xref: /openbmc/linux/kernel/sched/core.c (revision 0984d159)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 /*
128  * Number of tasks to iterate in a single balance run.
129  * Limited because this is done with IRQs disabled.
130  */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132 
133 /*
134  * period over which we average the RT time consumption, measured
135  * in ms.
136  *
137  * default: 1s
138  */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140 
141 /*
142  * period over which we measure -rt task cpu usage in us.
143  * default: 1s
144  */
145 unsigned int sysctl_sched_rt_period = 1000000;
146 
147 __read_mostly int scheduler_running;
148 
149 /*
150  * part of the period that we allow rt tasks to run in us.
151  * default: 0.95s
152  */
153 int sysctl_sched_rt_runtime = 950000;
154 
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157 
158 /*
159  * this_rq_lock - lock this runqueue and disable interrupts.
160  */
161 static struct rq *this_rq_lock(void)
162 	__acquires(rq->lock)
163 {
164 	struct rq *rq;
165 
166 	local_irq_disable();
167 	rq = this_rq();
168 	raw_spin_lock(&rq->lock);
169 
170 	return rq;
171 }
172 
173 /*
174  * __task_rq_lock - lock the rq @p resides on.
175  */
176 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
177 	__acquires(rq->lock)
178 {
179 	struct rq *rq;
180 
181 	lockdep_assert_held(&p->pi_lock);
182 
183 	for (;;) {
184 		rq = task_rq(p);
185 		raw_spin_lock(&rq->lock);
186 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
187 			rf->cookie = lockdep_pin_lock(&rq->lock);
188 			return rq;
189 		}
190 		raw_spin_unlock(&rq->lock);
191 
192 		while (unlikely(task_on_rq_migrating(p)))
193 			cpu_relax();
194 	}
195 }
196 
197 /*
198  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199  */
200 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
201 	__acquires(p->pi_lock)
202 	__acquires(rq->lock)
203 {
204 	struct rq *rq;
205 
206 	for (;;) {
207 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
208 		rq = task_rq(p);
209 		raw_spin_lock(&rq->lock);
210 		/*
211 		 *	move_queued_task()		task_rq_lock()
212 		 *
213 		 *	ACQUIRE (rq->lock)
214 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
215 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
216 		 *	[S] ->cpu = new_cpu		[L] task_rq()
217 		 *					[L] ->on_rq
218 		 *	RELEASE (rq->lock)
219 		 *
220 		 * If we observe the old cpu in task_rq_lock, the acquire of
221 		 * the old rq->lock will fully serialize against the stores.
222 		 *
223 		 * If we observe the new cpu in task_rq_lock, the acquire will
224 		 * pair with the WMB to ensure we must then also see migrating.
225 		 */
226 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
227 			rf->cookie = lockdep_pin_lock(&rq->lock);
228 			return rq;
229 		}
230 		raw_spin_unlock(&rq->lock);
231 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
232 
233 		while (unlikely(task_on_rq_migrating(p)))
234 			cpu_relax();
235 	}
236 }
237 
238 #ifdef CONFIG_SCHED_HRTICK
239 /*
240  * Use HR-timers to deliver accurate preemption points.
241  */
242 
243 static void hrtick_clear(struct rq *rq)
244 {
245 	if (hrtimer_active(&rq->hrtick_timer))
246 		hrtimer_cancel(&rq->hrtick_timer);
247 }
248 
249 /*
250  * High-resolution timer tick.
251  * Runs from hardirq context with interrupts disabled.
252  */
253 static enum hrtimer_restart hrtick(struct hrtimer *timer)
254 {
255 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256 
257 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258 
259 	raw_spin_lock(&rq->lock);
260 	update_rq_clock(rq);
261 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 	raw_spin_unlock(&rq->lock);
263 
264 	return HRTIMER_NORESTART;
265 }
266 
267 #ifdef CONFIG_SMP
268 
269 static void __hrtick_restart(struct rq *rq)
270 {
271 	struct hrtimer *timer = &rq->hrtick_timer;
272 
273 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275 
276 /*
277  * called from hardirq (IPI) context
278  */
279 static void __hrtick_start(void *arg)
280 {
281 	struct rq *rq = arg;
282 
283 	raw_spin_lock(&rq->lock);
284 	__hrtick_restart(rq);
285 	rq->hrtick_csd_pending = 0;
286 	raw_spin_unlock(&rq->lock);
287 }
288 
289 /*
290  * Called to set the hrtick timer state.
291  *
292  * called with rq->lock held and irqs disabled
293  */
294 void hrtick_start(struct rq *rq, u64 delay)
295 {
296 	struct hrtimer *timer = &rq->hrtick_timer;
297 	ktime_t time;
298 	s64 delta;
299 
300 	/*
301 	 * Don't schedule slices shorter than 10000ns, that just
302 	 * doesn't make sense and can cause timer DoS.
303 	 */
304 	delta = max_t(s64, delay, 10000LL);
305 	time = ktime_add_ns(timer->base->get_time(), delta);
306 
307 	hrtimer_set_expires(timer, time);
308 
309 	if (rq == this_rq()) {
310 		__hrtick_restart(rq);
311 	} else if (!rq->hrtick_csd_pending) {
312 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
313 		rq->hrtick_csd_pending = 1;
314 	}
315 }
316 
317 #else
318 /*
319  * Called to set the hrtick timer state.
320  *
321  * called with rq->lock held and irqs disabled
322  */
323 void hrtick_start(struct rq *rq, u64 delay)
324 {
325 	/*
326 	 * Don't schedule slices shorter than 10000ns, that just
327 	 * doesn't make sense. Rely on vruntime for fairness.
328 	 */
329 	delay = max_t(u64, delay, 10000LL);
330 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 		      HRTIMER_MODE_REL_PINNED);
332 }
333 #endif /* CONFIG_SMP */
334 
335 static void init_rq_hrtick(struct rq *rq)
336 {
337 #ifdef CONFIG_SMP
338 	rq->hrtick_csd_pending = 0;
339 
340 	rq->hrtick_csd.flags = 0;
341 	rq->hrtick_csd.func = __hrtick_start;
342 	rq->hrtick_csd.info = rq;
343 #endif
344 
345 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 	rq->hrtick_timer.function = hrtick;
347 }
348 #else	/* CONFIG_SCHED_HRTICK */
349 static inline void hrtick_clear(struct rq *rq)
350 {
351 }
352 
353 static inline void init_rq_hrtick(struct rq *rq)
354 {
355 }
356 #endif	/* CONFIG_SCHED_HRTICK */
357 
358 /*
359  * cmpxchg based fetch_or, macro so it works for different integer types
360  */
361 #define fetch_or(ptr, mask)						\
362 	({								\
363 		typeof(ptr) _ptr = (ptr);				\
364 		typeof(mask) _mask = (mask);				\
365 		typeof(*_ptr) _old, _val = *_ptr;			\
366 									\
367 		for (;;) {						\
368 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
369 			if (_old == _val)				\
370 				break;					\
371 			_val = _old;					\
372 		}							\
373 	_old;								\
374 })
375 
376 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
377 /*
378  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379  * this avoids any races wrt polling state changes and thereby avoids
380  * spurious IPIs.
381  */
382 static bool set_nr_and_not_polling(struct task_struct *p)
383 {
384 	struct thread_info *ti = task_thread_info(p);
385 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386 }
387 
388 /*
389  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390  *
391  * If this returns true, then the idle task promises to call
392  * sched_ttwu_pending() and reschedule soon.
393  */
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 	struct thread_info *ti = task_thread_info(p);
397 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
398 
399 	for (;;) {
400 		if (!(val & _TIF_POLLING_NRFLAG))
401 			return false;
402 		if (val & _TIF_NEED_RESCHED)
403 			return true;
404 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 		if (old == val)
406 			break;
407 		val = old;
408 	}
409 	return true;
410 }
411 
412 #else
413 static bool set_nr_and_not_polling(struct task_struct *p)
414 {
415 	set_tsk_need_resched(p);
416 	return true;
417 }
418 
419 #ifdef CONFIG_SMP
420 static bool set_nr_if_polling(struct task_struct *p)
421 {
422 	return false;
423 }
424 #endif
425 #endif
426 
427 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428 {
429 	struct wake_q_node *node = &task->wake_q;
430 
431 	/*
432 	 * Atomically grab the task, if ->wake_q is !nil already it means
433 	 * its already queued (either by us or someone else) and will get the
434 	 * wakeup due to that.
435 	 *
436 	 * This cmpxchg() implies a full barrier, which pairs with the write
437 	 * barrier implied by the wakeup in wake_up_q().
438 	 */
439 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 		return;
441 
442 	get_task_struct(task);
443 
444 	/*
445 	 * The head is context local, there can be no concurrency.
446 	 */
447 	*head->lastp = node;
448 	head->lastp = &node->next;
449 }
450 
451 void wake_up_q(struct wake_q_head *head)
452 {
453 	struct wake_q_node *node = head->first;
454 
455 	while (node != WAKE_Q_TAIL) {
456 		struct task_struct *task;
457 
458 		task = container_of(node, struct task_struct, wake_q);
459 		BUG_ON(!task);
460 		/* task can safely be re-inserted now */
461 		node = node->next;
462 		task->wake_q.next = NULL;
463 
464 		/*
465 		 * wake_up_process() implies a wmb() to pair with the queueing
466 		 * in wake_q_add() so as not to miss wakeups.
467 		 */
468 		wake_up_process(task);
469 		put_task_struct(task);
470 	}
471 }
472 
473 /*
474  * resched_curr - mark rq's current task 'to be rescheduled now'.
475  *
476  * On UP this means the setting of the need_resched flag, on SMP it
477  * might also involve a cross-CPU call to trigger the scheduler on
478  * the target CPU.
479  */
480 void resched_curr(struct rq *rq)
481 {
482 	struct task_struct *curr = rq->curr;
483 	int cpu;
484 
485 	lockdep_assert_held(&rq->lock);
486 
487 	if (test_tsk_need_resched(curr))
488 		return;
489 
490 	cpu = cpu_of(rq);
491 
492 	if (cpu == smp_processor_id()) {
493 		set_tsk_need_resched(curr);
494 		set_preempt_need_resched();
495 		return;
496 	}
497 
498 	if (set_nr_and_not_polling(curr))
499 		smp_send_reschedule(cpu);
500 	else
501 		trace_sched_wake_idle_without_ipi(cpu);
502 }
503 
504 void resched_cpu(int cpu)
505 {
506 	struct rq *rq = cpu_rq(cpu);
507 	unsigned long flags;
508 
509 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
510 		return;
511 	resched_curr(rq);
512 	raw_spin_unlock_irqrestore(&rq->lock, flags);
513 }
514 
515 #ifdef CONFIG_SMP
516 #ifdef CONFIG_NO_HZ_COMMON
517 /*
518  * In the semi idle case, use the nearest busy cpu for migrating timers
519  * from an idle cpu.  This is good for power-savings.
520  *
521  * We don't do similar optimization for completely idle system, as
522  * selecting an idle cpu will add more delays to the timers than intended
523  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
524  */
525 int get_nohz_timer_target(void)
526 {
527 	int i, cpu = smp_processor_id();
528 	struct sched_domain *sd;
529 
530 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
531 		return cpu;
532 
533 	rcu_read_lock();
534 	for_each_domain(cpu, sd) {
535 		for_each_cpu(i, sched_domain_span(sd)) {
536 			if (cpu == i)
537 				continue;
538 
539 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
540 				cpu = i;
541 				goto unlock;
542 			}
543 		}
544 	}
545 
546 	if (!is_housekeeping_cpu(cpu))
547 		cpu = housekeeping_any_cpu();
548 unlock:
549 	rcu_read_unlock();
550 	return cpu;
551 }
552 /*
553  * When add_timer_on() enqueues a timer into the timer wheel of an
554  * idle CPU then this timer might expire before the next timer event
555  * which is scheduled to wake up that CPU. In case of a completely
556  * idle system the next event might even be infinite time into the
557  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558  * leaves the inner idle loop so the newly added timer is taken into
559  * account when the CPU goes back to idle and evaluates the timer
560  * wheel for the next timer event.
561  */
562 static void wake_up_idle_cpu(int cpu)
563 {
564 	struct rq *rq = cpu_rq(cpu);
565 
566 	if (cpu == smp_processor_id())
567 		return;
568 
569 	if (set_nr_and_not_polling(rq->idle))
570 		smp_send_reschedule(cpu);
571 	else
572 		trace_sched_wake_idle_without_ipi(cpu);
573 }
574 
575 static bool wake_up_full_nohz_cpu(int cpu)
576 {
577 	/*
578 	 * We just need the target to call irq_exit() and re-evaluate
579 	 * the next tick. The nohz full kick at least implies that.
580 	 * If needed we can still optimize that later with an
581 	 * empty IRQ.
582 	 */
583 	if (tick_nohz_full_cpu(cpu)) {
584 		if (cpu != smp_processor_id() ||
585 		    tick_nohz_tick_stopped())
586 			tick_nohz_full_kick_cpu(cpu);
587 		return true;
588 	}
589 
590 	return false;
591 }
592 
593 void wake_up_nohz_cpu(int cpu)
594 {
595 	if (!wake_up_full_nohz_cpu(cpu))
596 		wake_up_idle_cpu(cpu);
597 }
598 
599 static inline bool got_nohz_idle_kick(void)
600 {
601 	int cpu = smp_processor_id();
602 
603 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
604 		return false;
605 
606 	if (idle_cpu(cpu) && !need_resched())
607 		return true;
608 
609 	/*
610 	 * We can't run Idle Load Balance on this CPU for this time so we
611 	 * cancel it and clear NOHZ_BALANCE_KICK
612 	 */
613 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614 	return false;
615 }
616 
617 #else /* CONFIG_NO_HZ_COMMON */
618 
619 static inline bool got_nohz_idle_kick(void)
620 {
621 	return false;
622 }
623 
624 #endif /* CONFIG_NO_HZ_COMMON */
625 
626 #ifdef CONFIG_NO_HZ_FULL
627 bool sched_can_stop_tick(struct rq *rq)
628 {
629 	int fifo_nr_running;
630 
631 	/* Deadline tasks, even if single, need the tick */
632 	if (rq->dl.dl_nr_running)
633 		return false;
634 
635 	/*
636 	 * If there are more than one RR tasks, we need the tick to effect the
637 	 * actual RR behaviour.
638 	 */
639 	if (rq->rt.rr_nr_running) {
640 		if (rq->rt.rr_nr_running == 1)
641 			return true;
642 		else
643 			return false;
644 	}
645 
646 	/*
647 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
648 	 * forced preemption between FIFO tasks.
649 	 */
650 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
651 	if (fifo_nr_running)
652 		return true;
653 
654 	/*
655 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
656 	 * if there's more than one we need the tick for involuntary
657 	 * preemption.
658 	 */
659 	if (rq->nr_running > 1)
660 		return false;
661 
662 	return true;
663 }
664 #endif /* CONFIG_NO_HZ_FULL */
665 
666 void sched_avg_update(struct rq *rq)
667 {
668 	s64 period = sched_avg_period();
669 
670 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
671 		/*
672 		 * Inline assembly required to prevent the compiler
673 		 * optimising this loop into a divmod call.
674 		 * See __iter_div_u64_rem() for another example of this.
675 		 */
676 		asm("" : "+rm" (rq->age_stamp));
677 		rq->age_stamp += period;
678 		rq->rt_avg /= 2;
679 	}
680 }
681 
682 #endif /* CONFIG_SMP */
683 
684 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
685 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
686 /*
687  * Iterate task_group tree rooted at *from, calling @down when first entering a
688  * node and @up when leaving it for the final time.
689  *
690  * Caller must hold rcu_lock or sufficient equivalent.
691  */
692 int walk_tg_tree_from(struct task_group *from,
693 			     tg_visitor down, tg_visitor up, void *data)
694 {
695 	struct task_group *parent, *child;
696 	int ret;
697 
698 	parent = from;
699 
700 down:
701 	ret = (*down)(parent, data);
702 	if (ret)
703 		goto out;
704 	list_for_each_entry_rcu(child, &parent->children, siblings) {
705 		parent = child;
706 		goto down;
707 
708 up:
709 		continue;
710 	}
711 	ret = (*up)(parent, data);
712 	if (ret || parent == from)
713 		goto out;
714 
715 	child = parent;
716 	parent = parent->parent;
717 	if (parent)
718 		goto up;
719 out:
720 	return ret;
721 }
722 
723 int tg_nop(struct task_group *tg, void *data)
724 {
725 	return 0;
726 }
727 #endif
728 
729 static void set_load_weight(struct task_struct *p)
730 {
731 	int prio = p->static_prio - MAX_RT_PRIO;
732 	struct load_weight *load = &p->se.load;
733 
734 	/*
735 	 * SCHED_IDLE tasks get minimal weight:
736 	 */
737 	if (idle_policy(p->policy)) {
738 		load->weight = scale_load(WEIGHT_IDLEPRIO);
739 		load->inv_weight = WMULT_IDLEPRIO;
740 		return;
741 	}
742 
743 	load->weight = scale_load(sched_prio_to_weight[prio]);
744 	load->inv_weight = sched_prio_to_wmult[prio];
745 }
746 
747 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
748 {
749 	update_rq_clock(rq);
750 	if (!(flags & ENQUEUE_RESTORE))
751 		sched_info_queued(rq, p);
752 	p->sched_class->enqueue_task(rq, p, flags);
753 }
754 
755 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 	update_rq_clock(rq);
758 	if (!(flags & DEQUEUE_SAVE))
759 		sched_info_dequeued(rq, p);
760 	p->sched_class->dequeue_task(rq, p, flags);
761 }
762 
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	if (task_contributes_to_load(p))
766 		rq->nr_uninterruptible--;
767 
768 	enqueue_task(rq, p, flags);
769 }
770 
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 	if (task_contributes_to_load(p))
774 		rq->nr_uninterruptible++;
775 
776 	dequeue_task(rq, p, flags);
777 }
778 
779 static void update_rq_clock_task(struct rq *rq, s64 delta)
780 {
781 /*
782  * In theory, the compile should just see 0 here, and optimize out the call
783  * to sched_rt_avg_update. But I don't trust it...
784  */
785 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
786 	s64 steal = 0, irq_delta = 0;
787 #endif
788 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
789 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
790 
791 	/*
792 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
793 	 * this case when a previous update_rq_clock() happened inside a
794 	 * {soft,}irq region.
795 	 *
796 	 * When this happens, we stop ->clock_task and only update the
797 	 * prev_irq_time stamp to account for the part that fit, so that a next
798 	 * update will consume the rest. This ensures ->clock_task is
799 	 * monotonic.
800 	 *
801 	 * It does however cause some slight miss-attribution of {soft,}irq
802 	 * time, a more accurate solution would be to update the irq_time using
803 	 * the current rq->clock timestamp, except that would require using
804 	 * atomic ops.
805 	 */
806 	if (irq_delta > delta)
807 		irq_delta = delta;
808 
809 	rq->prev_irq_time += irq_delta;
810 	delta -= irq_delta;
811 #endif
812 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
813 	if (static_key_false((&paravirt_steal_rq_enabled))) {
814 		steal = paravirt_steal_clock(cpu_of(rq));
815 		steal -= rq->prev_steal_time_rq;
816 
817 		if (unlikely(steal > delta))
818 			steal = delta;
819 
820 		rq->prev_steal_time_rq += steal;
821 		delta -= steal;
822 	}
823 #endif
824 
825 	rq->clock_task += delta;
826 
827 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
828 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
829 		sched_rt_avg_update(rq, irq_delta + steal);
830 #endif
831 }
832 
833 void sched_set_stop_task(int cpu, struct task_struct *stop)
834 {
835 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
836 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
837 
838 	if (stop) {
839 		/*
840 		 * Make it appear like a SCHED_FIFO task, its something
841 		 * userspace knows about and won't get confused about.
842 		 *
843 		 * Also, it will make PI more or less work without too
844 		 * much confusion -- but then, stop work should not
845 		 * rely on PI working anyway.
846 		 */
847 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
848 
849 		stop->sched_class = &stop_sched_class;
850 	}
851 
852 	cpu_rq(cpu)->stop = stop;
853 
854 	if (old_stop) {
855 		/*
856 		 * Reset it back to a normal scheduling class so that
857 		 * it can die in pieces.
858 		 */
859 		old_stop->sched_class = &rt_sched_class;
860 	}
861 }
862 
863 /*
864  * __normal_prio - return the priority that is based on the static prio
865  */
866 static inline int __normal_prio(struct task_struct *p)
867 {
868 	return p->static_prio;
869 }
870 
871 /*
872  * Calculate the expected normal priority: i.e. priority
873  * without taking RT-inheritance into account. Might be
874  * boosted by interactivity modifiers. Changes upon fork,
875  * setprio syscalls, and whenever the interactivity
876  * estimator recalculates.
877  */
878 static inline int normal_prio(struct task_struct *p)
879 {
880 	int prio;
881 
882 	if (task_has_dl_policy(p))
883 		prio = MAX_DL_PRIO-1;
884 	else if (task_has_rt_policy(p))
885 		prio = MAX_RT_PRIO-1 - p->rt_priority;
886 	else
887 		prio = __normal_prio(p);
888 	return prio;
889 }
890 
891 /*
892  * Calculate the current priority, i.e. the priority
893  * taken into account by the scheduler. This value might
894  * be boosted by RT tasks, or might be boosted by
895  * interactivity modifiers. Will be RT if the task got
896  * RT-boosted. If not then it returns p->normal_prio.
897  */
898 static int effective_prio(struct task_struct *p)
899 {
900 	p->normal_prio = normal_prio(p);
901 	/*
902 	 * If we are RT tasks or we were boosted to RT priority,
903 	 * keep the priority unchanged. Otherwise, update priority
904 	 * to the normal priority:
905 	 */
906 	if (!rt_prio(p->prio))
907 		return p->normal_prio;
908 	return p->prio;
909 }
910 
911 /**
912  * task_curr - is this task currently executing on a CPU?
913  * @p: the task in question.
914  *
915  * Return: 1 if the task is currently executing. 0 otherwise.
916  */
917 inline int task_curr(const struct task_struct *p)
918 {
919 	return cpu_curr(task_cpu(p)) == p;
920 }
921 
922 /*
923  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
924  * use the balance_callback list if you want balancing.
925  *
926  * this means any call to check_class_changed() must be followed by a call to
927  * balance_callback().
928  */
929 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
930 				       const struct sched_class *prev_class,
931 				       int oldprio)
932 {
933 	if (prev_class != p->sched_class) {
934 		if (prev_class->switched_from)
935 			prev_class->switched_from(rq, p);
936 
937 		p->sched_class->switched_to(rq, p);
938 	} else if (oldprio != p->prio || dl_task(p))
939 		p->sched_class->prio_changed(rq, p, oldprio);
940 }
941 
942 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
943 {
944 	const struct sched_class *class;
945 
946 	if (p->sched_class == rq->curr->sched_class) {
947 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
948 	} else {
949 		for_each_class(class) {
950 			if (class == rq->curr->sched_class)
951 				break;
952 			if (class == p->sched_class) {
953 				resched_curr(rq);
954 				break;
955 			}
956 		}
957 	}
958 
959 	/*
960 	 * A queue event has occurred, and we're going to schedule.  In
961 	 * this case, we can save a useless back to back clock update.
962 	 */
963 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
964 		rq_clock_skip_update(rq, true);
965 }
966 
967 #ifdef CONFIG_SMP
968 /*
969  * This is how migration works:
970  *
971  * 1) we invoke migration_cpu_stop() on the target CPU using
972  *    stop_one_cpu().
973  * 2) stopper starts to run (implicitly forcing the migrated thread
974  *    off the CPU)
975  * 3) it checks whether the migrated task is still in the wrong runqueue.
976  * 4) if it's in the wrong runqueue then the migration thread removes
977  *    it and puts it into the right queue.
978  * 5) stopper completes and stop_one_cpu() returns and the migration
979  *    is done.
980  */
981 
982 /*
983  * move_queued_task - move a queued task to new rq.
984  *
985  * Returns (locked) new rq. Old rq's lock is released.
986  */
987 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
988 {
989 	lockdep_assert_held(&rq->lock);
990 
991 	p->on_rq = TASK_ON_RQ_MIGRATING;
992 	dequeue_task(rq, p, 0);
993 	set_task_cpu(p, new_cpu);
994 	raw_spin_unlock(&rq->lock);
995 
996 	rq = cpu_rq(new_cpu);
997 
998 	raw_spin_lock(&rq->lock);
999 	BUG_ON(task_cpu(p) != new_cpu);
1000 	enqueue_task(rq, p, 0);
1001 	p->on_rq = TASK_ON_RQ_QUEUED;
1002 	check_preempt_curr(rq, p, 0);
1003 
1004 	return rq;
1005 }
1006 
1007 struct migration_arg {
1008 	struct task_struct *task;
1009 	int dest_cpu;
1010 };
1011 
1012 /*
1013  * Move (not current) task off this cpu, onto dest cpu. We're doing
1014  * this because either it can't run here any more (set_cpus_allowed()
1015  * away from this CPU, or CPU going down), or because we're
1016  * attempting to rebalance this task on exec (sched_exec).
1017  *
1018  * So we race with normal scheduler movements, but that's OK, as long
1019  * as the task is no longer on this CPU.
1020  */
1021 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1022 {
1023 	if (unlikely(!cpu_active(dest_cpu)))
1024 		return rq;
1025 
1026 	/* Affinity changed (again). */
1027 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1028 		return rq;
1029 
1030 	rq = move_queued_task(rq, p, dest_cpu);
1031 
1032 	return rq;
1033 }
1034 
1035 /*
1036  * migration_cpu_stop - this will be executed by a highprio stopper thread
1037  * and performs thread migration by bumping thread off CPU then
1038  * 'pushing' onto another runqueue.
1039  */
1040 static int migration_cpu_stop(void *data)
1041 {
1042 	struct migration_arg *arg = data;
1043 	struct task_struct *p = arg->task;
1044 	struct rq *rq = this_rq();
1045 
1046 	/*
1047 	 * The original target cpu might have gone down and we might
1048 	 * be on another cpu but it doesn't matter.
1049 	 */
1050 	local_irq_disable();
1051 	/*
1052 	 * We need to explicitly wake pending tasks before running
1053 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1054 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055 	 */
1056 	sched_ttwu_pending();
1057 
1058 	raw_spin_lock(&p->pi_lock);
1059 	raw_spin_lock(&rq->lock);
1060 	/*
1061 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1062 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063 	 * we're holding p->pi_lock.
1064 	 */
1065 	if (task_rq(p) == rq && task_on_rq_queued(p))
1066 		rq = __migrate_task(rq, p, arg->dest_cpu);
1067 	raw_spin_unlock(&rq->lock);
1068 	raw_spin_unlock(&p->pi_lock);
1069 
1070 	local_irq_enable();
1071 	return 0;
1072 }
1073 
1074 /*
1075  * sched_class::set_cpus_allowed must do the below, but is not required to
1076  * actually call this function.
1077  */
1078 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1079 {
1080 	cpumask_copy(&p->cpus_allowed, new_mask);
1081 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1082 }
1083 
1084 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085 {
1086 	struct rq *rq = task_rq(p);
1087 	bool queued, running;
1088 
1089 	lockdep_assert_held(&p->pi_lock);
1090 
1091 	queued = task_on_rq_queued(p);
1092 	running = task_current(rq, p);
1093 
1094 	if (queued) {
1095 		/*
1096 		 * Because __kthread_bind() calls this on blocked tasks without
1097 		 * holding rq->lock.
1098 		 */
1099 		lockdep_assert_held(&rq->lock);
1100 		dequeue_task(rq, p, DEQUEUE_SAVE);
1101 	}
1102 	if (running)
1103 		put_prev_task(rq, p);
1104 
1105 	p->sched_class->set_cpus_allowed(p, new_mask);
1106 
1107 	if (running)
1108 		p->sched_class->set_curr_task(rq);
1109 	if (queued)
1110 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1111 }
1112 
1113 /*
1114  * Change a given task's CPU affinity. Migrate the thread to a
1115  * proper CPU and schedule it away if the CPU it's executing on
1116  * is removed from the allowed bitmask.
1117  *
1118  * NOTE: the caller must have a valid reference to the task, the
1119  * task must not exit() & deallocate itself prematurely. The
1120  * call is not atomic; no spinlocks may be held.
1121  */
1122 static int __set_cpus_allowed_ptr(struct task_struct *p,
1123 				  const struct cpumask *new_mask, bool check)
1124 {
1125 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1126 	unsigned int dest_cpu;
1127 	struct rq_flags rf;
1128 	struct rq *rq;
1129 	int ret = 0;
1130 
1131 	rq = task_rq_lock(p, &rf);
1132 
1133 	if (p->flags & PF_KTHREAD) {
1134 		/*
1135 		 * Kernel threads are allowed on online && !active CPUs
1136 		 */
1137 		cpu_valid_mask = cpu_online_mask;
1138 	}
1139 
1140 	/*
1141 	 * Must re-check here, to close a race against __kthread_bind(),
1142 	 * sched_setaffinity() is not guaranteed to observe the flag.
1143 	 */
1144 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145 		ret = -EINVAL;
1146 		goto out;
1147 	}
1148 
1149 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1150 		goto out;
1151 
1152 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1153 		ret = -EINVAL;
1154 		goto out;
1155 	}
1156 
1157 	do_set_cpus_allowed(p, new_mask);
1158 
1159 	if (p->flags & PF_KTHREAD) {
1160 		/*
1161 		 * For kernel threads that do indeed end up on online &&
1162 		 * !active we want to ensure they are strict per-cpu threads.
1163 		 */
1164 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1166 			p->nr_cpus_allowed != 1);
1167 	}
1168 
1169 	/* Can the task run on the task's current CPU? If so, we're done */
1170 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1171 		goto out;
1172 
1173 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1174 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1175 		struct migration_arg arg = { p, dest_cpu };
1176 		/* Need help from migration thread: drop lock and wait. */
1177 		task_rq_unlock(rq, p, &rf);
1178 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179 		tlb_migrate_finish(p->mm);
1180 		return 0;
1181 	} else if (task_on_rq_queued(p)) {
1182 		/*
1183 		 * OK, since we're going to drop the lock immediately
1184 		 * afterwards anyway.
1185 		 */
1186 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1187 		rq = move_queued_task(rq, p, dest_cpu);
1188 		lockdep_repin_lock(&rq->lock, rf.cookie);
1189 	}
1190 out:
1191 	task_rq_unlock(rq, p, &rf);
1192 
1193 	return ret;
1194 }
1195 
1196 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197 {
1198 	return __set_cpus_allowed_ptr(p, new_mask, false);
1199 }
1200 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201 
1202 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1203 {
1204 #ifdef CONFIG_SCHED_DEBUG
1205 	/*
1206 	 * We should never call set_task_cpu() on a blocked task,
1207 	 * ttwu() will sort out the placement.
1208 	 */
1209 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1210 			!p->on_rq);
1211 
1212 	/*
1213 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215 	 * time relying on p->on_rq.
1216 	 */
1217 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218 		     p->sched_class == &fair_sched_class &&
1219 		     (p->on_rq && !task_on_rq_migrating(p)));
1220 
1221 #ifdef CONFIG_LOCKDEP
1222 	/*
1223 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1224 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225 	 *
1226 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1227 	 * see task_group().
1228 	 *
1229 	 * Furthermore, all task_rq users should acquire both locks, see
1230 	 * task_rq_lock().
1231 	 */
1232 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233 				      lockdep_is_held(&task_rq(p)->lock)));
1234 #endif
1235 #endif
1236 
1237 	trace_sched_migrate_task(p, new_cpu);
1238 
1239 	if (task_cpu(p) != new_cpu) {
1240 		if (p->sched_class->migrate_task_rq)
1241 			p->sched_class->migrate_task_rq(p);
1242 		p->se.nr_migrations++;
1243 		perf_event_task_migrate(p);
1244 	}
1245 
1246 	__set_task_cpu(p, new_cpu);
1247 }
1248 
1249 static void __migrate_swap_task(struct task_struct *p, int cpu)
1250 {
1251 	if (task_on_rq_queued(p)) {
1252 		struct rq *src_rq, *dst_rq;
1253 
1254 		src_rq = task_rq(p);
1255 		dst_rq = cpu_rq(cpu);
1256 
1257 		p->on_rq = TASK_ON_RQ_MIGRATING;
1258 		deactivate_task(src_rq, p, 0);
1259 		set_task_cpu(p, cpu);
1260 		activate_task(dst_rq, p, 0);
1261 		p->on_rq = TASK_ON_RQ_QUEUED;
1262 		check_preempt_curr(dst_rq, p, 0);
1263 	} else {
1264 		/*
1265 		 * Task isn't running anymore; make it appear like we migrated
1266 		 * it before it went to sleep. This means on wakeup we make the
1267 		 * previous cpu our targer instead of where it really is.
