xref: /openbmc/linux/kernel/sched/core.c (revision 0e407915)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #undef CREATE_TRACE_POINTS
84 
85 #include "sched.h"
86 #include "stats.h"
87 #include "autogroup.h"
88 
89 #include "autogroup.h"
90 #include "pelt.h"
91 #include "smp.h"
92 #include "stats.h"
93 
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
97 
98 /*
99  * Export tracepoints that act as a bare tracehook (ie: have no trace event
100  * associated with them) to allow external modules to probe them.
101  */
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
113 
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 #ifdef CONFIG_SCHED_DEBUG
117 /*
118  * Debugging: various feature bits
119  *
120  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
121  * sysctl_sched_features, defined in sched.h, to allow constants propagation
122  * at compile time and compiler optimization based on features default.
123  */
124 #define SCHED_FEAT(name, enabled)	\
125 	(1UL << __SCHED_FEAT_##name) * enabled |
126 const_debug unsigned int sysctl_sched_features =
127 #include "features.h"
128 	0;
129 #undef SCHED_FEAT
130 
131 /*
132  * Print a warning if need_resched is set for the given duration (if
133  * LATENCY_WARN is enabled).
134  *
135  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
136  * per boot.
137  */
138 __read_mostly int sysctl_resched_latency_warn_ms = 100;
139 __read_mostly int sysctl_resched_latency_warn_once = 1;
140 #endif /* CONFIG_SCHED_DEBUG */
141 
142 /*
143  * Number of tasks to iterate in a single balance run.
144  * Limited because this is done with IRQs disabled.
145  */
146 #ifdef CONFIG_PREEMPT_RT
147 const_debug unsigned int sysctl_sched_nr_migrate = 8;
148 #else
149 const_debug unsigned int sysctl_sched_nr_migrate = 32;
150 #endif
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
159 static inline int __task_prio(struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (rt_prio(p->prio)) /* includes deadline */
165 		return p->prio; /* [-1, 99] */
166 
167 	if (p->sched_class == &idle_sched_class)
168 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169 
170 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172 
173 /*
174  * l(a,b)
175  * le(a,b) := !l(b,a)
176  * g(a,b)  := l(b,a)
177  * ge(a,b) := !l(a,b)
178  */
179 
180 /* real prio, less is less */
181 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
182 {
183 
184 	int pa = __task_prio(a), pb = __task_prio(b);
185 
186 	if (-pa < -pb)
187 		return true;
188 
189 	if (-pb < -pa)
190 		return false;
191 
192 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
193 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
194 
195 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
196 		return cfs_prio_less(a, b, in_fi);
197 
198 	return false;
199 }
200 
201 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
202 {
203 	if (a->core_cookie < b->core_cookie)
204 		return true;
205 
206 	if (a->core_cookie > b->core_cookie)
207 		return false;
208 
209 	/* flip prio, so high prio is leftmost */
210 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
211 		return true;
212 
213 	return false;
214 }
215 
216 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
217 
218 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
219 {
220 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
221 }
222 
223 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
224 {
225 	const struct task_struct *p = __node_2_sc(node);
226 	unsigned long cookie = (unsigned long)key;
227 
228 	if (cookie < p->core_cookie)
229 		return -1;
230 
231 	if (cookie > p->core_cookie)
232 		return 1;
233 
234 	return 0;
235 }
236 
237 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
238 {
239 	rq->core->core_task_seq++;
240 
241 	if (!p->core_cookie)
242 		return;
243 
244 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
245 }
246 
247 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
248 {
249 	rq->core->core_task_seq++;
250 
251 	if (sched_core_enqueued(p)) {
252 		rb_erase(&p->core_node, &rq->core_tree);
253 		RB_CLEAR_NODE(&p->core_node);
254 	}
255 
256 	/*
257 	 * Migrating the last task off the cpu, with the cpu in forced idle
258 	 * state. Reschedule to create an accounting edge for forced idle,
259 	 * and re-examine whether the core is still in forced idle state.
260 	 */
261 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
262 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
263 		resched_curr(rq);
264 }
265 
266 /*
267  * Find left-most (aka, highest priority) task matching @cookie.
268  */
269 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
270 {
271 	struct rb_node *node;
272 
273 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
274 	/*
275 	 * The idle task always matches any cookie!
276 	 */
277 	if (!node)
278 		return idle_sched_class.pick_task(rq);
279 
280 	return __node_2_sc(node);
281 }
282 
283 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
284 {
285 	struct rb_node *node = &p->core_node;
286 
287 	node = rb_next(node);
288 	if (!node)
289 		return NULL;
290 
291 	p = container_of(node, struct task_struct, core_node);
292 	if (p->core_cookie != cookie)
293 		return NULL;
294 
295 	return p;
296 }
297 
298 /*
299  * Magic required such that:
300  *
301  *	raw_spin_rq_lock(rq);
302  *	...
303  *	raw_spin_rq_unlock(rq);
304  *
305  * ends up locking and unlocking the _same_ lock, and all CPUs
306  * always agree on what rq has what lock.
307  *
308  * XXX entirely possible to selectively enable cores, don't bother for now.
309  */
310 
311 static DEFINE_MUTEX(sched_core_mutex);
312 static atomic_t sched_core_count;
313 static struct cpumask sched_core_mask;
314 
315 static void sched_core_lock(int cpu, unsigned long *flags)
316 {
317 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
318 	int t, i = 0;
319 
320 	local_irq_save(*flags);
321 	for_each_cpu(t, smt_mask)
322 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
323 }
324 
325 static void sched_core_unlock(int cpu, unsigned long *flags)
326 {
327 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
328 	int t;
329 
330 	for_each_cpu(t, smt_mask)
331 		raw_spin_unlock(&cpu_rq(t)->__lock);
332 	local_irq_restore(*flags);
333 }
334 
335 static void __sched_core_flip(bool enabled)
336 {
337 	unsigned long flags;
338 	int cpu, t;
339 
340 	cpus_read_lock();
341 
342 	/*
343 	 * Toggle the online cores, one by one.
344 	 */
345 	cpumask_copy(&sched_core_mask, cpu_online_mask);
346 	for_each_cpu(cpu, &sched_core_mask) {
347 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
348 
349 		sched_core_lock(cpu, &flags);
350 
351 		for_each_cpu(t, smt_mask)
352 			cpu_rq(t)->core_enabled = enabled;
353 
354 		cpu_rq(cpu)->core->core_forceidle_start = 0;
355 
356 		sched_core_unlock(cpu, &flags);
357 
358 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
359 	}
360 
361 	/*
362 	 * Toggle the offline CPUs.
363 	 */
364 	cpumask_copy(&sched_core_mask, cpu_possible_mask);
365 	cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
366 
367 	for_each_cpu(cpu, &sched_core_mask)
368 		cpu_rq(cpu)->core_enabled = enabled;
369 
370 	cpus_read_unlock();
371 }
372 
373 static void sched_core_assert_empty(void)
374 {
375 	int cpu;
376 
377 	for_each_possible_cpu(cpu)
378 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
379 }
380 
381 static void __sched_core_enable(void)
382 {
383 	static_branch_enable(&__sched_core_enabled);
384 	/*
385 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
386 	 * and future ones will observe !sched_core_disabled().
387 	 */
388 	synchronize_rcu();
389 	__sched_core_flip(true);
390 	sched_core_assert_empty();
391 }
392 
393 static void __sched_core_disable(void)
394 {
395 	sched_core_assert_empty();
396 	__sched_core_flip(false);
397 	static_branch_disable(&__sched_core_enabled);
398 }
399 
400 void sched_core_get(void)
401 {
402 	if (atomic_inc_not_zero(&sched_core_count))
403 		return;
404 
405 	mutex_lock(&sched_core_mutex);
406 	if (!atomic_read(&sched_core_count))
407 		__sched_core_enable();
408 
409 	smp_mb__before_atomic();
410 	atomic_inc(&sched_core_count);
411 	mutex_unlock(&sched_core_mutex);
412 }
413 
414 static void __sched_core_put(struct work_struct *work)
415 {
416 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
417 		__sched_core_disable();
418 		mutex_unlock(&sched_core_mutex);
419 	}
420 }
421 
422 void sched_core_put(void)
423 {
424 	static DECLARE_WORK(_work, __sched_core_put);
425 
426 	/*
427 	 * "There can be only one"
428 	 *
429 	 * Either this is the last one, or we don't actually need to do any
430 	 * 'work'. If it is the last *again*, we rely on
431 	 * WORK_STRUCT_PENDING_BIT.
432 	 */
433 	if (!atomic_add_unless(&sched_core_count, -1, 1))
434 		schedule_work(&_work);
435 }
436 
437 #else /* !CONFIG_SCHED_CORE */
438 
439 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
440 static inline void
441 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
442 
443 #endif /* CONFIG_SCHED_CORE */
444 
445 /*
446  * Serialization rules:
447  *
448  * Lock order:
449  *
450  *   p->pi_lock
451  *     rq->lock
452  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
453  *
454  *  rq1->lock
455  *    rq2->lock  where: rq1 < rq2
456  *
457  * Regular state:
458  *
459  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
460  * local CPU's rq->lock, it optionally removes the task from the runqueue and
461  * always looks at the local rq data structures to find the most eligible task
462  * to run next.
463  *
464  * Task enqueue is also under rq->lock, possibly taken from another CPU.
465  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
466  * the local CPU to avoid bouncing the runqueue state around [ see
467  * ttwu_queue_wakelist() ]
468  *
469  * Task wakeup, specifically wakeups that involve migration, are horribly
470  * complicated to avoid having to take two rq->locks.
471  *
472  * Special state:
473  *
474  * System-calls and anything external will use task_rq_lock() which acquires
475  * both p->pi_lock and rq->lock. As a consequence the state they change is
476  * stable while holding either lock:
477  *
478  *  - sched_setaffinity()/
479  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
480  *  - set_user_nice():		p->se.load, p->*prio
481  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
482  *				p->se.load, p->rt_priority,
483  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
484  *  - sched_setnuma():		p->numa_preferred_nid
485  *  - sched_move_task()/
486  *    cpu_cgroup_fork():	p->sched_task_group
487  *  - uclamp_update_active()	p->uclamp*
488  *
489  * p->state <- TASK_*:
490  *
491  *   is changed locklessly using set_current_state(), __set_current_state() or
492  *   set_special_state(), see their respective comments, or by
493  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
494  *   concurrent self.
495  *
496  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
497  *
498  *   is set by activate_task() and cleared by deactivate_task(), under
499  *   rq->lock. Non-zero indicates the task is runnable, the special
500  *   ON_RQ_MIGRATING state is used for migration without holding both
501  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
502  *
503  * p->on_cpu <- { 0, 1 }:
504  *
505  *   is set by prepare_task() and cleared by finish_task() such that it will be
506  *   set before p is scheduled-in and cleared after p is scheduled-out, both
507  *   under rq->lock. Non-zero indicates the task is running on its CPU.
508  *
509  *   [ The astute reader will observe that it is possible for two tasks on one
510  *     CPU to have ->on_cpu = 1 at the same time. ]
511  *
512  * task_cpu(p): is changed by set_task_cpu(), the rules are:
513  *
514  *  - Don't call set_task_cpu() on a blocked task:
515  *
516  *    We don't care what CPU we're not running on, this simplifies hotplug,
517  *    the CPU assignment of blocked tasks isn't required to be valid.
518  *
519  *  - for try_to_wake_up(), called under p->pi_lock:
520  *
521  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
522  *
523  *  - for migration called under rq->lock:
524  *    [ see task_on_rq_migrating() in task_rq_lock() ]
525  *
526  *    o move_queued_task()
527  *    o detach_task()
528  *
529  *  - for migration called under double_rq_lock():
530  *
531  *    o __migrate_swap_task()
532  *    o push_rt_task() / pull_rt_task()
533  *    o push_dl_task() / pull_dl_task()
534  *    o dl_task_offline_migration()
535  *
536  */
537 
538 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
539 {
540 	raw_spinlock_t *lock;
541 
542 	/* Matches synchronize_rcu() in __sched_core_enable() */
543 	preempt_disable();
544 	if (sched_core_disabled()) {
545 		raw_spin_lock_nested(&rq->__lock, subclass);
546 		/* preempt_count *MUST* be > 1 */
547 		preempt_enable_no_resched();
548 		return;
549 	}
550 
551 	for (;;) {
552 		lock = __rq_lockp(rq);
553 		raw_spin_lock_nested(lock, subclass);
554 		if (likely(lock == __rq_lockp(rq))) {
555 			/* preempt_count *MUST* be > 1 */
556 			preempt_enable_no_resched();
557 			return;
558 		}
559 		raw_spin_unlock(lock);
560 	}
561 }
562 
563 bool raw_spin_rq_trylock(struct rq *rq)
564 {
565 	raw_spinlock_t *lock;
566 	bool ret;
567 
568 	/* Matches synchronize_rcu() in __sched_core_enable() */
569 	preempt_disable();
570 	if (sched_core_disabled()) {
571 		ret = raw_spin_trylock(&rq->__lock);
572 		preempt_enable();
573 		return ret;
574 	}
575 
576 	for (;;) {
577 		lock = __rq_lockp(rq);
578 		ret = raw_spin_trylock(lock);
579 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
580 			preempt_enable();
581 			return ret;
582 		}
583 		raw_spin_unlock(lock);
584 	}
585 }
586 
587 void raw_spin_rq_unlock(struct rq *rq)
588 {
589 	raw_spin_unlock(rq_lockp(rq));
590 }
591 
592 #ifdef CONFIG_SMP
593 /*
594  * double_rq_lock - safely lock two runqueues
595  */
596 void double_rq_lock(struct rq *rq1, struct rq *rq2)
597 {
598 	lockdep_assert_irqs_disabled();
599 
600 	if (rq_order_less(rq2, rq1))
601 		swap(rq1, rq2);
602 
603 	raw_spin_rq_lock(rq1);
604 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
605 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
606 
607 	double_rq_clock_clear_update(rq1, rq2);
608 }
609 #endif
610 
611 /*
612  * __task_rq_lock - lock the rq @p resides on.
613  */
614 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
615 	__acquires(rq->lock)
616 {
617 	struct rq *rq;
618 
619 	lockdep_assert_held(&p->pi_lock);
620 
621 	for (;;) {
622 		rq = task_rq(p);
623 		raw_spin_rq_lock(rq);
624 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
625 			rq_pin_lock(rq, rf);
626 			return rq;
627 		}
628 		raw_spin_rq_unlock(rq);
629 
630 		while (unlikely(task_on_rq_migrating(p)))
631 			cpu_relax();
632 	}
633 }
634 
635 /*
636  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
637  */
638 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
639 	__acquires(p->pi_lock)
640 	__acquires(rq->lock)
641 {
642 	struct rq *rq;
643 
644 	for (;;) {
645 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
646 		rq = task_rq(p);
647 		raw_spin_rq_lock(rq);
648 		/*
649 		 *	move_queued_task()		task_rq_lock()
650 		 *
651 		 *	ACQUIRE (rq->lock)
652 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
653 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
654 		 *	[S] ->cpu = new_cpu		[L] task_rq()
655 		 *					[L] ->on_rq
656 		 *	RELEASE (rq->lock)
657 		 *
658 		 * If we observe the old CPU in task_rq_lock(), the acquire of
659 		 * the old rq->lock will fully serialize against the stores.
660 		 *
661 		 * If we observe the new CPU in task_rq_lock(), the address
662 		 * dependency headed by '[L] rq = task_rq()' and the acquire
663 		 * will pair with the WMB to ensure we then also see migrating.
664 		 */
665 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
666 			rq_pin_lock(rq, rf);
667 			return rq;
668 		}
669 		raw_spin_rq_unlock(rq);
670 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
671 
672 		while (unlikely(task_on_rq_migrating(p)))
673 			cpu_relax();
674 	}
675 }
676 
677 /*
678  * RQ-clock updating methods:
679  */
680 
681 static void update_rq_clock_task(struct rq *rq, s64 delta)
682 {
683 /*
684  * In theory, the compile should just see 0 here, and optimize out the call
685  * to sched_rt_avg_update. But I don't trust it...
686  */
687 	s64 __maybe_unused steal = 0, irq_delta = 0;
688 
689 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
690 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
691 
692 	/*
693 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
694 	 * this case when a previous update_rq_clock() happened inside a
695 	 * {soft,}irq region.
696 	 *
697 	 * When this happens, we stop ->clock_task and only update the
698 	 * prev_irq_time stamp to account for the part that fit, so that a next
699 	 * update will consume the rest. This ensures ->clock_task is
700 	 * monotonic.
701 	 *
702 	 * It does however cause some slight miss-attribution of {soft,}irq
703 	 * time, a more accurate solution would be to update the irq_time using
704 	 * the current rq->clock timestamp, except that would require using
705 	 * atomic ops.
706 	 */
707 	if (irq_delta > delta)
708 		irq_delta = delta;
709 
710 	rq->prev_irq_time += irq_delta;
711 	delta -= irq_delta;
712 #endif
713 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
714 	if (static_key_false((&paravirt_steal_rq_enabled))) {
715 		steal = paravirt_steal_clock(cpu_of(rq));
716 		steal -= rq->prev_steal_time_rq;
717 
718 		if (unlikely(steal > delta))
719 			steal = delta;
720 
721 		rq->prev_steal_time_rq += steal;
722 		delta -= steal;
723 	}
724 #endif
725 
726 	rq->clock_task += delta;
727 
728 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
729 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
730 		update_irq_load_avg(rq, irq_delta + steal);
731 #endif
732 	update_rq_clock_pelt(rq, delta);
733 }
734 
735 void update_rq_clock(struct rq *rq)
736 {
737 	s64 delta;
738 
739 	lockdep_assert_rq_held(rq);
740 
741 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
742 		return;
743 
744 #ifdef CONFIG_SCHED_DEBUG
745 	if (sched_feat(WARN_DOUBLE_CLOCK))
746 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
747 	rq->clock_update_flags |= RQCF_UPDATED;
748 #endif
749 
750 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
751 	if (delta < 0)
752 		return;
753 	rq->clock += delta;
754 	update_rq_clock_task(rq, delta);
755 }
756 
757 #ifdef CONFIG_SCHED_HRTICK
758 /*
759  * Use HR-timers to deliver accurate preemption points.
760  */
761 
762 static void hrtick_clear(struct rq *rq)
763 {
764 	if (hrtimer_active(&rq->hrtick_timer))
765 		hrtimer_cancel(&rq->hrtick_timer);
766 }
767 
768 /*
769  * High-resolution timer tick.
770  * Runs from hardirq context with interrupts disabled.
771  */
772 static enum hrtimer_restart hrtick(struct hrtimer *timer)
773 {
774 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
775 	struct rq_flags rf;
776 
777 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
778 
779 	rq_lock(rq, &rf);
780 	update_rq_clock(rq);
781 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
782 	rq_unlock(rq, &rf);
783 
784 	return HRTIMER_NORESTART;
785 }
786 
787 #ifdef CONFIG_SMP
788 
789 static void __hrtick_restart(struct rq *rq)
790 {
791 	struct hrtimer *timer = &rq->hrtick_timer;
792 	ktime_t time = rq->hrtick_time;
793 
794 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
795 }
796 
797 /*
798  * called from hardirq (IPI) context
799  */
800 static void __hrtick_start(void *arg)
801 {
802 	struct rq *rq = arg;
803 	struct rq_flags rf;
804 
805 	rq_lock(rq, &rf);
806 	__hrtick_restart(rq);
807 	rq_unlock(rq, &rf);
808 }
809 
810 /*
811  * Called to set the hrtick timer state.
812  *
813  * called with rq->lock held and irqs disabled
814  */
815 void hrtick_start(struct rq *rq, u64 delay)
816 {
817 	struct hrtimer *timer = &rq->hrtick_timer;
818 	s64 delta;
819 
820 	/*
821 	 * Don't schedule slices shorter than 10000ns, that just
822 	 * doesn't make sense and can cause timer DoS.
823 	 */
824 	delta = max_t(s64, delay, 10000LL);
825 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
826 
827 	if (rq == this_rq())
828 		__hrtick_restart(rq);
829 	else
830 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
831 }
832 
833 #else
834 /*
835  * Called to set the hrtick timer state.
836  *
837  * called with rq->lock held and irqs disabled
838  */
839 void hrtick_start(struct rq *rq, u64 delay)
840 {
841 	/*
842 	 * Don't schedule slices shorter than 10000ns, that just
843 	 * doesn't make sense. Rely on vruntime for fairness.
844 	 */
845 	delay = max_t(u64, delay, 10000LL);
846 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
847 		      HRTIMER_MODE_REL_PINNED_HARD);
848 }
849 
850 #endif /* CONFIG_SMP */
851 
852 static void hrtick_rq_init(struct rq *rq)
853 {
854 #ifdef CONFIG_SMP
855 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
856 #endif
857 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
858 	rq->hrtick_timer.function = hrtick;
859 }
860 #else	/* CONFIG_SCHED_HRTICK */
861 static inline void hrtick_clear(struct rq *rq)
862 {
863 }
864 
865 static inline void hrtick_rq_init(struct rq *rq)
866 {
867 }
868 #endif	/* CONFIG_SCHED_HRTICK */
869 
870 /*
871  * cmpxchg based fetch_or, macro so it works for different integer types
872  */
873 #define fetch_or(ptr, mask)						\
874 	({								\
875 		typeof(ptr) _ptr = (ptr);				\
876 		typeof(mask) _mask = (mask);				\
877 		typeof(*_ptr) _val = *_ptr;				\
878 									\
879 		do {							\
880 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
881 	_val;								\
882 })
883 
884 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
885 /*
886  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
887  * this avoids any races wrt polling state changes and thereby avoids
888  * spurious IPIs.
889  */
890 static inline bool set_nr_and_not_polling(struct task_struct *p)
891 {
892 	struct thread_info *ti = task_thread_info(p);
893 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
894 }
895 
896 /*
897  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
898  *
899  * If this returns true, then the idle task promises to call
900  * sched_ttwu_pending() and reschedule soon.
901  */
902 static bool set_nr_if_polling(struct task_struct *p)
903 {
904 	struct thread_info *ti = task_thread_info(p);
905 	typeof(ti->flags) val = READ_ONCE(ti->flags);
906 
907 	for (;;) {
908 		if (!(val & _TIF_POLLING_NRFLAG))
909 			return false;
910 		if (val & _TIF_NEED_RESCHED)
911 			return true;
912 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
913 			break;
914 	}
915 	return true;
916 }
917 
918 #else
919 static inline bool set_nr_and_not_polling(struct task_struct *p)
920 {
921 	set_tsk_need_resched(p);
922 	return true;
923 }
924 
925 #ifdef CONFIG_SMP
926 static inline bool set_nr_if_polling(struct task_struct *p)
927 {
928 	return false;
929 }
930 #endif
931 #endif
932 
933 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
934 {
935 	struct wake_q_node *node = &task->wake_q;
936 
937 	/*
938 	 * Atomically grab the task, if ->wake_q is !nil already it means
939 	 * it's already queued (either by us or someone else) and will get the
940 	 * wakeup due to that.
941 	 *
942 	 * In order to ensure that a pending wakeup will observe our pending
943 	 * state, even in the failed case, an explicit smp_mb() must be used.
944 	 */
945 	smp_mb__before_atomic();
946 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
947 		return false;
948 
949 	/*
950 	 * The head is context local, there can be no concurrency.
951 	 */
952 	*head->lastp = node;
953 	head->lastp = &node->next;
954 	return true;
955 }
956 
957 /**
958  * wake_q_add() - queue a wakeup for 'later' waking.
959  * @head: the wake_q_head to add @task to
960  * @task: the task to queue for 'later' wakeup
961  *
962  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
963  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
964  * instantly.
965  *
966  * This function must be used as-if it were wake_up_process(); IOW the task
967  * must be ready to be woken at this location.
968  */
969 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
970 {
971 	if (__wake_q_add(head, task))
972 		get_task_struct(task);
973 }
974 
975 /**
976  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
977  * @head: the wake_q_head to add @task to
978  * @task: the task to queue for 'later' wakeup
979  *
980  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
981  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
982  * instantly.
983  *
984  * This function must be used as-if it were wake_up_process(); IOW the task
985  * must be ready to be woken at this location.
986  *
987  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
988  * that already hold reference to @task can call the 'safe' version and trust
989  * wake_q to do the right thing depending whether or not the @task is already
990  * queued for wakeup.
991  */
992 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
993 {
994 	if (!__wake_q_add(head, task))
995 		put_task_struct(task);
996 }
997 
998 void wake_up_q(struct wake_q_head *head)
999 {
1000 	struct wake_q_node *node = head->first;
1001 
1002 	while (node != WAKE_Q_TAIL) {
1003 		struct task_struct *task;
1004 
1005 		task = container_of(node, struct task_struct, wake_q);
1006 		/* Task can safely be re-inserted now: */
1007 		node = node->next;
1008 		task->wake_q.next = NULL;
1009 
1010 		/*
1011 		 * wake_up_process() executes a full barrier, which pairs with
1012 		 * the queueing in wake_q_add() so as not to miss wakeups.
1013 		 */
1014 		wake_up_process(task);
1015 		put_task_struct(task);
1016 	}
1017 }
1018 
1019 /*
1020  * resched_curr - mark rq's current task 'to be rescheduled now'.
1021  *
1022  * On UP this means the setting of the need_resched flag, on SMP it
1023  * might also involve a cross-CPU call to trigger the scheduler on
1024  * the target CPU.
1025  */
1026 void resched_curr(struct rq *rq)
1027 {
1028 	struct task_struct *curr = rq->curr;
1029 	int cpu;
1030 
1031 	lockdep_assert_rq_held(rq);
1032 
1033 	if (test_tsk_need_resched(curr))
1034 		return;
1035 
1036 	cpu = cpu_of(rq);
1037 
1038 	if (cpu == smp_processor_id()) {
1039 		set_tsk_need_resched(curr);
1040 		set_preempt_need_resched();
1041 		return;
1042 	}
1043 
1044 	if (set_nr_and_not_polling(curr))
1045 		smp_send_reschedule(cpu);
1046 	else
1047 		trace_sched_wake_idle_without_ipi(cpu);
1048 }
1049 
1050 void resched_cpu(int cpu)
1051 {
1052 	struct rq *rq = cpu_rq(cpu);
1053 	unsigned long flags;
1054 
1055 	raw_spin_rq_lock_irqsave(rq, flags);
1056 	if (cpu_online(cpu) || cpu == smp_processor_id())
1057 		resched_curr(rq);
1058 	raw_spin_rq_unlock_irqrestore(rq, flags);
1059 }
1060 
1061 #ifdef CONFIG_SMP
1062 #ifdef CONFIG_NO_HZ_COMMON
1063 /*
1064  * In the semi idle case, use the nearest busy CPU for migrating timers
1065  * from an idle CPU.  This is good for power-savings.
1066  *
1067  * We don't do similar optimization for completely idle system, as
1068  * selecting an idle CPU will add more delays to the timers than intended
1069  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1070  */
1071 int get_nohz_timer_target(void)
1072 {
1073 	int i, cpu = smp_processor_id(), default_cpu = -1;
1074 	struct sched_domain *sd;
1075 	const struct cpumask *hk_mask;
1076 
1077 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1078 		if (!idle_cpu(cpu))
1079 			return cpu;
1080 		default_cpu = cpu;
1081 	}
1082 
1083 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1084 
1085 	rcu_read_lock();
1086 	for_each_domain(cpu, sd) {
1087 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1088 			if (cpu == i)
1089 				continue;
1090 
1091 			if (!idle_cpu(i)) {
1092 				cpu = i;
1093 				goto unlock;
1094 			}
1095 		}
1096 	}
1097 
1098 	if (default_cpu == -1)
1099 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1100 	cpu = default_cpu;
1101 unlock:
1102 	rcu_read_unlock();
1103 	return cpu;
1104 }
1105 
1106 /*
1107  * When add_timer_on() enqueues a timer into the timer wheel of an
1108  * idle CPU then this timer might expire before the next timer event
1109  * which is scheduled to wake up that CPU. In case of a completely
1110  * idle system the next event might even be infinite time into the
1111  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1112  * leaves the inner idle loop so the newly added timer is taken into
1113  * account when the CPU goes back to idle and evaluates the timer
1114  * wheel for the next timer event.
1115  */
1116 static void wake_up_idle_cpu(int cpu)
1117 {
1118 	struct rq *rq = cpu_rq(cpu);
1119 
1120 	if (cpu == smp_processor_id())
1121 		return;
1122 
1123 	if (set_nr_and_not_polling(rq->idle))
1124 		smp_send_reschedule(cpu);
1125 	else
1126 		trace_sched_wake_idle_without_ipi(cpu);
1127 }
1128 
1129 static bool wake_up_full_nohz_cpu(int cpu)
1130 {
1131 	/*
1132 	 * We just need the target to call irq_exit() and re-evaluate
1133 	 * the next tick. The nohz full kick at least implies that.
1134 	 * If needed we can still optimize that later with an
1135 	 * empty IRQ.
1136 	 */
1137 	if (cpu_is_offline(cpu))
1138 		return true;  /* Don't try to wake offline CPUs. */
1139 	if (tick_nohz_full_cpu(cpu)) {
1140 		if (cpu != smp_processor_id() ||
1141 		    tick_nohz_tick_stopped())
1142 			tick_nohz_full_kick_cpu(cpu);
1143 		return true;
1144 	}
1145 
1146 	return false;
1147 }
1148 
1149 /*
1150  * Wake up the specified CPU.  If the CPU is going offline, it is the
1151  * caller's responsibility to deal with the lost wakeup, for example,
1152  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1153  */
1154 void wake_up_nohz_cpu(int cpu)
1155 {
1156 	if (!wake_up_full_nohz_cpu(cpu))
1157 		wake_up_idle_cpu(cpu);
1158 }
1159 
1160 static void nohz_csd_func(void *info)
1161 {
1162 	struct rq *rq = info;
1163 	int cpu = cpu_of(rq);
1164 	unsigned int flags;
1165 
1166 	/*
1167 	 * Release the rq::nohz_csd.
1168 	 */
1169 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1170 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1171 
1172 	rq->idle_balance = idle_cpu(cpu);
1173 	if (rq->idle_balance && !need_resched()) {
1174 		rq->nohz_idle_balance = flags;
1175 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1176 	}
1177 }
1178 
1179 #endif /* CONFIG_NO_HZ_COMMON */
1180 
1181 #ifdef CONFIG_NO_HZ_FULL
1182 bool sched_can_stop_tick(struct rq *rq)
1183 {
1184 	int fifo_nr_running;
1185 
1186 	/* Deadline tasks, even if single, need the tick */
1187 	if (rq->dl.dl_nr_running)
1188 		return false;
1189 
1190 	/*
1191 	 * If there are more than one RR tasks, we need the tick to affect the
1192 	 * actual RR behaviour.
1193 	 */
1194 	if (rq->rt.rr_nr_running) {
1195 		if (rq->rt.rr_nr_running == 1)
1196 			return true;
1197 		else
1198 			return false;
1199 	}
1200 
1201 	/*
1202 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1203 	 * forced preemption between FIFO tasks.
1204 	 */
1205 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1206 	if (fifo_nr_running)
1207 		return true;
1208 
1209 	/*
1210 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1211 	 * if there's more than one we need the tick for involuntary
1212 	 * preemption.
1213 	 */
1214 	if (rq->nr_running > 1)
1215 		return false;
1216 
1217 	return true;
1218 }
1219 #endif /* CONFIG_NO_HZ_FULL */
1220 #endif /* CONFIG_SMP */
1221 
1222 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1223 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1224 /*
1225  * Iterate task_group tree rooted at *from, calling @down when first entering a
1226  * node and @up when leaving it for the final time.
1227  *
1228  * Caller must hold rcu_lock or sufficient equivalent.
1229  */
1230 int walk_tg_tree_from(struct task_group *from,
1231 			     tg_visitor down, tg_visitor up, void *data)
1232 {
1233 	struct task_group *parent, *child;
1234 	int ret;
1235 
1236 	parent = from;
1237 
1238 down:
1239 	ret = (*down)(parent, data);
1240 	if (ret)
1241 		goto out;
1242 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1243 		parent = child;
1244 		goto down;
1245 
1246 up:
1247 		continue;
1248 	}
1249 	ret = (*up)(parent, data);
1250 	if (ret || parent == from)
1251 		goto out;
1252 
1253 	child = parent;
1254 	parent = parent->parent;
1255 	if (parent)
1256 		goto up;
1257 out:
1258 	return ret;
1259 }
1260 
1261 int tg_nop(struct task_group *tg, void *data)
1262 {
1263 	return 0;
1264 }
1265 #endif
1266 
1267 static void set_load_weight(struct task_struct *p, bool update_load)
1268 {
1269 	int prio = p->static_prio - MAX_RT_PRIO;
1270 	struct load_weight *load = &p->se.load;
1271 
1272 	/*
1273 	 * SCHED_IDLE tasks get minimal weight:
1274 	 */
1275 	if (task_has_idle_policy(p)) {
1276 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1277 		load->inv_weight = WMULT_IDLEPRIO;
1278 		return;
1279 	}
1280 
1281 	/*
1282 	 * SCHED_OTHER tasks have to update their load when changing their
1283 	 * weight
1284 	 */
1285 	if (update_load && p->sched_class == &fair_sched_class) {
1286 		reweight_task(p, prio);
1287 	} else {
1288 		load->weight = scale_load(sched_prio_to_weight[prio]);
1289 		load->inv_weight = sched_prio_to_wmult[prio];
1290 	}
1291 }
1292 
1293 #ifdef CONFIG_UCLAMP_TASK
1294 /*
1295  * Serializes updates of utilization clamp values
1296  *
1297  * The (slow-path) user-space triggers utilization clamp value updates which
1298  * can require updates on (fast-path) scheduler's data structures used to
1299  * support enqueue/dequeue operations.
1300  * While the per-CPU rq lock protects fast-path update operations, user-space
1301  * requests are serialized using a mutex to reduce the risk of conflicting
1302  * updates or API abuses.
1303  */
1304 static DEFINE_MUTEX(uclamp_mutex);
1305 
1306 /* Max allowed minimum utilization */
1307 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1308 
1309 /* Max allowed maximum utilization */
1310 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1311 
1312 /*
1313  * By default RT tasks run at the maximum performance point/capacity of the
1314  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1315  * SCHED_CAPACITY_SCALE.
1316  *
1317  * This knob allows admins to change the default behavior when uclamp is being
1318  * used. In battery powered devices, particularly, running at the maximum
1319  * capacity and frequency will increase energy consumption and shorten the
1320  * battery life.
1321  *
1322  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1323  *
1324  * This knob will not override the system default sched_util_clamp_min defined
1325  * above.
1326  */
1327 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1328 
1329 /* All clamps are required to be less or equal than these values */
1330 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1331 
1332 /*
1333  * This static key is used to reduce the uclamp overhead in the fast path. It
1334  * primarily disables the call to uclamp_rq_{inc, dec}() in
1335  * enqueue/dequeue_task().
1336  *
1337  * This allows users to continue to enable uclamp in their kernel config with
1338  * minimum uclamp overhead in the fast path.
1339  *
1340  * As soon as userspace modifies any of the uclamp knobs, the static key is
1341  * enabled, since we have an actual users that make use of uclamp
1342  * functionality.
1343  *
1344  * The knobs that would enable this static key are:
1345  *
1346  *   * A task modifying its uclamp value with sched_setattr().
1347  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1348  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1349  */
1350 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1351 
1352 /* Integer rounded range for each bucket */
1353 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1354 
1355 #define for_each_clamp_id(clamp_id) \
1356 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1357 
1358 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1359 {
1360 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1361 }
1362 
1363 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1364 {
1365 	if (clamp_id == UCLAMP_MIN)
1366 		return 0;
1367 	return SCHED_CAPACITY_SCALE;
1368 }
1369 
1370 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1371 				 unsigned int value, bool user_defined)
1372 {
1373 	uc_se->value = value;
1374 	uc_se->bucket_id = uclamp_bucket_id(value);
1375 	uc_se->user_defined = user_defined;
1376 }
1377 
1378 static inline unsigned int
1379 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1380 		  unsigned int clamp_value)
1381 {
1382 	/*
1383 	 * Avoid blocked utilization pushing up the frequency when we go
1384 	 * idle (which drops the max-clamp) by retaining the last known
1385 	 * max-clamp.
1386 	 */
1387 	if (clamp_id == UCLAMP_MAX) {
1388 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1389 		return clamp_value;
1390 	}
1391 
1392 	return uclamp_none(UCLAMP_MIN);
1393 }
1394 
1395 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1396 				     unsigned int clamp_value)
1397 {
1398 	/* Reset max-clamp retention only on idle exit */
1399 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1400 		return;
1401 
1402 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1403 }
1404 
1405 static inline
1406 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1407 				   unsigned int clamp_value)
1408 {
1409 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1410 	int bucket_id = UCLAMP_BUCKETS - 1;
1411 
1412 	/*
1413 	 * Since both min and max clamps are max aggregated, find the
1414 	 * top most bucket with tasks in.
1415 	 */
1416 	for ( ; bucket_id >= 0; bucket_id--) {
1417 		if (!bucket[bucket_id].tasks)
1418 			continue;
1419 		return bucket[bucket_id].value;
1420 	}
1421 
1422 	/* No tasks -- default clamp values */
1423 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1424 }
1425 
1426 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1427 {
1428 	unsigned int default_util_min;
1429 	struct uclamp_se *uc_se;
1430 
1431 	lockdep_assert_held(&p->pi_lock);
1432 
1433 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1434 
1435 	/* Only sync if user didn't override the default */
1436 	if (uc_se->user_defined)
1437 		return;
1438 
1439 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1440 	uclamp_se_set(uc_se, default_util_min, false);
1441 }
1442 
1443 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1444 {
1445 	struct rq_flags rf;
1446 	struct rq *rq;
1447 
1448 	if (!rt_task(p))
1449 		return;
1450 
1451 	/* Protect updates to p->uclamp_* */
1452 	rq = task_rq_lock(p, &rf);
1453 	__uclamp_update_util_min_rt_default(p);
1454 	task_rq_unlock(rq, p, &rf);
1455 }
1456 
1457 static inline struct uclamp_se
1458 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1459 {
1460 	/* Copy by value as we could modify it */
1461 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1462 #ifdef CONFIG_UCLAMP_TASK_GROUP
1463 	unsigned int tg_min, tg_max, value;
1464 
1465 	/*
1466 	 * Tasks in autogroups or root task group will be
1467 	 * restricted by system defaults.
1468 	 */
1469 	if (task_group_is_autogroup(task_group(p)))
1470 		return uc_req;
1471 	if (task_group(p) == &root_task_group)
1472 		return uc_req;
1473 
1474 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1475 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1476 	value = uc_req.value;
1477 	value = clamp(value, tg_min, tg_max);
1478 	uclamp_se_set(&uc_req, value, false);
1479 #endif
1480 
1481 	return uc_req;
1482 }
1483 
1484 /*
1485  * The effective clamp bucket index of a task depends on, by increasing
1486  * priority:
1487  * - the task specific clamp value, when explicitly requested from userspace
1488  * - the task group effective clamp value, for tasks not either in the root
1489  *   group or in an autogroup
1490  * - the system default clamp value, defined by the sysadmin
1491  */
1492 static inline struct uclamp_se
1493 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1494 {
1495 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1496 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1497 
1498 	/* System default restrictions always apply */
1499 	if (unlikely(uc_req.value > uc_max.value))
1500 		return uc_max;
1501 
1502 	return uc_req;
1503 }
1504 
1505 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1506 {
1507 	struct uclamp_se uc_eff;
1508 
1509 	/* Task currently refcounted: use back-annotated (effective) value */
1510 	if (p->uclamp[clamp_id].active)
1511 		return (unsigned long)p->uclamp[clamp_id].value;
1512 
1513 	uc_eff = uclamp_eff_get(p, clamp_id);
1514 
1515 	return (unsigned long)uc_eff.value;
1516 }
1517 
1518 /*
1519  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1520  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1521  * updates the rq's clamp value if required.
1522  *
1523  * Tasks can have a task-specific value requested from user-space, track
1524  * within each bucket the maximum value for tasks refcounted in it.
1525  * This "local max aggregation" allows to track the exact "requested" value
1526  * for each bucket when all its RUNNABLE tasks require the same clamp.
1527  */
1528 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1529 				    enum uclamp_id clamp_id)
1530 {
1531 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1532 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1533 	struct uclamp_bucket *bucket;
1534 
1535 	lockdep_assert_rq_held(rq);
1536 
1537 	/* Update task effective clamp */
1538 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1539 
1540 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1541 	bucket->tasks++;
1542 	uc_se->active = true;
1543 
1544 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1545 
1546 	/*
1547 	 * Local max aggregation: rq buckets always track the max
1548 	 * "requested" clamp value of its RUNNABLE tasks.
1549 	 */
1550 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1551 		bucket->value = uc_se->value;
1552 
1553 	if (uc_se->value > READ_ONCE(uc_rq->value))
1554 		WRITE_ONCE(uc_rq->value, uc_se->value);
1555 }
1556 
1557 /*
1558  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1559  * is released. If this is the last task reference counting the rq's max
1560  * active clamp value, then the rq's clamp value is updated.
1561  *
1562  * Both refcounted tasks and rq's cached clamp values are expected to be
1563  * always valid. If it's detected they are not, as defensive programming,
1564  * enforce the expected state and warn.
1565  */
1566 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1567 				    enum uclamp_id clamp_id)
1568 {
1569 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1570 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1571 	struct uclamp_bucket *bucket;
1572 	unsigned int bkt_clamp;
1573 	unsigned int rq_clamp;
1574 
1575 	lockdep_assert_rq_held(rq);
1576 
1577 	/*
1578 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1579 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1580 	 *
1581 	 * In this case the uc_se->active flag should be false since no uclamp
1582 	 * accounting was performed at enqueue time and we can just return
1583 	 * here.
1584 	 *
1585 	 * Need to be careful of the following enqueue/dequeue ordering
1586 	 * problem too
1587 	 *
1588 	 *	enqueue(taskA)
1589 	 *	// sched_uclamp_used gets enabled
1590 	 *	enqueue(taskB)
1591 	 *	dequeue(taskA)
1592 	 *	// Must not decrement bucket->tasks here
1593 	 *	dequeue(taskB)
1594 	 *
1595 	 * where we could end up with stale data in uc_se and
1596 	 * bucket[uc_se->bucket_id].
