1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include "sched.h" 9 10 #include <linux/nospec.h> 11 12 #include <linux/kcov.h> 13 14 #include <asm/switch_to.h> 15 #include <asm/tlb.h> 16 17 #include "../workqueue_internal.h" 18 #include "../smpboot.h" 19 20 #include "pelt.h" 21 22 #define CREATE_TRACE_POINTS 23 #include <trace/events/sched.h> 24 25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 26 27 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 28 /* 29 * Debugging: various feature bits 30 * 31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 32 * sysctl_sched_features, defined in sched.h, to allow constants propagation 33 * at compile time and compiler optimization based on features default. 34 */ 35 #define SCHED_FEAT(name, enabled) \ 36 (1UL << __SCHED_FEAT_##name) * enabled | 37 const_debug unsigned int sysctl_sched_features = 38 #include "features.h" 39 0; 40 #undef SCHED_FEAT 41 #endif 42 43 /* 44 * Number of tasks to iterate in a single balance run. 45 * Limited because this is done with IRQs disabled. 46 */ 47 const_debug unsigned int sysctl_sched_nr_migrate = 32; 48 49 /* 50 * period over which we measure -rt task CPU usage in us. 51 * default: 1s 52 */ 53 unsigned int sysctl_sched_rt_period = 1000000; 54 55 __read_mostly int scheduler_running; 56 57 /* 58 * part of the period that we allow rt tasks to run in us. 59 * default: 0.95s 60 */ 61 int sysctl_sched_rt_runtime = 950000; 62 63 /* 64 * __task_rq_lock - lock the rq @p resides on. 65 */ 66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 67 __acquires(rq->lock) 68 { 69 struct rq *rq; 70 71 lockdep_assert_held(&p->pi_lock); 72 73 for (;;) { 74 rq = task_rq(p); 75 raw_spin_lock(&rq->lock); 76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 77 rq_pin_lock(rq, rf); 78 return rq; 79 } 80 raw_spin_unlock(&rq->lock); 81 82 while (unlikely(task_on_rq_migrating(p))) 83 cpu_relax(); 84 } 85 } 86 87 /* 88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 89 */ 90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 91 __acquires(p->pi_lock) 92 __acquires(rq->lock) 93 { 94 struct rq *rq; 95 96 for (;;) { 97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 98 rq = task_rq(p); 99 raw_spin_lock(&rq->lock); 100 /* 101 * move_queued_task() task_rq_lock() 102 * 103 * ACQUIRE (rq->lock) 104 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 106 * [S] ->cpu = new_cpu [L] task_rq() 107 * [L] ->on_rq 108 * RELEASE (rq->lock) 109 * 110 * If we observe the old CPU in task_rq_lock(), the acquire of 111 * the old rq->lock will fully serialize against the stores. 112 * 113 * If we observe the new CPU in task_rq_lock(), the address 114 * dependency headed by '[L] rq = task_rq()' and the acquire 115 * will pair with the WMB to ensure we then also see migrating. 116 */ 117 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 118 rq_pin_lock(rq, rf); 119 return rq; 120 } 121 raw_spin_unlock(&rq->lock); 122 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 123 124 while (unlikely(task_on_rq_migrating(p))) 125 cpu_relax(); 126 } 127 } 128 129 /* 130 * RQ-clock updating methods: 131 */ 132 133 static void update_rq_clock_task(struct rq *rq, s64 delta) 134 { 135 /* 136 * In theory, the compile should just see 0 here, and optimize out the call 137 * to sched_rt_avg_update. But I don't trust it... 138 */ 139 s64 __maybe_unused steal = 0, irq_delta = 0; 140 141 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 142 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 143 144 /* 145 * Since irq_time is only updated on {soft,}irq_exit, we might run into 146 * this case when a previous update_rq_clock() happened inside a 147 * {soft,}irq region. 