @pid: the pid in question. 6234 * @uattr: structure containing the extended parameters. 6235 * @flags: for future extension. 6236 */ 6237 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 6238 unsigned int, flags) 6239 { 6240 struct sched_attr attr; 6241 struct task_struct *p; 6242 int retval; 6243 6244 if (!uattr || pid < 0 || flags) 6245 return -EINVAL; 6246 6247 retval = sched_copy_attr(uattr, &attr); 6248 if (retval) 6249 return retval; 6250 6251 if ((int)attr.sched_policy < 0) 6252 return -EINVAL; 6253 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 6254 attr.sched_policy = SETPARAM_POLICY; 6255 6256 rcu_read_lock(); 6257 retval = -ESRCH; 6258 p = find_process_by_pid(pid); 6259 if (likely(p)) 6260 get_task_struct(p); 6261 rcu_read_unlock(); 6262 6263 if (likely(p)) { 6264 retval = sched_setattr(p, &attr); 6265 put_task_struct(p); 6266 } 6267 6268 return retval; 6269 } 6270 6271 /** 6272 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 6273 * @pid: the pid in question. 6274 * 6275 * Return: On success, the policy of the thread. Otherwise, a negative error 6276 * code. 6277 */ 6278 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 6279 { 6280 struct task_struct *p; 6281 int retval; 6282 6283 if (pid < 0) 6284 return -EINVAL; 6285 6286 retval = -ESRCH; 6287 rcu_read_lock(); 6288 p = find_process_by_pid(pid); 6289 if (p) { 6290 retval = security_task_getscheduler(p); 6291 if (!retval) 6292 retval = p->policy 6293 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 6294 } 6295 rcu_read_unlock(); 6296 return retval; 6297 } 6298 6299 /** 6300 * sys_sched_getparam - get the RT priority of a thread 6301 * @pid: the pid in question. 6302 * @param: structure containing the RT priority. 6303 * 6304 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 6305 * code. 6306 */ 6307 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 6308 { 6309 struct sched_param lp = { .sched_priority = 0 }; 6310 struct task_struct *p; 6311 int retval; 6312 6313 if (!param || pid < 0) 6314 return -EINVAL; 6315 6316 rcu_read_lock(); 6317 p = find_process_by_pid(pid); 6318 retval = -ESRCH; 6319 if (!p) 6320 goto out_unlock; 6321 6322 retval = security_task_getscheduler(p); 6323 if (retval) 6324 goto out_unlock; 6325 6326 if (task_has_rt_policy(p)) 6327 lp.sched_priority = p->rt_priority; 6328 rcu_read_unlock(); 6329 6330 /* 6331 * This one might sleep, we cannot do it with a spinlock held ... 6332 */ 6333 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 6334 6335 return retval; 6336 6337 out_unlock: 6338 rcu_read_unlock(); 6339 return retval; 6340 } 6341 6342 /* 6343 * Copy the kernel size attribute structure (which might be larger 6344 * than what user-space knows about) to user-space. 6345 * 6346 * Note that all cases are valid: user-space buffer can be larger or 6347 * smaller than the kernel-space buffer. The usual case is that both 6348 * have the same size. 6349 */ 6350 static int 6351 sched_attr_copy_to_user(struct sched_attr __user *uattr, 6352 struct sched_attr *kattr, 6353 unsigned int usize) 6354 { 6355 unsigned int ksize = sizeof(*kattr); 6356 6357 if (!access_ok(uattr, usize)) 6358 return -EFAULT; 6359 6360 /* 6361 * sched_getattr() ABI forwards and backwards compatibility: 6362 * 6363 * If usize == ksize then we just copy everything to user-space and all is good. 6364 * 6365 * If usize < ksize then we only copy as much as user-space has space for, 6366 * this keeps ABI compatibility as well. We skip the rest. 6367 * 6368 * If usize > ksize then user-space is using a newer version of the ABI, 6369 * which part the kernel doesn't know about. Just ignore it - tooling can 6370 * detect the kernel's knowledge of attributes from the attr->size value 6371 * which is set to ksize in this case. 6372 */ 6373 kattr->size = min(usize, ksize); 6374 6375 if (copy_to_user(uattr, kattr, kattr->size)) 6376 return -EFAULT; 6377 6378 return 0; 6379 } 6380 6381 /** 6382 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 6383 * @pid: the pid in question. 6384 * @uattr: structure containing the extended parameters. 6385 * @usize: sizeof(attr) for fwd/bwd comp. 6386 * @flags: for future extension. 6387 */ 6388 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 6389 unsigned int, usize, unsigned int, flags) 6390 { 6391 struct sched_attr kattr = { }; 6392 struct task_struct *p; 6393 int retval; 6394 6395 if (!uattr || pid < 0 || usize > PAGE_SIZE || 6396 usize < SCHED_ATTR_SIZE_VER0 || flags) 6397 return -EINVAL; 6398 6399 rcu_read_lock(); 6400 p = find_process_by_pid(pid); 6401 retval = -ESRCH; 6402 if (!p) 6403 goto out_unlock; 6404 6405 retval = security_task_getscheduler(p); 6406 if (retval) 6407 goto out_unlock; 6408 6409 kattr.sched_policy = p->policy; 6410 if (p->sched_reset_on_fork) 6411 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 6412 if (task_has_dl_policy(p)) 6413 __getparam_dl(p, &kattr); 6414 else if (task_has_rt_policy(p)) 6415 kattr.sched_priority = p->rt_priority; 6416 else 6417 kattr.sched_nice = task_nice(p); 6418 6419 #ifdef CONFIG_UCLAMP_TASK 6420 /* 6421 * This could race with another potential updater, but this is fine 6422 * because it'll correctly read the old or the new value. We don't need 6423 * to guarantee who wins the race as long as it doesn't return garbage. 6424 */ 6425 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 6426 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 6427 #endif 6428 6429 rcu_read_unlock(); 6430 6431 return sched_attr_copy_to_user(uattr, &kattr, usize); 6432 6433 out_unlock: 6434 rcu_read_unlock(); 6435 return retval; 6436 } 6437 6438 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 6439 { 6440 cpumask_var_t cpus_allowed, new_mask; 6441 struct task_struct *p; 6442 int retval; 6443 6444 rcu_read_lock(); 6445 6446 p = find_process_by_pid(pid); 6447 if (!p) { 6448 rcu_read_unlock(); 6449 return -ESRCH; 6450 } 6451 6452 /* Prevent p going away */ 6453 get_task_struct(p); 6454 rcu_read_unlock(); 6455 6456 if (p->flags & PF_NO_SETAFFINITY) { 6457 retval = -EINVAL; 6458 goto out_put_task; 6459 } 6460 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 6461 retval = -ENOMEM; 6462 goto out_put_task; 6463 } 6464 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 6465 retval = -ENOMEM; 6466 goto out_free_cpus_allowed; 6467 } 6468 retval = -EPERM; 6469 if (!check_same_owner(p)) { 6470 rcu_read_lock(); 6471 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 6472 rcu_read_unlock(); 6473 goto out_free_new_mask; 6474 } 6475 rcu_read_unlock(); 6476 } 6477 6478 retval = security_task_setscheduler(p); 6479 if (retval) 6480 goto out_free_new_mask; 6481 6482 6483 cpuset_cpus_allowed(p, cpus_allowed); 6484 cpumask_and(new_mask, in_mask, cpus_allowed); 6485 6486 /* 6487 * Since bandwidth control happens on root_domain basis, 6488 * if admission test is enabled, we only admit -deadline 6489 * tasks allowed to run on all the CPUs in the task's 6490 * root_domain. 6491 */ 6492 #ifdef CONFIG_SMP 6493 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 6494 rcu_read_lock(); 6495 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 6496 retval = -EBUSY; 6497 rcu_read_unlock(); 6498 goto out_free_new_mask; 6499 } 6500 rcu_read_unlock(); 6501 } 6502 #endif 6503 again: 6504 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK); 6505 6506 if (!retval) { 6507 cpuset_cpus_allowed(p, cpus_allowed); 6508 if (!cpumask_subset(new_mask, cpus_allowed)) { 6509 /* 6510 * We must have raced with a concurrent cpuset 6511 * update. Just reset the cpus_allowed to the 6512 * cpuset's cpus_allowed 6513 */ 6514 cpumask_copy(new_mask, cpus_allowed); 6515 goto again; 6516 } 6517 } 6518 out_free_new_mask: 6519 free_cpumask_var(new_mask); 6520 out_free_cpus_allowed: 6521 free_cpumask_var(cpus_allowed); 6522 out_put_task: 6523 put_task_struct(p); 6524 return retval; 6525 } 6526 6527 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 6528 struct cpumask *new_mask) 6529 { 6530 if (len < cpumask_size()) 6531 cpumask_clear(new_mask); 6532 else if (len > cpumask_size()) 6533 len = cpumask_size(); 6534 6535 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 6536 } 6537 6538 /** 6539 * sys_sched_setaffinity - set the CPU affinity of a process 6540 * @pid: pid of the process 6541 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6542 * @user_mask_ptr: user-space pointer to the new CPU mask 6543 * 6544 * Return: 0 on success. An error code otherwise. 6545 */ 6546 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 6547 unsigned long __user *, user_mask_ptr) 6548 { 6549 cpumask_var_t new_mask; 6550 int retval; 6551 6552 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 6553 return -ENOMEM; 6554 6555 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 6556 if (retval == 0) 6557 retval = sched_setaffinity(pid, new_mask); 6558 free_cpumask_var(new_mask); 6559 return retval; 6560 } 6561 6562 long sched_getaffinity(pid_t pid, struct cpumask *mask) 6563 { 6564 struct task_struct *p; 6565 unsigned long flags; 6566 int retval; 6567 6568 rcu_read_lock(); 6569 6570 retval = -ESRCH; 6571 p = find_process_by_pid(pid); 6572 if (!p) 6573 goto out_unlock; 6574 6575 retval = security_task_getscheduler(p); 6576 if (retval) 6577 goto out_unlock; 6578 6579 raw_spin_lock_irqsave(&p->pi_lock, flags); 6580 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 6581 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 6582 6583 out_unlock: 6584 rcu_read_unlock(); 6585 6586 return retval; 6587 } 6588 6589 /** 6590 * sys_sched_getaffinity - get the CPU affinity of a process 6591 * @pid: pid of the process 6592 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6593 * @user_mask_ptr: user-space pointer to hold the current CPU mask 6594 * 6595 * Return: size of CPU mask copied to user_mask_ptr on success. An 6596 * error code otherwise. 