1597 	 *
1598 	 * The following check here eliminates the possibility of such race.
1599 	 */
1600 	if (unlikely(!uc_se->active))
1601 		return;
1602 
1603 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1604 
1605 	SCHED_WARN_ON(!bucket->tasks);
1606 	if (likely(bucket->tasks))
1607 		bucket->tasks--;
1608 
1609 	uc_se->active = false;
1610 
1611 	/*
1612 	 * Keep "local max aggregation" simple and accept to (possibly)
1613 	 * overboost some RUNNABLE tasks in the same bucket.
1614 	 * The rq clamp bucket value is reset to its base value whenever
1615 	 * there are no more RUNNABLE tasks refcounting it.
1616 	 */
1617 	if (likely(bucket->tasks))
1618 		return;
1619 
1620 	rq_clamp = READ_ONCE(uc_rq->value);
1621 	/*
1622 	 * Defensive programming: this should never happen. If it happens,
1623 	 * e.g. due to future modification, warn and fixup the expected value.
1624 	 */
1625 	SCHED_WARN_ON(bucket->value > rq_clamp);
1626 	if (bucket->value >= rq_clamp) {
1627 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1628 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1629 	}
1630 }
1631 
1632 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1633 {
1634 	enum uclamp_id clamp_id;
1635 
1636 	/*
1637 	 * Avoid any overhead until uclamp is actually used by the userspace.
1638 	 *
1639 	 * The condition is constructed such that a NOP is generated when
1640 	 * sched_uclamp_used is disabled.
1641 	 */
1642 	if (!static_branch_unlikely(&sched_uclamp_used))
1643 		return;
1644 
1645 	if (unlikely(!p->sched_class->uclamp_enabled))
1646 		return;
1647 
1648 	for_each_clamp_id(clamp_id)
1649 		uclamp_rq_inc_id(rq, p, clamp_id);
1650 
1651 	/* Reset clamp idle holding when there is one RUNNABLE task */
1652 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1653 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1654 }
1655 
1656 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1657 {
1658 	enum uclamp_id clamp_id;
1659 
1660 	/*
1661 	 * Avoid any overhead until uclamp is actually used by the userspace.
1662 	 *
1663 	 * The condition is constructed such that a NOP is generated when
1664 	 * sched_uclamp_used is disabled.
1665 	 */
1666 	if (!static_branch_unlikely(&sched_uclamp_used))
1667 		return;
1668 
1669 	if (unlikely(!p->sched_class->uclamp_enabled))
1670 		return;
1671 
1672 	for_each_clamp_id(clamp_id)
1673 		uclamp_rq_dec_id(rq, p, clamp_id);
1674 }
1675 
1676 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1677 				      enum uclamp_id clamp_id)
1678 {
1679 	if (!p->uclamp[clamp_id].active)
1680 		return;
1681 
1682 	uclamp_rq_dec_id(rq, p, clamp_id);
1683 	uclamp_rq_inc_id(rq, p, clamp_id);
1684 
1685 	/*
1686 	 * Make sure to clear the idle flag if we've transiently reached 0
1687 	 * active tasks on rq.
1688 	 */
1689 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1690 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1691 }
1692 
1693 static inline void
1694 uclamp_update_active(struct task_struct *p)
1695 {
1696 	enum uclamp_id clamp_id;
1697 	struct rq_flags rf;
1698 	struct rq *rq;
1699 
1700 	/*
1701 	 * Lock the task and the rq where the task is (or was) queued.
1702 	 *
1703 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1704 	 * price to pay to safely serialize util_{min,max} updates with
1705 	 * enqueues, dequeues and migration operations.
1706 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1707 	 */
1708 	rq = task_rq_lock(p, &rf);
1709 
1710 	/*
1711 	 * Setting the clamp bucket is serialized by task_rq_lock().
1712 	 * If the task is not yet RUNNABLE and its task_struct is not
1713 	 * affecting a valid clamp bucket, the next time it's enqueued,
1714 	 * it will already see the updated clamp bucket value.
1715 	 */
1716 	for_each_clamp_id(clamp_id)
1717 		uclamp_rq_reinc_id(rq, p, clamp_id);
1718 
1719 	task_rq_unlock(rq, p, &rf);
1720 }
1721 
1722 #ifdef CONFIG_UCLAMP_TASK_GROUP
1723 static inline void
1724 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1725 {
1726 	struct css_task_iter it;
1727 	struct task_struct *p;
1728 
1729 	css_task_iter_start(css, 0, &it);
1730 	while ((p = css_task_iter_next(&it)))
1731 		uclamp_update_active(p);
1732 	css_task_iter_end(&it);
1733 }
1734 
1735 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1736 #endif
1737 
1738 #ifdef CONFIG_SYSCTL
1739 #ifdef CONFIG_UCLAMP_TASK
1740 #ifdef CONFIG_UCLAMP_TASK_GROUP
1741 static void uclamp_update_root_tg(void)
1742 {
1743 	struct task_group *tg = &root_task_group;
1744 
1745 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1746 		      sysctl_sched_uclamp_util_min, false);
1747 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1748 		      sysctl_sched_uclamp_util_max, false);
1749 
1750 	rcu_read_lock();
1751 	cpu_util_update_eff(&root_task_group.css);
1752 	rcu_read_unlock();
1753 }
1754 #else
1755 static void uclamp_update_root_tg(void) { }
1756 #endif
1757 
1758 static void uclamp_sync_util_min_rt_default(void)
1759 {
1760 	struct task_struct *g, *p;
1761 
1762 	/*
1763 	 * copy_process()			sysctl_uclamp
1764 	 *					  uclamp_min_rt = X;
1765 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1766 	 *   // link thread			  smp_mb__after_spinlock()
1767 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1768 	 *   sched_post_fork()			  for_each_process_thread()
1769 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1770 	 *
1771 	 * Ensures that either sched_post_fork() will observe the new
1772 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1773 	 * task.
1774 	 */
1775 	read_lock(&tasklist_lock);
1776 	smp_mb__after_spinlock();
1777 	read_unlock(&tasklist_lock);
1778 
1779 	rcu_read_lock();
1780 	for_each_process_thread(g, p)
1781 		uclamp_update_util_min_rt_default(p);
1782 	rcu_read_unlock();
1783 }
1784 
1785 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1786 				void *buffer, size_t *lenp, loff_t *ppos)
1787 {
1788 	bool update_root_tg = false;
1789 	int old_min, old_max, old_min_rt;
1790 	int result;
1791 
1792 	mutex_lock(&uclamp_mutex);
1793 	old_min = sysctl_sched_uclamp_util_min;
1794 	old_max = sysctl_sched_uclamp_util_max;
1795 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1796 
1797 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1798 	if (result)
1799 		goto undo;
1800 	if (!write)
1801 		goto done;
1802 
1803 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1804 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1805 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1806 
1807 		result = -EINVAL;
1808 		goto undo;
1809 	}
1810 
1811 	if (old_min != sysctl_sched_uclamp_util_min) {
1812 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1813 			      sysctl_sched_uclamp_util_min, false);
1814 		update_root_tg = true;
1815 	}
1816 	if (old_max != sysctl_sched_uclamp_util_max) {
1817 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1818 			      sysctl_sched_uclamp_util_max, false);
1819 		update_root_tg = true;
1820 	}
1821 
1822 	if (update_root_tg) {
1823 		static_branch_enable(&sched_uclamp_used);
1824 		uclamp_update_root_tg();
1825 	}
1826 
1827 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1828 		static_branch_enable(&sched_uclamp_used);
1829 		uclamp_sync_util_min_rt_default();
1830 	}
1831 
1832 	/*
1833 	 * We update all RUNNABLE tasks only when task groups are in use.
1834 	 * Otherwise, keep it simple and do just a lazy update at each next
1835 	 * task enqueue time.
1836 	 */
1837 
1838 	goto done;
1839 
1840 undo:
1841 	sysctl_sched_uclamp_util_min = old_min;
1842 	sysctl_sched_uclamp_util_max = old_max;
1843 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1844 done:
1845 	mutex_unlock(&uclamp_mutex);
1846 
1847 	return result;
1848 }
1849 #endif
1850 #endif
1851 
1852 static int uclamp_validate(struct task_struct *p,
1853 			   const struct sched_attr *attr)
1854 {
1855 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1856 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1857 
1858 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1859 		util_min = attr->sched_util_min;
1860 
1861 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1862 			return -EINVAL;
1863 	}
1864 
1865 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1866 		util_max = attr->sched_util_max;
1867 
1868 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1869 			return -EINVAL;
1870 	}
1871 
1872 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1873 		return -EINVAL;
1874 
1875 	/*
1876 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1877 	 *
1878 	 * We need to do that here, because enabling static branches is a
1879 	 * blocking operation which obviously cannot be done while holding
1880 	 * scheduler locks.
1881 	 */
1882 	static_branch_enable(&sched_uclamp_used);
1883 
1884 	return 0;
1885 }
1886 
1887 static bool uclamp_reset(const struct sched_attr *attr,
1888 			 enum uclamp_id clamp_id,
1889 			 struct uclamp_se *uc_se)
1890 {
1891 	/* Reset on sched class change for a non user-defined clamp value. */
1892 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1893 	    !uc_se->user_defined)
1894 		return true;
1895 
1896 	/* Reset on sched_util_{min,max} == -1. */
1897 	if (clamp_id == UCLAMP_MIN &&
1898 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1899 	    attr->sched_util_min == -1) {
1900 		return true;
1901 	}
1902 
1903 	if (clamp_id == UCLAMP_MAX &&
1904 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1905 	    attr->sched_util_max == -1) {
1906 		return true;
1907 	}
1908 
1909 	return false;
1910 }
1911 
1912 static void __setscheduler_uclamp(struct task_struct *p,
1913 				  const struct sched_attr *attr)
1914 {
1915 	enum uclamp_id clamp_id;
1916 
1917 	for_each_clamp_id(clamp_id) {
1918 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1919 		unsigned int value;
1920 
1921 		if (!uclamp_reset(attr, clamp_id, uc_se))
1922 			continue;
1923 
1924 		/*
1925 		 * RT by default have a 100% boost value that could be modified
1926 		 * at runtime.
1927 		 */
1928 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1929 			value = sysctl_sched_uclamp_util_min_rt_default;
1930 		else
1931 			value = uclamp_none(clamp_id);
1932 
1933 		uclamp_se_set(uc_se, value, false);
1934 
1935 	}
1936 
1937 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1938 		return;
1939 
1940 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1941 	    attr->sched_util_min != -1) {
1942 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1943 			      attr->sched_util_min, true);
1944 	}
1945 
1946 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1947 	    attr->sched_util_max != -1) {
1948 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1949 			      attr->sched_util_max, true);
1950 	}
1951 }
1952 
1953 static void uclamp_fork(struct task_struct *p)
1954 {
1955 	enum uclamp_id clamp_id;
1956 
1957 	/*
1958 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1959 	 * as the task is still at its early fork stages.
1960 	 */
1961 	for_each_clamp_id(clamp_id)
1962 		p->uclamp[clamp_id].active = false;
1963 
1964 	if (likely(!p->sched_reset_on_fork))
1965 		return;
1966 
1967 	for_each_clamp_id(clamp_id) {
1968 		uclamp_se_set(&p->uclamp_req[clamp_id],
1969 			      uclamp_none(clamp_id), false);
1970 	}
1971 }
1972 
1973 static void uclamp_post_fork(struct task_struct *p)
1974 {
1975 	uclamp_update_util_min_rt_default(p);
1976 }
1977 
1978 static void __init init_uclamp_rq(struct rq *rq)
1979 {
1980 	enum uclamp_id clamp_id;
1981 	struct uclamp_rq *uc_rq = rq->uclamp;
1982 
1983 	for_each_clamp_id(clamp_id) {
1984 		uc_rq[clamp_id] = (struct uclamp_rq) {
1985 			.value = uclamp_none(clamp_id)
1986 		};
1987 	}
1988 
1989 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1990 }
1991 
1992 static void __init init_uclamp(void)
1993 {
1994 	struct uclamp_se uc_max = {};
1995 	enum uclamp_id clamp_id;
1996 	int cpu;
1997 
1998 	for_each_possible_cpu(cpu)
1999 		init_uclamp_rq(cpu_rq(cpu));
2000 
2001 	for_each_clamp_id(clamp_id) {
2002 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2003 			      uclamp_none(clamp_id), false);
2004 	}
2005 
2006 	/* System defaults allow max clamp values for both indexes */
2007 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2008 	for_each_clamp_id(clamp_id) {
2009 		uclamp_default[clamp_id] = uc_max;
2010 #ifdef CONFIG_UCLAMP_TASK_GROUP
2011 		root_task_group.uclamp_req[clamp_id] = uc_max;
2012 		root_task_group.uclamp[clamp_id] = uc_max;
2013 #endif
2014 	}
2015 }
2016 
2017 #else /* CONFIG_UCLAMP_TASK */
2018 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2019 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2020 static inline int uclamp_validate(struct task_struct *p,
2021 				  const struct sched_attr *attr)
2022 {
2023 	return -EOPNOTSUPP;
2024 }
2025 static void __setscheduler_uclamp(struct task_struct *p,
2026 				  const struct sched_attr *attr) { }
2027 static inline void uclamp_fork(struct task_struct *p) { }
2028 static inline void uclamp_post_fork(struct task_struct *p) { }
2029 static inline void init_uclamp(void) { }
2030 #endif /* CONFIG_UCLAMP_TASK */
2031 
2032 bool sched_task_on_rq(struct task_struct *p)
2033 {
2034 	return task_on_rq_queued(p);
2035 }
2036 
2037 unsigned long get_wchan(struct task_struct *p)
2038 {
2039 	unsigned long ip = 0;
2040 	unsigned int state;
2041 
2042 	if (!p || p == current)
2043 		return 0;
2044 
2045 	/* Only get wchan if task is blocked and we can keep it that way. */
2046 	raw_spin_lock_irq(&p->pi_lock);
2047 	state = READ_ONCE(p->__state);
2048 	smp_rmb(); /* see try_to_wake_up() */
2049 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2050 		ip = __get_wchan(p);
2051 	raw_spin_unlock_irq(&p->pi_lock);
2052 
2053 	return ip;
2054 }
2055 
2056 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2057 {
2058 	if (!(flags & ENQUEUE_NOCLOCK))
2059 		update_rq_clock(rq);
2060 
2061 	if (!(flags & ENQUEUE_RESTORE)) {
2062 		sched_info_enqueue(rq, p);
2063 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2064 	}
2065 
2066 	uclamp_rq_inc(rq, p);
2067 	p->sched_class->enqueue_task(rq, p, flags);
2068 
2069 	if (sched_core_enabled(rq))
2070 		sched_core_enqueue(rq, p);
2071 }
2072 
2073 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2074 {
2075 	if (sched_core_enabled(rq))
2076 		sched_core_dequeue(rq, p, flags);
2077 
2078 	if (!(flags & DEQUEUE_NOCLOCK))
2079 		update_rq_clock(rq);
2080 
2081 	if (!(flags & DEQUEUE_SAVE)) {
2082 		sched_info_dequeue(rq, p);
2083 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2084 	}
2085 
2086 	uclamp_rq_dec(rq, p);
2087 	p->sched_class->dequeue_task(rq, p, flags);
2088 }
2089 
2090 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2091 {
2092 	enqueue_task(rq, p, flags);
2093 
2094 	p->on_rq = TASK_ON_RQ_QUEUED;
2095 }
2096 
2097 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2098 {
2099 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2100 
2101 	dequeue_task(rq, p, flags);
2102 }
2103 
2104 static inline int __normal_prio(int policy, int rt_prio, int nice)
2105 {
2106 	int prio;
2107 
2108 	if (dl_policy(policy))
2109 		prio = MAX_DL_PRIO - 1;
2110 	else if (rt_policy(policy))
2111 		prio = MAX_RT_PRIO - 1 - rt_prio;
2112 	else
2113 		prio = NICE_TO_PRIO(nice);
2114 
2115 	return prio;
2116 }
2117 
2118 /*
2119  * Calculate the expected normal priority: i.e. priority
2120  * without taking RT-inheritance into account. Might be
2121  * boosted by interactivity modifiers. Changes upon fork,
2122  * setprio syscalls, and whenever the interactivity
2123  * estimator recalculates.
2124  */
2125 static inline int normal_prio(struct task_struct *p)
2126 {
2127 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2128 }
2129 
2130 /*
2131  * Calculate the current priority, i.e. the priority
2132  * taken into account by the scheduler. This value might
2133  * be boosted by RT tasks, or might be boosted by
2134  * interactivity modifiers. Will be RT if the task got
2135  * RT-boosted. If not then it returns p->normal_prio.
2136  */
2137 static int effective_prio(struct task_struct *p)
2138 {
2139 	p->normal_prio = normal_prio(p);
2140 	/*
2141 	 * If we are RT tasks or we were boosted to RT priority,
2142 	 * keep the priority unchanged. Otherwise, update priority
2143 	 * to the normal priority:
2144 	 */
2145 	if (!rt_prio(p->prio))
2146 		return p->normal_prio;
2147 	return p->prio;
2148 }
2149 
2150 /**
2151  * task_curr - is this task currently executing on a CPU?
2152  * @p: the task in question.
2153  *
2154  * Return: 1 if the task is currently executing. 0 otherwise.
2155  */
2156 inline int task_curr(const struct task_struct *p)
2157 {
2158 	return cpu_curr(task_cpu(p)) == p;
2159 }
2160 
2161 /*
2162  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2163  * use the balance_callback list if you want balancing.
2164  *
2165  * this means any call to check_class_changed() must be followed by a call to
2166  * balance_callback().
2167  */
2168 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2169 				       const struct sched_class *prev_class,
2170 				       int oldprio)
2171 {
2172 	if (prev_class != p->sched_class) {
2173 		if (prev_class->switched_from)
2174 			prev_class->switched_from(rq, p);
2175 
2176 		p->sched_class->switched_to(rq, p);
2177 	} else if (oldprio != p->prio || dl_task(p))
2178 		p->sched_class->prio_changed(rq, p, oldprio);
2179 }
2180 
2181 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2182 {
2183 	if (p->sched_class == rq->curr->sched_class)
2184 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2185 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2186 		resched_curr(rq);
2187 
2188 	/*
2189 	 * A queue event has occurred, and we're going to schedule.  In
2190 	 * this case, we can save a useless back to back clock update.
2191 	 */
2192 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2193 		rq_clock_skip_update(rq);
2194 }
2195 
2196 #ifdef CONFIG_SMP
2197 
2198 static void
2199 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2200 
2201 static int __set_cpus_allowed_ptr(struct task_struct *p,
2202 				  const struct cpumask *new_mask,
2203 				  u32 flags);
2204 
2205 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2206 {
2207 	if (likely(!p->migration_disabled))
2208 		return;
2209 
2210 	if (p->cpus_ptr != &p->cpus_mask)
2211 		return;
2212 
2213 	/*
2214 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2215 	 */
2216 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2217 }
2218 
2219 void migrate_disable(void)
2220 {
2221 	struct task_struct *p = current;
2222 
2223 	if (p->migration_disabled) {
2224 		p->migration_disabled++;
2225 		return;
2226 	}
2227 
2228 	preempt_disable();
2229 	this_rq()->nr_pinned++;
2230 	p->migration_disabled = 1;
2231 	preempt_enable();
2232 }
2233 EXPORT_SYMBOL_GPL(migrate_disable);
2234 
2235 void migrate_enable(void)
2236 {
2237 	struct task_struct *p = current;
2238 
2239 	if (p->migration_disabled > 1) {
2240 		p->migration_disabled--;
2241 		return;
2242 	}
2243 
2244 	if (WARN_ON_ONCE(!p->migration_disabled))
2245 		return;
2246 
2247 	/*
2248 	 * Ensure stop_task runs either before or after this, and that
2249 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2250 	 */
2251 	preempt_disable();
2252 	if (p->cpus_ptr != &p->cpus_mask)
2253 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2254 	/*
2255 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2256 	 * regular cpus_mask, otherwise things that race (eg.
2257 	 * select_fallback_rq) get confused.
2258 	 */
2259 	barrier();
2260 	p->migration_disabled = 0;
2261 	this_rq()->nr_pinned--;
2262 	preempt_enable();
2263 }
2264 EXPORT_SYMBOL_GPL(migrate_enable);
2265 
2266 static inline bool rq_has_pinned_tasks(struct rq *rq)
2267 {
2268 	return rq->nr_pinned;
2269 }
2270 
2271 /*
2272  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2273  * __set_cpus_allowed_ptr() and select_fallback_rq().
2274  */
2275 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2276 {
2277 	/* When not in the task's cpumask, no point in looking further. */
2278 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2279 		return false;
2280 
2281 	/* migrate_disabled() must be allowed to finish. */
2282 	if (is_migration_disabled(p))
2283 		return cpu_online(cpu);
2284 
2285 	/* Non kernel threads are not allowed during either online or offline. */
2286 	if (!(p->flags & PF_KTHREAD))
2287 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2288 
2289 	/* KTHREAD_IS_PER_CPU is always allowed. */
2290 	if (kthread_is_per_cpu(p))
2291 		return cpu_online(cpu);
2292 
2293 	/* Regular kernel threads don't get to stay during offline. */
2294 	if (cpu_dying(cpu))
2295 		return false;
2296 
2297 	/* But are allowed during online. */
2298 	return cpu_online(cpu);
2299 }
2300 
2301 /*
2302  * This is how migration works:
2303  *
2304  * 1) we invoke migration_cpu_stop() on the target CPU using
2305  *    stop_one_cpu().
2306  * 2) stopper starts to run (implicitly forcing the migrated thread
2307  *    off the CPU)
2308  * 3) it checks whether the migrated task is still in the wrong runqueue.
2309  * 4) if it's in the wrong runqueue then the migration thread removes
2310  *    it and puts it into the right queue.
2311  * 5) stopper completes and stop_one_cpu() returns and the migration
2312  *    is done.
2313  */
2314 
2315 /*
2316  * move_queued_task - move a queued task to new rq.
2317  *
2318  * Returns (locked) new rq. Old rq's lock is released.
2319  */
2320 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2321 				   struct task_struct *p, int new_cpu)
2322 {
2323 	lockdep_assert_rq_held(rq);
2324 
2325 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2326 	set_task_cpu(p, new_cpu);
2327 	rq_unlock(rq, rf);
2328 
2329 	rq = cpu_rq(new_cpu);
2330 
2331 	rq_lock(rq, rf);
2332 	BUG_ON(task_cpu(p) != new_cpu);
2333 	activate_task(rq, p, 0);
2334 	check_preempt_curr(rq, p, 0);
2335 
2336 	return rq;
2337 }
2338 
2339 struct migration_arg {
2340 	struct task_struct		*task;
2341 	int				dest_cpu;
2342 	struct set_affinity_pending	*pending;
2343 };
2344 
2345 /*
2346  * @refs: number of wait_for_completion()
2347  * @stop_pending: is @stop_work in use
2348  */
2349 struct set_affinity_pending {
2350 	refcount_t		refs;
2351 	unsigned int		stop_pending;
2352 	struct completion	done;
2353 	struct cpu_stop_work	stop_work;
2354 	struct migration_arg	arg;
2355 };
2356 
2357 /*
2358  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2359  * this because either it can't run here any more (set_cpus_allowed()
2360  * away from this CPU, or CPU going down), or because we're
2361  * attempting to rebalance this task on exec (sched_exec).
2362  *
2363  * So we race with normal scheduler movements, but that's OK, as long
2364  * as the task is no longer on this CPU.
2365  */
2366 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2367 				 struct task_struct *p, int dest_cpu)
2368 {
2369 	/* Affinity changed (again). */
2370 	if (!is_cpu_allowed(p, dest_cpu))
2371 		return rq;
2372 
2373 	update_rq_clock(rq);
2374 	rq = move_queued_task(rq, rf, p, dest_cpu);
2375 
2376 	return rq;
2377 }
2378 
2379 /*
2380  * migration_cpu_stop - this will be executed by a highprio stopper thread
2381  * and performs thread migration by bumping thread off CPU then
2382  * 'pushing' onto another runqueue.
2383  */
2384 static int migration_cpu_stop(void *data)
2385 {
2386 	struct migration_arg *arg = data;
2387 	struct set_affinity_pending *pending = arg->pending;
2388 	struct task_struct *p = arg->task;
2389 	struct rq *rq = this_rq();
2390 	bool complete = false;
2391 	struct rq_flags rf;
2392 
2393 	/*
2394 	 * The original target CPU might have gone down and we might
2395 	 * be on another CPU but it doesn't matter.
2396 	 */
2397 	local_irq_save(rf.flags);
2398 	/*
2399 	 * We need to explicitly wake pending tasks before running
2400 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2401 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2402 	 */
2403 	flush_smp_call_function_queue();
2404 
2405 	raw_spin_lock(&p->pi_lock);
2406 	rq_lock(rq, &rf);
2407 
2408 	/*
2409 	 * If we were passed a pending, then ->stop_pending was set, thus
2410 	 * p->migration_pending must have remained stable.
2411 	 */
2412 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2413 
2414 	/*
2415 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2416 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2417 	 * we're holding p->pi_lock.
2418 	 */
2419 	if (task_rq(p) == rq) {
2420 		if (is_migration_disabled(p))
2421 			goto out;
2422 
2423 		if (pending) {
2424 			p->migration_pending = NULL;
2425 			complete = true;
2426 
2427 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2428 				goto out;
2429 		}
2430 
2431 		if (task_on_rq_queued(p))
2432 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2433 		else
2434 			p->wake_cpu = arg->dest_cpu;
2435 
2436 		/*
2437 		 * XXX __migrate_task() can fail, at which point we might end
2438 		 * up running on a dodgy CPU, AFAICT this can only happen
2439 		 * during CPU hotplug, at which point we'll get pushed out
2440 		 * anyway, so it's probably not a big deal.
2441 		 */
2442 
2443 	} else if (pending) {
2444 		/*
2445 		 * This happens when we get migrated between migrate_enable()'s
2446 		 * preempt_enable() and scheduling the stopper task. At that
2447 		 * point we're a regular task again and not current anymore.
2448 		 *
2449 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2450 		 * more likely.
2451 		 */
2452 
2453 		/*
2454 		 * The task moved before the stopper got to run. We're holding
2455 		 * ->pi_lock, so the allowed mask is stable - if it got
2456 		 * somewhere allowed, we're done.
2457 		 */
2458 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2459 			p->migration_pending = NULL;
2460 			complete = true;
2461 			goto out;
2462 		}
2463 
2464 		/*
2465 		 * When migrate_enable() hits a rq mis-match we can't reliably
2466 		 * determine is_migration_disabled() and so have to chase after
2467 		 * it.
2468 		 */
2469 		WARN_ON_ONCE(!pending->stop_pending);
2470 		task_rq_unlock(rq, p, &rf);
2471 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2472 				    &pending->arg, &pending->stop_work);
2473 		return 0;
2474 	}
2475 out:
2476 	if (pending)
2477 		pending->stop_pending = false;
2478 	task_rq_unlock(rq, p, &rf);
2479 
2480 	if (complete)
2481 		complete_all(&pending->done);
2482 
2483 	return 0;
2484 }
2485 
2486 int push_cpu_stop(void *arg)
2487 {
2488 	struct rq *lowest_rq = NULL, *rq = this_rq();
2489 	struct task_struct *p = arg;
2490 
2491 	raw_spin_lock_irq(&p->pi_lock);
2492 	raw_spin_rq_lock(rq);
2493 
2494 	if (task_rq(p) != rq)
2495 		goto out_unlock;
2496 
2497 	if (is_migration_disabled(p)) {
2498 		p->migration_flags |= MDF_PUSH;
2499 		goto out_unlock;
2500 	}
2501 
2502 	p->migration_flags &= ~MDF_PUSH;
2503 
2504 	if (p->sched_class->find_lock_rq)
2505 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2506 
2507 	if (!lowest_rq)
2508 		goto out_unlock;
2509 
2510 	// XXX validate p is still the highest prio task
2511 	if (task_rq(p) == rq) {
2512 		deactivate_task(rq, p, 0);
2513 		set_task_cpu(p, lowest_rq->cpu);
2514 		activate_task(lowest_rq, p, 0);
2515 		resched_curr(lowest_rq);
2516 	}
2517 
2518 	double_unlock_balance(rq, lowest_rq);
2519 
2520 out_unlock:
2521 	rq->push_busy = false;
2522 	raw_spin_rq_unlock(rq);
2523 	raw_spin_unlock_irq(&p->pi_lock);
2524 
2525 	put_task_struct(p);
2526 	return 0;
2527 }
2528 
2529 /*
2530  * sched_class::set_cpus_allowed must do the below, but is not required to
2531  * actually call this function.
2532  */
2533 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2534 {
2535 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2536 		p->cpus_ptr = new_mask;
2537 		return;
2538 	}
2539 
2540 	cpumask_copy(&p->cpus_mask, new_mask);
2541 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2542 }
2543 
2544 static void
2545 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2546 {
2547 	struct rq *rq = task_rq(p);
2548 	bool queued, running;
2549 
2550 	/*
2551 	 * This here violates the locking rules for affinity, since we're only
2552 	 * supposed to change these variables while holding both rq->lock and
2553 	 * p->pi_lock.
2554 	 *
2555 	 * HOWEVER, it magically works, because ttwu() is the only code that
2556 	 * accesses these variables under p->pi_lock and only does so after
2557 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2558 	 * before finish_task().
2559 	 *
2560 	 * XXX do further audits, this smells like something putrid.
2561 	 */
2562 	if (flags & SCA_MIGRATE_DISABLE)
2563 		SCHED_WARN_ON(!p->on_cpu);
2564 	else
2565 		lockdep_assert_held(&p->pi_lock);
2566 
2567 	queued = task_on_rq_queued(p);
2568 	running = task_current(rq, p);
2569 
2570 	if (queued) {
2571 		/*
2572 		 * Because __kthread_bind() calls this on blocked tasks without
2573 		 * holding rq->lock.
2574 		 */
2575 		lockdep_assert_rq_held(rq);
2576 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2577 	}
2578 	if (running)
2579 		put_prev_task(rq, p);
2580 
2581 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2582 
2583 	if (queued)
2584 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2585 	if (running)
2586 		set_next_task(rq, p);
2587 }
2588 
2589 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2590 {
2591 	__do_set_cpus_allowed(p, new_mask, 0);
2592 }
2593 
2594 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2595 		      int node)
2596 {
2597 	if (!src->user_cpus_ptr)
2598 		return 0;
2599 
2600 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2601 	if (!dst->user_cpus_ptr)
2602 		return -ENOMEM;
2603 
2604 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2605 	return 0;
2606 }
2607 
2608 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2609 {
2610 	struct cpumask *user_mask = NULL;
2611 
2612 	swap(p->user_cpus_ptr, user_mask);
2613 
2614 	return user_mask;
2615 }
2616 
2617 void release_user_cpus_ptr(struct task_struct *p)
2618 {
2619 	kfree(clear_user_cpus_ptr(p));
2620 }
2621 
2622 /*
2623  * This function is wildly self concurrent; here be dragons.
2624  *
2625  *
2626  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2627  * designated task is enqueued on an allowed CPU. If that task is currently
2628  * running, we have to kick it out using the CPU stopper.
2629  *
2630  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2631  * Consider:
2632  *
2633  *     Initial conditions: P0->cpus_mask = [0, 1]
2634  *
2635  *     P0@CPU0                  P1
2636  *
2637  *     migrate_disable();
2638  *     <preempted>
2639  *                              set_cpus_allowed_ptr(P0, [1]);
2640  *
2641  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2642  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2643  * This means we need the following scheme:
2644  *
2645  *     P0@CPU0                  P1
2646  *
2647  *     migrate_disable();
2648  *     <preempted>
2649  *                              set_cpus_allowed_ptr(P0, [1]);
2650  *                                <blocks>
2651  *     <resumes>
2652  *     migrate_enable();
2653  *       __set_cpus_allowed_ptr();
2654  *       <wakes local stopper>
2655  *                         `--> <woken on migration completion>
2656  *
2657  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2658  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2659  * task p are serialized by p->pi_lock, which we can leverage: the one that
2660  * should come into effect at the end of the Migrate-Disable region is the last
2661  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2662  * but we still need to properly signal those waiting tasks at the appropriate
2663  * moment.
2664  *
2665  * This is implemented using struct set_affinity_pending. The first
2666  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2667  * setup an instance of that struct and install it on the targeted task_struct.
2668  * Any and all further callers will reuse that instance. Those then wait for
2669  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2670  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2671  *
2672  *
2673  * (1) In the cases covered above. There is one more where the completion is
2674  * signaled within affine_move_task() itself: when a subsequent affinity request
2675  * occurs after the stopper bailed out due to the targeted task still being
2676  * Migrate-Disable. Consider:
2677  *
2678  *     Initial conditions: P0->cpus_mask = [0, 1]
2679  *
2680  *     CPU0		  P1				P2
2681  *     <P0>
2682  *       migrate_disable();
2683  *       <preempted>
2684  *                        set_cpus_allowed_ptr(P0, [1]);
2685  *                          <blocks>
2686  *     <migration/0>
2687  *       migration_cpu_stop()
2688  *         is_migration_disabled()
2689  *           <bails>
2690  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2691  *                                                         <signal completion>
2692  *                          <awakes>
2693  *
2694  * Note that the above is safe vs a concurrent migrate_enable(), as any
2695  * pending affinity completion is preceded by an uninstallation of
2696  * p->migration_pending done with p->pi_lock held.
2697  */
2698 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2699 			    int dest_cpu, unsigned int flags)
2700 {
2701 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2702 	bool stop_pending, complete = false;
2703 
2704 	/* Can the task run on the task's current CPU? If so, we're done */
2705 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2706 		struct task_struct *push_task = NULL;
2707 
2708 		if ((flags & SCA_MIGRATE_ENABLE) &&
2709 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2710 			rq->push_busy = true;
2711 			push_task = get_task_struct(p);
2712 		}
2713 
2714 		/*
2715 		 * If there are pending waiters, but no pending stop_work,
2716 		 * then complete now.
2717 		 */
2718 		pending = p->migration_pending;
2719 		if (pending && !pending->stop_pending) {
2720 			p->migration_pending = NULL;
2721 			complete = true;
2722 		}
2723 
2724 		task_rq_unlock(rq, p, rf);
2725 
2726 		if (push_task) {
2727 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2728 					    p, &rq->push_work);
2729 		}
2730 
2731 		if (complete)
2732 			complete_all(&pending->done);
2733 
2734 		return 0;
2735 	}
2736 
2737 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2738 		/* serialized by p->pi_lock */
2739 		if (!p->migration_pending) {
2740 			/* Install the request */
2741 			refcount_set(&my_pending.refs, 1);
2742 			init_completion(&my_pending.done);
2743 			my_pending.arg = (struct migration_arg) {
2744 				.task = p,
2745 				.dest_cpu = dest_cpu,
2746 				.pending = &my_pending,
2747 			};
2748 
2749 			p->migration_pending = &my_pending;
2750 		} else {
2751 			pending = p->migration_pending;
2752 			refcount_inc(&pending->refs);
2753 			/*
2754 			 * Affinity has changed, but we've already installed a
2755 			 * pending. migration_cpu_stop() *must* see this, else
2756 			 * we risk a completion of the pending despite having a
2757 			 * task on a disallowed CPU.
2758 			 *
2759 			 * Serialized by p->pi_lock, so this is safe.
2760 			 */
2761 			pending->arg.dest_cpu = dest_cpu;
2762 		}
2763 	}
2764 	pending = p->migration_pending;
2765 	/*
2766 	 * - !MIGRATE_ENABLE:
2767 	 *   we'll have installed a pending if there wasn't one already.
2768 	 *
2769 	 * - MIGRATE_ENABLE:
2770 	 *   we're here because the current CPU isn't matching anymore,
2771 	 *   the only way that can happen is because of a concurrent
2772 	 *   set_cpus_allowed_ptr() call, which should then still be
2773 	 *   pending completion.
2774 	 *
2775 	 * Either way, we really should have a @pending here.
2776 	 */
2777 	if (WARN_ON_ONCE(!pending)) {
2778 		task_rq_unlock(rq, p, rf);
2779 		return -EINVAL;
2780 	}
2781 
2782 	if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2783 		/*
2784 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2785 		 * anything else we cannot do is_migration_disabled(), punt
2786 		 * and have the stopper function handle it all race-free.
2787 		 */
2788 		stop_pending = pending->stop_pending;
2789 		if (!stop_pending)
2790 			pending->stop_pending = true;
2791 
2792 		if (flags & SCA_MIGRATE_ENABLE)
2793 			p->migration_flags &= ~MDF_PUSH;
2794 
2795 		task_rq_unlock(rq, p, rf);
2796 
2797 		if (!stop_pending) {
2798 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2799 					    &pending->arg, &pending->stop_work);
2800 		}
2801 
2802 		if (flags & SCA_MIGRATE_ENABLE)
2803 			return 0;
2804 	} else {
2805 
2806 		if (!is_migration_disabled(p)) {
2807 			if (task_on_rq_queued(p))
2808 				rq = move_queued_task(rq, rf, p, dest_cpu);
2809 
2810 			if (!pending->stop_pending) {
2811 				p->migration_pending = NULL;
2812 				complete = true;
2813 			}
2814 		}
2815 		task_rq_unlock(rq, p, rf);
2816 
2817 		if (complete)
2818 			complete_all(&pending->done);
2819 	}
2820 
2821 	wait_for_completion(&pending->done);
2822 
2823 	if (refcount_dec_and_test(&pending->refs))
2824 		wake_up_var(&pending->refs); /* No UaF, just an address */
2825 
2826 	/*
2827 	 * Block the original owner of &pending until all subsequent callers
2828 	 * have seen the completion and decremented the refcount
2829 	 */
2830 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2831 
2832 	/* ARGH */
2833 	WARN_ON_ONCE(my_pending.stop_pending);
2834 
2835 	return 0;
2836 }
2837 
2838 /*
2839  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2840  */
2841 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2842 					 const struct cpumask *new_mask,
2843 					 u32 flags,
2844 					 struct rq *rq,
2845 					 struct rq_flags *rf)
2846 	__releases(rq->lock)
2847 	__releases(p->pi_lock)
2848 {
2849 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2850 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2851 	bool kthread = p->flags & PF_KTHREAD;
2852 	struct cpumask *user_mask = NULL;
2853 	unsigned int dest_cpu;
2854 	int ret = 0;
2855 
2856 	update_rq_clock(rq);
2857 
2858 	if (kthread || is_migration_disabled(p)) {
2859 		/*
2860 		 * Kernel threads are allowed on online && !active CPUs,
2861 		 * however, during cpu-hot-unplug, even these might get pushed
2862 		 * away if not KTHREAD_IS_PER_CPU.
2863 		 *
2864 		 * Specifically, migration_disabled() tasks must not fail the
2865 		 * cpumask_any_and_distribute() pick below, esp. so on
2866 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2867 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2868 		 */
2869 		cpu_valid_mask = cpu_online_mask;
2870 	}
2871 
2872 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2873 		ret = -EINVAL;
2874 		goto out;
2875 	}
2876 
2877 	/*
2878 	 * Must re-check here, to close a race against __kthread_bind(),
2879 	 * sched_setaffinity() is not guaranteed to observe the flag.
2880 	 */
2881 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2882 		ret = -EINVAL;
2883 		goto out;
2884 	}
2885 
2886 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2887 		if (cpumask_equal(&p->cpus_mask, new_mask))
2888 			goto out;
2889 
2890 		if (WARN_ON_ONCE(p == current &&
2891 				 is_migration_disabled(p) &&
2892 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2893 			ret = -EBUSY;
2894 			goto out;
2895 		}
2896 	}
2897 
2898 	/*
2899 	 * Picking a ~random cpu helps in cases where we are changing affinity
2900 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2901 	 * immediately required to distribute the tasks within their new mask.
2902 	 */
2903 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2904 	if (dest_cpu >= nr_cpu_ids) {
2905 		ret = -EINVAL;
2906 		goto out;
2907 	}
2908 
2909 	__do_set_cpus_allowed(p, new_mask, flags);
2910 
2911 	if (flags & SCA_USER)
2912 		user_mask = clear_user_cpus_ptr(p);
2913 
2914 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2915 
2916 	kfree(user_mask);
2917 
2918 	return ret;
2919 
2920 out:
2921 	task_rq_unlock(rq, p, rf);
2922 
2923 	return ret;
2924 }
2925 
2926 /*
2927  * Change a given task's CPU affinity. Migrate the thread to a
2928  * proper CPU and schedule it away if the CPU it's executing on
2929  * is removed from the allowed bitmask.
2930  *
2931  * NOTE: the caller must have a valid reference to the task, the
2932  * task must not exit() & deallocate itself prematurely. The
2933  * call is not atomic; no spinlocks may be held.
2934  */
2935 static int __set_cpus_allowed_ptr(struct task_struct *p,
2936 				  const struct cpumask *new_mask, u32 flags)
2937 {
2938 	struct rq_flags rf;
2939 	struct rq *rq;
2940 
2941 	rq = task_rq_lock(p, &rf);
2942 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2943 }
2944 
2945 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2946 {
2947 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2948 }
2949 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2950 
2951 /*
2952  * Change a given task's CPU affinity to the intersection of its current
2953  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2954  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2955  * If the resulting mask is empty, leave the affinity unchanged and return
2956  * -EINVAL.
2957  */
2958 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2959 				     struct cpumask *new_mask,
2960 				     const struct cpumask *subset_mask)
2961 {
2962 	struct cpumask *user_mask = NULL;
2963 	struct rq_flags rf;
2964 	struct rq *rq;
2965 	int err;
2966 
2967 	if (!p->user_cpus_ptr) {
2968 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2969 		if (!user_mask)
2970 			return -ENOMEM;
2971 	}
2972 
2973 	rq = task_rq_lock(p, &rf);
2974 
2975 	/*
2976 	 * Forcefully restricting the affinity of a deadline task is
2977 	 * likely to cause problems, so fail and noisily override the
2978 	 * mask entirely.