148 * 149 * When this happens, we stop ->clock_task and only update the 150 * prev_irq_time stamp to account for the part that fit, so that a next 151 * update will consume the rest. This ensures ->clock_task is 152 * monotonic. 153 * 154 * It does however cause some slight miss-attribution of {soft,}irq 155 * time, a more accurate solution would be to update the irq_time using 156 * the current rq->clock timestamp, except that would require using 157 * atomic ops. 158 */ 159 if (irq_delta > delta) 160 irq_delta = delta; 161 162 rq->prev_irq_time += irq_delta; 163 delta -= irq_delta; 164 #endif 165 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 166 if (static_key_false((¶virt_steal_rq_enabled))) { 167 steal = paravirt_steal_clock(cpu_of(rq)); 168 steal -= rq->prev_steal_time_rq; 169 170 if (unlikely(steal > delta)) 171 steal = delta; 172 173 rq->prev_steal_time_rq += steal; 174 delta -= steal; 175 } 176 #endif 177 178 rq->clock_task += delta; 179 180 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 181 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 182 update_irq_load_avg(rq, irq_delta + steal); 183 #endif 184 update_rq_clock_pelt(rq, delta); 185 } 186 187 void update_rq_clock(struct rq *rq) 188 { 189 s64 delta; 190 191 lockdep_assert_held(&rq->lock); 192 193 if (rq->clock_update_flags & RQCF_ACT_SKIP) 194 return; 195 196 #ifdef CONFIG_SCHED_DEBUG 197 if (sched_feat(WARN_DOUBLE_CLOCK)) 198 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 199 rq->clock_update_flags |= RQCF_UPDATED; 200 #endif 201 202 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 203 if (delta < 0) 204 return; 205 rq->clock += delta; 206 update_rq_clock_task(rq, delta); 207 } 208 209 210 #ifdef CONFIG_SCHED_HRTICK 211 /* 212 * Use HR-timers to deliver accurate preemption points. 213 */ 214 215 static void hrtick_clear(struct rq *rq) 216 { 217 if (hrtimer_active(&rq->hrtick_timer)) 218 hrtimer_cancel(&rq->hrtick_timer); 219 } 220 221 /* 222 * High-resolution timer tick. 223 * Runs from hardirq context with interrupts disabled. 224 */ 225 static enum hrtimer_restart hrtick(struct hrtimer *timer) 226 { 227 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 228 struct rq_flags rf; 229 230 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 231 232 rq_lock(rq, &rf); 233 update_rq_clock(rq); 234 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 235 rq_unlock(rq, &rf); 236 237 return HRTIMER_NORESTART; 238 } 239 240 #ifdef CONFIG_SMP 241 242 static void __hrtick_restart(struct rq *rq) 243 { 244 struct hrtimer *timer = &rq->hrtick_timer; 245 246 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 247 } 248 249 /* 250 * called from hardirq (IPI) context 251 */ 252 static void __hrtick_start(void *arg) 253 { 254 struct rq *rq = arg; 255 struct rq_flags rf; 256 257 rq_lock(rq, &rf); 258 __hrtick_restart(rq); 259 rq->hrtick_csd_pending = 0; 260 rq_unlock(rq, &rf); 261 } 262 263 /* 264 * Called to set the hrtick timer state. 265 * 266 * called with rq->lock held and irqs disabled 267 */ 268 void hrtick_start(struct rq *rq, u64 delay) 269 { 270 struct hrtimer *timer = &rq->hrtick_timer; 271 ktime_t time; 272 s64 delta; 273 274 /* 275 * Don't schedule slices shorter than 10000ns, that just 276 * doesn't make sense and can cause timer DoS. 277 */ 278 delta = max_t(s64, delay, 10000LL); 279 time = ktime_add_ns(timer->base->get_time(), delta); 280 281 hrtimer_set_expires(timer, time); 282 283 if (rq == this_rq()) { 284 __hrtick_restart(rq); 285 } else if (!rq->hrtick_csd_pending) { 286 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 287 rq->hrtick_csd_pending = 1; 288 } 289 } 290 291 #else 292 /* 293 * Called to set the hrtick timer state. 