6597 */ 6598 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 6599 unsigned long __user *, user_mask_ptr) 6600 { 6601 int ret; 6602 cpumask_var_t mask; 6603 6604 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 6605 return -EINVAL; 6606 if (len & (sizeof(unsigned long)-1)) 6607 return -EINVAL; 6608 6609 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 6610 return -ENOMEM; 6611 6612 ret = sched_getaffinity(pid, mask); 6613 if (ret == 0) { 6614 unsigned int retlen = min(len, cpumask_size()); 6615 6616 if (copy_to_user(user_mask_ptr, mask, retlen)) 6617 ret = -EFAULT; 6618 else 6619 ret = retlen; 6620 } 6621 free_cpumask_var(mask); 6622 6623 return ret; 6624 } 6625 6626 static void do_sched_yield(void) 6627 { 6628 struct rq_flags rf; 6629 struct rq *rq; 6630 6631 rq = this_rq_lock_irq(&rf); 6632 6633 schedstat_inc(rq->yld_count); 6634 current->sched_class->yield_task(rq); 6635 6636 preempt_disable(); 6637 rq_unlock_irq(rq, &rf); 6638 sched_preempt_enable_no_resched(); 6639 6640 schedule(); 6641 } 6642 6643 /** 6644 * sys_sched_yield - yield the current processor to other threads. 6645 * 6646 * This function yields the current CPU to other tasks. If there are no 6647 * other threads running on this CPU then this function will return. 6648 * 6649 * Return: 0. 6650 */ 6651 SYSCALL_DEFINE0(sched_yield) 6652 { 6653 do_sched_yield(); 6654 return 0; 6655 } 6656 6657 #ifndef CONFIG_PREEMPTION 6658 int __sched _cond_resched(void) 6659 { 6660 if (should_resched(0)) { 6661 preempt_schedule_common(); 6662 return 1; 6663 } 6664 rcu_all_qs(); 6665 return 0; 6666 } 6667 EXPORT_SYMBOL(_cond_resched); 6668 #endif 6669 6670 /* 6671 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 6672 * call schedule, and on return reacquire the lock. 6673 * 6674 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 6675 * operations here to prevent schedule() from being called twice (once via 6676 * spin_unlock(), once by hand). 6677 */ 6678 int __cond_resched_lock(spinlock_t *lock) 6679 { 6680 int resched = should_resched(PREEMPT_LOCK_OFFSET); 6681 int ret = 0; 6682 6683 lockdep_assert_held(lock); 6684 6685 if (spin_needbreak(lock) || resched) { 6686 spin_unlock(lock); 6687 if (resched) 6688 preempt_schedule_common(); 6689 else 6690 cpu_relax(); 6691 ret = 1; 6692 spin_lock(lock); 6693 } 6694 return ret; 6695 } 6696 EXPORT_SYMBOL(__cond_resched_lock); 6697 6698 /** 6699 * yield - yield the current processor to other threads. 6700 * 6701 * Do not ever use this function, there's a 99% chance you're doing it wrong. 6702 * 6703 * The scheduler is at all times free to pick the calling task as the most 6704 * eligible task to run, if removing the yield() call from your code breaks 6705 * it, it's already broken. 6706 * 6707 * Typical broken usage is: 6708 * 6709 * while (!event) 6710 * yield(); 6711 * 6712 * where one assumes that yield() will let 'the other' process run that will 6713 * make event true. If the current task is a SCHED_FIFO task that will never 6714 * happen. Never use yield() as a progress guarantee!! 6715 * 6716 * If you want to use yield() to wait for something, use wait_event(). 6717 * If you want to use yield() to be 'nice' for others, use cond_resched(). 6718 * If you still want to use yield(), do not! 6719 */ 6720 void __sched yield(void) 6721 { 6722 set_current_state(TASK_RUNNING); 6723 do_sched_yield(); 6724 } 6725 EXPORT_SYMBOL(yield); 6726 6727 /** 6728 * yield_to - yield the current processor to another thread in 6729 * your thread group, or accelerate that thread toward the 6730 * processor it's on. 6731 * @p: target task 6732 * @preempt: whether task preemption is allowed or not 6733 * 6734 * It's the caller's job to ensure that the target task struct 6735 * can't go away on us before we can do any checks. 6736 * 6737 * Return: 6738 * true (>0) if we indeed boosted the target task. 6739 * false (0) if we failed to boost the target. 6740 * -ESRCH if there's no task to yield to. 6741 */ 6742 int __sched yield_to(struct task_struct *p, bool preempt) 6743 { 6744 struct task_struct *curr = current; 6745 struct rq *rq, *p_rq; 6746 unsigned long flags; 6747 int yielded = 0; 6748 6749 local_irq_save(flags); 6750 rq = this_rq(); 6751 6752 again: 6753 p_rq = task_rq(p); 6754 /* 6755 * If we're the only runnable task on the rq and target rq also 6756 * has only one task, there's absolutely no point in yielding. 6757 */ 6758 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 6759 yielded = -ESRCH; 6760 goto out_irq; 6761 } 6762 6763 double_rq_lock(rq, p_rq); 6764 if (task_rq(p) != p_rq) { 6765 double_rq_unlock(rq, p_rq); 6766 goto again; 6767 } 6768 6769 if (!curr->sched_class->yield_to_task) 6770 goto out_unlock; 6771 6772 if (curr->sched_class != p->sched_class) 6773 goto out_unlock; 6774 6775 if (task_running(p_rq, p) || p->state) 6776 goto out_unlock; 6777 6778 yielded = curr->sched_class->yield_to_task(rq, p); 6779 if (yielded) { 6780 schedstat_inc(rq->yld_count); 6781 /* 6782 * Make p's CPU reschedule; pick_next_entity takes care of 6783 * fairness. 6784 */ 6785 if (preempt && rq != p_rq) 6786 resched_curr(p_rq); 6787 } 6788 6789 out_unlock: 6790 double_rq_unlock(rq, p_rq); 6791 out_irq: 6792 local_irq_restore(flags); 6793 6794 if (yielded > 0) 6795 schedule(); 6796 6797 return yielded; 6798 } 6799 EXPORT_SYMBOL_GPL(yield_to); 6800 6801 int io_schedule_prepare(void) 6802 { 6803 int old_iowait = current->in_iowait; 6804 6805 current->in_iowait = 1; 6806 blk_schedule_flush_plug(current); 6807 6808 return old_iowait; 6809 } 6810 6811 void io_schedule_finish(int token) 6812 { 6813 current->in_iowait = token; 6814 } 6815 6816 /* 6817 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 6818 * that process accounting knows that this is a task in IO wait state. 6819 */ 6820 long __sched io_schedule_timeout(long timeout) 6821 { 6822 int token; 6823 long ret; 6824 6825 token = io_schedule_prepare(); 6826 ret = schedule_timeout(timeout); 6827 io_schedule_finish(token); 6828 6829 return ret; 6830 } 6831 EXPORT_SYMBOL(io_schedule_timeout); 6832 6833 void __sched io_schedule(void) 6834 { 6835 int token; 6836 6837 token = io_schedule_prepare(); 6838 schedule(); 6839 io_schedule_finish(token); 6840 } 6841 EXPORT_SYMBOL(io_schedule); 6842 6843 /** 6844 * sys_sched_get_priority_max - return maximum RT priority. 6845 * @policy: scheduling class. 6846 * 6847 * Return: On success, this syscall returns the maximum 6848 * rt_priority that can be used by a given scheduling class. 6849 * On failure, a negative error code is returned. 6850 */ 6851 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 6852 { 6853 int ret = -EINVAL; 6854 6855 switch (policy) { 6856 case SCHED_FIFO: 6857 case SCHED_RR: 6858 ret = MAX_USER_RT_PRIO-1; 6859 break; 6860 case SCHED_DEADLINE: 6861 case SCHED_NORMAL: 6862 case SCHED_BATCH: 6863 case SCHED_IDLE: 6864 ret = 0; 6865 break; 6866 } 6867 return ret; 6868 } 6869 6870 /** 6871 * sys_sched_get_priority_min - return minimum RT priority. 6872 * @policy: scheduling class. 6873 * 6874 * Return: On success, this syscall returns the minimum 6875 * rt_priority that can be used by a given scheduling class. 6876 * On failure, a negative error code is returned. 6877 */ 6878 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 6879 { 6880 int ret = -EINVAL; 6881 6882 switch (policy) { 6883 case SCHED_FIFO: 6884 case SCHED_RR: 6885 ret = 1; 6886 break; 6887 case SCHED_DEADLINE: 6888 case SCHED_NORMAL: 6889 case SCHED_BATCH: 6890 case SCHED_IDLE: 6891 ret = 0; 6892 } 6893 return ret; 6894 } 6895 6896 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 6897 { 6898 struct task_struct *p; 6899 unsigned int time_slice; 6900 struct rq_flags rf; 6901 struct rq *rq; 6902 int retval; 6903 6904 if (pid < 0) 6905 return -EINVAL; 6906 6907 retval = -ESRCH; 6908 rcu_read_lock(); 6909 p = find_process_by_pid(pid); 6910 if (!p) 6911 goto out_unlock; 6912 6913 retval = security_task_getscheduler(p); 6914 if (retval) 6915 goto out_unlock; 6916 6917 rq = task_rq_lock(p, &rf); 6918 time_slice = 0; 6919 if (p->sched_class->get_rr_interval) 6920 time_slice = p->sched_class->get_rr_interval(rq, p); 6921 task_rq_unlock(rq, p, &rf); 6922 6923 rcu_read_unlock(); 6924 jiffies_to_timespec64(time_slice, t); 6925 return 0; 6926 6927 out_unlock: 6928 rcu_read_unlock(); 6929 return retval; 6930 } 6931 6932 /** 6933 * sys_sched_rr_get_interval - return the default timeslice of a process. 6934 * @pid: pid of the process. 6935 * @interval: userspace pointer to the timeslice value. 6936 * 6937 * this syscall writes the default timeslice value of a given process 6938 * into the user-space timespec buffer. A value of '0' means infinity. 6939 * 6940 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 6941 * an error code. 6942 */ 6943 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 6944 struct __kernel_timespec __user *, interval) 6945 { 6946 struct timespec64 t; 6947 int retval = sched_rr_get_interval(pid, &t); 6948 6949 if (retval == 0) 6950 retval = put_timespec64(&t, interval); 6951 6952 return retval; 6953 } 6954 6955 #ifdef CONFIG_COMPAT_32BIT_TIME 6956 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 6957 struct old_timespec32 __user *, interval) 6958 { 6959 struct timespec64 t; 6960 int retval = sched_rr_get_interval(pid, &t); 6961 6962 if (retval == 0) 6963 retval = put_old_timespec32(&t, interval); 6964 return retval; 6965 } 6966 #endif 6967 6968 void sched_show_task(struct task_struct *p) 6969 { 6970 unsigned long free = 0; 6971 int ppid; 6972 6973 if (!try_get_task_stack(p)) 6974 return; 6975 6976 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 6977 6978 if (p->state == TASK_RUNNING) 6979 pr_cont(" running task "); 6980 #ifdef CONFIG_DEBUG_STACK_USAGE 6981 free = stack_not_used(p); 6982 #endif 6983 ppid = 0; 6984 rcu_read_lock(); 6985 if (pid_alive(p)) 6986 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 6987 rcu_read_unlock(); 6988 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 6989 free, task_pid_nr(p), ppid, 6990 (unsigned long)task_thread_info(p)->flags); 6991 6992 print_worker_info(KERN_INFO, p); 6993 print_stop_info(KERN_INFO, p); 6994 show_stack(p, NULL, KERN_INFO); 6995 put_task_stack(p); 6996 } 6997 EXPORT_SYMBOL_GPL(sched_show_task); 6998 6999 static inline bool 7000 state_filter_match(unsigned long state_filter, struct task_struct *p) 7001 { 7002 /* no filter, everything matches */ 7003 if (!state_filter) 7004 return true; 7005 7006 /* filter, but doesn't match */ 7007 if (!