2979 	 */
2980 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2981 		err = -EPERM;
2982 		goto err_unlock;
2983 	}
2984 
2985 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2986 		err = -EINVAL;
2987 		goto err_unlock;
2988 	}
2989 
2990 	/*
2991 	 * We're about to butcher the task affinity, so keep track of what
2992 	 * the user asked for in case we're able to restore it later on.
2993 	 */
2994 	if (user_mask) {
2995 		cpumask_copy(user_mask, p->cpus_ptr);
2996 		p->user_cpus_ptr = user_mask;
2997 	}
2998 
2999 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
3000 
3001 err_unlock:
3002 	task_rq_unlock(rq, p, &rf);
3003 	kfree(user_mask);
3004 	return err;
3005 }
3006 
3007 /*
3008  * Restrict the CPU affinity of task @p so that it is a subset of
3009  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
3010  * old affinity mask. If the resulting mask is empty, we warn and walk
3011  * up the cpuset hierarchy until we find a suitable mask.
3012  */
3013 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3014 {
3015 	cpumask_var_t new_mask;
3016 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3017 
3018 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3019 
3020 	/*
3021 	 * __migrate_task() can fail silently in the face of concurrent
3022 	 * offlining of the chosen destination CPU, so take the hotplug
3023 	 * lock to ensure that the migration succeeds.
3024 	 */
3025 	cpus_read_lock();
3026 	if (!cpumask_available(new_mask))
3027 		goto out_set_mask;
3028 
3029 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3030 		goto out_free_mask;
3031 
3032 	/*
3033 	 * We failed to find a valid subset of the affinity mask for the
3034 	 * task, so override it based on its cpuset hierarchy.
3035 	 */
3036 	cpuset_cpus_allowed(p, new_mask);
3037 	override_mask = new_mask;
3038 
3039 out_set_mask:
3040 	if (printk_ratelimit()) {
3041 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3042 				task_pid_nr(p), p->comm,
3043 				cpumask_pr_args(override_mask));
3044 	}
3045 
3046 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3047 out_free_mask:
3048 	cpus_read_unlock();
3049 	free_cpumask_var(new_mask);
3050 }
3051 
3052 static int
3053 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
3054 
3055 /*
3056  * Restore the affinity of a task @p which was previously restricted by a
3057  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3058  * @p->user_cpus_ptr.
3059  *
3060  * It is the caller's responsibility to serialise this with any calls to
3061  * force_compatible_cpus_allowed_ptr(@p).
3062  */
3063 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3064 {
3065 	struct cpumask *user_mask = p->user_cpus_ptr;
3066 	unsigned long flags;
3067 
3068 	/*
3069 	 * Try to restore the old affinity mask. If this fails, then
3070 	 * we free the mask explicitly to avoid it being inherited across
3071 	 * a subsequent fork().
3072 	 */
3073 	if (!user_mask || !__sched_setaffinity(p, user_mask))
3074 		return;
3075 
3076 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3077 	user_mask = clear_user_cpus_ptr(p);
3078 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3079 
3080 	kfree(user_mask);
3081 }
3082 
3083 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3084 {
3085 #ifdef CONFIG_SCHED_DEBUG
3086 	unsigned int state = READ_ONCE(p->__state);
3087 
3088 	/*
3089 	 * We should never call set_task_cpu() on a blocked task,
3090 	 * ttwu() will sort out the placement.
3091 	 */
3092 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3093 
3094 	/*
3095 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3096 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3097 	 * time relying on p->on_rq.
3098 	 */
3099 	WARN_ON_ONCE(state == TASK_RUNNING &&
3100 		     p->sched_class == &fair_sched_class &&
3101 		     (p->on_rq && !task_on_rq_migrating(p)));
3102 
3103 #ifdef CONFIG_LOCKDEP
3104 	/*
3105 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3106 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3107 	 *
3108 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3109 	 * see task_group().
3110 	 *
3111 	 * Furthermore, all task_rq users should acquire both locks, see
3112 	 * task_rq_lock().
3113 	 */
3114 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3115 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3116 #endif
3117 	/*
3118 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3119 	 */
3120 	WARN_ON_ONCE(!cpu_online(new_cpu));
3121 
3122 	WARN_ON_ONCE(is_migration_disabled(p));
3123 #endif
3124 
3125 	trace_sched_migrate_task(p, new_cpu);
3126 
3127 	if (task_cpu(p) != new_cpu) {
3128 		if (p->sched_class->migrate_task_rq)
3129 			p->sched_class->migrate_task_rq(p, new_cpu);
3130 		p->se.nr_migrations++;
3131 		rseq_migrate(p);
3132 		perf_event_task_migrate(p);
3133 	}
3134 
3135 	__set_task_cpu(p, new_cpu);
3136 }
3137 
3138 #ifdef CONFIG_NUMA_BALANCING
3139 static void __migrate_swap_task(struct task_struct *p, int cpu)
3140 {
3141 	if (task_on_rq_queued(p)) {
3142 		struct rq *src_rq, *dst_rq;
3143 		struct rq_flags srf, drf;
3144 
3145 		src_rq = task_rq(p);
3146 		dst_rq = cpu_rq(cpu);
3147 
3148 		rq_pin_lock(src_rq, &srf);
3149 		rq_pin_lock(dst_rq, &drf);
3150 
3151 		deactivate_task(src_rq, p, 0);
3152 		set_task_cpu(p, cpu);
3153 		activate_task(dst_rq, p, 0);
3154 		check_preempt_curr(dst_rq, p, 0);
3155 
3156 		rq_unpin_lock(dst_rq, &drf);
3157 		rq_unpin_lock(src_rq, &srf);
3158 
3159 	} else {
3160 		/*
3161 		 * Task isn't running anymore; make it appear like we migrated
3162 		 * it before it went to sleep. This means on wakeup we make the
3163 		 * previous CPU our target instead of where it really is.
3164 		 */
3165 		p->wake_cpu = cpu;
3166 	}
3167 }
3168 
3169 struct migration_swap_arg {
3170 	struct task_struct *src_task, *dst_task;
3171 	int src_cpu, dst_cpu;
3172 };
3173 
3174 static int migrate_swap_stop(void *data)
3175 {
3176 	struct migration_swap_arg *arg = data;
3177 	struct rq *src_rq, *dst_rq;
3178 	int ret = -EAGAIN;
3179 
3180 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3181 		return -EAGAIN;
3182 
3183 	src_rq = cpu_rq(arg->src_cpu);
3184 	dst_rq = cpu_rq(arg->dst_cpu);
3185 
3186 	double_raw_lock(&arg->src_task->pi_lock,
3187 			&arg->dst_task->pi_lock);
3188 	double_rq_lock(src_rq, dst_rq);
3189 
3190 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3191 		goto unlock;
3192 
3193 	if (task_cpu(arg->src_task) != arg->src_cpu)
3194 		goto unlock;
3195 
3196 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3197 		goto unlock;
3198 
3199 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3200 		goto unlock;
3201 
3202 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3203 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3204 
3205 	ret = 0;
3206 
3207 unlock:
3208 	double_rq_unlock(src_rq, dst_rq);
3209 	raw_spin_unlock(&arg->dst_task->pi_lock);
3210 	raw_spin_unlock(&arg->src_task->pi_lock);
3211 
3212 	return ret;
3213 }
3214 
3215 /*
3216  * Cross migrate two tasks
3217  */
3218 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3219 		int target_cpu, int curr_cpu)
3220 {
3221 	struct migration_swap_arg arg;
3222 	int ret = -EINVAL;
3223 
3224 	arg = (struct migration_swap_arg){
3225 		.src_task = cur,
3226 		.src_cpu = curr_cpu,
3227 		.dst_task = p,
3228 		.dst_cpu = target_cpu,
3229 	};
3230 
3231 	if (arg.src_cpu == arg.dst_cpu)
3232 		goto out;
3233 
3234 	/*
3235 	 * These three tests are all lockless; this is OK since all of them
3236 	 * will be re-checked with proper locks held further down the line.
3237 	 */
3238 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3239 		goto out;
3240 
3241 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3242 		goto out;
3243 
3244 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3245 		goto out;
3246 
3247 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3248 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3249 
3250 out:
3251 	return ret;
3252 }
3253 #endif /* CONFIG_NUMA_BALANCING */
3254 
3255 /*
3256  * wait_task_inactive - wait for a thread to unschedule.
3257  *
3258  * If @match_state is nonzero, it's the @p->state value just checked and
3259  * not expected to change.  If it changes, i.e. @p might have woken up,
3260  * then return zero.  When we succeed in waiting for @p to be off its CPU,
3261  * we return a positive number (its total switch count).  If a second call
3262  * a short while later returns the same number, the caller can be sure that
3263  * @p has remained unscheduled the whole time.
3264  *
3265  * The caller must ensure that the task *will* unschedule sometime soon,
3266  * else this function might spin for a *long* time. This function can't
3267  * be called with interrupts off, or it may introduce deadlock with
3268  * smp_call_function() if an IPI is sent by the same process we are
3269  * waiting to become inactive.
3270  */
3271 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3272 {
3273 	int running, queued;
3274 	struct rq_flags rf;
3275 	unsigned long ncsw;
3276 	struct rq *rq;
3277 
3278 	for (;;) {
3279 		/*
3280 		 * We do the initial early heuristics without holding
3281 		 * any task-queue locks at all. We'll only try to get
3282 		 * the runqueue lock when things look like they will
3283 		 * work out!
3284 		 */
3285 		rq = task_rq(p);
3286 
3287 		/*
3288 		 * If the task is actively running on another CPU
3289 		 * still, just relax and busy-wait without holding
3290 		 * any locks.
3291 		 *
3292 		 * NOTE! Since we don't hold any locks, it's not
3293 		 * even sure that "rq" stays as the right runqueue!
3294 		 * But we don't care, since "task_running()" will
3295 		 * return false if the runqueue has changed and p
3296 		 * is actually now running somewhere else!
3297 		 */
3298 		while (task_running(rq, p)) {
3299 			if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3300 				return 0;
3301 			cpu_relax();
3302 		}
3303 
3304 		/*
3305 		 * Ok, time to look more closely! We need the rq
3306 		 * lock now, to be *sure*. If we're wrong, we'll
3307 		 * just go back and repeat.
3308 		 */
3309 		rq = task_rq_lock(p, &rf);
3310 		trace_sched_wait_task(p);
3311 		running = task_running(rq, p);
3312 		queued = task_on_rq_queued(p);
3313 		ncsw = 0;
3314 		if (!match_state || READ_ONCE(p->__state) == match_state)
3315 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3316 		task_rq_unlock(rq, p, &rf);
3317 
3318 		/*
3319 		 * If it changed from the expected state, bail out now.
3320 		 */
3321 		if (unlikely(!ncsw))
3322 			break;
3323 
3324 		/*
3325 		 * Was it really running after all now that we
3326 		 * checked with the proper locks actually held?
3327 		 *
3328 		 * Oops. Go back and try again..
3329 		 */
3330 		if (unlikely(running)) {
3331 			cpu_relax();
3332 			continue;
3333 		}
3334 
3335 		/*
3336 		 * It's not enough that it's not actively running,
3337 		 * it must be off the runqueue _entirely_, and not
3338 		 * preempted!
3339 		 *
3340 		 * So if it was still runnable (but just not actively
3341 		 * running right now), it's preempted, and we should
3342 		 * yield - it could be a while.
3343 		 */
3344 		if (unlikely(queued)) {
3345 			ktime_t to = NSEC_PER_SEC / HZ;
3346 
3347 			set_current_state(TASK_UNINTERRUPTIBLE);
3348 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3349 			continue;
3350 		}
3351 
3352 		/*
3353 		 * Ahh, all good. It wasn't running, and it wasn't
3354 		 * runnable, which means that it will never become
3355 		 * running in the future either. We're all done!
3356 		 */
3357 		break;
3358 	}
3359 
3360 	return ncsw;
3361 }
3362 
3363 /***
3364  * kick_process - kick a running thread to enter/exit the kernel
3365  * @p: the to-be-kicked thread
3366  *
3367  * Cause a process which is running on another CPU to enter
3368  * kernel-mode, without any delay. (to get signals handled.)
3369  *
3370  * NOTE: this function doesn't have to take the runqueue lock,
3371  * because all it wants to ensure is that the remote task enters
3372  * the kernel. If the IPI races and the task has been migrated
3373  * to another CPU then no harm is done and the purpose has been
3374  * achieved as well.
3375  */
3376 void kick_process(struct task_struct *p)
3377 {
3378 	int cpu;
3379 
3380 	preempt_disable();
3381 	cpu = task_cpu(p);
3382 	if ((cpu != smp_processor_id()) && task_curr(p))
3383 		smp_send_reschedule(cpu);
3384 	preempt_enable();
3385 }
3386 EXPORT_SYMBOL_GPL(kick_process);
3387 
3388 /*
3389  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3390  *
3391  * A few notes on cpu_active vs cpu_online:
3392  *
3393  *  - cpu_active must be a subset of cpu_online
3394  *
3395  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3396  *    see __set_cpus_allowed_ptr(). At this point the newly online
3397  *    CPU isn't yet part of the sched domains, and balancing will not
3398  *    see it.
3399  *
3400  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3401  *    avoid the load balancer to place new tasks on the to be removed
3402  *    CPU. Existing tasks will remain running there and will be taken
3403  *    off.
3404  *
3405  * This means that fallback selection must not select !active CPUs.
3406  * And can assume that any active CPU must be online. Conversely
3407  * select_task_rq() below may allow selection of !active CPUs in order
3408  * to satisfy the above rules.
3409  */
3410 static int select_fallback_rq(int cpu, struct task_struct *p)
3411 {
3412 	int nid = cpu_to_node(cpu);
3413 	const struct cpumask *nodemask = NULL;
3414 	enum { cpuset, possible, fail } state = cpuset;
3415 	int dest_cpu;
3416 
3417 	/*
3418 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3419 	 * will return -1. There is no CPU on the node, and we should
3420 	 * select the CPU on the other node.
3421 	 */
3422 	if (nid != -1) {
3423 		nodemask = cpumask_of_node(nid);
3424 
3425 		/* Look for allowed, online CPU in same node. */
3426 		for_each_cpu(dest_cpu, nodemask) {
3427 			if (is_cpu_allowed(p, dest_cpu))
3428 				return dest_cpu;
3429 		}
3430 	}
3431 
3432 	for (;;) {
3433 		/* Any allowed, online CPU? */
3434 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3435 			if (!is_cpu_allowed(p, dest_cpu))
3436 				continue;
3437 
3438 			goto out;
3439 		}
3440 
3441 		/* No more Mr. Nice Guy. */
3442 		switch (state) {
3443 		case cpuset:
3444 			if (cpuset_cpus_allowed_fallback(p)) {
3445 				state = possible;
3446 				break;
3447 			}
3448 			fallthrough;
3449 		case possible:
3450 			/*
3451 			 * XXX When called from select_task_rq() we only
3452 			 * hold p->pi_lock and again violate locking order.
3453 			 *
3454 			 * More yuck to audit.
3455 			 */
3456 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3457 			state = fail;
3458 			break;
3459 		case fail:
3460 			BUG();
3461 			break;
3462 		}
3463 	}
3464 
3465 out:
3466 	if (state != cpuset) {
3467 		/*
3468 		 * Don't tell them about moving exiting tasks or
3469 		 * kernel threads (both mm NULL), since they never
3470 		 * leave kernel.
3471 		 */
3472 		if (p->mm && printk_ratelimit()) {
3473 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3474 					task_pid_nr(p), p->comm, cpu);
3475 		}
3476 	}
3477 
3478 	return dest_cpu;
3479 }
3480 
3481 /*
3482  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3483  */
3484 static inline
3485 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3486 {
3487 	lockdep_assert_held(&p->pi_lock);
3488 
3489 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3490 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3491 	else
3492 		cpu = cpumask_any(p->cpus_ptr);
3493 
3494 	/*
3495 	 * In order not to call set_task_cpu() on a blocking task we need
3496 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3497 	 * CPU.
3498 	 *
3499 	 * Since this is common to all placement strategies, this lives here.
3500 	 *
3501 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3502 	 *   not worry about this generic constraint ]
3503 	 */
3504 	if (unlikely(!is_cpu_allowed(p, cpu)))
3505 		cpu = select_fallback_rq(task_cpu(p), p);
3506 
3507 	return cpu;
3508 }
3509 
3510 void sched_set_stop_task(int cpu, struct task_struct *stop)
3511 {
3512 	static struct lock_class_key stop_pi_lock;
3513 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3514 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3515 
3516 	if (stop) {
3517 		/*
3518 		 * Make it appear like a SCHED_FIFO task, its something
3519 		 * userspace knows about and won't get confused about.
3520 		 *
3521 		 * Also, it will make PI more or less work without too
3522 		 * much confusion -- but then, stop work should not
3523 		 * rely on PI working anyway.
3524 		 */
3525 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3526 
3527 		stop->sched_class = &stop_sched_class;
3528 
3529 		/*
3530 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3531 		 * adjust the effective priority of a task. As a result,
3532 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3533 		 * which can then trigger wakeups of the stop thread to push
3534 		 * around the current task.
3535 		 *
3536 		 * The stop task itself will never be part of the PI-chain, it
3537 		 * never blocks, therefore that ->pi_lock recursion is safe.
3538 		 * Tell lockdep about this by placing the stop->pi_lock in its
3539 		 * own class.
3540 		 */
3541 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3542 	}
3543 
3544 	cpu_rq(cpu)->stop = stop;
3545 
3546 	if (old_stop) {
3547 		/*
3548 		 * Reset it back to a normal scheduling class so that
3549 		 * it can die in pieces.
3550 		 */
3551 		old_stop->sched_class = &rt_sched_class;
3552 	}
3553 }
3554 
3555 #else /* CONFIG_SMP */
3556 
3557 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3558 					 const struct cpumask *new_mask,
3559 					 u32 flags)
3560 {
3561 	return set_cpus_allowed_ptr(p, new_mask);
3562 }
3563 
3564 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3565 
3566 static inline bool rq_has_pinned_tasks(struct rq *rq)
3567 {
3568 	return false;
3569 }
3570 
3571 #endif /* !CONFIG_SMP */
3572 
3573 static void
3574 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3575 {
3576 	struct rq *rq;
3577 
3578 	if (!schedstat_enabled())
3579 		return;
3580 
3581 	rq = this_rq();
3582 
3583 #ifdef CONFIG_SMP
3584 	if (cpu == rq->cpu) {
3585 		__schedstat_inc(rq->ttwu_local);
3586 		__schedstat_inc(p->stats.nr_wakeups_local);
3587 	} else {
3588 		struct sched_domain *sd;
3589 
3590 		__schedstat_inc(p->stats.nr_wakeups_remote);
3591 		rcu_read_lock();
3592 		for_each_domain(rq->cpu, sd) {
3593 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3594 				__schedstat_inc(sd->ttwu_wake_remote);
3595 				break;
3596 			}
3597 		}
3598 		rcu_read_unlock();
3599 	}
3600 
3601 	if (wake_flags & WF_MIGRATED)
3602 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3603 #endif /* CONFIG_SMP */
3604 
3605 	__schedstat_inc(rq->ttwu_count);
3606 	__schedstat_inc(p->stats.nr_wakeups);
3607 
3608 	if (wake_flags & WF_SYNC)
3609 		__schedstat_inc(p->stats.nr_wakeups_sync);
3610 }
3611 
3612 /*
3613  * Mark the task runnable and perform wakeup-preemption.
3614  */
3615 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3616 			   struct rq_flags *rf)
3617 {
3618 	check_preempt_curr(rq, p, wake_flags);
3619 	WRITE_ONCE(p->__state, TASK_RUNNING);
3620 	trace_sched_wakeup(p);
3621 
3622 #ifdef CONFIG_SMP
3623 	if (p->sched_class->task_woken) {
3624 		/*
3625 		 * Our task @p is fully woken up and running; so it's safe to
3626 		 * drop the rq->lock, hereafter rq is only used for statistics.
3627 		 */
3628 		rq_unpin_lock(rq, rf);
3629 		p->sched_class->task_woken(rq, p);
3630 		rq_repin_lock(rq, rf);
3631 	}
3632 
3633 	if (rq->idle_stamp) {
3634 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3635 		u64 max = 2*rq->max_idle_balance_cost;
3636 
3637 		update_avg(&rq->avg_idle, delta);
3638 
3639 		if (rq->avg_idle > max)
3640 			rq->avg_idle = max;
3641 
3642 		rq->wake_stamp = jiffies;
3643 		rq->wake_avg_idle = rq->avg_idle / 2;
3644 
3645 		rq->idle_stamp = 0;
3646 	}
3647 #endif
3648 }
3649 
3650 static void
3651 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3652 		 struct rq_flags *rf)
3653 {
3654 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3655 
3656 	lockdep_assert_rq_held(rq);
3657 
3658 	if (p->sched_contributes_to_load)
3659 		rq->nr_uninterruptible--;
3660 
3661 #ifdef CONFIG_SMP
3662 	if (wake_flags & WF_MIGRATED)
3663 		en_flags |= ENQUEUE_MIGRATED;
3664 	else
3665 #endif
3666 	if (p->in_iowait) {
3667 		delayacct_blkio_end(p);
3668 		atomic_dec(&task_rq(p)->nr_iowait);
3669 	}
3670 
3671 	activate_task(rq, p, en_flags);
3672 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3673 }
3674 
3675 /*
3676  * Consider @p being inside a wait loop:
3677  *
3678  *   for (;;) {
3679  *      set_current_state(TASK_UNINTERRUPTIBLE);
3680  *
3681  *      if (CONDITION)
3682  *         break;
3683  *
3684  *      schedule();
3685  *   }
3686  *   __set_current_state(TASK_RUNNING);
3687  *
3688  * between set_current_state() and schedule(). In this case @p is still
3689  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3690  * an atomic manner.
3691  *
3692  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3693  * then schedule() must still happen and p->state can be changed to
3694  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3695  * need to do a full wakeup with enqueue.
3696  *
3697  * Returns: %true when the wakeup is done,
3698  *          %false otherwise.
3699  */
3700 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3701 {
3702 	struct rq_flags rf;
3703 	struct rq *rq;
3704 	int ret = 0;
3705 
3706 	rq = __task_rq_lock(p, &rf);
3707 	if (task_on_rq_queued(p)) {
3708 		/* check_preempt_curr() may use rq clock */
3709 		update_rq_clock(rq);
3710 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3711 		ret = 1;
3712 	}
3713 	__task_rq_unlock(rq, &rf);
3714 
3715 	return ret;
3716 }
3717 
3718 #ifdef CONFIG_SMP
3719 void sched_ttwu_pending(void *arg)
3720 {
3721 	struct llist_node *llist = arg;
3722 	struct rq *rq = this_rq();
3723 	struct task_struct *p, *t;
3724 	struct rq_flags rf;
3725 
3726 	if (!llist)
3727 		return;
3728 
3729 	/*
3730 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3731 	 * Races such that false-negatives are possible, since they
3732 	 * are shorter lived that false-positives would be.
3733 	 */
3734 	WRITE_ONCE(rq->ttwu_pending, 0);
3735 
3736 	rq_lock_irqsave(rq, &rf);
3737 	update_rq_clock(rq);
3738 
3739 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3740 		if (WARN_ON_ONCE(p->on_cpu))
3741 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3742 
3743 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3744 			set_task_cpu(p, cpu_of(rq));
3745 
3746 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3747 	}
3748 
3749 	rq_unlock_irqrestore(rq, &rf);
3750 }
3751 
3752 void send_call_function_single_ipi(int cpu)
3753 {
3754 	struct rq *rq = cpu_rq(cpu);
3755 
3756 	if (!set_nr_if_polling(rq->idle))
3757 		arch_send_call_function_single_ipi(cpu);
3758 	else
3759 		trace_sched_wake_idle_without_ipi(cpu);
3760 }
3761 
3762 /*
3763  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3764  * necessary. The wakee CPU on receipt of the IPI will queue the task
3765  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3766  * of the wakeup instead of the waker.
3767  */
3768 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3769 {
3770 	struct rq *rq = cpu_rq(cpu);
3771 
3772 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3773 
3774 	WRITE_ONCE(rq->ttwu_pending, 1);
3775 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3776 }
3777 
3778 void wake_up_if_idle(int cpu)
3779 {
3780 	struct rq *rq = cpu_rq(cpu);
3781 	struct rq_flags rf;
3782 
3783 	rcu_read_lock();
3784 
3785 	if (!is_idle_task(rcu_dereference(rq->curr)))
3786 		goto out;
3787 
3788 	rq_lock_irqsave(rq, &rf);
3789 	if (is_idle_task(rq->curr))
3790 		resched_curr(rq);
3791 	/* Else CPU is not idle, do nothing here: */
3792 	rq_unlock_irqrestore(rq, &rf);
3793 
3794 out:
3795 	rcu_read_unlock();
3796 }
3797 
3798 bool cpus_share_cache(int this_cpu, int that_cpu)
3799 {
3800 	if (this_cpu == that_cpu)
3801 		return true;
3802 
3803 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3804 }
3805 
3806 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3807 {
3808 	/*
3809 	 * Do not complicate things with the async wake_list while the CPU is
3810 	 * in hotplug state.
3811 	 */
3812 	if (!cpu_active(cpu))
3813 		return false;
3814 
3815 	/* Ensure the task will still be allowed to run on the CPU. */
3816 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3817 		return false;
3818 
3819 	/*
3820 	 * If the CPU does not share cache, then queue the task on the
3821 	 * remote rqs wakelist to avoid accessing remote data.
3822 	 */
3823 	if (!cpus_share_cache(smp_processor_id(), cpu))
3824 		return true;
3825 
3826 	if (cpu == smp_processor_id())
3827 		return false;
3828 
3829 	/*
3830 	 * If the wakee cpu is idle, or the task is descheduling and the
3831 	 * only running task on the CPU, then use the wakelist to offload
3832 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3833 	 * the current CPU is likely busy. nr_running is checked to
3834 	 * avoid unnecessary task stacking.
3835 	 *
3836 	 * Note that we can only get here with (wakee) p->on_rq=0,
3837 	 * p->on_cpu can be whatever, we've done the dequeue, so
3838 	 * the wakee has been accounted out of ->nr_running.
3839 	 */
3840 	if (!cpu_rq(cpu)->nr_running)
3841 		return true;
3842 
3843 	return false;
3844 }
3845 
3846 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3847 {
3848 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3849 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3850 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3851 		return true;
3852 	}
3853 
3854 	return false;
3855 }
3856 
3857 #else /* !CONFIG_SMP */
3858 
3859 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3860 {
3861 	return false;
3862 }
3863 
3864 #endif /* CONFIG_SMP */
3865 
3866 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3867 {
3868 	struct rq *rq = cpu_rq(cpu);
3869 	struct rq_flags rf;
3870 
3871 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3872 		return;
3873 
3874 	rq_lock(rq, &rf);
3875 	update_rq_clock(rq);
3876 	ttwu_do_activate(rq, p, wake_flags, &rf);
3877 	rq_unlock(rq, &rf);
3878 }
3879 
3880 /*
3881  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3882  *
3883  * The caller holds p::pi_lock if p != current or has preemption
3884  * disabled when p == current.
3885  *
3886  * The rules of PREEMPT_RT saved_state:
3887  *
3888  *   The related locking code always holds p::pi_lock when updating
3889  *   p::saved_state, which means the code is fully serialized in both cases.
3890  *
3891  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3892  *   bits set. This allows to distinguish all wakeup scenarios.
3893  */
3894 static __always_inline
3895 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3896 {
3897 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3898 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3899 			     state != TASK_RTLOCK_WAIT);
3900 	}
3901 
3902 	if (READ_ONCE(p->__state) & state) {
3903 		*success = 1;
3904 		return true;
3905 	}
3906 
3907 #ifdef CONFIG_PREEMPT_RT
3908 	/*
3909 	 * Saved state preserves the task state across blocking on
3910 	 * an RT lock.  If the state matches, set p::saved_state to
3911 	 * TASK_RUNNING, but do not wake the task because it waits
3912 	 * for a lock wakeup. Also indicate success because from
3913 	 * the regular waker's point of view this has succeeded.
3914 	 *
3915 	 * After acquiring the lock the task will restore p::__state
3916 	 * from p::saved_state which ensures that the regular
3917 	 * wakeup is not lost. The restore will also set
3918 	 * p::saved_state to TASK_RUNNING so any further tests will
3919 	 * not result in false positives vs. @success
3920 	 */
3921 	if (p->saved_state & state) {
3922 		p->saved_state = TASK_RUNNING;
3923 		*success = 1;
3924 	}
3925 #endif
3926 	return false;
3927 }
3928 
3929 /*
3930  * Notes on Program-Order guarantees on SMP systems.
3931  *
3932  *  MIGRATION
3933  *
3934  * The basic program-order guarantee on SMP systems is that when a task [t]
3935  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3936  * execution on its new CPU [c1].
3937  *
3938  * For migration (of runnable tasks) this is provided by the following means:
3939  *
3940  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3941  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3942  *     rq(c1)->lock (if not at the same time, then in that order).
3943  *  C) LOCK of the rq(c1)->lock scheduling in task
3944  *
3945  * Release/acquire chaining guarantees that B happens after A and C after B.
3946  * Note: the CPU doing B need not be c0 or c1
3947  *
3948  * Example:
3949  *
3950  *   CPU0            CPU1            CPU2
3951  *
3952  *   LOCK rq(0)->lock
3953  *   sched-out X
3954  *   sched-in Y
3955  *   UNLOCK rq(0)->lock
3956  *
3957  *                                   LOCK rq(0)->lock // orders against CPU0
3958  *                                   dequeue X
3959  *                                   UNLOCK rq(0)->lock
3960  *
3961  *                                   LOCK rq(1)->lock
3962  *                                   enqueue X
3963  *                                   UNLOCK rq(1)->lock
3964  *
3965  *                   LOCK rq(1)->lock // orders against CPU2
3966  *                   sched-out Z
3967  *                   sched-in X
3968  *                   UNLOCK rq(1)->lock
3969  *
3970  *
3971  *  BLOCKING -- aka. SLEEP + WAKEUP
3972  *
3973  * For blocking we (obviously) need to provide the same guarantee as for
3974  * migration. However the means are completely different as there is no lock
3975  * chain to provide order. Instead we do:
3976  *
3977  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3978  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3979  *
3980  * Example:
3981  *
3982  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3983  *
3984  *   LOCK rq(0)->lock LOCK X->pi_lock
3985  *   dequeue X
3986  *   sched-out X
3987  *   smp_store_release(X->on_cpu, 0);
3988  *
3989  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3990  *                    X->state = WAKING
3991  *                    set_task_cpu(X,2)
3992  *
3993  *                    LOCK rq(2)->lock
3994  *                    enqueue X
3995  *                    X->state = RUNNING
3996  *                    UNLOCK rq(2)->lock
3997  *
3998  *                                          LOCK rq(2)->lock // orders against CPU1
3999  *                                          sched-out Z
4000  *                                          sched-in X
4001  *                                          UNLOCK rq(2)->lock
4002  *
4003  *                    UNLOCK X->pi_lock
4004  *   UNLOCK rq(0)->lock
4005  *
4006  *
4007  * However, for wakeups there is a second guarantee we must provide, namely we
4008  * must ensure that CONDITION=1 done by the caller can not be reordered with
4009  * accesses to the task state; see try_to_wake_up() and set_current_state().
4010  */
4011 
4012 /**
4013  * try_to_wake_up - wake up a thread
4014  * @p: the thread to be awakened
4015  * @state: the mask of task states that can be woken
4016  * @wake_flags: wake modifier flags (WF_*)
4017  *
4018  * Conceptually does:
4019  *
4020  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4021  *
4022  * If the task was not queued/runnable, also place it back on a runqueue.
4023  *
4024  * This function is atomic against schedule() which would dequeue the task.
4025  *
4026  * It issues a full memory barrier before accessing @p->state, see the comment
4027  * with set_current_state().
4028  *
4029  * Uses p->pi_lock to serialize against concurrent wake-ups.
4030  *
4031  * Relies on p->pi_lock stabilizing:
4032  *  - p->sched_class
4033  *  - p->cpus_ptr
4034  *  - p->sched_task_group
4035  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4036  *
4037  * Tries really hard to only take one task_rq(p)->lock for performance.
4038  * Takes rq->lock in:
4039  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4040  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4041  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4042  *
4043  * As a consequence we race really badly with just about everything. See the
4044  * many memory barriers and their comments for details.
4045  *
4046  * Return: %true if @p->state changes (an actual wakeup was done),
4047  *	   %false otherwise.
4048  */
4049 static int
4050 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4051 {
4052 	unsigned long flags;
4053 	int cpu, success = 0;
4054 
4055 	preempt_disable();
4056 	if (p == current) {
4057 		/*
4058 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4059 		 * == smp_processor_id()'. Together this means we can special
4060 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4061 		 * without taking any locks.
4062 		 *
4063 		 * In particular:
4064 		 *  - we rely on Program-Order guarantees for all the ordering,
4065 		 *  - we're serialized against set_special_state() by virtue of
4066 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4067 		 */
4068 		if (!ttwu_state_match(p, state, &success))
4069 			goto out;
4070 
4071 		trace_sched_waking(p);
4072 		WRITE_ONCE(p->__state, TASK_RUNNING);
4073 		trace_sched_wakeup(p);
4074 		goto out;
4075 	}
4076 
4077 	/*
4078 	 * If we are going to wake up a thread waiting for CONDITION we
4079 	 * need to ensure that CONDITION=1 done by the caller can not be
4080 	 * reordered with p->state check below. This pairs with smp_store_mb()
4081 	 * in set_current_state() that the waiting thread does.
4082 	 */
4083 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4084 	smp_mb__after_spinlock();
4085 	if (!ttwu_state_match(p, state, &success))
4086 		goto unlock;
4087 
4088 	trace_sched_waking(p);
4089 
4090 	/*
4091 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4092 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4093 	 * in smp_cond_load_acquire() below.
4094 	 *
4095 	 * sched_ttwu_pending()			try_to_wake_up()
4096 	 *   STORE p->on_rq = 1			  LOAD p->state
4097 	 *   UNLOCK rq->lock
4098 	 *
4099 	 * __schedule() (switch to task 'p')
4100 	 *   LOCK rq->lock			  smp_rmb();
4101 	 *   smp_mb__after_spinlock();
4102 	 *   UNLOCK rq->lock
4103 	 *
4104 	 * [task p]
4105 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4106 	 *
4107 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4108 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4109 	 *
4110 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4111 	 */
4112 	smp_rmb();
4113 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4114 		goto unlock;
4115 
4116 #ifdef CONFIG_SMP
4117 	/*
4118 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4119 	 * possible to, falsely, observe p->on_cpu == 0.
4120 	 *
4121 	 * One must be running (->on_cpu == 1) in order to remove oneself
4122 	 * from the runqueue.
4123 	 *
4124 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4125 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4126 	 *   UNLOCK rq->lock
4127 	 *
4128 	 * __schedule() (put 'p' to sleep)
4129 	 *   LOCK rq->lock			  smp_rmb();
4130 	 *   smp_mb__after_spinlock();
4131 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4132 	 *
4133 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4134 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4135 	 *
4136 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4137 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4138 	 * care about it's own p->state. See the comment in __schedule().
4139 	 */
4140 	smp_acquire__after_ctrl_dep();
4141 
4142 	/*
4143 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4144 	 * == 0), which means we need to do an enqueue, change p->state to
4145 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4146 	 * enqueue, such as ttwu_queue_wakelist().
4147 	 */
4148 	WRITE_ONCE(p->__state, TASK_WAKING);
4149 
4150 	/*
4151 	 * If the owning (remote) CPU is still in the middle of schedule() with
4152 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4153 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4154 	 * let the waker make forward progress. This is safe because IRQs are
4155 	 * disabled and the IPI will deliver after on_cpu is cleared.
4156 	 *
4157 	 * Ensure we load task_cpu(p) after p->on_cpu:
4158 	 *
4159 	 * set_task_cpu(p, cpu);
4160 	 *   STORE p->cpu = @cpu
4161 	 * __schedule() (switch to task 'p')
4162 	 *   LOCK rq->lock
4163 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4164 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4165 	 *
4166 	 * to ensure we observe the correct CPU on which the task is currently
4167 	 * scheduling.
4168 	 */
4169 	if (smp_load_acquire(&p->on_cpu) &&
4170 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4171 		goto unlock;
4172 
4173 	/*
4174 	 * If the owning (remote) CPU is still in the middle of schedule() with
4175 	 * this task as prev, wait until it's done referencing the task.
4176 	 *
4177 	 * Pairs with the smp_store_release() in finish_task().
4178 	 *
4179 	 * This ensures that tasks getting woken will be fully ordered against
4180 	 * their previous state and preserve Program Order.
4181 	 */
4182 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4183 
4184 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4185 	if (task_cpu(p) != cpu) {
4186 		if (p->in_iowait) {
4187 			delayacct_blkio_end(p);
4188 			atomic_dec(&task_rq(p)->nr_iowait);
4189 		}
4190 
4191 		wake_flags |= WF_MIGRATED;
4192 		psi_ttwu_dequeue(p);
4193 		set_task_cpu(p, cpu);
4194 	}
4195 #else
4196 	cpu = task_cpu(p);
4197 #endif /* CONFIG_SMP */
4198 
4199 	ttwu_queue(p, cpu, wake_flags);
4200 unlock:
4201 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4202 out:
4203 	if (success)
4204 		ttwu_stat(p, task_cpu(p), wake_flags);
4205 	preempt_enable();
4206 
4207 	return success;
4208 }
4209 
4210 /**
4211  * task_call_func - Invoke a function on task in fixed state
4212  * @p: Process for which the function is to be invoked, can be @current.
4213  * @func: Function to invoke.
4214  * @arg: Argument to function.
4215  *
4216  * Fix the task in it's current state by avoiding wakeups and or rq operations
4217  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4218  * to work out what the state is, if required.  Given that @func can be invoked
4219  * with a runqueue lock held, it had better be quite lightweight.
4220  *
4221  * Returns:
4222  *   Whatever @func returns
4223  */
4224 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4225 {
4226 	struct rq *rq = NULL;
4227 	unsigned int state;
4228 	struct rq_flags rf;
4229 	int ret;
4230 
4231 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4232 
4233 	state = READ_ONCE(p->__state);
4234 
4235 	/*
4236 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4237 	 * possible to, falsely, observe p->on_rq == 0.
4238 	 *
4239 	 * See try_to_wake_up() for a longer comment.
4240 	 */
4241 	smp_rmb();
4242 
4243 	/*
4244 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4245 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4246 	 * locks at the end, see ttwu_queue_wakelist().
4247 	 */
4248 	if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
4249 		rq = __task_rq_lock(p, &rf);
4250 
4251 	/*
4252 	 * At this point the task is pinned; either:
4253 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4254 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4255 	 *  - queued, and we're holding off schedule	 (rq->lock)
4256 	 *  - running, and we're holding off de-schedule (rq->lock)
4257 	 *
4258 	 * The called function (@func) can use: task_curr(), p->on_rq and
4259 	 * p->__state to differentiate between these states.
4260 	 */
4261 	ret = func(p, arg);
4262 
4263 	if (rq)
4264 		rq_unlock(rq, &rf);
4265 
4266 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4267 	return ret;
4268 }
4269 
4270 /**
4271  * cpu_curr_snapshot - Return a snapshot of the currently running task
4272  * @cpu: The CPU on which to snapshot the task.
4273  *
4274  * Returns the task_struct pointer of the task "currently" running on
4275  * the specified CPU.  If the same task is running on that CPU throughout,
4276  * the return value will be a pointer to that task's task_struct structure.
4277  * If the CPU did any context switches even vaguely concurrently with the
4278  * execution of this function, the return value will be a pointer to the
4279  * task_struct structure of a randomly chosen task that was running on
4280  * that CPU somewhere around the time that this function was executing.
4281  *
4282  * If the specified CPU was offline, the return value is whatever it
4283  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4284  * task, but there is no guarantee.  Callers wishing a useful return
4285  * value must take some action to ensure that the specified CPU remains
4286  * online throughout.
4287  *
4288  * This function executes full memory barriers before and after fetching
4289  * the pointer, which permits the caller to confine this function's fetch
4290  * with respect to the caller's accesses to other shared variables.
4291  */
4292 struct task_struct *cpu_curr_snapshot(int cpu)
4293 {
4294 	struct task_struct *t;
4295 
4296 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4297 	t = rcu_dereference(cpu_curr(cpu));
4298 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4299 	return t;
4300 }
4301 
4302 /**
4303  * wake_up_process - Wake up a specific process
4304  * @p: The process to be woken up.
4305  *
4306  * Attempt to wake up the nominated process and move it to the set of runnable
4307  * processes.
4308  *
4309  * Return: 1 if the process was woken up, 0 if it was already running.
4310  *
4311  * This function executes a full memory barrier before accessing the task state.
4312  */
4313 int wake_up_process(struct task_struct *p)
4314 {
4315 	return try_to_wake_up(p, TASK_NORMAL, 0);
4316 }
4317 EXPORT_SYMBOL(wake_up_process);
4318 
4319 int wake_up_state(struct task_struct *p, unsigned int state)
4320 {
4321 	return try_to_wake_up(p, state, 0);
4322 }
4323 
4324 /*
4325  * Perform scheduler related setup for a newly forked process p.
4326  * p is forked by current.