294 * 295 * called with rq->lock held and irqs disabled 296 */ 297 void hrtick_start(struct rq *rq, u64 delay) 298 { 299 /* 300 * Don't schedule slices shorter than 10000ns, that just 301 * doesn't make sense. Rely on vruntime for fairness. 302 */ 303 delay = max_t(u64, delay, 10000LL); 304 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 305 HRTIMER_MODE_REL_PINNED); 306 } 307 #endif /* CONFIG_SMP */ 308 309 static void hrtick_rq_init(struct rq *rq) 310 { 311 #ifdef CONFIG_SMP 312 rq->hrtick_csd_pending = 0; 313 314 rq->hrtick_csd.flags = 0; 315 rq->hrtick_csd.func = __hrtick_start; 316 rq->hrtick_csd.info = rq; 317 #endif 318 319 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 320 rq->hrtick_timer.function = hrtick; 321 } 322 #else /* CONFIG_SCHED_HRTICK */ 323 static inline void hrtick_clear(struct rq *rq) 324 { 325 } 326 327 static inline void hrtick_rq_init(struct rq *rq) 328 { 329 } 330 #endif /* CONFIG_SCHED_HRTICK */ 331 332 /* 333 * cmpxchg based fetch_or, macro so it works for different integer types 334 */ 335 #define fetch_or(ptr, mask) \ 336 ({ \ 337 typeof(ptr) _ptr = (ptr); \ 338 typeof(mask) _mask = (mask); \ 339 typeof(*_ptr) _old, _val = *_ptr; \ 340 \ 341 for (;;) { \ 342 _old = cmpxchg(_ptr, _val, _val | _mask); \ 343 if (_old == _val) \ 344 break; \ 345 _val = _old; \ 346 } \ 347 _old; \ 348 }) 349 350 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 351 /* 352 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 353 * this avoids any races wrt polling state changes and thereby avoids 354 * spurious IPIs. 355 */ 356 static bool set_nr_and_not_polling(struct task_struct *p) 357 { 358 struct thread_info *ti = task_thread_info(p); 359 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 360 } 361 362 /* 363 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 364 * 365 * If this returns true, then the idle task promises to call 366 * sched_ttwu_pending() and reschedule soon. 367 */ 368 static bool set_nr_if_polling(struct task_struct *p) 369 { 370 struct thread_info *ti = task_thread_info(p); 371 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 372 373 for (;;) { 374 if (!(val & _TIF_POLLING_NRFLAG)) 375 return false; 376 if (val & _TIF_NEED_RESCHED) 377 return true; 378 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 379 if (old == val) 380 break; 381 val = old; 382 } 383 return true; 384 } 385 386 #else 387 static bool set_nr_and_not_polling(struct task_struct *p) 388 { 389 set_tsk_need_resched(p); 390 return true; 391 } 392 393 #ifdef CONFIG_SMP 394 static bool set_nr_if_polling(struct task_struct *p) 395 { 396 return false; 397 } 398 #endif 399 #endif 400 401 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 402 { 403 struct wake_q_node *node = &task->wake_q; 404 405 /* 406 * Atomically grab the task, if ->wake_q is !nil already it means 407 * its already queued (either by us or someone else) and will get the 408 * wakeup due to that. 409 * 410 * In order to ensure that a pending wakeup will observe our pending 411 * state, even in the failed case, an explicit smp_mb() must be used. 412 */ 413 smp_mb__before_atomic(); 414 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 415 return false; 416 417 /* 418 * The head is context local, there can be no concurrency. 419 */ 420 *head->lastp = node; 421 head->lastp = &node->next; 422 return true; 423 } 424 425 /** 426 * wake_q_add() - queue a wakeup for 'later' waking. 427 * @head: the wake_q_head to add @task to 428 * @task: the task to queue for 'later' wakeup 429 * 430 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 431 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 432 * instantly. 433 * 434 * This function must be used as-if it were wake_up_process(); IOW the task 435 * must be ready to be woken at this location. 