(p->state & state_filter)) 7008 return false; 7009 7010 /* 7011 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7012 * TASK_KILLABLE). 7013 */ 7014 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 7015 return false; 7016 7017 return true; 7018 } 7019 7020 7021 void show_state_filter(unsigned long state_filter) 7022 { 7023 struct task_struct *g, *p; 7024 7025 rcu_read_lock(); 7026 for_each_process_thread(g, p) { 7027 /* 7028 * reset the NMI-timeout, listing all files on a slow 7029 * console might take a lot of time: 7030 * Also, reset softlockup watchdogs on all CPUs, because 7031 * another CPU might be blocked waiting for us to process 7032 * an IPI. 7033 */ 7034 touch_nmi_watchdog(); 7035 touch_all_softlockup_watchdogs(); 7036 if (state_filter_match(state_filter, p)) 7037 sched_show_task(p); 7038 } 7039 7040 #ifdef CONFIG_SCHED_DEBUG 7041 if (!state_filter) 7042 sysrq_sched_debug_show(); 7043 #endif 7044 rcu_read_unlock(); 7045 /* 7046 * Only show locks if all tasks are dumped: 7047 */ 7048 if (!state_filter) 7049 debug_show_all_locks(); 7050 } 7051 7052 /** 7053 * init_idle - set up an idle thread for a given CPU 7054 * @idle: task in question 7055 * @cpu: CPU the idle task belongs to 7056 * 7057 * NOTE: this function does not set the idle thread's NEED_RESCHED 7058 * flag, to make booting more robust. 7059 */ 7060 void init_idle(struct task_struct *idle, int cpu) 7061 { 7062 struct rq *rq = cpu_rq(cpu); 7063 unsigned long flags; 7064 7065 __sched_fork(0, idle); 7066 7067 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7068 raw_spin_lock(&rq->lock); 7069 7070 idle->state = TASK_RUNNING; 7071 idle->se.exec_start = sched_clock(); 7072 idle->flags |= PF_IDLE; 7073 7074 scs_task_reset(idle); 7075 kasan_unpoison_task_stack(idle); 7076 7077 #ifdef CONFIG_SMP 7078 /* 7079 * It's possible that init_idle() gets called multiple times on a task, 7080 * in that case do_set_cpus_allowed() will not do the right thing. 7081 * 7082 * And since this is boot we can forgo the serialization. 7083 */ 7084 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 7085 #endif 7086 /* 7087 * We're having a chicken and egg problem, even though we are 7088 * holding rq->lock, the CPU isn't yet set to this CPU so the 7089 * lockdep check in task_group() will fail. 7090 * 7091 * Similar case to sched_fork(). / Alternatively we could 7092 * use task_rq_lock() here and obtain the other rq->lock. 7093 * 7094 * Silence PROVE_RCU 7095 */ 7096 rcu_read_lock(); 7097 __set_task_cpu(idle, cpu); 7098 rcu_read_unlock(); 7099 7100 rq->idle = idle; 7101 rcu_assign_pointer(rq->curr, idle); 7102 idle->on_rq = TASK_ON_RQ_QUEUED; 7103 #ifdef CONFIG_SMP 7104 idle->on_cpu = 1; 7105 #endif 7106 raw_spin_unlock(&rq->lock); 7107 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7108 7109 /* Set the preempt count _outside_ the spinlocks! */ 7110 init_idle_preempt_count(idle, cpu); 7111 7112 /* 7113 * The idle tasks have their own, simple scheduling class: 7114 */ 7115 idle->sched_class = &idle_sched_class; 7116 ftrace_graph_init_idle_task(idle, cpu); 7117 vtime_init_idle(idle, cpu); 7118 #ifdef CONFIG_SMP 7119 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7120 #endif 7121 } 7122 7123 #ifdef CONFIG_SMP 7124 7125 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7126 const struct cpumask *trial) 7127 { 7128 int ret = 1; 7129 7130 if (!cpumask_weight(cur)) 7131 return ret; 7132 7133 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7134 7135 return ret; 7136 } 7137 7138 int task_can_attach(struct task_struct *p, 7139 const struct cpumask *cs_cpus_allowed) 7140 { 7141 int ret = 0; 7142 7143 /* 7144 * Kthreads which disallow setaffinity shouldn't be moved 7145 * to a new cpuset; we don't want to change their CPU 7146 * affinity and isolating such threads by their set of 7147 * allowed nodes is unnecessary. Thus, cpusets are not 7148 * applicable for such threads. This prevents checking for 7149 * success of set_cpus_allowed_ptr() on all attached tasks 7150 * before cpus_mask may be changed. 7151 */ 7152 if (p->flags & PF_NO_SETAFFINITY) { 7153 ret = -EINVAL; 7154 goto out; 7155 } 7156 7157 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 7158 cs_cpus_allowed)) 7159 ret = dl_task_can_attach(p, cs_cpus_allowed); 7160 7161 out: 7162 return ret; 7163 } 7164 7165 bool sched_smp_initialized __read_mostly; 7166 7167 #ifdef CONFIG_NUMA_BALANCING 7168 /* Migrate current task p to target_cpu */ 7169 int migrate_task_to(struct task_struct *p, int target_cpu) 7170 { 7171 struct migration_arg arg = { p, target_cpu }; 7172 int curr_cpu = task_cpu(p); 7173 7174 if (curr_cpu == target_cpu) 7175 return 0; 7176 7177 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7178 return -EINVAL; 7179 7180 /* TODO: This is not properly updating schedstats */ 7181 7182 trace_sched_move_numa(p, curr_cpu, target_cpu); 7183 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7184 } 7185 7186 /* 7187 * Requeue a task on a given node and accurately track the number of NUMA 7188 * tasks on the runqueues 7189 */ 7190 void sched_setnuma(struct task_struct *p, int nid) 7191 { 7192 bool queued, running; 7193 struct rq_flags rf; 7194 struct rq *rq; 7195 7196 rq = task_rq_lock(p, &rf); 7197 queued = task_on_rq_queued(p); 7198 running = task_current(rq, p); 7199 7200 if (queued) 7201 dequeue_task(rq, p, DEQUEUE_SAVE); 7202 if (running) 7203 put_prev_task(rq, p); 7204 7205 p->numa_preferred_nid = nid; 7206 7207 if (queued) 7208 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7209 if (running) 7210 set_next_task(rq, p); 7211 task_rq_unlock(rq, p, &rf); 7212 } 7213 #endif /* CONFIG_NUMA_BALANCING */ 7214 7215 #ifdef CONFIG_HOTPLUG_CPU 7216 /* 7217 * Ensure that the idle task is using init_mm right before its CPU goes 7218 * offline. 7219 */ 7220 void idle_task_exit(void) 7221 { 7222 struct mm_struct *mm = current->active_mm; 7223 7224 BUG_ON(cpu_online(smp_processor_id())); 7225 BUG_ON(current != this_rq()->idle); 7226 7227 if (mm != &init_mm) { 7228 switch_mm(mm, &init_mm, current); 7229 finish_arch_post_lock_switch(); 7230 } 7231 7232 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7233 } 7234 7235 static int __balance_push_cpu_stop(void *arg) 7236 { 7237 struct task_struct *p = arg; 7238 struct rq *rq = this_rq(); 7239 struct rq_flags rf; 7240 int cpu; 7241 7242 raw_spin_lock_irq(&p->pi_lock); 7243 rq_lock(rq, &rf); 7244 7245 update_rq_clock(rq); 7246 7247 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7248 cpu = select_fallback_rq(rq->cpu, p); 7249 rq = __migrate_task(rq, &rf, p, cpu); 7250 } 7251 7252 rq_unlock(rq, &rf); 7253 raw_spin_unlock_irq(&p->pi_lock); 7254 7255 put_task_struct(p); 7256 7257 return 0; 7258 } 7259 7260 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7261 7262 /* 7263 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7264 */ 7265 static void balance_push(struct rq *rq) 7266 { 7267 struct task_struct *push_task = rq->curr; 7268 7269 lockdep_assert_held(&rq->lock); 7270 SCHED_WARN_ON(rq->cpu != smp_processor_id()); 7271 /* 7272 * Ensure the thing is persistent until balance_push_set(.on = false); 7273 */ 7274 rq->balance_callback = &balance_push_callback; 7275 7276 /* 7277 * Both the cpu-hotplug and stop task are in this case and are 7278 * required to complete the hotplug process. 7279 */ 7280 if (is_per_cpu_kthread(push_task) || is_migration_disabled(push_task)) { 7281 /* 7282 * If this is the idle task on the outgoing CPU try to wake 7283 * up the hotplug control thread which might wait for the 7284 * last task to vanish. The rcuwait_active() check is 7285 * accurate here because the waiter is pinned on this CPU 7286 * and can't obviously be running in parallel. 7287 * 7288 * On RT kernels this also has to check whether there are 7289 * pinned and scheduled out tasks on the runqueue. They 7290 * need to leave the migrate disabled section first. 7291 */ 7292 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 7293 rcuwait_active(&rq->hotplug_wait)) { 7294 raw_spin_unlock(&rq->lock); 7295 rcuwait_wake_up(&rq->hotplug_wait); 7296 raw_spin_lock(&rq->lock); 7297 } 7298 return; 7299 } 7300 7301 get_task_struct(push_task); 7302 /* 7303 * Temporarily drop rq->lock such that we can wake-up the stop task. 7304 * Both preemption and IRQs are still disabled. 7305 */ 7306 raw_spin_unlock(&rq->lock); 7307 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 7308 this_cpu_ptr(&push_work)); 7309 /* 7310 * At this point need_resched() is true and we'll take the loop in 7311 * schedule(). The next pick is obviously going to be the stop task 7312 * which is_per_cpu_kthread() and will push this task away. 7313 */ 7314 raw_spin_lock(&rq->lock); 7315 } 7316 7317 static void balance_push_set(int cpu, bool on) 7318 { 7319 struct rq *rq = cpu_rq(cpu); 7320 struct rq_flags rf; 7321 7322 rq_lock_irqsave(rq, &rf); 7323 if (on) 7324 rq->balance_callback = &balance_push_callback; 7325 else 7326 rq->balance_callback = NULL; 7327 rq_unlock_irqrestore(rq, &rf); 7328 } 7329 7330 /* 7331 * Invoked from a CPUs hotplug control thread after the CPU has been marked 7332 * inactive. All tasks which are not per CPU kernel threads are either 7333 * pushed off this CPU now via balance_push() or placed on a different CPU 7334 * during wakeup. Wait until the CPU is quiescent. 