1268 		 */
1269 		p->wake_cpu = cpu;
1270 	}
1271 }
1272 
1273 struct migration_swap_arg {
1274 	struct task_struct *src_task, *dst_task;
1275 	int src_cpu, dst_cpu;
1276 };
1277 
1278 static int migrate_swap_stop(void *data)
1279 {
1280 	struct migration_swap_arg *arg = data;
1281 	struct rq *src_rq, *dst_rq;
1282 	int ret = -EAGAIN;
1283 
1284 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285 		return -EAGAIN;
1286 
1287 	src_rq = cpu_rq(arg->src_cpu);
1288 	dst_rq = cpu_rq(arg->dst_cpu);
1289 
1290 	double_raw_lock(&arg->src_task->pi_lock,
1291 			&arg->dst_task->pi_lock);
1292 	double_rq_lock(src_rq, dst_rq);
1293 
1294 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295 		goto unlock;
1296 
1297 	if (task_cpu(arg->src_task) != arg->src_cpu)
1298 		goto unlock;
1299 
1300 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301 		goto unlock;
1302 
1303 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304 		goto unlock;
1305 
1306 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1307 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1308 
1309 	ret = 0;
1310 
1311 unlock:
1312 	double_rq_unlock(src_rq, dst_rq);
1313 	raw_spin_unlock(&arg->dst_task->pi_lock);
1314 	raw_spin_unlock(&arg->src_task->pi_lock);
1315 
1316 	return ret;
1317 }
1318 
1319 /*
1320  * Cross migrate two tasks
1321  */
1322 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323 {
1324 	struct migration_swap_arg arg;
1325 	int ret = -EINVAL;
1326 
1327 	arg = (struct migration_swap_arg){
1328 		.src_task = cur,
1329 		.src_cpu = task_cpu(cur),
1330 		.dst_task = p,
1331 		.dst_cpu = task_cpu(p),
1332 	};
1333 
1334 	if (arg.src_cpu == arg.dst_cpu)
1335 		goto out;
1336 
1337 	/*
1338 	 * These three tests are all lockless; this is OK since all of them
1339 	 * will be re-checked with proper locks held further down the line.
1340 	 */
1341 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342 		goto out;
1343 
1344 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345 		goto out;
1346 
1347 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348 		goto out;
1349 
1350 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1351 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352 
1353 out:
1354 	return ret;
1355 }
1356 
1357 /*
1358  * wait_task_inactive - wait for a thread to unschedule.
1359  *
1360  * If @match_state is nonzero, it's the @p->state value just checked and
1361  * not expected to change.  If it changes, i.e. @p might have woken up,
1362  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1363  * we return a positive number (its total switch count).  If a second call
1364  * a short while later returns the same number, the caller can be sure that
1365  * @p has remained unscheduled the whole time.
1366  *
1367  * The caller must ensure that the task *will* unschedule sometime soon,
1368  * else this function might spin for a *long* time. This function can't
1369  * be called with interrupts off, or it may introduce deadlock with
1370  * smp_call_function() if an IPI is sent by the same process we are
1371  * waiting to become inactive.
1372  */
1373 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1374 {
1375 	int running, queued;
1376 	struct rq_flags rf;
1377 	unsigned long ncsw;
1378 	struct rq *rq;
1379 
1380 	for (;;) {
1381 		/*
1382 		 * We do the initial early heuristics without holding
1383 		 * any task-queue locks at all. We'll only try to get
1384 		 * the runqueue lock when things look like they will
1385 		 * work out!
1386 		 */
1387 		rq = task_rq(p);
1388 
1389 		/*
1390 		 * If the task is actively running on another CPU
1391 		 * still, just relax and busy-wait without holding
1392 		 * any locks.
1393 		 *
1394 		 * NOTE! Since we don't hold any locks, it's not
1395 		 * even sure that "rq" stays as the right runqueue!
1396 		 * But we don't care, since "task_running()" will
1397 		 * return false if the runqueue has changed and p
1398 		 * is actually now running somewhere else!
1399 		 */
1400 		while (task_running(rq, p)) {
1401 			if (match_state && unlikely(p->state != match_state))
1402 				return 0;
1403 			cpu_relax();
1404 		}
1405 
1406 		/*
1407 		 * Ok, time to look more closely! We need the rq
1408 		 * lock now, to be *sure*. If we're wrong, we'll
1409 		 * just go back and repeat.
1410 		 */
1411 		rq = task_rq_lock(p, &rf);
1412 		trace_sched_wait_task(p);
1413 		running = task_running(rq, p);
1414 		queued = task_on_rq_queued(p);
1415 		ncsw = 0;
1416 		if (!match_state || p->state == match_state)
1417 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1418 		task_rq_unlock(rq, p, &rf);
1419 
1420 		/*
1421 		 * If it changed from the expected state, bail out now.
1422 		 */
1423 		if (unlikely(!ncsw))
1424 			break;
1425 
1426 		/*
1427 		 * Was it really running after all now that we
1428 		 * checked with the proper locks actually held?
1429 		 *
1430 		 * Oops. Go back and try again..
1431 		 */
1432 		if (unlikely(running)) {
1433 			cpu_relax();
1434 			continue;
1435 		}
1436 
1437 		/*
1438 		 * It's not enough that it's not actively running,
1439 		 * it must be off the runqueue _entirely_, and not
1440 		 * preempted!
1441 		 *
1442 		 * So if it was still runnable (but just not actively
1443 		 * running right now), it's preempted, and we should
1444 		 * yield - it could be a while.
1445 		 */
1446 		if (unlikely(queued)) {
1447 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448 
1449 			set_current_state(TASK_UNINTERRUPTIBLE);
1450 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1451 			continue;
1452 		}
1453 
1454 		/*
1455 		 * Ahh, all good. It wasn't running, and it wasn't
1456 		 * runnable, which means that it will never become
1457 		 * running in the future either. We're all done!
1458 		 */
1459 		break;
1460 	}
1461 
1462 	return ncsw;
1463 }
1464 
1465 /***
1466  * kick_process - kick a running thread to enter/exit the kernel
1467  * @p: the to-be-kicked thread
1468  *
1469  * Cause a process which is running on another CPU to enter
1470  * kernel-mode, without any delay. (to get signals handled.)
1471  *
1472  * NOTE: this function doesn't have to take the runqueue lock,
1473  * because all it wants to ensure is that the remote task enters
1474  * the kernel. If the IPI races and the task has been migrated
1475  * to another CPU then no harm is done and the purpose has been
1476  * achieved as well.
1477  */
1478 void kick_process(struct task_struct *p)
1479 {
1480 	int cpu;
1481 
1482 	preempt_disable();
1483 	cpu = task_cpu(p);
1484 	if ((cpu != smp_processor_id()) && task_curr(p))
1485 		smp_send_reschedule(cpu);
1486 	preempt_enable();
1487 }
1488 EXPORT_SYMBOL_GPL(kick_process);
1489 
1490 /*
1491  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1492  *
1493  * A few notes on cpu_active vs cpu_online:
1494  *
1495  *  - cpu_active must be a subset of cpu_online
1496  *
1497  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498  *    see __set_cpus_allowed_ptr(). At this point the newly online
1499  *    cpu isn't yet part of the sched domains, and balancing will not
1500  *    see it.
1501  *
1502  *  - on cpu-down we clear cpu_active() to mask the sched domains and
1503  *    avoid the load balancer to place new tasks on the to be removed
1504  *    cpu. Existing tasks will remain running there and will be taken
1505  *    off.
1506  *
1507  * This means that fallback selection must not select !active CPUs.
1508  * And can assume that any active CPU must be online. Conversely
1509  * select_task_rq() below may allow selection of !active CPUs in order
1510  * to satisfy the above rules.
1511  */
1512 static int select_fallback_rq(int cpu, struct task_struct *p)
1513 {
1514 	int nid = cpu_to_node(cpu);
1515 	const struct cpumask *nodemask = NULL;
1516 	enum { cpuset, possible, fail } state = cpuset;
1517 	int dest_cpu;
1518 
1519 	/*
1520 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1521 	 * will return -1. There is no cpu on the node, and we should
1522 	 * select the cpu on the other node.
1523 	 */
1524 	if (nid != -1) {
1525 		nodemask = cpumask_of_node(nid);
1526 
1527 		/* Look for allowed, online CPU in same node. */
1528 		for_each_cpu(dest_cpu, nodemask) {
1529 			if (!cpu_active(dest_cpu))
1530 				continue;
1531 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532 				return dest_cpu;
1533 		}
1534 	}
1535 
1536 	for (;;) {
1537 		/* Any allowed, online CPU? */
1538 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1539 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1540 				continue;
1541 			if (!cpu_online(dest_cpu))
1542 				continue;
1543 			goto out;
1544 		}
1545 
1546 		/* No more Mr. Nice Guy. */
1547 		switch (state) {
1548 		case cpuset:
1549 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1550 				cpuset_cpus_allowed_fallback(p);
1551 				state = possible;
1552 				break;
1553 			}
1554 			/* fall-through */
1555 		case possible:
1556 			do_set_cpus_allowed(p, cpu_possible_mask);
1557 			state = fail;
1558 			break;
1559 
1560 		case fail:
1561 			BUG();
1562 			break;
1563 		}
1564 	}
1565 
1566 out:
1567 	if (state != cpuset) {
1568 		/*
1569 		 * Don't tell them about moving exiting tasks or
1570 		 * kernel threads (both mm NULL), since they never
1571 		 * leave kernel.
1572 		 */
1573 		if (p->mm && printk_ratelimit()) {
1574 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1575 					task_pid_nr(p), p->comm, cpu);
1576 		}
1577 	}
1578 
1579 	return dest_cpu;
1580 }
1581 
1582 /*
1583  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1584  */
1585 static inline
1586 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1587 {
1588 	lockdep_assert_held(&p->pi_lock);
1589 
1590 	if (tsk_nr_cpus_allowed(p) > 1)
1591 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1592 	else
1593 		cpu = cpumask_any(tsk_cpus_allowed(p));
1594 
1595 	/*
1596 	 * In order not to call set_task_cpu() on a blocking task we need
1597 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1598 	 * cpu.
1599 	 *
1600 	 * Since this is common to all placement strategies, this lives here.
1601 	 *
1602 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1603 	 *   not worry about this generic constraint ]
1604 	 */
1605 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1606 		     !cpu_online(cpu)))
1607 		cpu = select_fallback_rq(task_cpu(p), p);
1608 
1609 	return cpu;
1610 }
1611 
1612 static void update_avg(u64 *avg, u64 sample)
1613 {
1614 	s64 diff = sample - *avg;
1615 	*avg += diff >> 3;
1616 }
1617 
1618 #else
1619 
1620 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1621 					 const struct cpumask *new_mask, bool check)
1622 {
1623 	return set_cpus_allowed_ptr(p, new_mask);
1624 }
1625 
1626 #endif /* CONFIG_SMP */
1627 
1628 static void
1629 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1630 {
1631 #ifdef CONFIG_SCHEDSTATS
1632 	struct rq *rq = this_rq();
1633 
1634 #ifdef CONFIG_SMP
1635 	int this_cpu = smp_processor_id();
1636 
1637 	if (cpu == this_cpu) {
1638 		schedstat_inc(rq, ttwu_local);
1639 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1640 	} else {
1641 		struct sched_domain *sd;
1642 
1643 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1644 		rcu_read_lock();
1645 		for_each_domain(this_cpu, sd) {
1646 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1647 				schedstat_inc(sd, ttwu_wake_remote);
1648 				break;
1649 			}
1650 		}
1651 		rcu_read_unlock();
1652 	}
1653 
1654 	if (wake_flags & WF_MIGRATED)
1655 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1656 
1657 #endif /* CONFIG_SMP */
1658 
1659 	schedstat_inc(rq, ttwu_count);
1660 	schedstat_inc(p, se.statistics.nr_wakeups);
1661 
1662 	if (wake_flags & WF_SYNC)
1663 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1664 
1665 #endif /* CONFIG_SCHEDSTATS */
1666 }
1667 
1668 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1669 {
1670 	activate_task(rq, p, en_flags);
1671 	p->on_rq = TASK_ON_RQ_QUEUED;
1672 
1673 	/* if a worker is waking up, notify workqueue */
1674 	if (p->flags & PF_WQ_WORKER)
1675 		wq_worker_waking_up(p, cpu_of(rq));
1676 }
1677 
1678 /*
1679  * Mark the task runnable and perform wakeup-preemption.
1680  */
1681 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1682 			   struct pin_cookie cookie)
1683 {
1684 	check_preempt_curr(rq, p, wake_flags);
1685 	p->state = TASK_RUNNING;
1686 	trace_sched_wakeup(p);
1687 
1688 #ifdef CONFIG_SMP
1689 	if (p->sched_class->task_woken) {
1690 		/*
1691 		 * Our task @p is fully woken up and running; so its safe to
1692 		 * drop the rq->lock, hereafter rq is only used for statistics.
1693 		 */
1694 		lockdep_unpin_lock(&rq->lock, cookie);
1695 		p->sched_class->task_woken(rq, p);
1696 		lockdep_repin_lock(&rq->lock, cookie);
1697 	}
1698 
1699 	if (rq->idle_stamp) {
1700 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1701 		u64 max = 2*rq->max_idle_balance_cost;
1702 
1703 		update_avg(&rq->avg_idle, delta);
1704 
1705 		if (rq->avg_idle > max)
1706 			rq->avg_idle = max;
1707 
1708 		rq->idle_stamp = 0;
1709 	}
1710 #endif
1711 }
1712 
1713 static void
1714 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1715 		 struct pin_cookie cookie)
1716 {
1717 	int en_flags = ENQUEUE_WAKEUP;
1718 
1719 	lockdep_assert_held(&rq->lock);
1720 
1721 #ifdef CONFIG_SMP
1722 	if (p->sched_contributes_to_load)
1723 		rq->nr_uninterruptible--;
1724 
1725 	if (wake_flags & WF_MIGRATED)
1726 		en_flags |= ENQUEUE_MIGRATED;
1727 #endif
1728 
1729 	ttwu_activate(rq, p, en_flags);
1730 	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1731 }
1732 
1733 /*
1734  * Called in case the task @p isn't fully descheduled from its runqueue,
1735  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1736  * since all we need to do is flip p->state to TASK_RUNNING, since
1737  * the task is still ->on_rq.
1738  */
1739 static int ttwu_remote(struct task_struct *p, int wake_flags)
1740 {
1741 	struct rq_flags rf;
1742 	struct rq *rq;
1743 	int ret = 0;
1744 
1745 	rq = __task_rq_lock(p, &rf);
1746 	if (task_on_rq_queued(p)) {
1747 		/* check_preempt_curr() may use rq clock */
1748 		update_rq_clock(rq);
1749 		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1750 		ret = 1;
1751 	}
1752 	__task_rq_unlock(rq, &rf);
1753 
1754 	return ret;
1755 }
1756 
1757 #ifdef CONFIG_SMP
1758 void sched_ttwu_pending(void)
1759 {
1760 	struct rq *rq = this_rq();
1761 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1762 	struct pin_cookie cookie;
1763 	struct task_struct *p;
1764 	unsigned long flags;
1765 
1766 	if (!llist)
1767 		return;
1768 
1769 	raw_spin_lock_irqsave(&rq->lock, flags);
1770 	cookie = lockdep_pin_lock(&rq->lock);
1771 
1772 	while (llist) {
1773 		int wake_flags = 0;
1774 
1775 		p = llist_entry(llist, struct task_struct, wake_entry);
1776 		llist = llist_next(llist);
1777 
1778 		if (p->sched_remote_wakeup)
1779 			wake_flags = WF_MIGRATED;
1780 
1781 		ttwu_do_activate(rq, p, wake_flags, cookie);
1782 	}
1783 
1784 	lockdep_unpin_lock(&rq->lock, cookie);
1785 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1786 }
1787 
1788 void scheduler_ipi(void)
1789 {
1790 	/*
1791 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1792 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1793 	 * this IPI.
1794 	 */
1795 	preempt_fold_need_resched();
1796 
1797 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1798 		return;
1799 
1800 	/*
1801 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1802 	 * traditionally all their work was done from the interrupt return
1803 	 * path. Now that we actually do some work, we need to make sure
1804 	 * we do call them.
1805 	 *
1806 	 * Some archs already do call them, luckily irq_enter/exit nest
1807 	 * properly.
1808 	 *
1809 	 * Arguably we should visit all archs and update all handlers,
1810 	 * however a fair share of IPIs are still resched only so this would
1811 	 * somewhat pessimize the simple resched case.
1812 	 */
1813 	irq_enter();
1814 	sched_ttwu_pending();
1815 
1816 	/*
1817 	 * Check if someone kicked us for doing the nohz idle load balance.
1818 	 */
1819 	if (unlikely(got_nohz_idle_kick())) {
1820 		this_rq()->idle_balance = 1;
1821 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1822 	}
1823 	irq_exit();
1824 }
1825 
1826 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1827 {
1828 	struct rq *rq = cpu_rq(cpu);
1829 
1830 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1831 
1832 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1833 		if (!set_nr_if_polling(rq->idle))
1834 			smp_send_reschedule(cpu);
1835 		else
1836 			trace_sched_wake_idle_without_ipi(cpu);
1837 	}
1838 }
1839 
1840 void wake_up_if_idle(int cpu)
1841 {
1842 	struct rq *rq = cpu_rq(cpu);
1843 	unsigned long flags;
1844 
1845 	rcu_read_lock();
1846 
1847 	if (!is_idle_task(rcu_dereference(rq->curr)))
1848 		goto out;
1849 
1850 	if (set_nr_if_polling(rq->idle)) {
1851 		trace_sched_wake_idle_without_ipi(cpu);
1852 	} else {
1853 		raw_spin_lock_irqsave(&rq->lock, flags);
1854 		if (is_idle_task(rq->curr))
1855 			smp_send_reschedule(cpu);
1856 		/* Else cpu is not in idle, do nothing here */
1857 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1858 	}
1859 
1860 out:
1861 	rcu_read_unlock();
1862 }
1863 
1864 bool cpus_share_cache(int this_cpu, int that_cpu)
1865 {
1866 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1867 }
1868 #endif /* CONFIG_SMP */
1869 
1870 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1871 {
1872 	struct rq *rq = cpu_rq(cpu);
1873 	struct pin_cookie cookie;
1874 
1875 #if defined(CONFIG_SMP)
1876 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1877 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1878 		ttwu_queue_remote(p, cpu, wake_flags);
1879 		return;
1880 	}
1881 #endif
1882 
1883 	raw_spin_lock(&rq->lock);
1884 	cookie = lockdep_pin_lock(&rq->lock);
1885 	ttwu_do_activate(rq, p, wake_flags, cookie);
1886 	lockdep_unpin_lock(&rq->lock, cookie);
1887 	raw_spin_unlock(&rq->lock);
1888 }
1889 
1890 /*
1891  * Notes on Program-Order guarantees on SMP systems.
1892  *
1893  *  MIGRATION
1894  *
1895  * The basic program-order guarantee on SMP systems is that when a task [t]
1896  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1897  * execution on its new cpu [c1].
1898  *
1899  * For migration (of runnable tasks) this is provided by the following means:
1900  *
1901  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1902  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1903  *     rq(c1)->lock (if not at the same time, then in that order).
1904  *  C) LOCK of the rq(c1)->lock scheduling in task
1905  *
1906  * Transitivity guarantees that B happens after A and C after B.
1907  * Note: we only require RCpc transitivity.
1908  * Note: the cpu doing B need not be c0 or c1
1909  *
1910  * Example:
1911  *
1912  *   CPU0            CPU1            CPU2
1913  *
1914  *   LOCK rq(0)->lock
1915  *   sched-out X
1916  *   sched-in Y
1917  *   UNLOCK rq(0)->lock
1918  *
1919  *                                   LOCK rq(0)->lock // orders against CPU0
1920  *                                   dequeue X
1921  *                                   UNLOCK rq(0)->lock
1922  *
1923  *                                   LOCK rq(1)->lock
1924  *                                   enqueue X
1925  *                                   UNLOCK rq(1)->lock
1926  *
1927  *                   LOCK rq(1)->lock // orders against CPU2
1928  *                   sched-out Z
1929  *                   sched-in X
1930  *                   UNLOCK rq(1)->lock
1931  *
1932  *
1933  *  BLOCKING -- aka. SLEEP + WAKEUP
1934  *
1935  * For blocking we (obviously) need to provide the same guarantee as for
1936  * migration. However the means are completely different as there is no lock
1937  * chain to provide order. Instead we do:
1938  *
1939  *   1) smp_store_release(X->on_cpu, 0)
1940  *   2) smp_cond_acquire(!X->on_cpu)
1941  *
1942  * Example:
1943  *
1944  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1945  *
1946  *   LOCK rq(0)->lock LOCK X->pi_lock
1947  *   dequeue X
1948  *   sched-out X
1949  *   smp_store_release(X->on_cpu, 0);
1950  *
1951  *                    smp_cond_acquire(!X->on_cpu);
1952  *                    X->state = WAKING
1953  *                    set_task_cpu(X,2)
1954  *
1955  *                    LOCK rq(2)->lock
1956  *                    enqueue X
1957  *                    X->state = RUNNING
1958  *                    UNLOCK rq(2)->lock
1959  *
1960  *                                          LOCK rq(2)->lock // orders against CPU1
1961  *                                          sched-out Z
1962  *                                          sched-in X
1963  *                                          UNLOCK rq(2)->lock
1964  *
1965  *                    UNLOCK X->pi_lock
1966  *   UNLOCK rq(0)->lock
1967  *
1968  *
1969  * However; for wakeups there is a second guarantee we must provide, namely we
1970  * must observe the state that lead to our wakeup. That is, not only must our
1971  * task observe its own prior state, it must also observe the stores prior to
1972  * its wakeup.
1973  *
1974  * This means that any means of doing remote wakeups must order the CPU doing
1975  * the wakeup against the CPU the task is going to end up running on. This,
1976  * however, is already required for the regular Program-Order guarantee above,
1977  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1978  *
1979  */
1980 
1981 /**
1982  * try_to_wake_up - wake up a thread
1983  * @p: the thread to be awakened
1984  * @state: the mask of task states that can be woken
1985  * @wake_flags: wake modifier flags (WF_*)
1986  *
1987  * Put it on the run-queue if it's not already there. The "current"
1988  * thread is always on the run-queue (except when the actual
1989  * re-schedule is in progress), and as such you're allowed to do
1990  * the simpler "current->state = TASK_RUNNING" to mark yourself
1991  * runnable without the overhead of this.
1992  *
1993  * Return: %true if @p was woken up, %false if it was already running.
1994  * or @state didn't match @p's state.
1995  */
1996 static int
1997 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1998 {
1999 	unsigned long flags;
2000 	int cpu, success = 0;
2001 
2002 	/*
2003 	 * If we are going to wake up a thread waiting for CONDITION we
2004 	 * need to ensure that CONDITION=1 done by the caller can not be
2005 	 * reordered with p->state check below. This pairs with mb() in
2006 	 * set_current_state() the waiting thread does.
2007 	 */
2008 	smp_mb__before_spinlock();
2009 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2010 	if (!(p->state & state))
2011 		goto out;
2012 
2013 	trace_sched_waking(p);
2014 
2015 	success = 1; /* we're going to change ->state */
2016 	cpu = task_cpu(p);
2017 
2018 	if (p->on_rq && ttwu_remote(p, wake_flags))
2019 		goto stat;
2020 
2021 #ifdef CONFIG_SMP
2022 	/*
2023 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2024 	 * possible to, falsely, observe p->on_cpu == 0.
2025 	 *
2026 	 * One must be running (->on_cpu == 1) in order to remove oneself
2027 	 * from the runqueue.
2028 	 *
2029 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2030 	 *      UNLOCK rq->lock
2031 	 *			RMB
2032 	 *      LOCK   rq->lock
2033 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2034 	 *
2035 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2036 	 * from the consecutive calls to schedule(); the first switching to our
2037 	 * task, the second putting it to sleep.
2038 	 */
2039 	smp_rmb();
2040 
2041 	/*
2042 	 * If the owning (remote) cpu is still in the middle of schedule() with
2043 	 * this task as prev, wait until its done referencing the task.
2044 	 *
2045 	 * Pairs with the smp_store_release() in finish_lock_switch().
2046 	 *
2047 	 * This ensures that tasks getting woken will be fully ordered against
2048 	 * their previous state and preserve Program Order.
2049 	 */
2050 	smp_cond_acquire(!p->on_cpu);
2051 
2052 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2053 	p->state = TASK_WAKING;
2054 
2055 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2056 	if (task_cpu(p) != cpu) {
2057 		wake_flags |= WF_MIGRATED;
2058 		set_task_cpu(p, cpu);
2059 	}
2060 #endif /* CONFIG_SMP */
2061 
2062 	ttwu_queue(p, cpu, wake_flags);
2063 stat:
2064 	if (schedstat_enabled())
2065 		ttwu_stat(p, cpu, wake_flags);
2066 out:
2067 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2068 
2069 	return success;
2070 }
2071 
2072 /**
2073  * try_to_wake_up_local - try to wake up a local task with rq lock held
2074  * @p: the thread to be awakened
2075  *
2076  * Put @p on the run-queue if it's not already there. The caller must
2077  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2078  * the current task.
2079  */
2080 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2081 {
2082 	struct rq *rq = task_rq(p);
2083 
2084 	if (WARN_ON_ONCE(rq != this_rq()) ||
2085 	    WARN_ON_ONCE(p == current))
2086 		return;
2087 
2088 	lockdep_assert_held(&rq->lock);
2089 
2090 	if (!raw_spin_trylock(&p->pi_lock)) {
2091 		/*
2092 		 * This is OK, because current is on_cpu, which avoids it being
2093 		 * picked for load-balance and preemption/IRQs are still
2094 		 * disabled avoiding further scheduler activity on it and we've
2095 		 * not yet picked a replacement task.
2096 		 */
2097 		lockdep_unpin_lock(&rq->lock, cookie);
2098 		raw_spin_unlock(&rq->lock);
2099 		raw_spin_lock(&p->pi_lock);
2100 		raw_spin_lock(&rq->lock);
2101 		lockdep_repin_lock(&rq->lock, cookie);
2102 	}
2103 
2104 	if (!(p->state & TASK_NORMAL))
2105 		goto out;
2106 
2107 	trace_sched_waking(p);
2108 
2109 	if (!task_on_rq_queued(p))
2110 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2111 
2112 	ttwu_do_wakeup(rq, p, 0, cookie);
2113 	if (schedstat_enabled())
2114 		ttwu_stat(p, smp_processor_id(), 0);
2115 out:
2116 	raw_spin_unlock(&p->pi_lock);
2117 }
2118 
2119 /**
2120  * wake_up_process - Wake up a specific process
2121  * @p: The process to be woken up.
2122  *
2123  * Attempt to wake up the nominated process and move it to the set of runnable
2124  * processes.
2125  *
2126  * Return: 1 if the process was woken up, 0 if it was already running.
2127  *
2128  * It may be assumed that this function implies a write memory barrier before
2129  * changing the task state if and only if any tasks are woken up.
2130  */
2131 int wake_up_process(struct task_struct *p)
2132 {
2133 	return try_to_wake_up(p, TASK_NORMAL, 0);
2134 }
2135 EXPORT_SYMBOL(wake_up_process);
2136 
2137 int wake_up_state(struct task_struct *p, unsigned int state)
2138 {
2139 	return try_to_wake_up(p, state, 0);
2140 }
2141 
2142 /*
2143  * This function clears the sched_dl_entity static params.
2144  */
2145 void __dl_clear_params(struct task_struct *p)
2146 {
2147 	struct sched_dl_entity *dl_se = &p->dl;
2148 
2149 	dl_se->dl_runtime = 0;
2150 	dl_se->dl_deadline = 0;
2151 	dl_se->dl_period = 0;
2152 	dl_se->flags = 0;
2153 	dl_se->dl_bw = 0;
2154 
2155 	dl_se->dl_throttled = 0;
2156 	dl_se->dl_yielded = 0;
2157 }
2158 
2159 /*
2160  * Perform scheduler related setup for a newly forked process p.
2161  * p is forked by current.
2162  *
2163  * __sched_fork() is basic setup used by init_idle() too:
2164  */
2165 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2166 {
2167 	p->on_rq			= 0;
2168 
2169 	p->se.on_rq			= 0;
2170 	p->se.exec_start		= 0;
2171 	p->se.sum_exec_runtime		= 0;
2172 	p->se.prev_sum_exec_runtime	= 0;
2173 	p->se.nr_migrations		= 0;
2174 	p->se.vruntime			= 0;
2175 	INIT_LIST_HEAD(&p->se.group_node);
2176 
2177 #ifdef CONFIG_FAIR_GROUP_SCHED
2178 	p->se.cfs_rq			= NULL;
2179 #endif
2180 
2181 #ifdef CONFIG_SCHEDSTATS
2182 	/* Even if schedstat is disabled, there should not be garbage */
2183 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2184 #endif
2185 
2186 	RB_CLEAR_NODE(&p->dl.rb_node);
2187 	init_dl_task_timer(&p->dl);
2188 	__dl_clear_params(p);
2189 
2190 	INIT_LIST_HEAD(&p->rt.run_list);
2191 	p->rt.timeout		= 0;
2192 	p->rt.time_slice	= sched_rr_timeslice;
2193 	p->rt.on_rq		= 0;
2194 	p->rt.on_list		= 0;
2195 
2196 #ifdef CONFIG_PREEMPT_NOTIFIERS
2197 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2198 #endif
2199 
2200 #ifdef CONFIG_NUMA_BALANCING
2201 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2202 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2203 		p->mm->numa_scan_seq = 0;
2204 	}
2205 
2206 	if (clone_flags & CLONE_VM)
2207 		p->numa_preferred_nid = current->numa_preferred_nid;
2208 	else
2209 		p->numa_preferred_nid = -1;
2210 
2211 	p->node_stamp = 0ULL;
2212 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2213 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2214 	p->numa_work.next = &p->numa_work;
2215 	p->numa_faults = NULL;
2216 	p->last_task_numa_placement = 0;
2217 	p->last_sum_exec_runtime = 0;
2218 
2219 	p->numa_group = NULL;
2220 #endif /* CONFIG_NUMA_BALANCING */
2221 }
2222 
2223 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2224 
2225 #ifdef CONFIG_NUMA_BALANCING
2226 
2227 void set_numabalancing_state(bool enabled)
2228 {
2229 	if (enabled)
2230 		static_branch_enable(&sched_numa_balancing);
2231 	else
2232 		static_branch_disable(&sched_numa_balancing);
2233 }
2234 
2235 #ifdef CONFIG_PROC_SYSCTL
2236 int sysctl_numa_balancing(struct ctl_table *table, int write,
2237 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2238 {
2239 	struct ctl_table t;
2240 	int err;
2241 	int state = static_branch_likely(&sched_numa_balancing);
2242 
2243 	if (write && !capable(CAP_SYS_ADMIN))
2244 		return -EPERM;
2245 
2246 	t = *table;
2247 	t.data = &state;
2248 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2249 	if (err < 0)
2250 		return err;
2251 	if (write)
2252 		set_numabalancing_state(state);
2253 	return err;
2254 }
2255 #endif
2256 #endif
2257 
2258 #ifdef CONFIG_SCHEDSTATS
2259 
2260 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2261 static bool __initdata __sched_schedstats = false;
2262 
2263 static void set_schedstats(bool enabled)
2264 {
2265 	if (enabled)
2266 		static_branch_enable(&sched_schedstats);
2267 	else
2268 		static_branch_disable(&sched_schedstats);
2269 }
2270 
2271 void force_schedstat_enabled(void)
2272 {
2273 	if (!schedstat_enabled()) {
2274 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2275 		static_branch_enable(&sched_schedstats);
2276 	}
2277 }
2278 
2279 static int __init setup_schedstats(char *str)
2280 {
2281 	int ret = 0;
2282 	if (!str)
2283 		goto out;
2284 
2285 	/*
2286 	 * This code is called before jump labels have been set up, so we can't
2287 	 * change the static branch directly just yet.  Instead set a temporary
2288 	 * variable so init_schedstats() can do it later.