436 */ 437 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 438 { 439 if (__wake_q_add(head, task)) 440 get_task_struct(task); 441 } 442 443 /** 444 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 445 * @head: the wake_q_head to add @task to 446 * @task: the task to queue for 'later' wakeup 447 * 448 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 449 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 450 * instantly. 451 * 452 * This function must be used as-if it were wake_up_process(); IOW the task 453 * must be ready to be woken at this location. 454 * 455 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 456 * that already hold reference to @task can call the 'safe' version and trust 457 * wake_q to do the right thing depending whether or not the @task is already 458 * queued for wakeup. 459 */ 460 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 461 { 462 if (!__wake_q_add(head, task)) 463 put_task_struct(task); 464 } 465 466 void wake_up_q(struct wake_q_head *head) 467 { 468 struct wake_q_node *node = head->first; 469 470 while (node != WAKE_Q_TAIL) { 471 struct task_struct *task; 472 473 task = container_of(node, struct task_struct, wake_q); 474 BUG_ON(!task); 475 /* Task can safely be re-inserted now: */ 476 node = node->next; 477 task->wake_q.next = NULL; 478 479 /* 480 * wake_up_process() executes a full barrier, which pairs with 481 * the queueing in wake_q_add() so as not to miss wakeups. 482 */ 483 wake_up_process(task); 484 put_task_struct(task); 485 } 486 } 487 488 /* 489 * resched_curr - mark rq's current task 'to be rescheduled now'. 490 * 491 * On UP this means the setting of the need_resched flag, on SMP it 492 * might also involve a cross-CPU call to trigger the scheduler on 493 * the target CPU. 494 */ 495 void resched_curr(struct rq *rq) 496 { 497 struct task_struct *curr = rq->curr; 498 int cpu; 499 500 lockdep_assert_held(&rq->lock); 501 502 if (test_tsk_need_resched(curr)) 503 return; 504 505 cpu = cpu_of(rq); 506 507 if (cpu == smp_processor_id()) { 508 set_tsk_need_resched(curr); 509 set_preempt_need_resched(); 510 return; 511 } 512 513 if (set_nr_and_not_polling(curr)) 514 smp_send_reschedule(cpu); 515 else 516 trace_sched_wake_idle_without_ipi(cpu); 517 } 518 519 void resched_cpu(int cpu) 520 { 521 struct rq *rq = cpu_rq(cpu); 522 unsigned long flags; 523 524 raw_spin_lock_irqsave(&rq->lock, flags); 525 if (cpu_online(cpu) || cpu == smp_processor_id()) 526 resched_curr(rq); 527 raw_spin_unlock_irqrestore(&rq->lock, flags); 528 } 529 530 #ifdef CONFIG_SMP 531 #ifdef CONFIG_NO_HZ_COMMON 532 /* 533 * In the semi idle case, use the nearest busy CPU for migrating timers 534 * from an idle CPU. This is good for power-savings. 535 * 536 * We don't do similar optimization for completely idle system, as 537 * selecting an idle CPU will add more delays to the timers than intended 538 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 539 */ 540 int get_nohz_timer_target(void) 541 { 542 int i, cpu = smp_processor_id(); 543 struct sched_domain *sd; 544 545 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 546 return cpu; 547 548 rcu_read_lock(); 549 for_each_domain(cpu, sd) { 550 for_each_cpu(i, sched_domain_span(sd)) { 551 if (cpu == i) 552 continue; 553 554 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 555 cpu = i; 556 goto unlock; 557 } 558 } 559 } 560 561 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 562 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 563 unlock: 564 rcu_read_unlock(); 565 return cpu; 566 } 567 568 /* 569 * When add_timer_on() enqueues a timer into the timer wheel of an 570 * idle CPU then this timer might expire before the next timer event 571 * which is scheduled to wake up that CPU. In case of a completely 572 * idle system the next event might even be infinite time into the 573 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 574 * leaves the inner idle loop so the newly added timer is taken into 575 * account when the CPU goes back to idle and evaluates the timer 576 * wheel for the next timer event. 