7335 */ 7336 static void balance_hotplug_wait(void) 7337 { 7338 struct rq *rq = this_rq(); 7339 7340 rcuwait_wait_event(&rq->hotplug_wait, 7341 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 7342 TASK_UNINTERRUPTIBLE); 7343 } 7344 7345 #else 7346 7347 static inline void balance_push(struct rq *rq) 7348 { 7349 } 7350 7351 static inline void balance_push_set(int cpu, bool on) 7352 { 7353 } 7354 7355 static inline void balance_hotplug_wait(void) 7356 { 7357 } 7358 7359 #endif /* CONFIG_HOTPLUG_CPU */ 7360 7361 void set_rq_online(struct rq *rq) 7362 { 7363 if (!rq->online) { 7364 const struct sched_class *class; 7365 7366 cpumask_set_cpu(rq->cpu, rq->rd->online); 7367 rq->online = 1; 7368 7369 for_each_class(class) { 7370 if (class->rq_online) 7371 class->rq_online(rq); 7372 } 7373 } 7374 } 7375 7376 void set_rq_offline(struct rq *rq) 7377 { 7378 if (rq->online) { 7379 const struct sched_class *class; 7380 7381 for_each_class(class) { 7382 if (class->rq_offline) 7383 class->rq_offline(rq); 7384 } 7385 7386 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7387 rq->online = 0; 7388 } 7389 } 7390 7391 /* 7392 * used to mark begin/end of suspend/resume: 7393 */ 7394 static int num_cpus_frozen; 7395 7396 /* 7397 * Update cpusets according to cpu_active mask. If cpusets are 7398 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 7399 * around partition_sched_domains(). 7400 * 7401 * If we come here as part of a suspend/resume, don't touch cpusets because we 7402 * want to restore it back to its original state upon resume anyway. 7403 */ 7404 static void cpuset_cpu_active(void) 7405 { 7406 if (cpuhp_tasks_frozen) { 7407 /* 7408 * num_cpus_frozen tracks how many CPUs are involved in suspend 7409 * resume sequence. As long as this is not the last online 7410 * operation in the resume sequence, just build a single sched 7411 * domain, ignoring cpusets. 7412 */ 7413 partition_sched_domains(1, NULL, NULL); 7414 if (--num_cpus_frozen) 7415 return; 7416 /* 7417 * This is the last CPU online operation. So fall through and 7418 * restore the original sched domains by considering the 7419 * cpuset configurations. 7420 */ 7421 cpuset_force_rebuild(); 7422 } 7423 cpuset_update_active_cpus(); 7424 } 7425 7426 static int cpuset_cpu_inactive(unsigned int cpu) 7427 { 7428 if (!cpuhp_tasks_frozen) { 7429 if (dl_cpu_busy(cpu)) 7430 return -EBUSY; 7431 cpuset_update_active_cpus(); 7432 } else { 7433 num_cpus_frozen++; 7434 partition_sched_domains(1, NULL, NULL); 7435 } 7436 return 0; 7437 } 7438 7439 int sched_cpu_activate(unsigned int cpu) 7440 { 7441 struct rq *rq = cpu_rq(cpu); 7442 struct rq_flags rf; 7443 7444 balance_push_set(cpu, false); 7445 7446 #ifdef CONFIG_SCHED_SMT 7447 /* 7448 * When going up, increment the number of cores with SMT present. 7449 */ 7450 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7451 static_branch_inc_cpuslocked(&sched_smt_present); 7452 #endif 7453 set_cpu_active(cpu, true); 7454 7455 if (sched_smp_initialized) { 7456 sched_domains_numa_masks_set(cpu); 7457 cpuset_cpu_active(); 7458 } 7459 7460 /* 7461 * Put the rq online, if not already. This happens: 7462 * 7463 * 1) In the early boot process, because we build the real domains 7464 * after all CPUs have been brought up. 7465 * 7466 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 7467 * domains. 7468 */ 7469 rq_lock_irqsave(rq, &rf); 7470 if (rq->rd) { 7471 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7472 set_rq_online(rq); 7473 } 7474 rq_unlock_irqrestore(rq, &rf); 7475 7476 return 0; 7477 } 7478 7479 int sched_cpu_deactivate(unsigned int cpu) 7480 { 7481 struct rq *rq = cpu_rq(cpu); 7482 struct rq_flags rf; 7483 int ret; 7484 7485 set_cpu_active(cpu, false); 7486 /* 7487 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 7488 * users of this state to go away such that all new such users will 7489 * observe it. 7490 * 7491 * Do sync before park smpboot threads to take care the rcu boost case. 7492 */ 7493 synchronize_rcu(); 7494 7495 balance_push_set(cpu, true); 7496 7497 rq_lock_irqsave(rq, &rf); 7498 if (rq->rd) { 7499 update_rq_clock(rq); 7500 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7501 set_rq_offline(rq); 7502 } 7503 rq_unlock_irqrestore(rq, &rf); 7504 7505 #ifdef CONFIG_SCHED_SMT 7506 /* 7507 * When going down, decrement the number of cores with SMT present. 7508 */ 7509 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 7510 static_branch_dec_cpuslocked(&sched_smt_present); 7511 #endif 7512 7513 if (!sched_smp_initialized) 7514 return 0; 7515 7516 ret = cpuset_cpu_inactive(cpu); 7517 if (ret) { 7518 balance_push_set(cpu, false); 7519 set_cpu_active(cpu, true); 7520 return ret; 7521 } 7522 sched_domains_numa_masks_clear(cpu); 7523 return 0; 7524 } 7525 7526 static void sched_rq_cpu_starting(unsigned int cpu) 7527 { 7528 struct rq *rq = cpu_rq(cpu); 7529 7530 rq->calc_load_update = calc_load_update; 7531 update_max_interval(); 7532 } 7533 7534 int sched_cpu_starting(unsigned int cpu) 7535 { 7536 sched_rq_cpu_starting(cpu); 7537 sched_tick_start(cpu); 7538 return 0; 7539 } 7540 7541 #ifdef CONFIG_HOTPLUG_CPU 7542 7543 /* 7544 * Invoked immediately before the stopper thread is invoked to bring the 7545 * CPU down completely. At this point all per CPU kthreads except the 7546 * hotplug thread (current) and the stopper thread (inactive) have been 7547 * either parked or have been unbound from the outgoing CPU. Ensure that 7548 * any of those which might be on the way out are gone. 7549 * 7550 * If after this point a bound task is being woken on this CPU then the 7551 * responsible hotplug callback has failed to do it's job. 7552 * sched_cpu_dying() will catch it with the appropriate fireworks. 7553 */ 7554 int sched_cpu_wait_empty(unsigned int cpu) 7555 { 7556 balance_hotplug_wait(); 7557 return 0; 7558 } 7559 7560 /* 7561 * Since this CPU is going 'away' for a while, fold any nr_active delta we 7562 * might have. Called from the CPU stopper task after ensuring that the 7563 * stopper is the last running task on the CPU, so nr_active count is 7564 * stable. We need to take the teardown thread which is calling this into 7565 * account, so we hand in adjust = 1 to the load calculation. 7566 * 7567 * Also see the comment "Global load-average calculations". 7568 */ 7569 static void calc_load_migrate(struct rq *rq) 7570 { 7571 long delta = calc_load_fold_active(rq, 1); 7572 7573 if (delta) 7574 atomic_long_add(delta, &calc_load_tasks); 7575 } 7576 7577 int sched_cpu_dying(unsigned int cpu) 7578 { 7579 struct rq *rq = cpu_rq(cpu); 7580 struct rq_flags rf; 7581 7582 /* Handle pending wakeups and then migrate everything off */ 7583 sched_tick_stop(cpu); 7584 7585 rq_lock_irqsave(rq, &rf); 7586 BUG_ON(rq->nr_running != 1 || rq_has_pinned_tasks(rq)); 7587 rq_unlock_irqrestore(rq, &rf); 7588 7589 calc_load_migrate(rq); 7590 update_max_interval(); 7591 nohz_balance_exit_idle(rq); 7592 hrtick_clear(rq); 7593 return 0; 7594 } 7595 #endif 7596 7597 void __init sched_init_smp(void) 7598 { 7599 sched_init_numa(); 7600 7601 /* 7602 * There's no userspace yet to cause hotplug operations; hence all the 7603 * CPU masks are stable and all blatant races in the below code cannot 7604 * happen. 7605 */ 7606 mutex_lock(&sched_domains_mutex); 7607 sched_init_domains(cpu_active_mask); 7608 mutex_unlock(&sched_domains_mutex); 7609 7610 /* Move init over to a non-isolated CPU */ 7611 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 7612 BUG(); 7613 sched_init_granularity(); 7614 7615 init_sched_rt_class(); 7616 init_sched_dl_class(); 7617 7618 sched_smp_initialized = true; 7619 } 7620 7621 static int __init migration_init(void) 7622 { 7623 sched_cpu_starting(smp_processor_id()); 7624 return 0; 7625 } 7626 early_initcall(migration_init); 7627 7628 #else 7629 void __init sched_init_smp(void) 7630 { 7631 sched_init_granularity(); 7632 } 7633 #endif /* CONFIG_SMP */ 7634 7635 int in_sched_functions(unsigned long addr) 7636 { 7637 return in_lock_functions(addr) || 7638 (addr >= (unsigned long)__sched_text_start 7639 && addr < (unsigned long)__sched_text_end); 7640 } 7641 7642 #ifdef CONFIG_CGROUP_SCHED 7643 /* 7644 * Default task group. 7645 * Every task in system belongs to this group at bootup. 7646 */ 7647 struct task_group root_task_group; 7648 LIST_HEAD(task_groups); 7649 7650 /* Cacheline aligned slab cache for task_group */ 7651 static struct kmem_cache *task_group_cache __read_mostly; 7652 #endif 7653 7654 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7655 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 7656 7657 void __init sched_init(void) 7658 { 7659 unsigned long ptr = 0; 7660 int i; 7661 7662 /* Make sure the linker didn't screw up */ 7663 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 7664 &fair_sched_class + 1 != &rt_sched_class || 7665 &rt_sched_class + 1 != &dl_sched_class); 7666 #ifdef CONFIG_SMP 7667 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 7668 #endif 7669 7670 wait_bit_init(); 7671 7672 #ifdef CONFIG_FAIR_GROUP_SCHED 7673 ptr += 2 * nr_cpu_ids * sizeof(void **); 7674 #endif 7675 #ifdef CONFIG_RT_GROUP_SCHED 7676 ptr += 2 * nr_cpu_ids * sizeof(void **); 7677 #endif 7678 if (ptr) { 7679 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 7680 7681 #ifdef CONFIG_FAIR_GROUP_SCHED 7682 root_task_group.se = (struct sched_entity **)ptr; 7683 ptr += nr_cpu_ids * sizeof(void **); 7684 7685 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7686 ptr += nr_cpu_ids * sizeof(void **); 7687 7688 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7689 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7690 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7691 #ifdef CONFIG_RT_GROUP_SCHED 7692 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7693 ptr += nr_cpu_ids * sizeof(void **); 7694 7695 root_task_group.rt_rq = (struct rt_rq **)ptr; 7696 ptr += nr_cpu_ids * sizeof(void **); 7697 7698 #endif /* CONFIG_RT_GROUP_SCHED */ 7699 } 7700 #ifdef CONFIG_CPUMASK_OFFSTACK 7701 for_each_possible_cpu(i) { 7702 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7703 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7704 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 7705 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7706 } 7707 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7708 7709 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 7710 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 7711 7712 #ifdef CONFIG_SMP 7713 init_defrootdomain(); 7714 #endif 7715 7716 #ifdef CONFIG_RT_GROUP_SCHED 7717 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7718 global_rt_period(), global_rt_runtime()); 7719 #endif /* CONFIG_RT_GROUP_SCHED */ 7720 7721 #ifdef CONFIG_CGROUP_SCHED 7722 task_group_cache = KMEM_CACHE(task_group, 0); 7723 7724 list_add(&root_task_group.list, &task_groups); 7725 INIT_LIST_HEAD(&root_task_group.children); 7726 INIT_LIST_HEAD(&root_task_group.siblings); 7727 autogroup_init(&init_task); 7728 #endif /* CONFIG_CGROUP_SCHED */ 7729 7730 for_each_possible_cpu(i) { 7731 struct rq *rq; 7732 7733 rq = cpu_rq(i); 7734 raw_spin_lock_init(&rq->lock); 7735 rq->nr_running = 0; 7736 rq->calc_load_active = 0; 7737 rq->calc_load_update = jiffies + LOAD_FREQ; 7738 init_cfs_rq(&rq->cfs); 7739 init_rt_rq(&rq->rt); 7740 init_dl_rq(&rq->dl); 7741 #ifdef CONFIG_FAIR_GROUP_SCHED 7742 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7743 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 7744 /* 7745 * How much CPU bandwidth does root_task_group get? 7746 * 7747 * In case of task-groups formed thr' the cgroup filesystem, it 7748 * gets 100% of the CPU resources in the system. This overall 7749 * system CPU resource is divided among the tasks of 7750 * root_task_group and its child task-groups in a fair manner, 7751 * based on each entity's (task or task-group's) weight 7752 * (se->load.weight). 