2289 	 */
2290 	if (!strcmp(str, "enable")) {
2291 		__sched_schedstats = true;
2292 		ret = 1;
2293 	} else if (!strcmp(str, "disable")) {
2294 		__sched_schedstats = false;
2295 		ret = 1;
2296 	}
2297 out:
2298 	if (!ret)
2299 		pr_warn("Unable to parse schedstats=\n");
2300 
2301 	return ret;
2302 }
2303 __setup("schedstats=", setup_schedstats);
2304 
2305 static void __init init_schedstats(void)
2306 {
2307 	set_schedstats(__sched_schedstats);
2308 }
2309 
2310 #ifdef CONFIG_PROC_SYSCTL
2311 int sysctl_schedstats(struct ctl_table *table, int write,
2312 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2313 {
2314 	struct ctl_table t;
2315 	int err;
2316 	int state = static_branch_likely(&sched_schedstats);
2317 
2318 	if (write && !capable(CAP_SYS_ADMIN))
2319 		return -EPERM;
2320 
2321 	t = *table;
2322 	t.data = &state;
2323 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2324 	if (err < 0)
2325 		return err;
2326 	if (write)
2327 		set_schedstats(state);
2328 	return err;
2329 }
2330 #endif /* CONFIG_PROC_SYSCTL */
2331 #else  /* !CONFIG_SCHEDSTATS */
2332 static inline void init_schedstats(void) {}
2333 #endif /* CONFIG_SCHEDSTATS */
2334 
2335 /*
2336  * fork()/clone()-time setup:
2337  */
2338 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2339 {
2340 	unsigned long flags;
2341 	int cpu = get_cpu();
2342 
2343 	__sched_fork(clone_flags, p);
2344 	/*
2345 	 * We mark the process as running here. This guarantees that
2346 	 * nobody will actually run it, and a signal or other external
2347 	 * event cannot wake it up and insert it on the runqueue either.
2348 	 */
2349 	p->state = TASK_RUNNING;
2350 
2351 	/*
2352 	 * Make sure we do not leak PI boosting priority to the child.
2353 	 */
2354 	p->prio = current->normal_prio;
2355 
2356 	/*
2357 	 * Revert to default priority/policy on fork if requested.
2358 	 */
2359 	if (unlikely(p->sched_reset_on_fork)) {
2360 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2361 			p->policy = SCHED_NORMAL;
2362 			p->static_prio = NICE_TO_PRIO(0);
2363 			p->rt_priority = 0;
2364 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2365 			p->static_prio = NICE_TO_PRIO(0);
2366 
2367 		p->prio = p->normal_prio = __normal_prio(p);
2368 		set_load_weight(p);
2369 
2370 		/*
2371 		 * We don't need the reset flag anymore after the fork. It has
2372 		 * fulfilled its duty:
2373 		 */
2374 		p->sched_reset_on_fork = 0;
2375 	}
2376 
2377 	if (dl_prio(p->prio)) {
2378 		put_cpu();
2379 		return -EAGAIN;
2380 	} else if (rt_prio(p->prio)) {
2381 		p->sched_class = &rt_sched_class;
2382 	} else {
2383 		p->sched_class = &fair_sched_class;
2384 	}
2385 
2386 	if (p->sched_class->task_fork)
2387 		p->sched_class->task_fork(p);
2388 
2389 	/*
2390 	 * The child is not yet in the pid-hash so no cgroup attach races,
2391 	 * and the cgroup is pinned to this child due to cgroup_fork()
2392 	 * is ran before sched_fork().
2393 	 *
2394 	 * Silence PROVE_RCU.
2395 	 */
2396 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2397 	set_task_cpu(p, cpu);
2398 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2399 
2400 #ifdef CONFIG_SCHED_INFO
2401 	if (likely(sched_info_on()))
2402 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2403 #endif
2404 #if defined(CONFIG_SMP)
2405 	p->on_cpu = 0;
2406 #endif
2407 	init_task_preempt_count(p);
2408 #ifdef CONFIG_SMP
2409 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2410 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2411 #endif
2412 
2413 	put_cpu();
2414 	return 0;
2415 }
2416 
2417 unsigned long to_ratio(u64 period, u64 runtime)
2418 {
2419 	if (runtime == RUNTIME_INF)
2420 		return 1ULL << 20;
2421 
2422 	/*
2423 	 * Doing this here saves a lot of checks in all
2424 	 * the calling paths, and returning zero seems
2425 	 * safe for them anyway.
2426 	 */
2427 	if (period == 0)
2428 		return 0;
2429 
2430 	return div64_u64(runtime << 20, period);
2431 }
2432 
2433 #ifdef CONFIG_SMP
2434 inline struct dl_bw *dl_bw_of(int i)
2435 {
2436 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2437 			 "sched RCU must be held");
2438 	return &cpu_rq(i)->rd->dl_bw;
2439 }
2440 
2441 static inline int dl_bw_cpus(int i)
2442 {
2443 	struct root_domain *rd = cpu_rq(i)->rd;
2444 	int cpus = 0;
2445 
2446 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2447 			 "sched RCU must be held");
2448 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2449 		cpus++;
2450 
2451 	return cpus;
2452 }
2453 #else
2454 inline struct dl_bw *dl_bw_of(int i)
2455 {
2456 	return &cpu_rq(i)->dl.dl_bw;
2457 }
2458 
2459 static inline int dl_bw_cpus(int i)
2460 {
2461 	return 1;
2462 }
2463 #endif
2464 
2465 /*
2466  * We must be sure that accepting a new task (or allowing changing the
2467  * parameters of an existing one) is consistent with the bandwidth
2468  * constraints. If yes, this function also accordingly updates the currently
2469  * allocated bandwidth to reflect the new situation.
2470  *
2471  * This function is called while holding p's rq->lock.
2472  *
2473  * XXX we should delay bw change until the task's 0-lag point, see
2474  * __setparam_dl().
2475  */
2476 static int dl_overflow(struct task_struct *p, int policy,
2477 		       const struct sched_attr *attr)
2478 {
2479 
2480 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2481 	u64 period = attr->sched_period ?: attr->sched_deadline;
2482 	u64 runtime = attr->sched_runtime;
2483 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2484 	int cpus, err = -1;
2485 
2486 	/* !deadline task may carry old deadline bandwidth */
2487 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2488 		return 0;
2489 
2490 	/*
2491 	 * Either if a task, enters, leave, or stays -deadline but changes
2492 	 * its parameters, we may need to update accordingly the total
2493 	 * allocated bandwidth of the container.
2494 	 */
2495 	raw_spin_lock(&dl_b->lock);
2496 	cpus = dl_bw_cpus(task_cpu(p));
2497 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2498 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2499 		__dl_add(dl_b, new_bw);
2500 		err = 0;
2501 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2502 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2503 		__dl_clear(dl_b, p->dl.dl_bw);
2504 		__dl_add(dl_b, new_bw);
2505 		err = 0;
2506 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2507 		__dl_clear(dl_b, p->dl.dl_bw);
2508 		err = 0;
2509 	}
2510 	raw_spin_unlock(&dl_b->lock);
2511 
2512 	return err;
2513 }
2514 
2515 extern void init_dl_bw(struct dl_bw *dl_b);
2516 
2517 /*
2518  * wake_up_new_task - wake up a newly created task for the first time.
2519  *
2520  * This function will do some initial scheduler statistics housekeeping
2521  * that must be done for every newly created context, then puts the task
2522  * on the runqueue and wakes it.
2523  */
2524 void wake_up_new_task(struct task_struct *p)
2525 {
2526 	struct rq_flags rf;
2527 	struct rq *rq;
2528 
2529 	/* Initialize new task's runnable average */
2530 	init_entity_runnable_average(&p->se);
2531 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2532 #ifdef CONFIG_SMP
2533 	/*
2534 	 * Fork balancing, do it here and not earlier because:
2535 	 *  - cpus_allowed can change in the fork path
2536 	 *  - any previously selected cpu might disappear through hotplug
2537 	 */
2538 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2539 #endif
2540 	rq = __task_rq_lock(p, &rf);
2541 	post_init_entity_util_avg(&p->se);
2542 
2543 	activate_task(rq, p, 0);
2544 	p->on_rq = TASK_ON_RQ_QUEUED;
2545 	trace_sched_wakeup_new(p);
2546 	check_preempt_curr(rq, p, WF_FORK);
2547 #ifdef CONFIG_SMP
2548 	if (p->sched_class->task_woken) {
2549 		/*
2550 		 * Nothing relies on rq->lock after this, so its fine to
2551 		 * drop it.
2552 		 */
2553 		lockdep_unpin_lock(&rq->lock, rf.cookie);
2554 		p->sched_class->task_woken(rq, p);
2555 		lockdep_repin_lock(&rq->lock, rf.cookie);
2556 	}
2557 #endif
2558 	task_rq_unlock(rq, p, &rf);
2559 }
2560 
2561 #ifdef CONFIG_PREEMPT_NOTIFIERS
2562 
2563 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2564 
2565 void preempt_notifier_inc(void)
2566 {
2567 	static_key_slow_inc(&preempt_notifier_key);
2568 }
2569 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2570 
2571 void preempt_notifier_dec(void)
2572 {
2573 	static_key_slow_dec(&preempt_notifier_key);
2574 }
2575 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2576 
2577 /**
2578  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2579  * @notifier: notifier struct to register
2580  */
2581 void preempt_notifier_register(struct preempt_notifier *notifier)
2582 {
2583 	if (!static_key_false(&preempt_notifier_key))
2584 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2585 
2586 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2587 }
2588 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2589 
2590 /**
2591  * preempt_notifier_unregister - no longer interested in preemption notifications
2592  * @notifier: notifier struct to unregister
2593  *
2594  * This is *not* safe to call from within a preemption notifier.
2595  */
2596 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2597 {
2598 	hlist_del(&notifier->link);
2599 }
2600 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2601 
2602 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2603 {
2604 	struct preempt_notifier *notifier;
2605 
2606 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2607 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2608 }
2609 
2610 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2611 {
2612 	if (static_key_false(&preempt_notifier_key))
2613 		__fire_sched_in_preempt_notifiers(curr);
2614 }
2615 
2616 static void
2617 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2618 				   struct task_struct *next)
2619 {
2620 	struct preempt_notifier *notifier;
2621 
2622 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2623 		notifier->ops->sched_out(notifier, next);
2624 }
2625 
2626 static __always_inline void
2627 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2628 				 struct task_struct *next)
2629 {
2630 	if (static_key_false(&preempt_notifier_key))
2631 		__fire_sched_out_preempt_notifiers(curr, next);
2632 }
2633 
2634 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2635 
2636 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2637 {
2638 }
2639 
2640 static inline void
2641 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2642 				 struct task_struct *next)
2643 {
2644 }
2645 
2646 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2647 
2648 /**
2649  * prepare_task_switch - prepare to switch tasks
2650  * @rq: the runqueue preparing to switch
2651  * @prev: the current task that is being switched out
2652  * @next: the task we are going to switch to.
2653  *
2654  * This is called with the rq lock held and interrupts off. It must
2655  * be paired with a subsequent finish_task_switch after the context
2656  * switch.
2657  *
2658  * prepare_task_switch sets up locking and calls architecture specific
2659  * hooks.
2660  */
2661 static inline void
2662 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2663 		    struct task_struct *next)
2664 {
2665 	sched_info_switch(rq, prev, next);
2666 	perf_event_task_sched_out(prev, next);
2667 	fire_sched_out_preempt_notifiers(prev, next);
2668 	prepare_lock_switch(rq, next);
2669 	prepare_arch_switch(next);
2670 }
2671 
2672 /**
2673  * finish_task_switch - clean up after a task-switch
2674  * @prev: the thread we just switched away from.
2675  *
2676  * finish_task_switch must be called after the context switch, paired
2677  * with a prepare_task_switch call before the context switch.
2678  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2679  * and do any other architecture-specific cleanup actions.
2680  *
2681  * Note that we may have delayed dropping an mm in context_switch(). If
2682  * so, we finish that here outside of the runqueue lock. (Doing it
2683  * with the lock held can cause deadlocks; see schedule() for
2684  * details.)
2685  *
2686  * The context switch have flipped the stack from under us and restored the
2687  * local variables which were saved when this task called schedule() in the
2688  * past. prev == current is still correct but we need to recalculate this_rq
2689  * because prev may have moved to another CPU.
2690  */
2691 static struct rq *finish_task_switch(struct task_struct *prev)
2692 	__releases(rq->lock)
2693 {
2694 	struct rq *rq = this_rq();
2695 	struct mm_struct *mm = rq->prev_mm;
2696 	long prev_state;
2697 
2698 	/*
2699 	 * The previous task will have left us with a preempt_count of 2
2700 	 * because it left us after:
2701 	 *
2702 	 *	schedule()
2703 	 *	  preempt_disable();			// 1
2704 	 *	  __schedule()
2705 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2706 	 *
2707 	 * Also, see FORK_PREEMPT_COUNT.
2708 	 */
2709 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2710 		      "corrupted preempt_count: %s/%d/0x%x\n",
2711 		      current->comm, current->pid, preempt_count()))
2712 		preempt_count_set(FORK_PREEMPT_COUNT);
2713 
2714 	rq->prev_mm = NULL;
2715 
2716 	/*
2717 	 * A task struct has one reference for the use as "current".
2718 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2719 	 * schedule one last time. The schedule call will never return, and
2720 	 * the scheduled task must drop that reference.
2721 	 *
2722 	 * We must observe prev->state before clearing prev->on_cpu (in
2723 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2724 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2725 	 * transition, resulting in a double drop.
2726 	 */
2727 	prev_state = prev->state;
2728 	vtime_task_switch(prev);
2729 	perf_event_task_sched_in(prev, current);
2730 	finish_lock_switch(rq, prev);
2731 	finish_arch_post_lock_switch();
2732 
2733 	fire_sched_in_preempt_notifiers(current);
2734 	if (mm)
2735 		mmdrop(mm);
2736 	if (unlikely(prev_state == TASK_DEAD)) {
2737 		if (prev->sched_class->task_dead)
2738 			prev->sched_class->task_dead(prev);
2739 
2740 		/*
2741 		 * Remove function-return probe instances associated with this
2742 		 * task and put them back on the free list.
2743 		 */
2744 		kprobe_flush_task(prev);
2745 		put_task_struct(prev);
2746 	}
2747 
2748 	tick_nohz_task_switch();
2749 	return rq;
2750 }
2751 
2752 #ifdef CONFIG_SMP
2753 
2754 /* rq->lock is NOT held, but preemption is disabled */
2755 static void __balance_callback(struct rq *rq)
2756 {
2757 	struct callback_head *head, *next;
2758 	void (*func)(struct rq *rq);
2759 	unsigned long flags;
2760 
2761 	raw_spin_lock_irqsave(&rq->lock, flags);
2762 	head = rq->balance_callback;
2763 	rq->balance_callback = NULL;
2764 	while (head) {
2765 		func = (void (*)(struct rq *))head->func;
2766 		next = head->next;
2767 		head->next = NULL;
2768 		head = next;
2769 
2770 		func(rq);
2771 	}
2772 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2773 }
2774 
2775 static inline void balance_callback(struct rq *rq)
2776 {
2777 	if (unlikely(rq->balance_callback))
2778 		__balance_callback(rq);
2779 }
2780 
2781 #else
2782 
2783 static inline void balance_callback(struct rq *rq)
2784 {
2785 }
2786 
2787 #endif
2788 
2789 /**
2790  * schedule_tail - first thing a freshly forked thread must call.
2791  * @prev: the thread we just switched away from.
2792  */
2793 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2794 	__releases(rq->lock)
2795 {
2796 	struct rq *rq;
2797 
2798 	/*
2799 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2800 	 * finish_task_switch() for details.
2801 	 *
2802 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2803 	 * and the preempt_enable() will end up enabling preemption (on
2804 	 * PREEMPT_COUNT kernels).
2805 	 */
2806 
2807 	rq = finish_task_switch(prev);
2808 	balance_callback(rq);
2809 	preempt_enable();
2810 
2811 	if (current->set_child_tid)
2812 		put_user(task_pid_vnr(current), current->set_child_tid);
2813 }
2814 
2815 /*
2816  * context_switch - switch to the new MM and the new thread's register state.
2817  */
2818 static __always_inline struct rq *
2819 context_switch(struct rq *rq, struct task_struct *prev,
2820 	       struct task_struct *next, struct pin_cookie cookie)
2821 {
2822 	struct mm_struct *mm, *oldmm;
2823 
2824 	prepare_task_switch(rq, prev, next);
2825 
2826 	mm = next->mm;
2827 	oldmm = prev->active_mm;
2828 	/*
2829 	 * For paravirt, this is coupled with an exit in switch_to to
2830 	 * combine the page table reload and the switch backend into
2831 	 * one hypercall.
2832 	 */
2833 	arch_start_context_switch(prev);
2834 
2835 	if (!mm) {
2836 		next->active_mm = oldmm;
2837 		atomic_inc(&oldmm->mm_count);
2838 		enter_lazy_tlb(oldmm, next);
2839 	} else
2840 		switch_mm_irqs_off(oldmm, mm, next);
2841 
2842 	if (!prev->mm) {
2843 		prev->active_mm = NULL;
2844 		rq->prev_mm = oldmm;
2845 	}
2846 	/*
2847 	 * Since the runqueue lock will be released by the next
2848 	 * task (which is an invalid locking op but in the case
2849 	 * of the scheduler it's an obvious special-case), so we
2850 	 * do an early lockdep release here:
2851 	 */
2852 	lockdep_unpin_lock(&rq->lock, cookie);
2853 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2854 
2855 	/* Here we just switch the register state and the stack. */
2856 	switch_to(prev, next, prev);
2857 	barrier();
2858 
2859 	return finish_task_switch(prev);
2860 }
2861 
2862 /*
2863  * nr_running and nr_context_switches:
2864  *
2865  * externally visible scheduler statistics: current number of runnable
2866  * threads, total number of context switches performed since bootup.
2867  */
2868 unsigned long nr_running(void)
2869 {
2870 	unsigned long i, sum = 0;
2871 
2872 	for_each_online_cpu(i)
2873 		sum += cpu_rq(i)->nr_running;
2874 
2875 	return sum;
2876 }
2877 
2878 /*
2879  * Check if only the current task is running on the cpu.
2880  *
2881  * Caution: this function does not check that the caller has disabled
2882  * preemption, thus the result might have a time-of-check-to-time-of-use
2883  * race.  The caller is responsible to use it correctly, for example:
2884  *
2885  * - from a non-preemptable section (of course)
2886  *
2887  * - from a thread that is bound to a single CPU
2888  *
2889  * - in a loop with very short iterations (e.g. a polling loop)
2890  */
2891 bool single_task_running(void)
2892 {
2893 	return raw_rq()->nr_running == 1;
2894 }
2895 EXPORT_SYMBOL(single_task_running);
2896 
2897 unsigned long long nr_context_switches(void)
2898 {
2899 	int i;
2900 	unsigned long long sum = 0;
2901 
2902 	for_each_possible_cpu(i)
2903 		sum += cpu_rq(i)->nr_switches;
2904 
2905 	return sum;
2906 }
2907 
2908 unsigned long nr_iowait(void)
2909 {
2910 	unsigned long i, sum = 0;
2911 
2912 	for_each_possible_cpu(i)
2913 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2914 
2915 	return sum;
2916 }
2917 
2918 unsigned long nr_iowait_cpu(int cpu)
2919 {
2920 	struct rq *this = cpu_rq(cpu);
2921 	return atomic_read(&this->nr_iowait);
2922 }
2923 
2924 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2925 {
2926 	struct rq *rq = this_rq();
2927 	*nr_waiters = atomic_read(&rq->nr_iowait);
2928 	*load = rq->load.weight;
2929 }
2930 
2931 #ifdef CONFIG_SMP
2932 
2933 /*
2934  * sched_exec - execve() is a valuable balancing opportunity, because at
2935  * this point the task has the smallest effective memory and cache footprint.
2936  */
2937 void sched_exec(void)
2938 {
2939 	struct task_struct *p = current;
2940 	unsigned long flags;
2941 	int dest_cpu;
2942 
2943 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2944 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2945 	if (dest_cpu == smp_processor_id())
2946 		goto unlock;
2947 
2948 	if (likely(cpu_active(dest_cpu))) {
2949 		struct migration_arg arg = { p, dest_cpu };
2950 
2951 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2952 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2953 		return;
2954 	}
2955 unlock:
2956 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2957 }
2958 
2959 #endif
2960 
2961 DEFINE_PER_CPU(struct kernel_stat, kstat);
2962 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2963 
2964 EXPORT_PER_CPU_SYMBOL(kstat);
2965 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2966 
2967 /*
2968  * Return accounted runtime for the task.
2969  * In case the task is currently running, return the runtime plus current's
2970  * pending runtime that have not been accounted yet.
2971  */
2972 unsigned long long task_sched_runtime(struct task_struct *p)
2973 {
2974 	struct rq_flags rf;
2975 	struct rq *rq;
2976 	u64 ns;
2977 
2978 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2979 	/*
2980 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2981 	 * So we have a optimization chance when the task's delta_exec is 0.
2982 	 * Reading ->on_cpu is racy, but this is ok.
2983 	 *
2984 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2985 	 * If we race with it entering cpu, unaccounted time is 0. This is
2986 	 * indistinguishable from the read occurring a few cycles earlier.
2987 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2988 	 * been accounted, so we're correct here as well.
2989 	 */
2990 	if (!p->on_cpu || !task_on_rq_queued(p))
2991 		return p->se.sum_exec_runtime;
2992 #endif
2993 
2994 	rq = task_rq_lock(p, &rf);
2995 	/*
2996 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2997 	 * project cycles that may never be accounted to this
2998 	 * thread, breaking clock_gettime().
2999 	 */
3000 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3001 		update_rq_clock(rq);
3002 		p->sched_class->update_curr(rq);
3003 	}
3004 	ns = p->se.sum_exec_runtime;
3005 	task_rq_unlock(rq, p, &rf);
3006 
3007 	return ns;
3008 }
3009 
3010 /*
3011  * This function gets called by the timer code, with HZ frequency.
3012  * We call it with interrupts disabled.
3013  */
3014 void scheduler_tick(void)
3015 {
3016 	int cpu = smp_processor_id();
3017 	struct rq *rq = cpu_rq(cpu);
3018 	struct task_struct *curr = rq->curr;
3019 
3020 	sched_clock_tick();
3021 
3022 	raw_spin_lock(&rq->lock);
3023 	update_rq_clock(rq);
3024 	curr->sched_class->task_tick(rq, curr, 0);
3025 	cpu_load_update_active(rq);
3026 	calc_global_load_tick(rq);
3027 	raw_spin_unlock(&rq->lock);
3028 
3029 	perf_event_task_tick();
3030 
3031 #ifdef CONFIG_SMP
3032 	rq->idle_balance = idle_cpu(cpu);
3033 	trigger_load_balance(rq);
3034 #endif
3035 	rq_last_tick_reset(rq);
3036 }
3037 
3038 #ifdef CONFIG_NO_HZ_FULL
3039 /**
3040  * scheduler_tick_max_deferment
3041  *
3042  * Keep at least one tick per second when a single
3043  * active task is running because the scheduler doesn't
3044  * yet completely support full dynticks environment.
3045  *
3046  * This makes sure that uptime, CFS vruntime, load
3047  * balancing, etc... continue to move forward, even
3048  * with a very low granularity.
3049  *
3050  * Return: Maximum deferment in nanoseconds.
3051  */
3052 u64 scheduler_tick_max_deferment(void)
3053 {
3054 	struct rq *rq = this_rq();
3055 	unsigned long next, now = READ_ONCE(jiffies);
3056 
3057 	next = rq->last_sched_tick + HZ;
3058 
3059 	if (time_before_eq(next, now))
3060 		return 0;
3061 
3062 	return jiffies_to_nsecs(next - now);
3063 }
3064 #endif
3065 
3066 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3067 				defined(CONFIG_PREEMPT_TRACER))
3068 /*
3069  * If the value passed in is equal to the current preempt count
3070  * then we just disabled preemption. Start timing the latency.
3071  */
3072 static inline void preempt_latency_start(int val)
3073 {
3074 	if (preempt_count() == val) {
3075 		unsigned long ip = get_lock_parent_ip();
3076 #ifdef CONFIG_DEBUG_PREEMPT
3077 		current->preempt_disable_ip = ip;
3078 #endif
3079 		trace_preempt_off(CALLER_ADDR0, ip);
3080 	}
3081 }
3082 
3083 void preempt_count_add(int val)
3084 {
3085 #ifdef CONFIG_DEBUG_PREEMPT
3086 	/*
3087 	 * Underflow?
3088 	 */
3089 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3090 		return;
3091 #endif
3092 	__preempt_count_add(val);
3093 #ifdef CONFIG_DEBUG_PREEMPT
3094 	/*
3095 	 * Spinlock count overflowing soon?
3096 	 */
3097 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3098 				PREEMPT_MASK - 10);
3099 #endif
3100 	preempt_latency_start(val);
3101 }
3102 EXPORT_SYMBOL(preempt_count_add);
3103 NOKPROBE_SYMBOL(preempt_count_add);
3104 
3105 /*
3106  * If the value passed in equals to the current preempt count
3107  * then we just enabled preemption. Stop timing the latency.
3108  */
3109 static inline void preempt_latency_stop(int val)
3110 {
3111 	if (preempt_count() == val)
3112 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3113 }
3114 
3115 void preempt_count_sub(int val)
3116 {
3117 #ifdef CONFIG_DEBUG_PREEMPT
3118 	/*
3119 	 * Underflow?
3120 	 */
3121 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3122 		return;
3123 	/*
3124 	 * Is the spinlock portion underflowing?
3125 	 */
3126 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3127 			!(preempt_count() & PREEMPT_MASK)))
3128 		return;
3129 #endif
3130 
3131 	preempt_latency_stop(val);
3132 	__preempt_count_sub(val);
3133 }
3134 EXPORT_SYMBOL(preempt_count_sub);
3135 NOKPROBE_SYMBOL(preempt_count_sub);
3136 
3137 #else
3138 static inline void preempt_latency_start(int val) { }
3139 static inline void preempt_latency_stop(int val) { }
3140 #endif
3141 
3142 /*
3143  * Print scheduling while atomic bug:
3144  */
3145 static noinline void __schedule_bug(struct task_struct *prev)
3146 {
3147 	if (oops_in_progress)
3148 		return;
3149 
3150 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3151 		prev->comm, prev->pid, preempt_count());
3152 
3153 	debug_show_held_locks(prev);
3154 	print_modules();
3155 	if (irqs_disabled())
3156 		print_irqtrace_events(prev);
3157 #ifdef CONFIG_DEBUG_PREEMPT
3158 	if (in_atomic_preempt_off()) {
3159 		pr_err("Preemption disabled at:");
3160 		print_ip_sym(current->preempt_disable_ip);
3161 		pr_cont("\n");
3162 	}
3163 #endif
3164 	dump_stack();
3165 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3166 }
3167 
3168 /*
3169  * Various schedule()-time debugging checks and statistics:
3170  */
3171 static inline void schedule_debug(struct task_struct *prev)
3172 {
3173 #ifdef CONFIG_SCHED_STACK_END_CHECK
3174 	if (task_stack_end_corrupted(prev))
3175 		panic("corrupted stack end detected inside scheduler\n");
3176 #endif
3177 
3178 	if (unlikely(in_atomic_preempt_off())) {
3179 		__schedule_bug(prev);
3180 		preempt_count_set(PREEMPT_DISABLED);
3181 	}
3182 	rcu_sleep_check();
3183 
3184 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3185 
3186 	schedstat_inc(this_rq(), sched_count);
3187 }
3188 
3189 /*
3190  * Pick up the highest-prio task:
3191  */
3192 static inline struct task_struct *
3193 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3194 {
3195 	const struct sched_class *class = &fair_sched_class;
3196 	struct task_struct *p;
3197 
3198 	/*
3199 	 * Optimization: we know that if all tasks are in
3200 	 * the fair class we can call that function directly:
3201 	 */
3202 	if (likely(prev->sched_class == class &&
3203 		   rq->nr_running == rq->cfs.h_nr_running)) {
3204 		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3205 		if (unlikely(p == RETRY_TASK))
3206 			goto again;
3207 
3208 		/* assumes fair_sched_class->next == idle_sched_class */
3209 		if (unlikely(!p))
3210 			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3211 
3212 		return p;
3213 	}
3214 
3215 again:
3216 	for_each_class(class) {
3217 		p = class->pick_next_task(rq, prev, cookie);
3218 		if (p) {
3219 			if (unlikely(p == RETRY_TASK))
3220 				goto again;
3221 			return p;
3222 		}
3223 	}
3224 
3225 	BUG(); /* the idle class will always have a runnable task */
3226 }
3227 
3228 /*
3229  * __schedule() is the main scheduler function.
3230  *
3231  * The main means of driving the scheduler and thus entering this function are:
3232  *
3233  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3234  *
3235  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3236  *      paths. For example, see arch/x86/entry_64.S.
3237  *
3238  *      To drive preemption between tasks, the scheduler sets the flag in timer
3239  *      interrupt handler scheduler_tick().
3240  *
3241  *   3. Wakeups don't really cause entry into schedule(). They add a
3242  *      task to the run-queue and that's it.
3243  *
3244  *      Now, if the new task added to the run-queue preempts the current
3245  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3246  *      called on the nearest possible occasion:
3247  *
3248  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3249  *
3250  *         - in syscall or exception context, at the next outmost
3251  *           preempt_enable(). (this might be as soon as the wake_up()'s
3252  *           spin_unlock()!)
3253  *
3254  *         - in IRQ context, return from interrupt-handler to
3255  *           preemptible context
3256  *
3257  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3258  *         then at the next:
3259  *
3260  *          - cond_resched() call
3261  *          - explicit schedule() call
3262  *          - return from syscall or exception to user-space
3263  *          - return from interrupt-handler to user-space
3264  *
3265  * WARNING: must be called with preemption disabled!
3266  */
3267 static void __sched notrace __schedule(bool preempt)
3268 {
3269 	struct task_struct *prev, *next;
3270 	unsigned long *switch_count;
3271 	struct pin_cookie cookie;
3272 	struct rq *rq;
3273 	int cpu;
3274 
3275 	cpu = smp_processor_id();
3276 	rq = cpu_rq(cpu);
3277 	prev = rq->curr;
3278 
3279 	/*
3280 	 * do_exit() calls schedule() with preemption disabled as an exception;
3281 	 * however we must fix that up, otherwise the next task will see an
3282 	 * inconsistent (higher) preempt count.
3283 	 *
3284 	 * It also avoids the below schedule_debug() test from complaining
3285 	 * about this.
3286 	 */
3287 	if (unlikely(prev->state == TASK_DEAD))
3288 		preempt_enable_no_resched_notrace();
3289 
3290 	schedule_debug(prev);
3291 
3292 	if (sched_feat(HRTICK))
3293 		hrtick_clear(rq);
3294 
3295 	local_irq_disable();
3296 	rcu_note_context_switch();
3297 
3298 	/*
3299 	 * Make sure that signal_pending_state()->signal_pending() below
3300 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3301 	 * done by the caller to avoid the race with signal_wake_up().
3302 	 */
3303 	smp_mb__before_spinlock();
3304 	raw_spin_lock(&rq->lock);
3305 	cookie = lockdep_pin_lock(&rq->lock);
3306 
3307 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3308 
3309 	switch_count = &prev->nivcsw;
3310 	if (!preempt && prev->state) {
3311 		if (unlikely(signal_pending_state(prev->state, prev))) {
3312 			prev->state = TASK_RUNNING;
3313 		} else {
3314 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3315 			prev->on_rq = 0;
3316 
3317 			/*
3318 			 * If a worker went to sleep, notify and ask workqueue
3319 			 * whether it wants to wake up a task to maintain
3320 			 * concurrency.