4327  *
4328  * __sched_fork() is basic setup used by init_idle() too:
4329  */
4330 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4331 {
4332 	p->on_rq			= 0;
4333 
4334 	p->se.on_rq			= 0;
4335 	p->se.exec_start		= 0;
4336 	p->se.sum_exec_runtime		= 0;
4337 	p->se.prev_sum_exec_runtime	= 0;
4338 	p->se.nr_migrations		= 0;
4339 	p->se.vruntime			= 0;
4340 	INIT_LIST_HEAD(&p->se.group_node);
4341 
4342 #ifdef CONFIG_FAIR_GROUP_SCHED
4343 	p->se.cfs_rq			= NULL;
4344 #endif
4345 
4346 #ifdef CONFIG_SCHEDSTATS
4347 	/* Even if schedstat is disabled, there should not be garbage */
4348 	memset(&p->stats, 0, sizeof(p->stats));
4349 #endif
4350 
4351 	RB_CLEAR_NODE(&p->dl.rb_node);
4352 	init_dl_task_timer(&p->dl);
4353 	init_dl_inactive_task_timer(&p->dl);
4354 	__dl_clear_params(p);
4355 
4356 	INIT_LIST_HEAD(&p->rt.run_list);
4357 	p->rt.timeout		= 0;
4358 	p->rt.time_slice	= sched_rr_timeslice;
4359 	p->rt.on_rq		= 0;
4360 	p->rt.on_list		= 0;
4361 
4362 #ifdef CONFIG_PREEMPT_NOTIFIERS
4363 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4364 #endif
4365 
4366 #ifdef CONFIG_COMPACTION
4367 	p->capture_control = NULL;
4368 #endif
4369 	init_numa_balancing(clone_flags, p);
4370 #ifdef CONFIG_SMP
4371 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4372 	p->migration_pending = NULL;
4373 #endif
4374 }
4375 
4376 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4377 
4378 #ifdef CONFIG_NUMA_BALANCING
4379 
4380 int sysctl_numa_balancing_mode;
4381 
4382 static void __set_numabalancing_state(bool enabled)
4383 {
4384 	if (enabled)
4385 		static_branch_enable(&sched_numa_balancing);
4386 	else
4387 		static_branch_disable(&sched_numa_balancing);
4388 }
4389 
4390 void set_numabalancing_state(bool enabled)
4391 {
4392 	if (enabled)
4393 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4394 	else
4395 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4396 	__set_numabalancing_state(enabled);
4397 }
4398 
4399 #ifdef CONFIG_PROC_SYSCTL
4400 int sysctl_numa_balancing(struct ctl_table *table, int write,
4401 			  void *buffer, size_t *lenp, loff_t *ppos)
4402 {
4403 	struct ctl_table t;
4404 	int err;
4405 	int state = sysctl_numa_balancing_mode;
4406 
4407 	if (write && !capable(CAP_SYS_ADMIN))
4408 		return -EPERM;
4409 
4410 	t = *table;
4411 	t.data = &state;
4412 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4413 	if (err < 0)
4414 		return err;
4415 	if (write) {
4416 		sysctl_numa_balancing_mode = state;
4417 		__set_numabalancing_state(state);
4418 	}
4419 	return err;
4420 }
4421 #endif
4422 #endif
4423 
4424 #ifdef CONFIG_SCHEDSTATS
4425 
4426 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4427 
4428 static void set_schedstats(bool enabled)
4429 {
4430 	if (enabled)
4431 		static_branch_enable(&sched_schedstats);
4432 	else
4433 		static_branch_disable(&sched_schedstats);
4434 }
4435 
4436 void force_schedstat_enabled(void)
4437 {
4438 	if (!schedstat_enabled()) {
4439 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4440 		static_branch_enable(&sched_schedstats);
4441 	}
4442 }
4443 
4444 static int __init setup_schedstats(char *str)
4445 {
4446 	int ret = 0;
4447 	if (!str)
4448 		goto out;
4449 
4450 	if (!strcmp(str, "enable")) {
4451 		set_schedstats(true);
4452 		ret = 1;
4453 	} else if (!strcmp(str, "disable")) {
4454 		set_schedstats(false);
4455 		ret = 1;
4456 	}
4457 out:
4458 	if (!ret)
4459 		pr_warn("Unable to parse schedstats=\n");
4460 
4461 	return ret;
4462 }
4463 __setup("schedstats=", setup_schedstats);
4464 
4465 #ifdef CONFIG_PROC_SYSCTL
4466 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4467 		size_t *lenp, loff_t *ppos)
4468 {
4469 	struct ctl_table t;
4470 	int err;
4471 	int state = static_branch_likely(&sched_schedstats);
4472 
4473 	if (write && !capable(CAP_SYS_ADMIN))
4474 		return -EPERM;
4475 
4476 	t = *table;
4477 	t.data = &state;
4478 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4479 	if (err < 0)
4480 		return err;
4481 	if (write)
4482 		set_schedstats(state);
4483 	return err;
4484 }
4485 #endif /* CONFIG_PROC_SYSCTL */
4486 #endif /* CONFIG_SCHEDSTATS */
4487 
4488 #ifdef CONFIG_SYSCTL
4489 static struct ctl_table sched_core_sysctls[] = {
4490 #ifdef CONFIG_SCHEDSTATS
4491 	{
4492 		.procname       = "sched_schedstats",
4493 		.data           = NULL,
4494 		.maxlen         = sizeof(unsigned int),
4495 		.mode           = 0644,
4496 		.proc_handler   = sysctl_schedstats,
4497 		.extra1         = SYSCTL_ZERO,
4498 		.extra2         = SYSCTL_ONE,
4499 	},
4500 #endif /* CONFIG_SCHEDSTATS */
4501 #ifdef CONFIG_UCLAMP_TASK
4502 	{
4503 		.procname       = "sched_util_clamp_min",
4504 		.data           = &sysctl_sched_uclamp_util_min,
4505 		.maxlen         = sizeof(unsigned int),
4506 		.mode           = 0644,
4507 		.proc_handler   = sysctl_sched_uclamp_handler,
4508 	},
4509 	{
4510 		.procname       = "sched_util_clamp_max",
4511 		.data           = &sysctl_sched_uclamp_util_max,
4512 		.maxlen         = sizeof(unsigned int),
4513 		.mode           = 0644,
4514 		.proc_handler   = sysctl_sched_uclamp_handler,
4515 	},
4516 	{
4517 		.procname       = "sched_util_clamp_min_rt_default",
4518 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4519 		.maxlen         = sizeof(unsigned int),
4520 		.mode           = 0644,
4521 		.proc_handler   = sysctl_sched_uclamp_handler,
4522 	},
4523 #endif /* CONFIG_UCLAMP_TASK */
4524 	{}
4525 };
4526 static int __init sched_core_sysctl_init(void)
4527 {
4528 	register_sysctl_init("kernel", sched_core_sysctls);
4529 	return 0;
4530 }
4531 late_initcall(sched_core_sysctl_init);
4532 #endif /* CONFIG_SYSCTL */
4533 
4534 /*
4535  * fork()/clone()-time setup:
4536  */
4537 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4538 {
4539 	__sched_fork(clone_flags, p);
4540 	/*
4541 	 * We mark the process as NEW here. This guarantees that
4542 	 * nobody will actually run it, and a signal or other external
4543 	 * event cannot wake it up and insert it on the runqueue either.
4544 	 */
4545 	p->__state = TASK_NEW;
4546 
4547 	/*
4548 	 * Make sure we do not leak PI boosting priority to the child.
4549 	 */
4550 	p->prio = current->normal_prio;
4551 
4552 	uclamp_fork(p);
4553 
4554 	/*
4555 	 * Revert to default priority/policy on fork if requested.
4556 	 */
4557 	if (unlikely(p->sched_reset_on_fork)) {
4558 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4559 			p->policy = SCHED_NORMAL;
4560 			p->static_prio = NICE_TO_PRIO(0);
4561 			p->rt_priority = 0;
4562 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4563 			p->static_prio = NICE_TO_PRIO(0);
4564 
4565 		p->prio = p->normal_prio = p->static_prio;
4566 		set_load_weight(p, false);
4567 
4568 		/*
4569 		 * We don't need the reset flag anymore after the fork. It has
4570 		 * fulfilled its duty:
4571 		 */
4572 		p->sched_reset_on_fork = 0;
4573 	}
4574 
4575 	if (dl_prio(p->prio))
4576 		return -EAGAIN;
4577 	else if (rt_prio(p->prio))
4578 		p->sched_class = &rt_sched_class;
4579 	else
4580 		p->sched_class = &fair_sched_class;
4581 
4582 	init_entity_runnable_average(&p->se);
4583 
4584 
4585 #ifdef CONFIG_SCHED_INFO
4586 	if (likely(sched_info_on()))
4587 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4588 #endif
4589 #if defined(CONFIG_SMP)
4590 	p->on_cpu = 0;
4591 #endif
4592 	init_task_preempt_count(p);
4593 #ifdef CONFIG_SMP
4594 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4595 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4596 #endif
4597 	return 0;
4598 }
4599 
4600 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4601 {
4602 	unsigned long flags;
4603 
4604 	/*
4605 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4606 	 * required yet, but lockdep gets upset if rules are violated.
4607 	 */
4608 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4609 #ifdef CONFIG_CGROUP_SCHED
4610 	if (1) {
4611 		struct task_group *tg;
4612 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4613 				  struct task_group, css);
4614 		tg = autogroup_task_group(p, tg);
4615 		p->sched_task_group = tg;
4616 	}
4617 #endif
4618 	rseq_migrate(p);
4619 	/*
4620 	 * We're setting the CPU for the first time, we don't migrate,
4621 	 * so use __set_task_cpu().
4622 	 */
4623 	__set_task_cpu(p, smp_processor_id());
4624 	if (p->sched_class->task_fork)
4625 		p->sched_class->task_fork(p);
4626 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4627 }
4628 
4629 void sched_post_fork(struct task_struct *p)
4630 {
4631 	uclamp_post_fork(p);
4632 }
4633 
4634 unsigned long to_ratio(u64 period, u64 runtime)
4635 {
4636 	if (runtime == RUNTIME_INF)
4637 		return BW_UNIT;
4638 
4639 	/*
4640 	 * Doing this here saves a lot of checks in all
4641 	 * the calling paths, and returning zero seems
4642 	 * safe for them anyway.
4643 	 */
4644 	if (period == 0)
4645 		return 0;
4646 
4647 	return div64_u64(runtime << BW_SHIFT, period);
4648 }
4649 
4650 /*
4651  * wake_up_new_task - wake up a newly created task for the first time.
4652  *
4653  * This function will do some initial scheduler statistics housekeeping
4654  * that must be done for every newly created context, then puts the task
4655  * on the runqueue and wakes it.
4656  */
4657 void wake_up_new_task(struct task_struct *p)
4658 {
4659 	struct rq_flags rf;
4660 	struct rq *rq;
4661 
4662 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4663 	WRITE_ONCE(p->__state, TASK_RUNNING);
4664 #ifdef CONFIG_SMP
4665 	/*
4666 	 * Fork balancing, do it here and not earlier because:
4667 	 *  - cpus_ptr can change in the fork path
4668 	 *  - any previously selected CPU might disappear through hotplug
4669 	 *
4670 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4671 	 * as we're not fully set-up yet.
4672 	 */
4673 	p->recent_used_cpu = task_cpu(p);
4674 	rseq_migrate(p);
4675 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4676 #endif
4677 	rq = __task_rq_lock(p, &rf);
4678 	update_rq_clock(rq);
4679 	post_init_entity_util_avg(p);
4680 
4681 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4682 	trace_sched_wakeup_new(p);
4683 	check_preempt_curr(rq, p, WF_FORK);
4684 #ifdef CONFIG_SMP
4685 	if (p->sched_class->task_woken) {
4686 		/*
4687 		 * Nothing relies on rq->lock after this, so it's fine to
4688 		 * drop it.
4689 		 */
4690 		rq_unpin_lock(rq, &rf);
4691 		p->sched_class->task_woken(rq, p);
4692 		rq_repin_lock(rq, &rf);
4693 	}
4694 #endif
4695 	task_rq_unlock(rq, p, &rf);
4696 }
4697 
4698 #ifdef CONFIG_PREEMPT_NOTIFIERS
4699 
4700 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4701 
4702 void preempt_notifier_inc(void)
4703 {
4704 	static_branch_inc(&preempt_notifier_key);
4705 }
4706 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4707 
4708 void preempt_notifier_dec(void)
4709 {
4710 	static_branch_dec(&preempt_notifier_key);
4711 }
4712 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4713 
4714 /**
4715  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4716  * @notifier: notifier struct to register
4717  */
4718 void preempt_notifier_register(struct preempt_notifier *notifier)
4719 {
4720 	if (!static_branch_unlikely(&preempt_notifier_key))
4721 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4722 
4723 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4724 }
4725 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4726 
4727 /**
4728  * preempt_notifier_unregister - no longer interested in preemption notifications
4729  * @notifier: notifier struct to unregister
4730  *
4731  * This is *not* safe to call from within a preemption notifier.
4732  */
4733 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4734 {
4735 	hlist_del(&notifier->link);
4736 }
4737 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4738 
4739 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4740 {
4741 	struct preempt_notifier *notifier;
4742 
4743 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4744 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4745 }
4746 
4747 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4748 {
4749 	if (static_branch_unlikely(&preempt_notifier_key))
4750 		__fire_sched_in_preempt_notifiers(curr);
4751 }
4752 
4753 static void
4754 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4755 				   struct task_struct *next)
4756 {
4757 	struct preempt_notifier *notifier;
4758 
4759 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4760 		notifier->ops->sched_out(notifier, next);
4761 }
4762 
4763 static __always_inline void
4764 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4765 				 struct task_struct *next)
4766 {
4767 	if (static_branch_unlikely(&preempt_notifier_key))
4768 		__fire_sched_out_preempt_notifiers(curr, next);
4769 }
4770 
4771 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4772 
4773 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4774 {
4775 }
4776 
4777 static inline void
4778 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4779 				 struct task_struct *next)
4780 {
4781 }
4782 
4783 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4784 
4785 static inline void prepare_task(struct task_struct *next)
4786 {
4787 #ifdef CONFIG_SMP
4788 	/*
4789 	 * Claim the task as running, we do this before switching to it
4790 	 * such that any running task will have this set.
4791 	 *
4792 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4793 	 * its ordering comment.
4794 	 */
4795 	WRITE_ONCE(next->on_cpu, 1);
4796 #endif
4797 }
4798 
4799 static inline void finish_task(struct task_struct *prev)
4800 {
4801 #ifdef CONFIG_SMP
4802 	/*
4803 	 * This must be the very last reference to @prev from this CPU. After
4804 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4805 	 * must ensure this doesn't happen until the switch is completely
4806 	 * finished.
4807 	 *
4808 	 * In particular, the load of prev->state in finish_task_switch() must
4809 	 * happen before this.
4810 	 *
4811 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4812 	 */
4813 	smp_store_release(&prev->on_cpu, 0);
4814 #endif
4815 }
4816 
4817 #ifdef CONFIG_SMP
4818 
4819 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4820 {
4821 	void (*func)(struct rq *rq);
4822 	struct callback_head *next;
4823 
4824 	lockdep_assert_rq_held(rq);
4825 
4826 	while (head) {
4827 		func = (void (*)(struct rq *))head->func;
4828 		next = head->next;
4829 		head->next = NULL;
4830 		head = next;
4831 
4832 		func(rq);
4833 	}
4834 }
4835 
4836 static void balance_push(struct rq *rq);
4837 
4838 /*
4839  * balance_push_callback is a right abuse of the callback interface and plays
4840  * by significantly different rules.
4841  *
4842  * Where the normal balance_callback's purpose is to be ran in the same context
4843  * that queued it (only later, when it's safe to drop rq->lock again),
4844  * balance_push_callback is specifically targeted at __schedule().
4845  *
4846  * This abuse is tolerated because it places all the unlikely/odd cases behind
4847  * a single test, namely: rq->balance_callback == NULL.
4848  */
4849 struct callback_head balance_push_callback = {
4850 	.next = NULL,
4851 	.func = (void (*)(struct callback_head *))balance_push,
4852 };
4853 
4854 static inline struct callback_head *
4855 __splice_balance_callbacks(struct rq *rq, bool split)
4856 {
4857 	struct callback_head *head = rq->balance_callback;
4858 
4859 	if (likely(!head))
4860 		return NULL;
4861 
4862 	lockdep_assert_rq_held(rq);
4863 	/*
4864 	 * Must not take balance_push_callback off the list when
4865 	 * splice_balance_callbacks() and balance_callbacks() are not
4866 	 * in the same rq->lock section.
4867 	 *
4868 	 * In that case it would be possible for __schedule() to interleave
4869 	 * and observe the list empty.
4870 	 */
4871 	if (split && head == &balance_push_callback)
4872 		head = NULL;
4873 	else
4874 		rq->balance_callback = NULL;
4875 
4876 	return head;
4877 }
4878 
4879 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4880 {
4881 	return __splice_balance_callbacks(rq, true);
4882 }
4883 
4884 static void __balance_callbacks(struct rq *rq)
4885 {
4886 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4887 }
4888 
4889 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4890 {
4891 	unsigned long flags;
4892 
4893 	if (unlikely(head)) {
4894 		raw_spin_rq_lock_irqsave(rq, flags);
4895 		do_balance_callbacks(rq, head);
4896 		raw_spin_rq_unlock_irqrestore(rq, flags);
4897 	}
4898 }
4899 
4900 #else
4901 
4902 static inline void __balance_callbacks(struct rq *rq)
4903 {
4904 }
4905 
4906 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4907 {
4908 	return NULL;
4909 }
4910 
4911 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4912 {
4913 }
4914 
4915 #endif
4916 
4917 static inline void
4918 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4919 {
4920 	/*
4921 	 * Since the runqueue lock will be released by the next
4922 	 * task (which is an invalid locking op but in the case
4923 	 * of the scheduler it's an obvious special-case), so we
4924 	 * do an early lockdep release here:
4925 	 */
4926 	rq_unpin_lock(rq, rf);
4927 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4928 #ifdef CONFIG_DEBUG_SPINLOCK
4929 	/* this is a valid case when another task releases the spinlock */
4930 	rq_lockp(rq)->owner = next;
4931 #endif
4932 }
4933 
4934 static inline void finish_lock_switch(struct rq *rq)
4935 {
4936 	/*
4937 	 * If we are tracking spinlock dependencies then we have to
4938 	 * fix up the runqueue lock - which gets 'carried over' from
4939 	 * prev into current:
4940 	 */
4941 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4942 	__balance_callbacks(rq);
4943 	raw_spin_rq_unlock_irq(rq);
4944 }
4945 
4946 /*
4947  * NOP if the arch has not defined these:
4948  */
4949 
4950 #ifndef prepare_arch_switch
4951 # define prepare_arch_switch(next)	do { } while (0)
4952 #endif
4953 
4954 #ifndef finish_arch_post_lock_switch
4955 # define finish_arch_post_lock_switch()	do { } while (0)
4956 #endif
4957 
4958 static inline void kmap_local_sched_out(void)
4959 {
4960 #ifdef CONFIG_KMAP_LOCAL
4961 	if (unlikely(current->kmap_ctrl.idx))
4962 		__kmap_local_sched_out();
4963 #endif
4964 }
4965 
4966 static inline void kmap_local_sched_in(void)
4967 {
4968 #ifdef CONFIG_KMAP_LOCAL
4969 	if (unlikely(current->kmap_ctrl.idx))
4970 		__kmap_local_sched_in();
4971 #endif
4972 }
4973 
4974 /**
4975  * prepare_task_switch - prepare to switch tasks
4976  * @rq: the runqueue preparing to switch
4977  * @prev: the current task that is being switched out
4978  * @next: the task we are going to switch to.
4979  *
4980  * This is called with the rq lock held and interrupts off. It must
4981  * be paired with a subsequent finish_task_switch after the context
4982  * switch.
4983  *
4984  * prepare_task_switch sets up locking and calls architecture specific
4985  * hooks.
4986  */
4987 static inline void
4988 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4989 		    struct task_struct *next)
4990 {
4991 	kcov_prepare_switch(prev);
4992 	sched_info_switch(rq, prev, next);
4993 	perf_event_task_sched_out(prev, next);
4994 	rseq_preempt(prev);
4995 	fire_sched_out_preempt_notifiers(prev, next);
4996 	kmap_local_sched_out();
4997 	prepare_task(next);
4998 	prepare_arch_switch(next);
4999 }
5000 
5001 /**
5002  * finish_task_switch - clean up after a task-switch
5003  * @prev: the thread we just switched away from.
5004  *
5005  * finish_task_switch must be called after the context switch, paired
5006  * with a prepare_task_switch call before the context switch.
5007  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5008  * and do any other architecture-specific cleanup actions.
5009  *
5010  * Note that we may have delayed dropping an mm in context_switch(). If
5011  * so, we finish that here outside of the runqueue lock. (Doing it
5012  * with the lock held can cause deadlocks; see schedule() for
5013  * details.)
5014  *
5015  * The context switch have flipped the stack from under us and restored the
5016  * local variables which were saved when this task called schedule() in the
5017  * past. prev == current is still correct but we need to recalculate this_rq
5018  * because prev may have moved to another CPU.
5019  */
5020 static struct rq *finish_task_switch(struct task_struct *prev)
5021 	__releases(rq->lock)
5022 {
5023 	struct rq *rq = this_rq();
5024 	struct mm_struct *mm = rq->prev_mm;
5025 	unsigned int prev_state;
5026 
5027 	/*
5028 	 * The previous task will have left us with a preempt_count of 2
5029 	 * because it left us after:
5030 	 *
5031 	 *	schedule()
5032 	 *	  preempt_disable();			// 1
5033 	 *	  __schedule()
5034 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5035 	 *
5036 	 * Also, see FORK_PREEMPT_COUNT.
5037 	 */
5038 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5039 		      "corrupted preempt_count: %s/%d/0x%x\n",
5040 		      current->comm, current->pid, preempt_count()))
5041 		preempt_count_set(FORK_PREEMPT_COUNT);
5042 
5043 	rq->prev_mm = NULL;
5044 
5045 	/*
5046 	 * A task struct has one reference for the use as "current".
5047 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5048 	 * schedule one last time. The schedule call will never return, and
5049 	 * the scheduled task must drop that reference.
5050 	 *
5051 	 * We must observe prev->state before clearing prev->on_cpu (in
5052 	 * finish_task), otherwise a concurrent wakeup can get prev
5053 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5054 	 * transition, resulting in a double drop.
5055 	 */
5056 	prev_state = READ_ONCE(prev->__state);
5057 	vtime_task_switch(prev);
5058 	perf_event_task_sched_in(prev, current);
5059 	finish_task(prev);
5060 	tick_nohz_task_switch();
5061 	finish_lock_switch(rq);
5062 	finish_arch_post_lock_switch();
5063 	kcov_finish_switch(current);
5064 	/*
5065 	 * kmap_local_sched_out() is invoked with rq::lock held and
5066 	 * interrupts disabled. There is no requirement for that, but the
5067 	 * sched out code does not have an interrupt enabled section.
5068 	 * Restoring the maps on sched in does not require interrupts being
5069 	 * disabled either.
5070 	 */
5071 	kmap_local_sched_in();
5072 
5073 	fire_sched_in_preempt_notifiers(current);
5074 	/*
5075 	 * When switching through a kernel thread, the loop in
5076 	 * membarrier_{private,global}_expedited() may have observed that
5077 	 * kernel thread and not issued an IPI. It is therefore possible to
5078 	 * schedule between user->kernel->user threads without passing though
5079 	 * switch_mm(). Membarrier requires a barrier after storing to
5080 	 * rq->curr, before returning to userspace, so provide them here:
5081 	 *
5082 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5083 	 *   provided by mmdrop(),
5084 	 * - a sync_core for SYNC_CORE.
5085 	 */
5086 	if (mm) {
5087 		membarrier_mm_sync_core_before_usermode(mm);
5088 		mmdrop_sched(mm);
5089 	}
5090 	if (unlikely(prev_state == TASK_DEAD)) {
5091 		if (prev->sched_class->task_dead)
5092 			prev->sched_class->task_dead(prev);
5093 
5094 		/* Task is done with its stack. */
5095 		put_task_stack(prev);
5096 
5097 		put_task_struct_rcu_user(prev);
5098 	}
5099 
5100 	return rq;
5101 }
5102 
5103 /**
5104  * schedule_tail - first thing a freshly forked thread must call.
5105  * @prev: the thread we just switched away from.
5106  */
5107 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5108 	__releases(rq->lock)
5109 {
5110 	/*
5111 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5112 	 * finish_task_switch() for details.
5113 	 *
5114 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5115 	 * and the preempt_enable() will end up enabling preemption (on
5116 	 * PREEMPT_COUNT kernels).
5117 	 */
5118 
5119 	finish_task_switch(prev);
5120 	preempt_enable();
5121 
5122 	if (current->set_child_tid)
5123 		put_user(task_pid_vnr(current), current->set_child_tid);
5124 
5125 	calculate_sigpending();
5126 }
5127 
5128 /*
5129  * context_switch - switch to the new MM and the new thread's register state.
5130  */
5131 static __always_inline struct rq *
5132 context_switch(struct rq *rq, struct task_struct *prev,
5133 	       struct task_struct *next, struct rq_flags *rf)
5134 {
5135 	prepare_task_switch(rq, prev, next);
5136 
5137 	/*
5138 	 * For paravirt, this is coupled with an exit in switch_to to
5139 	 * combine the page table reload and the switch backend into
5140 	 * one hypercall.
5141 	 */
5142 	arch_start_context_switch(prev);
5143 
5144 	/*
5145 	 * kernel -> kernel   lazy + transfer active
5146 	 *   user -> kernel   lazy + mmgrab() active
5147 	 *
5148 	 * kernel ->   user   switch + mmdrop() active
5149 	 *   user ->   user   switch
5150 	 */
5151 	if (!next->mm) {                                // to kernel
5152 		enter_lazy_tlb(prev->active_mm, next);
5153 
5154 		next->active_mm = prev->active_mm;
5155 		if (prev->mm)                           // from user
5156 			mmgrab(prev->active_mm);
5157 		else
5158 			prev->active_mm = NULL;
5159 	} else {                                        // to user
5160 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5161 		/*
5162 		 * sys_membarrier() requires an smp_mb() between setting
5163 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5164 		 *
5165 		 * The below provides this either through switch_mm(), or in
5166 		 * case 'prev->active_mm == next->mm' through
5167 		 * finish_task_switch()'s mmdrop().
5168 		 */
5169 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5170 
5171 		if (!prev->mm) {                        // from kernel
5172 			/* will mmdrop() in finish_task_switch(). */
5173 			rq->prev_mm = prev->active_mm;
5174 			prev->active_mm = NULL;
5175 		}
5176 	}
5177 
5178 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5179 
5180 	prepare_lock_switch(rq, next, rf);
5181 
5182 	/* Here we just switch the register state and the stack. */
5183 	switch_to(prev, next, prev);
5184 	barrier();
5185 
5186 	return finish_task_switch(prev);
5187 }
5188 
5189 /*
5190  * nr_running and nr_context_switches:
5191  *
5192  * externally visible scheduler statistics: current number of runnable
5193  * threads, total number of context switches performed since bootup.
5194  */
5195 unsigned int nr_running(void)
5196 {
5197 	unsigned int i, sum = 0;
5198 
5199 	for_each_online_cpu(i)
5200 		sum += cpu_rq(i)->nr_running;
5201 
5202 	return sum;
5203 }
5204 
5205 /*
5206  * Check if only the current task is running on the CPU.
5207  *
5208  * Caution: this function does not check that the caller has disabled
5209  * preemption, thus the result might have a time-of-check-to-time-of-use
5210  * race.  The caller is responsible to use it correctly, for example:
5211  *
5212  * - from a non-preemptible section (of course)
5213  *
5214  * - from a thread that is bound to a single CPU
5215  *
5216  * - in a loop with very short iterations (e.g. a polling loop)
5217  */
5218 bool single_task_running(void)
5219 {
5220 	return raw_rq()->nr_running == 1;
5221 }
5222 EXPORT_SYMBOL(single_task_running);
5223 
5224 unsigned long long nr_context_switches(void)
5225 {
5226 	int i;
5227 	unsigned long long sum = 0;
5228 
5229 	for_each_possible_cpu(i)
5230 		sum += cpu_rq(i)->nr_switches;
5231 
5232 	return sum;
5233 }
5234 
5235 /*
5236  * Consumers of these two interfaces, like for example the cpuidle menu
5237  * governor, are using nonsensical data. Preferring shallow idle state selection
5238  * for a CPU that has IO-wait which might not even end up running the task when
5239  * it does become runnable.
5240  */
5241 
5242 unsigned int nr_iowait_cpu(int cpu)
5243 {
5244 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5245 }
5246 
5247 /*
5248  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5249  *
5250  * The idea behind IO-wait account is to account the idle time that we could
5251  * have spend running if it were not for IO. That is, if we were to improve the
5252  * storage performance, we'd have a proportional reduction in IO-wait time.
5253  *
5254  * This all works nicely on UP, where, when a task blocks on IO, we account
5255  * idle time as IO-wait, because if the storage were faster, it could've been
5256  * running and we'd not be idle.
5257  *
5258  * This has been extended to SMP, by doing the same for each CPU. This however
5259  * is broken.
5260  *
5261  * Imagine for instance the case where two tasks block on one CPU, only the one
5262  * CPU will have IO-wait accounted, while the other has regular idle. Even
5263  * though, if the storage were faster, both could've ran at the same time,
5264  * utilising both CPUs.
5265  *
5266  * This means, that when looking globally, the current IO-wait accounting on
5267  * SMP is a lower bound, by reason of under accounting.
5268  *
5269  * Worse, since the numbers are provided per CPU, they are sometimes
5270  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5271  * associated with any one particular CPU, it can wake to another CPU than it
5272  * blocked on. This means the per CPU IO-wait number is meaningless.
5273  *
5274  * Task CPU affinities can make all that even more 'interesting'.
5275  */
5276 
5277 unsigned int nr_iowait(void)
5278 {
5279 	unsigned int i, sum = 0;
5280 
5281 	for_each_possible_cpu(i)
5282 		sum += nr_iowait_cpu(i);
5283 
5284 	return sum;
5285 }
5286 
5287 #ifdef CONFIG_SMP
5288 
5289 /*
5290  * sched_exec - execve() is a valuable balancing opportunity, because at
5291  * this point the task has the smallest effective memory and cache footprint.
5292  */
5293 void sched_exec(void)
5294 {
5295 	struct task_struct *p = current;
5296 	unsigned long flags;
5297 	int dest_cpu;
5298 
5299 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5300 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5301 	if (dest_cpu == smp_processor_id())
5302 		goto unlock;
5303 
5304 	if (likely(cpu_active(dest_cpu))) {
5305 		struct migration_arg arg = { p, dest_cpu };
5306 
5307 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5308 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5309 		return;
5310 	}
5311 unlock:
5312 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5313 }
5314 
5315 #endif
5316 
5317 DEFINE_PER_CPU(struct kernel_stat, kstat);
5318 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5319 
5320 EXPORT_PER_CPU_SYMBOL(kstat);
5321 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5322 
5323 /*
5324  * The function fair_sched_class.update_curr accesses the struct curr
5325  * and its field curr->exec_start; when called from task_sched_runtime(),
5326  * we observe a high rate of cache misses in practice.
5327  * Prefetching this data results in improved performance.
5328  */
5329 static inline void prefetch_curr_exec_start(struct task_struct *p)
5330 {
5331 #ifdef CONFIG_FAIR_GROUP_SCHED
5332 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5333 #else
5334 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5335 #endif
5336 	prefetch(curr);
5337 	prefetch(&curr->exec_start);
5338 }
5339 
5340 /*
5341  * Return accounted runtime for the task.
5342  * In case the task is currently running, return the runtime plus current's
5343  * pending runtime that have not been accounted yet.
5344  */
5345 unsigned long long task_sched_runtime(struct task_struct *p)
5346 {
5347 	struct rq_flags rf;
5348 	struct rq *rq;
5349 	u64 ns;
5350 
5351 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5352 	/*
5353 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5354 	 * So we have a optimization chance when the task's delta_exec is 0.
5355 	 * Reading ->on_cpu is racy, but this is ok.
5356 	 *
5357 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5358 	 * If we race with it entering CPU, unaccounted time is 0. This is
5359 	 * indistinguishable from the read occurring a few cycles earlier.
5360 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5361 	 * been accounted, so we're correct here as well.
5362 	 */
5363 	if (!p->on_cpu || !task_on_rq_queued(p))
5364 		return p->se.sum_exec_runtime;
5365 #endif
5366 
5367 	rq = task_rq_lock(p, &rf);
5368 	/*
5369 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5370 	 * project cycles that may never be accounted to this
5371 	 * thread, breaking clock_gettime().
5372 	 */
5373 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5374 		prefetch_curr_exec_start(p);
5375 		update_rq_clock(rq);
5376 		p->sched_class->update_curr(rq);
5377 	}
5378 	ns = p->se.sum_exec_runtime;
5379 	task_rq_unlock(rq, p, &rf);
5380 
5381 	return ns;
5382 }
5383 
5384 #ifdef CONFIG_SCHED_DEBUG
5385 static u64 cpu_resched_latency(struct rq *rq)
5386 {
5387 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5388 	u64 resched_latency, now = rq_clock(rq);
5389 	static bool warned_once;
5390 
5391 	if (sysctl_resched_latency_warn_once && warned_once)
5392 		return 0;
5393 
5394 	if (!need_resched() || !latency_warn_ms)
5395 		return 0;
5396 
5397 	if (system_state == SYSTEM_BOOTING)
5398 		return 0;
5399 
5400 	if (!rq->last_seen_need_resched_ns) {
5401 		rq->last_seen_need_resched_ns = now;
5402 		rq->ticks_without_resched = 0;
5403 		return 0;
5404 	}
5405 
5406 	rq->ticks_without_resched++;
5407 	resched_latency = now - rq->last_seen_need_resched_ns;
5408 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5409 		return 0;
5410 
5411 	warned_once = true;
5412 
5413 	return resched_latency;
5414 }
5415 
5416 static int __init setup_resched_latency_warn_ms(char *str)
5417 {
5418 	long val;
5419 
5420 	if ((kstrtol(str, 0, &val))) {
5421 		pr_warn("Unable to set resched_latency_warn_ms\n");
5422 		return 1;
5423 	}
5424 
5425 	sysctl_resched_latency_warn_ms = val;
5426 	return 1;
5427 }
5428 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5429 #else
5430 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5431 #endif /* CONFIG_SCHED_DEBUG */
5432 
5433 /*
5434  * This function gets called by the timer code, with HZ frequency.
5435  * We call it with interrupts disabled.
5436  */
5437 void scheduler_tick(void)
5438 {
5439 	int cpu = smp_processor_id();
5440 	struct rq *rq = cpu_rq(cpu);
5441 	struct task_struct *curr = rq->curr;
5442 	struct rq_flags rf;
5443 	unsigned long thermal_pressure;
5444 	u64 resched_latency;
5445 
5446 	arch_scale_freq_tick();
5447 	sched_clock_tick();
5448 
5449 	rq_lock(rq, &rf);
5450 
5451 	update_rq_clock(rq);
5452 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5453 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5454 	curr->sched_class->task_tick(rq, curr, 0);
5455 	if (sched_feat(LATENCY_WARN))
5456 		resched_latency = cpu_resched_latency(rq);
5457 	calc_global_load_tick(rq);
5458 	sched_core_tick(rq);
5459 
5460 	rq_unlock(rq, &rf);
5461 
5462 	if (sched_feat(LATENCY_WARN) && resched_latency)
5463 		resched_latency_warn(cpu, resched_latency);
5464 
5465 	perf_event_task_tick();
5466 
5467 #ifdef CONFIG_SMP
5468 	rq->idle_balance = idle_cpu(cpu);
5469 	trigger_load_balance(rq);
5470 #endif
5471 }
5472 
5473 #ifdef CONFIG_NO_HZ_FULL
5474 
5475 struct tick_work {
5476 	int			cpu;
5477 	atomic_t		state;
5478 	struct delayed_work	work;
5479 };
5480 /* Values for ->state, see diagram below. */
5481 #define TICK_SCHED_REMOTE_OFFLINE	0
5482 #define TICK_SCHED_REMOTE_OFFLINING	1
5483 #define TICK_SCHED_REMOTE_RUNNING	2
5484 
5485 /*
5486  * State diagram for ->state:
5487  *
5488  *
5489  *          TICK_SCHED_REMOTE_OFFLINE
5490  *                    |   ^
5491  *                    |   |
5492  *                    |   | sched_tick_remote()
5493  *                    |   |
5494  *                    |   |
5495  *                    +--TICK_SCHED_REMOTE_OFFLINING
5496  *                    |   ^
5497  *                    |   |
5498  * sched_tick_start() |   | sched_tick_stop()
5499  *                    |   |
5500  *                    V   |
5501  *          TICK_SCHED_REMOTE_RUNNING
5502  *
5503  *
5504  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5505  * and sched_tick_start() are happy to leave the state in RUNNING.
5506  */
5507 
5508 static struct tick_work __percpu *tick_work_cpu;
5509 
5510 static void sched_tick_remote(struct work_struct *work)
5511 {
5512 	struct delayed_work *dwork = to_delayed_work(work);
5513 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5514 	int cpu = twork->cpu;
5515 	struct rq *rq = cpu_rq(cpu);
5516 	struct task_struct *curr;
5517 	struct rq_flags rf;
5518 	u64 delta;
5519 	int os;
5520 
5521 	/*
5522 	 * Handle the tick only if it appears the remote CPU is running in full
5523 	 * dynticks mode. The check is racy by nature, but missing a tick or
5524 	 * having one too much is no big deal because the scheduler tick updates
5525 	 * statistics and checks timeslices in a time-independent way, regardless
5526 	 * of when exactly it is running.
5527 	 */
5528 	if (!tick_nohz_tick_stopped_cpu(cpu))
5529 		goto out_requeue;
5530 
5531 	rq_lock_irq(rq, &rf);
5532 	curr = rq->curr;
5533 	if (cpu_is_offline(cpu))
5534 		goto out_unlock;
5535 
5536 	update_rq_clock(rq);
5537 
5538 	if (!is_idle_task(curr)) {
5539 		/*
5540 		 * Make sure the next tick runs within a reasonable
5541 		 * amount of time.
5542 		 */
5543 		delta = rq_clock_task(rq) - curr->se.exec_start;
5544 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5545 	}
5546 	curr->sched_class->task_tick(rq, curr, 0);
5547 
5548 	calc_load_nohz_remote(rq);
5549 out_unlock:
5550 	rq_unlock_irq(rq, &rf);
5551 out_requeue:
5552 
5553 	/*
5554 	 * Run the remote tick once per second (1Hz). This arbitrary
5555 	 * frequency is large enough to avoid overload but short enough
5556 	 * to keep scheduler internal stats reasonably up to date.  But
5557 	 * first update state to reflect hotplug activity if required.
5558 	 */
5559 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5560 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5561 	if (os == TICK_SCHED_REMOTE_RUNNING)
5562 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5563 }
5564 
5565 static void sched_tick_start(int cpu)
5566 {
5567 	int os;
5568 	struct tick_work *twork;
5569 
5570 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5571 		return;
5572 
5573 	WARN_ON_ONCE(!tick_work_cpu);
5574 
5575 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5576 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5577 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5578 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5579 		twork->cpu = cpu;
5580 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5581 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5582 	}
5583 }
5584 
5585 #ifdef CONFIG_HOTPLUG_CPU
5586 static void sched_tick_stop(int cpu)
5587 {
5588 	struct tick_work *twork;
5589 	int os;
5590 
5591 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5592 		return;
5593 
5594 	WARN_ON_ONCE(!tick_work_cpu);
5595 
5596 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5597 	/* There cannot be competing actions, but don't rely on stop-machine. */
5598 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5599 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5600 	/* Don't cancel, as this would mess up the state machine. */
5601 }
5602 #endif /* CONFIG_HOTPLUG_CPU */
5603 
5604 int __init sched_tick_offload_init(void)
5605 {
5606 	tick_work_cpu = alloc_percpu(struct tick_work);
5607 	BUG_ON(!tick_work_cpu);
5608 	return 0;
5609 }
5610 
5611 #else /* !CONFIG_NO_HZ_FULL */
5612 static inline void sched_tick_start(int cpu) { }
5613 static inline void sched_tick_stop(int cpu) { }
5614 #endif
5615 
5616 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5617 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5618 /*
5619  * If the value passed in is equal to the current preempt count
5620  * then we just disabled preemption. Start timing the latency.
5621  */
5622 static inline void preempt_latency_start(int val)
5623 {
5624 	if (preempt_count() == val) {
5625 		unsigned long ip = get_lock_parent_ip();
5626 #ifdef CONFIG_DEBUG_PREEMPT
5627 		current->preempt_disable_ip = ip;
5628 #endif
5629 		trace_preempt_off(CALLER_ADDR0, ip);
5630 	}
5631 }
5632 
5633 void preempt_count_add(int val)
5634 {
5635 #ifdef CONFIG_DEBUG_PREEMPT
5636 	/*
5637 	 * Underflow?
5638 	 */
5639 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5640 		return;
5641 #endif
5642 	__preempt_count_add(val);
5643 #ifdef CONFIG_DEBUG_PREEMPT
5644 	/*
5645 	 * Spinlock count overflowing soon?
5646 	 */
5647 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5648 				PREEMPT_MASK - 10);
5649 #endif
5650 	preempt_latency_start(val);
5651 }
5652 EXPORT_SYMBOL(preempt_count_add);
5653 NOKPROBE_SYMBOL(preempt_count_add);
5654 
5655 /*
5656  * If the value passed in equals to the current preempt count
5657  * then we just enabled preemption. Stop timing the latency.
5658  */
5659 static inline void preempt_latency_stop(int val)
5660 {
5661 	if (preempt_count() == val)
5662 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5663 }
5664 
5665 void preempt_count_sub(int val)
5666 {
5667 #ifdef CONFIG_DEBUG_PREEMPT
5668 	/*
5669 	 * Underflow?
5670 	 */
5671 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5672 		return;
5673 	/*
5674 	 * Is the spinlock portion underflowing?