7753 * 7754 * In other words, if root_task_group has 10 tasks of weight 7755 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7756 * then A0's share of the CPU resource is: 7757 * 7758 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7759 * 7760 * We achieve this by letting root_task_group's tasks sit 7761 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7762 */ 7763 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7764 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7765 7766 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7767 #ifdef CONFIG_RT_GROUP_SCHED 7768 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7769 #endif 7770 #ifdef CONFIG_SMP 7771 rq->sd = NULL; 7772 rq->rd = NULL; 7773 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7774 rq->balance_callback = NULL; 7775 rq->active_balance = 0; 7776 rq->next_balance = jiffies; 7777 rq->push_cpu = 0; 7778 rq->cpu = i; 7779 rq->online = 0; 7780 rq->idle_stamp = 0; 7781 rq->avg_idle = 2*sysctl_sched_migration_cost; 7782 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7783 7784 INIT_LIST_HEAD(&rq->cfs_tasks); 7785 7786 rq_attach_root(rq, &def_root_domain); 7787 #ifdef CONFIG_NO_HZ_COMMON 7788 rq->last_blocked_load_update_tick = jiffies; 7789 atomic_set(&rq->nohz_flags, 0); 7790 7791 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 7792 #endif 7793 #ifdef CONFIG_HOTPLUG_CPU 7794 rcuwait_init(&rq->hotplug_wait); 7795 #endif 7796 #endif /* CONFIG_SMP */ 7797 hrtick_rq_init(rq); 7798 atomic_set(&rq->nr_iowait, 0); 7799 } 7800 7801 set_load_weight(&init_task, false); 7802 7803 /* 7804 * The boot idle thread does lazy MMU switching as well: 7805 */ 7806 mmgrab(&init_mm); 7807 enter_lazy_tlb(&init_mm, current); 7808 7809 /* 7810 * Make us the idle thread. Technically, schedule() should not be 7811 * called from this thread, however somewhere below it might be, 7812 * but because we are the idle thread, we just pick up running again 7813 * when this runqueue becomes "idle". 7814 */ 7815 init_idle(current, smp_processor_id()); 7816 7817 calc_load_update = jiffies + LOAD_FREQ; 7818 7819 #ifdef CONFIG_SMP 7820 idle_thread_set_boot_cpu(); 7821 #endif 7822 init_sched_fair_class(); 7823 7824 init_schedstats(); 7825 7826 psi_init(); 7827 7828 init_uclamp(); 7829 7830 scheduler_running = 1; 7831 } 7832 7833 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7834 static inline int preempt_count_equals(int preempt_offset) 7835 { 7836 int nested = preempt_count() + rcu_preempt_depth(); 7837 7838 return (nested == preempt_offset); 7839 } 7840 7841 void __might_sleep(const char *file, int line, int preempt_offset) 7842 { 7843 /* 7844 * Blocking primitives will set (and therefore destroy) current->state, 7845 * since we will exit with TASK_RUNNING make sure we enter with it, 7846 * otherwise we will destroy state. 7847 */ 7848 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7849 "do not call blocking ops when !TASK_RUNNING; " 7850 "state=%lx set at [<%p>] %pS\n", 7851 current->state, 7852 (void *)current->task_state_change, 7853 (void *)current->task_state_change); 7854 7855 ___might_sleep(file, line, preempt_offset); 7856 } 7857 EXPORT_SYMBOL(__might_sleep); 7858 7859 void ___might_sleep(const char *file, int line, int preempt_offset) 7860 { 7861 /* Ratelimiting timestamp: */ 7862 static unsigned long prev_jiffy; 7863 7864 unsigned long preempt_disable_ip; 7865 7866 /* WARN_ON_ONCE() by default, no rate limit required: */ 7867 rcu_sleep_check(); 7868 7869 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7870 !is_idle_task(current) && !current->non_block_count) || 7871 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 7872 oops_in_progress) 7873 return; 7874 7875 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7876 return; 7877 prev_jiffy = jiffies; 7878 7879 /* Save this before calling printk(), since that will clobber it: */ 7880 preempt_disable_ip = get_preempt_disable_ip(current); 7881 7882 printk(KERN_ERR 7883 "BUG: sleeping function called from invalid context at %s:%d\n", 7884 file, line); 7885 printk(KERN_ERR 7886 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 7887 in_atomic(), irqs_disabled(), current->non_block_count, 7888 current->pid, current->comm); 7889 7890 if (task_stack_end_corrupted(current)) 7891 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7892 7893 debug_show_held_locks(current); 7894 if (irqs_disabled()) 7895 print_irqtrace_events(current); 7896 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 7897 && !preempt_count_equals(preempt_offset)) { 7898 pr_err("Preemption disabled at:"); 7899 print_ip_sym(KERN_ERR, preempt_disable_ip); 7900 } 7901 dump_stack(); 7902 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 7903 } 7904 EXPORT_SYMBOL(___might_sleep); 7905 7906 void __cant_sleep(const char *file, int line, int preempt_offset) 7907 { 7908 static unsigned long prev_jiffy; 7909 7910 if (irqs_disabled()) 7911 return; 7912 7913 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 7914 return; 7915 7916 if (preempt_count() > preempt_offset) 7917 return; 7918 7919 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7920 return; 7921 prev_jiffy = jiffies; 7922 7923 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 7924 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7925 in_atomic(), irqs_disabled(), 7926 current->pid, current->comm); 7927 7928 debug_show_held_locks(current); 7929 dump_stack(); 7930 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 7931 } 7932 EXPORT_SYMBOL_GPL(__cant_sleep); 7933 7934 #ifdef CONFIG_SMP 7935 void __cant_migrate(const char *file, int line) 7936 { 7937 static unsigned long prev_jiffy; 7938 7939 if (irqs_disabled()) 7940 return; 7941 7942 if (is_migration_disabled(current)) 7943 return; 7944 7945 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 7946 return; 7947 7948 if (preempt_count() > 0) 7949 return; 7950 7951 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7952 return; 7953 prev_jiffy = jiffies; 7954 7955 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 7956 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 7957 in_atomic(), irqs_disabled(), is_migration_disabled(current), 7958 current->pid, current->comm); 7959 7960 debug_show_held_locks(current); 7961 dump_stack(); 7962 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 7963 } 7964 EXPORT_SYMBOL_GPL(__cant_migrate); 7965 #endif 7966 #endif 7967 7968 #ifdef CONFIG_MAGIC_SYSRQ 7969 void normalize_rt_tasks(void) 7970 { 7971 struct task_struct *g, *p; 7972 struct sched_attr attr = { 7973 .sched_policy = SCHED_NORMAL, 7974 }; 7975 7976 read_lock(&tasklist_lock); 7977 for_each_process_thread(g, p) { 7978 /* 7979 * Only normalize user tasks: 7980 */ 7981 if (p->flags & PF_KTHREAD) 7982 continue; 7983 7984 p->se.exec_start = 0; 7985 schedstat_set(p->se.statistics.wait_start, 0); 7986 schedstat_set(p->se.statistics.sleep_start, 0); 7987 schedstat_set(p->se.statistics.block_start, 0); 7988 7989 if (!dl_task(p) && !rt_task(p)) { 7990 /* 7991 * Renice negative nice level userspace 7992 * tasks back to 0: 7993 */ 7994 if (task_nice(p) < 0) 7995 set_user_nice(p, 0); 7996 continue; 7997 } 7998 7999 __sched_setscheduler(p, &attr, false, false); 8000 } 8001 read_unlock(&tasklist_lock); 8002 } 8003 8004 #endif /* CONFIG_MAGIC_SYSRQ */ 8005 8006 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 8007 /* 8008 * These functions are only useful for the IA64 MCA handling, or kdb. 8009 * 8010 * They can only be called when the whole system has been 8011 * stopped - every CPU needs to be quiescent, and no scheduling 8012 * activity can take place. Using them for anything else would 8013 * be a serious bug, and as a result, they aren't even visible 8014 * under any other configuration. 8015 */ 8016 8017 /** 8018 * curr_task - return the current task for a given CPU. 8019 * @cpu: the processor in question. 8020 * 8021 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8022 * 8023 * Return: The current task for @cpu. 8024 */ 8025 struct task_struct *curr_task(int cpu) 8026 { 8027 return cpu_curr(cpu); 8028 } 8029 8030 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 8031 8032 #ifdef CONFIG_IA64 8033 /** 8034 * ia64_set_curr_task - set the current task for a given CPU. 8035 * @cpu: the processor in question. 8036 * @p: the task pointer to set. 8037 * 8038 * Description: This function must only be used when non-maskable interrupts 8039 * are serviced on a separate stack. It allows the architecture to switch the 8040 * notion of the current task on a CPU in a non-blocking manner. This function 8041 * must be called with all CPU's synchronized, and interrupts disabled, the 8042 * and caller must save the original value of the current task (see 8043 * curr_task() above) and restore that value before reenabling interrupts and 8044 * re-starting the system. 