3321 			 */
3322 			if (prev->flags & PF_WQ_WORKER) {
3323 				struct task_struct *to_wakeup;
3324 
3325 				to_wakeup = wq_worker_sleeping(prev);
3326 				if (to_wakeup)
3327 					try_to_wake_up_local(to_wakeup, cookie);
3328 			}
3329 		}
3330 		switch_count = &prev->nvcsw;
3331 	}
3332 
3333 	if (task_on_rq_queued(prev))
3334 		update_rq_clock(rq);
3335 
3336 	next = pick_next_task(rq, prev, cookie);
3337 	clear_tsk_need_resched(prev);
3338 	clear_preempt_need_resched();
3339 	rq->clock_skip_update = 0;
3340 
3341 	if (likely(prev != next)) {
3342 		rq->nr_switches++;
3343 		rq->curr = next;
3344 		++*switch_count;
3345 
3346 		trace_sched_switch(preempt, prev, next);
3347 		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3348 	} else {
3349 		lockdep_unpin_lock(&rq->lock, cookie);
3350 		raw_spin_unlock_irq(&rq->lock);
3351 	}
3352 
3353 	balance_callback(rq);
3354 }
3355 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3356 
3357 static inline void sched_submit_work(struct task_struct *tsk)
3358 {
3359 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3360 		return;
3361 	/*
3362 	 * If we are going to sleep and we have plugged IO queued,
3363 	 * make sure to submit it to avoid deadlocks.
3364 	 */
3365 	if (blk_needs_flush_plug(tsk))
3366 		blk_schedule_flush_plug(tsk);
3367 }
3368 
3369 asmlinkage __visible void __sched schedule(void)
3370 {
3371 	struct task_struct *tsk = current;
3372 
3373 	sched_submit_work(tsk);
3374 	do {
3375 		preempt_disable();
3376 		__schedule(false);
3377 		sched_preempt_enable_no_resched();
3378 	} while (need_resched());
3379 }
3380 EXPORT_SYMBOL(schedule);
3381 
3382 #ifdef CONFIG_CONTEXT_TRACKING
3383 asmlinkage __visible void __sched schedule_user(void)
3384 {
3385 	/*
3386 	 * If we come here after a random call to set_need_resched(),
3387 	 * or we have been woken up remotely but the IPI has not yet arrived,
3388 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3389 	 * we find a better solution.
3390 	 *
3391 	 * NB: There are buggy callers of this function.  Ideally we
3392 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3393 	 * too frequently to make sense yet.
3394 	 */
3395 	enum ctx_state prev_state = exception_enter();
3396 	schedule();
3397 	exception_exit(prev_state);
3398 }
3399 #endif
3400 
3401 /**
3402  * schedule_preempt_disabled - called with preemption disabled
3403  *
3404  * Returns with preemption disabled. Note: preempt_count must be 1
3405  */
3406 void __sched schedule_preempt_disabled(void)
3407 {
3408 	sched_preempt_enable_no_resched();
3409 	schedule();
3410 	preempt_disable();
3411 }
3412 
3413 static void __sched notrace preempt_schedule_common(void)
3414 {
3415 	do {
3416 		/*
3417 		 * Because the function tracer can trace preempt_count_sub()
3418 		 * and it also uses preempt_enable/disable_notrace(), if
3419 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3420 		 * by the function tracer will call this function again and
3421 		 * cause infinite recursion.
3422 		 *
3423 		 * Preemption must be disabled here before the function
3424 		 * tracer can trace. Break up preempt_disable() into two
3425 		 * calls. One to disable preemption without fear of being
3426 		 * traced. The other to still record the preemption latency,
3427 		 * which can also be traced by the function tracer.
3428 		 */
3429 		preempt_disable_notrace();
3430 		preempt_latency_start(1);
3431 		__schedule(true);
3432 		preempt_latency_stop(1);
3433 		preempt_enable_no_resched_notrace();
3434 
3435 		/*
3436 		 * Check again in case we missed a preemption opportunity
3437 		 * between schedule and now.
3438 		 */
3439 	} while (need_resched());
3440 }
3441 
3442 #ifdef CONFIG_PREEMPT
3443 /*
3444  * this is the entry point to schedule() from in-kernel preemption
3445  * off of preempt_enable. Kernel preemptions off return from interrupt
3446  * occur there and call schedule directly.
3447  */
3448 asmlinkage __visible void __sched notrace preempt_schedule(void)
3449 {
3450 	/*
3451 	 * If there is a non-zero preempt_count or interrupts are disabled,
3452 	 * we do not want to preempt the current task. Just return..
3453 	 */
3454 	if (likely(!preemptible()))
3455 		return;
3456 
3457 	preempt_schedule_common();
3458 }
3459 NOKPROBE_SYMBOL(preempt_schedule);
3460 EXPORT_SYMBOL(preempt_schedule);
3461 
3462 /**
3463  * preempt_schedule_notrace - preempt_schedule called by tracing
3464  *
3465  * The tracing infrastructure uses preempt_enable_notrace to prevent
3466  * recursion and tracing preempt enabling caused by the tracing
3467  * infrastructure itself. But as tracing can happen in areas coming
3468  * from userspace or just about to enter userspace, a preempt enable
3469  * can occur before user_exit() is called. This will cause the scheduler
3470  * to be called when the system is still in usermode.
3471  *
3472  * To prevent this, the preempt_enable_notrace will use this function
3473  * instead of preempt_schedule() to exit user context if needed before
3474  * calling the scheduler.
3475  */
3476 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3477 {
3478 	enum ctx_state prev_ctx;
3479 
3480 	if (likely(!preemptible()))
3481 		return;
3482 
3483 	do {
3484 		/*
3485 		 * Because the function tracer can trace preempt_count_sub()
3486 		 * and it also uses preempt_enable/disable_notrace(), if
3487 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3488 		 * by the function tracer will call this function again and
3489 		 * cause infinite recursion.
3490 		 *
3491 		 * Preemption must be disabled here before the function
3492 		 * tracer can trace. Break up preempt_disable() into two
3493 		 * calls. One to disable preemption without fear of being
3494 		 * traced. The other to still record the preemption latency,
3495 		 * which can also be traced by the function tracer.
3496 		 */
3497 		preempt_disable_notrace();
3498 		preempt_latency_start(1);
3499 		/*
3500 		 * Needs preempt disabled in case user_exit() is traced
3501 		 * and the tracer calls preempt_enable_notrace() causing
3502 		 * an infinite recursion.
3503 		 */
3504 		prev_ctx = exception_enter();
3505 		__schedule(true);
3506 		exception_exit(prev_ctx);
3507 
3508 		preempt_latency_stop(1);
3509 		preempt_enable_no_resched_notrace();
3510 	} while (need_resched());
3511 }
3512 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3513 
3514 #endif /* CONFIG_PREEMPT */
3515 
3516 /*
3517  * this is the entry point to schedule() from kernel preemption
3518  * off of irq context.
3519  * Note, that this is called and return with irqs disabled. This will
3520  * protect us against recursive calling from irq.
3521  */
3522 asmlinkage __visible void __sched preempt_schedule_irq(void)
3523 {
3524 	enum ctx_state prev_state;
3525 
3526 	/* Catch callers which need to be fixed */
3527 	BUG_ON(preempt_count() || !irqs_disabled());
3528 
3529 	prev_state = exception_enter();
3530 
3531 	do {
3532 		preempt_disable();
3533 		local_irq_enable();
3534 		__schedule(true);
3535 		local_irq_disable();
3536 		sched_preempt_enable_no_resched();
3537 	} while (need_resched());
3538 
3539 	exception_exit(prev_state);
3540 }
3541 
3542 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3543 			  void *key)
3544 {
3545 	return try_to_wake_up(curr->private, mode, wake_flags);
3546 }
3547 EXPORT_SYMBOL(default_wake_function);
3548 
3549 #ifdef CONFIG_RT_MUTEXES
3550 
3551 /*
3552  * rt_mutex_setprio - set the current priority of a task
3553  * @p: task
3554  * @prio: prio value (kernel-internal form)
3555  *
3556  * This function changes the 'effective' priority of a task. It does
3557  * not touch ->normal_prio like __setscheduler().
3558  *
3559  * Used by the rt_mutex code to implement priority inheritance
3560  * logic. Call site only calls if the priority of the task changed.
3561  */
3562 void rt_mutex_setprio(struct task_struct *p, int prio)
3563 {
3564 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3565 	const struct sched_class *prev_class;
3566 	struct rq_flags rf;
3567 	struct rq *rq;
3568 
3569 	BUG_ON(prio > MAX_PRIO);
3570 
3571 	rq = __task_rq_lock(p, &rf);
3572 
3573 	/*
3574 	 * Idle task boosting is a nono in general. There is one
3575 	 * exception, when PREEMPT_RT and NOHZ is active:
3576 	 *
3577 	 * The idle task calls get_next_timer_interrupt() and holds
3578 	 * the timer wheel base->lock on the CPU and another CPU wants
3579 	 * to access the timer (probably to cancel it). We can safely
3580 	 * ignore the boosting request, as the idle CPU runs this code
3581 	 * with interrupts disabled and will complete the lock
3582 	 * protected section without being interrupted. So there is no
3583 	 * real need to boost.
3584 	 */
3585 	if (unlikely(p == rq->idle)) {
3586 		WARN_ON(p != rq->curr);
3587 		WARN_ON(p->pi_blocked_on);
3588 		goto out_unlock;
3589 	}
3590 
3591 	trace_sched_pi_setprio(p, prio);
3592 	oldprio = p->prio;
3593 
3594 	if (oldprio == prio)
3595 		queue_flag &= ~DEQUEUE_MOVE;
3596 
3597 	prev_class = p->sched_class;
3598 	queued = task_on_rq_queued(p);
3599 	running = task_current(rq, p);
3600 	if (queued)
3601 		dequeue_task(rq, p, queue_flag);
3602 	if (running)
3603 		put_prev_task(rq, p);
3604 
3605 	/*
3606 	 * Boosting condition are:
3607 	 * 1. -rt task is running and holds mutex A
3608 	 *      --> -dl task blocks on mutex A
3609 	 *
3610 	 * 2. -dl task is running and holds mutex A
3611 	 *      --> -dl task blocks on mutex A and could preempt the
3612 	 *          running task
3613 	 */
3614 	if (dl_prio(prio)) {
3615 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3616 		if (!dl_prio(p->normal_prio) ||
3617 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3618 			p->dl.dl_boosted = 1;
3619 			queue_flag |= ENQUEUE_REPLENISH;
3620 		} else
3621 			p->dl.dl_boosted = 0;
3622 		p->sched_class = &dl_sched_class;
3623 	} else if (rt_prio(prio)) {
3624 		if (dl_prio(oldprio))
3625 			p->dl.dl_boosted = 0;
3626 		if (oldprio < prio)
3627 			queue_flag |= ENQUEUE_HEAD;
3628 		p->sched_class = &rt_sched_class;
3629 	} else {
3630 		if (dl_prio(oldprio))
3631 			p->dl.dl_boosted = 0;
3632 		if (rt_prio(oldprio))
3633 			p->rt.timeout = 0;
3634 		p->sched_class = &fair_sched_class;
3635 	}
3636 
3637 	p->prio = prio;
3638 
3639 	if (running)
3640 		p->sched_class->set_curr_task(rq);
3641 	if (queued)
3642 		enqueue_task(rq, p, queue_flag);
3643 
3644 	check_class_changed(rq, p, prev_class, oldprio);
3645 out_unlock:
3646 	preempt_disable(); /* avoid rq from going away on us */
3647 	__task_rq_unlock(rq, &rf);
3648 
3649 	balance_callback(rq);
3650 	preempt_enable();
3651 }
3652 #endif
3653 
3654 void set_user_nice(struct task_struct *p, long nice)
3655 {
3656 	int old_prio, delta, queued;
3657 	struct rq_flags rf;
3658 	struct rq *rq;
3659 
3660 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3661 		return;
3662 	/*
3663 	 * We have to be careful, if called from sys_setpriority(),
3664 	 * the task might be in the middle of scheduling on another CPU.
3665 	 */
3666 	rq = task_rq_lock(p, &rf);
3667 	/*
3668 	 * The RT priorities are set via sched_setscheduler(), but we still
3669 	 * allow the 'normal' nice value to be set - but as expected
3670 	 * it wont have any effect on scheduling until the task is
3671 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3672 	 */
3673 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3674 		p->static_prio = NICE_TO_PRIO(nice);
3675 		goto out_unlock;
3676 	}
3677 	queued = task_on_rq_queued(p);
3678 	if (queued)
3679 		dequeue_task(rq, p, DEQUEUE_SAVE);
3680 
3681 	p->static_prio = NICE_TO_PRIO(nice);
3682 	set_load_weight(p);
3683 	old_prio = p->prio;
3684 	p->prio = effective_prio(p);
3685 	delta = p->prio - old_prio;
3686 
3687 	if (queued) {
3688 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3689 		/*
3690 		 * If the task increased its priority or is running and
3691 		 * lowered its priority, then reschedule its CPU:
3692 		 */
3693 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3694 			resched_curr(rq);
3695 	}
3696 out_unlock:
3697 	task_rq_unlock(rq, p, &rf);
3698 }
3699 EXPORT_SYMBOL(set_user_nice);
3700 
3701 /*
3702  * can_nice - check if a task can reduce its nice value
3703  * @p: task
3704  * @nice: nice value
3705  */
3706 int can_nice(const struct task_struct *p, const int nice)
3707 {
3708 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3709 	int nice_rlim = nice_to_rlimit(nice);
3710 
3711 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3712 		capable(CAP_SYS_NICE));
3713 }
3714 
3715 #ifdef __ARCH_WANT_SYS_NICE
3716 
3717 /*
3718  * sys_nice - change the priority of the current process.
3719  * @increment: priority increment
3720  *
3721  * sys_setpriority is a more generic, but much slower function that
3722  * does similar things.
3723  */
3724 SYSCALL_DEFINE1(nice, int, increment)
3725 {
3726 	long nice, retval;
3727 
3728 	/*
3729 	 * Setpriority might change our priority at the same moment.
3730 	 * We don't have to worry. Conceptually one call occurs first
3731 	 * and we have a single winner.
3732 	 */
3733 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3734 	nice = task_nice(current) + increment;
3735 
3736 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3737 	if (increment < 0 && !can_nice(current, nice))
3738 		return -EPERM;
3739 
3740 	retval = security_task_setnice(current, nice);
3741 	if (retval)
3742 		return retval;
3743 
3744 	set_user_nice(current, nice);
3745 	return 0;
3746 }
3747 
3748 #endif
3749 
3750 /**
3751  * task_prio - return the priority value of a given task.
3752  * @p: the task in question.
3753  *
3754  * Return: The priority value as seen by users in /proc.
3755  * RT tasks are offset by -200. Normal tasks are centered
3756  * around 0, value goes from -16 to +15.
3757  */
3758 int task_prio(const struct task_struct *p)
3759 {
3760 	return p->prio - MAX_RT_PRIO;
3761 }
3762 
3763 /**
3764  * idle_cpu - is a given cpu idle currently?
3765  * @cpu: the processor in question.
3766  *
3767  * Return: 1 if the CPU is currently idle. 0 otherwise.
3768  */
3769 int idle_cpu(int cpu)
3770 {
3771 	struct rq *rq = cpu_rq(cpu);
3772 
3773 	if (rq->curr != rq->idle)
3774 		return 0;
3775 
3776 	if (rq->nr_running)
3777 		return 0;
3778 
3779 #ifdef CONFIG_SMP
3780 	if (!llist_empty(&rq->wake_list))
3781 		return 0;
3782 #endif
3783 
3784 	return 1;
3785 }
3786 
3787 /**
3788  * idle_task - return the idle task for a given cpu.
3789  * @cpu: the processor in question.
3790  *
3791  * Return: The idle task for the cpu @cpu.
3792  */
3793 struct task_struct *idle_task(int cpu)
3794 {
3795 	return cpu_rq(cpu)->idle;
3796 }
3797 
3798 /**
3799  * find_process_by_pid - find a process with a matching PID value.
3800  * @pid: the pid in question.
3801  *
3802  * The task of @pid, if found. %NULL otherwise.
3803  */
3804 static struct task_struct *find_process_by_pid(pid_t pid)
3805 {
3806 	return pid ? find_task_by_vpid(pid) : current;
3807 }
3808 
3809 /*
3810  * This function initializes the sched_dl_entity of a newly becoming
3811  * SCHED_DEADLINE task.
3812  *
3813  * Only the static values are considered here, the actual runtime and the
3814  * absolute deadline will be properly calculated when the task is enqueued
3815  * for the first time with its new policy.
3816  */
3817 static void
3818 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3819 {
3820 	struct sched_dl_entity *dl_se = &p->dl;
3821 
3822 	dl_se->dl_runtime = attr->sched_runtime;
3823 	dl_se->dl_deadline = attr->sched_deadline;
3824 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3825 	dl_se->flags = attr->sched_flags;
3826 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3827 
3828 	/*
3829 	 * Changing the parameters of a task is 'tricky' and we're not doing
3830 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3831 	 *
3832 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3833 	 * point. This would include retaining the task_struct until that time
3834 	 * and change dl_overflow() to not immediately decrement the current
3835 	 * amount.
3836 	 *
3837 	 * Instead we retain the current runtime/deadline and let the new
3838 	 * parameters take effect after the current reservation period lapses.
3839 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3840 	 * before the current scheduling deadline.
3841 	 *
3842 	 * We can still have temporary overloads because we do not delay the
3843 	 * change in bandwidth until that time; so admission control is
3844 	 * not on the safe side. It does however guarantee tasks will never
3845 	 * consume more than promised.
3846 	 */
3847 }
3848 
3849 /*
3850  * sched_setparam() passes in -1 for its policy, to let the functions
3851  * it calls know not to change it.
3852  */
3853 #define SETPARAM_POLICY	-1
3854 
3855 static void __setscheduler_params(struct task_struct *p,
3856 		const struct sched_attr *attr)
3857 {
3858 	int policy = attr->sched_policy;
3859 
3860 	if (policy == SETPARAM_POLICY)
3861 		policy = p->policy;
3862 
3863 	p->policy = policy;
3864 
3865 	if (dl_policy(policy))
3866 		__setparam_dl(p, attr);
3867 	else if (fair_policy(policy))
3868 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3869 
3870 	/*
3871 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3872 	 * !rt_policy. Always setting this ensures that things like
3873 	 * getparam()/getattr() don't report silly values for !rt tasks.
3874 	 */
3875 	p->rt_priority = attr->sched_priority;
3876 	p->normal_prio = normal_prio(p);
3877 	set_load_weight(p);
3878 }
3879 
3880 /* Actually do priority change: must hold pi & rq lock. */
3881 static void __setscheduler(struct rq *rq, struct task_struct *p,
3882 			   const struct sched_attr *attr, bool keep_boost)
3883 {
3884 	__setscheduler_params(p, attr);
3885 
3886 	/*
3887 	 * Keep a potential priority boosting if called from
3888 	 * sched_setscheduler().
3889 	 */
3890 	if (keep_boost)
3891 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3892 	else
3893 		p->prio = normal_prio(p);
3894 
3895 	if (dl_prio(p->prio))
3896 		p->sched_class = &dl_sched_class;
3897 	else if (rt_prio(p->prio))
3898 		p->sched_class = &rt_sched_class;
3899 	else
3900 		p->sched_class = &fair_sched_class;
3901 }
3902 
3903 static void
3904 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3905 {
3906 	struct sched_dl_entity *dl_se = &p->dl;
3907 
3908 	attr->sched_priority = p->rt_priority;
3909 	attr->sched_runtime = dl_se->dl_runtime;
3910 	attr->sched_deadline = dl_se->dl_deadline;
3911 	attr->sched_period = dl_se->dl_period;
3912 	attr->sched_flags = dl_se->flags;
3913 }
3914 
3915 /*
3916  * This function validates the new parameters of a -deadline task.
3917  * We ask for the deadline not being zero, and greater or equal
3918  * than the runtime, as well as the period of being zero or
3919  * greater than deadline. Furthermore, we have to be sure that
3920  * user parameters are above the internal resolution of 1us (we
3921  * check sched_runtime only since it is always the smaller one) and
3922  * below 2^63 ns (we have to check both sched_deadline and
3923  * sched_period, as the latter can be zero).
3924  */
3925 static bool
3926 __checkparam_dl(const struct sched_attr *attr)
3927 {
3928 	/* deadline != 0 */
3929 	if (attr->sched_deadline == 0)
3930 		return false;
3931 
3932 	/*
3933 	 * Since we truncate DL_SCALE bits, make sure we're at least
3934 	 * that big.
3935 	 */
3936 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3937 		return false;
3938 
3939 	/*
3940 	 * Since we use the MSB for wrap-around and sign issues, make
3941 	 * sure it's not set (mind that period can be equal to zero).
3942 	 */
3943 	if (attr->sched_deadline & (1ULL << 63) ||
3944 	    attr->sched_period & (1ULL << 63))
3945 		return false;
3946 
3947 	/* runtime <= deadline <= period (if period != 0) */
3948 	if ((attr->sched_period != 0 &&
3949 	     attr->sched_period < attr->sched_deadline) ||
3950 	    attr->sched_deadline < attr->sched_runtime)
3951 		return false;
3952 
3953 	return true;
3954 }
3955 
3956 /*
3957  * check the target process has a UID that matches the current process's
3958  */
3959 static bool check_same_owner(struct task_struct *p)
3960 {
3961 	const struct cred *cred = current_cred(), *pcred;
3962 	bool match;
3963 
3964 	rcu_read_lock();
3965 	pcred = __task_cred(p);
3966 	match = (uid_eq(cred->euid, pcred->euid) ||
3967 		 uid_eq(cred->euid, pcred->uid));
3968 	rcu_read_unlock();
3969 	return match;
3970 }
3971 
3972 static bool dl_param_changed(struct task_struct *p,
3973 		const struct sched_attr *attr)
3974 {
3975 	struct sched_dl_entity *dl_se = &p->dl;
3976 
3977 	if (dl_se->dl_runtime != attr->sched_runtime ||
3978 		dl_se->dl_deadline != attr->sched_deadline ||
3979 		dl_se->dl_period != attr->sched_period ||
3980 		dl_se->flags != attr->sched_flags)
3981 		return true;
3982 
3983 	return false;
3984 }
3985 
3986 static int __sched_setscheduler(struct task_struct *p,
3987 				const struct sched_attr *attr,
3988 				bool user, bool pi)
3989 {
3990 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3991 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3992 	int retval, oldprio, oldpolicy = -1, queued, running;
3993 	int new_effective_prio, policy = attr->sched_policy;
3994 	const struct sched_class *prev_class;
3995 	struct rq_flags rf;
3996 	int reset_on_fork;
3997 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3998 	struct rq *rq;
3999 
4000 	/* may grab non-irq protected spin_locks */
4001 	BUG_ON(in_interrupt());
4002 recheck:
4003 	/* double check policy once rq lock held */
4004 	if (policy < 0) {
4005 		reset_on_fork = p->sched_reset_on_fork;
4006 		policy = oldpolicy = p->policy;
4007 	} else {
4008 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4009 
4010 		if (!valid_policy(policy))
4011 			return -EINVAL;
4012 	}
4013 
4014 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4015 		return -EINVAL;
4016 
4017 	/*
4018 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4019 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4020 	 * SCHED_BATCH and SCHED_IDLE is 0.
4021 	 */
4022 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4023 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4024 		return -EINVAL;
4025 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4026 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4027 		return -EINVAL;
4028 
4029 	/*
4030 	 * Allow unprivileged RT tasks to decrease priority:
4031 	 */
4032 	if (user && !capable(CAP_SYS_NICE)) {
4033 		if (fair_policy(policy)) {
4034 			if (attr->sched_nice < task_nice(p) &&
4035 			    !can_nice(p, attr->sched_nice))
4036 				return -EPERM;
4037 		}
4038 
4039 		if (rt_policy(policy)) {
4040 			unsigned long rlim_rtprio =
4041 					task_rlimit(p, RLIMIT_RTPRIO);
4042 
4043 			/* can't set/change the rt policy */
4044 			if (policy != p->policy && !rlim_rtprio)
4045 				return -EPERM;
4046 
4047 			/* can't increase priority */
4048 			if (attr->sched_priority > p->rt_priority &&
4049 			    attr->sched_priority > rlim_rtprio)
4050 				return -EPERM;
4051 		}
4052 
4053 		 /*
4054 		  * Can't set/change SCHED_DEADLINE policy at all for now
4055 		  * (safest behavior); in the future we would like to allow
4056 		  * unprivileged DL tasks to increase their relative deadline
4057 		  * or reduce their runtime (both ways reducing utilization)
4058 		  */
4059 		if (dl_policy(policy))
4060 			return -EPERM;
4061 
4062 		/*
4063 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4064 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4065 		 */
4066 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4067 			if (!can_nice(p, task_nice(p)))
4068 				return -EPERM;
4069 		}
4070 
4071 		/* can't change other user's priorities */
4072 		if (!check_same_owner(p))
4073 			return -EPERM;
4074 
4075 		/* Normal users shall not reset the sched_reset_on_fork flag */
4076 		if (p->sched_reset_on_fork && !reset_on_fork)
4077 			return -EPERM;
4078 	}
4079 
4080 	if (user) {
4081 		retval = security_task_setscheduler(p);
4082 		if (retval)
4083 			return retval;
4084 	}
4085 
4086 	/*
4087 	 * make sure no PI-waiters arrive (or leave) while we are
4088 	 * changing the priority of the task:
4089 	 *
4090 	 * To be able to change p->policy safely, the appropriate
4091 	 * runqueue lock must be held.
4092 	 */
4093 	rq = task_rq_lock(p, &rf);
4094 
4095 	/*
4096 	 * Changing the policy of the stop threads its a very bad idea
4097 	 */
4098 	if (p == rq->stop) {
4099 		task_rq_unlock(rq, p, &rf);
4100 		return -EINVAL;
4101 	}
4102 
4103 	/*
4104 	 * If not changing anything there's no need to proceed further,
4105 	 * but store a possible modification of reset_on_fork.
4106 	 */
4107 	if (unlikely(policy == p->policy)) {
4108 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4109 			goto change;
4110 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4111 			goto change;
4112 		if (dl_policy(policy) && dl_param_changed(p, attr))
4113 			goto change;
4114 
4115 		p->sched_reset_on_fork = reset_on_fork;
4116 		task_rq_unlock(rq, p, &rf);
4117 		return 0;
4118 	}
4119 change:
4120 
4121 	if (user) {
4122 #ifdef CONFIG_RT_GROUP_SCHED
4123 		/*
4124 		 * Do not allow realtime tasks into groups that have no runtime
4125 		 * assigned.
4126 		 */
4127 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4128 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4129 				!task_group_is_autogroup(task_group(p))) {
4130 			task_rq_unlock(rq, p, &rf);
4131 			return -EPERM;
4132 		}
4133 #endif
4134 #ifdef CONFIG_SMP
4135 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4136 			cpumask_t *span = rq->rd->span;
4137 
4138 			/*
4139 			 * Don't allow tasks with an affinity mask smaller than
4140 			 * the entire root_domain to become SCHED_DEADLINE. We
4141 			 * will also fail if there's no bandwidth available.
4142 			 */
4143 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4144 			    rq->rd->dl_bw.bw == 0) {
4145 				task_rq_unlock(rq, p, &rf);
4146 				return -EPERM;
4147 			}
4148 		}
4149 #endif
4150 	}
4151 
4152 	/* recheck policy now with rq lock held */
4153 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4154 		policy = oldpolicy = -1;
4155 		task_rq_unlock(rq, p, &rf);
4156 		goto recheck;
4157 	}
4158 
4159 	/*
4160 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4161 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4162 	 * is available.
4163 	 */
4164 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4165 		task_rq_unlock(rq, p, &rf);
4166 		return -EBUSY;
4167 	}
4168 
4169 	p->sched_reset_on_fork = reset_on_fork;
4170 	oldprio = p->prio;
4171 
4172 	if (pi) {
4173 		/*
4174 		 * Take priority boosted tasks into account. If the new
4175 		 * effective priority is unchanged, we just store the new
4176 		 * normal parameters and do not touch the scheduler class and
4177 		 * the runqueue. This will be done when the task deboost
4178 		 * itself.
4179 		 */
4180 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4181 		if (new_effective_prio == oldprio)
4182 			queue_flags &= ~DEQUEUE_MOVE;
4183 	}
4184 
4185 	queued = task_on_rq_queued(p);
4186 	running = task_current(rq, p);
4187 	if (queued)
4188 		dequeue_task(rq, p, queue_flags);
4189 	if (running)
4190 		put_prev_task(rq, p);
4191 
4192 	prev_class = p->sched_class;
4193 	__setscheduler(rq, p, attr, pi);
4194 
4195 	if (running)
4196 		p->sched_class->set_curr_task(rq);
4197 	if (queued) {
4198 		/*
4199 		 * We enqueue to tail when the priority of a task is
4200 		 * increased (user space view).
4201 		 */
4202 		if (oldprio < p->prio)
4203 			queue_flags |= ENQUEUE_HEAD;
4204 
4205 		enqueue_task(rq, p, queue_flags);
4206 	}
4207 
4208 	check_class_changed(rq, p, prev_class, oldprio);
4209 	preempt_disable(); /* avoid rq from going away on us */
4210 	task_rq_unlock(rq, p, &rf);
4211 
4212 	if (pi)
4213 		rt_mutex_adjust_pi(p);
4214 
4215 	/*
4216 	 * Run balance callbacks after we've adjusted the PI chain.
4217 	 */
4218 	balance_callback(rq);
4219 	preempt_enable();
4220 
4221 	return 0;
4222 }
4223 
4224 static int _sched_setscheduler(struct task_struct *p, int policy,
4225 			       const struct sched_param *param, bool check)
4226 {
4227 	struct sched_attr attr = {
4228 		.sched_policy   = policy,
4229 		.sched_priority = param->sched_priority,
4230 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4231 	};
4232 
4233 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4234 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4235 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4236 		policy &= ~SCHED_RESET_ON_FORK;
4237 		attr.sched_policy = policy;
4238 	}
4239 
4240 	return __sched_setscheduler(p, &attr, check, true);
4241 }
4242 /**
4243  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4244  * @p: the task in question.
4245  * @policy: new policy.
4246  * @param: structure containing the new RT priority.
4247  *
4248  * Return: 0 on success. An error code otherwise.
4249  *
4250  * NOTE that the task may be already dead.
4251  */
4252 int sched_setscheduler(struct task_struct *p, int policy,
4253 		       const struct sched_param *param)
4254 {
4255 	return _sched_setscheduler(p, policy, param, true);
4256 }
4257 EXPORT_SYMBOL_GPL(sched_setscheduler);
4258 
4259 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4260 {
4261 	return __sched_setscheduler(p, attr, true, true);
4262 }
4263 EXPORT_SYMBOL_GPL(sched_setattr);
4264 
4265 /**
4266  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4267  * @p: the task in question.
4268  * @policy: new policy.
4269  * @param: structure containing the new RT priority.
4270  *
4271  * Just like sched_setscheduler, only don't bother checking if the
4272  * current context has permission.  For example, this is needed in
4273  * stop_machine(): we create temporary high priority worker threads,
4274  * but our caller might not have that capability.
4275  *
4276  * Return: 0 on success. An error code otherwise.
4277  */
4278 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4279 			       const struct sched_param *param)
4280 {
4281 	return _sched_setscheduler(p, policy, param, false);
4282 }
4283 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4284 
4285 static int
4286 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4287 {
4288 	struct sched_param lparam;
4289 	struct task_struct *p;
4290 	int retval;
4291 
4292 	if (!param || pid < 0)
4293 		return -EINVAL;
4294 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4295 		return -EFAULT;
4296 
4297 	rcu_read_lock();
4298 	retval = -ESRCH;
4299 	p = find_process_by_pid(pid);
4300 	if (p != NULL)
4301 		retval = sched_setscheduler(p, policy, &lparam);
4302 	rcu_read_unlock();
4303 
4304 	return retval;
4305 }
4306 
4307 /*
4308  * Mimics kernel/events/core.c perf_copy_attr().
4309  */
4310 static int sched_copy_attr(struct sched_attr __user *uattr,
4311 			   struct sched_attr *attr)
4312 {
4313 	u32 size;
4314 	int ret;
4315 
4316 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4317 		return -EFAULT;
4318 
4319 	/*
4320 	 * zero the full structure, so that a short copy will be nice.
4321 	 */
4322 	memset(attr, 0, sizeof(*attr));
4323 
4324 	ret = get_user(size, &uattr->size);
4325 	if (ret)
4326 		return ret;
4327 
4328 	if (size > PAGE_SIZE)	/* silly large */
4329 		goto err_size;
4330 
4331 	if (!size)		/* abi compat */
4332 		size = SCHED_ATTR_SIZE_VER0;
4333 
4334 	if (size < SCHED_ATTR_SIZE_VER0)
4335 		goto err_size;
4336 
4337 	/*
4338 	 * If we're handed a bigger struct than we know of,
4339 	 * ensure all the unknown bits are 0 - i.e. new
4340 	 * user-space does not rely on any kernel feature
4341 	 * extensions we dont know about yet.