5675 	 */
5676 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5677 			!(preempt_count() & PREEMPT_MASK)))
5678 		return;
5679 #endif
5680 
5681 	preempt_latency_stop(val);
5682 	__preempt_count_sub(val);
5683 }
5684 EXPORT_SYMBOL(preempt_count_sub);
5685 NOKPROBE_SYMBOL(preempt_count_sub);
5686 
5687 #else
5688 static inline void preempt_latency_start(int val) { }
5689 static inline void preempt_latency_stop(int val) { }
5690 #endif
5691 
5692 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5693 {
5694 #ifdef CONFIG_DEBUG_PREEMPT
5695 	return p->preempt_disable_ip;
5696 #else
5697 	return 0;
5698 #endif
5699 }
5700 
5701 /*
5702  * Print scheduling while atomic bug:
5703  */
5704 static noinline void __schedule_bug(struct task_struct *prev)
5705 {
5706 	/* Save this before calling printk(), since that will clobber it */
5707 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5708 
5709 	if (oops_in_progress)
5710 		return;
5711 
5712 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5713 		prev->comm, prev->pid, preempt_count());
5714 
5715 	debug_show_held_locks(prev);
5716 	print_modules();
5717 	if (irqs_disabled())
5718 		print_irqtrace_events(prev);
5719 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5720 	    && in_atomic_preempt_off()) {
5721 		pr_err("Preemption disabled at:");
5722 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5723 	}
5724 	if (panic_on_warn)
5725 		panic("scheduling while atomic\n");
5726 
5727 	dump_stack();
5728 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5729 }
5730 
5731 /*
5732  * Various schedule()-time debugging checks and statistics:
5733  */
5734 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5735 {
5736 #ifdef CONFIG_SCHED_STACK_END_CHECK
5737 	if (task_stack_end_corrupted(prev))
5738 		panic("corrupted stack end detected inside scheduler\n");
5739 
5740 	if (task_scs_end_corrupted(prev))
5741 		panic("corrupted shadow stack detected inside scheduler\n");
5742 #endif
5743 
5744 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5745 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5746 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5747 			prev->comm, prev->pid, prev->non_block_count);
5748 		dump_stack();
5749 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5750 	}
5751 #endif
5752 
5753 	if (unlikely(in_atomic_preempt_off())) {
5754 		__schedule_bug(prev);
5755 		preempt_count_set(PREEMPT_DISABLED);
5756 	}
5757 	rcu_sleep_check();
5758 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5759 
5760 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5761 
5762 	schedstat_inc(this_rq()->sched_count);
5763 }
5764 
5765 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5766 				  struct rq_flags *rf)
5767 {
5768 #ifdef CONFIG_SMP
5769 	const struct sched_class *class;
5770 	/*
5771 	 * We must do the balancing pass before put_prev_task(), such
5772 	 * that when we release the rq->lock the task is in the same
5773 	 * state as before we took rq->lock.
5774 	 *
5775 	 * We can terminate the balance pass as soon as we know there is
5776 	 * a runnable task of @class priority or higher.
5777 	 */
5778 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5779 		if (class->balance(rq, prev, rf))
5780 			break;
5781 	}
5782 #endif
5783 
5784 	put_prev_task(rq, prev);
5785 }
5786 
5787 /*
5788  * Pick up the highest-prio task:
5789  */
5790 static inline struct task_struct *
5791 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5792 {
5793 	const struct sched_class *class;
5794 	struct task_struct *p;
5795 
5796 	/*
5797 	 * Optimization: we know that if all tasks are in the fair class we can
5798 	 * call that function directly, but only if the @prev task wasn't of a
5799 	 * higher scheduling class, because otherwise those lose the
5800 	 * opportunity to pull in more work from other CPUs.
5801 	 */
5802 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5803 		   rq->nr_running == rq->cfs.h_nr_running)) {
5804 
5805 		p = pick_next_task_fair(rq, prev, rf);
5806 		if (unlikely(p == RETRY_TASK))
5807 			goto restart;
5808 
5809 		/* Assume the next prioritized class is idle_sched_class */
5810 		if (!p) {
5811 			put_prev_task(rq, prev);
5812 			p = pick_next_task_idle(rq);
5813 		}
5814 
5815 		return p;
5816 	}
5817 
5818 restart:
5819 	put_prev_task_balance(rq, prev, rf);
5820 
5821 	for_each_class(class) {
5822 		p = class->pick_next_task(rq);
5823 		if (p)
5824 			return p;
5825 	}
5826 
5827 	BUG(); /* The idle class should always have a runnable task. */
5828 }
5829 
5830 #ifdef CONFIG_SCHED_CORE
5831 static inline bool is_task_rq_idle(struct task_struct *t)
5832 {
5833 	return (task_rq(t)->idle == t);
5834 }
5835 
5836 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5837 {
5838 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5839 }
5840 
5841 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5842 {
5843 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5844 		return true;
5845 
5846 	return a->core_cookie == b->core_cookie;
5847 }
5848 
5849 static inline struct task_struct *pick_task(struct rq *rq)
5850 {
5851 	const struct sched_class *class;
5852 	struct task_struct *p;
5853 
5854 	for_each_class(class) {
5855 		p = class->pick_task(rq);
5856 		if (p)
5857 			return p;
5858 	}
5859 
5860 	BUG(); /* The idle class should always have a runnable task. */
5861 }
5862 
5863 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5864 
5865 static void queue_core_balance(struct rq *rq);
5866 
5867 static struct task_struct *
5868 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5869 {
5870 	struct task_struct *next, *p, *max = NULL;
5871 	const struct cpumask *smt_mask;
5872 	bool fi_before = false;
5873 	bool core_clock_updated = (rq == rq->core);
5874 	unsigned long cookie;
5875 	int i, cpu, occ = 0;
5876 	struct rq *rq_i;
5877 	bool need_sync;
5878 
5879 	if (!sched_core_enabled(rq))
5880 		return __pick_next_task(rq, prev, rf);
5881 
5882 	cpu = cpu_of(rq);
5883 
5884 	/* Stopper task is switching into idle, no need core-wide selection. */
5885 	if (cpu_is_offline(cpu)) {
5886 		/*
5887 		 * Reset core_pick so that we don't enter the fastpath when
5888 		 * coming online. core_pick would already be migrated to
5889 		 * another cpu during offline.
5890 		 */
5891 		rq->core_pick = NULL;
5892 		return __pick_next_task(rq, prev, rf);
5893 	}
5894 
5895 	/*
5896 	 * If there were no {en,de}queues since we picked (IOW, the task
5897 	 * pointers are all still valid), and we haven't scheduled the last
5898 	 * pick yet, do so now.
5899 	 *
5900 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5901 	 * it was either offline or went offline during a sibling's core-wide
5902 	 * selection. In this case, do a core-wide selection.
5903 	 */
5904 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5905 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5906 	    rq->core_pick) {
5907 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5908 
5909 		next = rq->core_pick;
5910 		if (next != prev) {
5911 			put_prev_task(rq, prev);
5912 			set_next_task(rq, next);
5913 		}
5914 
5915 		rq->core_pick = NULL;
5916 		goto out;
5917 	}
5918 
5919 	put_prev_task_balance(rq, prev, rf);
5920 
5921 	smt_mask = cpu_smt_mask(cpu);
5922 	need_sync = !!rq->core->core_cookie;
5923 
5924 	/* reset state */
5925 	rq->core->core_cookie = 0UL;
5926 	if (rq->core->core_forceidle_count) {
5927 		if (!core_clock_updated) {
5928 			update_rq_clock(rq->core);
5929 			core_clock_updated = true;
5930 		}
5931 		sched_core_account_forceidle(rq);
5932 		/* reset after accounting force idle */
5933 		rq->core->core_forceidle_start = 0;
5934 		rq->core->core_forceidle_count = 0;
5935 		rq->core->core_forceidle_occupation = 0;
5936 		need_sync = true;
5937 		fi_before = true;
5938 	}
5939 
5940 	/*
5941 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5942 	 *
5943 	 * @task_seq guards the task state ({en,de}queues)
5944 	 * @pick_seq is the @task_seq we did a selection on
5945 	 * @sched_seq is the @pick_seq we scheduled
5946 	 *
5947 	 * However, preemptions can cause multiple picks on the same task set.
5948 	 * 'Fix' this by also increasing @task_seq for every pick.
5949 	 */
5950 	rq->core->core_task_seq++;
5951 
5952 	/*
5953 	 * Optimize for common case where this CPU has no cookies
5954 	 * and there are no cookied tasks running on siblings.
5955 	 */
5956 	if (!need_sync) {
5957 		next = pick_task(rq);
5958 		if (!next->core_cookie) {
5959 			rq->core_pick = NULL;
5960 			/*
5961 			 * For robustness, update the min_vruntime_fi for
5962 			 * unconstrained picks as well.
5963 			 */
5964 			WARN_ON_ONCE(fi_before);
5965 			task_vruntime_update(rq, next, false);
5966 			goto out_set_next;
5967 		}
5968 	}
5969 
5970 	/*
5971 	 * For each thread: do the regular task pick and find the max prio task
5972 	 * amongst them.
5973 	 *
5974 	 * Tie-break prio towards the current CPU
5975 	 */
5976 	for_each_cpu_wrap(i, smt_mask, cpu) {
5977 		rq_i = cpu_rq(i);
5978 
5979 		/*
5980 		 * Current cpu always has its clock updated on entrance to
5981 		 * pick_next_task(). If the current cpu is not the core,
5982 		 * the core may also have been updated above.
5983 		 */
5984 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
5985 			update_rq_clock(rq_i);
5986 
5987 		p = rq_i->core_pick = pick_task(rq_i);
5988 		if (!max || prio_less(max, p, fi_before))
5989 			max = p;
5990 	}
5991 
5992 	cookie = rq->core->core_cookie = max->core_cookie;
5993 
5994 	/*
5995 	 * For each thread: try and find a runnable task that matches @max or
5996 	 * force idle.
5997 	 */
5998 	for_each_cpu(i, smt_mask) {
5999 		rq_i = cpu_rq(i);
6000 		p = rq_i->core_pick;
6001 
6002 		if (!cookie_equals(p, cookie)) {
6003 			p = NULL;
6004 			if (cookie)
6005 				p = sched_core_find(rq_i, cookie);
6006 			if (!p)
6007 				p = idle_sched_class.pick_task(rq_i);
6008 		}
6009 
6010 		rq_i->core_pick = p;
6011 
6012 		if (p == rq_i->idle) {
6013 			if (rq_i->nr_running) {
6014 				rq->core->core_forceidle_count++;
6015 				if (!fi_before)
6016 					rq->core->core_forceidle_seq++;
6017 			}
6018 		} else {
6019 			occ++;
6020 		}
6021 	}
6022 
6023 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6024 		rq->core->core_forceidle_start = rq_clock(rq->core);
6025 		rq->core->core_forceidle_occupation = occ;
6026 	}
6027 
6028 	rq->core->core_pick_seq = rq->core->core_task_seq;
6029 	next = rq->core_pick;
6030 	rq->core_sched_seq = rq->core->core_pick_seq;
6031 
6032 	/* Something should have been selected for current CPU */
6033 	WARN_ON_ONCE(!next);
6034 
6035 	/*
6036 	 * Reschedule siblings
6037 	 *
6038 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6039 	 * sending an IPI (below) ensures the sibling will no longer be running
6040 	 * their task. This ensures there is no inter-sibling overlap between
6041 	 * non-matching user state.
6042 	 */
6043 	for_each_cpu(i, smt_mask) {
6044 		rq_i = cpu_rq(i);
6045 
6046 		/*
6047 		 * An online sibling might have gone offline before a task
6048 		 * could be picked for it, or it might be offline but later
6049 		 * happen to come online, but its too late and nothing was
6050 		 * picked for it.  That's Ok - it will pick tasks for itself,
6051 		 * so ignore it.
6052 		 */
6053 		if (!rq_i->core_pick)
6054 			continue;
6055 
6056 		/*
6057 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6058 		 * fi_before     fi      update?
6059 		 *  0            0       1
6060 		 *  0            1       1
6061 		 *  1            0       1
6062 		 *  1            1       0
6063 		 */
6064 		if (!(fi_before && rq->core->core_forceidle_count))
6065 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6066 
6067 		rq_i->core_pick->core_occupation = occ;
6068 
6069 		if (i == cpu) {
6070 			rq_i->core_pick = NULL;
6071 			continue;
6072 		}
6073 
6074 		/* Did we break L1TF mitigation requirements? */
6075 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6076 
6077 		if (rq_i->curr == rq_i->core_pick) {
6078 			rq_i->core_pick = NULL;
6079 			continue;
6080 		}
6081 
6082 		resched_curr(rq_i);
6083 	}
6084 
6085 out_set_next:
6086 	set_next_task(rq, next);
6087 out:
6088 	if (rq->core->core_forceidle_count && next == rq->idle)
6089 		queue_core_balance(rq);
6090 
6091 	return next;
6092 }
6093 
6094 static bool try_steal_cookie(int this, int that)
6095 {
6096 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6097 	struct task_struct *p;
6098 	unsigned long cookie;
6099 	bool success = false;
6100 
6101 	local_irq_disable();
6102 	double_rq_lock(dst, src);
6103 
6104 	cookie = dst->core->core_cookie;
6105 	if (!cookie)
6106 		goto unlock;
6107 
6108 	if (dst->curr != dst->idle)
6109 		goto unlock;
6110 
6111 	p = sched_core_find(src, cookie);
6112 	if (p == src->idle)
6113 		goto unlock;
6114 
6115 	do {
6116 		if (p == src->core_pick || p == src->curr)
6117 			goto next;
6118 
6119 		if (!is_cpu_allowed(p, this))
6120 			goto next;
6121 
6122 		if (p->core_occupation > dst->idle->core_occupation)
6123 			goto next;
6124 
6125 		deactivate_task(src, p, 0);
6126 		set_task_cpu(p, this);
6127 		activate_task(dst, p, 0);
6128 
6129 		resched_curr(dst);
6130 
6131 		success = true;
6132 		break;
6133 
6134 next:
6135 		p = sched_core_next(p, cookie);
6136 	} while (p);
6137 
6138 unlock:
6139 	double_rq_unlock(dst, src);
6140 	local_irq_enable();
6141 
6142 	return success;
6143 }
6144 
6145 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6146 {
6147 	int i;
6148 
6149 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6150 		if (i == cpu)
6151 			continue;
6152 
6153 		if (need_resched())
6154 			break;
6155 
6156 		if (try_steal_cookie(cpu, i))
6157 			return true;
6158 	}
6159 
6160 	return false;
6161 }
6162 
6163 static void sched_core_balance(struct rq *rq)
6164 {
6165 	struct sched_domain *sd;
6166 	int cpu = cpu_of(rq);
6167 
6168 	preempt_disable();
6169 	rcu_read_lock();
6170 	raw_spin_rq_unlock_irq(rq);
6171 	for_each_domain(cpu, sd) {
6172 		if (need_resched())
6173 			break;
6174 
6175 		if (steal_cookie_task(cpu, sd))
6176 			break;
6177 	}
6178 	raw_spin_rq_lock_irq(rq);
6179 	rcu_read_unlock();
6180 	preempt_enable();
6181 }
6182 
6183 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
6184 
6185 static void queue_core_balance(struct rq *rq)
6186 {
6187 	if (!sched_core_enabled(rq))
6188 		return;
6189 
6190 	if (!rq->core->core_cookie)
6191 		return;
6192 
6193 	if (!rq->nr_running) /* not forced idle */
6194 		return;
6195 
6196 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6197 }
6198 
6199 static void sched_core_cpu_starting(unsigned int cpu)
6200 {
6201 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6202 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6203 	unsigned long flags;
6204 	int t;
6205 
6206 	sched_core_lock(cpu, &flags);
6207 
6208 	WARN_ON_ONCE(rq->core != rq);
6209 
6210 	/* if we're the first, we'll be our own leader */
6211 	if (cpumask_weight(smt_mask) == 1)
6212 		goto unlock;
6213 
6214 	/* find the leader */
6215 	for_each_cpu(t, smt_mask) {
6216 		if (t == cpu)
6217 			continue;
6218 		rq = cpu_rq(t);
6219 		if (rq->core == rq) {
6220 			core_rq = rq;
6221 			break;
6222 		}
6223 	}
6224 
6225 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6226 		goto unlock;
6227 
6228 	/* install and validate core_rq */
6229 	for_each_cpu(t, smt_mask) {
6230 		rq = cpu_rq(t);
6231 
6232 		if (t == cpu)
6233 			rq->core = core_rq;
6234 
6235 		WARN_ON_ONCE(rq->core != core_rq);
6236 	}
6237 
6238 unlock:
6239 	sched_core_unlock(cpu, &flags);
6240 }
6241 
6242 static void sched_core_cpu_deactivate(unsigned int cpu)
6243 {
6244 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6245 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6246 	unsigned long flags;
6247 	int t;
6248 
6249 	sched_core_lock(cpu, &flags);
6250 
6251 	/* if we're the last man standing, nothing to do */
6252 	if (cpumask_weight(smt_mask) == 1) {
6253 		WARN_ON_ONCE(rq->core != rq);
6254 		goto unlock;
6255 	}
6256 
6257 	/* if we're not the leader, nothing to do */
6258 	if (rq->core != rq)
6259 		goto unlock;
6260 
6261 	/* find a new leader */
6262 	for_each_cpu(t, smt_mask) {
6263 		if (t == cpu)
6264 			continue;
6265 		core_rq = cpu_rq(t);
6266 		break;
6267 	}
6268 
6269 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6270 		goto unlock;
6271 
6272 	/* copy the shared state to the new leader */
6273 	core_rq->core_task_seq             = rq->core_task_seq;
6274 	core_rq->core_pick_seq             = rq->core_pick_seq;
6275 	core_rq->core_cookie               = rq->core_cookie;
6276 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6277 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6278 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6279 
6280 	/*
6281 	 * Accounting edge for forced idle is handled in pick_next_task().
6282 	 * Don't need another one here, since the hotplug thread shouldn't
6283 	 * have a cookie.
6284 	 */
6285 	core_rq->core_forceidle_start = 0;
6286 
6287 	/* install new leader */
6288 	for_each_cpu(t, smt_mask) {
6289 		rq = cpu_rq(t);
6290 		rq->core = core_rq;
6291 	}
6292 
6293 unlock:
6294 	sched_core_unlock(cpu, &flags);
6295 }
6296 
6297 static inline void sched_core_cpu_dying(unsigned int cpu)
6298 {
6299 	struct rq *rq = cpu_rq(cpu);
6300 
6301 	if (rq->core != rq)
6302 		rq->core = rq;
6303 }
6304 
6305 #else /* !CONFIG_SCHED_CORE */
6306 
6307 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6308 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6309 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6310 
6311 static struct task_struct *
6312 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6313 {
6314 	return __pick_next_task(rq, prev, rf);
6315 }
6316 
6317 #endif /* CONFIG_SCHED_CORE */
6318 
6319 /*
6320  * Constants for the sched_mode argument of __schedule().
6321  *
6322  * The mode argument allows RT enabled kernels to differentiate a
6323  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6324  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6325  * optimize the AND operation out and just check for zero.
6326  */
6327 #define SM_NONE			0x0
6328 #define SM_PREEMPT		0x1
6329 #define SM_RTLOCK_WAIT		0x2
6330 
6331 #ifndef CONFIG_PREEMPT_RT
6332 # define SM_MASK_PREEMPT	(~0U)
6333 #else
6334 # define SM_MASK_PREEMPT	SM_PREEMPT
6335 #endif
6336 
6337 /*
6338  * __schedule() is the main scheduler function.
6339  *
6340  * The main means of driving the scheduler and thus entering this function are:
6341  *
6342  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6343  *
6344  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6345  *      paths. For example, see arch/x86/entry_64.S.
6346  *
6347  *      To drive preemption between tasks, the scheduler sets the flag in timer
6348  *      interrupt handler scheduler_tick().
6349  *
6350  *   3. Wakeups don't really cause entry into schedule(). They add a
6351  *      task to the run-queue and that's it.
6352  *
6353  *      Now, if the new task added to the run-queue preempts the current
6354  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6355  *      called on the nearest possible occasion:
6356  *
6357  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6358  *
6359  *         - in syscall or exception context, at the next outmost
6360  *           preempt_enable(). (this might be as soon as the wake_up()'s
6361  *           spin_unlock()!)
6362  *
6363  *         - in IRQ context, return from interrupt-handler to
6364  *           preemptible context
6365  *
6366  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6367  *         then at the next:
6368  *
6369  *          - cond_resched() call
6370  *          - explicit schedule() call
6371  *          - return from syscall or exception to user-space
6372  *          - return from interrupt-handler to user-space
6373  *
6374  * WARNING: must be called with preemption disabled!
6375  */
6376 static void __sched notrace __schedule(unsigned int sched_mode)
6377 {
6378 	struct task_struct *prev, *next;
6379 	unsigned long *switch_count;
6380 	unsigned long prev_state;
6381 	struct rq_flags rf;
6382 	struct rq *rq;
6383 	int cpu;
6384 
6385 	cpu = smp_processor_id();
6386 	rq = cpu_rq(cpu);
6387 	prev = rq->curr;
6388 
6389 	schedule_debug(prev, !!sched_mode);
6390 
6391 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6392 		hrtick_clear(rq);
6393 
6394 	local_irq_disable();
6395 	rcu_note_context_switch(!!sched_mode);
6396 
6397 	/*
6398 	 * Make sure that signal_pending_state()->signal_pending() below
6399 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6400 	 * done by the caller to avoid the race with signal_wake_up():
6401 	 *
6402 	 * __set_current_state(@state)		signal_wake_up()
6403 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6404 	 *					  wake_up_state(p, state)
6405 	 *   LOCK rq->lock			    LOCK p->pi_state
6406 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6407 	 *     if (signal_pending_state())	    if (p->state & @state)
6408 	 *
6409 	 * Also, the membarrier system call requires a full memory barrier
6410 	 * after coming from user-space, before storing to rq->curr.
6411 	 */
6412 	rq_lock(rq, &rf);
6413 	smp_mb__after_spinlock();
6414 
6415 	/* Promote REQ to ACT */
6416 	rq->clock_update_flags <<= 1;
6417 	update_rq_clock(rq);
6418 
6419 	switch_count = &prev->nivcsw;
6420 
6421 	/*
6422 	 * We must load prev->state once (task_struct::state is volatile), such
6423 	 * that we form a control dependency vs deactivate_task() below.
6424 	 */
6425 	prev_state = READ_ONCE(prev->__state);
6426 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6427 		if (signal_pending_state(prev_state, prev)) {
6428 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6429 		} else {
6430 			prev->sched_contributes_to_load =
6431 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6432 				!(prev_state & TASK_NOLOAD) &&
6433 				!(prev->flags & PF_FROZEN);
6434 
6435 			if (prev->sched_contributes_to_load)
6436 				rq->nr_uninterruptible++;
6437 
6438 			/*
6439 			 * __schedule()			ttwu()
6440 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6441 			 *   if (prev_state)		    goto out;
6442 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6443 			 *				  p->state = TASK_WAKING
6444 			 *
6445 			 * Where __schedule() and ttwu() have matching control dependencies.
6446 			 *
6447 			 * After this, schedule() must not care about p->state any more.
6448 			 */
6449 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6450 
6451 			if (prev->in_iowait) {
6452 				atomic_inc(&rq->nr_iowait);
6453 				delayacct_blkio_start();
6454 			}
6455 		}
6456 		switch_count = &prev->nvcsw;
6457 	}
6458 
6459 	next = pick_next_task(rq, prev, &rf);
6460 	clear_tsk_need_resched(prev);
6461 	clear_preempt_need_resched();
6462 #ifdef CONFIG_SCHED_DEBUG
6463 	rq->last_seen_need_resched_ns = 0;
6464 #endif
6465 
6466 	if (likely(prev != next)) {
6467 		rq->nr_switches++;
6468 		/*
6469 		 * RCU users of rcu_dereference(rq->curr) may not see
6470 		 * changes to task_struct made by pick_next_task().
6471 		 */
6472 		RCU_INIT_POINTER(rq->curr, next);
6473 		/*
6474 		 * The membarrier system call requires each architecture
6475 		 * to have a full memory barrier after updating
6476 		 * rq->curr, before returning to user-space.
6477 		 *
6478 		 * Here are the schemes providing that barrier on the
6479 		 * various architectures:
6480 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6481 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6482 		 * - finish_lock_switch() for weakly-ordered
6483 		 *   architectures where spin_unlock is a full barrier,
6484 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6485 		 *   is a RELEASE barrier),
6486 		 */
6487 		++*switch_count;
6488 
6489 		migrate_disable_switch(rq, prev);
6490 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6491 
6492 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6493 
6494 		/* Also unlocks the rq: */
6495 		rq = context_switch(rq, prev, next, &rf);
6496 	} else {
6497 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6498 
6499 		rq_unpin_lock(rq, &rf);
6500 		__balance_callbacks(rq);
6501 		raw_spin_rq_unlock_irq(rq);
6502 	}
6503 }
6504 
6505 void __noreturn do_task_dead(void)
6506 {
6507 	/* Causes final put_task_struct in finish_task_switch(): */
6508 	set_special_state(TASK_DEAD);
6509 
6510 	/* Tell freezer to ignore us: */
6511 	current->flags |= PF_NOFREEZE;
6512 
6513 	__schedule(SM_NONE);
6514 	BUG();
6515 
6516 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6517 	for (;;)
6518 		cpu_relax();
6519 }
6520 
6521 static inline void sched_submit_work(struct task_struct *tsk)
6522 {
6523 	unsigned int task_flags;
6524 
6525 	if (task_is_running(tsk))
6526 		return;
6527 
6528 	task_flags = tsk->flags;
6529 	/*
6530 	 * If a worker goes to sleep, notify and ask workqueue whether it
6531 	 * wants to wake up a task to maintain concurrency.
6532 	 */
6533 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6534 		if (task_flags & PF_WQ_WORKER)
6535 			wq_worker_sleeping(tsk);
6536 		else
6537 			io_wq_worker_sleeping(tsk);
6538 	}
6539 
6540 	/*
6541 	 * spinlock and rwlock must not flush block requests.  This will
6542 	 * deadlock if the callback attempts to acquire a lock which is
6543 	 * already acquired.
6544 	 */
6545 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6546 
6547 	/*
6548 	 * If we are going to sleep and we have plugged IO queued,
6549 	 * make sure to submit it to avoid deadlocks.
6550 	 */
6551 	blk_flush_plug(tsk->plug, true);
6552 }
6553 
6554 static void sched_update_worker(struct task_struct *tsk)
6555 {
6556 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6557 		if (tsk->flags & PF_WQ_WORKER)
6558 			wq_worker_running(tsk);
6559 		else
6560 			io_wq_worker_running(tsk);
6561 	}
6562 }
6563 
6564 asmlinkage __visible void __sched schedule(void)
6565 {
6566 	struct task_struct *tsk = current;
6567 
6568 	sched_submit_work(tsk);
6569 	do {
6570 		preempt_disable();
6571 		__schedule(SM_NONE);
6572 		sched_preempt_enable_no_resched();
6573 	} while (need_resched());
6574 	sched_update_worker(tsk);
6575 }
6576 EXPORT_SYMBOL(schedule);
6577 
6578 /*
6579  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6580  * state (have scheduled out non-voluntarily) by making sure that all
6581  * tasks have either left the run queue or have gone into user space.
6582  * As idle tasks do not do either, they must not ever be preempted
6583  * (schedule out non-voluntarily).
6584  *
6585  * schedule_idle() is similar to schedule_preempt_disable() except that it
6586  * never enables preemption because it does not call sched_submit_work().
6587  */
6588 void __sched schedule_idle(void)
6589 {
6590 	/*
6591 	 * As this skips calling sched_submit_work(), which the idle task does
6592 	 * regardless because that function is a nop when the task is in a
6593 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6594 	 * current task can be in any other state. Note, idle is always in the
6595 	 * TASK_RUNNING state.
6596 	 */
6597 	WARN_ON_ONCE(current->__state);
6598 	do {
6599 		__schedule(SM_NONE);
6600 	} while (need_resched());
6601 }
6602 
6603 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6604 asmlinkage __visible void __sched schedule_user(void)
6605 {
6606 	/*
6607 	 * If we come here after a random call to set_need_resched(),
6608 	 * or we have been woken up remotely but the IPI has not yet arrived,
6609 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6610 	 * we find a better solution.
6611 	 *
6612 	 * NB: There are buggy callers of this function.  Ideally we
6613 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6614 	 * too frequently to make sense yet.
6615 	 */
6616 	enum ctx_state prev_state = exception_enter();
6617 	schedule();
6618 	exception_exit(prev_state);
6619 }
6620 #endif
6621 
6622 /**
6623  * schedule_preempt_disabled - called with preemption disabled
6624  *
6625  * Returns with preemption disabled. Note: preempt_count must be 1
6626  */
6627 void __sched schedule_preempt_disabled(void)
6628 {
6629 	sched_preempt_enable_no_resched();
6630 	schedule();
6631 	preempt_disable();
6632 }
6633 
6634 #ifdef CONFIG_PREEMPT_RT
6635 void __sched notrace schedule_rtlock(void)
6636 {
6637 	do {
6638 		preempt_disable();
6639 		__schedule(SM_RTLOCK_WAIT);
6640 		sched_preempt_enable_no_resched();
6641 	} while (need_resched());
6642 }
6643 NOKPROBE_SYMBOL(schedule_rtlock);
6644 #endif
6645 
6646 static void __sched notrace preempt_schedule_common(void)
6647 {
6648 	do {
6649 		/*
6650 		 * Because the function tracer can trace preempt_count_sub()
6651 		 * and it also uses preempt_enable/disable_notrace(), if
6652 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6653 		 * by the function tracer will call this function again and
6654 		 * cause infinite recursion.
6655 		 *
6656 		 * Preemption must be disabled here before the function
6657 		 * tracer can trace. Break up preempt_disable() into two
6658 		 * calls. One to disable preemption without fear of being
6659 		 * traced. The other to still record the preemption latency,
6660 		 * which can also be traced by the function tracer.
6661 		 */
6662 		preempt_disable_notrace();
6663 		preempt_latency_start(1);
6664 		__schedule(SM_PREEMPT);
6665 		preempt_latency_stop(1);
6666 		preempt_enable_no_resched_notrace();
6667 
6668 		/*
6669 		 * Check again in case we missed a preemption opportunity
6670 		 * between schedule and now.
6671 		 */
6672 	} while (need_resched());
6673 }
6674 
6675 #ifdef CONFIG_PREEMPTION
6676 /*
6677  * This is the entry point to schedule() from in-kernel preemption
6678  * off of preempt_enable.
6679  */
6680 asmlinkage __visible void __sched notrace preempt_schedule(void)
6681 {
6682 	/*
6683 	 * If there is a non-zero preempt_count or interrupts are disabled,
6684 	 * we do not want to preempt the current task. Just return..
6685 	 */
6686 	if (likely(!preemptible()))
6687 		return;
6688 	preempt_schedule_common();
6689 }
6690 NOKPROBE_SYMBOL(preempt_schedule);
6691 EXPORT_SYMBOL(preempt_schedule);
6692 
6693 #ifdef CONFIG_PREEMPT_DYNAMIC
6694 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6695 #ifndef preempt_schedule_dynamic_enabled
6696 #define preempt_schedule_dynamic_enabled	preempt_schedule
6697 #define preempt_schedule_dynamic_disabled	NULL
6698 #endif
6699 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6700 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6701 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6702 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6703 void __sched notrace dynamic_preempt_schedule(void)
6704 {
6705 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6706 		return;
6707 	preempt_schedule();
6708 }
6709 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6710 EXPORT_SYMBOL(dynamic_preempt_schedule);
6711 #endif
6712 #endif
6713 
6714 /**
6715  * preempt_schedule_notrace - preempt_schedule called by tracing
6716  *
6717  * The tracing infrastructure uses preempt_enable_notrace to prevent
6718  * recursion and tracing preempt enabling caused by the tracing
6719  * infrastructure itself. But as tracing can happen in areas coming
6720  * from userspace or just about to enter userspace, a preempt enable
6721  * can occur before user_exit() is called. This will cause the scheduler
6722  * to be called when the system is still in usermode.
6723  *
6724  * To prevent this, the preempt_enable_notrace will use this function
6725  * instead of preempt_schedule() to exit user context if needed before
6726  * calling the scheduler.
6727  */
6728 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6729 {
6730 	enum ctx_state prev_ctx;
6731 
6732 	if (likely(!preemptible()))
6733 		return;
6734 
6735 	do {
6736 		/*
6737 		 * Because the function tracer can trace preempt_count_sub()
6738 		 * and it also uses preempt_enable/disable_notrace(), if
6739 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6740 		 * by the function tracer will call this function again and
6741 		 * cause infinite recursion.
6742 		 *
6743 		 * Preemption must be disabled here before the function
6744 		 * tracer can trace. Break up preempt_disable() into two
6745 		 * calls. One to disable preemption without fear of being
6746 		 * traced. The other to still record the preemption latency,
6747 		 * which can also be traced by the function tracer.
6748 		 */
6749 		preempt_disable_notrace();
6750 		preempt_latency_start(1);
6751 		/*
6752 		 * Needs preempt disabled in case user_exit() is traced
6753 		 * and the tracer calls preempt_enable_notrace() causing
6754 		 * an infinite recursion.
6755 		 */
6756 		prev_ctx = exception_enter();
6757 		__schedule(SM_PREEMPT);
6758 		exception_exit(prev_ctx);
6759 
6760 		preempt_latency_stop(1);
6761 		preempt_enable_no_resched_notrace();
6762 	} while (need_resched());
6763 }
6764 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6765 
6766 #ifdef CONFIG_PREEMPT_DYNAMIC
6767 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6768 #ifndef preempt_schedule_notrace_dynamic_enabled
6769 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6770 #define preempt_schedule_notrace_dynamic_disabled	NULL
6771 #endif
6772 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6773 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6774 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6775 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6776 void __sched notrace dynamic_preempt_schedule_notrace(void)
6777 {
6778 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6779 		return;
6780 	preempt_schedule_notrace();
6781 }
6782 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6783 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6784 #endif
6785 #endif
6786 
6787 #endif /* CONFIG_PREEMPTION */
6788 
6789 /*
6790  * This is the entry point to schedule() from kernel preemption
6791  * off of irq context.
6792  * Note, that this is called and return with irqs disabled. This will
6793  * protect us against recursive calling from irq.
6794  */
6795 asmlinkage __visible void __sched preempt_schedule_irq(void)
6796 {
6797 	enum ctx_state prev_state;
6798 
6799 	/* Catch callers which need to be fixed */
6800 	BUG_ON(preempt_count() || !irqs_disabled());
6801 
6802 	prev_state = exception_enter();
6803 
6804 	do {
6805 		preempt_disable();
6806 		local_irq_enable();
6807 		__schedule(SM_PREEMPT);
6808 		local_irq_disable();
6809 		sched_preempt_enable_no_resched();
6810 	} while (need_resched());
6811 
6812 	exception_exit(prev_state);
6813 }
6814 
6815 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6816 			  void *key)
6817 {
6818 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6819 	return try_to_wake_up(curr->private, mode, wake_flags);
6820 }
6821 EXPORT_SYMBOL(default_wake_function);
6822 
6823 static void __setscheduler_prio(struct task_struct *p, int prio)
6824 {
6825 	if (dl_prio(prio))
6826 		p->sched_class = &dl_sched_class;
6827 	else if (rt_prio(prio))
6828 		p->sched_class = &rt_sched_class;
6829 	else
6830 		p->sched_class = &fair_sched_class;
6831 
6832 	p->prio = prio;
6833 }
6834 
6835 #ifdef CONFIG_RT_MUTEXES
6836 
6837 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6838 {
6839 	if (pi_task)
6840 		prio = min(prio, pi_task->prio);
6841 
6842 	return prio;
6843 }
6844 
6845 static inline int rt_effective_prio(struct task_struct *p, int prio)
6846 {
6847 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6848 
6849 	return __rt_effective_prio(pi_task, prio);
6850 }
6851 
6852 /*
6853  * rt_mutex_setprio - set the current priority of a task
6854  * @p: task to boost
6855  * @pi_task: donor task
6856  *
6857  * This function changes the 'effective' priority of a task. It does
6858  * not touch ->normal_prio like __setscheduler().
6859  *
6860  * Used by the rt_mutex code to implement priority inheritance
6861  * logic. Call site only calls if the priority of the task changed.
6862  */
6863 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6864 {
6865 	int prio, oldprio, queued, running, queue_flag =
6866 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6867 	const struct sched_class *prev_class;
6868 	struct rq_flags rf;
6869 	struct rq *rq;
6870 
6871 	/* XXX used to be waiter->prio, not waiter->task->prio */
6872 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6873 
6874 	/*
6875 	 * If nothing changed; bail early.
6876 	 */
6877 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6878 		return;
6879 
6880 	rq = __task_rq_lock(p, &rf);
6881 	update_rq_clock(rq);
6882 	/*
6883 	 * Set under pi_lock && rq->lock, such that the value can be used under
6884 	 * either lock.
6885 	 *
6886 	 * Note that there is loads of tricky to make this pointer cache work
6887 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6888 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6889 	 * task is allowed to run again (and can exit). This ensures the pointer
6890 	 * points to a blocked task -- which guarantees the task is present.
6891 	 */
6892 	p->pi_top_task = pi_task;
6893 
6894 	/*
6895 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6896 	 */
6897 	if (prio == p->prio && !dl_prio(prio))
6898 		goto out_unlock;
6899 
6900 	/*
6901 	 * Idle task boosting is a nono in general. There is one
6902 	 * exception, when PREEMPT_RT and NOHZ is active:
6903 	 *
6904 	 * The idle task calls get_next_timer_interrupt() and holds
6905 	 * the timer wheel base->lock on the CPU and another CPU wants
6906 	 * to access the timer (probably to cancel it). We can safely
6907 	 * ignore the boosting request, as the idle CPU runs this code
6908 	 * with interrupts disabled and will complete the lock
6909 	 * protected section without being interrupted. So there is no
6910 	 * real need to boost.
6911 	 */
6912 	if (unlikely(p == rq->idle)) {
6913 		WARN_ON(p != rq->curr);
6914 		WARN_ON(p->pi_blocked_on);
6915 		goto out_unlock;
6916 	}
6917 
6918 	trace_sched_pi_setprio(p, pi_task);
6919 	oldprio = p->prio;
6920 
6921 	if (oldprio == prio)
6922 		queue_flag &= ~DEQUEUE_MOVE;
6923 
6924 	prev_class = p->sched_class;
6925 	queued = task_on_rq_queued(p);
6926 	running = task_current(rq, p);
6927 	if (queued)
6928 		dequeue_task(rq, p, queue_flag);
6929 	if (running)
6930 		put_prev_task(rq, p);
6931 
6932 	/*
6933 	 * Boosting condition are:
6934 	 * 1. -rt task is running and holds mutex A
6935 	 *      --> -dl task blocks on mutex A
6936 	 *
6937 	 * 2. -dl task is running and holds mutex A
6938 	 *      --> -dl task blocks on mutex A and could preempt the
6939 	 *          running task
6940 	 */
6941 	if (dl_prio(prio)) {
6942 		if (!dl_prio(p->normal_prio) ||
6943 		    (pi_task && dl_prio(pi_task->prio) &&
6944 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6945 			p->dl.pi_se = pi_task->dl.pi_se;
6946 			queue_flag |= ENQUEUE_REPLENISH;
6947 		} else {
6948 			p->dl.pi_se = &p->dl;
6949 		}
6950 	} else if (rt_prio(prio)) {
6951 		if (dl_prio(oldprio))
6952 			p->dl.pi_se = &p->dl;
6953 		if (oldprio < prio)
6954 			queue_flag |= ENQUEUE_HEAD;
6955 	} else {
6956 		if (dl_prio(oldprio))
6957 			p->dl.pi_se = &p->dl;
6958 		if (rt_prio(oldprio))
6959 			p->rt.timeout = 0;
6960 	}
6961 
6962 	__setscheduler_prio(p, prio);
6963 
6964 	if (queued)
6965 		enqueue_task(rq, p, queue_flag);
6966 	if (running)
6967 		set_next_task(rq, p);
6968 
6969 	check_class_changed(rq, p, prev_class, oldprio);
6970 out_unlock:
6971 	/* Avoid rq from going away on us: */
6972 	preempt_disable();
6973 
6974 	rq_unpin_lock(rq, &rf);
6975 	__balance_callbacks(rq);
6976 	raw_spin_rq_unlock(rq);
6977 
6978 	preempt_enable();
6979 }
6980 #else
6981 static inline int rt_effective_prio(struct task_struct *p, int prio)
6982 {
6983 	return prio;
6984 }
6985 #endif
6986 
6987 void set_user_nice(struct task_struct *p, long nice)
6988 {
6989 	bool queued, running;
6990 	int old_prio;
6991 	struct rq_flags rf;
6992 	struct rq *rq;
6993 
6994 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6995 		return;
6996 	/*
6997 	 * We have to be careful, if called from sys_setpriority(),
6998 	 * the task might be in the middle of scheduling on another CPU.
6999 	 */
7000 	rq = task_rq_lock(p, &rf);
7001 	update_rq_clock(rq);
7002 
7003 	/*
7004 	 * The RT priorities are set via sched_setscheduler(), but we still
7005 	 * allow the 'normal' nice value to be set - but as expected
7006 	 * it won't have any effect on scheduling until the task is
7007 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7008 	 */
7009 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7010 		p->static_prio = NICE_TO_PRIO(nice);
7011 		goto out_unlock;
7012 	}
7013 	queued = task_on_rq_queued(p);
7014 	running = task_current(rq, p);
7015 	if (queued)
7016 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7017 	if (running)
7018 		put_prev_task(rq, p);
7019 
7020 	p->static_prio = NICE_TO_PRIO(nice);
7021 	set_load_weight(p, true);
7022 	old_prio = p->prio;
7023 	p->prio = effective_prio(p);
7024 
7025 	if (queued)
7026 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7027 	if (running)
7028 		set_next_task(rq, p);
7029 
7030 	/*
7031 	 * If the task increased its priority or is running and
7032 	 * lowered its priority, then reschedule its CPU:
7033 	 */
7034 	p->sched_class->prio_changed(rq, p, old_prio);
7035 
7036 out_unlock:
7037 	task_rq_unlock(rq, p, &rf);
7038 }
7039 EXPORT_SYMBOL(set_user_nice);
7040 
7041 /*
7042  * is_nice_reduction - check if nice value is an actual reduction
7043  *
7044  * Similar to can_nice() but does not perform a capability check.