8045 * 8046 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8047 */ 8048 void ia64_set_curr_task(int cpu, struct task_struct *p) 8049 { 8050 cpu_curr(cpu) = p; 8051 } 8052 8053 #endif 8054 8055 #ifdef CONFIG_CGROUP_SCHED 8056 /* task_group_lock serializes the addition/removal of task groups */ 8057 static DEFINE_SPINLOCK(task_group_lock); 8058 8059 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8060 struct task_group *parent) 8061 { 8062 #ifdef CONFIG_UCLAMP_TASK_GROUP 8063 enum uclamp_id clamp_id; 8064 8065 for_each_clamp_id(clamp_id) { 8066 uclamp_se_set(&tg->uclamp_req[clamp_id], 8067 uclamp_none(clamp_id), false); 8068 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8069 } 8070 #endif 8071 } 8072 8073 static void sched_free_group(struct task_group *tg) 8074 { 8075 free_fair_sched_group(tg); 8076 free_rt_sched_group(tg); 8077 autogroup_free(tg); 8078 kmem_cache_free(task_group_cache, tg); 8079 } 8080 8081 /* allocate runqueue etc for a new task group */ 8082 struct task_group *sched_create_group(struct task_group *parent) 8083 { 8084 struct task_group *tg; 8085 8086 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8087 if (!tg) 8088 return ERR_PTR(-ENOMEM); 8089 8090 if (!alloc_fair_sched_group(tg, parent)) 8091 goto err; 8092 8093 if (!alloc_rt_sched_group(tg, parent)) 8094 goto err; 8095 8096 alloc_uclamp_sched_group(tg, parent); 8097 8098 return tg; 8099 8100 err: 8101 sched_free_group(tg); 8102 return ERR_PTR(-ENOMEM); 8103 } 8104 8105 void sched_online_group(struct task_group *tg, struct task_group *parent) 8106 { 8107 unsigned long flags; 8108 8109 spin_lock_irqsave(&task_group_lock, flags); 8110 list_add_rcu(&tg->list, &task_groups); 8111 8112 /* Root should already exist: */ 8113 WARN_ON(!parent); 8114 8115 tg->parent = parent; 8116 INIT_LIST_HEAD(&tg->children); 8117 list_add_rcu(&tg->siblings, &parent->children); 8118 spin_unlock_irqrestore(&task_group_lock, flags); 8119 8120 online_fair_sched_group(tg); 8121 } 8122 8123 /* rcu callback to free various structures associated with a task group */ 8124 static void sched_free_group_rcu(struct rcu_head *rhp) 8125 { 8126 /* Now it should be safe to free those cfs_rqs: */ 8127 sched_free_group(container_of(rhp, struct task_group, rcu)); 8128 } 8129 8130 void sched_destroy_group(struct task_group *tg) 8131 { 8132 /* Wait for possible concurrent references to cfs_rqs complete: */ 8133 call_rcu(&tg->rcu, sched_free_group_rcu); 8134 } 8135 8136 void sched_offline_group(struct task_group *tg) 8137 { 8138 unsigned long flags; 8139 8140 /* End participation in shares distribution: */ 8141 unregister_fair_sched_group(tg); 8142 8143 spin_lock_irqsave(&task_group_lock, flags); 8144 list_del_rcu(&tg->list); 8145 list_del_rcu(&tg->siblings); 8146 spin_unlock_irqrestore(&task_group_lock, flags); 8147 } 8148 8149 static void sched_change_group(struct task_struct *tsk, int type) 8150 { 8151 struct task_group *tg; 8152 8153 /* 8154 * All callers are synchronized by task_rq_lock(); we do not use RCU 8155 * which is pointless here. Thus, we pass "true" to task_css_check() 8156 * to prevent lockdep warnings. 8157 */ 8158 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 8159 struct task_group, css); 8160 tg = autogroup_task_group(tsk, tg); 8161 tsk->sched_task_group = tg; 8162 8163 #ifdef CONFIG_FAIR_GROUP_SCHED 8164 if (tsk->sched_class->task_change_group) 8165 tsk->sched_class->task_change_group(tsk, type); 8166 else 8167 #endif 8168 set_task_rq(tsk, task_cpu(tsk)); 8169 } 8170 8171 /* 8172 * Change task's runqueue when it moves between groups. 8173 * 8174 * The caller of this function should have put the task in its new group by 8175 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 8176 * its new group. 8177 */ 8178 void sched_move_task(struct task_struct *tsk) 8179 { 8180 int queued, running, queue_flags = 8181 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 8182 struct rq_flags rf; 8183 struct rq *rq; 8184 8185 rq = task_rq_lock(tsk, &rf); 8186 update_rq_clock(rq); 8187 8188 running = task_current(rq, tsk); 8189 queued = task_on_rq_queued(tsk); 8190 8191 if (queued) 8192 dequeue_task(rq, tsk, queue_flags); 8193 if (running) 8194 put_prev_task(rq, tsk); 8195 8196 sched_change_group(tsk, TASK_MOVE_GROUP); 8197 8198 if (queued) 8199 enqueue_task(rq, tsk, queue_flags); 8200 if (running) { 8201 set_next_task(rq, tsk); 8202 /* 8203 * After changing group, the running task may have joined a 8204 * throttled one but it's still the running task. Trigger a 8205 * resched to make sure that task can still run. 8206 */ 8207 resched_curr(rq); 8208 } 8209 8210 task_rq_unlock(rq, tsk, &rf); 8211 } 8212 8213 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 8214 { 8215 return css ? container_of(css, struct task_group, css) : NULL; 8216 } 8217 8218 static struct cgroup_subsys_state * 8219 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8220 { 8221 struct task_group *parent = css_tg(parent_css); 8222 struct task_group *tg; 8223 8224 if (!parent) { 8225 /* This is early initialization for the top cgroup */ 8226 return &root_task_group.css; 8227 } 8228 8229 tg = sched_create_group(parent); 8230 if (IS_ERR(tg)) 8231 return ERR_PTR(-ENOMEM); 8232 8233 return &tg->css; 8234 } 8235 8236 /* Expose task group only after completing cgroup initialization */ 8237 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 8238 { 8239 struct task_group *tg = css_tg(css); 8240 struct task_group *parent = css_tg(css->parent); 8241 8242 if (parent) 8243 sched_online_group(tg, parent); 8244 8245 #ifdef CONFIG_UCLAMP_TASK_GROUP 8246 /* Propagate the effective uclamp value for the new group */ 8247 cpu_util_update_eff(css); 8248 #endif 8249 8250 return 0; 8251 } 8252 8253 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 8254 { 8255 struct task_group *tg = css_tg(css); 8256 8257 sched_offline_group(tg); 8258 } 8259 8260 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 8261 { 8262 struct task_group *tg = css_tg(css); 8263 8264 /* 8265 * Relies on the RCU grace period between css_released() and this. 8266 */ 8267 sched_free_group(tg); 8268 } 8269 8270 /* 8271 * This is called before wake_up_new_task(), therefore we really only 8272 * have to set its group bits, all the other stuff does not apply. 8273 */ 8274 static void cpu_cgroup_fork(struct task_struct *task) 8275 { 8276 struct rq_flags rf; 8277 struct rq *rq; 8278 8279 rq = task_rq_lock(task, &rf); 8280 8281 update_rq_clock(rq); 8282 sched_change_group(task, TASK_SET_GROUP); 8283 8284 task_rq_unlock(rq, task, &rf); 8285 } 8286 8287 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 8288 { 8289 struct task_struct *task; 8290 struct cgroup_subsys_state *css; 8291 int ret = 0; 8292 8293 cgroup_taskset_for_each(task, css, tset) { 8294 #ifdef CONFIG_RT_GROUP_SCHED 8295 if (!sched_rt_can_attach(css_tg(css), task)) 8296 return -EINVAL; 8297 #endif 8298 /* 8299 * Serialize against wake_up_new_task() such that if it's 8300 * running, we're sure to observe its full state. 8301 */ 8302 raw_spin_lock_irq(&task->pi_lock); 8303 /* 8304 * Avoid calling sched_move_task() before wake_up_new_task() 8305 * has happened. This would lead to problems with PELT, due to 8306 * move wanting to detach+attach while we're not attached yet. 8307 */ 8308 if (task->state == TASK_NEW) 8309 ret = -EINVAL; 8310 raw_spin_unlock_irq(&task->pi_lock); 8311 8312 if (ret) 8313 break; 8314 } 8315 return ret; 8316 } 8317 8318 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 8319 { 8320 struct task_struct *task; 8321 struct cgroup_subsys_state *css; 8322 8323 cgroup_taskset_for_each(task, css, tset) 8324 sched_move_task(task); 8325 } 8326 8327 #ifdef CONFIG_UCLAMP_TASK_GROUP 8328 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 8329 { 8330 struct cgroup_subsys_state *top_css = css; 8331 struct uclamp_se *uc_parent = NULL; 8332 struct uclamp_se *uc_se = NULL; 8333 unsigned int eff[UCLAMP_CNT]; 8334 enum uclamp_id clamp_id; 8335 unsigned int clamps; 8336 8337 css_for_each_descendant_pre(css, top_css) { 8338 uc_parent = css_tg(css)->parent 8339 ? css_tg(css)->parent->uclamp : NULL; 8340 8341 for_each_clamp_id(clamp_id) { 8342 /* Assume effective clamps matches requested clamps */ 8343 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 8344 /* Cap effective clamps with parent's effective clamps */ 8345 if (uc_parent && 8346 eff[clamp_id] > uc_parent[clamp_id].value) { 8347 eff[clamp_id] = uc_parent[clamp_id].value; 8348 } 8349 } 8350 /* Ensure protection is always capped by limit */ 8351 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 8352 8353 /* Propagate most restrictive effective clamps */ 8354 clamps = 0x0; 8355 uc_se = css_tg(css)->uclamp; 8356 for_each_clamp_id(clamp_id) { 8357 if (eff[clamp_id] == uc_se[clamp_id].value) 8358 continue; 8359 uc_se[clamp_id].value = eff[clamp_id]; 8360 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 8361 clamps |= (0x1 << clamp_id); 8362 } 8363 if (!clamps) { 8364 css = css_rightmost_descendant(css); 8365 continue; 8366 } 8367 8368 /* Immediately update descendants RUNNABLE tasks */ 8369 uclamp_update_active_tasks(css, clamps); 8370 } 8371 } 8372 8373 /* 8374 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 8375 * C expression. Since there is no way to convert a macro argument (N) into a 8376 * character constant, use two levels of macros. 