4342 	 */
4343 	if (size > sizeof(*attr)) {
4344 		unsigned char __user *addr;
4345 		unsigned char __user *end;
4346 		unsigned char val;
4347 
4348 		addr = (void __user *)uattr + sizeof(*attr);
4349 		end  = (void __user *)uattr + size;
4350 
4351 		for (; addr < end; addr++) {
4352 			ret = get_user(val, addr);
4353 			if (ret)
4354 				return ret;
4355 			if (val)
4356 				goto err_size;
4357 		}
4358 		size = sizeof(*attr);
4359 	}
4360 
4361 	ret = copy_from_user(attr, uattr, size);
4362 	if (ret)
4363 		return -EFAULT;
4364 
4365 	/*
4366 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4367 	 * to be strict and return an error on out-of-bounds values?
4368 	 */
4369 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4370 
4371 	return 0;
4372 
4373 err_size:
4374 	put_user(sizeof(*attr), &uattr->size);
4375 	return -E2BIG;
4376 }
4377 
4378 /**
4379  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4380  * @pid: the pid in question.
4381  * @policy: new policy.
4382  * @param: structure containing the new RT priority.
4383  *
4384  * Return: 0 on success. An error code otherwise.
4385  */
4386 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4387 		struct sched_param __user *, param)
4388 {
4389 	/* negative values for policy are not valid */
4390 	if (policy < 0)
4391 		return -EINVAL;
4392 
4393 	return do_sched_setscheduler(pid, policy, param);
4394 }
4395 
4396 /**
4397  * sys_sched_setparam - set/change the RT priority of a thread
4398  * @pid: the pid in question.
4399  * @param: structure containing the new RT priority.
4400  *
4401  * Return: 0 on success. An error code otherwise.
4402  */
4403 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4404 {
4405 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4406 }
4407 
4408 /**
4409  * sys_sched_setattr - same as above, but with extended sched_attr
4410  * @pid: the pid in question.
4411  * @uattr: structure containing the extended parameters.
4412  * @flags: for future extension.
4413  */
4414 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4415 			       unsigned int, flags)
4416 {
4417 	struct sched_attr attr;
4418 	struct task_struct *p;
4419 	int retval;
4420 
4421 	if (!uattr || pid < 0 || flags)
4422 		return -EINVAL;
4423 
4424 	retval = sched_copy_attr(uattr, &attr);
4425 	if (retval)
4426 		return retval;
4427 
4428 	if ((int)attr.sched_policy < 0)
4429 		return -EINVAL;
4430 
4431 	rcu_read_lock();
4432 	retval = -ESRCH;
4433 	p = find_process_by_pid(pid);
4434 	if (p != NULL)
4435 		retval = sched_setattr(p, &attr);
4436 	rcu_read_unlock();
4437 
4438 	return retval;
4439 }
4440 
4441 /**
4442  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4443  * @pid: the pid in question.
4444  *
4445  * Return: On success, the policy of the thread. Otherwise, a negative error
4446  * code.
4447  */
4448 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4449 {
4450 	struct task_struct *p;
4451 	int retval;
4452 
4453 	if (pid < 0)
4454 		return -EINVAL;
4455 
4456 	retval = -ESRCH;
4457 	rcu_read_lock();
4458 	p = find_process_by_pid(pid);
4459 	if (p) {
4460 		retval = security_task_getscheduler(p);
4461 		if (!retval)
4462 			retval = p->policy
4463 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4464 	}
4465 	rcu_read_unlock();
4466 	return retval;
4467 }
4468 
4469 /**
4470  * sys_sched_getparam - get the RT priority of a thread
4471  * @pid: the pid in question.
4472  * @param: structure containing the RT priority.
4473  *
4474  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4475  * code.
4476  */
4477 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4478 {
4479 	struct sched_param lp = { .sched_priority = 0 };
4480 	struct task_struct *p;
4481 	int retval;
4482 
4483 	if (!param || pid < 0)
4484 		return -EINVAL;
4485 
4486 	rcu_read_lock();
4487 	p = find_process_by_pid(pid);
4488 	retval = -ESRCH;
4489 	if (!p)
4490 		goto out_unlock;
4491 
4492 	retval = security_task_getscheduler(p);
4493 	if (retval)
4494 		goto out_unlock;
4495 
4496 	if (task_has_rt_policy(p))
4497 		lp.sched_priority = p->rt_priority;
4498 	rcu_read_unlock();
4499 
4500 	/*
4501 	 * This one might sleep, we cannot do it with a spinlock held ...
4502 	 */
4503 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4504 
4505 	return retval;
4506 
4507 out_unlock:
4508 	rcu_read_unlock();
4509 	return retval;
4510 }
4511 
4512 static int sched_read_attr(struct sched_attr __user *uattr,
4513 			   struct sched_attr *attr,
4514 			   unsigned int usize)
4515 {
4516 	int ret;
4517 
4518 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4519 		return -EFAULT;
4520 
4521 	/*
4522 	 * If we're handed a smaller struct than we know of,
4523 	 * ensure all the unknown bits are 0 - i.e. old
4524 	 * user-space does not get uncomplete information.
4525 	 */
4526 	if (usize < sizeof(*attr)) {
4527 		unsigned char *addr;
4528 		unsigned char *end;
4529 
4530 		addr = (void *)attr + usize;
4531 		end  = (void *)attr + sizeof(*attr);
4532 
4533 		for (; addr < end; addr++) {
4534 			if (*addr)
4535 				return -EFBIG;
4536 		}
4537 
4538 		attr->size = usize;
4539 	}
4540 
4541 	ret = copy_to_user(uattr, attr, attr->size);
4542 	if (ret)
4543 		return -EFAULT;
4544 
4545 	return 0;
4546 }
4547 
4548 /**
4549  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4550  * @pid: the pid in question.
4551  * @uattr: structure containing the extended parameters.
4552  * @size: sizeof(attr) for fwd/bwd comp.
4553  * @flags: for future extension.
4554  */
4555 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4556 		unsigned int, size, unsigned int, flags)
4557 {
4558 	struct sched_attr attr = {
4559 		.size = sizeof(struct sched_attr),
4560 	};
4561 	struct task_struct *p;
4562 	int retval;
4563 
4564 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4565 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4566 		return -EINVAL;
4567 
4568 	rcu_read_lock();
4569 	p = find_process_by_pid(pid);
4570 	retval = -ESRCH;
4571 	if (!p)
4572 		goto out_unlock;
4573 
4574 	retval = security_task_getscheduler(p);
4575 	if (retval)
4576 		goto out_unlock;
4577 
4578 	attr.sched_policy = p->policy;
4579 	if (p->sched_reset_on_fork)
4580 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4581 	if (task_has_dl_policy(p))
4582 		__getparam_dl(p, &attr);
4583 	else if (task_has_rt_policy(p))
4584 		attr.sched_priority = p->rt_priority;
4585 	else
4586 		attr.sched_nice = task_nice(p);
4587 
4588 	rcu_read_unlock();
4589 
4590 	retval = sched_read_attr(uattr, &attr, size);
4591 	return retval;
4592 
4593 out_unlock:
4594 	rcu_read_unlock();
4595 	return retval;
4596 }
4597 
4598 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4599 {
4600 	cpumask_var_t cpus_allowed, new_mask;
4601 	struct task_struct *p;
4602 	int retval;
4603 
4604 	rcu_read_lock();
4605 
4606 	p = find_process_by_pid(pid);
4607 	if (!p) {
4608 		rcu_read_unlock();
4609 		return -ESRCH;
4610 	}
4611 
4612 	/* Prevent p going away */
4613 	get_task_struct(p);
4614 	rcu_read_unlock();
4615 
4616 	if (p->flags & PF_NO_SETAFFINITY) {
4617 		retval = -EINVAL;
4618 		goto out_put_task;
4619 	}
4620 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4621 		retval = -ENOMEM;
4622 		goto out_put_task;
4623 	}
4624 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4625 		retval = -ENOMEM;
4626 		goto out_free_cpus_allowed;
4627 	}
4628 	retval = -EPERM;
4629 	if (!check_same_owner(p)) {
4630 		rcu_read_lock();
4631 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4632 			rcu_read_unlock();
4633 			goto out_free_new_mask;
4634 		}
4635 		rcu_read_unlock();
4636 	}
4637 
4638 	retval = security_task_setscheduler(p);
4639 	if (retval)
4640 		goto out_free_new_mask;
4641 
4642 
4643 	cpuset_cpus_allowed(p, cpus_allowed);
4644 	cpumask_and(new_mask, in_mask, cpus_allowed);
4645 
4646 	/*
4647 	 * Since bandwidth control happens on root_domain basis,
4648 	 * if admission test is enabled, we only admit -deadline
4649 	 * tasks allowed to run on all the CPUs in the task's
4650 	 * root_domain.
4651 	 */
4652 #ifdef CONFIG_SMP
4653 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4654 		rcu_read_lock();
4655 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4656 			retval = -EBUSY;
4657 			rcu_read_unlock();
4658 			goto out_free_new_mask;
4659 		}
4660 		rcu_read_unlock();
4661 	}
4662 #endif
4663 again:
4664 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4665 
4666 	if (!retval) {
4667 		cpuset_cpus_allowed(p, cpus_allowed);
4668 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4669 			/*
4670 			 * We must have raced with a concurrent cpuset
4671 			 * update. Just reset the cpus_allowed to the
4672 			 * cpuset's cpus_allowed
4673 			 */
4674 			cpumask_copy(new_mask, cpus_allowed);
4675 			goto again;
4676 		}
4677 	}
4678 out_free_new_mask:
4679 	free_cpumask_var(new_mask);
4680 out_free_cpus_allowed:
4681 	free_cpumask_var(cpus_allowed);
4682 out_put_task:
4683 	put_task_struct(p);
4684 	return retval;
4685 }
4686 
4687 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4688 			     struct cpumask *new_mask)
4689 {
4690 	if (len < cpumask_size())
4691 		cpumask_clear(new_mask);
4692 	else if (len > cpumask_size())
4693 		len = cpumask_size();
4694 
4695 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4696 }
4697 
4698 /**
4699  * sys_sched_setaffinity - set the cpu affinity of a process
4700  * @pid: pid of the process
4701  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4702  * @user_mask_ptr: user-space pointer to the new cpu mask
4703  *
4704  * Return: 0 on success. An error code otherwise.
4705  */
4706 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4707 		unsigned long __user *, user_mask_ptr)
4708 {
4709 	cpumask_var_t new_mask;
4710 	int retval;
4711 
4712 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4713 		return -ENOMEM;
4714 
4715 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4716 	if (retval == 0)
4717 		retval = sched_setaffinity(pid, new_mask);
4718 	free_cpumask_var(new_mask);
4719 	return retval;
4720 }
4721 
4722 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4723 {
4724 	struct task_struct *p;
4725 	unsigned long flags;
4726 	int retval;
4727 
4728 	rcu_read_lock();
4729 
4730 	retval = -ESRCH;
4731 	p = find_process_by_pid(pid);
4732 	if (!p)
4733 		goto out_unlock;
4734 
4735 	retval = security_task_getscheduler(p);
4736 	if (retval)
4737 		goto out_unlock;
4738 
4739 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4740 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4741 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4742 
4743 out_unlock:
4744 	rcu_read_unlock();
4745 
4746 	return retval;
4747 }
4748 
4749 /**
4750  * sys_sched_getaffinity - get the cpu affinity of a process
4751  * @pid: pid of the process
4752  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4753  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4754  *
4755  * Return: 0 on success. An error code otherwise.
4756  */
4757 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4758 		unsigned long __user *, user_mask_ptr)
4759 {
4760 	int ret;
4761 	cpumask_var_t mask;
4762 
4763 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4764 		return -EINVAL;
4765 	if (len & (sizeof(unsigned long)-1))
4766 		return -EINVAL;
4767 
4768 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4769 		return -ENOMEM;
4770 
4771 	ret = sched_getaffinity(pid, mask);
4772 	if (ret == 0) {
4773 		size_t retlen = min_t(size_t, len, cpumask_size());
4774 
4775 		if (copy_to_user(user_mask_ptr, mask, retlen))
4776 			ret = -EFAULT;
4777 		else
4778 			ret = retlen;
4779 	}
4780 	free_cpumask_var(mask);
4781 
4782 	return ret;
4783 }
4784 
4785 /**
4786  * sys_sched_yield - yield the current processor to other threads.
4787  *
4788  * This function yields the current CPU to other tasks. If there are no
4789  * other threads running on this CPU then this function will return.
4790  *
4791  * Return: 0.
4792  */
4793 SYSCALL_DEFINE0(sched_yield)
4794 {
4795 	struct rq *rq = this_rq_lock();
4796 
4797 	schedstat_inc(rq, yld_count);
4798 	current->sched_class->yield_task(rq);
4799 
4800 	/*
4801 	 * Since we are going to call schedule() anyway, there's
4802 	 * no need to preempt or enable interrupts:
4803 	 */
4804 	__release(rq->lock);
4805 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4806 	do_raw_spin_unlock(&rq->lock);
4807 	sched_preempt_enable_no_resched();
4808 
4809 	schedule();
4810 
4811 	return 0;
4812 }
4813 
4814 int __sched _cond_resched(void)
4815 {
4816 	if (should_resched(0)) {
4817 		preempt_schedule_common();
4818 		return 1;
4819 	}
4820 	return 0;
4821 }
4822 EXPORT_SYMBOL(_cond_resched);
4823 
4824 /*
4825  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4826  * call schedule, and on return reacquire the lock.
4827  *
4828  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4829  * operations here to prevent schedule() from being called twice (once via
4830  * spin_unlock(), once by hand).
4831  */
4832 int __cond_resched_lock(spinlock_t *lock)
4833 {
4834 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4835 	int ret = 0;
4836 
4837 	lockdep_assert_held(lock);
4838 
4839 	if (spin_needbreak(lock) || resched) {
4840 		spin_unlock(lock);
4841 		if (resched)
4842 			preempt_schedule_common();
4843 		else
4844 			cpu_relax();
4845 		ret = 1;
4846 		spin_lock(lock);
4847 	}
4848 	return ret;
4849 }
4850 EXPORT_SYMBOL(__cond_resched_lock);
4851 
4852 int __sched __cond_resched_softirq(void)
4853 {
4854 	BUG_ON(!in_softirq());
4855 
4856 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4857 		local_bh_enable();
4858 		preempt_schedule_common();
4859 		local_bh_disable();
4860 		return 1;
4861 	}
4862 	return 0;
4863 }
4864 EXPORT_SYMBOL(__cond_resched_softirq);
4865 
4866 /**
4867  * yield - yield the current processor to other threads.
4868  *
4869  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4870  *
4871  * The scheduler is at all times free to pick the calling task as the most
4872  * eligible task to run, if removing the yield() call from your code breaks
4873  * it, its already broken.
4874  *
4875  * Typical broken usage is:
4876  *
4877  * while (!event)
4878  * 	yield();
4879  *
4880  * where one assumes that yield() will let 'the other' process run that will
4881  * make event true. If the current task is a SCHED_FIFO task that will never
4882  * happen. Never use yield() as a progress guarantee!!
4883  *
4884  * If you want to use yield() to wait for something, use wait_event().
4885  * If you want to use yield() to be 'nice' for others, use cond_resched().
4886  * If you still want to use yield(), do not!
4887  */
4888 void __sched yield(void)
4889 {
4890 	set_current_state(TASK_RUNNING);
4891 	sys_sched_yield();
4892 }
4893 EXPORT_SYMBOL(yield);
4894 
4895 /**
4896  * yield_to - yield the current processor to another thread in
4897  * your thread group, or accelerate that thread toward the
4898  * processor it's on.
4899  * @p: target task
4900  * @preempt: whether task preemption is allowed or not
4901  *
4902  * It's the caller's job to ensure that the target task struct
4903  * can't go away on us before we can do any checks.
4904  *
4905  * Return:
4906  *	true (>0) if we indeed boosted the target task.
4907  *	false (0) if we failed to boost the target.
4908  *	-ESRCH if there's no task to yield to.
4909  */
4910 int __sched yield_to(struct task_struct *p, bool preempt)
4911 {
4912 	struct task_struct *curr = current;
4913 	struct rq *rq, *p_rq;
4914 	unsigned long flags;
4915 	int yielded = 0;
4916 
4917 	local_irq_save(flags);
4918 	rq = this_rq();
4919 
4920 again:
4921 	p_rq = task_rq(p);
4922 	/*
4923 	 * If we're the only runnable task on the rq and target rq also
4924 	 * has only one task, there's absolutely no point in yielding.
4925 	 */
4926 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4927 		yielded = -ESRCH;
4928 		goto out_irq;
4929 	}
4930 
4931 	double_rq_lock(rq, p_rq);
4932 	if (task_rq(p) != p_rq) {
4933 		double_rq_unlock(rq, p_rq);
4934 		goto again;
4935 	}
4936 
4937 	if (!curr->sched_class->yield_to_task)
4938 		goto out_unlock;
4939 
4940 	if (curr->sched_class != p->sched_class)
4941 		goto out_unlock;
4942 
4943 	if (task_running(p_rq, p) || p->state)
4944 		goto out_unlock;
4945 
4946 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4947 	if (yielded) {
4948 		schedstat_inc(rq, yld_count);
4949 		/*
4950 		 * Make p's CPU reschedule; pick_next_entity takes care of
4951 		 * fairness.
4952 		 */
4953 		if (preempt && rq != p_rq)
4954 			resched_curr(p_rq);
4955 	}
4956 
4957 out_unlock:
4958 	double_rq_unlock(rq, p_rq);
4959 out_irq:
4960 	local_irq_restore(flags);
4961 
4962 	if (yielded > 0)
4963 		schedule();
4964 
4965 	return yielded;
4966 }
4967 EXPORT_SYMBOL_GPL(yield_to);
4968 
4969 /*
4970  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4971  * that process accounting knows that this is a task in IO wait state.
4972  */
4973 long __sched io_schedule_timeout(long timeout)
4974 {
4975 	int old_iowait = current->in_iowait;
4976 	struct rq *rq;
4977 	long ret;
4978 
4979 	current->in_iowait = 1;
4980 	blk_schedule_flush_plug(current);
4981 
4982 	delayacct_blkio_start();
4983 	rq = raw_rq();
4984 	atomic_inc(&rq->nr_iowait);
4985 	ret = schedule_timeout(timeout);
4986 	current->in_iowait = old_iowait;
4987 	atomic_dec(&rq->nr_iowait);
4988 	delayacct_blkio_end();
4989 
4990 	return ret;
4991 }
4992 EXPORT_SYMBOL(io_schedule_timeout);
4993 
4994 /**
4995  * sys_sched_get_priority_max - return maximum RT priority.
4996  * @policy: scheduling class.
4997  *
4998  * Return: On success, this syscall returns the maximum
4999  * rt_priority that can be used by a given scheduling class.
5000  * On failure, a negative error code is returned.
5001  */
5002 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5003 {
5004 	int ret = -EINVAL;
5005 
5006 	switch (policy) {
5007 	case SCHED_FIFO:
5008 	case SCHED_RR:
5009 		ret = MAX_USER_RT_PRIO-1;
5010 		break;
5011 	case SCHED_DEADLINE:
5012 	case SCHED_NORMAL:
5013 	case SCHED_BATCH:
5014 	case SCHED_IDLE:
5015 		ret = 0;
5016 		break;
5017 	}
5018 	return ret;
5019 }
5020 
5021 /**
5022  * sys_sched_get_priority_min - return minimum RT priority.
5023  * @policy: scheduling class.
5024  *
5025  * Return: On success, this syscall returns the minimum
5026  * rt_priority that can be used by a given scheduling class.
5027  * On failure, a negative error code is returned.
5028  */
5029 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5030 {
5031 	int ret = -EINVAL;
5032 
5033 	switch (policy) {
5034 	case SCHED_FIFO:
5035 	case SCHED_RR:
5036 		ret = 1;
5037 		break;
5038 	case SCHED_DEADLINE:
5039 	case SCHED_NORMAL:
5040 	case SCHED_BATCH:
5041 	case SCHED_IDLE:
5042 		ret = 0;
5043 	}
5044 	return ret;
5045 }
5046 
5047 /**
5048  * sys_sched_rr_get_interval - return the default timeslice of a process.
5049  * @pid: pid of the process.
5050  * @interval: userspace pointer to the timeslice value.
5051  *
5052  * this syscall writes the default timeslice value of a given process
5053  * into the user-space timespec buffer. A value of '0' means infinity.
5054  *
5055  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5056  * an error code.
5057  */
5058 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5059 		struct timespec __user *, interval)
5060 {
5061 	struct task_struct *p;
5062 	unsigned int time_slice;
5063 	struct rq_flags rf;
5064 	struct timespec t;
5065 	struct rq *rq;
5066 	int retval;
5067 
5068 	if (pid < 0)
5069 		return -EINVAL;
5070 
5071 	retval = -ESRCH;
5072 	rcu_read_lock();
5073 	p = find_process_by_pid(pid);
5074 	if (!p)
5075 		goto out_unlock;
5076 
5077 	retval = security_task_getscheduler(p);
5078 	if (retval)
5079 		goto out_unlock;
5080 
5081 	rq = task_rq_lock(p, &rf);
5082 	time_slice = 0;
5083 	if (p->sched_class->get_rr_interval)
5084 		time_slice = p->sched_class->get_rr_interval(rq, p);
5085 	task_rq_unlock(rq, p, &rf);
5086 
5087 	rcu_read_unlock();
5088 	jiffies_to_timespec(time_slice, &t);
5089 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5090 	return retval;
5091 
5092 out_unlock:
5093 	rcu_read_unlock();
5094 	return retval;
5095 }
5096 
5097 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5098 
5099 void sched_show_task(struct task_struct *p)
5100 {
5101 	unsigned long free = 0;
5102 	int ppid;
5103 	unsigned long state = p->state;
5104 
5105 	if (state)
5106 		state = __ffs(state) + 1;
5107 	printk(KERN_INFO "%-15.15s %c", p->comm,
5108 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5109 #if BITS_PER_LONG == 32
5110 	if (state == TASK_RUNNING)
5111 		printk(KERN_CONT " running  ");
5112 	else
5113 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5114 #else
5115 	if (state == TASK_RUNNING)
5116 		printk(KERN_CONT "  running task    ");
5117 	else
5118 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5119 #endif
5120 #ifdef CONFIG_DEBUG_STACK_USAGE
5121 	free = stack_not_used(p);
5122 #endif
5123 	ppid = 0;
5124 	rcu_read_lock();
5125 	if (pid_alive(p))
5126 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5127 	rcu_read_unlock();
5128 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5129 		task_pid_nr(p), ppid,
5130 		(unsigned long)task_thread_info(p)->flags);
5131 
5132 	print_worker_info(KERN_INFO, p);
5133 	show_stack(p, NULL);
5134 }
5135 
5136 void show_state_filter(unsigned long state_filter)
5137 {
5138 	struct task_struct *g, *p;
5139 
5140 #if BITS_PER_LONG == 32
5141 	printk(KERN_INFO
5142 		"  task                PC stack   pid father\n");
5143 #else
5144 	printk(KERN_INFO
5145 		"  task                        PC stack   pid father\n");
5146 #endif
5147 	rcu_read_lock();
5148 	for_each_process_thread(g, p) {
5149 		/*
5150 		 * reset the NMI-timeout, listing all files on a slow
5151 		 * console might take a lot of time:
5152 		 * Also, reset softlockup watchdogs on all CPUs, because
5153 		 * another CPU might be blocked waiting for us to process
5154 		 * an IPI.
5155 		 */
5156 		touch_nmi_watchdog();
5157 		touch_all_softlockup_watchdogs();
5158 		if (!state_filter || (p->state & state_filter))
5159 			sched_show_task(p);
5160 	}
5161 
5162 #ifdef CONFIG_SCHED_DEBUG
5163 	if (!state_filter)
5164 		sysrq_sched_debug_show();
5165 #endif
5166 	rcu_read_unlock();
5167 	/*
5168 	 * Only show locks if all tasks are dumped:
5169 	 */
5170 	if (!state_filter)
5171 		debug_show_all_locks();
5172 }
5173 
5174 void init_idle_bootup_task(struct task_struct *idle)
5175 {
5176 	idle->sched_class = &idle_sched_class;
5177 }
5178 
5179 /**
5180  * init_idle - set up an idle thread for a given CPU
5181  * @idle: task in question
5182  * @cpu: cpu the idle task belongs to
5183  *
5184  * NOTE: this function does not set the idle thread's NEED_RESCHED
5185  * flag, to make booting more robust.
5186  */
5187 void init_idle(struct task_struct *idle, int cpu)
5188 {
5189 	struct rq *rq = cpu_rq(cpu);
5190 	unsigned long flags;
5191 
5192 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5193 	raw_spin_lock(&rq->lock);
5194 
5195 	__sched_fork(0, idle);
5196 	idle->state = TASK_RUNNING;
5197 	idle->se.exec_start = sched_clock();
5198 
5199 	kasan_unpoison_task_stack(idle);
5200 
5201 #ifdef CONFIG_SMP
5202 	/*
5203 	 * Its possible that init_idle() gets called multiple times on a task,
5204 	 * in that case do_set_cpus_allowed() will not do the right thing.
5205 	 *
5206 	 * And since this is boot we can forgo the serialization.
5207 	 */
5208 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5209 #endif
5210 	/*
5211 	 * We're having a chicken and egg problem, even though we are
5212 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5213 	 * lockdep check in task_group() will fail.
5214 	 *
5215 	 * Similar case to sched_fork(). / Alternatively we could
5216 	 * use task_rq_lock() here and obtain the other rq->lock.
5217 	 *
5218 	 * Silence PROVE_RCU
5219 	 */
5220 	rcu_read_lock();
5221 	__set_task_cpu(idle, cpu);
5222 	rcu_read_unlock();
5223 
5224 	rq->curr = rq->idle = idle;
5225 	idle->on_rq = TASK_ON_RQ_QUEUED;
5226 #ifdef CONFIG_SMP
5227 	idle->on_cpu = 1;
5228 #endif
5229 	raw_spin_unlock(&rq->lock);
5230 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5231 
5232 	/* Set the preempt count _outside_ the spinlocks! */
5233 	init_idle_preempt_count(idle, cpu);
5234 
5235 	/*
5236 	 * The idle tasks have their own, simple scheduling class:
5237 	 */
5238 	idle->sched_class = &idle_sched_class;
5239 	ftrace_graph_init_idle_task(idle, cpu);
5240 	vtime_init_idle(idle, cpu);
5241 #ifdef CONFIG_SMP
5242 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5243 #endif
5244 }
5245 
5246 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5247 			      const struct cpumask *trial)
5248 {
5249 	int ret = 1, trial_cpus;
5250 	struct dl_bw *cur_dl_b;
5251 	unsigned long flags;
5252 
5253 	if (!cpumask_weight(cur))
5254 		return ret;
5255 
5256 	rcu_read_lock_sched();
5257 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5258 	trial_cpus = cpumask_weight(trial);
5259 
5260 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5261 	if (cur_dl_b->bw != -1 &&
5262 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5263 		ret = 0;
5264 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5265 	rcu_read_unlock_sched();
5266 
5267 	return ret;
5268 }
5269 
5270 int task_can_attach(struct task_struct *p,
5271 		    const struct cpumask *cs_cpus_allowed)
5272 {
5273 	int ret = 0;
5274 
5275 	/*
5276 	 * Kthreads which disallow setaffinity shouldn't be moved
5277 	 * to a new cpuset; we don't want to change their cpu
5278 	 * affinity and isolating such threads by their set of
5279 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5280 	 * applicable for such threads.  This prevents checking for
5281 	 * success of set_cpus_allowed_ptr() on all attached tasks
5282 	 * before cpus_allowed may be changed.
5283 	 */
5284 	if (p->flags & PF_NO_SETAFFINITY) {
5285 		ret = -EINVAL;
5286 		goto out;
5287 	}
5288 
5289 #ifdef CONFIG_SMP
5290 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5291 					      cs_cpus_allowed)) {
5292 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5293 							cs_cpus_allowed);
5294 		struct dl_bw *dl_b;
5295 		bool overflow;
5296 		int cpus;
5297 		unsigned long flags;
5298 
5299 		rcu_read_lock_sched();
5300 		dl_b = dl_bw_of(dest_cpu);
5301 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5302 		cpus = dl_bw_cpus(dest_cpu);
5303 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5304 		if (overflow)
5305 			ret = -EBUSY;
5306 		else {
5307 			/*
5308 			 * We reserve space for this task in the destination
5309 			 * root_domain, as we can't fail after this point.
5310 			 * We will free resources in the source root_domain
5311 			 * later on (see set_cpus_allowed_dl()).
5312 			 */
5313 			__dl_add(dl_b, p->dl.dl_bw);
5314 		}
5315 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5316 		rcu_read_unlock_sched();
5317 
5318 	}
5319 #endif
5320 out:
5321 	return ret;
5322 }
5323 
5324 #ifdef CONFIG_SMP
5325 
5326 static bool sched_smp_initialized __read_mostly;
5327 
5328 #ifdef CONFIG_NUMA_BALANCING
5329 /* Migrate current task p to target_cpu */
5330 int migrate_task_to(struct task_struct *p, int target_cpu)
5331 {
5332 	struct migration_arg arg = { p, target_cpu };
5333 	int curr_cpu = task_cpu(p);
5334 
5335 	if (curr_cpu == target_cpu)
5336 		return 0;
5337 
5338 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5339 		return -EINVAL;
5340 
5341 	/* TODO: This is not properly updating schedstats */
5342 
5343 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5344 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5345 }
5346 
5347 /*
5348  * Requeue a task on a given node and accurately track the number of NUMA
5349  * tasks on the runqueues
5350  */
5351 void sched_setnuma(struct task_struct *p, int nid)
5352 {
5353 	bool queued, running;
5354 	struct rq_flags rf;
5355 	struct rq *rq;
5356 
5357 	rq = task_rq_lock(p, &rf);
5358 	queued = task_on_rq_queued(p);
5359 	running = task_current(rq, p);
5360 
5361 	if (queued)
5362 		dequeue_task(rq, p, DEQUEUE_SAVE);
5363 	if (running)
5364 		put_prev_task(rq, p);
5365 
5366 	p->numa_preferred_nid = nid;
5367 
5368 	if (running)
5369 		p->sched_class->set_curr_task(rq);
5370 	if (queued)
5371 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5372 	task_rq_unlock(rq, p, &rf);
5373 }
5374 #endif /* CONFIG_NUMA_BALANCING */
5375 
5376 #ifdef CONFIG_HOTPLUG_CPU
5377 /*
5378  * Ensures that the idle task is using init_mm right before its cpu goes
5379  * offline.
5380  */
5381 void idle_task_exit(void)
5382 {
5383 	struct mm_struct *mm = current->active_mm;
5384 
5385 	BUG_ON(cpu_online(smp_processor_id()));
5386 
5387 	if (mm != &init_mm) {
5388 		switch_mm_irqs_off(mm, &init_mm, current);
5389 		finish_arch_post_lock_switch();
5390 	}
5391 	mmdrop(mm);
5392 }
5393 
5394 /*
5395  * Since this CPU is going 'away' for a while, fold any nr_active delta
5396  * we might have. Assumes we're called after migrate_tasks() so that the
5397  * nr_active count is stable. We need to take the teardown thread which
5398  * is calling this into account, so we hand in adjust = 1 to the load
5399  * calculation.
5400  *
5401  * Also see the comment "Global load-average calculations".
5402  */
5403 static void calc_load_migrate(struct rq *rq)
5404 {
5405 	long delta = calc_load_fold_active(rq, 1);
5406 	if (delta)
5407 		atomic_long_add(delta, &calc_load_tasks);
5408 }
5409 
5410 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5411 {
5412 }
5413 
5414 static const struct sched_class fake_sched_class = {
5415 	.put_prev_task = put_prev_task_fake,
5416 };
5417 
5418 static struct task_struct fake_task = {
5419 	/*
5420 	 * Avoid pull_{rt,dl}_task()
5421 	 */
5422 	.prio = MAX_PRIO + 1,
5423 	.sched_class = &fake_sched_class,
5424 };
5425 
5426 /*
5427  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5428  * try_to_wake_up()->select_task_rq().
5429  *
5430  * Called with rq->lock held even though we'er in stop_machine() and
5431  * there's no concurrency possible, we hold the required locks anyway
5432  * because of lock validation efforts.