7045  *
7046  * @p: task
7047  * @nice: nice value
7048  */
7049 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7050 {
7051 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7052 	int nice_rlim = nice_to_rlimit(nice);
7053 
7054 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7055 }
7056 
7057 /*
7058  * can_nice - check if a task can reduce its nice value
7059  * @p: task
7060  * @nice: nice value
7061  */
7062 int can_nice(const struct task_struct *p, const int nice)
7063 {
7064 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7065 }
7066 
7067 #ifdef __ARCH_WANT_SYS_NICE
7068 
7069 /*
7070  * sys_nice - change the priority of the current process.
7071  * @increment: priority increment
7072  *
7073  * sys_setpriority is a more generic, but much slower function that
7074  * does similar things.
7075  */
7076 SYSCALL_DEFINE1(nice, int, increment)
7077 {
7078 	long nice, retval;
7079 
7080 	/*
7081 	 * Setpriority might change our priority at the same moment.
7082 	 * We don't have to worry. Conceptually one call occurs first
7083 	 * and we have a single winner.
7084 	 */
7085 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7086 	nice = task_nice(current) + increment;
7087 
7088 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7089 	if (increment < 0 && !can_nice(current, nice))
7090 		return -EPERM;
7091 
7092 	retval = security_task_setnice(current, nice);
7093 	if (retval)
7094 		return retval;
7095 
7096 	set_user_nice(current, nice);
7097 	return 0;
7098 }
7099 
7100 #endif
7101 
7102 /**
7103  * task_prio - return the priority value of a given task.
7104  * @p: the task in question.
7105  *
7106  * Return: The priority value as seen by users in /proc.
7107  *
7108  * sched policy         return value   kernel prio    user prio/nice
7109  *
7110  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7111  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7112  * deadline                     -101             -1           0
7113  */
7114 int task_prio(const struct task_struct *p)
7115 {
7116 	return p->prio - MAX_RT_PRIO;
7117 }
7118 
7119 /**
7120  * idle_cpu - is a given CPU idle currently?
7121  * @cpu: the processor in question.
7122  *
7123  * Return: 1 if the CPU is currently idle. 0 otherwise.
7124  */
7125 int idle_cpu(int cpu)
7126 {
7127 	struct rq *rq = cpu_rq(cpu);
7128 
7129 	if (rq->curr != rq->idle)
7130 		return 0;
7131 
7132 	if (rq->nr_running)
7133 		return 0;
7134 
7135 #ifdef CONFIG_SMP
7136 	if (rq->ttwu_pending)
7137 		return 0;
7138 #endif
7139 
7140 	return 1;
7141 }
7142 
7143 /**
7144  * available_idle_cpu - is a given CPU idle for enqueuing work.
7145  * @cpu: the CPU in question.
7146  *
7147  * Return: 1 if the CPU is currently idle. 0 otherwise.
7148  */
7149 int available_idle_cpu(int cpu)
7150 {
7151 	if (!idle_cpu(cpu))
7152 		return 0;
7153 
7154 	if (vcpu_is_preempted(cpu))
7155 		return 0;
7156 
7157 	return 1;
7158 }
7159 
7160 /**
7161  * idle_task - return the idle task for a given CPU.
7162  * @cpu: the processor in question.
7163  *
7164  * Return: The idle task for the CPU @cpu.
7165  */
7166 struct task_struct *idle_task(int cpu)
7167 {
7168 	return cpu_rq(cpu)->idle;
7169 }
7170 
7171 #ifdef CONFIG_SMP
7172 /*
7173  * This function computes an effective utilization for the given CPU, to be
7174  * used for frequency selection given the linear relation: f = u * f_max.
7175  *
7176  * The scheduler tracks the following metrics:
7177  *
7178  *   cpu_util_{cfs,rt,dl,irq}()
7179  *   cpu_bw_dl()
7180  *
7181  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7182  * synchronized windows and are thus directly comparable.
7183  *
7184  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7185  * which excludes things like IRQ and steal-time. These latter are then accrued
7186  * in the irq utilization.
7187  *
7188  * The DL bandwidth number otoh is not a measured metric but a value computed
7189  * based on the task model parameters and gives the minimal utilization
7190  * required to meet deadlines.
7191  */
7192 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7193 				 enum cpu_util_type type,
7194 				 struct task_struct *p)
7195 {
7196 	unsigned long dl_util, util, irq, max;
7197 	struct rq *rq = cpu_rq(cpu);
7198 
7199 	max = arch_scale_cpu_capacity(cpu);
7200 
7201 	if (!uclamp_is_used() &&
7202 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7203 		return max;
7204 	}
7205 
7206 	/*
7207 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7208 	 * because of inaccuracies in how we track these -- see
7209 	 * update_irq_load_avg().
7210 	 */
7211 	irq = cpu_util_irq(rq);
7212 	if (unlikely(irq >= max))
7213 		return max;
7214 
7215 	/*
7216 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7217 	 * CFS tasks and we use the same metric to track the effective
7218 	 * utilization (PELT windows are synchronized) we can directly add them
7219 	 * to obtain the CPU's actual utilization.
7220 	 *
7221 	 * CFS and RT utilization can be boosted or capped, depending on
7222 	 * utilization clamp constraints requested by currently RUNNABLE
7223 	 * tasks.
7224 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7225 	 * frequency will be gracefully reduced with the utilization decay.
7226 	 */
7227 	util = util_cfs + cpu_util_rt(rq);
7228 	if (type == FREQUENCY_UTIL)
7229 		util = uclamp_rq_util_with(rq, util, p);
7230 
7231 	dl_util = cpu_util_dl(rq);
7232 
7233 	/*
7234 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7235 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7236 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7237 	 * that we select f_max when there is no idle time.
7238 	 *
7239 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7240 	 * saturation when we should -- something for later.
7241 	 */
7242 	if (util + dl_util >= max)
7243 		return max;
7244 
7245 	/*
7246 	 * OTOH, for energy computation we need the estimated running time, so
7247 	 * include util_dl and ignore dl_bw.
7248 	 */
7249 	if (type == ENERGY_UTIL)
7250 		util += dl_util;
7251 
7252 	/*
7253 	 * There is still idle time; further improve the number by using the
7254 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7255 	 * need to scale the task numbers:
7256 	 *
7257 	 *              max - irq
7258 	 *   U' = irq + --------- * U
7259 	 *                 max
7260 	 */
7261 	util = scale_irq_capacity(util, irq, max);
7262 	util += irq;
7263 
7264 	/*
7265 	 * Bandwidth required by DEADLINE must always be granted while, for
7266 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7267 	 * to gracefully reduce the frequency when no tasks show up for longer
7268 	 * periods of time.
7269 	 *
7270 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7271 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7272 	 * an interface. So, we only do the latter for now.
7273 	 */
7274 	if (type == FREQUENCY_UTIL)
7275 		util += cpu_bw_dl(rq);
7276 
7277 	return min(max, util);
7278 }
7279 
7280 unsigned long sched_cpu_util(int cpu)
7281 {
7282 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7283 }
7284 #endif /* CONFIG_SMP */
7285 
7286 /**
7287  * find_process_by_pid - find a process with a matching PID value.
7288  * @pid: the pid in question.
7289  *
7290  * The task of @pid, if found. %NULL otherwise.
7291  */
7292 static struct task_struct *find_process_by_pid(pid_t pid)
7293 {
7294 	return pid ? find_task_by_vpid(pid) : current;
7295 }
7296 
7297 /*
7298  * sched_setparam() passes in -1 for its policy, to let the functions
7299  * it calls know not to change it.
7300  */
7301 #define SETPARAM_POLICY	-1
7302 
7303 static void __setscheduler_params(struct task_struct *p,
7304 		const struct sched_attr *attr)
7305 {
7306 	int policy = attr->sched_policy;
7307 
7308 	if (policy == SETPARAM_POLICY)
7309 		policy = p->policy;
7310 
7311 	p->policy = policy;
7312 
7313 	if (dl_policy(policy))
7314 		__setparam_dl(p, attr);
7315 	else if (fair_policy(policy))
7316 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7317 
7318 	/*
7319 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7320 	 * !rt_policy. Always setting this ensures that things like
7321 	 * getparam()/getattr() don't report silly values for !rt tasks.
7322 	 */
7323 	p->rt_priority = attr->sched_priority;
7324 	p->normal_prio = normal_prio(p);
7325 	set_load_weight(p, true);
7326 }
7327 
7328 /*
7329  * Check the target process has a UID that matches the current process's:
7330  */
7331 static bool check_same_owner(struct task_struct *p)
7332 {
7333 	const struct cred *cred = current_cred(), *pcred;
7334 	bool match;
7335 
7336 	rcu_read_lock();
7337 	pcred = __task_cred(p);
7338 	match = (uid_eq(cred->euid, pcred->euid) ||
7339 		 uid_eq(cred->euid, pcred->uid));
7340 	rcu_read_unlock();
7341 	return match;
7342 }
7343 
7344 /*
7345  * Allow unprivileged RT tasks to decrease priority.
7346  * Only issue a capable test if needed and only once to avoid an audit
7347  * event on permitted non-privileged operations:
7348  */
7349 static int user_check_sched_setscheduler(struct task_struct *p,
7350 					 const struct sched_attr *attr,
7351 					 int policy, int reset_on_fork)
7352 {
7353 	if (fair_policy(policy)) {
7354 		if (attr->sched_nice < task_nice(p) &&
7355 		    !is_nice_reduction(p, attr->sched_nice))
7356 			goto req_priv;
7357 	}
7358 
7359 	if (rt_policy(policy)) {
7360 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7361 
7362 		/* Can't set/change the rt policy: */
7363 		if (policy != p->policy && !rlim_rtprio)
7364 			goto req_priv;
7365 
7366 		/* Can't increase priority: */
7367 		if (attr->sched_priority > p->rt_priority &&
7368 		    attr->sched_priority > rlim_rtprio)
7369 			goto req_priv;
7370 	}
7371 
7372 	/*
7373 	 * Can't set/change SCHED_DEADLINE policy at all for now
7374 	 * (safest behavior); in the future we would like to allow
7375 	 * unprivileged DL tasks to increase their relative deadline
7376 	 * or reduce their runtime (both ways reducing utilization)
7377 	 */
7378 	if (dl_policy(policy))
7379 		goto req_priv;
7380 
7381 	/*
7382 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7383 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7384 	 */
7385 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7386 		if (!is_nice_reduction(p, task_nice(p)))
7387 			goto req_priv;
7388 	}
7389 
7390 	/* Can't change other user's priorities: */
7391 	if (!check_same_owner(p))
7392 		goto req_priv;
7393 
7394 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7395 	if (p->sched_reset_on_fork && !reset_on_fork)
7396 		goto req_priv;
7397 
7398 	return 0;
7399 
7400 req_priv:
7401 	if (!capable(CAP_SYS_NICE))
7402 		return -EPERM;
7403 
7404 	return 0;
7405 }
7406 
7407 static int __sched_setscheduler(struct task_struct *p,
7408 				const struct sched_attr *attr,
7409 				bool user, bool pi)
7410 {
7411 	int oldpolicy = -1, policy = attr->sched_policy;
7412 	int retval, oldprio, newprio, queued, running;
7413 	const struct sched_class *prev_class;
7414 	struct callback_head *head;
7415 	struct rq_flags rf;
7416 	int reset_on_fork;
7417 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7418 	struct rq *rq;
7419 
7420 	/* The pi code expects interrupts enabled */
7421 	BUG_ON(pi && in_interrupt());
7422 recheck:
7423 	/* Double check policy once rq lock held: */
7424 	if (policy < 0) {
7425 		reset_on_fork = p->sched_reset_on_fork;
7426 		policy = oldpolicy = p->policy;
7427 	} else {
7428 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7429 
7430 		if (!valid_policy(policy))
7431 			return -EINVAL;
7432 	}
7433 
7434 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7435 		return -EINVAL;
7436 
7437 	/*
7438 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7439 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7440 	 * SCHED_BATCH and SCHED_IDLE is 0.
7441 	 */
7442 	if (attr->sched_priority > MAX_RT_PRIO-1)
7443 		return -EINVAL;
7444 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7445 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7446 		return -EINVAL;
7447 
7448 	if (user) {
7449 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7450 		if (retval)
7451 			return retval;
7452 
7453 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7454 			return -EINVAL;
7455 
7456 		retval = security_task_setscheduler(p);
7457 		if (retval)
7458 			return retval;
7459 	}
7460 
7461 	/* Update task specific "requested" clamps */
7462 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7463 		retval = uclamp_validate(p, attr);
7464 		if (retval)
7465 			return retval;
7466 	}
7467 
7468 	if (pi)
7469 		cpuset_read_lock();
7470 
7471 	/*
7472 	 * Make sure no PI-waiters arrive (or leave) while we are
7473 	 * changing the priority of the task:
7474 	 *
7475 	 * To be able to change p->policy safely, the appropriate
7476 	 * runqueue lock must be held.
7477 	 */
7478 	rq = task_rq_lock(p, &rf);
7479 	update_rq_clock(rq);
7480 
7481 	/*
7482 	 * Changing the policy of the stop threads its a very bad idea:
7483 	 */
7484 	if (p == rq->stop) {
7485 		retval = -EINVAL;
7486 		goto unlock;
7487 	}
7488 
7489 	/*
7490 	 * If not changing anything there's no need to proceed further,
7491 	 * but store a possible modification of reset_on_fork.
7492 	 */
7493 	if (unlikely(policy == p->policy)) {
7494 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7495 			goto change;
7496 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7497 			goto change;
7498 		if (dl_policy(policy) && dl_param_changed(p, attr))
7499 			goto change;
7500 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7501 			goto change;
7502 
7503 		p->sched_reset_on_fork = reset_on_fork;
7504 		retval = 0;
7505 		goto unlock;
7506 	}
7507 change:
7508 
7509 	if (user) {
7510 #ifdef CONFIG_RT_GROUP_SCHED
7511 		/*
7512 		 * Do not allow realtime tasks into groups that have no runtime
7513 		 * assigned.
7514 		 */
7515 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7516 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7517 				!task_group_is_autogroup(task_group(p))) {
7518 			retval = -EPERM;
7519 			goto unlock;
7520 		}
7521 #endif
7522 #ifdef CONFIG_SMP
7523 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7524 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7525 			cpumask_t *span = rq->rd->span;
7526 
7527 			/*
7528 			 * Don't allow tasks with an affinity mask smaller than
7529 			 * the entire root_domain to become SCHED_DEADLINE. We
7530 			 * will also fail if there's no bandwidth available.
7531 			 */
7532 			if (!cpumask_subset(span, p->cpus_ptr) ||
7533 			    rq->rd->dl_bw.bw == 0) {
7534 				retval = -EPERM;
7535 				goto unlock;
7536 			}
7537 		}
7538 #endif
7539 	}
7540 
7541 	/* Re-check policy now with rq lock held: */
7542 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7543 		policy = oldpolicy = -1;
7544 		task_rq_unlock(rq, p, &rf);
7545 		if (pi)
7546 			cpuset_read_unlock();
7547 		goto recheck;
7548 	}
7549 
7550 	/*
7551 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7552 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7553 	 * is available.
7554 	 */
7555 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7556 		retval = -EBUSY;
7557 		goto unlock;
7558 	}
7559 
7560 	p->sched_reset_on_fork = reset_on_fork;
7561 	oldprio = p->prio;
7562 
7563 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7564 	if (pi) {
7565 		/*
7566 		 * Take priority boosted tasks into account. If the new
7567 		 * effective priority is unchanged, we just store the new
7568 		 * normal parameters and do not touch the scheduler class and
7569 		 * the runqueue. This will be done when the task deboost
7570 		 * itself.
7571 		 */
7572 		newprio = rt_effective_prio(p, newprio);
7573 		if (newprio == oldprio)
7574 			queue_flags &= ~DEQUEUE_MOVE;
7575 	}
7576 
7577 	queued = task_on_rq_queued(p);
7578 	running = task_current(rq, p);
7579 	if (queued)
7580 		dequeue_task(rq, p, queue_flags);
7581 	if (running)
7582 		put_prev_task(rq, p);
7583 
7584 	prev_class = p->sched_class;
7585 
7586 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7587 		__setscheduler_params(p, attr);
7588 		__setscheduler_prio(p, newprio);
7589 	}
7590 	__setscheduler_uclamp(p, attr);
7591 
7592 	if (queued) {
7593 		/*
7594 		 * We enqueue to tail when the priority of a task is
7595 		 * increased (user space view).
7596 		 */
7597 		if (oldprio < p->prio)
7598 			queue_flags |= ENQUEUE_HEAD;
7599 
7600 		enqueue_task(rq, p, queue_flags);
7601 	}
7602 	if (running)
7603 		set_next_task(rq, p);
7604 
7605 	check_class_changed(rq, p, prev_class, oldprio);
7606 
7607 	/* Avoid rq from going away on us: */
7608 	preempt_disable();
7609 	head = splice_balance_callbacks(rq);
7610 	task_rq_unlock(rq, p, &rf);
7611 
7612 	if (pi) {
7613 		cpuset_read_unlock();
7614 		rt_mutex_adjust_pi(p);
7615 	}
7616 
7617 	/* Run balance callbacks after we've adjusted the PI chain: */
7618 	balance_callbacks(rq, head);
7619 	preempt_enable();
7620 
7621 	return 0;
7622 
7623 unlock:
7624 	task_rq_unlock(rq, p, &rf);
7625 	if (pi)
7626 		cpuset_read_unlock();
7627 	return retval;
7628 }
7629 
7630 static int _sched_setscheduler(struct task_struct *p, int policy,
7631 			       const struct sched_param *param, bool check)
7632 {
7633 	struct sched_attr attr = {
7634 		.sched_policy   = policy,
7635 		.sched_priority = param->sched_priority,
7636 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7637 	};
7638 
7639 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7640 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7641 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7642 		policy &= ~SCHED_RESET_ON_FORK;
7643 		attr.sched_policy = policy;
7644 	}
7645 
7646 	return __sched_setscheduler(p, &attr, check, true);
7647 }
7648 /**
7649  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7650  * @p: the task in question.
7651  * @policy: new policy.
7652  * @param: structure containing the new RT priority.
7653  *
7654  * Use sched_set_fifo(), read its comment.
7655  *
7656  * Return: 0 on success. An error code otherwise.
7657  *
7658  * NOTE that the task may be already dead.
7659  */
7660 int sched_setscheduler(struct task_struct *p, int policy,
7661 		       const struct sched_param *param)
7662 {
7663 	return _sched_setscheduler(p, policy, param, true);
7664 }
7665 
7666 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7667 {
7668 	return __sched_setscheduler(p, attr, true, true);
7669 }
7670 
7671 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7672 {
7673 	return __sched_setscheduler(p, attr, false, true);
7674 }
7675 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7676 
7677 /**
7678  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7679  * @p: the task in question.
7680  * @policy: new policy.
7681  * @param: structure containing the new RT priority.
7682  *
7683  * Just like sched_setscheduler, only don't bother checking if the
7684  * current context has permission.  For example, this is needed in
7685  * stop_machine(): we create temporary high priority worker threads,
7686  * but our caller might not have that capability.
7687  *
7688  * Return: 0 on success. An error code otherwise.
7689  */
7690 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7691 			       const struct sched_param *param)
7692 {
7693 	return _sched_setscheduler(p, policy, param, false);
7694 }
7695 
7696 /*
7697  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7698  * incapable of resource management, which is the one thing an OS really should
7699  * be doing.
7700  *
7701  * This is of course the reason it is limited to privileged users only.
7702  *
7703  * Worse still; it is fundamentally impossible to compose static priority
7704  * workloads. You cannot take two correctly working static prio workloads
7705  * and smash them together and still expect them to work.
7706  *
7707  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7708  *
7709  *   MAX_RT_PRIO / 2
7710  *
7711  * The administrator _MUST_ configure the system, the kernel simply doesn't
7712  * know enough information to make a sensible choice.
7713  */
7714 void sched_set_fifo(struct task_struct *p)
7715 {
7716 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7717 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7718 }
7719 EXPORT_SYMBOL_GPL(sched_set_fifo);
7720 
7721 /*
7722  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7723  */
7724 void sched_set_fifo_low(struct task_struct *p)
7725 {
7726 	struct sched_param sp = { .sched_priority = 1 };
7727 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7728 }
7729 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7730 
7731 void sched_set_normal(struct task_struct *p, int nice)
7732 {
7733 	struct sched_attr attr = {
7734 		.sched_policy = SCHED_NORMAL,
7735 		.sched_nice = nice,
7736 	};
7737 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7738 }
7739 EXPORT_SYMBOL_GPL(sched_set_normal);
7740 
7741 static int
7742 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7743 {
7744 	struct sched_param lparam;
7745 	struct task_struct *p;
7746 	int retval;
7747 
7748 	if (!param || pid < 0)
7749 		return -EINVAL;
7750 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7751 		return -EFAULT;
7752 
7753 	rcu_read_lock();
7754 	retval = -ESRCH;
7755 	p = find_process_by_pid(pid);
7756 	if (likely(p))
7757 		get_task_struct(p);
7758 	rcu_read_unlock();
7759 
7760 	if (likely(p)) {
7761 		retval = sched_setscheduler(p, policy, &lparam);
7762 		put_task_struct(p);
7763 	}
7764 
7765 	return retval;
7766 }
7767 
7768 /*
7769  * Mimics kernel/events/core.c perf_copy_attr().
7770  */
7771 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7772 {
7773 	u32 size;
7774 	int ret;
7775 
7776 	/* Zero the full structure, so that a short copy will be nice: */
7777 	memset(attr, 0, sizeof(*attr));
7778 
7779 	ret = get_user(size, &uattr->size);
7780 	if (ret)
7781 		return ret;
7782 
7783 	/* ABI compatibility quirk: */
7784 	if (!size)
7785 		size = SCHED_ATTR_SIZE_VER0;
7786 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7787 		goto err_size;
7788 
7789 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7790 	if (ret) {
7791 		if (ret == -E2BIG)
7792 			goto err_size;
7793 		return ret;
7794 	}
7795 
7796 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7797 	    size < SCHED_ATTR_SIZE_VER1)
7798 		return -EINVAL;
7799 
7800 	/*
7801 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7802 	 * to be strict and return an error on out-of-bounds values?
7803 	 */
7804 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7805 
7806 	return 0;
7807 
7808 err_size:
7809 	put_user(sizeof(*attr), &uattr->size);
7810 	return -E2BIG;
7811 }
7812 
7813 static void get_params(struct task_struct *p, struct sched_attr *attr)
7814 {
7815 	if (task_has_dl_policy(p))
7816 		__getparam_dl(p, attr);
7817 	else if (task_has_rt_policy(p))
7818 		attr->sched_priority = p->rt_priority;
7819 	else
7820 		attr->sched_nice = task_nice(p);
7821 }
7822 
7823 /**
7824  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7825  * @pid: the pid in question.
7826  * @policy: new policy.
7827  * @param: structure containing the new RT priority.
7828  *
7829  * Return: 0 on success. An error code otherwise.
7830  */
7831 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7832 {
7833 	if (policy < 0)
7834 		return -EINVAL;
7835 
7836 	return do_sched_setscheduler(pid, policy, param);
7837 }
7838 
7839 /**
7840  * sys_sched_setparam - set/change the RT priority of a thread
7841  * @pid: the pid in question.
7842  * @param: structure containing the new RT priority.
7843  *
7844  * Return: 0 on success. An error code otherwise.
7845  */
7846 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7847 {
7848 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7849 }
7850 
7851 /**
7852  * sys_sched_setattr - same as above, but with extended sched_attr
7853  * @pid: the pid in question.
7854  * @uattr: structure containing the extended parameters.
7855  * @flags: for future extension.
7856  */
7857 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7858 			       unsigned int, flags)
7859 {
7860 	struct sched_attr attr;
7861 	struct task_struct *p;
7862 	int retval;
7863 
7864 	if (!uattr || pid < 0 || flags)
7865 		return -EINVAL;
7866 
7867 	retval = sched_copy_attr(uattr, &attr);
7868 	if (retval)
7869 		return retval;
7870 
7871 	if ((int)attr.sched_policy < 0)
7872 		return -EINVAL;
7873 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7874 		attr.sched_policy = SETPARAM_POLICY;
7875 
7876 	rcu_read_lock();
7877 	retval = -ESRCH;
7878 	p = find_process_by_pid(pid);
7879 	if (likely(p))
7880 		get_task_struct(p);
7881 	rcu_read_unlock();
7882 
7883 	if (likely(p)) {
7884 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7885 			get_params(p, &attr);
7886 		retval = sched_setattr(p, &attr);
7887 		put_task_struct(p);
7888 	}
7889 
7890 	return retval;
7891 }
7892 
7893 /**
7894  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7895  * @pid: the pid in question.
7896  *
7897  * Return: On success, the policy of the thread. Otherwise, a negative error
7898  * code.
7899  */
7900 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7901 {
7902 	struct task_struct *p;
7903 	int retval;
7904 
7905 	if (pid < 0)
7906 		return -EINVAL;
7907 
7908 	retval = -ESRCH;
7909 	rcu_read_lock();
7910 	p = find_process_by_pid(pid);
7911 	if (p) {
7912 		retval = security_task_getscheduler(p);
7913 		if (!retval)
7914 			retval = p->policy
7915 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7916 	}
7917 	rcu_read_unlock();
7918 	return retval;
7919 }
7920 
7921 /**
7922  * sys_sched_getparam - get the RT priority of a thread
7923  * @pid: the pid in question.
7924  * @param: structure containing the RT priority.
7925  *
7926  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7927  * code.
7928  */
7929 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7930 {
7931 	struct sched_param lp = { .sched_priority = 0 };
7932 	struct task_struct *p;
7933 	int retval;
7934 
7935 	if (!param || pid < 0)
7936 		return -EINVAL;
7937 
7938 	rcu_read_lock();
7939 	p = find_process_by_pid(pid);
7940 	retval = -ESRCH;
7941 	if (!p)
7942 		goto out_unlock;
7943 
7944 	retval = security_task_getscheduler(p);
7945 	if (retval)
7946 		goto out_unlock;
7947 
7948 	if (task_has_rt_policy(p))
7949 		lp.sched_priority = p->rt_priority;
7950 	rcu_read_unlock();
7951 
7952 	/*
7953 	 * This one might sleep, we cannot do it with a spinlock held ...
7954 	 */
7955 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7956 
7957 	return retval;
7958 
7959 out_unlock:
7960 	rcu_read_unlock();
7961 	return retval;
7962 }
7963 
7964 /*
7965  * Copy the kernel size attribute structure (which might be larger
7966  * than what user-space knows about) to user-space.
7967  *
7968  * Note that all cases are valid: user-space buffer can be larger or
7969  * smaller than the kernel-space buffer. The usual case is that both
7970  * have the same size.
7971  */
7972 static int
7973 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7974 			struct sched_attr *kattr,
7975 			unsigned int usize)
7976 {
7977 	unsigned int ksize = sizeof(*kattr);
7978 
7979 	if (!access_ok(uattr, usize))
7980 		return -EFAULT;
7981 
7982 	/*
7983 	 * sched_getattr() ABI forwards and backwards compatibility:
7984 	 *
7985 	 * If usize == ksize then we just copy everything to user-space and all is good.
7986 	 *
7987 	 * If usize < ksize then we only copy as much as user-space has space for,
7988 	 * this keeps ABI compatibility as well. We skip the rest.
7989 	 *
7990 	 * If usize > ksize then user-space is using a newer version of the ABI,
7991 	 * which part the kernel doesn't know about. Just ignore it - tooling can
7992 	 * detect the kernel's knowledge of attributes from the attr->size value
7993 	 * which is set to ksize in this case.
7994 	 */
7995 	kattr->size = min(usize, ksize);
7996 
7997 	if (copy_to_user(uattr, kattr, kattr->size))
7998 		return -EFAULT;
7999 
8000 	return 0;
8001 }
8002 
8003 /**
8004  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8005  * @pid: the pid in question.
8006  * @uattr: structure containing the extended parameters.
8007  * @usize: sizeof(attr) for fwd/bwd comp.
8008  * @flags: for future extension.
8009  */
8010 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8011 		unsigned int, usize, unsigned int, flags)
8012 {
8013 	struct sched_attr kattr = { };
8014 	struct task_struct *p;
8015 	int retval;
8016 
8017 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8018 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8019 		return -EINVAL;
8020 
8021 	rcu_read_lock();
8022 	p = find_process_by_pid(pid);
8023 	retval = -ESRCH;
8024 	if (!p)
8025 		goto out_unlock;
8026 
8027 	retval = security_task_getscheduler(p);
8028 	if (retval)
8029 		goto out_unlock;
8030 
8031 	kattr.sched_policy = p->policy;
8032 	if (p->sched_reset_on_fork)
8033 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8034 	get_params(p, &kattr);
8035 	kattr.sched_flags &= SCHED_FLAG_ALL;
8036 
8037 #ifdef CONFIG_UCLAMP_TASK
8038 	/*
8039 	 * This could race with another potential updater, but this is fine
8040 	 * because it'll correctly read the old or the new value. We don't need
8041 	 * to guarantee who wins the race as long as it doesn't return garbage.
8042 	 */
8043 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8044 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8045 #endif
8046 
8047 	rcu_read_unlock();
8048 
8049 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8050 
8051 out_unlock:
8052 	rcu_read_unlock();
8053 	return retval;
8054 }
8055 
8056 #ifdef CONFIG_SMP
8057 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8058 {
8059 	int ret = 0;
8060 
8061 	/*
8062 	 * If the task isn't a deadline task or admission control is
8063 	 * disabled then we don't care about affinity changes.
8064 	 */
8065 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8066 		return 0;
8067 
8068 	/*
8069 	 * Since bandwidth control happens on root_domain basis,
8070 	 * if admission test is enabled, we only admit -deadline
8071 	 * tasks allowed to run on all the CPUs in the task's
8072 	 * root_domain.
8073 	 */
8074 	rcu_read_lock();
8075 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8076 		ret = -EBUSY;
8077 	rcu_read_unlock();
8078 	return ret;
8079 }
8080 #endif
8081 
8082 static int
8083 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
8084 {
8085 	int retval;
8086 	cpumask_var_t cpus_allowed, new_mask;
8087 
8088 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8089 		return -ENOMEM;
8090 
8091 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8092 		retval = -ENOMEM;
8093 		goto out_free_cpus_allowed;
8094 	}
8095 
8096 	cpuset_cpus_allowed(p, cpus_allowed);
8097 	cpumask_and(new_mask, mask, cpus_allowed);
8098 
8099 	retval = dl_task_check_affinity(p, new_mask);
8100 	if (retval)
8101 		goto out_free_new_mask;
8102 again:
8103 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
8104 	if (retval)
8105 		goto out_free_new_mask;
8106 
8107 	cpuset_cpus_allowed(p, cpus_allowed);
8108 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8109 		/*
8110 		 * We must have raced with a concurrent cpuset update.
8111 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8112 		 */
8113 		cpumask_copy(new_mask, cpus_allowed);
8114 		goto again;
8115 	}
8116 
8117 out_free_new_mask:
8118 	free_cpumask_var(new_mask);
8119 out_free_cpus_allowed:
8120 	free_cpumask_var(cpus_allowed);
8121 	return retval;
8122 }
8123 
8124 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8125 {
8126 	struct task_struct *p;
8127 	int retval;
8128 
8129 	rcu_read_lock();
8130 
8131 	p = find_process_by_pid(pid);
8132 	if (!p) {
8133 		rcu_read_unlock();
8134 		return -ESRCH;
8135 	}
8136 
8137 	/* Prevent p going away */
8138 	get_task_struct(p);
8139 	rcu_read_unlock();
8140 
8141 	if (p->flags & PF_NO_SETAFFINITY) {
8142 		retval = -EINVAL;
8143 		goto out_put_task;
8144 	}
8145 
8146 	if (!check_same_owner(p)) {
8147 		rcu_read_lock();
8148 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8149 			rcu_read_unlock();
8150 			retval = -EPERM;
8151 			goto out_put_task;
8152 		}
8153 		rcu_read_unlock();
8154 	}
8155 
8156 	retval = security_task_setscheduler(p);
8157 	if (retval)
8158 		goto out_put_task;
8159 
8160 	retval = __sched_setaffinity(p, in_mask);
8161 out_put_task:
8162 	put_task_struct(p);
8163 	return retval;
8164 }
8165 
8166 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8167 			     struct cpumask *new_mask)
8168 {
8169 	if (len < cpumask_size())
8170 		cpumask_clear(new_mask);
8171 	else if (len > cpumask_size())
8172 		len = cpumask_size();
8173 
8174 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8175 }
8176 
8177 /**
8178  * sys_sched_setaffinity - set the CPU affinity of a process
8179  * @pid: pid of the process
8180  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8181  * @user_mask_ptr: user-space pointer to the new CPU mask
8182  *
8183  * Return: 0 on success. An error code otherwise.
8184  */
8185 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8186 		unsigned long __user *, user_mask_ptr)
8187 {
8188 	cpumask_var_t new_mask;
8189 	int retval;
8190 
8191 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8192 		return -ENOMEM;
8193 
8194 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8195 	if (retval == 0)
8196 		retval = sched_setaffinity(pid, new_mask);
8197 	free_cpumask_var(new_mask);
8198 	return retval;
8199 }
8200 
8201 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8202 {
8203 	struct task_struct *p;
8204 	unsigned long flags;
8205 	int retval;
8206 
8207 	rcu_read_lock();
8208 
8209 	retval = -ESRCH;
8210 	p = find_process_by_pid(pid);
8211 	if (!p)
8212 		goto out_unlock;
8213 
8214 	retval = security_task_getscheduler(p);
8215 	if (retval)
8216 		goto out_unlock;
8217 
8218 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8219 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8220 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8221 
8222 out_unlock:
8223 	rcu_read_unlock();
8224 
8225 	return retval;
8226 }
8227 
8228 /**
8229  * sys_sched_getaffinity - get the CPU affinity of a process
8230  * @pid: pid of the process
8231  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8232  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8233  *
8234  * Return: size of CPU mask copied to user_mask_ptr on success. An
8235  * error code otherwise.
8236  */
8237 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8238 		unsigned long __user *, user_mask_ptr)
8239 {
8240 	int ret;
8241 	cpumask_var_t mask;
8242 
8243 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8244 		return -EINVAL;
8245 	if (len & (sizeof(unsigned long)-1))
8246 		return -EINVAL;
8247 
8248 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8249 		return -ENOMEM;
8250 
8251 	ret = sched_getaffinity(pid, mask);
8252 	if (ret == 0) {
8253 		unsigned int retlen = min(len, cpumask_size());
8254 
8255 		if (copy_to_user(user_mask_ptr, mask, retlen))
8256 			ret = -EFAULT;
8257 		else
8258 			ret = retlen;
8259 	}
8260 	free_cpumask_var(mask);
8261 
8262 	return ret;
8263 }
8264 
8265 static void do_sched_yield(void)
8266 {
8267 	struct rq_flags rf;
8268 	struct rq *rq;
8269 
8270 	rq = this_rq_lock_irq(&rf);
8271 
8272 	schedstat_inc(rq->yld_count);
8273 	current->sched_class->yield_task(rq);
8274 
8275 	preempt_disable();
8276 	rq_unlock_irq(rq, &rf);
8277 	sched_preempt_enable_no_resched();
8278 
8279 	schedule();
8280 }
8281 
8282 /**
8283  * sys_sched_yield - yield the current processor to other threads.
8284  *
8285  * This function yields the current CPU to other tasks. If there are no
8286  * other threads running on this CPU then this function will return.
8287  *
8288  * Return: 0.
8289  */
8290 SYSCALL_DEFINE0(sched_yield)
8291 {
8292 	do_sched_yield();
8293 	return 0;
8294 }
8295 
8296 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8297 int __sched __cond_resched(void)
8298 {
8299 	if (should_resched(0)) {
8300 		preempt_schedule_common();
8301 		return 1;
8302 	}
8303 	/*
8304 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8305 	 * whether the current CPU is in an RCU read-side critical section,
8306 	 * so the tick can report quiescent states even for CPUs looping
8307 	 * in kernel context.  In contrast, in non-preemptible kernels,
8308 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8309 	 * processes executing in kernel context might never report an
8310 	 * RCU quiescent state.  Therefore, the following code causes
8311 	 * cond_resched() to report a quiescent state, but only when RCU
8312 	 * is in urgent need of one.
8313 	 */
8314 #ifndef CONFIG_PREEMPT_RCU
8315 	rcu_all_qs();
8316 #endif
8317 	return 0;
8318 }
8319 EXPORT_SYMBOL(__cond_resched);
8320 #endif
8321 
8322 #ifdef CONFIG_PREEMPT_DYNAMIC
8323 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8324 #define cond_resched_dynamic_enabled	__cond_resched
8325 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8326 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8327 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8328 
8329 #define might_resched_dynamic_enabled	__cond_resched
8330 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8331 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8332 EXPORT_STATIC_CALL_TRAMP(might_resched);
8333 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8334 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8335 int __sched dynamic_cond_resched(void)
8336 {
8337 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8338 		return 0;
8339 	return __cond_resched();
8340 }
8341 EXPORT_SYMBOL(dynamic_cond_resched);
8342 
8343 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8344 int __sched dynamic_might_resched(void)
8345 {
8346 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8347 		return 0;
8348 	return __cond_resched();
8349 }
8350 EXPORT_SYMBOL(dynamic_might_resched);
8351 #endif
8352 #endif
8353 
8354 /*
8355  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8356  * call schedule, and on return reacquire the lock.
8357  *
8358  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8359  * operations here to prevent schedule() from being called twice (once via
8360  * spin_unlock(), once by hand).
8361  */
8362 int __cond_resched_lock(spinlock_t *lock)
8363 {
8364 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8365 	int ret = 0;
8366 
8367 	lockdep_assert_held(lock);
8368 
8369 	if (spin_needbreak(lock) || resched) {
8370 		spin_unlock(lock);
8371 		if (!_cond_resched())
8372 			cpu_relax();
8373 		ret = 1;
8374 		spin_lock(lock);
8375 	}
8376 	return ret;
8377 }
8378 EXPORT_SYMBOL(__cond_resched_lock);
8379 
8380 int __cond_resched_rwlock_read(rwlock_t *lock)
8381 {
8382 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8383 	int ret = 0;
8384 
8385 	lockdep_assert_held_read(lock);
8386 
8387 	if (rwlock_needbreak(lock) || resched) {
8388 		read_unlock(lock);
8389 		if (!_cond_resched())
8390 			cpu_relax();
8391 		ret = 1;
8392 		read_lock(lock);
8393 	}
8394 	return ret;
8395 }
8396 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8397 
8398 int __cond_resched_rwlock_write(rwlock_t *lock)
8399 {
8400 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8401 	int ret = 0;
8402 
8403 	lockdep_assert_held_write(lock);
8404 
8405 	if (rwlock_needbreak(lock) || resched) {
8406 		write_unlock(lock);
8407 		if (!_cond_resched())
8408 			cpu_relax();
8409 		ret = 1;
8410 		write_lock(lock);
8411 	}
8412 	return ret;
8413 }
8414 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8415 
8416 #ifdef CONFIG_PREEMPT_DYNAMIC
8417 
8418 #ifdef CONFIG_GENERIC_ENTRY
8419 #include <linux/entry-common.h>
8420 #endif
8421 
8422 /*
8423  * SC:cond_resched
8424  * SC:might_resched
8425  * SC:preempt_schedule
8426  * SC:preempt_schedule_notrace
8427  * SC:irqentry_exit_cond_resched
8428  *
8429  *
8430  * NONE:
8431  *   cond_resched               <- __cond_resched
8432  *   might_resched              <- RET0
8433  *   preempt_schedule           <- NOP
8434  *   preempt_schedule_notrace   <- NOP
8435  *   irqentry_exit_cond_resched <- NOP
8436  *
8437  * VOLUNTARY:
8438  *   cond_resched               <- __cond_resched
8439  *   might_resched              <- __cond_resched
8440  *   preempt_schedule           <- NOP
8441  *   preempt_schedule_notrace   <- NOP
8442  *   irqentry_exit_cond_resched <- NOP
8443  *
8444  * FULL:
8445  *   cond_resched               <- RET0
8446  *   might_resched              <- RET0
8447  *   preempt_schedule           <- preempt_schedule
8448  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8449  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8450  */
8451 
8452 enum {
8453 	preempt_dynamic_undefined = -1,
8454 	preempt_dynamic_none,
8455 	preempt_dynamic_voluntary,
8456 	preempt_dynamic_full,
8457 };
8458 
8459 int preempt_dynamic_mode = preempt_dynamic_undefined;
8460 
8461 int sched_dynamic_mode(const char *str)
8462 {
8463 	if (!strcmp(str, "none"))
8464 		return preempt_dynamic_none;
8465 
8466 	if (!strcmp(str, "voluntary"))
8467 		return preempt_dynamic_voluntary;
8468 
8469 	if (!strcmp(str, "full"))
8470 		return preempt_dynamic_full;
8471 
8472 	return -EINVAL;
8473 }
8474 
8475 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8476 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8477 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8478 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8479 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8480 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8481 #else
8482 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8483 #endif
8484 
8485 void sched_dynamic_update(int mode)
8486 {
8487 	/*
8488 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8489 	 * the ZERO state, which is invalid.