8377 */ 8378 #define _POW10(exp) ((unsigned int)1e##exp) 8379 #define POW10(exp) _POW10(exp) 8380 8381 struct uclamp_request { 8382 #define UCLAMP_PERCENT_SHIFT 2 8383 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 8384 s64 percent; 8385 u64 util; 8386 int ret; 8387 }; 8388 8389 static inline struct uclamp_request 8390 capacity_from_percent(char *buf) 8391 { 8392 struct uclamp_request req = { 8393 .percent = UCLAMP_PERCENT_SCALE, 8394 .util = SCHED_CAPACITY_SCALE, 8395 .ret = 0, 8396 }; 8397 8398 buf = strim(buf); 8399 if (strcmp(buf, "max")) { 8400 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 8401 &req.percent); 8402 if (req.ret) 8403 return req; 8404 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 8405 req.ret = -ERANGE; 8406 return req; 8407 } 8408 8409 req.util = req.percent << SCHED_CAPACITY_SHIFT; 8410 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 8411 } 8412 8413 return req; 8414 } 8415 8416 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 8417 size_t nbytes, loff_t off, 8418 enum uclamp_id clamp_id) 8419 { 8420 struct uclamp_request req; 8421 struct task_group *tg; 8422 8423 req = capacity_from_percent(buf); 8424 if (req.ret) 8425 return req.ret; 8426 8427 static_branch_enable(&sched_uclamp_used); 8428 8429 mutex_lock(&uclamp_mutex); 8430 rcu_read_lock(); 8431 8432 tg = css_tg(of_css(of)); 8433 if (tg->uclamp_req[clamp_id].value != req.util) 8434 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 8435 8436 /* 8437 * Because of not recoverable conversion rounding we keep track of the 8438 * exact requested value 8439 */ 8440 tg->uclamp_pct[clamp_id] = req.percent; 8441 8442 /* Update effective clamps to track the most restrictive value */ 8443 cpu_util_update_eff(of_css(of)); 8444 8445 rcu_read_unlock(); 8446 mutex_unlock(&uclamp_mutex); 8447 8448 return nbytes; 8449 } 8450 8451 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 8452 char *buf, size_t nbytes, 8453 loff_t off) 8454 { 8455 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 8456 } 8457 8458 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 8459 char *buf, size_t nbytes, 8460 loff_t off) 8461 { 8462 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 8463 } 8464 8465 static inline void cpu_uclamp_print(struct seq_file *sf, 8466 enum uclamp_id clamp_id) 8467 { 8468 struct task_group *tg; 8469 u64 util_clamp; 8470 u64 percent; 8471 u32 rem; 8472 8473 rcu_read_lock(); 8474 tg = css_tg(seq_css(sf)); 8475 util_clamp = tg->uclamp_req[clamp_id].value; 8476 rcu_read_unlock(); 8477 8478 if (util_clamp == SCHED_CAPACITY_SCALE) { 8479 seq_puts(sf, "max\n"); 8480 return; 8481 } 8482 8483 percent = tg->uclamp_pct[clamp_id]; 8484 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 8485 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 8486 } 8487 8488 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 8489 { 8490 cpu_uclamp_print(sf, UCLAMP_MIN); 8491 return 0; 8492 } 8493 8494 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 8495 { 8496 cpu_uclamp_print(sf, UCLAMP_MAX); 8497 return 0; 8498 } 8499 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 8500 8501 #ifdef CONFIG_FAIR_GROUP_SCHED 8502 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8503 struct cftype *cftype, u64 shareval) 8504 { 8505 if (shareval > scale_load_down(ULONG_MAX)) 8506 shareval = MAX_SHARES; 8507 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8508 } 8509 8510 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8511 struct cftype *cft) 8512 { 8513 struct task_group *tg = css_tg(css); 8514 8515 return (u64) scale_load_down(tg->shares); 8516 } 8517 8518 #ifdef CONFIG_CFS_BANDWIDTH 8519 static DEFINE_MUTEX(cfs_constraints_mutex); 8520 8521 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8522 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8523 /* More than 203 days if BW_SHIFT equals 20. */ 8524 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 8525 8526 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8527 8528 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8529 { 8530 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8531 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8532 8533 if (tg == &root_task_group) 8534 return -EINVAL; 8535 8536 /* 8537 * Ensure we have at some amount of bandwidth every period. This is 8538 * to prevent reaching a state of large arrears when throttled via 8539 * entity_tick() resulting in prolonged exit starvation. 8540 */ 8541 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8542 return -EINVAL; 8543 8544 /* 8545 * Likewise, bound things on the otherside by preventing insane quota 8546 * periods. This also allows us to normalize in computing quota 8547 * feasibility. 8548 */ 8549 if (period > max_cfs_quota_period) 8550 return -EINVAL; 8551 8552 /* 8553 * Bound quota to defend quota against overflow during bandwidth shift. 8554 */ 8555 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 8556 return -EINVAL; 8557 8558 /* 8559 * Prevent race between setting of cfs_rq->runtime_enabled and 8560 * unthrottle_offline_cfs_rqs(). 8561 */ 8562 get_online_cpus(); 8563 mutex_lock(&cfs_constraints_mutex); 8564 ret = __cfs_schedulable(tg, period, quota); 8565 if (ret) 8566 goto out_unlock; 8567 8568 runtime_enabled = quota != RUNTIME_INF; 8569 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8570 /* 8571 * If we need to toggle cfs_bandwidth_used, off->on must occur 8572 * before making related changes, and on->off must occur afterwards 8573 */ 8574 if (runtime_enabled && !runtime_was_enabled) 8575 cfs_bandwidth_usage_inc(); 8576 raw_spin_lock_irq(&cfs_b->lock); 8577 cfs_b->period = ns_to_ktime(period); 8578 cfs_b->quota = quota; 8579 8580 __refill_cfs_bandwidth_runtime(cfs_b); 8581 8582 /* Restart the period timer (if active) to handle new period expiry: */ 8583 if (runtime_enabled) 8584 start_cfs_bandwidth(cfs_b); 8585 8586 raw_spin_unlock_irq(&cfs_b->lock); 8587 8588 for_each_online_cpu(i) { 8589 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8590 struct rq *rq = cfs_rq->rq; 8591 struct rq_flags rf; 8592 8593 rq_lock_irq(rq, &rf); 8594 cfs_rq->runtime_enabled = runtime_enabled; 8595 cfs_rq->runtime_remaining = 0; 8596 8597 if (cfs_rq->throttled) 8598 unthrottle_cfs_rq(cfs_rq); 8599 rq_unlock_irq(rq, &rf); 8600 } 8601 if (runtime_was_enabled && !runtime_enabled) 8602 cfs_bandwidth_usage_dec(); 8603 out_unlock: 8604 mutex_unlock(&cfs_constraints_mutex); 8605 put_online_cpus(); 8606 8607 return ret; 8608 } 8609 8610 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8611 { 8612 u64 quota, period; 8613 8614 period = ktime_to_ns(tg->cfs_bandwidth.period); 8615 if (cfs_quota_us < 0) 8616 quota = RUNTIME_INF; 8617 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 8618 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8619 else 8620 return -EINVAL; 8621 8622 return tg_set_cfs_bandwidth(tg, period, quota); 8623 } 8624 8625 static long tg_get_cfs_quota(struct task_group *tg) 8626 { 8627 u64 quota_us; 8628 8629 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8630 return -1; 8631 8632 quota_us = tg->cfs_bandwidth.quota; 8633 do_div(quota_us, NSEC_PER_USEC); 8634 8635 return quota_us; 8636 } 8637 8638 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8639 { 8640 u64 quota, period; 8641 8642 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 8643 return -EINVAL; 8644 8645 period = (u64)cfs_period_us * NSEC_PER_USEC; 8646 quota = tg->cfs_bandwidth.quota; 8647 8648 return tg_set_cfs_bandwidth(tg, period, quota); 8649 } 8650 8651 static long tg_get_cfs_period(struct task_group *tg) 8652 { 8653 u64 cfs_period_us; 8654 8655 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8656 do_div(cfs_period_us, NSEC_PER_USEC); 8657 8658 return cfs_period_us; 8659 } 8660 8661 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8662 struct cftype *cft) 8663 { 8664 return tg_get_cfs_quota(css_tg(css)); 8665 } 8666 8667 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8668 struct cftype *cftype, s64 cfs_quota_us) 8669 { 8670 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8671 } 8672 8673 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8674 struct cftype *cft) 8675 { 8676 return tg_get_cfs_period(css_tg(css)); 8677 } 8678 8679 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8680 struct cftype *cftype, u64 cfs_period_us) 8681 { 8682 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8683 } 8684 8685 struct cfs_schedulable_data { 8686 struct task_group *tg; 8687 u64 period, quota; 8688 }; 8689 8690 /* 8691 * normalize group quota/period to be quota/max_period 8692 * note: units are usecs 8693 */ 8694 static u64 normalize_cfs_quota(struct task_group *tg, 8695 struct cfs_schedulable_data *d) 8696 { 8697 u64 quota, period; 8698 8699 if (tg == d->tg) { 8700 period = d->period; 8701 quota = d->quota; 8702 } else { 8703 period = tg_get_cfs_period(tg); 8704 quota = tg_get_cfs_quota(tg); 8705 } 8706 8707 /* note: these should typically be equivalent */ 8708 if (quota == RUNTIME_INF || quota == -1) 8709 return RUNTIME_INF; 8710 8711 return to_ratio(period, quota); 8712 } 8713 8714 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8715 { 8716 struct cfs_schedulable_data *d = data; 8717 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8718 s64 quota = 0, parent_quota = -1; 8719 8720 if (!tg->parent) { 8721 quota = RUNTIME_INF; 8722 } else { 8723 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8724 8725 quota = normalize_cfs_quota(tg, d); 8726 parent_quota = parent_b->hierarchical_quota; 8727 8728 /* 8729 * Ensure max(child_quota) <= parent_quota. On cgroup2, 8730 * always take the min. On cgroup1, only inherit when no 8731 * limit is set: 8732 */ 8733 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 8734 quota = min(quota, parent_quota); 8735 } else { 8736 if (quota == RUNTIME_INF) 8737 quota = parent_quota; 8738 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8739 return -EINVAL; 8740 } 8741 } 8742 cfs_b->hierarchical_quota = quota; 8743 8744 return 0; 8745 } 8746 8747 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8748 { 8749 int ret; 8750 struct cfs_schedulable_data data = { 8751 .tg = tg, 8752 .period = period, 8753 .quota = quota, 8754 }; 8755 8756 if (quota != RUNTIME_INF) { 8757 do_div(data.period, NSEC_PER_USEC); 8758 do_div(data.quota, NSEC_PER_USEC); 8759 } 8760 8761 rcu_read_lock(); 8762 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8763 rcu_read_unlock(); 8764 8765 return ret; 8766 } 8767 8768 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 8769 { 8770 struct task_group *tg = css_tg(seq_css(sf)); 8771 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8772 