5433  */
5434 static void migrate_tasks(struct rq *dead_rq)
5435 {
5436 	struct rq *rq = dead_rq;
5437 	struct task_struct *next, *stop = rq->stop;
5438 	struct pin_cookie cookie;
5439 	int dest_cpu;
5440 
5441 	/*
5442 	 * Fudge the rq selection such that the below task selection loop
5443 	 * doesn't get stuck on the currently eligible stop task.
5444 	 *
5445 	 * We're currently inside stop_machine() and the rq is either stuck
5446 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5447 	 * either way we should never end up calling schedule() until we're
5448 	 * done here.
5449 	 */
5450 	rq->stop = NULL;
5451 
5452 	/*
5453 	 * put_prev_task() and pick_next_task() sched
5454 	 * class method both need to have an up-to-date
5455 	 * value of rq->clock[_task]
5456 	 */
5457 	update_rq_clock(rq);
5458 
5459 	for (;;) {
5460 		/*
5461 		 * There's this thread running, bail when that's the only
5462 		 * remaining thread.
5463 		 */
5464 		if (rq->nr_running == 1)
5465 			break;
5466 
5467 		/*
5468 		 * pick_next_task assumes pinned rq->lock.
5469 		 */
5470 		cookie = lockdep_pin_lock(&rq->lock);
5471 		next = pick_next_task(rq, &fake_task, cookie);
5472 		BUG_ON(!next);
5473 		next->sched_class->put_prev_task(rq, next);
5474 
5475 		/*
5476 		 * Rules for changing task_struct::cpus_allowed are holding
5477 		 * both pi_lock and rq->lock, such that holding either
5478 		 * stabilizes the mask.
5479 		 *
5480 		 * Drop rq->lock is not quite as disastrous as it usually is
5481 		 * because !cpu_active at this point, which means load-balance
5482 		 * will not interfere. Also, stop-machine.
5483 		 */
5484 		lockdep_unpin_lock(&rq->lock, cookie);
5485 		raw_spin_unlock(&rq->lock);
5486 		raw_spin_lock(&next->pi_lock);
5487 		raw_spin_lock(&rq->lock);
5488 
5489 		/*
5490 		 * Since we're inside stop-machine, _nothing_ should have
5491 		 * changed the task, WARN if weird stuff happened, because in
5492 		 * that case the above rq->lock drop is a fail too.
5493 		 */
5494 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5495 			raw_spin_unlock(&next->pi_lock);
5496 			continue;
5497 		}
5498 
5499 		/* Find suitable destination for @next, with force if needed. */
5500 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5501 
5502 		rq = __migrate_task(rq, next, dest_cpu);
5503 		if (rq != dead_rq) {
5504 			raw_spin_unlock(&rq->lock);
5505 			rq = dead_rq;
5506 			raw_spin_lock(&rq->lock);
5507 		}
5508 		raw_spin_unlock(&next->pi_lock);
5509 	}
5510 
5511 	rq->stop = stop;
5512 }
5513 #endif /* CONFIG_HOTPLUG_CPU */
5514 
5515 static void set_rq_online(struct rq *rq)
5516 {
5517 	if (!rq->online) {
5518 		const struct sched_class *class;
5519 
5520 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5521 		rq->online = 1;
5522 
5523 		for_each_class(class) {
5524 			if (class->rq_online)
5525 				class->rq_online(rq);
5526 		}
5527 	}
5528 }
5529 
5530 static void set_rq_offline(struct rq *rq)
5531 {
5532 	if (rq->online) {
5533 		const struct sched_class *class;
5534 
5535 		for_each_class(class) {
5536 			if (class->rq_offline)
5537 				class->rq_offline(rq);
5538 		}
5539 
5540 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5541 		rq->online = 0;
5542 	}
5543 }
5544 
5545 static void set_cpu_rq_start_time(unsigned int cpu)
5546 {
5547 	struct rq *rq = cpu_rq(cpu);
5548 
5549 	rq->age_stamp = sched_clock_cpu(cpu);
5550 }
5551 
5552 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5553 
5554 #ifdef CONFIG_SCHED_DEBUG
5555 
5556 static __read_mostly int sched_debug_enabled;
5557 
5558 static int __init sched_debug_setup(char *str)
5559 {
5560 	sched_debug_enabled = 1;
5561 
5562 	return 0;
5563 }
5564 early_param("sched_debug", sched_debug_setup);
5565 
5566 static inline bool sched_debug(void)
5567 {
5568 	return sched_debug_enabled;
5569 }
5570 
5571 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5572 				  struct cpumask *groupmask)
5573 {
5574 	struct sched_group *group = sd->groups;
5575 
5576 	cpumask_clear(groupmask);
5577 
5578 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5579 
5580 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5581 		printk("does not load-balance\n");
5582 		if (sd->parent)
5583 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5584 					" has parent");
5585 		return -1;
5586 	}
5587 
5588 	printk(KERN_CONT "span %*pbl level %s\n",
5589 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5590 
5591 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5592 		printk(KERN_ERR "ERROR: domain->span does not contain "
5593 				"CPU%d\n", cpu);
5594 	}
5595 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5596 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5597 				" CPU%d\n", cpu);
5598 	}
5599 
5600 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5601 	do {
5602 		if (!group) {
5603 			printk("\n");
5604 			printk(KERN_ERR "ERROR: group is NULL\n");
5605 			break;
5606 		}
5607 
5608 		if (!cpumask_weight(sched_group_cpus(group))) {
5609 			printk(KERN_CONT "\n");
5610 			printk(KERN_ERR "ERROR: empty group\n");
5611 			break;
5612 		}
5613 
5614 		if (!(sd->flags & SD_OVERLAP) &&
5615 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5616 			printk(KERN_CONT "\n");
5617 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5618 			break;
5619 		}
5620 
5621 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5622 
5623 		printk(KERN_CONT " %*pbl",
5624 		       cpumask_pr_args(sched_group_cpus(group)));
5625 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5626 			printk(KERN_CONT " (cpu_capacity = %d)",
5627 				group->sgc->capacity);
5628 		}
5629 
5630 		group = group->next;
5631 	} while (group != sd->groups);
5632 	printk(KERN_CONT "\n");
5633 
5634 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5635 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5636 
5637 	if (sd->parent &&
5638 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5639 		printk(KERN_ERR "ERROR: parent span is not a superset "
5640 			"of domain->span\n");
5641 	return 0;
5642 }
5643 
5644 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5645 {
5646 	int level = 0;
5647 
5648 	if (!sched_debug_enabled)
5649 		return;
5650 
5651 	if (!sd) {
5652 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5653 		return;
5654 	}
5655 
5656 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5657 
5658 	for (;;) {
5659 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5660 			break;
5661 		level++;
5662 		sd = sd->parent;
5663 		if (!sd)
5664 			break;
5665 	}
5666 }
5667 #else /* !CONFIG_SCHED_DEBUG */
5668 # define sched_domain_debug(sd, cpu) do { } while (0)
5669 static inline bool sched_debug(void)
5670 {
5671 	return false;
5672 }
5673 #endif /* CONFIG_SCHED_DEBUG */
5674 
5675 static int sd_degenerate(struct sched_domain *sd)
5676 {
5677 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5678 		return 1;
5679 
5680 	/* Following flags need at least 2 groups */
5681 	if (sd->flags & (SD_LOAD_BALANCE |
5682 			 SD_BALANCE_NEWIDLE |
5683 			 SD_BALANCE_FORK |
5684 			 SD_BALANCE_EXEC |
5685 			 SD_SHARE_CPUCAPACITY |
5686 			 SD_SHARE_PKG_RESOURCES |
5687 			 SD_SHARE_POWERDOMAIN)) {
5688 		if (sd->groups != sd->groups->next)
5689 			return 0;
5690 	}
5691 
5692 	/* Following flags don't use groups */
5693 	if (sd->flags & (SD_WAKE_AFFINE))
5694 		return 0;
5695 
5696 	return 1;
5697 }
5698 
5699 static int
5700 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5701 {
5702 	unsigned long cflags = sd->flags, pflags = parent->flags;
5703 
5704 	if (sd_degenerate(parent))
5705 		return 1;
5706 
5707 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5708 		return 0;
5709 
5710 	/* Flags needing groups don't count if only 1 group in parent */
5711 	if (parent->groups == parent->groups->next) {
5712 		pflags &= ~(SD_LOAD_BALANCE |
5713 				SD_BALANCE_NEWIDLE |
5714 				SD_BALANCE_FORK |
5715 				SD_BALANCE_EXEC |
5716 				SD_SHARE_CPUCAPACITY |
5717 				SD_SHARE_PKG_RESOURCES |
5718 				SD_PREFER_SIBLING |
5719 				SD_SHARE_POWERDOMAIN);
5720 		if (nr_node_ids == 1)
5721 			pflags &= ~SD_SERIALIZE;
5722 	}
5723 	if (~cflags & pflags)
5724 		return 0;
5725 
5726 	return 1;
5727 }
5728 
5729 static void free_rootdomain(struct rcu_head *rcu)
5730 {
5731 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5732 
5733 	cpupri_cleanup(&rd->cpupri);
5734 	cpudl_cleanup(&rd->cpudl);
5735 	free_cpumask_var(rd->dlo_mask);
5736 	free_cpumask_var(rd->rto_mask);
5737 	free_cpumask_var(rd->online);
5738 	free_cpumask_var(rd->span);
5739 	kfree(rd);
5740 }
5741 
5742 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5743 {
5744 	struct root_domain *old_rd = NULL;
5745 	unsigned long flags;
5746 
5747 	raw_spin_lock_irqsave(&rq->lock, flags);
5748 
5749 	if (rq->rd) {
5750 		old_rd = rq->rd;
5751 
5752 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5753 			set_rq_offline(rq);
5754 
5755 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5756 
5757 		/*
5758 		 * If we dont want to free the old_rd yet then
5759 		 * set old_rd to NULL to skip the freeing later
5760 		 * in this function:
5761 		 */
5762 		if (!atomic_dec_and_test(&old_rd->refcount))
5763 			old_rd = NULL;
5764 	}
5765 
5766 	atomic_inc(&rd->refcount);
5767 	rq->rd = rd;
5768 
5769 	cpumask_set_cpu(rq->cpu, rd->span);
5770 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5771 		set_rq_online(rq);
5772 
5773 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5774 
5775 	if (old_rd)
5776 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5777 }
5778 
5779 static int init_rootdomain(struct root_domain *rd)
5780 {
5781 	memset(rd, 0, sizeof(*rd));
5782 
5783 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5784 		goto out;
5785 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5786 		goto free_span;
5787 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5788 		goto free_online;
5789 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5790 		goto free_dlo_mask;
5791 
5792 	init_dl_bw(&rd->dl_bw);
5793 	if (cpudl_init(&rd->cpudl) != 0)
5794 		goto free_dlo_mask;
5795 
5796 	if (cpupri_init(&rd->cpupri) != 0)
5797 		goto free_rto_mask;
5798 	return 0;
5799 
5800 free_rto_mask:
5801 	free_cpumask_var(rd->rto_mask);
5802 free_dlo_mask:
5803 	free_cpumask_var(rd->dlo_mask);
5804 free_online:
5805 	free_cpumask_var(rd->online);
5806 free_span:
5807 	free_cpumask_var(rd->span);
5808 out:
5809 	return -ENOMEM;
5810 }
5811 
5812 /*
5813  * By default the system creates a single root-domain with all cpus as
5814  * members (mimicking the global state we have today).
5815  */
5816 struct root_domain def_root_domain;
5817 
5818 static void init_defrootdomain(void)
5819 {
5820 	init_rootdomain(&def_root_domain);
5821 
5822 	atomic_set(&def_root_domain.refcount, 1);
5823 }
5824 
5825 static struct root_domain *alloc_rootdomain(void)
5826 {
5827 	struct root_domain *rd;
5828 
5829 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5830 	if (!rd)
5831 		return NULL;
5832 
5833 	if (init_rootdomain(rd) != 0) {
5834 		kfree(rd);
5835 		return NULL;
5836 	}
5837 
5838 	return rd;
5839 }
5840 
5841 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5842 {
5843 	struct sched_group *tmp, *first;
5844 
5845 	if (!sg)
5846 		return;
5847 
5848 	first = sg;
5849 	do {
5850 		tmp = sg->next;
5851 
5852 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5853 			kfree(sg->sgc);
5854 
5855 		kfree(sg);
5856 		sg = tmp;
5857 	} while (sg != first);
5858 }
5859 
5860 static void free_sched_domain(struct rcu_head *rcu)
5861 {
5862 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5863 
5864 	/*
5865 	 * If its an overlapping domain it has private groups, iterate and
5866 	 * nuke them all.
5867 	 */
5868 	if (sd->flags & SD_OVERLAP) {
5869 		free_sched_groups(sd->groups, 1);
5870 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5871 		kfree(sd->groups->sgc);
5872 		kfree(sd->groups);
5873 	}
5874 	kfree(sd);
5875 }
5876 
5877 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5878 {
5879 	call_rcu(&sd->rcu, free_sched_domain);
5880 }
5881 
5882 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5883 {
5884 	for (; sd; sd = sd->parent)
5885 		destroy_sched_domain(sd, cpu);
5886 }
5887 
5888 /*
5889  * Keep a special pointer to the highest sched_domain that has
5890  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5891  * allows us to avoid some pointer chasing select_idle_sibling().
5892  *
5893  * Also keep a unique ID per domain (we use the first cpu number in
5894  * the cpumask of the domain), this allows us to quickly tell if
5895  * two cpus are in the same cache domain, see cpus_share_cache().
5896  */
5897 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5898 DEFINE_PER_CPU(int, sd_llc_size);
5899 DEFINE_PER_CPU(int, sd_llc_id);
5900 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5901 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5902 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5903 
5904 static void update_top_cache_domain(int cpu)
5905 {
5906 	struct sched_domain *sd;
5907 	struct sched_domain *busy_sd = NULL;
5908 	int id = cpu;
5909 	int size = 1;
5910 
5911 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5912 	if (sd) {
5913 		id = cpumask_first(sched_domain_span(sd));
5914 		size = cpumask_weight(sched_domain_span(sd));
5915 		busy_sd = sd->parent; /* sd_busy */
5916 	}
5917 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5918 
5919 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5920 	per_cpu(sd_llc_size, cpu) = size;
5921 	per_cpu(sd_llc_id, cpu) = id;
5922 
5923 	sd = lowest_flag_domain(cpu, SD_NUMA);
5924 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5925 
5926 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5927 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5928 }
5929 
5930 /*
5931  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5932  * hold the hotplug lock.
5933  */
5934 static void
5935 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5936 {
5937 	struct rq *rq = cpu_rq(cpu);
5938 	struct sched_domain *tmp;
5939 
5940 	/* Remove the sched domains which do not contribute to scheduling. */
5941 	for (tmp = sd; tmp; ) {
5942 		struct sched_domain *parent = tmp->parent;
5943 		if (!parent)
5944 			break;
5945 
5946 		if (sd_parent_degenerate(tmp, parent)) {
5947 			tmp->parent = parent->parent;
5948 			if (parent->parent)
5949 				parent->parent->child = tmp;
5950 			/*
5951 			 * Transfer SD_PREFER_SIBLING down in case of a
5952 			 * degenerate parent; the spans match for this
5953 			 * so the property transfers.
5954 			 */
5955 			if (parent->flags & SD_PREFER_SIBLING)
5956 				tmp->flags |= SD_PREFER_SIBLING;
5957 			destroy_sched_domain(parent, cpu);
5958 		} else
5959 			tmp = tmp->parent;
5960 	}
5961 
5962 	if (sd && sd_degenerate(sd)) {
5963 		tmp = sd;
5964 		sd = sd->parent;
5965 		destroy_sched_domain(tmp, cpu);
5966 		if (sd)
5967 			sd->child = NULL;
5968 	}
5969 
5970 	sched_domain_debug(sd, cpu);
5971 
5972 	rq_attach_root(rq, rd);
5973 	tmp = rq->sd;
5974 	rcu_assign_pointer(rq->sd, sd);
5975 	destroy_sched_domains(tmp, cpu);
5976 
5977 	update_top_cache_domain(cpu);
5978 }
5979 
5980 /* Setup the mask of cpus configured for isolated domains */
5981 static int __init isolated_cpu_setup(char *str)
5982 {
5983 	int ret;
5984 
5985 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5986 	ret = cpulist_parse(str, cpu_isolated_map);
5987 	if (ret) {
5988 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5989 		return 0;
5990 	}
5991 	return 1;
5992 }
5993 __setup("isolcpus=", isolated_cpu_setup);
5994 
5995 struct s_data {
5996 	struct sched_domain ** __percpu sd;
5997 	struct root_domain	*rd;
5998 };
5999 
6000 enum s_alloc {
6001 	sa_rootdomain,
6002 	sa_sd,
6003 	sa_sd_storage,
6004 	sa_none,
6005 };
6006 
6007 /*
6008  * Build an iteration mask that can exclude certain CPUs from the upwards
6009  * domain traversal.
6010  *
6011  * Asymmetric node setups can result in situations where the domain tree is of
6012  * unequal depth, make sure to skip domains that already cover the entire
6013  * range.
6014  *
6015  * In that case build_sched_domains() will have terminated the iteration early
6016  * and our sibling sd spans will be empty. Domains should always include the
6017  * cpu they're built on, so check that.
6018  *
6019  */
6020 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6021 {
6022 	const struct cpumask *span = sched_domain_span(sd);
6023 	struct sd_data *sdd = sd->private;
6024 	struct sched_domain *sibling;
6025 	int i;
6026 
6027 	for_each_cpu(i, span) {
6028 		sibling = *per_cpu_ptr(sdd->sd, i);
6029 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6030 			continue;
6031 
6032 		cpumask_set_cpu(i, sched_group_mask(sg));
6033 	}
6034 }
6035 
6036 /*
6037  * Return the canonical balance cpu for this group, this is the first cpu
6038  * of this group that's also in the iteration mask.
6039  */
6040 int group_balance_cpu(struct sched_group *sg)
6041 {
6042 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6043 }
6044 
6045 static int
6046 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6047 {
6048 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6049 	const struct cpumask *span = sched_domain_span(sd);
6050 	struct cpumask *covered = sched_domains_tmpmask;
6051 	struct sd_data *sdd = sd->private;
6052 	struct sched_domain *sibling;
6053 	int i;
6054 
6055 	cpumask_clear(covered);
6056 
6057 	for_each_cpu(i, span) {
6058 		struct cpumask *sg_span;
6059 
6060 		if (cpumask_test_cpu(i, covered))
6061 			continue;
6062 
6063 		sibling = *per_cpu_ptr(sdd->sd, i);
6064 
6065 		/* See the comment near build_group_mask(). */
6066 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6067 			continue;
6068 
6069 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6070 				GFP_KERNEL, cpu_to_node(cpu));
6071 
6072 		if (!sg)
6073 			goto fail;
6074 
6075 		sg_span = sched_group_cpus(sg);
6076 		if (sibling->child)
6077 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6078 		else
6079 			cpumask_set_cpu(i, sg_span);
6080 
6081 		cpumask_or(covered, covered, sg_span);
6082 
6083 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6084 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6085 			build_group_mask(sd, sg);
6086 
6087 		/*
6088 		 * Initialize sgc->capacity such that even if we mess up the
6089 		 * domains and no possible iteration will get us here, we won't
6090 		 * die on a /0 trap.
6091 		 */
6092 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6093 
6094 		/*
6095 		 * Make sure the first group of this domain contains the
6096 		 * canonical balance cpu. Otherwise the sched_domain iteration
6097 		 * breaks. See update_sg_lb_stats().
6098 		 */
6099 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6100 		    group_balance_cpu(sg) == cpu)
6101 			groups = sg;
6102 
6103 		if (!first)
6104 			first = sg;
6105 		if (last)
6106 			last->next = sg;
6107 		last = sg;
6108 		last->next = first;
6109 	}
6110 	sd->groups = groups;
6111 
6112 	return 0;
6113 
6114 fail:
6115 	free_sched_groups(first, 0);
6116 
6117 	return -ENOMEM;
6118 }
6119 
6120 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6121 {
6122 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6123 	struct sched_domain *child = sd->child;
6124 
6125 	if (child)
6126 		cpu = cpumask_first(sched_domain_span(child));
6127 
6128 	if (sg) {
6129 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6130 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6131 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6132 	}
6133 
6134 	return cpu;
6135 }
6136 
6137 /*
6138  * build_sched_groups will build a circular linked list of the groups
6139  * covered by the given span, and will set each group's ->cpumask correctly,
6140  * and ->cpu_capacity to 0.
6141  *
6142  * Assumes the sched_domain tree is fully constructed
6143  */
6144 static int
6145 build_sched_groups(struct sched_domain *sd, int cpu)
6146 {
6147 	struct sched_group *first = NULL, *last = NULL;
6148 	struct sd_data *sdd = sd->private;
6149 	const struct cpumask *span = sched_domain_span(sd);
6150 	struct cpumask *covered;
6151 	int i;
6152 
6153 	get_group(cpu, sdd, &sd->groups);
6154 	atomic_inc(&sd->groups->ref);
6155 
6156 	if (cpu != cpumask_first(span))
6157 		return 0;
6158 
6159 	lockdep_assert_held(&sched_domains_mutex);
6160 	covered = sched_domains_tmpmask;
6161 
6162 	cpumask_clear(covered);
6163 
6164 	for_each_cpu(i, span) {
6165 		struct sched_group *sg;
6166 		int group, j;
6167 
6168 		if (cpumask_test_cpu(i, covered))
6169 			continue;
6170 
6171 		group = get_group(i, sdd, &sg);
6172 		cpumask_setall(sched_group_mask(sg));
6173 
6174 		for_each_cpu(j, span) {
6175 			if (get_group(j, sdd, NULL) != group)
6176 				continue;
6177 
6178 			cpumask_set_cpu(j, covered);
6179 			cpumask_set_cpu(j, sched_group_cpus(sg));
6180 		}
6181 
6182 		if (!first)
6183 			first = sg;
6184 		if (last)
6185 			last->next = sg;
6186 		last = sg;
6187 	}
6188 	last->next = first;
6189 
6190 	return 0;
6191 }
6192 
6193 /*
6194  * Initialize sched groups cpu_capacity.
6195  *
6196  * cpu_capacity indicates the capacity of sched group, which is used while
6197  * distributing the load between different sched groups in a sched domain.
6198  * Typically cpu_capacity for all the groups in a sched domain will be same
6199  * unless there are asymmetries in the topology. If there are asymmetries,
6200  * group having more cpu_capacity will pickup more load compared to the
6201  * group having less cpu_capacity.
6202  */
6203 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6204 {
6205 	struct sched_group *sg = sd->groups;
6206 
6207 	WARN_ON(!sg);
6208 
6209 	do {
6210 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6211 		sg = sg->next;
6212 	} while (sg != sd->groups);
6213 
6214 	if (cpu != group_balance_cpu(sg))
6215 		return;
6216 
6217 	update_group_capacity(sd, cpu);
6218 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6219 }
6220 
6221 /*
6222  * Initializers for schedule domains
6223  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6224  */
6225 
6226 static int default_relax_domain_level = -1;
6227 int sched_domain_level_max;
6228 
6229 static int __init setup_relax_domain_level(char *str)
6230 {
6231 	if (kstrtoint(str, 0, &default_relax_domain_level))
6232 		pr_warn("Unable to set relax_domain_level\n");
6233 
6234 	return 1;
6235 }
6236 __setup("relax_domain_level=", setup_relax_domain_level);
6237 
6238 static void set_domain_attribute(struct sched_domain *sd,
6239 				 struct sched_domain_attr *attr)
6240 {
6241 	int request;
6242 
6243 	if (!attr || attr->relax_domain_level < 0) {
6244 		if (default_relax_domain_level < 0)
6245 			return;
6246 		else
6247 			request = default_relax_domain_level;
6248 	} else
6249 		request = attr->relax_domain_level;
6250 	if (request < sd->level) {
6251 		/* turn off idle balance on this domain */
6252 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6253 	} else {
6254 		/* turn on idle balance on this domain */
6255 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6256 	}
6257 }
6258 
6259 static void __sdt_free(const struct cpumask *cpu_map);
6260 static int __sdt_alloc(const struct cpumask *cpu_map);
6261 
6262 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6263 				 const struct cpumask *cpu_map)
6264 {
6265 	switch (what) {
6266 	case sa_rootdomain:
6267 		if (!atomic_read(&d->rd->refcount))
6268 			free_rootdomain(&d->rd->rcu); /* fall through */
6269 	case sa_sd:
6270 		free_percpu(d->sd); /* fall through */
6271 	case sa_sd_storage:
6272 		__sdt_free(cpu_map); /* fall through */
6273 	case sa_none:
6274 		break;
6275 	}
6276 }
6277 
6278 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6279 						   const struct cpumask *cpu_map)
6280 {
6281 	memset(d, 0, sizeof(*d));
6282 
6283 	if (__sdt_alloc(cpu_map))
6284 		return sa_sd_storage;
6285 	d->sd = alloc_percpu(struct sched_domain *);
6286 	if (!d->sd)
6287 		return sa_sd_storage;
6288 	d->rd = alloc_rootdomain();
6289 	if (!d->rd)
6290 		return sa_sd;
6291 	return sa_rootdomain;
6292 }
6293 
6294 /*
6295  * NULL the sd_data elements we've used to build the sched_domain and
6296  * sched_group structure so that the subsequent __free_domain_allocs()
6297  * will not free the data we're using.
6298  */
6299 static void claim_allocations(int cpu, struct sched_domain *sd)
6300 {
6301 	struct sd_data *sdd = sd->private;
6302 
6303 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6304 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6305 
6306 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6307 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6308 
6309 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6310 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6311 }
6312 
6313 #ifdef CONFIG_NUMA
6314 static int sched_domains_numa_levels;
6315 enum numa_topology_type sched_numa_topology_type;
6316 static int *sched_domains_numa_distance;
6317 int sched_max_numa_distance;
6318 static struct cpumask ***sched_domains_numa_masks;
6319 static int sched_domains_curr_level;
6320 #endif
6321 
6322 /*
6323  * SD_flags allowed in topology descriptions.
6324  *
6325  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6326  * SD_SHARE_PKG_RESOURCES - describes shared caches
6327  * SD_NUMA                - describes NUMA topologies
6328  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6329  *
6330  * Odd one out:
6331  * SD_ASYM_PACKING        - describes SMT quirks
6332  */
6333 #define TOPOLOGY_SD_FLAGS		\
6334 	(SD_SHARE_CPUCAPACITY |		\
6335 	 SD_SHARE_PKG_RESOURCES |	\
6336 	 SD_NUMA |			\
6337 	 SD_ASYM_PACKING |		\
6338 	 SD_SHARE_POWERDOMAIN)
6339 
6340 static struct sched_domain *
6341 sd_init(struct sched_domain_topology_level *tl, int cpu)
6342 {
6343 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6344 	int sd_weight, sd_flags = 0;
6345 
6346 #ifdef CONFIG_NUMA
6347 	/*
6348 	 * Ugly hack to pass state to sd_numa_mask()...
6349 	 */
6350 	sched_domains_curr_level = tl->numa_level;
6351 #endif
6352 
6353 	sd_weight = cpumask_weight(tl->mask(cpu));
6354 
6355 	if (tl->sd_flags)
6356 		sd_flags = (*tl->sd_flags)();
6357 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6358 			"wrong sd_flags in topology description\n"))
6359 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6360 
6361 	*sd = (struct sched_domain){
6362 		.min_interval		= sd_weight,
6363 		.max_interval		= 2*sd_weight,
6364 		.busy_factor		= 32,
6365 		.imbalance_pct		= 125,
6366 
6367 		.cache_nice_tries	= 0,
6368 		.busy_idx		= 0,
6369 		.idle_idx		= 0,
6370 		.newidle_idx		= 0,
6371 		.wake_idx		= 0,
6372 		.forkexec_idx		= 0,
6373 
6374 		.flags			= 1*SD_LOAD_BALANCE
6375 					| 1*SD_BALANCE_NEWIDLE
6376 					| 1*SD_BALANCE_EXEC
6377 					| 1*SD_BALANCE_FORK
6378 					| 0*SD_BALANCE_WAKE
6379 					| 1*SD_WAKE_AFFINE
6380 					| 0*SD_SHARE_CPUCAPACITY
6381 					| 0*SD_SHARE_PKG_RESOURCES
6382 					| 0*SD_SERIALIZE
6383 					| 0*SD_PREFER_SIBLING
6384 					| 0*SD_NUMA
6385 					| sd_flags
6386 					,
6387 
6388 		.last_balance		= jiffies,
6389 		.balance_interval	= sd_weight,
6390 		.smt_gain		= 0,
6391 		.max_newidle_lb_cost	= 0,
6392 		.next_decay_max_lb_cost	= jiffies,
6393 #ifdef CONFIG_SCHED_DEBUG
6394 		.name			= tl->name,
6395 #endif
6396 	};
6397 
6398 	/*
6399 	 * Convert topological properties into behaviour.
6400 	 */
6401 
6402 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6403 		sd->flags |= SD_PREFER_SIBLING;
6404 		sd->imbalance_pct = 110;
6405 		sd->smt_gain = 1178; /* ~15% */
6406 
6407 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6408 		sd->imbalance_pct = 117;
6409 		sd->cache_nice_tries = 1;
6410 		sd->busy_idx = 2;
6411 
6412 #ifdef CONFIG_NUMA
6413 	} else if (sd->flags & SD_NUMA) {
6414 		sd->cache_nice_tries = 2;
6415 		sd->busy_idx = 3;
6416 		sd->idle_idx = 2;
6417 
6418 		sd->flags |= SD_SERIALIZE;
6419 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6420 			sd->flags &= ~(SD_BALANCE_EXEC |
6421 				       SD_BALANCE_FORK |
6422 				       SD_WAKE_AFFINE);
6423 		}
6424 
6425 #endif
6426 	} else {
6427 		sd->flags |= SD_PREFER_SIBLING;
6428 		sd->cache_nice_tries = 1;
6429 		sd->busy_idx = 2;
6430 		sd->idle_idx = 1;
6431 	}
6432 
6433 	sd->private = &tl->data;
6434 
6435 	return sd;
6436 }
6437 
6438 /*
6439  * Topology list, bottom-up.
6440  */
6441 static struct sched_domain_topology_level default_topology[] = {
6442 #ifdef CONFIG_SCHED_SMT
6443 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6444 #endif
6445 #ifdef CONFIG_SCHED_MC
6446 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6447 #endif
6448 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6449 	{ NULL, },
6450 };
6451 
6452 static struct sched_domain_topology_level *sched_domain_topology =
6453 	default_topology;
6454 
6455 #define for_each_sd_topology(tl)			\
6456 	for (tl = sched_domain_topology; tl->mask; tl++)
6457 
6458 void set_sched_topology(struct sched_domain_topology_level *tl)
6459 {
6460 	sched_domain_topology = tl;
6461 }
6462 
6463 #ifdef CONFIG_NUMA
6464 
6465 static const struct cpumask *sd_numa_mask(int cpu)
6466 {
6467 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6468 }
6469 
6470 static void sched_numa_warn(const char *str)
6471 {
6472 	static int done = false;
6473 	int i,j;
6474 
6475 	if (done)
6476 		return;
6477 
6478 	done = true;
6479 
6480 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6481 
6482 	for (i = 0; i < nr_node_ids; i++) {
6483 		printk(KERN_WARNING "  ");
6484 		for (j = 0; j < nr_node_ids; j++)
6485 			printk(KERN_CONT "%02d ", node_distance(i,j));
6486 		printk(KERN_CONT "\n");
6487 	}
6488 	printk(KERN_WARNING "\n");
6489 }
6490 
6491 bool find_numa_distance(int distance)
6492 {
6493 	int i;
6494 
6495 	if (distance == node_distance(0, 0))
6496 		return true;
6497 
6498 	for (i = 0; i < sched_domains_numa_levels; i++) {
6499 		if (sched_domains_numa_distance[i] == distance)
6500 			return true;
6501 	}
6502 
6503 	return false;
6504 }
6505 
6506 /*
6507  * A system can have three types of NUMA topology:
6508  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6509  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6510  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6511  *
6512  * The difference between a glueless mesh topology and a backplane
6513  * topology lies in whether communication between not directly
6514  * connected nodes goes through intermediary nodes (where programs
6515  * could run), or through backplane controllers. This affects
6516  * placement of programs.