8490 	 */
8491 	preempt_dynamic_enable(cond_resched);
8492 	preempt_dynamic_enable(might_resched);
8493 	preempt_dynamic_enable(preempt_schedule);
8494 	preempt_dynamic_enable(preempt_schedule_notrace);
8495 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8496 
8497 	switch (mode) {
8498 	case preempt_dynamic_none:
8499 		preempt_dynamic_enable(cond_resched);
8500 		preempt_dynamic_disable(might_resched);
8501 		preempt_dynamic_disable(preempt_schedule);
8502 		preempt_dynamic_disable(preempt_schedule_notrace);
8503 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8504 		pr_info("Dynamic Preempt: none\n");
8505 		break;
8506 
8507 	case preempt_dynamic_voluntary:
8508 		preempt_dynamic_enable(cond_resched);
8509 		preempt_dynamic_enable(might_resched);
8510 		preempt_dynamic_disable(preempt_schedule);
8511 		preempt_dynamic_disable(preempt_schedule_notrace);
8512 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8513 		pr_info("Dynamic Preempt: voluntary\n");
8514 		break;
8515 
8516 	case preempt_dynamic_full:
8517 		preempt_dynamic_disable(cond_resched);
8518 		preempt_dynamic_disable(might_resched);
8519 		preempt_dynamic_enable(preempt_schedule);
8520 		preempt_dynamic_enable(preempt_schedule_notrace);
8521 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8522 		pr_info("Dynamic Preempt: full\n");
8523 		break;
8524 	}
8525 
8526 	preempt_dynamic_mode = mode;
8527 }
8528 
8529 static int __init setup_preempt_mode(char *str)
8530 {
8531 	int mode = sched_dynamic_mode(str);
8532 	if (mode < 0) {
8533 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8534 		return 0;
8535 	}
8536 
8537 	sched_dynamic_update(mode);
8538 	return 1;
8539 }
8540 __setup("preempt=", setup_preempt_mode);
8541 
8542 static void __init preempt_dynamic_init(void)
8543 {
8544 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8545 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8546 			sched_dynamic_update(preempt_dynamic_none);
8547 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8548 			sched_dynamic_update(preempt_dynamic_voluntary);
8549 		} else {
8550 			/* Default static call setting, nothing to do */
8551 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8552 			preempt_dynamic_mode = preempt_dynamic_full;
8553 			pr_info("Dynamic Preempt: full\n");
8554 		}
8555 	}
8556 }
8557 
8558 #define PREEMPT_MODEL_ACCESSOR(mode) \
8559 	bool preempt_model_##mode(void)						 \
8560 	{									 \
8561 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8562 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8563 	}									 \
8564 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8565 
8566 PREEMPT_MODEL_ACCESSOR(none);
8567 PREEMPT_MODEL_ACCESSOR(voluntary);
8568 PREEMPT_MODEL_ACCESSOR(full);
8569 
8570 #else /* !CONFIG_PREEMPT_DYNAMIC */
8571 
8572 static inline void preempt_dynamic_init(void) { }
8573 
8574 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8575 
8576 /**
8577  * yield - yield the current processor to other threads.
8578  *
8579  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8580  *
8581  * The scheduler is at all times free to pick the calling task as the most
8582  * eligible task to run, if removing the yield() call from your code breaks
8583  * it, it's already broken.
8584  *
8585  * Typical broken usage is:
8586  *
8587  * while (!event)
8588  *	yield();
8589  *
8590  * where one assumes that yield() will let 'the other' process run that will
8591  * make event true. If the current task is a SCHED_FIFO task that will never
8592  * happen. Never use yield() as a progress guarantee!!
8593  *
8594  * If you want to use yield() to wait for something, use wait_event().
8595  * If you want to use yield() to be 'nice' for others, use cond_resched().
8596  * If you still want to use yield(), do not!
8597  */
8598 void __sched yield(void)
8599 {
8600 	set_current_state(TASK_RUNNING);
8601 	do_sched_yield();
8602 }
8603 EXPORT_SYMBOL(yield);
8604 
8605 /**
8606  * yield_to - yield the current processor to another thread in
8607  * your thread group, or accelerate that thread toward the
8608  * processor it's on.
8609  * @p: target task
8610  * @preempt: whether task preemption is allowed or not
8611  *
8612  * It's the caller's job to ensure that the target task struct
8613  * can't go away on us before we can do any checks.
8614  *
8615  * Return:
8616  *	true (>0) if we indeed boosted the target task.
8617  *	false (0) if we failed to boost the target.
8618  *	-ESRCH if there's no task to yield to.
8619  */
8620 int __sched yield_to(struct task_struct *p, bool preempt)
8621 {
8622 	struct task_struct *curr = current;
8623 	struct rq *rq, *p_rq;
8624 	unsigned long flags;
8625 	int yielded = 0;
8626 
8627 	local_irq_save(flags);
8628 	rq = this_rq();
8629 
8630 again:
8631 	p_rq = task_rq(p);
8632 	/*
8633 	 * If we're the only runnable task on the rq and target rq also
8634 	 * has only one task, there's absolutely no point in yielding.
8635 	 */
8636 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8637 		yielded = -ESRCH;
8638 		goto out_irq;
8639 	}
8640 
8641 	double_rq_lock(rq, p_rq);
8642 	if (task_rq(p) != p_rq) {
8643 		double_rq_unlock(rq, p_rq);
8644 		goto again;
8645 	}
8646 
8647 	if (!curr->sched_class->yield_to_task)
8648 		goto out_unlock;
8649 
8650 	if (curr->sched_class != p->sched_class)
8651 		goto out_unlock;
8652 
8653 	if (task_running(p_rq, p) || !task_is_running(p))
8654 		goto out_unlock;
8655 
8656 	yielded = curr->sched_class->yield_to_task(rq, p);
8657 	if (yielded) {
8658 		schedstat_inc(rq->yld_count);
8659 		/*
8660 		 * Make p's CPU reschedule; pick_next_entity takes care of
8661 		 * fairness.
8662 		 */
8663 		if (preempt && rq != p_rq)
8664 			resched_curr(p_rq);
8665 	}
8666 
8667 out_unlock:
8668 	double_rq_unlock(rq, p_rq);
8669 out_irq:
8670 	local_irq_restore(flags);
8671 
8672 	if (yielded > 0)
8673 		schedule();
8674 
8675 	return yielded;
8676 }
8677 EXPORT_SYMBOL_GPL(yield_to);
8678 
8679 int io_schedule_prepare(void)
8680 {
8681 	int old_iowait = current->in_iowait;
8682 
8683 	current->in_iowait = 1;
8684 	blk_flush_plug(current->plug, true);
8685 	return old_iowait;
8686 }
8687 
8688 void io_schedule_finish(int token)
8689 {
8690 	current->in_iowait = token;
8691 }
8692 
8693 /*
8694  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8695  * that process accounting knows that this is a task in IO wait state.
8696  */
8697 long __sched io_schedule_timeout(long timeout)
8698 {
8699 	int token;
8700 	long ret;
8701 
8702 	token = io_schedule_prepare();
8703 	ret = schedule_timeout(timeout);
8704 	io_schedule_finish(token);
8705 
8706 	return ret;
8707 }
8708 EXPORT_SYMBOL(io_schedule_timeout);
8709 
8710 void __sched io_schedule(void)
8711 {
8712 	int token;
8713 
8714 	token = io_schedule_prepare();
8715 	schedule();
8716 	io_schedule_finish(token);
8717 }
8718 EXPORT_SYMBOL(io_schedule);
8719 
8720 /**
8721  * sys_sched_get_priority_max - return maximum RT priority.
8722  * @policy: scheduling class.
8723  *
8724  * Return: On success, this syscall returns the maximum
8725  * rt_priority that can be used by a given scheduling class.
8726  * On failure, a negative error code is returned.
8727  */
8728 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8729 {
8730 	int ret = -EINVAL;
8731 
8732 	switch (policy) {
8733 	case SCHED_FIFO:
8734 	case SCHED_RR:
8735 		ret = MAX_RT_PRIO-1;
8736 		break;
8737 	case SCHED_DEADLINE:
8738 	case SCHED_NORMAL:
8739 	case SCHED_BATCH:
8740 	case SCHED_IDLE:
8741 		ret = 0;
8742 		break;
8743 	}
8744 	return ret;
8745 }
8746 
8747 /**
8748  * sys_sched_get_priority_min - return minimum RT priority.
8749  * @policy: scheduling class.
8750  *
8751  * Return: On success, this syscall returns the minimum
8752  * rt_priority that can be used by a given scheduling class.
8753  * On failure, a negative error code is returned.
8754  */
8755 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8756 {
8757 	int ret = -EINVAL;
8758 
8759 	switch (policy) {
8760 	case SCHED_FIFO:
8761 	case SCHED_RR:
8762 		ret = 1;
8763 		break;
8764 	case SCHED_DEADLINE:
8765 	case SCHED_NORMAL:
8766 	case SCHED_BATCH:
8767 	case SCHED_IDLE:
8768 		ret = 0;
8769 	}
8770 	return ret;
8771 }
8772 
8773 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8774 {
8775 	struct task_struct *p;
8776 	unsigned int time_slice;
8777 	struct rq_flags rf;
8778 	struct rq *rq;
8779 	int retval;
8780 
8781 	if (pid < 0)
8782 		return -EINVAL;
8783 
8784 	retval = -ESRCH;
8785 	rcu_read_lock();
8786 	p = find_process_by_pid(pid);
8787 	if (!p)
8788 		goto out_unlock;
8789 
8790 	retval = security_task_getscheduler(p);
8791 	if (retval)
8792 		goto out_unlock;
8793 
8794 	rq = task_rq_lock(p, &rf);
8795 	time_slice = 0;
8796 	if (p->sched_class->get_rr_interval)
8797 		time_slice = p->sched_class->get_rr_interval(rq, p);
8798 	task_rq_unlock(rq, p, &rf);
8799 
8800 	rcu_read_unlock();
8801 	jiffies_to_timespec64(time_slice, t);
8802 	return 0;
8803 
8804 out_unlock:
8805 	rcu_read_unlock();
8806 	return retval;
8807 }
8808 
8809 /**
8810  * sys_sched_rr_get_interval - return the default timeslice of a process.
8811  * @pid: pid of the process.
8812  * @interval: userspace pointer to the timeslice value.
8813  *
8814  * this syscall writes the default timeslice value of a given process
8815  * into the user-space timespec buffer. A value of '0' means infinity.
8816  *
8817  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8818  * an error code.
8819  */
8820 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8821 		struct __kernel_timespec __user *, interval)
8822 {
8823 	struct timespec64 t;
8824 	int retval = sched_rr_get_interval(pid, &t);
8825 
8826 	if (retval == 0)
8827 		retval = put_timespec64(&t, interval);
8828 
8829 	return retval;
8830 }
8831 
8832 #ifdef CONFIG_COMPAT_32BIT_TIME
8833 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8834 		struct old_timespec32 __user *, interval)
8835 {
8836 	struct timespec64 t;
8837 	int retval = sched_rr_get_interval(pid, &t);
8838 
8839 	if (retval == 0)
8840 		retval = put_old_timespec32(&t, interval);
8841 	return retval;
8842 }
8843 #endif
8844 
8845 void sched_show_task(struct task_struct *p)
8846 {
8847 	unsigned long free = 0;
8848 	int ppid;
8849 
8850 	if (!try_get_task_stack(p))
8851 		return;
8852 
8853 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8854 
8855 	if (task_is_running(p))
8856 		pr_cont("  running task    ");
8857 #ifdef CONFIG_DEBUG_STACK_USAGE
8858 	free = stack_not_used(p);
8859 #endif
8860 	ppid = 0;
8861 	rcu_read_lock();
8862 	if (pid_alive(p))
8863 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8864 	rcu_read_unlock();
8865 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8866 		free, task_pid_nr(p), ppid,
8867 		read_task_thread_flags(p));
8868 
8869 	print_worker_info(KERN_INFO, p);
8870 	print_stop_info(KERN_INFO, p);
8871 	show_stack(p, NULL, KERN_INFO);
8872 	put_task_stack(p);
8873 }
8874 EXPORT_SYMBOL_GPL(sched_show_task);
8875 
8876 static inline bool
8877 state_filter_match(unsigned long state_filter, struct task_struct *p)
8878 {
8879 	unsigned int state = READ_ONCE(p->__state);
8880 
8881 	/* no filter, everything matches */
8882 	if (!state_filter)
8883 		return true;
8884 
8885 	/* filter, but doesn't match */
8886 	if (!(state & state_filter))
8887 		return false;
8888 
8889 	/*
8890 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8891 	 * TASK_KILLABLE).
8892 	 */
8893 	if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8894 		return false;
8895 
8896 	return true;
8897 }
8898 
8899 
8900 void show_state_filter(unsigned int state_filter)
8901 {
8902 	struct task_struct *g, *p;
8903 
8904 	rcu_read_lock();
8905 	for_each_process_thread(g, p) {
8906 		/*
8907 		 * reset the NMI-timeout, listing all files on a slow
8908 		 * console might take a lot of time:
8909 		 * Also, reset softlockup watchdogs on all CPUs, because
8910 		 * another CPU might be blocked waiting for us to process
8911 		 * an IPI.
8912 		 */
8913 		touch_nmi_watchdog();
8914 		touch_all_softlockup_watchdogs();
8915 		if (state_filter_match(state_filter, p))
8916 			sched_show_task(p);
8917 	}
8918 
8919 #ifdef CONFIG_SCHED_DEBUG
8920 	if (!state_filter)
8921 		sysrq_sched_debug_show();
8922 #endif
8923 	rcu_read_unlock();
8924 	/*
8925 	 * Only show locks if all tasks are dumped:
8926 	 */
8927 	if (!state_filter)
8928 		debug_show_all_locks();
8929 }
8930 
8931 /**
8932  * init_idle - set up an idle thread for a given CPU
8933  * @idle: task in question
8934  * @cpu: CPU the idle task belongs to
8935  *
8936  * NOTE: this function does not set the idle thread's NEED_RESCHED
8937  * flag, to make booting more robust.
8938  */
8939 void __init init_idle(struct task_struct *idle, int cpu)
8940 {
8941 	struct rq *rq = cpu_rq(cpu);
8942 	unsigned long flags;
8943 
8944 	__sched_fork(0, idle);
8945 
8946 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8947 	raw_spin_rq_lock(rq);
8948 
8949 	idle->__state = TASK_RUNNING;
8950 	idle->se.exec_start = sched_clock();
8951 	/*
8952 	 * PF_KTHREAD should already be set at this point; regardless, make it
8953 	 * look like a proper per-CPU kthread.
8954 	 */
8955 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8956 	kthread_set_per_cpu(idle, cpu);
8957 
8958 #ifdef CONFIG_SMP
8959 	/*
8960 	 * It's possible that init_idle() gets called multiple times on a task,
8961 	 * in that case do_set_cpus_allowed() will not do the right thing.
8962 	 *
8963 	 * And since this is boot we can forgo the serialization.
8964 	 */
8965 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8966 #endif
8967 	/*
8968 	 * We're having a chicken and egg problem, even though we are
8969 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8970 	 * lockdep check in task_group() will fail.
8971 	 *
8972 	 * Similar case to sched_fork(). / Alternatively we could
8973 	 * use task_rq_lock() here and obtain the other rq->lock.
8974 	 *
8975 	 * Silence PROVE_RCU
8976 	 */
8977 	rcu_read_lock();
8978 	__set_task_cpu(idle, cpu);
8979 	rcu_read_unlock();
8980 
8981 	rq->idle = idle;
8982 	rcu_assign_pointer(rq->curr, idle);
8983 	idle->on_rq = TASK_ON_RQ_QUEUED;
8984 #ifdef CONFIG_SMP
8985 	idle->on_cpu = 1;
8986 #endif
8987 	raw_spin_rq_unlock(rq);
8988 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8989 
8990 	/* Set the preempt count _outside_ the spinlocks! */
8991 	init_idle_preempt_count(idle, cpu);
8992 
8993 	/*
8994 	 * The idle tasks have their own, simple scheduling class:
8995 	 */
8996 	idle->sched_class = &idle_sched_class;
8997 	ftrace_graph_init_idle_task(idle, cpu);
8998 	vtime_init_idle(idle, cpu);
8999 #ifdef CONFIG_SMP
9000 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9001 #endif
9002 }
9003 
9004 #ifdef CONFIG_SMP
9005 
9006 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9007 			      const struct cpumask *trial)
9008 {
9009 	int ret = 1;
9010 
9011 	if (cpumask_empty(cur))
9012 		return ret;
9013 
9014 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9015 
9016 	return ret;
9017 }
9018 
9019 int task_can_attach(struct task_struct *p,
9020 		    const struct cpumask *cs_effective_cpus)
9021 {
9022 	int ret = 0;
9023 
9024 	/*
9025 	 * Kthreads which disallow setaffinity shouldn't be moved
9026 	 * to a new cpuset; we don't want to change their CPU
9027 	 * affinity and isolating such threads by their set of
9028 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9029 	 * applicable for such threads.  This prevents checking for
9030 	 * success of set_cpus_allowed_ptr() on all attached tasks
9031 	 * before cpus_mask may be changed.
9032 	 */
9033 	if (p->flags & PF_NO_SETAFFINITY) {
9034 		ret = -EINVAL;
9035 		goto out;
9036 	}
9037 
9038 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
9039 					      cs_effective_cpus)) {
9040 		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
9041 
9042 		if (unlikely(cpu >= nr_cpu_ids))
9043 			return -EINVAL;
9044 		ret = dl_cpu_busy(cpu, p);
9045 	}
9046 
9047 out:
9048 	return ret;
9049 }
9050 
9051 bool sched_smp_initialized __read_mostly;
9052 
9053 #ifdef CONFIG_NUMA_BALANCING
9054 /* Migrate current task p to target_cpu */
9055 int migrate_task_to(struct task_struct *p, int target_cpu)
9056 {
9057 	struct migration_arg arg = { p, target_cpu };
9058 	int curr_cpu = task_cpu(p);
9059 
9060 	if (curr_cpu == target_cpu)
9061 		return 0;
9062 
9063 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9064 		return -EINVAL;
9065 
9066 	/* TODO: This is not properly updating schedstats */
9067 
9068 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9069 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9070 }
9071 
9072 /*
9073  * Requeue a task on a given node and accurately track the number of NUMA
9074  * tasks on the runqueues
9075  */
9076 void sched_setnuma(struct task_struct *p, int nid)
9077 {
9078 	bool queued, running;
9079 	struct rq_flags rf;
9080 	struct rq *rq;
9081 
9082 	rq = task_rq_lock(p, &rf);
9083 	queued = task_on_rq_queued(p);
9084 	running = task_current(rq, p);
9085 
9086 	if (queued)
9087 		dequeue_task(rq, p, DEQUEUE_SAVE);
9088 	if (running)
9089 		put_prev_task(rq, p);
9090 
9091 	p->numa_preferred_nid = nid;
9092 
9093 	if (queued)
9094 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9095 	if (running)
9096 		set_next_task(rq, p);
9097 	task_rq_unlock(rq, p, &rf);
9098 }
9099 #endif /* CONFIG_NUMA_BALANCING */
9100 
9101 #ifdef CONFIG_HOTPLUG_CPU
9102 /*
9103  * Ensure that the idle task is using init_mm right before its CPU goes
9104  * offline.
9105  */
9106 void idle_task_exit(void)
9107 {
9108 	struct mm_struct *mm = current->active_mm;
9109 
9110 	BUG_ON(cpu_online(smp_processor_id()));
9111 	BUG_ON(current != this_rq()->idle);
9112 
9113 	if (mm != &init_mm) {
9114 		switch_mm(mm, &init_mm, current);
9115 		finish_arch_post_lock_switch();
9116 	}
9117 
9118 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9119 }
9120 
9121 static int __balance_push_cpu_stop(void *arg)
9122 {
9123 	struct task_struct *p = arg;
9124 	struct rq *rq = this_rq();
9125 	struct rq_flags rf;
9126 	int cpu;
9127 
9128 	raw_spin_lock_irq(&p->pi_lock);
9129 	rq_lock(rq, &rf);
9130 
9131 	update_rq_clock(rq);
9132 
9133 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9134 		cpu = select_fallback_rq(rq->cpu, p);
9135 		rq = __migrate_task(rq, &rf, p, cpu);
9136 	}
9137 
9138 	rq_unlock(rq, &rf);
9139 	raw_spin_unlock_irq(&p->pi_lock);
9140 
9141 	put_task_struct(p);
9142 
9143 	return 0;
9144 }
9145 
9146 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9147 
9148 /*
9149  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9150  *
9151  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9152  * effective when the hotplug motion is down.
9153  */
9154 static void balance_push(struct rq *rq)
9155 {
9156 	struct task_struct *push_task = rq->curr;
9157 
9158 	lockdep_assert_rq_held(rq);
9159 
9160 	/*
9161 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9162 	 */
9163 	rq->balance_callback = &balance_push_callback;
9164 
9165 	/*
9166 	 * Only active while going offline and when invoked on the outgoing
9167 	 * CPU.
9168 	 */
9169 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9170 		return;
9171 
9172 	/*
9173 	 * Both the cpu-hotplug and stop task are in this case and are
9174 	 * required to complete the hotplug process.
9175 	 */
9176 	if (kthread_is_per_cpu(push_task) ||
9177 	    is_migration_disabled(push_task)) {
9178 
9179 		/*
9180 		 * If this is the idle task on the outgoing CPU try to wake
9181 		 * up the hotplug control thread which might wait for the
9182 		 * last task to vanish. The rcuwait_active() check is
9183 		 * accurate here because the waiter is pinned on this CPU
9184 		 * and can't obviously be running in parallel.
9185 		 *
9186 		 * On RT kernels this also has to check whether there are
9187 		 * pinned and scheduled out tasks on the runqueue. They
9188 		 * need to leave the migrate disabled section first.
9189 		 */
9190 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9191 		    rcuwait_active(&rq->hotplug_wait)) {
9192 			raw_spin_rq_unlock(rq);
9193 			rcuwait_wake_up(&rq->hotplug_wait);
9194 			raw_spin_rq_lock(rq);
9195 		}
9196 		return;
9197 	}
9198 
9199 	get_task_struct(push_task);
9200 	/*
9201 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9202 	 * Both preemption and IRQs are still disabled.
9203 	 */
9204 	raw_spin_rq_unlock(rq);
9205 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9206 			    this_cpu_ptr(&push_work));
9207 	/*
9208 	 * At this point need_resched() is true and we'll take the loop in
9209 	 * schedule(). The next pick is obviously going to be the stop task
9210 	 * which kthread_is_per_cpu() and will push this task away.
9211 	 */
9212 	raw_spin_rq_lock(rq);
9213 }
9214 
9215 static void balance_push_set(int cpu, bool on)
9216 {
9217 	struct rq *rq = cpu_rq(cpu);
9218 	struct rq_flags rf;
9219 
9220 	rq_lock_irqsave(rq, &rf);
9221 	if (on) {
9222 		WARN_ON_ONCE(rq->balance_callback);
9223 		rq->balance_callback = &balance_push_callback;
9224 	} else if (rq->balance_callback == &balance_push_callback) {
9225 		rq->balance_callback = NULL;
9226 	}
9227 	rq_unlock_irqrestore(rq, &rf);
9228 }
9229 
9230 /*
9231  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9232  * inactive. All tasks which are not per CPU kernel threads are either
9233  * pushed off this CPU now via balance_push() or placed on a different CPU
9234  * during wakeup. Wait until the CPU is quiescent.
9235  */
9236 static void balance_hotplug_wait(void)
9237 {
9238 	struct rq *rq = this_rq();
9239 
9240 	rcuwait_wait_event(&rq->hotplug_wait,
9241 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9242 			   TASK_UNINTERRUPTIBLE);
9243 }
9244 
9245 #else
9246 
9247 static inline void balance_push(struct rq *rq)
9248 {
9249 }
9250 
9251 static inline void balance_push_set(int cpu, bool on)
9252 {
9253 }
9254 
9255 static inline void balance_hotplug_wait(void)
9256 {
9257 }
9258 
9259 #endif /* CONFIG_HOTPLUG_CPU */
9260 
9261 void set_rq_online(struct rq *rq)
9262 {
9263 	if (!rq->online) {
9264 		const struct sched_class *class;
9265 
9266 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9267 		rq->online = 1;
9268 
9269 		for_each_class(class) {
9270 			if (class->rq_online)
9271 				class->rq_online(rq);
9272 		}
9273 	}
9274 }
9275 
9276 void set_rq_offline(struct rq *rq)
9277 {
9278 	if (rq->online) {
9279 		const struct sched_class *class;
9280 
9281 		for_each_class(class) {
9282 			if (class->rq_offline)
9283 				class->rq_offline(rq);
9284 		}
9285 
9286 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9287 		rq->online = 0;
9288 	}
9289 }
9290 
9291 /*
9292  * used to mark begin/end of suspend/resume:
9293  */
9294 static int num_cpus_frozen;
9295 
9296 /*
9297  * Update cpusets according to cpu_active mask.  If cpusets are
9298  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9299  * around partition_sched_domains().
9300  *
9301  * If we come here as part of a suspend/resume, don't touch cpusets because we
9302  * want to restore it back to its original state upon resume anyway.
9303  */
9304 static void cpuset_cpu_active(void)
9305 {
9306 	if (cpuhp_tasks_frozen) {
9307 		/*
9308 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9309 		 * resume sequence. As long as this is not the last online
9310 		 * operation in the resume sequence, just build a single sched
9311 		 * domain, ignoring cpusets.
9312 		 */
9313 		partition_sched_domains(1, NULL, NULL);
9314 		if (--num_cpus_frozen)
9315 			return;
9316 		/*
9317 		 * This is the last CPU online operation. So fall through and
9318 		 * restore the original sched domains by considering the
9319 		 * cpuset configurations.
9320 		 */
9321 		cpuset_force_rebuild();
9322 	}
9323 	cpuset_update_active_cpus();
9324 }
9325 
9326 static int cpuset_cpu_inactive(unsigned int cpu)
9327 {
9328 	if (!cpuhp_tasks_frozen) {
9329 		int ret = dl_cpu_busy(cpu, NULL);
9330 
9331 		if (ret)
9332 			return ret;
9333 		cpuset_update_active_cpus();
9334 	} else {
9335 		num_cpus_frozen++;
9336 		partition_sched_domains(1, NULL, NULL);
9337 	}
9338 	return 0;
9339 }
9340 
9341 int sched_cpu_activate(unsigned int cpu)
9342 {
9343 	struct rq *rq = cpu_rq(cpu);
9344 	struct rq_flags rf;
9345 
9346 	/*
9347 	 * Clear the balance_push callback and prepare to schedule
9348 	 * regular tasks.
9349 	 */
9350 	balance_push_set(cpu, false);
9351 
9352 #ifdef CONFIG_SCHED_SMT
9353 	/*
9354 	 * When going up, increment the number of cores with SMT present.
9355 	 */
9356 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9357 		static_branch_inc_cpuslocked(&sched_smt_present);
9358 #endif
9359 	set_cpu_active(cpu, true);
9360 
9361 	if (sched_smp_initialized) {
9362 		sched_update_numa(cpu, true);
9363 		sched_domains_numa_masks_set(cpu);
9364 		cpuset_cpu_active();
9365 	}
9366 
9367 	/*
9368 	 * Put the rq online, if not already. This happens:
9369 	 *
9370 	 * 1) In the early boot process, because we build the real domains
9371 	 *    after all CPUs have been brought up.
9372 	 *
9373 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9374 	 *    domains.
9375 	 */
9376 	rq_lock_irqsave(rq, &rf);
9377 	if (rq->rd) {
9378 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9379 		set_rq_online(rq);
9380 	}
9381 	rq_unlock_irqrestore(rq, &rf);
9382 
9383 	return 0;
9384 }
9385 
9386 int sched_cpu_deactivate(unsigned int cpu)
9387 {
9388 	struct rq *rq = cpu_rq(cpu);
9389 	struct rq_flags rf;
9390 	int ret;
9391 
9392 	/*
9393 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9394 	 * load balancing when not active
9395 	 */
9396 	nohz_balance_exit_idle(rq);
9397 
9398 	set_cpu_active(cpu, false);
9399 
9400 	/*
9401 	 * From this point forward, this CPU will refuse to run any task that
9402 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9403 	 * push those tasks away until this gets cleared, see
9404 	 * sched_cpu_dying().
9405 	 */
9406 	balance_push_set(cpu, true);
9407 
9408 	/*
9409 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9410 	 * preempt-disabled and RCU users of this state to go away such that
9411 	 * all new such users will observe it.
9412 	 *
9413 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9414 	 * ttwu_queue_cond() and is_cpu_allowed().
9415 	 *
9416 	 * Do sync before park smpboot threads to take care the rcu boost case.
9417 	 */
9418 	synchronize_rcu();
9419 
9420 	rq_lock_irqsave(rq, &rf);
9421 	if (rq->rd) {
9422 		update_rq_clock(rq);
9423 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9424 		set_rq_offline(rq);
9425 	}
9426 	rq_unlock_irqrestore(rq, &rf);
9427 
9428 #ifdef CONFIG_SCHED_SMT
9429 	/*
9430 	 * When going down, decrement the number of cores with SMT present.
9431 	 */
9432 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9433 		static_branch_dec_cpuslocked(&sched_smt_present);
9434 
9435 	sched_core_cpu_deactivate(cpu);
9436 #endif
9437 
9438 	if (!sched_smp_initialized)
9439 		return 0;
9440 
9441 	sched_update_numa(cpu, false);
9442 	ret = cpuset_cpu_inactive(cpu);
9443 	if (ret) {
9444 		balance_push_set(cpu, false);
9445 		set_cpu_active(cpu, true);
9446 		sched_update_numa(cpu, true);
9447 		return ret;
9448 	}
9449 	sched_domains_numa_masks_clear(cpu);
9450 	return 0;
9451 }
9452 
9453 static void sched_rq_cpu_starting(unsigned int cpu)
9454 {
9455 	struct rq *rq = cpu_rq(cpu);
9456 
9457 	rq->calc_load_update = calc_load_update;
9458 	update_max_interval();
9459 }
9460 
9461 int sched_cpu_starting(unsigned int cpu)
9462 {
9463 	sched_core_cpu_starting(cpu);
9464 	sched_rq_cpu_starting(cpu);
9465 	sched_tick_start(cpu);
9466 	return 0;
9467 }
9468 
9469 #ifdef CONFIG_HOTPLUG_CPU
9470 
9471 /*
9472  * Invoked immediately before the stopper thread is invoked to bring the
9473  * CPU down completely. At this point all per CPU kthreads except the
9474  * hotplug thread (current) and the stopper thread (inactive) have been
9475  * either parked or have been unbound from the outgoing CPU. Ensure that
9476  * any of those which might be on the way out are gone.
9477  *
9478  * If after this point a bound task is being woken on this CPU then the
9479  * responsible hotplug callback has failed to do it's job.
9480  * sched_cpu_dying() will catch it with the appropriate fireworks.
9481  */
9482 int sched_cpu_wait_empty(unsigned int cpu)
9483 {
9484 	balance_hotplug_wait();
9485 	return 0;
9486 }
9487 
9488 /*
9489  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9490  * might have. Called from the CPU stopper task after ensuring that the
9491  * stopper is the last running task on the CPU, so nr_active count is
9492  * stable. We need to take the teardown thread which is calling this into
9493  * account, so we hand in adjust = 1 to the load calculation.
9494  *
9495  * Also see the comment "Global load-average calculations".
9496  */
9497 static void calc_load_migrate(struct rq *rq)
9498 {
9499 	long delta = calc_load_fold_active(rq, 1);
9500 
9501 	if (delta)
9502 		atomic_long_add(delta, &calc_load_tasks);
9503 }
9504 
9505 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9506 {
9507 	struct task_struct *g, *p;
9508 	int cpu = cpu_of(rq);
9509 
9510 	lockdep_assert_rq_held(rq);
9511 
9512 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9513 	for_each_process_thread(g, p) {
9514 		if (task_cpu(p) != cpu)
9515 			continue;
9516 
9517 		if (!task_on_rq_queued(p))
9518 			continue;
9519 
9520 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9521 	}
9522 }
9523 
9524 int sched_cpu_dying(unsigned int cpu)
9525 {
9526 	struct rq *rq = cpu_rq(cpu);
9527 	struct rq_flags rf;
9528 
9529 	/* Handle pending wakeups and then migrate everything off */
9530 	sched_tick_stop(cpu);
9531 
9532 	rq_lock_irqsave(rq, &rf);
9533 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9534 		WARN(true, "Dying CPU not properly vacated!");
9535 		dump_rq_tasks(rq, KERN_WARNING);
9536 	}
9537 	rq_unlock_irqrestore(rq, &rf);
9538 
9539 	calc_load_migrate(rq);
9540 	update_max_interval();
9541 	hrtick_clear(rq);
9542 	sched_core_cpu_dying(cpu);
9543 	return 0;
9544 }
9545 #endif
9546 
9547 void __init sched_init_smp(void)
9548 {
9549 	sched_init_numa(NUMA_NO_NODE);
9550 
9551 	/*
9552 	 * There's no userspace yet to cause hotplug operations; hence all the
9553 	 * CPU masks are stable and all blatant races in the below code cannot
9554 	 * happen.
9555 	 */
9556 	mutex_lock(&sched_domains_mutex);
9557 	sched_init_domains(cpu_active_mask);
9558 	mutex_unlock(&sched_domains_mutex);
9559 
9560 	/* Move init over to a non-isolated CPU */
9561 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9562 		BUG();
9563 	current->flags &= ~PF_NO_SETAFFINITY;
9564 	sched_init_granularity();
9565 
9566 	init_sched_rt_class();
9567 	init_sched_dl_class();
9568 
9569 	sched_smp_initialized = true;
9570 }
9571 
9572 static int __init migration_init(void)
9573 {
9574 	sched_cpu_starting(smp_processor_id());
9575 	return 0;
9576 }
9577 early_initcall(migration_init);
9578 
9579 #else
9580 void __init sched_init_smp(void)
9581 {
9582 	sched_init_granularity();
9583 }
9584 #endif /* CONFIG_SMP */
9585 
9586 int in_sched_functions(unsigned long addr)
9587 {
9588 	return in_lock_functions(addr) ||
9589 		(addr >= (unsigned long)__sched_text_start
9590 		&& addr < (unsigned long)__sched_text_end);
9591 }
9592 
9593 #ifdef CONFIG_CGROUP_SCHED
9594 /*
9595  * Default task group.
9596  * Every task in system belongs to this group at bootup.
9597  */
9598 struct task_group root_task_group;
9599 LIST_HEAD(task_groups);
9600 
9601 /* Cacheline aligned slab cache for task_group */
9602 static struct kmem_cache *task_group_cache __read_mostly;
9603 #endif
9604 
9605 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9606 DECLARE_PER_CPU(cpumask_var_t, select_rq_mask);
9607 
9608 void __init sched_init(void)
9609 {
9610 	unsigned long ptr = 0;
9611 	int i;
9612 
9613 	/* Make sure the linker didn't screw up */
9614 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9615 	       &fair_sched_class != &rt_sched_class + 1 ||
9616 	       &rt_sched_class   != &dl_sched_class + 1);
9617 #ifdef CONFIG_SMP
9618 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9619 #endif
9620 
9621 	wait_bit_init();
9622 
9623 #ifdef CONFIG_FAIR_GROUP_SCHED
9624 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9625 #endif
9626 #ifdef CONFIG_RT_GROUP_SCHED
9627 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9628 #endif
9629 	if (ptr) {
9630 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9631 
9632 #ifdef CONFIG_FAIR_GROUP_SCHED
9633 		root_task_group.se = (struct sched_entity **)ptr;
9634 		ptr += nr_cpu_ids * sizeof(void **);
9635 
9636 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9637 		ptr += nr_cpu_ids * sizeof(void **);
9638 
9639 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9640 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9641 #endif /* CONFIG_FAIR_GROUP_SCHED */
9642 #ifdef CONFIG_RT_GROUP_SCHED
9643 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9644 		ptr += nr_cpu_ids * sizeof(void **);
9645 
9646 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9647 		ptr += nr_cpu_ids * sizeof(void **);
9648 
9649 #endif /* CONFIG_RT_GROUP_SCHED */
9650 	}
9651 #ifdef CONFIG_CPUMASK_OFFSTACK
9652 	for_each_possible_cpu(i) {
9653 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9654 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9655 		per_cpu(select_rq_mask, i) = (cpumask_var_t)kzalloc_node(
9656 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9657 	}
9658 #endif /* CONFIG_CPUMASK_OFFSTACK */
9659 
9660 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9661 
9662 #ifdef CONFIG_SMP
9663 	init_defrootdomain();
9664 #endif
9665 
9666 #ifdef CONFIG_RT_GROUP_SCHED
9667 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9668 			global_rt_period(), global_rt_runtime());
9669 #endif /* CONFIG_RT_GROUP_SCHED */
9670 
9671 #ifdef CONFIG_CGROUP_SCHED
9672 	task_group_cache = KMEM_CACHE(task_group, 0);
9673 
9674 	list_add(&root_task_group.list, &task_groups);
9675 	INIT_LIST_HEAD(&root_task_group.children);
9676 	INIT_LIST_HEAD(&root_task_group.siblings);
9677 	autogroup_init(&init_task);
9678 #endif /* CONFIG_CGROUP_SCHED */
9679 
9680 	for_each_possible_cpu(i) {
9681 		struct rq *rq;
9682 
9683 		rq = cpu_rq(i);
9684 		raw_spin_lock_init(&rq->__lock);
9685 		rq->nr_running = 0;
9686 		rq->calc_load_active = 0;
9687 		rq->calc_load_update = jiffies + LOAD_FREQ;
9688 		init_cfs_rq(&rq->cfs);
9689 		init_rt_rq(&rq->rt);
9690 		init_dl_rq(&rq->dl);
9691 #ifdef CONFIG_FAIR_GROUP_SCHED
9692 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9693 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9694 		/*
9695 		 * How much CPU bandwidth does root_task_group get?
9696 		 *
9697 		 * In case of task-groups formed thr' the cgroup filesystem, it
9698 		 * gets 100% of the CPU resources in the system. This overall
9699 		 * system CPU resource is divided among the tasks of
9700 		 * root_task_group and its child task-groups in a fair manner,
9701 		 * based on each entity's (task or task-group's) weight
9702 		 * (se->load.weight).
9703 		 *
9704 		 * In other words, if root_task_group has 10 tasks of weight
9705 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9706 		 * then A0's share of the CPU resource is:
9707 		 *
9708 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9709 		 *
9710 		 * We achieve this by letting root_task_group's tasks sit
9711 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9712 		 */
9713 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9714 #endif /* CONFIG_FAIR_GROUP_SCHED */
9715 
9716 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9717 #ifdef CONFIG_RT_GROUP_SCHED
9718 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9719 #endif
9720 #ifdef CONFIG_SMP
9721 		rq->sd = NULL;
9722 		rq->rd = NULL;
9723 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9724 		rq->balance_callback = &balance_push_callback;
9725 		rq->active_balance = 0;
9726 		rq->next_balance = jiffies;
9727 		rq->push_cpu = 0;
9728 		rq->cpu = i;
9729 		rq->online = 0;
9730 		rq->idle_stamp = 0;
9731 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9732 		rq->wake_stamp = jiffies;
9733 		rq->wake_avg_idle = rq->avg_idle;
9734 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9735 
9736 		INIT_LIST_HEAD(&rq->cfs_tasks);
9737 
9738 		rq_attach_root(rq, &def_root_domain);
9739 #ifdef CONFIG_NO_HZ_COMMON
9740 		rq->last_blocked_load_update_tick = jiffies;
9741 		atomic_set(&rq->nohz_flags, 0);
9742 
9743 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9744 #endif
9745 #ifdef CONFIG_HOTPLUG_CPU
9746 		rcuwait_init(&rq->hotplug_wait);
9747 #endif
9748 #endif /* CONFIG_SMP */
9749 		hrtick_rq_init(rq);
9750 		atomic_set(&rq->nr_iowait, 0);
9751 
9752 #ifdef CONFIG_SCHED_CORE
9753 		rq->core = rq;
9754 		rq->core_pick = NULL;
9755 		rq->core_enabled = 0;
9756 		rq->core_tree = RB_ROOT;
9757 		rq->core_forceidle_count = 0;
9758 		rq->core_forceidle_occupation = 0;
9759 		rq->core_forceidle_start = 0;
9760 
9761 		rq->core_cookie = 0UL;
9762 #endif
9763 	}
9764 
9765 	set_load_weight(&init_task, false);
9766 
9767 	/*
9768 	 * The boot idle thread does lazy MMU switching as well:
9769 	 */
9770 	mmgrab(&init_mm);
9771 	enter_lazy_tlb(&init_mm, current);
9772 
9773 	/*
9774 	 * The idle task doesn't need the kthread struct to function, but it
9775 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9776 	 * if we want to avoid special-casing it in code that deals with per-CPU
9777 	 * kthreads.
9778 	 */
9779 	WARN_ON(!set_kthread_struct(current));
9780 
9781 	/*
9782 	 * Make us the idle thread. Technically, schedule() should not be
9783 	 * called from this thread, however somewhere below it might be,
9784 	 * but because we are the idle thread, we just pick up running again
9785 	 * when this runqueue becomes "idle".
9786 	 */
9787 	init_idle(current, smp_processor_id());
9788 
9789 	calc_load_update = jiffies + LOAD_FREQ;
9790 
9791 #ifdef CONFIG_SMP
9792 	idle_thread_set_boot_cpu();
9793 	balance_push_set(smp_processor_id(), false);
9794 #endif
9795 	init_sched_fair_class();
9796 
9797 	psi_init();
9798 
9799 	init_uclamp();
9800 
9801 	preempt_dynamic_init();
9802 
9803 	scheduler_running = 1;
9804 }
9805 
9806 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9807 
9808 void __might_sleep(const char *file, int line)
9809 {
9810 	unsigned int state = get_current_state();
9811 	/*
9812 	 * Blocking primitives will set (and therefore destroy) current->state,
9813 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9814 	 * otherwise we will destroy state.