8773 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8774 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8775 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8776 8777 if (schedstat_enabled() && tg != &root_task_group) { 8778 u64 ws = 0; 8779 int i; 8780 8781 for_each_possible_cpu(i) 8782 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 8783 8784 seq_printf(sf, "wait_sum %llu\n", ws); 8785 } 8786 8787 return 0; 8788 } 8789 #endif /* CONFIG_CFS_BANDWIDTH */ 8790 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8791 8792 #ifdef CONFIG_RT_GROUP_SCHED 8793 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8794 struct cftype *cft, s64 val) 8795 { 8796 return sched_group_set_rt_runtime(css_tg(css), val); 8797 } 8798 8799 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8800 struct cftype *cft) 8801 { 8802 return sched_group_rt_runtime(css_tg(css)); 8803 } 8804 8805 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8806 struct cftype *cftype, u64 rt_period_us) 8807 { 8808 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8809 } 8810 8811 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8812 struct cftype *cft) 8813 { 8814 return sched_group_rt_period(css_tg(css)); 8815 } 8816 #endif /* CONFIG_RT_GROUP_SCHED */ 8817 8818 static struct cftype cpu_legacy_files[] = { 8819 #ifdef CONFIG_FAIR_GROUP_SCHED 8820 { 8821 .name = "shares", 8822 .read_u64 = cpu_shares_read_u64, 8823 .write_u64 = cpu_shares_write_u64, 8824 }, 8825 #endif 8826 #ifdef CONFIG_CFS_BANDWIDTH 8827 { 8828 .name = "cfs_quota_us", 8829 .read_s64 = cpu_cfs_quota_read_s64, 8830 .write_s64 = cpu_cfs_quota_write_s64, 8831 }, 8832 { 8833 .name = "cfs_period_us", 8834 .read_u64 = cpu_cfs_period_read_u64, 8835 .write_u64 = cpu_cfs_period_write_u64, 8836 }, 8837 { 8838 .name = "stat", 8839 .seq_show = cpu_cfs_stat_show, 8840 }, 8841 #endif 8842 #ifdef CONFIG_RT_GROUP_SCHED 8843 { 8844 .name = "rt_runtime_us", 8845 .read_s64 = cpu_rt_runtime_read, 8846 .write_s64 = cpu_rt_runtime_write, 8847 }, 8848 { 8849 .name = "rt_period_us", 8850 .read_u64 = cpu_rt_period_read_uint, 8851 .write_u64 = cpu_rt_period_write_uint, 8852 }, 8853 #endif 8854 #ifdef CONFIG_UCLAMP_TASK_GROUP 8855 { 8856 .name = "uclamp.min", 8857 .flags = CFTYPE_NOT_ON_ROOT, 8858 .seq_show = cpu_uclamp_min_show, 8859 .write = cpu_uclamp_min_write, 8860 }, 8861 { 8862 .name = "uclamp.max", 8863 .flags = CFTYPE_NOT_ON_ROOT, 8864 .seq_show = cpu_uclamp_max_show, 8865 .write = cpu_uclamp_max_write, 8866 }, 8867 #endif 8868 { } /* Terminate */ 8869 }; 8870 8871 static int cpu_extra_stat_show(struct seq_file *sf, 8872 struct cgroup_subsys_state *css) 8873 { 8874 #ifdef CONFIG_CFS_BANDWIDTH 8875 { 8876 struct task_group *tg = css_tg(css); 8877 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8878 u64 throttled_usec; 8879 8880 throttled_usec = cfs_b->throttled_time; 8881 do_div(throttled_usec, NSEC_PER_USEC); 8882 8883 seq_printf(sf, "nr_periods %d\n" 8884 "nr_throttled %d\n" 8885 "throttled_usec %llu\n", 8886 cfs_b->nr_periods, cfs_b->nr_throttled, 8887 throttled_usec); 8888 } 8889 #endif 8890 return 0; 8891 } 8892 8893 #ifdef CONFIG_FAIR_GROUP_SCHED 8894 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 8895 struct cftype *cft) 8896 { 8897 struct task_group *tg = css_tg(css); 8898 u64 weight = scale_load_down(tg->shares); 8899 8900 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 8901 } 8902 8903 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 8904 struct cftype *cft, u64 weight) 8905 { 8906 /* 8907 * cgroup weight knobs should use the common MIN, DFL and MAX 8908 * values which are 1, 100 and 10000 respectively. While it loses 8909 * a bit of range on both ends, it maps pretty well onto the shares 8910 * value used by scheduler and the round-trip conversions preserve 8911 * the original value over the entire range. 8912 */ 8913 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 8914 return -ERANGE; 8915 8916 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 8917 8918 return sched_group_set_shares(css_tg(css), scale_load(weight)); 8919 } 8920 8921 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 8922 struct cftype *cft) 8923 { 8924 unsigned long weight = scale_load_down(css_tg(css)->shares); 8925 int last_delta = INT_MAX; 8926 int prio, delta; 8927 8928 /* find the closest nice value to the current weight */ 8929 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 8930 delta = abs(sched_prio_to_weight[prio] - weight); 8931 if (delta >= last_delta) 8932 break; 8933 last_delta = delta; 8934 } 8935 8936 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 8937 } 8938 8939 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 8940 struct cftype *cft, s64 nice) 8941 { 8942 unsigned long weight; 8943 int idx; 8944 8945 if (nice < MIN_NICE || nice > MAX_NICE) 8946 return -ERANGE; 8947 8948 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 8949 idx = array_index_nospec(idx, 40); 8950 weight = sched_prio_to_weight[idx]; 8951 8952 return sched_group_set_shares(css_tg(css), scale_load(weight)); 8953 } 8954 #endif 8955 8956 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 8957 long period, long quota) 8958 { 8959 if (quota < 0) 8960 seq_puts(sf, "max"); 8961 else 8962 seq_printf(sf, "%ld", quota); 8963 8964 seq_printf(sf, " %ld\n", period); 8965 } 8966 8967 /* caller should put the current value in *@periodp before calling */ 8968 static int __maybe_unused cpu_period_quota_parse(char *buf, 8969 u64 *periodp, u64 *quotap) 8970 { 8971 char tok[21]; /* U64_MAX */ 8972 8973 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 8974 return -EINVAL; 8975 8976 *periodp *= NSEC_PER_USEC; 8977 8978 if (sscanf(tok, "%llu", quotap)) 8979 *quotap *= NSEC_PER_USEC; 8980 else if (!strcmp(tok, "max")) 8981 *quotap = RUNTIME_INF; 8982 else 8983 return -EINVAL; 8984 8985 return 0; 8986 } 8987 8988 #ifdef CONFIG_CFS_BANDWIDTH 8989 static int cpu_max_show(struct seq_file *sf, void *v) 8990 { 8991 struct task_group *tg = css_tg(seq_css(sf)); 8992 8993 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 8994 return 0; 8995 } 8996 8997 static ssize_t cpu_max_write(struct kernfs_open_file *of, 8998 char *buf, size_t nbytes, loff_t off) 8999 { 9000 struct task_group *tg = css_tg(of_css(of)); 9001 u64 period = tg_get_cfs_period(tg); 9002 u64 quota; 9003 int ret; 9004 9005 ret = cpu_period_quota_parse(buf, &period, "a); 9006 if (!ret) 9007 ret = tg_set_cfs_bandwidth(tg, period, quota); 9008 return ret ?: nbytes; 9009 } 9010 #endif 9011 9012 static struct cftype cpu_files[] = { 9013 #ifdef CONFIG_FAIR_GROUP_SCHED 9014 { 9015 .name = "weight", 9016 .flags = CFTYPE_NOT_ON_ROOT, 9017 .read_u64 = cpu_weight_read_u64, 9018 .write_u64 = cpu_weight_write_u64, 9019 }, 9020 { 9021 .name = "weight.nice", 9022 .flags = CFTYPE_NOT_ON_ROOT, 9023 .read_s64 = cpu_weight_nice_read_s64, 9024 .write_s64 = cpu_weight_nice_write_s64, 9025 }, 9026 #endif 9027 #ifdef CONFIG_CFS_BANDWIDTH 9028 { 9029 .name = "max", 9030 .flags = CFTYPE_NOT_ON_ROOT, 9031 .seq_show = cpu_max_show, 9032 .write = cpu_max_write, 9033 }, 9034 #endif 9035 #ifdef CONFIG_UCLAMP_TASK_GROUP 9036 { 9037 .name = "uclamp.min", 9038 .flags = CFTYPE_NOT_ON_ROOT, 9039 .seq_show = cpu_uclamp_min_show, 9040 .write = cpu_uclamp_min_write, 9041 }, 9042 { 9043 .name = "uclamp.max", 9044 .flags = CFTYPE_NOT_ON_ROOT, 9045 .seq_show = cpu_uclamp_max_show, 9046 .write = cpu_uclamp_max_write, 9047 }, 9048 #endif 9049 { } /* terminate */ 9050 }; 9051 9052 struct cgroup_subsys cpu_cgrp_subsys = { 9053 .css_alloc = cpu_cgroup_css_alloc, 9054 .css_online = cpu_cgroup_css_online, 9055 .css_released = cpu_cgroup_css_released, 9056 .css_free = cpu_cgroup_css_free, 9057 .css_extra_stat_show = cpu_extra_stat_show, 9058 .fork = cpu_cgroup_fork, 9059 .can_attach = cpu_cgroup_can_attach, 9060 .attach = cpu_cgroup_attach, 9061 .legacy_cftypes = cpu_legacy_files, 9062 .dfl_cftypes = cpu_files, 9063 .early_init = true, 9064 .threaded = true, 9065 }; 9066 9067 #endif /* CONFIG_CGROUP_SCHED */ 9068 9069 void dump_cpu_task(int cpu) 9070 { 9071 pr_info("Task dump for CPU %d:\n", cpu); 9072 sched_show_task(cpu_curr(cpu)); 9073 } 9074 9075 /* 9076 * Nice levels are multiplicative, with a gentle 10% change for every 9077 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 9078 * nice 1, it will get ~10% less CPU time than another CPU-bound task 9079 * that remained on nice 0. 9080 * 9081 * The "10% effect" is relative and cumulative: from _any_ nice level, 9082 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 9083 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 9084 * If a task goes up by ~10% and another task goes down by ~10% then 9085 * the relative distance between them is ~25%.) 9086 */ 9087 const int sched_prio_to_weight[40] = { 9088 /* -20 */ 88761, 71755, 56483, 46273, 36291, 9089 /* -15 */ 29154, 23254, 18705, 14949, 11916, 9090 /* -10 */ 9548, 7620, 6100, 4904, 3906, 9091 /* -5 */ 3121, 2501, 1991, 1586, 1277, 9092 /* 0 */ 1024, 820, 655, 526, 423, 9093 /* 5 */ 335, 272, 215, 172, 137, 9094 /* 10 */ 110, 87, 70, 56, 45, 9095 /* 15 */ 36, 29, 23, 18, 15, 9096 }; 9097 9098 /* 9099 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 9100 * 9101 * In cases where the weight does not change often, we can use the 9102 * precalculated inverse to speed up arithmetics by turning divisions 9103 * into multiplications: 9104 */ 9105 const u32 sched_prio_to_wmult[40] = { 9106 /* -20 */ 48388, 59856, 76040, 92818, 118348, 9107 /* -15 */ 147320, 184698, 229616, 287308, 360437, 9108 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 9109 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 9110 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 9111 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 9112 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 9113 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 9114 }; 9115 9116 void call_trace_sched_update_nr_running(struct rq *rq, int count) 9117 { 9118 trace_sched_update_nr_running_tp(rq, count); 9119 } 9120