6517  *
6518  * The type of topology can be discerned with the following tests:
6519  * - If the maximum distance between any nodes is 1 hop, the system
6520  *   is directly connected.
6521  * - If for two nodes A and B, located N > 1 hops away from each other,
6522  *   there is an intermediary node C, which is < N hops away from both
6523  *   nodes A and B, the system is a glueless mesh.
6524  */
6525 static void init_numa_topology_type(void)
6526 {
6527 	int a, b, c, n;
6528 
6529 	n = sched_max_numa_distance;
6530 
6531 	if (sched_domains_numa_levels <= 1) {
6532 		sched_numa_topology_type = NUMA_DIRECT;
6533 		return;
6534 	}
6535 
6536 	for_each_online_node(a) {
6537 		for_each_online_node(b) {
6538 			/* Find two nodes furthest removed from each other. */
6539 			if (node_distance(a, b) < n)
6540 				continue;
6541 
6542 			/* Is there an intermediary node between a and b? */
6543 			for_each_online_node(c) {
6544 				if (node_distance(a, c) < n &&
6545 				    node_distance(b, c) < n) {
6546 					sched_numa_topology_type =
6547 							NUMA_GLUELESS_MESH;
6548 					return;
6549 				}
6550 			}
6551 
6552 			sched_numa_topology_type = NUMA_BACKPLANE;
6553 			return;
6554 		}
6555 	}
6556 }
6557 
6558 static void sched_init_numa(void)
6559 {
6560 	int next_distance, curr_distance = node_distance(0, 0);
6561 	struct sched_domain_topology_level *tl;
6562 	int level = 0;
6563 	int i, j, k;
6564 
6565 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6566 	if (!sched_domains_numa_distance)
6567 		return;
6568 
6569 	/*
6570 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6571 	 * unique distances in the node_distance() table.
6572 	 *
6573 	 * Assumes node_distance(0,j) includes all distances in
6574 	 * node_distance(i,j) in order to avoid cubic time.
6575 	 */
6576 	next_distance = curr_distance;
6577 	for (i = 0; i < nr_node_ids; i++) {
6578 		for (j = 0; j < nr_node_ids; j++) {
6579 			for (k = 0; k < nr_node_ids; k++) {
6580 				int distance = node_distance(i, k);
6581 
6582 				if (distance > curr_distance &&
6583 				    (distance < next_distance ||
6584 				     next_distance == curr_distance))
6585 					next_distance = distance;
6586 
6587 				/*
6588 				 * While not a strong assumption it would be nice to know
6589 				 * about cases where if node A is connected to B, B is not
6590 				 * equally connected to A.
6591 				 */
6592 				if (sched_debug() && node_distance(k, i) != distance)
6593 					sched_numa_warn("Node-distance not symmetric");
6594 
6595 				if (sched_debug() && i && !find_numa_distance(distance))
6596 					sched_numa_warn("Node-0 not representative");
6597 			}
6598 			if (next_distance != curr_distance) {
6599 				sched_domains_numa_distance[level++] = next_distance;
6600 				sched_domains_numa_levels = level;
6601 				curr_distance = next_distance;
6602 			} else break;
6603 		}
6604 
6605 		/*
6606 		 * In case of sched_debug() we verify the above assumption.
6607 		 */
6608 		if (!sched_debug())
6609 			break;
6610 	}
6611 
6612 	if (!level)
6613 		return;
6614 
6615 	/*
6616 	 * 'level' contains the number of unique distances, excluding the
6617 	 * identity distance node_distance(i,i).
6618 	 *
6619 	 * The sched_domains_numa_distance[] array includes the actual distance
6620 	 * numbers.
6621 	 */
6622 
6623 	/*
6624 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6625 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6626 	 * the array will contain less then 'level' members. This could be
6627 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6628 	 * in other functions.
6629 	 *
6630 	 * We reset it to 'level' at the end of this function.
6631 	 */
6632 	sched_domains_numa_levels = 0;
6633 
6634 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6635 	if (!sched_domains_numa_masks)
6636 		return;
6637 
6638 	/*
6639 	 * Now for each level, construct a mask per node which contains all
6640 	 * cpus of nodes that are that many hops away from us.
6641 	 */
6642 	for (i = 0; i < level; i++) {
6643 		sched_domains_numa_masks[i] =
6644 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6645 		if (!sched_domains_numa_masks[i])
6646 			return;
6647 
6648 		for (j = 0; j < nr_node_ids; j++) {
6649 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6650 			if (!mask)
6651 				return;
6652 
6653 			sched_domains_numa_masks[i][j] = mask;
6654 
6655 			for_each_node(k) {
6656 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6657 					continue;
6658 
6659 				cpumask_or(mask, mask, cpumask_of_node(k));
6660 			}
6661 		}
6662 	}
6663 
6664 	/* Compute default topology size */
6665 	for (i = 0; sched_domain_topology[i].mask; i++);
6666 
6667 	tl = kzalloc((i + level + 1) *
6668 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6669 	if (!tl)
6670 		return;
6671 
6672 	/*
6673 	 * Copy the default topology bits..
6674 	 */
6675 	for (i = 0; sched_domain_topology[i].mask; i++)
6676 		tl[i] = sched_domain_topology[i];
6677 
6678 	/*
6679 	 * .. and append 'j' levels of NUMA goodness.
6680 	 */
6681 	for (j = 0; j < level; i++, j++) {
6682 		tl[i] = (struct sched_domain_topology_level){
6683 			.mask = sd_numa_mask,
6684 			.sd_flags = cpu_numa_flags,
6685 			.flags = SDTL_OVERLAP,
6686 			.numa_level = j,
6687 			SD_INIT_NAME(NUMA)
6688 		};
6689 	}
6690 
6691 	sched_domain_topology = tl;
6692 
6693 	sched_domains_numa_levels = level;
6694 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6695 
6696 	init_numa_topology_type();
6697 }
6698 
6699 static void sched_domains_numa_masks_set(unsigned int cpu)
6700 {
6701 	int node = cpu_to_node(cpu);
6702 	int i, j;
6703 
6704 	for (i = 0; i < sched_domains_numa_levels; i++) {
6705 		for (j = 0; j < nr_node_ids; j++) {
6706 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6707 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6708 		}
6709 	}
6710 }
6711 
6712 static void sched_domains_numa_masks_clear(unsigned int cpu)
6713 {
6714 	int i, j;
6715 
6716 	for (i = 0; i < sched_domains_numa_levels; i++) {
6717 		for (j = 0; j < nr_node_ids; j++)
6718 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6719 	}
6720 }
6721 
6722 #else
6723 static inline void sched_init_numa(void) { }
6724 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6725 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6726 #endif /* CONFIG_NUMA */
6727 
6728 static int __sdt_alloc(const struct cpumask *cpu_map)
6729 {
6730 	struct sched_domain_topology_level *tl;
6731 	int j;
6732 
6733 	for_each_sd_topology(tl) {
6734 		struct sd_data *sdd = &tl->data;
6735 
6736 		sdd->sd = alloc_percpu(struct sched_domain *);
6737 		if (!sdd->sd)
6738 			return -ENOMEM;
6739 
6740 		sdd->sg = alloc_percpu(struct sched_group *);
6741 		if (!sdd->sg)
6742 			return -ENOMEM;
6743 
6744 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6745 		if (!sdd->sgc)
6746 			return -ENOMEM;
6747 
6748 		for_each_cpu(j, cpu_map) {
6749 			struct sched_domain *sd;
6750 			struct sched_group *sg;
6751 			struct sched_group_capacity *sgc;
6752 
6753 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6754 					GFP_KERNEL, cpu_to_node(j));
6755 			if (!sd)
6756 				return -ENOMEM;
6757 
6758 			*per_cpu_ptr(sdd->sd, j) = sd;
6759 
6760 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6761 					GFP_KERNEL, cpu_to_node(j));
6762 			if (!sg)
6763 				return -ENOMEM;
6764 
6765 			sg->next = sg;
6766 
6767 			*per_cpu_ptr(sdd->sg, j) = sg;
6768 
6769 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6770 					GFP_KERNEL, cpu_to_node(j));
6771 			if (!sgc)
6772 				return -ENOMEM;
6773 
6774 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6775 		}
6776 	}
6777 
6778 	return 0;
6779 }
6780 
6781 static void __sdt_free(const struct cpumask *cpu_map)
6782 {
6783 	struct sched_domain_topology_level *tl;
6784 	int j;
6785 
6786 	for_each_sd_topology(tl) {
6787 		struct sd_data *sdd = &tl->data;
6788 
6789 		for_each_cpu(j, cpu_map) {
6790 			struct sched_domain *sd;
6791 
6792 			if (sdd->sd) {
6793 				sd = *per_cpu_ptr(sdd->sd, j);
6794 				if (sd && (sd->flags & SD_OVERLAP))
6795 					free_sched_groups(sd->groups, 0);
6796 				kfree(*per_cpu_ptr(sdd->sd, j));
6797 			}
6798 
6799 			if (sdd->sg)
6800 				kfree(*per_cpu_ptr(sdd->sg, j));
6801 			if (sdd->sgc)
6802 				kfree(*per_cpu_ptr(sdd->sgc, j));
6803 		}
6804 		free_percpu(sdd->sd);
6805 		sdd->sd = NULL;
6806 		free_percpu(sdd->sg);
6807 		sdd->sg = NULL;
6808 		free_percpu(sdd->sgc);
6809 		sdd->sgc = NULL;
6810 	}
6811 }
6812 
6813 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6814 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6815 		struct sched_domain *child, int cpu)
6816 {
6817 	struct sched_domain *sd = sd_init(tl, cpu);
6818 	if (!sd)
6819 		return child;
6820 
6821 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6822 	if (child) {
6823 		sd->level = child->level + 1;
6824 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6825 		child->parent = sd;
6826 		sd->child = child;
6827 
6828 		if (!cpumask_subset(sched_domain_span(child),
6829 				    sched_domain_span(sd))) {
6830 			pr_err("BUG: arch topology borken\n");
6831 #ifdef CONFIG_SCHED_DEBUG
6832 			pr_err("     the %s domain not a subset of the %s domain\n",
6833 					child->name, sd->name);
6834 #endif
6835 			/* Fixup, ensure @sd has at least @child cpus. */
6836 			cpumask_or(sched_domain_span(sd),
6837 				   sched_domain_span(sd),
6838 				   sched_domain_span(child));
6839 		}
6840 
6841 	}
6842 	set_domain_attribute(sd, attr);
6843 
6844 	return sd;
6845 }
6846 
6847 /*
6848  * Build sched domains for a given set of cpus and attach the sched domains
6849  * to the individual cpus
6850  */
6851 static int build_sched_domains(const struct cpumask *cpu_map,
6852 			       struct sched_domain_attr *attr)
6853 {
6854 	enum s_alloc alloc_state;
6855 	struct sched_domain *sd;
6856 	struct s_data d;
6857 	int i, ret = -ENOMEM;
6858 
6859 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6860 	if (alloc_state != sa_rootdomain)
6861 		goto error;
6862 
6863 	/* Set up domains for cpus specified by the cpu_map. */
6864 	for_each_cpu(i, cpu_map) {
6865 		struct sched_domain_topology_level *tl;
6866 
6867 		sd = NULL;
6868 		for_each_sd_topology(tl) {
6869 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6870 			if (tl == sched_domain_topology)
6871 				*per_cpu_ptr(d.sd, i) = sd;
6872 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6873 				sd->flags |= SD_OVERLAP;
6874 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6875 				break;
6876 		}
6877 	}
6878 
6879 	/* Build the groups for the domains */
6880 	for_each_cpu(i, cpu_map) {
6881 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6882 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6883 			if (sd->flags & SD_OVERLAP) {
6884 				if (build_overlap_sched_groups(sd, i))
6885 					goto error;
6886 			} else {
6887 				if (build_sched_groups(sd, i))
6888 					goto error;
6889 			}
6890 		}
6891 	}
6892 
6893 	/* Calculate CPU capacity for physical packages and nodes */
6894 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6895 		if (!cpumask_test_cpu(i, cpu_map))
6896 			continue;
6897 
6898 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6899 			claim_allocations(i, sd);
6900 			init_sched_groups_capacity(i, sd);
6901 		}
6902 	}
6903 
6904 	/* Attach the domains */
6905 	rcu_read_lock();
6906 	for_each_cpu(i, cpu_map) {
6907 		sd = *per_cpu_ptr(d.sd, i);
6908 		cpu_attach_domain(sd, d.rd, i);
6909 	}
6910 	rcu_read_unlock();
6911 
6912 	ret = 0;
6913 error:
6914 	__free_domain_allocs(&d, alloc_state, cpu_map);
6915 	return ret;
6916 }
6917 
6918 static cpumask_var_t *doms_cur;	/* current sched domains */
6919 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6920 static struct sched_domain_attr *dattr_cur;
6921 				/* attribues of custom domains in 'doms_cur' */
6922 
6923 /*
6924  * Special case: If a kmalloc of a doms_cur partition (array of
6925  * cpumask) fails, then fallback to a single sched domain,
6926  * as determined by the single cpumask fallback_doms.
6927  */
6928 static cpumask_var_t fallback_doms;
6929 
6930 /*
6931  * arch_update_cpu_topology lets virtualized architectures update the
6932  * cpu core maps. It is supposed to return 1 if the topology changed
6933  * or 0 if it stayed the same.
6934  */
6935 int __weak arch_update_cpu_topology(void)
6936 {
6937 	return 0;
6938 }
6939 
6940 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6941 {
6942 	int i;
6943 	cpumask_var_t *doms;
6944 
6945 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6946 	if (!doms)
6947 		return NULL;
6948 	for (i = 0; i < ndoms; i++) {
6949 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6950 			free_sched_domains(doms, i);
6951 			return NULL;
6952 		}
6953 	}
6954 	return doms;
6955 }
6956 
6957 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6958 {
6959 	unsigned int i;
6960 	for (i = 0; i < ndoms; i++)
6961 		free_cpumask_var(doms[i]);
6962 	kfree(doms);
6963 }
6964 
6965 /*
6966  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6967  * For now this just excludes isolated cpus, but could be used to
6968  * exclude other special cases in the future.
6969  */
6970 static int init_sched_domains(const struct cpumask *cpu_map)
6971 {
6972 	int err;
6973 
6974 	arch_update_cpu_topology();
6975 	ndoms_cur = 1;
6976 	doms_cur = alloc_sched_domains(ndoms_cur);
6977 	if (!doms_cur)
6978 		doms_cur = &fallback_doms;
6979 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6980 	err = build_sched_domains(doms_cur[0], NULL);
6981 	register_sched_domain_sysctl();
6982 
6983 	return err;
6984 }
6985 
6986 /*
6987  * Detach sched domains from a group of cpus specified in cpu_map
6988  * These cpus will now be attached to the NULL domain
6989  */
6990 static void detach_destroy_domains(const struct cpumask *cpu_map)
6991 {
6992 	int i;
6993 
6994 	rcu_read_lock();
6995 	for_each_cpu(i, cpu_map)
6996 		cpu_attach_domain(NULL, &def_root_domain, i);
6997 	rcu_read_unlock();
6998 }
6999 
7000 /* handle null as "default" */
7001 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7002 			struct sched_domain_attr *new, int idx_new)
7003 {
7004 	struct sched_domain_attr tmp;
7005 
7006 	/* fast path */
7007 	if (!new && !cur)
7008 		return 1;
7009 
7010 	tmp = SD_ATTR_INIT;
7011 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7012 			new ? (new + idx_new) : &tmp,
7013 			sizeof(struct sched_domain_attr));
7014 }
7015 
7016 /*
7017  * Partition sched domains as specified by the 'ndoms_new'
7018  * cpumasks in the array doms_new[] of cpumasks. This compares
7019  * doms_new[] to the current sched domain partitioning, doms_cur[].
7020  * It destroys each deleted domain and builds each new domain.
7021  *
7022  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7023  * The masks don't intersect (don't overlap.) We should setup one
7024  * sched domain for each mask. CPUs not in any of the cpumasks will
7025  * not be load balanced. If the same cpumask appears both in the
7026  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7027  * it as it is.
7028  *
7029  * The passed in 'doms_new' should be allocated using
7030  * alloc_sched_domains.  This routine takes ownership of it and will
7031  * free_sched_domains it when done with it. If the caller failed the
7032  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7033  * and partition_sched_domains() will fallback to the single partition
7034  * 'fallback_doms', it also forces the domains to be rebuilt.
7035  *
7036  * If doms_new == NULL it will be replaced with cpu_online_mask.
7037  * ndoms_new == 0 is a special case for destroying existing domains,
7038  * and it will not create the default domain.
7039  *
7040  * Call with hotplug lock held
7041  */
7042 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7043 			     struct sched_domain_attr *dattr_new)
7044 {
7045 	int i, j, n;
7046 	int new_topology;
7047 
7048 	mutex_lock(&sched_domains_mutex);
7049 
7050 	/* always unregister in case we don't destroy any domains */
7051 	unregister_sched_domain_sysctl();
7052 
7053 	/* Let architecture update cpu core mappings. */
7054 	new_topology = arch_update_cpu_topology();
7055 
7056 	n = doms_new ? ndoms_new : 0;
7057 
7058 	/* Destroy deleted domains */
7059 	for (i = 0; i < ndoms_cur; i++) {
7060 		for (j = 0; j < n && !new_topology; j++) {
7061 			if (cpumask_equal(doms_cur[i], doms_new[j])
7062 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7063 				goto match1;
7064 		}
7065 		/* no match - a current sched domain not in new doms_new[] */
7066 		detach_destroy_domains(doms_cur[i]);
7067 match1:
7068 		;
7069 	}
7070 
7071 	n = ndoms_cur;
7072 	if (doms_new == NULL) {
7073 		n = 0;
7074 		doms_new = &fallback_doms;
7075 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7076 		WARN_ON_ONCE(dattr_new);
7077 	}
7078 
7079 	/* Build new domains */
7080 	for (i = 0; i < ndoms_new; i++) {
7081 		for (j = 0; j < n && !new_topology; j++) {
7082 			if (cpumask_equal(doms_new[i], doms_cur[j])
7083 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7084 				goto match2;
7085 		}
7086 		/* no match - add a new doms_new */
7087 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7088 match2:
7089 		;
7090 	}
7091 
7092 	/* Remember the new sched domains */
7093 	if (doms_cur != &fallback_doms)
7094 		free_sched_domains(doms_cur, ndoms_cur);
7095 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7096 	doms_cur = doms_new;
7097 	dattr_cur = dattr_new;
7098 	ndoms_cur = ndoms_new;
7099 
7100 	register_sched_domain_sysctl();
7101 
7102 	mutex_unlock(&sched_domains_mutex);
7103 }
7104 
7105 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7106 
7107 /*
7108  * Update cpusets according to cpu_active mask.  If cpusets are
7109  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7110  * around partition_sched_domains().
7111  *
7112  * If we come here as part of a suspend/resume, don't touch cpusets because we
7113  * want to restore it back to its original state upon resume anyway.
7114  */
7115 static void cpuset_cpu_active(void)
7116 {
7117 	if (cpuhp_tasks_frozen) {
7118 		/*
7119 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7120 		 * resume sequence. As long as this is not the last online
7121 		 * operation in the resume sequence, just build a single sched
7122 		 * domain, ignoring cpusets.
7123 		 */
7124 		num_cpus_frozen--;
7125 		if (likely(num_cpus_frozen)) {
7126 			partition_sched_domains(1, NULL, NULL);
7127 			return;
7128 		}
7129 		/*
7130 		 * This is the last CPU online operation. So fall through and
7131 		 * restore the original sched domains by considering the
7132 		 * cpuset configurations.
7133 		 */
7134 	}
7135 	cpuset_update_active_cpus(true);
7136 }
7137 
7138 static int cpuset_cpu_inactive(unsigned int cpu)
7139 {
7140 	unsigned long flags;
7141 	struct dl_bw *dl_b;
7142 	bool overflow;
7143 	int cpus;
7144 
7145 	if (!cpuhp_tasks_frozen) {
7146 		rcu_read_lock_sched();
7147 		dl_b = dl_bw_of(cpu);
7148 
7149 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7150 		cpus = dl_bw_cpus(cpu);
7151 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7152 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7153 
7154 		rcu_read_unlock_sched();
7155 
7156 		if (overflow)
7157 			return -EBUSY;
7158 		cpuset_update_active_cpus(false);
7159 	} else {
7160 		num_cpus_frozen++;
7161 		partition_sched_domains(1, NULL, NULL);
7162 	}
7163 	return 0;
7164 }
7165 
7166 int sched_cpu_activate(unsigned int cpu)
7167 {
7168 	struct rq *rq = cpu_rq(cpu);
7169 	unsigned long flags;
7170 
7171 	set_cpu_active(cpu, true);
7172 
7173 	if (sched_smp_initialized) {
7174 		sched_domains_numa_masks_set(cpu);
7175 		cpuset_cpu_active();
7176 	}
7177 
7178 	/*
7179 	 * Put the rq online, if not already. This happens:
7180 	 *
7181 	 * 1) In the early boot process, because we build the real domains
7182 	 *    after all cpus have been brought up.
7183 	 *
7184 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7185 	 *    domains.
7186 	 */
7187 	raw_spin_lock_irqsave(&rq->lock, flags);
7188 	if (rq->rd) {
7189 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7190 		set_rq_online(rq);
7191 	}
7192 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7193 
7194 	update_max_interval();
7195 
7196 	return 0;
7197 }
7198 
7199 int sched_cpu_deactivate(unsigned int cpu)
7200 {
7201 	int ret;
7202 
7203 	set_cpu_active(cpu, false);
7204 	/*
7205 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7206 	 * users of this state to go away such that all new such users will
7207 	 * observe it.
7208 	 *
7209 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7210 	 * not imply sync_sched(), so wait for both.
7211 	 *
7212 	 * Do sync before park smpboot threads to take care the rcu boost case.
7213 	 */
7214 	if (IS_ENABLED(CONFIG_PREEMPT))
7215 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
7216 	else
7217 		synchronize_rcu();
7218 
7219 	if (!sched_smp_initialized)
7220 		return 0;
7221 
7222 	ret = cpuset_cpu_inactive(cpu);
7223 	if (ret) {
7224 		set_cpu_active(cpu, true);
7225 		return ret;
7226 	}
7227 	sched_domains_numa_masks_clear(cpu);
7228 	return 0;
7229 }
7230 
7231 static void sched_rq_cpu_starting(unsigned int cpu)
7232 {
7233 	struct rq *rq = cpu_rq(cpu);
7234 
7235 	rq->calc_load_update = calc_load_update;
7236 	account_reset_rq(rq);
7237 	update_max_interval();
7238 }
7239 
7240 int sched_cpu_starting(unsigned int cpu)
7241 {
7242 	set_cpu_rq_start_time(cpu);
7243 	sched_rq_cpu_starting(cpu);
7244 	return 0;
7245 }
7246 
7247 #ifdef CONFIG_HOTPLUG_CPU
7248 int sched_cpu_dying(unsigned int cpu)
7249 {
7250 	struct rq *rq = cpu_rq(cpu);
7251 	unsigned long flags;
7252 
7253 	/* Handle pending wakeups and then migrate everything off */
7254 	sched_ttwu_pending();
7255 	raw_spin_lock_irqsave(&rq->lock, flags);
7256 	if (rq->rd) {
7257 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7258 		set_rq_offline(rq);
7259 	}
7260 	migrate_tasks(rq);
7261 	BUG_ON(rq->nr_running != 1);
7262 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7263 	calc_load_migrate(rq);
7264 	update_max_interval();
7265 	nohz_balance_exit_idle(cpu);
7266 	hrtick_clear(rq);
7267 	return 0;
7268 }
7269 #endif
7270 
7271 void __init sched_init_smp(void)
7272 {
7273 	cpumask_var_t non_isolated_cpus;
7274 
7275 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7276 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7277 
7278 	sched_init_numa();
7279 
7280 	/*
7281 	 * There's no userspace yet to cause hotplug operations; hence all the
7282 	 * cpu masks are stable and all blatant races in the below code cannot
7283 	 * happen.
7284 	 */
7285 	mutex_lock(&sched_domains_mutex);
7286 	init_sched_domains(cpu_active_mask);
7287 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7288 	if (cpumask_empty(non_isolated_cpus))
7289 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7290 	mutex_unlock(&sched_domains_mutex);
7291 
7292 	/* Move init over to a non-isolated CPU */
7293 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7294 		BUG();
7295 	sched_init_granularity();
7296 	free_cpumask_var(non_isolated_cpus);
7297 
7298 	init_sched_rt_class();
7299 	init_sched_dl_class();
7300 	sched_smp_initialized = true;
7301 }
7302 
7303 static int __init migration_init(void)
7304 {
7305 	sched_rq_cpu_starting(smp_processor_id());
7306 	return 0;
7307 }
7308 early_initcall(migration_init);
7309 
7310 #else
7311 void __init sched_init_smp(void)
7312 {
7313 	sched_init_granularity();
7314 }
7315 #endif /* CONFIG_SMP */
7316 
7317 int in_sched_functions(unsigned long addr)
7318 {
7319 	return in_lock_functions(addr) ||
7320 		(addr >= (unsigned long)__sched_text_start
7321 		&& addr < (unsigned long)__sched_text_end);
7322 }
7323 
7324 #ifdef CONFIG_CGROUP_SCHED
7325 /*
7326  * Default task group.
7327  * Every task in system belongs to this group at bootup.
7328  */
7329 struct task_group root_task_group;
7330 LIST_HEAD(task_groups);
7331 
7332 /* Cacheline aligned slab cache for task_group */
7333 static struct kmem_cache *task_group_cache __read_mostly;
7334 #endif
7335 
7336 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7337 
7338 void __init sched_init(void)
7339 {
7340 	int i, j;
7341 	unsigned long alloc_size = 0, ptr;
7342 
7343 #ifdef CONFIG_FAIR_GROUP_SCHED
7344 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7345 #endif
7346 #ifdef CONFIG_RT_GROUP_SCHED
7347 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7348 #endif
7349 	if (alloc_size) {
7350 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7351 
7352 #ifdef CONFIG_FAIR_GROUP_SCHED
7353 		root_task_group.se = (struct sched_entity **)ptr;
7354 		ptr += nr_cpu_ids * sizeof(void **);
7355 
7356 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7357 		ptr += nr_cpu_ids * sizeof(void **);
7358 
7359 #endif /* CONFIG_FAIR_GROUP_SCHED */
7360 #ifdef CONFIG_RT_GROUP_SCHED
7361 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7362 		ptr += nr_cpu_ids * sizeof(void **);
7363 
7364 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7365 		ptr += nr_cpu_ids * sizeof(void **);
7366 
7367 #endif /* CONFIG_RT_GROUP_SCHED */
7368 	}
7369 #ifdef CONFIG_CPUMASK_OFFSTACK
7370 	for_each_possible_cpu(i) {
7371 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7372 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7373 	}
7374 #endif /* CONFIG_CPUMASK_OFFSTACK */
7375 
7376 	init_rt_bandwidth(&def_rt_bandwidth,
7377 			global_rt_period(), global_rt_runtime());
7378 	init_dl_bandwidth(&def_dl_bandwidth,
7379 			global_rt_period(), global_rt_runtime());
7380 
7381 #ifdef CONFIG_SMP
7382 	init_defrootdomain();
7383 #endif
7384 
7385 #ifdef CONFIG_RT_GROUP_SCHED
7386 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7387 			global_rt_period(), global_rt_runtime());
7388 #endif /* CONFIG_RT_GROUP_SCHED */
7389 
7390 #ifdef CONFIG_CGROUP_SCHED
7391 	task_group_cache = KMEM_CACHE(task_group, 0);
7392 
7393 	list_add(&root_task_group.list, &task_groups);
7394 	INIT_LIST_HEAD(&root_task_group.children);
7395 	INIT_LIST_HEAD(&root_task_group.siblings);
7396 	autogroup_init(&init_task);
7397 #endif /* CONFIG_CGROUP_SCHED */
7398 
7399 	for_each_possible_cpu(i) {
7400 		struct rq *rq;
7401 
7402 		rq = cpu_rq(i);
7403 		raw_spin_lock_init(&rq->lock);
7404 		rq->nr_running = 0;
7405 		rq->calc_load_active = 0;
7406 		rq->calc_load_update = jiffies + LOAD_FREQ;
7407 		init_cfs_rq(&rq->cfs);
7408 		init_rt_rq(&rq->rt);
7409 		init_dl_rq(&rq->dl);
7410 #ifdef CONFIG_FAIR_GROUP_SCHED
7411 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7412 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7413 		/*
7414 		 * How much cpu bandwidth does root_task_group get?
7415 		 *
7416 		 * In case of task-groups formed thr' the cgroup filesystem, it
7417 		 * gets 100% of the cpu resources in the system. This overall
7418 		 * system cpu resource is divided among the tasks of
7419 		 * root_task_group and its child task-groups in a fair manner,
7420 		 * based on each entity's (task or task-group's) weight
7421 		 * (se->load.weight).
7422 		 *
7423 		 * In other words, if root_task_group has 10 tasks of weight
7424 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7425 		 * then A0's share of the cpu resource is:
7426 		 *
7427 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7428 		 *
7429 		 * We achieve this by letting root_task_group's tasks sit
7430 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7431 		 */
7432 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7433 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7434 #endif /* CONFIG_FAIR_GROUP_SCHED */
7435 
7436 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7437 #ifdef CONFIG_RT_GROUP_SCHED
7438 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7439 #endif
7440 
7441 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7442 			rq->cpu_load[j] = 0;
7443 
7444 #ifdef CONFIG_SMP
7445 		rq->sd = NULL;
7446 		rq->rd = NULL;
7447 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7448 		rq->balance_callback = NULL;
7449 		rq->active_balance = 0;
7450 		rq->next_balance = jiffies;
7451 		rq->push_cpu = 0;
7452 		rq->cpu = i;
7453 		rq->online = 0;
7454 		rq->idle_stamp = 0;
7455 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7456 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7457 
7458 		INIT_LIST_HEAD(&rq->cfs_tasks);
7459 
7460 		rq_attach_root(rq, &def_root_domain);
7461 #ifdef CONFIG_NO_HZ_COMMON
7462 		rq->last_load_update_tick = jiffies;
7463 		rq->nohz_flags = 0;
7464 #endif
7465 #ifdef CONFIG_NO_HZ_FULL
7466 		rq->last_sched_tick = 0;
7467 #endif
7468 #endif /* CONFIG_SMP */
7469 		init_rq_hrtick(rq);
7470 		atomic_set(&rq->nr_iowait, 0);
7471 	}
7472 
7473 	set_load_weight(&init_task);
7474 
7475 #ifdef CONFIG_PREEMPT_NOTIFIERS
7476 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7477 #endif
7478 
7479 	/*
7480 	 * The boot idle thread does lazy MMU switching as well:
7481 	 */
7482 	atomic_inc(&init_mm.mm_count);
7483 	enter_lazy_tlb(&init_mm, current);
7484 
7485 	/*
7486 	 * During early bootup we pretend to be a normal task:
7487 	 */
7488 	current->sched_class = &fair_sched_class;
7489 
7490 	/*
7491 	 * Make us the idle thread. Technically, schedule() should not be
7492 	 * called from this thread, however somewhere below it might be,
7493 	 * but because we are the idle thread, we just pick up running again
7494 	 * when this runqueue becomes "idle".
7495 	 */
7496 	init_idle(current, smp_processor_id());
7497 
7498 	calc_load_update = jiffies + LOAD_FREQ;
7499 
7500 #ifdef CONFIG_SMP
7501 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7502 	/* May be allocated at isolcpus cmdline parse time */
7503 	if (cpu_isolated_map == NULL)
7504 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7505 	idle_thread_set_boot_cpu();
7506 	set_cpu_rq_start_time(smp_processor_id());
7507 #endif
7508 	init_sched_fair_class();
7509 
7510 	init_schedstats();
7511 
7512 	scheduler_running = 1;
7513 }
7514 
7515 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7516 static inline int preempt_count_equals(int preempt_offset)
7517 {
7518 	int nested = preempt_count() + rcu_preempt_depth();
7519 
7520 	return (nested == preempt_offset);
7521 }
7522 
7523 void __might_sleep(const char *file, int line, int preempt_offset)
7524 {
7525 	/*
7526 	 * Blocking primitives will set (and therefore destroy) current->state,
7527 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7528 	 * otherwise we will destroy state.