9815 	 */
9816 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9817 			"do not call blocking ops when !TASK_RUNNING; "
9818 			"state=%x set at [<%p>] %pS\n", state,
9819 			(void *)current->task_state_change,
9820 			(void *)current->task_state_change);
9821 
9822 	__might_resched(file, line, 0);
9823 }
9824 EXPORT_SYMBOL(__might_sleep);
9825 
9826 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9827 {
9828 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9829 		return;
9830 
9831 	if (preempt_count() == preempt_offset)
9832 		return;
9833 
9834 	pr_err("Preemption disabled at:");
9835 	print_ip_sym(KERN_ERR, ip);
9836 }
9837 
9838 static inline bool resched_offsets_ok(unsigned int offsets)
9839 {
9840 	unsigned int nested = preempt_count();
9841 
9842 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9843 
9844 	return nested == offsets;
9845 }
9846 
9847 void __might_resched(const char *file, int line, unsigned int offsets)
9848 {
9849 	/* Ratelimiting timestamp: */
9850 	static unsigned long prev_jiffy;
9851 
9852 	unsigned long preempt_disable_ip;
9853 
9854 	/* WARN_ON_ONCE() by default, no rate limit required: */
9855 	rcu_sleep_check();
9856 
9857 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9858 	     !is_idle_task(current) && !current->non_block_count) ||
9859 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9860 	    oops_in_progress)
9861 		return;
9862 
9863 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9864 		return;
9865 	prev_jiffy = jiffies;
9866 
9867 	/* Save this before calling printk(), since that will clobber it: */
9868 	preempt_disable_ip = get_preempt_disable_ip(current);
9869 
9870 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9871 	       file, line);
9872 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9873 	       in_atomic(), irqs_disabled(), current->non_block_count,
9874 	       current->pid, current->comm);
9875 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9876 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9877 
9878 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9879 		pr_err("RCU nest depth: %d, expected: %u\n",
9880 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9881 	}
9882 
9883 	if (task_stack_end_corrupted(current))
9884 		pr_emerg("Thread overran stack, or stack corrupted\n");
9885 
9886 	debug_show_held_locks(current);
9887 	if (irqs_disabled())
9888 		print_irqtrace_events(current);
9889 
9890 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9891 				 preempt_disable_ip);
9892 
9893 	dump_stack();
9894 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9895 }
9896 EXPORT_SYMBOL(__might_resched);
9897 
9898 void __cant_sleep(const char *file, int line, int preempt_offset)
9899 {
9900 	static unsigned long prev_jiffy;
9901 
9902 	if (irqs_disabled())
9903 		return;
9904 
9905 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9906 		return;
9907 
9908 	if (preempt_count() > preempt_offset)
9909 		return;
9910 
9911 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9912 		return;
9913 	prev_jiffy = jiffies;
9914 
9915 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9916 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9917 			in_atomic(), irqs_disabled(),
9918 			current->pid, current->comm);
9919 
9920 	debug_show_held_locks(current);
9921 	dump_stack();
9922 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9923 }
9924 EXPORT_SYMBOL_GPL(__cant_sleep);
9925 
9926 #ifdef CONFIG_SMP
9927 void __cant_migrate(const char *file, int line)
9928 {
9929 	static unsigned long prev_jiffy;
9930 
9931 	if (irqs_disabled())
9932 		return;
9933 
9934 	if (is_migration_disabled(current))
9935 		return;
9936 
9937 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9938 		return;
9939 
9940 	if (preempt_count() > 0)
9941 		return;
9942 
9943 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9944 		return;
9945 	prev_jiffy = jiffies;
9946 
9947 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9948 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9949 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9950 	       current->pid, current->comm);
9951 
9952 	debug_show_held_locks(current);
9953 	dump_stack();
9954 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9955 }
9956 EXPORT_SYMBOL_GPL(__cant_migrate);
9957 #endif
9958 #endif
9959 
9960 #ifdef CONFIG_MAGIC_SYSRQ
9961 void normalize_rt_tasks(void)
9962 {
9963 	struct task_struct *g, *p;
9964 	struct sched_attr attr = {
9965 		.sched_policy = SCHED_NORMAL,
9966 	};
9967 
9968 	read_lock(&tasklist_lock);
9969 	for_each_process_thread(g, p) {
9970 		/*
9971 		 * Only normalize user tasks:
9972 		 */
9973 		if (p->flags & PF_KTHREAD)
9974 			continue;
9975 
9976 		p->se.exec_start = 0;
9977 		schedstat_set(p->stats.wait_start,  0);
9978 		schedstat_set(p->stats.sleep_start, 0);
9979 		schedstat_set(p->stats.block_start, 0);
9980 
9981 		if (!dl_task(p) && !rt_task(p)) {
9982 			/*
9983 			 * Renice negative nice level userspace
9984 			 * tasks back to 0:
9985 			 */
9986 			if (task_nice(p) < 0)
9987 				set_user_nice(p, 0);
9988 			continue;
9989 		}
9990 
9991 		__sched_setscheduler(p, &attr, false, false);
9992 	}
9993 	read_unlock(&tasklist_lock);
9994 }
9995 
9996 #endif /* CONFIG_MAGIC_SYSRQ */
9997 
9998 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9999 /*
10000  * These functions are only useful for the IA64 MCA handling, or kdb.
10001  *
10002  * They can only be called when the whole system has been
10003  * stopped - every CPU needs to be quiescent, and no scheduling
10004  * activity can take place. Using them for anything else would
10005  * be a serious bug, and as a result, they aren't even visible
10006  * under any other configuration.
10007  */
10008 
10009 /**
10010  * curr_task - return the current task for a given CPU.
10011  * @cpu: the processor in question.
10012  *
10013  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10014  *
10015  * Return: The current task for @cpu.
10016  */
10017 struct task_struct *curr_task(int cpu)
10018 {
10019 	return cpu_curr(cpu);
10020 }
10021 
10022 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10023 
10024 #ifdef CONFIG_IA64
10025 /**
10026  * ia64_set_curr_task - set the current task for a given CPU.
10027  * @cpu: the processor in question.
10028  * @p: the task pointer to set.
10029  *
10030  * Description: This function must only be used when non-maskable interrupts
10031  * are serviced on a separate stack. It allows the architecture to switch the
10032  * notion of the current task on a CPU in a non-blocking manner. This function
10033  * must be called with all CPU's synchronized, and interrupts disabled, the
10034  * and caller must save the original value of the current task (see
10035  * curr_task() above) and restore that value before reenabling interrupts and
10036  * re-starting the system.
10037  *
10038  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10039  */
10040 void ia64_set_curr_task(int cpu, struct task_struct *p)
10041 {
10042 	cpu_curr(cpu) = p;
10043 }
10044 
10045 #endif
10046 
10047 #ifdef CONFIG_CGROUP_SCHED
10048 /* task_group_lock serializes the addition/removal of task groups */
10049 static DEFINE_SPINLOCK(task_group_lock);
10050 
10051 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10052 					    struct task_group *parent)
10053 {
10054 #ifdef CONFIG_UCLAMP_TASK_GROUP
10055 	enum uclamp_id clamp_id;
10056 
10057 	for_each_clamp_id(clamp_id) {
10058 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10059 			      uclamp_none(clamp_id), false);
10060 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10061 	}
10062 #endif
10063 }
10064 
10065 static void sched_free_group(struct task_group *tg)
10066 {
10067 	free_fair_sched_group(tg);
10068 	free_rt_sched_group(tg);
10069 	autogroup_free(tg);
10070 	kmem_cache_free(task_group_cache, tg);
10071 }
10072 
10073 static void sched_free_group_rcu(struct rcu_head *rcu)
10074 {
10075 	sched_free_group(container_of(rcu, struct task_group, rcu));
10076 }
10077 
10078 static void sched_unregister_group(struct task_group *tg)
10079 {
10080 	unregister_fair_sched_group(tg);
10081 	unregister_rt_sched_group(tg);
10082 	/*
10083 	 * We have to wait for yet another RCU grace period to expire, as
10084 	 * print_cfs_stats() might run concurrently.
10085 	 */
10086 	call_rcu(&tg->rcu, sched_free_group_rcu);
10087 }
10088 
10089 /* allocate runqueue etc for a new task group */
10090 struct task_group *sched_create_group(struct task_group *parent)
10091 {
10092 	struct task_group *tg;
10093 
10094 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10095 	if (!tg)
10096 		return ERR_PTR(-ENOMEM);
10097 
10098 	if (!alloc_fair_sched_group(tg, parent))
10099 		goto err;
10100 
10101 	if (!alloc_rt_sched_group(tg, parent))
10102 		goto err;
10103 
10104 	alloc_uclamp_sched_group(tg, parent);
10105 
10106 	return tg;
10107 
10108 err:
10109 	sched_free_group(tg);
10110 	return ERR_PTR(-ENOMEM);
10111 }
10112 
10113 void sched_online_group(struct task_group *tg, struct task_group *parent)
10114 {
10115 	unsigned long flags;
10116 
10117 	spin_lock_irqsave(&task_group_lock, flags);
10118 	list_add_rcu(&tg->list, &task_groups);
10119 
10120 	/* Root should already exist: */
10121 	WARN_ON(!parent);
10122 
10123 	tg->parent = parent;
10124 	INIT_LIST_HEAD(&tg->children);
10125 	list_add_rcu(&tg->siblings, &parent->children);
10126 	spin_unlock_irqrestore(&task_group_lock, flags);
10127 
10128 	online_fair_sched_group(tg);
10129 }
10130 
10131 /* rcu callback to free various structures associated with a task group */
10132 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10133 {
10134 	/* Now it should be safe to free those cfs_rqs: */
10135 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10136 }
10137 
10138 void sched_destroy_group(struct task_group *tg)
10139 {
10140 	/* Wait for possible concurrent references to cfs_rqs complete: */
10141 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10142 }
10143 
10144 void sched_release_group(struct task_group *tg)
10145 {
10146 	unsigned long flags;
10147 
10148 	/*
10149 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10150 	 * sched_cfs_period_timer()).
10151 	 *
10152 	 * For this to be effective, we have to wait for all pending users of
10153 	 * this task group to leave their RCU critical section to ensure no new
10154 	 * user will see our dying task group any more. Specifically ensure
10155 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10156 	 *
10157 	 * We therefore defer calling unregister_fair_sched_group() to
10158 	 * sched_unregister_group() which is guarantied to get called only after the
10159 	 * current RCU grace period has expired.
10160 	 */
10161 	spin_lock_irqsave(&task_group_lock, flags);
10162 	list_del_rcu(&tg->list);
10163 	list_del_rcu(&tg->siblings);
10164 	spin_unlock_irqrestore(&task_group_lock, flags);
10165 }
10166 
10167 static void sched_change_group(struct task_struct *tsk, int type)
10168 {
10169 	struct task_group *tg;
10170 
10171 	/*
10172 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10173 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10174 	 * to prevent lockdep warnings.
10175 	 */
10176 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10177 			  struct task_group, css);
10178 	tg = autogroup_task_group(tsk, tg);
10179 	tsk->sched_task_group = tg;
10180 
10181 #ifdef CONFIG_FAIR_GROUP_SCHED
10182 	if (tsk->sched_class->task_change_group)
10183 		tsk->sched_class->task_change_group(tsk, type);
10184 	else
10185 #endif
10186 		set_task_rq(tsk, task_cpu(tsk));
10187 }
10188 
10189 /*
10190  * Change task's runqueue when it moves between groups.
10191  *
10192  * The caller of this function should have put the task in its new group by
10193  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10194  * its new group.
10195  */
10196 void sched_move_task(struct task_struct *tsk)
10197 {
10198 	int queued, running, queue_flags =
10199 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10200 	struct rq_flags rf;
10201 	struct rq *rq;
10202 
10203 	rq = task_rq_lock(tsk, &rf);
10204 	update_rq_clock(rq);
10205 
10206 	running = task_current(rq, tsk);
10207 	queued = task_on_rq_queued(tsk);
10208 
10209 	if (queued)
10210 		dequeue_task(rq, tsk, queue_flags);
10211 	if (running)
10212 		put_prev_task(rq, tsk);
10213 
10214 	sched_change_group(tsk, TASK_MOVE_GROUP);
10215 
10216 	if (queued)
10217 		enqueue_task(rq, tsk, queue_flags);
10218 	if (running) {
10219 		set_next_task(rq, tsk);
10220 		/*
10221 		 * After changing group, the running task may have joined a
10222 		 * throttled one but it's still the running task. Trigger a
10223 		 * resched to make sure that task can still run.
10224 		 */
10225 		resched_curr(rq);
10226 	}
10227 
10228 	task_rq_unlock(rq, tsk, &rf);
10229 }
10230 
10231 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10232 {
10233 	return css ? container_of(css, struct task_group, css) : NULL;
10234 }
10235 
10236 static struct cgroup_subsys_state *
10237 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10238 {
10239 	struct task_group *parent = css_tg(parent_css);
10240 	struct task_group *tg;
10241 
10242 	if (!parent) {
10243 		/* This is early initialization for the top cgroup */
10244 		return &root_task_group.css;
10245 	}
10246 
10247 	tg = sched_create_group(parent);
10248 	if (IS_ERR(tg))
10249 		return ERR_PTR(-ENOMEM);
10250 
10251 	return &tg->css;
10252 }
10253 
10254 /* Expose task group only after completing cgroup initialization */
10255 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10256 {
10257 	struct task_group *tg = css_tg(css);
10258 	struct task_group *parent = css_tg(css->parent);
10259 
10260 	if (parent)
10261 		sched_online_group(tg, parent);
10262 
10263 #ifdef CONFIG_UCLAMP_TASK_GROUP
10264 	/* Propagate the effective uclamp value for the new group */
10265 	mutex_lock(&uclamp_mutex);
10266 	rcu_read_lock();
10267 	cpu_util_update_eff(css);
10268 	rcu_read_unlock();
10269 	mutex_unlock(&uclamp_mutex);
10270 #endif
10271 
10272 	return 0;
10273 }
10274 
10275 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10276 {
10277 	struct task_group *tg = css_tg(css);
10278 
10279 	sched_release_group(tg);
10280 }
10281 
10282 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10283 {
10284 	struct task_group *tg = css_tg(css);
10285 
10286 	/*
10287 	 * Relies on the RCU grace period between css_released() and this.
10288 	 */
10289 	sched_unregister_group(tg);
10290 }
10291 
10292 /*
10293  * This is called before wake_up_new_task(), therefore we really only
10294  * have to set its group bits, all the other stuff does not apply.
10295  */
10296 static void cpu_cgroup_fork(struct task_struct *task)
10297 {
10298 	struct rq_flags rf;
10299 	struct rq *rq;
10300 
10301 	rq = task_rq_lock(task, &rf);
10302 
10303 	update_rq_clock(rq);
10304 	sched_change_group(task, TASK_SET_GROUP);
10305 
10306 	task_rq_unlock(rq, task, &rf);
10307 }
10308 
10309 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10310 {
10311 	struct task_struct *task;
10312 	struct cgroup_subsys_state *css;
10313 	int ret = 0;
10314 
10315 	cgroup_taskset_for_each(task, css, tset) {
10316 #ifdef CONFIG_RT_GROUP_SCHED
10317 		if (!sched_rt_can_attach(css_tg(css), task))
10318 			return -EINVAL;
10319 #endif
10320 		/*
10321 		 * Serialize against wake_up_new_task() such that if it's
10322 		 * running, we're sure to observe its full state.
10323 		 */
10324 		raw_spin_lock_irq(&task->pi_lock);
10325 		/*
10326 		 * Avoid calling sched_move_task() before wake_up_new_task()
10327 		 * has happened. This would lead to problems with PELT, due to
10328 		 * move wanting to detach+attach while we're not attached yet.
10329 		 */
10330 		if (READ_ONCE(task->__state) == TASK_NEW)
10331 			ret = -EINVAL;
10332 		raw_spin_unlock_irq(&task->pi_lock);
10333 
10334 		if (ret)
10335 			break;
10336 	}
10337 	return ret;
10338 }
10339 
10340 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10341 {
10342 	struct task_struct *task;
10343 	struct cgroup_subsys_state *css;
10344 
10345 	cgroup_taskset_for_each(task, css, tset)
10346 		sched_move_task(task);
10347 }
10348 
10349 #ifdef CONFIG_UCLAMP_TASK_GROUP
10350 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10351 {
10352 	struct cgroup_subsys_state *top_css = css;
10353 	struct uclamp_se *uc_parent = NULL;
10354 	struct uclamp_se *uc_se = NULL;
10355 	unsigned int eff[UCLAMP_CNT];
10356 	enum uclamp_id clamp_id;
10357 	unsigned int clamps;
10358 
10359 	lockdep_assert_held(&uclamp_mutex);
10360 	SCHED_WARN_ON(!rcu_read_lock_held());
10361 
10362 	css_for_each_descendant_pre(css, top_css) {
10363 		uc_parent = css_tg(css)->parent
10364 			? css_tg(css)->parent->uclamp : NULL;
10365 
10366 		for_each_clamp_id(clamp_id) {
10367 			/* Assume effective clamps matches requested clamps */
10368 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10369 			/* Cap effective clamps with parent's effective clamps */
10370 			if (uc_parent &&
10371 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10372 				eff[clamp_id] = uc_parent[clamp_id].value;
10373 			}
10374 		}
10375 		/* Ensure protection is always capped by limit */
10376 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10377 
10378 		/* Propagate most restrictive effective clamps */
10379 		clamps = 0x0;
10380 		uc_se = css_tg(css)->uclamp;
10381 		for_each_clamp_id(clamp_id) {
10382 			if (eff[clamp_id] == uc_se[clamp_id].value)
10383 				continue;
10384 			uc_se[clamp_id].value = eff[clamp_id];
10385 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10386 			clamps |= (0x1 << clamp_id);
10387 		}
10388 		if (!clamps) {
10389 			css = css_rightmost_descendant(css);
10390 			continue;
10391 		}
10392 
10393 		/* Immediately update descendants RUNNABLE tasks */
10394 		uclamp_update_active_tasks(css);
10395 	}
10396 }
10397 
10398 /*
10399  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10400  * C expression. Since there is no way to convert a macro argument (N) into a
10401  * character constant, use two levels of macros.
10402  */
10403 #define _POW10(exp) ((unsigned int)1e##exp)
10404 #define POW10(exp) _POW10(exp)
10405 
10406 struct uclamp_request {
10407 #define UCLAMP_PERCENT_SHIFT	2
10408 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10409 	s64 percent;
10410 	u64 util;
10411 	int ret;
10412 };
10413 
10414 static inline struct uclamp_request
10415 capacity_from_percent(char *buf)
10416 {
10417 	struct uclamp_request req = {
10418 		.percent = UCLAMP_PERCENT_SCALE,
10419 		.util = SCHED_CAPACITY_SCALE,
10420 		.ret = 0,
10421 	};
10422 
10423 	buf = strim(buf);
10424 	if (strcmp(buf, "max")) {
10425 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10426 					     &req.percent);
10427 		if (req.ret)
10428 			return req;
10429 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10430 			req.ret = -ERANGE;
10431 			return req;
10432 		}
10433 
10434 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10435 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10436 	}
10437 
10438 	return req;
10439 }
10440 
10441 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10442 				size_t nbytes, loff_t off,
10443 				enum uclamp_id clamp_id)
10444 {
10445 	struct uclamp_request req;
10446 	struct task_group *tg;
10447 
10448 	req = capacity_from_percent(buf);
10449 	if (req.ret)
10450 		return req.ret;
10451 
10452 	static_branch_enable(&sched_uclamp_used);
10453 
10454 	mutex_lock(&uclamp_mutex);
10455 	rcu_read_lock();
10456 
10457 	tg = css_tg(of_css(of));
10458 	if (tg->uclamp_req[clamp_id].value != req.util)
10459 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10460 
10461 	/*
10462 	 * Because of not recoverable conversion rounding we keep track of the
10463 	 * exact requested value
10464 	 */
10465 	tg->uclamp_pct[clamp_id] = req.percent;
10466 
10467 	/* Update effective clamps to track the most restrictive value */
10468 	cpu_util_update_eff(of_css(of));
10469 
10470 	rcu_read_unlock();
10471 	mutex_unlock(&uclamp_mutex);
10472 
10473 	return nbytes;
10474 }
10475 
10476 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10477 				    char *buf, size_t nbytes,
10478 				    loff_t off)
10479 {
10480 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10481 }
10482 
10483 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10484 				    char *buf, size_t nbytes,
10485 				    loff_t off)
10486 {
10487 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10488 }
10489 
10490 static inline void cpu_uclamp_print(struct seq_file *sf,
10491 				    enum uclamp_id clamp_id)
10492 {
10493 	struct task_group *tg;
10494 	u64 util_clamp;
10495 	u64 percent;
10496 	u32 rem;
10497 
10498 	rcu_read_lock();
10499 	tg = css_tg(seq_css(sf));
10500 	util_clamp = tg->uclamp_req[clamp_id].value;
10501 	rcu_read_unlock();
10502 
10503 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10504 		seq_puts(sf, "max\n");
10505 		return;
10506 	}
10507 
10508 	percent = tg->uclamp_pct[clamp_id];
10509 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10510 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10511 }
10512 
10513 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10514 {
10515 	cpu_uclamp_print(sf, UCLAMP_MIN);
10516 	return 0;
10517 }
10518 
10519 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10520 {
10521 	cpu_uclamp_print(sf, UCLAMP_MAX);
10522 	return 0;
10523 }
10524 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10525 
10526 #ifdef CONFIG_FAIR_GROUP_SCHED
10527 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10528 				struct cftype *cftype, u64 shareval)
10529 {
10530 	if (shareval > scale_load_down(ULONG_MAX))
10531 		shareval = MAX_SHARES;
10532 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10533 }
10534 
10535 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10536 			       struct cftype *cft)
10537 {
10538 	struct task_group *tg = css_tg(css);
10539 
10540 	return (u64) scale_load_down(tg->shares);
10541 }
10542 
10543 #ifdef CONFIG_CFS_BANDWIDTH
10544 static DEFINE_MUTEX(cfs_constraints_mutex);
10545 
10546 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10547 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10548 /* More than 203 days if BW_SHIFT equals 20. */
10549 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10550 
10551 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10552 
10553 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10554 				u64 burst)
10555 {
10556 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10557 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10558 
10559 	if (tg == &root_task_group)
10560 		return -EINVAL;
10561 
10562 	/*
10563 	 * Ensure we have at some amount of bandwidth every period.  This is
10564 	 * to prevent reaching a state of large arrears when throttled via
10565 	 * entity_tick() resulting in prolonged exit starvation.
10566 	 */
10567 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10568 		return -EINVAL;
10569 
10570 	/*
10571 	 * Likewise, bound things on the other side by preventing insane quota
10572 	 * periods.  This also allows us to normalize in computing quota
10573 	 * feasibility.
10574 	 */
10575 	if (period > max_cfs_quota_period)
10576 		return -EINVAL;
10577 
10578 	/*
10579 	 * Bound quota to defend quota against overflow during bandwidth shift.
10580 	 */
10581 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10582 		return -EINVAL;
10583 
10584 	if (quota != RUNTIME_INF && (burst > quota ||
10585 				     burst + quota > max_cfs_runtime))
10586 		return -EINVAL;
10587 
10588 	/*
10589 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10590 	 * unthrottle_offline_cfs_rqs().
10591 	 */
10592 	cpus_read_lock();
10593 	mutex_lock(&cfs_constraints_mutex);
10594 	ret = __cfs_schedulable(tg, period, quota);
10595 	if (ret)
10596 		goto out_unlock;
10597 
10598 	runtime_enabled = quota != RUNTIME_INF;
10599 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10600 	/*
10601 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10602 	 * before making related changes, and on->off must occur afterwards
10603 	 */
10604 	if (runtime_enabled && !runtime_was_enabled)
10605 		cfs_bandwidth_usage_inc();
10606 	raw_spin_lock_irq(&cfs_b->lock);
10607 	cfs_b->period = ns_to_ktime(period);
10608 	cfs_b->quota = quota;
10609 	cfs_b->burst = burst;
10610 
10611 	__refill_cfs_bandwidth_runtime(cfs_b);
10612 
10613 	/* Restart the period timer (if active) to handle new period expiry: */
10614 	if (runtime_enabled)
10615 		start_cfs_bandwidth(cfs_b);
10616 
10617 	raw_spin_unlock_irq(&cfs_b->lock);
10618 
10619 	for_each_online_cpu(i) {
10620 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10621 		struct rq *rq = cfs_rq->rq;
10622 		struct rq_flags rf;
10623 
10624 		rq_lock_irq(rq, &rf);
10625 		cfs_rq->runtime_enabled = runtime_enabled;
10626 		cfs_rq->runtime_remaining = 0;
10627 
10628 		if (cfs_rq->throttled)
10629 			unthrottle_cfs_rq(cfs_rq);
10630 		rq_unlock_irq(rq, &rf);
10631 	}
10632 	if (runtime_was_enabled && !runtime_enabled)
10633 		cfs_bandwidth_usage_dec();
10634 out_unlock:
10635 	mutex_unlock(&cfs_constraints_mutex);
10636 	cpus_read_unlock();
10637 
10638 	return ret;
10639 }
10640 
10641 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10642 {
10643 	u64 quota, period, burst;
10644 
10645 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10646 	burst = tg->cfs_bandwidth.burst;
10647 	if (cfs_quota_us < 0)
10648 		quota = RUNTIME_INF;
10649 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10650 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10651 	else
10652 		return -EINVAL;
10653 
10654 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10655 }
10656 
10657 static long tg_get_cfs_quota(struct task_group *tg)
10658 {
10659 	u64 quota_us;
10660 
10661 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10662 		return -1;
10663 
10664 	quota_us = tg->cfs_bandwidth.quota;
10665 	do_div(quota_us, NSEC_PER_USEC);
10666 
10667 	return quota_us;
10668 }
10669 
10670 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10671 {
10672 	u64 quota, period, burst;
10673 
10674 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10675 		return -EINVAL;
10676 
10677 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10678 	quota = tg->cfs_bandwidth.quota;
10679 	burst = tg->cfs_bandwidth.burst;
10680 
10681 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10682 }
10683 
10684 static long tg_get_cfs_period(struct task_group *tg)
10685 {
10686 	u64 cfs_period_us;
10687 
10688 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10689 	do_div(cfs_period_us, NSEC_PER_USEC);
10690 
10691 	return cfs_period_us;
10692 }
10693 
10694 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10695 {
10696 	u64 quota, period, burst;
10697 
10698 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10699 		return -EINVAL;
10700 
10701 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10702 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10703 	quota = tg->cfs_bandwidth.quota;
10704 
10705 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10706 }
10707 
10708 static long tg_get_cfs_burst(struct task_group *tg)
10709 {
10710 	u64 burst_us;
10711 
10712 	burst_us = tg->cfs_bandwidth.burst;
10713 	do_div(burst_us, NSEC_PER_USEC);
10714 
10715 	return burst_us;
10716 }
10717 
10718 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10719 				  struct cftype *cft)
10720 {
10721 	return tg_get_cfs_quota(css_tg(css));
10722 }
10723 
10724 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10725 				   struct cftype *cftype, s64 cfs_quota_us)
10726 {
10727 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10728 }
10729 
10730 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10731 				   struct cftype *cft)
10732 {
10733 	return tg_get_cfs_period(css_tg(css));
10734 }
10735 
10736 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10737 				    struct cftype *cftype, u64 cfs_period_us)
10738 {
10739 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10740 }
10741 
10742 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10743 				  struct cftype *cft)
10744 {
10745 	return tg_get_cfs_burst(css_tg(css));
10746 }
10747 
10748 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10749 				   struct cftype *cftype, u64 cfs_burst_us)
10750 {
10751 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10752 }
10753 
10754 struct cfs_schedulable_data {
10755 	struct task_group *tg;
10756 	u64 period, quota;
10757 };
10758 
10759 /*
10760  * normalize group quota/period to be quota/max_period
10761  * note: units are usecs
10762  */
10763 static u64 normalize_cfs_quota(struct task_group *tg,
10764 			       struct cfs_schedulable_data *d)
10765 {
10766 	u64 quota, period;
10767 
10768 	if (tg == d->tg) {
10769 		period = d->period;
10770 		quota = d->quota;
10771 	} else {
10772 		period = tg_get_cfs_period(tg);
10773 		quota = tg_get_cfs_quota(tg);
10774 	}
10775 
10776 	/* note: these should typically be equivalent */
10777 	if (quota == RUNTIME_INF || quota == -1)
10778 		return RUNTIME_INF;
10779 
10780 	return to_ratio(period, quota);
10781 }
10782 
10783 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10784 {
10785 	struct cfs_schedulable_data *d = data;
10786 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10787 	s64 quota = 0, parent_quota = -1;
10788 
10789 	if (!tg->parent) {
10790 		quota = RUNTIME_INF;
10791 	} else {
10792 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10793 
10794 		quota = normalize_cfs_quota(tg, d);
10795 		parent_quota = parent_b->hierarchical_quota;
10796 
10797 		/*
10798 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10799 		 * always take the min.  On cgroup1, only inherit when no
10800 		 * limit is set:
10801 		 */
10802 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10803 			quota = min(quota, parent_quota);
10804 		} else {
10805 			if (quota == RUNTIME_INF)
10806 				quota = parent_quota;
10807 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10808 				return -EINVAL;
10809 		}
10810 	}
10811 	cfs_b->hierarchical_quota = quota;
10812 
10813 	return 0;
10814 }
10815 
10816 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10817 {
10818 	int ret;
10819 	struct cfs_schedulable_data data = {
10820 		.tg = tg,
10821 		.period = period,
10822 		.quota = quota,
10823 	};
10824 
10825 	if (quota != RUNTIME_INF) {
10826 		do_div(data.period, NSEC_PER_USEC);
10827 		do_div(data.quota, NSEC_PER_USEC);
10828 	}
10829 
10830 	rcu_read_lock();
10831 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10832 	rcu_read_unlock();
10833 
10834 	return ret;
10835 }
10836 
10837 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10838 {
10839 	struct task_group *tg = css_tg(seq_css(sf));
10840 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10841 
10842 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10843 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10844 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10845 
10846 	if (schedstat_enabled() && tg != &root_task_group) {
10847 		struct sched_statistics *stats;
10848 		u64 ws = 0;
10849 		int i;
10850 
10851 		for_each_possible_cpu(i) {
10852 			stats = __schedstats_from_se(tg->se[i]);
10853 			ws += schedstat_val(stats->wait_sum);
10854 		}
10855 
10856 		seq_printf(sf, "wait_sum %llu\n", ws);
10857 	}
10858 
10859 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10860 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10861 
10862 	return 0;
10863 }
10864 #endif /* CONFIG_CFS_BANDWIDTH */
10865 #endif /* CONFIG_FAIR_GROUP_SCHED */
10866 
10867 #ifdef CONFIG_RT_GROUP_SCHED
10868 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10869 				struct cftype *cft, s64 val)
10870 {
10871 	return sched_group_set_rt_runtime(css_tg(css), val);
10872 }
10873 
10874 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10875 			       struct cftype *cft)
10876 {
10877 	return sched_group_rt_runtime(css_tg(css));
10878 }
10879 
10880 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10881 				    struct cftype *cftype, u64 rt_period_us)
10882 {
10883 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10884 }
10885 
10886 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10887 				   struct cftype *cft)
10888 {
10889 	return sched_group_rt_period(css_tg(css));
10890 }
10891 #endif /* CONFIG_RT_GROUP_SCHED */
10892 
10893 #ifdef CONFIG_FAIR_GROUP_SCHED
10894 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10895 			       struct cftype *cft)
10896 {
10897 	return css_tg(css)->idle;
10898 }
10899 
10900 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10901 				struct cftype *cft, s64 idle)
10902 {
10903 	return sched_group_set_idle(css_tg(css), idle);
10904 }
10905 #endif
10906 
10907 static struct cftype cpu_legacy_files[] = {
10908 #ifdef CONFIG_FAIR_GROUP_SCHED
10909 	{
10910 		.name = "shares",
10911 		.read_u64 = cpu_shares_read_u64,
10912 		.write_u64 = cpu_shares_write_u64,
10913 	},
10914 	{
10915 		.name = "idle",
10916 		.read_s64 = cpu_idle_read_s64,
10917 		.write_s64 = cpu_idle_write_s64,
10918 	},
10919 #endif
10920 #ifdef CONFIG_CFS_BANDWIDTH
10921 	{
10922 		.name = "cfs_quota_us",
10923 		.read_s64 = cpu_cfs_quota_read_s64,
10924 		.write_s64 = cpu_cfs_quota_write_s64,
10925 	},
10926 	{
10927 		.name = "cfs_period_us",
10928 		.read_u64 = cpu_cfs_period_read_u64,
10929 		.write_u64 = cpu_cfs_period_write_u64,
10930 	},
10931 	{
10932 		.name = "cfs_burst_us",
10933 		.read_u64 = cpu_cfs_burst_read_u64,
10934 		.write_u64 = cpu_cfs_burst_write_u64,
10935 	},
10936 	{
10937 		.name = "stat",
10938 		.seq_show = cpu_cfs_stat_show,
10939 	},
10940 #endif
10941 #ifdef CONFIG_RT_GROUP_SCHED
10942 	{
10943 		.name = "rt_runtime_us",
10944 		.read_s64 = cpu_rt_runtime_read,
10945 		.write_s64 = cpu_rt_runtime_write,
10946 	},
10947 	{
10948 		.name = "rt_period_us",
10949 		.read_u64 = cpu_rt_period_read_uint,
10950 		.write_u64 = cpu_rt_period_write_uint,
10951 	},
10952 #endif
10953 #ifdef CONFIG_UCLAMP_TASK_GROUP
10954 	{
10955 		.name = "uclamp.min",
10956 		.flags = CFTYPE_NOT_ON_ROOT,
10957 		.seq_show = cpu_uclamp_min_show,
10958 		.write = cpu_uclamp_min_write,
10959 	},
10960 	{
10961 		.name = "uclamp.max",
10962 		.flags = CFTYPE_NOT_ON_ROOT,
10963 		.seq_show = cpu_uclamp_max_show,
10964 		.write = cpu_uclamp_max_write,
10965 	},
10966 #endif
10967 	{ }	/* Terminate */
10968 };
10969 
10970 static int cpu_extra_stat_show(struct seq_file *sf,
10971 			       struct cgroup_subsys_state *css)
10972 {
10973 #ifdef CONFIG_CFS_BANDWIDTH
10974 	{
10975 		struct task_group *tg = css_tg(css);
10976 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10977 		u64 throttled_usec, burst_usec;
10978 
10979 		throttled_usec = cfs_b->throttled_time;
10980 		do_div(throttled_usec, NSEC_PER_USEC);
10981 		burst_usec = cfs_b->burst_time;
10982 		do_div(burst_usec, NSEC_PER_USEC);
10983 
10984 		seq_printf(sf, "nr_periods %d\n"
10985 			   "nr_throttled %d\n"
10986 			   "throttled_usec %llu\n"
10987 			   "nr_bursts %d\n"
10988 			   "burst_usec %llu\n",
10989 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10990 			   throttled_usec, cfs_b->nr_burst, burst_usec);
10991 	}
10992 #endif
10993 	return 0;
10994 }
10995 
10996 #ifdef CONFIG_FAIR_GROUP_SCHED
10997 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10998 			       struct cftype *cft)
10999 {
11000 	struct task_group *tg = css_tg(css);
11001 	u64 weight = scale_load_down(tg->shares);
11002 
11003 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11004 }
11005 
11006 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11007 				struct cftype *cft, u64 weight)
11008 {
11009 	/*
11010 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11011 	 * values which are 1, 100 and 10000 respectively.  While it loses
11012 	 * a bit of range on both ends, it maps pretty well onto the shares
11013 	 * value used by scheduler and the round-trip conversions preserve
11014 	 * the original value over the entire range.
11015 	 */
11016 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11017 		return -ERANGE;
11018 
11019 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11020 
11021 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11022 }
11023 
11024 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11025 				    struct cftype *cft)
11026 {
11027 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11028 	int last_delta = INT_MAX;
11029 	int prio, delta;
11030 
11031 	/* find the closest nice value to the current weight */
11032 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11033 		delta = abs(sched_prio_to_weight[prio] - weight);
11034 		if (delta >= last_delta)
11035 			break;
11036 		last_delta = delta;
11037 	}
11038 
11039 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11040 }
11041 
11042 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11043 				     struct cftype *cft, s64 nice)
11044 {
11045 	unsigned long weight;
11046 	int idx;
11047 
11048 	if (nice < MIN_NICE || nice > MAX_NICE)
11049 		return -ERANGE;
11050 
11051 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11052 	idx = array_index_nospec(idx, 40);
11053 	weight = sched_prio_to_weight[idx];
11054 
11055 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11056 }
11057 #endif
11058 
11059 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11060 						  long period, long quota)
11061 {
11062 	if (quota < 0)
11063 		seq_puts(sf, "max");
11064 	else
11065 		seq_printf(sf, "%ld", quota);
11066 
11067 	seq_printf(sf, " %ld\n", period);
11068 }
11069 
11070 /* caller should put the current value in *@periodp before calling */
11071 static int __maybe_unused cpu_period_quota_parse(char *buf,
11072 						 u64 *periodp, u64 *quotap)
11073 {
11074 	char tok[21];	/* U64_MAX */
11075 
11076 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11077 		return -EINVAL;
11078 
11079 	*periodp *= NSEC_PER_USEC;
11080 
11081 	if (sscanf(tok, "%llu", quotap))
11082 		*quotap *= NSEC_PER_USEC;
11083 	else if (!strcmp(tok, "max"))
11084 		*quotap = RUNTIME_INF;
11085 	else
11086 		return -EINVAL;
11087 
11088 	return 0;
11089 }
11090 
11091 #ifdef CONFIG_CFS_BANDWIDTH
11092 static int cpu_max_show(struct seq_file *sf, void *v)
11093 {
11094 	struct task_group *tg = css_tg(seq_css(sf));
11095 
11096 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11097 	return 0;
11098 }
11099 
11100 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11101 			     char *buf, size_t nbytes, loff_t off)
11102 {
11103 	struct task_group *tg = css_tg(of_css(of));
11104 	u64 period = tg_get_cfs_period(tg);
11105 	u64 burst = tg_get_cfs_burst(tg);
11106 	u64 quota;
11107 	int ret;
11108 
11109 	ret = cpu_period_quota_parse(buf, &period, &quota);
11110 	if (!ret)
11111 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11112 	return ret ?: nbytes;
11113 }
11114 #endif
11115 
11116 static struct cftype cpu_files[] = {
11117 #ifdef CONFIG_FAIR_GROUP_SCHED
11118 	{
11119 		.name = "weight",
11120 		.flags = CFTYPE_NOT_ON_ROOT,
11121 		.read_u64 = cpu_weight_read_u64,
11122 		.write_u64 = cpu_weight_write_u64,
11123 	},
11124 	{
11125 		.name = "weight.nice",
11126 		.flags = CFTYPE_NOT_ON_ROOT,
11127 		.read_s64 = cpu_weight_nice_read_s64,
11128 		.write_s64 = cpu_weight_nice_write_s64,
11129 	},
11130 	{
11131 		.name = "idle",
11132 		.flags = CFTYPE_NOT_ON_ROOT,
11133 		.read_s64 = cpu_idle_read_s64,
11134 		.write_s64 = cpu_idle_write_s64,
11135 	},
11136 #endif
11137 #ifdef CONFIG_CFS_BANDWIDTH
11138 	{
11139 		.name = "max",
11140 		.flags = CFTYPE_NOT_ON_ROOT,
11141 		.seq_show = cpu_max_show,
11142 		.write = cpu_max_write,
11143 	},
11144 	{
11145 		.name = "max.burst",
11146 		.flags = CFTYPE_NOT_ON_ROOT,
11147 		.read_u64 = cpu_cfs_burst_read_u64,
11148 		.write_u64 = cpu_cfs_burst_write_u64,
11149 	},
11150 #endif
11151 #ifdef CONFIG_UCLAMP_TASK_GROUP
11152 	{
11153 		.name = "uclamp.min",
11154 		.flags = CFTYPE_NOT_ON_ROOT,
11155 		.seq_show = cpu_uclamp_min_show,
11156 		.write = cpu_uclamp_min_write,
11157 	},
11158 	{
11159 		.name = "uclamp.max",
11160 		.flags = CFTYPE_NOT_ON_ROOT,
11161 		.seq_show = cpu_uclamp_max_show,
11162 		.write = cpu_uclamp_max_write,
11163 	},
11164 #endif
11165 	{ }	/* terminate */
11166 };
11167 
11168 struct cgroup_subsys cpu_cgrp_subsys = {
11169 	.css_alloc	= cpu_cgroup_css_alloc,
11170 	.css_online	= cpu_cgroup_css_online,
11171 	.css_released	= cpu_cgroup_css_released,
11172 	.css_free	= cpu_cgroup_css_free,
11173 	.css_extra_stat_show = cpu_extra_stat_show,
11174 	.fork		= cpu_cgroup_fork,
11175 	.can_attach	= cpu_cgroup_can_attach,
11176 	.attach		= cpu_cgroup_attach,
11177 	.legacy_cftypes	= cpu_legacy_files,
11178 	.dfl_cftypes	= cpu_files,
11179 	.early_init	= true,
11180 	.threaded	= true,
11181 };
11182 
11183 #endif	/* CONFIG_CGROUP_SCHED */
11184 
11185 void dump_cpu_task(int cpu)
11186 {
11187 	if (cpu == smp_processor_id() && in_hardirq()) {
11188 		struct pt_regs *regs;
11189 
11190 		regs = get_irq_regs();
11191 		if (regs) {
11192 			show_regs(regs);
11193 			return;
11194 		}
11195 	}
11196 
11197 	if (trigger_single_cpu_backtrace(cpu))
11198 		return;
11199 
11200 	pr_info("Task dump for CPU %d:\n", cpu);
11201 	sched_show_task(cpu_curr(cpu));
11202 }
11203 
11204 /*
11205  * Nice levels are multiplicative, with a gentle 10% change for every
11206  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11207  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11208  * that remained on nice 0.
11209  *
11210  * The "10% effect" is relative and cumulative: from _any_ nice level,
11211  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11212  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11213  * If a task goes up by ~10% and another task goes down by ~10% then
11214  * the relative distance between them is ~25%.)
11215  */
11216 const int sched_prio_to_weight[40] = {
11217  /* -20 */     88761,     71755,     56483,     46273,     36291,
11218  /* -15 */     29154,     23254,     18705,     14949,     11916,
11219  /* -10 */      9548,      7620,      6100,      4904,      3906,
11220  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11221  /*   0 */      1024,       820,       655,       526,       423,
11222  /*   5 */       335,       272,       215,       172,       137,
11223  /*  10 */       110,        87,        70,        56,        45,
11224  /*  15 */        36,        29,        23,        18,        15,
11225 };
11226 
11227 /*
11228  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11229  *
11230  * In cases where the weight does not change often, we can use the
11231  * precalculated inverse to speed up arithmetics by turning divisions
11232  * into multiplications:
11233  */
11234 const u32 sched_prio_to_wmult[40] = {
11235  /* -20 */     48388,     59856,     76040,     92818,    118348,
11236  /* -15 */    147320,    184698,    229616,    287308,    360437,
11237  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11238  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11239  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11240  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11241  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11242  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11243 };
11244 
11245 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11246 {
11247         trace_sched_update_nr_running_tp(rq, count);
11248 }
11249