7529 	 */
7530 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7531 			"do not call blocking ops when !TASK_RUNNING; "
7532 			"state=%lx set at [<%p>] %pS\n",
7533 			current->state,
7534 			(void *)current->task_state_change,
7535 			(void *)current->task_state_change);
7536 
7537 	___might_sleep(file, line, preempt_offset);
7538 }
7539 EXPORT_SYMBOL(__might_sleep);
7540 
7541 void ___might_sleep(const char *file, int line, int preempt_offset)
7542 {
7543 	static unsigned long prev_jiffy;	/* ratelimiting */
7544 
7545 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7546 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7547 	     !is_idle_task(current)) ||
7548 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7549 		return;
7550 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7551 		return;
7552 	prev_jiffy = jiffies;
7553 
7554 	printk(KERN_ERR
7555 		"BUG: sleeping function called from invalid context at %s:%d\n",
7556 			file, line);
7557 	printk(KERN_ERR
7558 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7559 			in_atomic(), irqs_disabled(),
7560 			current->pid, current->comm);
7561 
7562 	if (task_stack_end_corrupted(current))
7563 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7564 
7565 	debug_show_held_locks(current);
7566 	if (irqs_disabled())
7567 		print_irqtrace_events(current);
7568 #ifdef CONFIG_DEBUG_PREEMPT
7569 	if (!preempt_count_equals(preempt_offset)) {
7570 		pr_err("Preemption disabled at:");
7571 		print_ip_sym(current->preempt_disable_ip);
7572 		pr_cont("\n");
7573 	}
7574 #endif
7575 	dump_stack();
7576 }
7577 EXPORT_SYMBOL(___might_sleep);
7578 #endif
7579 
7580 #ifdef CONFIG_MAGIC_SYSRQ
7581 void normalize_rt_tasks(void)
7582 {
7583 	struct task_struct *g, *p;
7584 	struct sched_attr attr = {
7585 		.sched_policy = SCHED_NORMAL,
7586 	};
7587 
7588 	read_lock(&tasklist_lock);
7589 	for_each_process_thread(g, p) {
7590 		/*
7591 		 * Only normalize user tasks:
7592 		 */
7593 		if (p->flags & PF_KTHREAD)
7594 			continue;
7595 
7596 		p->se.exec_start		= 0;
7597 #ifdef CONFIG_SCHEDSTATS
7598 		p->se.statistics.wait_start	= 0;
7599 		p->se.statistics.sleep_start	= 0;
7600 		p->se.statistics.block_start	= 0;
7601 #endif
7602 
7603 		if (!dl_task(p) && !rt_task(p)) {
7604 			/*
7605 			 * Renice negative nice level userspace
7606 			 * tasks back to 0:
7607 			 */
7608 			if (task_nice(p) < 0)
7609 				set_user_nice(p, 0);
7610 			continue;
7611 		}
7612 
7613 		__sched_setscheduler(p, &attr, false, false);
7614 	}
7615 	read_unlock(&tasklist_lock);
7616 }
7617 
7618 #endif /* CONFIG_MAGIC_SYSRQ */
7619 
7620 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7621 /*
7622  * These functions are only useful for the IA64 MCA handling, or kdb.
7623  *
7624  * They can only be called when the whole system has been
7625  * stopped - every CPU needs to be quiescent, and no scheduling
7626  * activity can take place. Using them for anything else would
7627  * be a serious bug, and as a result, they aren't even visible
7628  * under any other configuration.
7629  */
7630 
7631 /**
7632  * curr_task - return the current task for a given cpu.
7633  * @cpu: the processor in question.
7634  *
7635  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7636  *
7637  * Return: The current task for @cpu.
7638  */
7639 struct task_struct *curr_task(int cpu)
7640 {
7641 	return cpu_curr(cpu);
7642 }
7643 
7644 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7645 
7646 #ifdef CONFIG_IA64
7647 /**
7648  * set_curr_task - set the current task for a given cpu.
7649  * @cpu: the processor in question.
7650  * @p: the task pointer to set.
7651  *
7652  * Description: This function must only be used when non-maskable interrupts
7653  * are serviced on a separate stack. It allows the architecture to switch the
7654  * notion of the current task on a cpu in a non-blocking manner. This function
7655  * must be called with all CPU's synchronized, and interrupts disabled, the
7656  * and caller must save the original value of the current task (see
7657  * curr_task() above) and restore that value before reenabling interrupts and
7658  * re-starting the system.
7659  *
7660  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7661  */
7662 void set_curr_task(int cpu, struct task_struct *p)
7663 {
7664 	cpu_curr(cpu) = p;
7665 }
7666 
7667 #endif
7668 
7669 #ifdef CONFIG_CGROUP_SCHED
7670 /* task_group_lock serializes the addition/removal of task groups */
7671 static DEFINE_SPINLOCK(task_group_lock);
7672 
7673 static void sched_free_group(struct task_group *tg)
7674 {
7675 	free_fair_sched_group(tg);
7676 	free_rt_sched_group(tg);
7677 	autogroup_free(tg);
7678 	kmem_cache_free(task_group_cache, tg);
7679 }
7680 
7681 /* allocate runqueue etc for a new task group */
7682 struct task_group *sched_create_group(struct task_group *parent)
7683 {
7684 	struct task_group *tg;
7685 
7686 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7687 	if (!tg)
7688 		return ERR_PTR(-ENOMEM);
7689 
7690 	if (!alloc_fair_sched_group(tg, parent))
7691 		goto err;
7692 
7693 	if (!alloc_rt_sched_group(tg, parent))
7694 		goto err;
7695 
7696 	return tg;
7697 
7698 err:
7699 	sched_free_group(tg);
7700 	return ERR_PTR(-ENOMEM);
7701 }
7702 
7703 void sched_online_group(struct task_group *tg, struct task_group *parent)
7704 {
7705 	unsigned long flags;
7706 
7707 	spin_lock_irqsave(&task_group_lock, flags);
7708 	list_add_rcu(&tg->list, &task_groups);
7709 
7710 	WARN_ON(!parent); /* root should already exist */
7711 
7712 	tg->parent = parent;
7713 	INIT_LIST_HEAD(&tg->children);
7714 	list_add_rcu(&tg->siblings, &parent->children);
7715 	spin_unlock_irqrestore(&task_group_lock, flags);
7716 }
7717 
7718 /* rcu callback to free various structures associated with a task group */
7719 static void sched_free_group_rcu(struct rcu_head *rhp)
7720 {
7721 	/* now it should be safe to free those cfs_rqs */
7722 	sched_free_group(container_of(rhp, struct task_group, rcu));
7723 }
7724 
7725 void sched_destroy_group(struct task_group *tg)
7726 {
7727 	/* wait for possible concurrent references to cfs_rqs complete */
7728 	call_rcu(&tg->rcu, sched_free_group_rcu);
7729 }
7730 
7731 void sched_offline_group(struct task_group *tg)
7732 {
7733 	unsigned long flags;
7734 
7735 	/* end participation in shares distribution */
7736 	unregister_fair_sched_group(tg);
7737 
7738 	spin_lock_irqsave(&task_group_lock, flags);
7739 	list_del_rcu(&tg->list);
7740 	list_del_rcu(&tg->siblings);
7741 	spin_unlock_irqrestore(&task_group_lock, flags);
7742 }
7743 
7744 /* change task's runqueue when it moves between groups.
7745  *	The caller of this function should have put the task in its new group
7746  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7747  *	reflect its new group.
7748  */
7749 void sched_move_task(struct task_struct *tsk)
7750 {
7751 	struct task_group *tg;
7752 	int queued, running;
7753 	struct rq_flags rf;
7754 	struct rq *rq;
7755 
7756 	rq = task_rq_lock(tsk, &rf);
7757 
7758 	running = task_current(rq, tsk);
7759 	queued = task_on_rq_queued(tsk);
7760 
7761 	if (queued)
7762 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7763 	if (unlikely(running))
7764 		put_prev_task(rq, tsk);
7765 
7766 	/*
7767 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7768 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7769 	 * to prevent lockdep warnings.
7770 	 */
7771 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7772 			  struct task_group, css);
7773 	tg = autogroup_task_group(tsk, tg);
7774 	tsk->sched_task_group = tg;
7775 
7776 #ifdef CONFIG_FAIR_GROUP_SCHED
7777 	if (tsk->sched_class->task_move_group)
7778 		tsk->sched_class->task_move_group(tsk);
7779 	else
7780 #endif
7781 		set_task_rq(tsk, task_cpu(tsk));
7782 
7783 	if (unlikely(running))
7784 		tsk->sched_class->set_curr_task(rq);
7785 	if (queued)
7786 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7787 
7788 	task_rq_unlock(rq, tsk, &rf);
7789 }
7790 #endif /* CONFIG_CGROUP_SCHED */
7791 
7792 #ifdef CONFIG_RT_GROUP_SCHED
7793 /*
7794  * Ensure that the real time constraints are schedulable.
7795  */
7796 static DEFINE_MUTEX(rt_constraints_mutex);
7797 
7798 /* Must be called with tasklist_lock held */
7799 static inline int tg_has_rt_tasks(struct task_group *tg)
7800 {
7801 	struct task_struct *g, *p;
7802 
7803 	/*
7804 	 * Autogroups do not have RT tasks; see autogroup_create().
7805 	 */
7806 	if (task_group_is_autogroup(tg))
7807 		return 0;
7808 
7809 	for_each_process_thread(g, p) {
7810 		if (rt_task(p) && task_group(p) == tg)
7811 			return 1;
7812 	}
7813 
7814 	return 0;
7815 }
7816 
7817 struct rt_schedulable_data {
7818 	struct task_group *tg;
7819 	u64 rt_period;
7820 	u64 rt_runtime;
7821 };
7822 
7823 static int tg_rt_schedulable(struct task_group *tg, void *data)
7824 {
7825 	struct rt_schedulable_data *d = data;
7826 	struct task_group *child;
7827 	unsigned long total, sum = 0;
7828 	u64 period, runtime;
7829 
7830 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7831 	runtime = tg->rt_bandwidth.rt_runtime;
7832 
7833 	if (tg == d->tg) {
7834 		period = d->rt_period;
7835 		runtime = d->rt_runtime;
7836 	}
7837 
7838 	/*
7839 	 * Cannot have more runtime than the period.
7840 	 */
7841 	if (runtime > period && runtime != RUNTIME_INF)
7842 		return -EINVAL;
7843 
7844 	/*
7845 	 * Ensure we don't starve existing RT tasks.
7846 	 */
7847 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7848 		return -EBUSY;
7849 
7850 	total = to_ratio(period, runtime);
7851 
7852 	/*
7853 	 * Nobody can have more than the global setting allows.
7854 	 */
7855 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7856 		return -EINVAL;
7857 
7858 	/*
7859 	 * The sum of our children's runtime should not exceed our own.
7860 	 */
7861 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7862 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7863 		runtime = child->rt_bandwidth.rt_runtime;
7864 
7865 		if (child == d->tg) {
7866 			period = d->rt_period;
7867 			runtime = d->rt_runtime;
7868 		}
7869 
7870 		sum += to_ratio(period, runtime);
7871 	}
7872 
7873 	if (sum > total)
7874 		return -EINVAL;
7875 
7876 	return 0;
7877 }
7878 
7879 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7880 {
7881 	int ret;
7882 
7883 	struct rt_schedulable_data data = {
7884 		.tg = tg,
7885 		.rt_period = period,
7886 		.rt_runtime = runtime,
7887 	};
7888 
7889 	rcu_read_lock();
7890 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7891 	rcu_read_unlock();
7892 
7893 	return ret;
7894 }
7895 
7896 static int tg_set_rt_bandwidth(struct task_group *tg,
7897 		u64 rt_period, u64 rt_runtime)
7898 {
7899 	int i, err = 0;
7900 
7901 	/*
7902 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7903 	 * kernel creating (and or operating) RT threads.
7904 	 */
7905 	if (tg == &root_task_group && rt_runtime == 0)
7906 		return -EINVAL;
7907 
7908 	/* No period doesn't make any sense. */
7909 	if (rt_period == 0)
7910 		return -EINVAL;
7911 
7912 	mutex_lock(&rt_constraints_mutex);
7913 	read_lock(&tasklist_lock);
7914 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7915 	if (err)
7916 		goto unlock;
7917 
7918 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7919 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7920 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7921 
7922 	for_each_possible_cpu(i) {
7923 		struct rt_rq *rt_rq = tg->rt_rq[i];
7924 
7925 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7926 		rt_rq->rt_runtime = rt_runtime;
7927 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7928 	}
7929 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7930 unlock:
7931 	read_unlock(&tasklist_lock);
7932 	mutex_unlock(&rt_constraints_mutex);
7933 
7934 	return err;
7935 }
7936 
7937 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7938 {
7939 	u64 rt_runtime, rt_period;
7940 
7941 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7942 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7943 	if (rt_runtime_us < 0)
7944 		rt_runtime = RUNTIME_INF;
7945 
7946 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7947 }
7948 
7949 static long sched_group_rt_runtime(struct task_group *tg)
7950 {
7951 	u64 rt_runtime_us;
7952 
7953 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7954 		return -1;
7955 
7956 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7957 	do_div(rt_runtime_us, NSEC_PER_USEC);
7958 	return rt_runtime_us;
7959 }
7960 
7961 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7962 {
7963 	u64 rt_runtime, rt_period;
7964 
7965 	rt_period = rt_period_us * NSEC_PER_USEC;
7966 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7967 
7968 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7969 }
7970 
7971 static long sched_group_rt_period(struct task_group *tg)
7972 {
7973 	u64 rt_period_us;
7974 
7975 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7976 	do_div(rt_period_us, NSEC_PER_USEC);
7977 	return rt_period_us;
7978 }
7979 #endif /* CONFIG_RT_GROUP_SCHED */
7980 
7981 #ifdef CONFIG_RT_GROUP_SCHED
7982 static int sched_rt_global_constraints(void)
7983 {
7984 	int ret = 0;
7985 
7986 	mutex_lock(&rt_constraints_mutex);
7987 	read_lock(&tasklist_lock);
7988 	ret = __rt_schedulable(NULL, 0, 0);
7989 	read_unlock(&tasklist_lock);
7990 	mutex_unlock(&rt_constraints_mutex);
7991 
7992 	return ret;
7993 }
7994 
7995 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7996 {
7997 	/* Don't accept realtime tasks when there is no way for them to run */
7998 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7999 		return 0;
8000 
8001 	return 1;
8002 }
8003 
8004 #else /* !CONFIG_RT_GROUP_SCHED */
8005 static int sched_rt_global_constraints(void)
8006 {
8007 	unsigned long flags;
8008 	int i;
8009 
8010 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8011 	for_each_possible_cpu(i) {
8012 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8013 
8014 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8015 		rt_rq->rt_runtime = global_rt_runtime();
8016 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8017 	}
8018 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8019 
8020 	return 0;
8021 }
8022 #endif /* CONFIG_RT_GROUP_SCHED */
8023 
8024 static int sched_dl_global_validate(void)
8025 {
8026 	u64 runtime = global_rt_runtime();
8027 	u64 period = global_rt_period();
8028 	u64 new_bw = to_ratio(period, runtime);
8029 	struct dl_bw *dl_b;
8030 	int cpu, ret = 0;
8031 	unsigned long flags;
8032 
8033 	/*
8034 	 * Here we want to check the bandwidth not being set to some
8035 	 * value smaller than the currently allocated bandwidth in
8036 	 * any of the root_domains.
8037 	 *
8038 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8039 	 * cycling on root_domains... Discussion on different/better
8040 	 * solutions is welcome!
8041 	 */
8042 	for_each_possible_cpu(cpu) {
8043 		rcu_read_lock_sched();
8044 		dl_b = dl_bw_of(cpu);
8045 
8046 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8047 		if (new_bw < dl_b->total_bw)
8048 			ret = -EBUSY;
8049 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8050 
8051 		rcu_read_unlock_sched();
8052 
8053 		if (ret)
8054 			break;
8055 	}
8056 
8057 	return ret;
8058 }
8059 
8060 static void sched_dl_do_global(void)
8061 {
8062 	u64 new_bw = -1;
8063 	struct dl_bw *dl_b;
8064 	int cpu;
8065 	unsigned long flags;
8066 
8067 	def_dl_bandwidth.dl_period = global_rt_period();
8068 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8069 
8070 	if (global_rt_runtime() != RUNTIME_INF)
8071 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8072 
8073 	/*
8074 	 * FIXME: As above...
8075 	 */
8076 	for_each_possible_cpu(cpu) {
8077 		rcu_read_lock_sched();
8078 		dl_b = dl_bw_of(cpu);
8079 
8080 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8081 		dl_b->bw = new_bw;
8082 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8083 
8084 		rcu_read_unlock_sched();
8085 	}
8086 }
8087 
8088 static int sched_rt_global_validate(void)
8089 {
8090 	if (sysctl_sched_rt_period <= 0)
8091 		return -EINVAL;
8092 
8093 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8094 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8095 		return -EINVAL;
8096 
8097 	return 0;
8098 }
8099 
8100 static void sched_rt_do_global(void)
8101 {
8102 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8103 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8104 }
8105 
8106 int sched_rt_handler(struct ctl_table *table, int write,
8107 		void __user *buffer, size_t *lenp,
8108 		loff_t *ppos)
8109 {
8110 	int old_period, old_runtime;
8111 	static DEFINE_MUTEX(mutex);
8112 	int ret;
8113 
8114 	mutex_lock(&mutex);
8115 	old_period = sysctl_sched_rt_period;
8116 	old_runtime = sysctl_sched_rt_runtime;
8117 
8118 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8119 
8120 	if (!ret && write) {
8121 		ret = sched_rt_global_validate();
8122 		if (ret)
8123 			goto undo;
8124 
8125 		ret = sched_dl_global_validate();
8126 		if (ret)
8127 			goto undo;
8128 
8129 		ret = sched_rt_global_constraints();
8130 		if (ret)
8131 			goto undo;
8132 
8133 		sched_rt_do_global();
8134 		sched_dl_do_global();
8135 	}
8136 	if (0) {
8137 undo:
8138 		sysctl_sched_rt_period = old_period;
8139 		sysctl_sched_rt_runtime = old_runtime;
8140 	}
8141 	mutex_unlock(&mutex);
8142 
8143 	return ret;
8144 }
8145 
8146 int sched_rr_handler(struct ctl_table *table, int write,
8147 		void __user *buffer, size_t *lenp,
8148 		loff_t *ppos)
8149 {
8150 	int ret;
8151 	static DEFINE_MUTEX(mutex);
8152 
8153 	mutex_lock(&mutex);
8154 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8155 	/* make sure that internally we keep jiffies */
8156 	/* also, writing zero resets timeslice to default */
8157 	if (!ret && write) {
8158 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8159 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8160 	}
8161 	mutex_unlock(&mutex);
8162 	return ret;
8163 }
8164 
8165 #ifdef CONFIG_CGROUP_SCHED
8166 
8167 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8168 {
8169 	return css ? container_of(css, struct task_group, css) : NULL;
8170 }
8171 
8172 static struct cgroup_subsys_state *
8173 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8174 {
8175 	struct task_group *parent = css_tg(parent_css);
8176 	struct task_group *tg;
8177 
8178 	if (!parent) {
8179 		/* This is early initialization for the top cgroup */
8180 		return &root_task_group.css;
8181 	}
8182 
8183 	tg = sched_create_group(parent);
8184 	if (IS_ERR(tg))
8185 		return ERR_PTR(-ENOMEM);
8186 
8187 	sched_online_group(tg, parent);
8188 
8189 	return &tg->css;
8190 }
8191 
8192 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8193 {
8194 	struct task_group *tg = css_tg(css);
8195 
8196 	sched_offline_group(tg);
8197 }
8198 
8199 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8200 {
8201 	struct task_group *tg = css_tg(css);
8202 
8203 	/*
8204 	 * Relies on the RCU grace period between css_released() and this.
8205 	 */
8206 	sched_free_group(tg);
8207 }
8208 
8209 static void cpu_cgroup_fork(struct task_struct *task)
8210 {
8211 	sched_move_task(task);
8212 }
8213 
8214 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8215 {
8216 	struct task_struct *task;
8217 	struct cgroup_subsys_state *css;
8218 
8219 	cgroup_taskset_for_each(task, css, tset) {
8220 #ifdef CONFIG_RT_GROUP_SCHED
8221 		if (!sched_rt_can_attach(css_tg(css), task))
8222 			return -EINVAL;
8223 #else
8224 		/* We don't support RT-tasks being in separate groups */
8225 		if (task->sched_class != &fair_sched_class)
8226 			return -EINVAL;
8227 #endif
8228 	}
8229 	return 0;
8230 }
8231 
8232 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8233 {
8234 	struct task_struct *task;
8235 	struct cgroup_subsys_state *css;
8236 
8237 	cgroup_taskset_for_each(task, css, tset)
8238 		sched_move_task(task);
8239 }
8240 
8241 #ifdef CONFIG_FAIR_GROUP_SCHED
8242 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8243 				struct cftype *cftype, u64 shareval)
8244 {
8245 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8246 }
8247 
8248 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8249 			       struct cftype *cft)
8250 {
8251 	struct task_group *tg = css_tg(css);
8252 
8253 	return (u64) scale_load_down(tg->shares);
8254 }
8255 
8256 #ifdef CONFIG_CFS_BANDWIDTH
8257 static DEFINE_MUTEX(cfs_constraints_mutex);
8258 
8259 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8260 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8261 
8262 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8263 
8264 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8265 {
8266 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8267 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8268 
8269 	if (tg == &root_task_group)
8270 		return -EINVAL;
8271 
8272 	/*
8273 	 * Ensure we have at some amount of bandwidth every period.  This is
8274 	 * to prevent reaching a state of large arrears when throttled via
8275 	 * entity_tick() resulting in prolonged exit starvation.
8276 	 */
8277 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8278 		return -EINVAL;
8279 
8280 	/*
8281 	 * Likewise, bound things on the otherside by preventing insane quota
8282 	 * periods.  This also allows us to normalize in computing quota
8283 	 * feasibility.
8284 	 */
8285 	if (period > max_cfs_quota_period)
8286 		return -EINVAL;
8287 
8288 	/*
8289 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8290 	 * unthrottle_offline_cfs_rqs().
8291 	 */
8292 	get_online_cpus();
8293 	mutex_lock(&cfs_constraints_mutex);
8294 	ret = __cfs_schedulable(tg, period, quota);
8295 	if (ret)
8296 		goto out_unlock;
8297 
8298 	runtime_enabled = quota != RUNTIME_INF;
8299 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8300 	/*
8301 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8302 	 * before making related changes, and on->off must occur afterwards
8303 	 */
8304 	if (runtime_enabled && !runtime_was_enabled)
8305 		cfs_bandwidth_usage_inc();
8306 	raw_spin_lock_irq(&cfs_b->lock);
8307 	cfs_b->period = ns_to_ktime(period);
8308 	cfs_b->quota = quota;
8309 
8310 	__refill_cfs_bandwidth_runtime(cfs_b);
8311 	/* restart the period timer (if active) to handle new period expiry */
8312 	if (runtime_enabled)
8313 		start_cfs_bandwidth(cfs_b);
8314 	raw_spin_unlock_irq(&cfs_b->lock);
8315 
8316 	for_each_online_cpu(i) {
8317 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8318 		struct rq *rq = cfs_rq->rq;
8319 
8320 		raw_spin_lock_irq(&rq->lock);
8321 		cfs_rq->runtime_enabled = runtime_enabled;
8322 		cfs_rq->runtime_remaining = 0;
8323 
8324 		if (cfs_rq->throttled)
8325 			unthrottle_cfs_rq(cfs_rq);
8326 		raw_spin_unlock_irq(&rq->lock);
8327 	}
8328 	if (runtime_was_enabled && !runtime_enabled)
8329 		cfs_bandwidth_usage_dec();
8330 out_unlock:
8331 	mutex_unlock(&cfs_constraints_mutex);
8332 	put_online_cpus();
8333 
8334 	return ret;
8335 }
8336 
8337 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8338 {
8339 	u64 quota, period;
8340 
8341 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8342 	if (cfs_quota_us < 0)
8343 		quota = RUNTIME_INF;
8344 	else
8345 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8346 
8347 	return tg_set_cfs_bandwidth(tg, period, quota);
8348 }
8349 
8350 long tg_get_cfs_quota(struct task_group *tg)
8351 {
8352 	u64 quota_us;
8353 
8354 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8355 		return -1;
8356 
8357 	quota_us = tg->cfs_bandwidth.quota;
8358 	do_div(quota_us, NSEC_PER_USEC);
8359 
8360 	return quota_us;
8361 }
8362 
8363 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8364 {
8365 	u64 quota, period;
8366 
8367 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8368 	quota = tg->cfs_bandwidth.quota;
8369 
8370 	return tg_set_cfs_bandwidth(tg, period, quota);
8371 }
8372 
8373 long tg_get_cfs_period(struct task_group *tg)
8374 {
8375 	u64 cfs_period_us;
8376 
8377 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8378 	do_div(cfs_period_us, NSEC_PER_USEC);
8379 
8380 	return cfs_period_us;
8381 }
8382 
8383 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8384 				  struct cftype *cft)
8385 {
8386 	return tg_get_cfs_quota(css_tg(css));
8387 }
8388 
8389 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8390 				   struct cftype *cftype, s64 cfs_quota_us)
8391 {
8392 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8393 }
8394 
8395 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8396 				   struct cftype *cft)
8397 {
8398 	return tg_get_cfs_period(css_tg(css));
8399 }
8400 
8401 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8402 				    struct cftype *cftype, u64 cfs_period_us)
8403 {
8404 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8405 }
8406 
8407 struct cfs_schedulable_data {
8408 	struct task_group *tg;
8409 	u64 period, quota;
8410 };
8411 
8412 /*
8413  * normalize group quota/period to be quota/max_period
8414  * note: units are usecs
8415  */
8416 static u64 normalize_cfs_quota(struct task_group *tg,
8417 			       struct cfs_schedulable_data *d)
8418 {
8419 	u64 quota, period;
8420 
8421 	if (tg == d->tg) {
8422 		period = d->period;
8423 		quota = d->quota;
8424 	} else {
8425 		period = tg_get_cfs_period(tg);
8426 		quota = tg_get_cfs_quota(tg);
8427 	}
8428 
8429 	/* note: these should typically be equivalent */
8430 	if (quota == RUNTIME_INF || quota == -1)
8431 		return RUNTIME_INF;
8432 
8433 	return to_ratio(period, quota);
8434 }
8435 
8436 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8437 {
8438 	struct cfs_schedulable_data *d = data;
8439 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8440 	s64 quota = 0, parent_quota = -1;
8441 
8442 	if (!tg->parent) {
8443 		quota = RUNTIME_INF;
8444 	} else {
8445 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8446 
8447 		quota = normalize_cfs_quota(tg, d);
8448 		parent_quota = parent_b->hierarchical_quota;
8449 
8450 		/*
8451 		 * ensure max(child_quota) <= parent_quota, inherit when no
8452 		 * limit is set
8453 		 */
8454 		if (quota == RUNTIME_INF)
8455 			quota = parent_quota;
8456 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8457 			return -EINVAL;
8458 	}
8459 	cfs_b->hierarchical_quota = quota;
8460 
8461 	return 0;
8462 }
8463 
8464 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8465 {
8466 	int ret;
8467 	struct cfs_schedulable_data data = {
8468 		.tg = tg,
8469 		.period = period,
8470 		.quota = quota,
8471 	};
8472 
8473 	if (quota != RUNTIME_INF) {
8474 		do_div(data.period, NSEC_PER_USEC);
8475 		do_div(data.quota, NSEC_PER_USEC);
8476 	}
8477 
8478 	rcu_read_lock();
8479 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8480 	rcu_read_unlock();
8481 
8482 	return ret;
8483 }
8484 
8485 static int cpu_stats_show(struct seq_file *sf, void *v)
8486 {
8487 	struct task_group *tg = css_tg(seq_css(sf));
8488 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8489 
8490 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8491 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8492 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8493 
8494 	return 0;
8495 }
8496 #endif /* CONFIG_CFS_BANDWIDTH */
8497 #endif /* CONFIG_FAIR_GROUP_SCHED */
8498 
8499 #ifdef CONFIG_RT_GROUP_SCHED
8500 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8501 				struct cftype *cft, s64 val)
8502 {
8503 	return sched_group_set_rt_runtime(css_tg(css), val);
8504 }
8505 
8506 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8507 			       struct cftype *cft)
8508 {
8509 	return sched_group_rt_runtime(css_tg(css));
8510 }
8511 
8512 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8513 				    struct cftype *cftype, u64 rt_period_us)
8514 {
8515 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8516 }
8517 
8518 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8519 				   struct cftype *cft)
8520 {
8521 	return sched_group_rt_period(css_tg(css));
8522 }
8523 #endif /* CONFIG_RT_GROUP_SCHED */
8524 
8525 static struct cftype cpu_files[] = {
8526 #ifdef CONFIG_FAIR_GROUP_SCHED
8527 	{
8528 		.name = "shares",
8529 		.read_u64 = cpu_shares_read_u64,
8530 		.write_u64 = cpu_shares_write_u64,
8531 	},
8532 #endif
8533 #ifdef CONFIG_CFS_BANDWIDTH
8534 	{
8535 		.name = "cfs_quota_us",
8536 		.read_s64 = cpu_cfs_quota_read_s64,
8537 		.write_s64 = cpu_cfs_quota_write_s64,
8538 	},
8539 	{
8540 		.name = "cfs_period_us",
8541 		.read_u64 = cpu_cfs_period_read_u64,
8542 		.write_u64 = cpu_cfs_period_write_u64,
8543 	},
8544 	{
8545 		.name = "stat",
8546 		.seq_show = cpu_stats_show,
8547 	},
8548 #endif
8549 #ifdef CONFIG_RT_GROUP_SCHED
8550 	{
8551 		.name = "rt_runtime_us",
8552 		.read_s64 = cpu_rt_runtime_read,
8553 		.write_s64 = cpu_rt_runtime_write,
8554 	},
8555 	{
8556 		.name = "rt_period_us",
8557 		.read_u64 = cpu_rt_period_read_uint,
8558 		.write_u64 = cpu_rt_period_write_uint,
8559 	},
8560 #endif
8561 	{ }	/* terminate */
8562 };
8563 
8564 struct cgroup_subsys cpu_cgrp_subsys = {
8565 	.css_alloc	= cpu_cgroup_css_alloc,
8566 	.css_released	= cpu_cgroup_css_released,
8567 	.css_free	= cpu_cgroup_css_free,
8568 	.fork		= cpu_cgroup_fork,
8569 	.can_attach	= cpu_cgroup_can_attach,
8570 	.attach		= cpu_cgroup_attach,
8571 	.legacy_cftypes	= cpu_files,
8572 	.early_init	= true,
8573 };
8574 
8575 #endif	/* CONFIG_CGROUP_SCHED */
8576 
8577 void dump_cpu_task(int cpu)
8578 {
8579 	pr_info("Task dump for CPU %d:\n", cpu);
8580 	sched_show_task(cpu_curr(cpu));
8581 }
8582 
8583 /*
8584  * Nice levels are multiplicative, with a gentle 10% change for every
8585  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8586  * nice 1, it will get ~10% less CPU time than another CPU-bound task
8587  * that remained on nice 0.
8588  *
8589  * The "10% effect" is relative and cumulative: from _any_ nice level,
8590  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8591  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8592  * If a task goes up by ~10% and another task goes down by ~10% then
8593  * the relative distance between them is ~25%.)
8594  */
8595 const int sched_prio_to_weight[40] = {
8596  /* -20 */     88761,     71755,     56483,     46273,     36291,
8597  /* -15 */     29154,     23254,     18705,     14949,     11916,
8598  /* -10 */      9548,      7620,      6100,      4904,      3906,
8599  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8600  /*   0 */      1024,       820,       655,       526,       423,
8601  /*   5 */       335,       272,       215,       172,       137,
8602  /*  10 */       110,        87,        70,        56,        45,
8603  /*  15 */        36,        29,        23,        18,        15,
8604 };
8605 
8606 /*
8607  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8608  *
8609  * In cases where the weight does not change often, we can use the
8610  * precalculated inverse to speed up arithmetics by turning divisions
8611  * into multiplications:
8612  */
8613 const u32 sched_prio_to_wmult[40] = {
8614  /* -20 */     48388,     59856,     76040,     92818,    118348,
8615  /* -15 */    147320,    184698,    229616,    287308,    360437,
8616  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8617  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8618  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8619  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8620  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8621  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8622 };
8623