577 */ 578 static void wake_up_idle_cpu(int cpu) 579 { 580 struct rq *rq = cpu_rq(cpu); 581 582 if (cpu == smp_processor_id()) 583 return; 584 585 if (set_nr_and_not_polling(rq->idle)) 586 smp_send_reschedule(cpu); 587 else 588 trace_sched_wake_idle_without_ipi(cpu); 589 } 590 591 static bool wake_up_full_nohz_cpu(int cpu) 592 { 593 /* 594 * We just need the target to call irq_exit() and re-evaluate 595 * the next tick. The nohz full kick at least implies that. 596 * If needed we can still optimize that later with an 597 * empty IRQ. 598 */ 599 if (cpu_is_offline(cpu)) 600 return true; /* Don't try to wake offline CPUs. */ 601 if (tick_nohz_full_cpu(cpu)) { 602 if (cpu != smp_processor_id() || 603 tick_nohz_tick_stopped()) 604 tick_nohz_full_kick_cpu(cpu); 605 return true; 606 } 607 608 return false; 609 } 610 611 /* 612 * Wake up the specified CPU. If the CPU is going offline, it is the 613 * caller's responsibility to deal with the lost wakeup, for example, 614 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 615 */ 616 void wake_up_nohz_cpu(int cpu) 617 { 618 if (!wake_up_full_nohz_cpu(cpu)) 619 wake_up_idle_cpu(cpu); 620 } 621 622 static inline bool got_nohz_idle_kick(void) 623 { 624 int cpu = smp_processor_id(); 625 626 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 627 return false; 628 629 if (idle_cpu(cpu) && !need_resched()) 630 return true; 631 632 /* 633 * We can't run Idle Load Balance on this CPU for this time so we 634 * cancel it and clear NOHZ_BALANCE_KICK 635 */ 636 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 637 return false; 638 } 639 640 #else /* CONFIG_NO_HZ_COMMON */ 641 642 static inline bool got_nohz_idle_kick(void) 643 { 644 return false; 645 } 646 647 #endif /* CONFIG_NO_HZ_COMMON */ 648 649 #ifdef CONFIG_NO_HZ_FULL 650 bool sched_can_stop_tick(struct rq *rq) 651 { 652 int fifo_nr_running; 653 654 /* Deadline tasks, even if single, need the tick */ 655 if (rq->dl.dl_nr_running) 656 return false; 657 658 /* 659 * If there are more than one RR tasks, we need the tick to effect the 660 * actual RR behaviour. 661 */ 662 if (rq->rt.rr_nr_running) { 663 if (rq->rt.rr_nr_running == 1) 664 return true; 665 else 666 return false; 667 } 668 669 /* 670 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 671 * forced preemption between FIFO tasks. 672 */ 673 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 674 if (fifo_nr_running) 675 return true; 676 677 /* 678 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 679 * if there's more than one we need the tick for involuntary 680 * preemption. 681 */ 682 if (rq->nr_running > 1) 683 return false; 684 685 return true; 686 } 687 #endif /* CONFIG_NO_HZ_FULL */ 688 #endif /* CONFIG_SMP */ 689 690 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 691 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 692 /* 693 * Iterate task_group tree rooted at *from, calling @down when first entering a 694 * node and @up when leaving it for the final time. 695 * 696 * Caller must hold rcu_lock or sufficient equivalent. 697 */ 698 int walk_tg_tree_from(struct task_group *from, 699 tg_visitor down, tg_visitor up, void *data) 700 { 701 struct task_group *parent, *child; 702 int ret; 703 704 parent = from; 705 706 down: 707 ret = (*down)(parent, data); 708 if (ret) 709 goto out; 710 list_for_each_entry_rcu(child, &parent->children, siblings) { 711 parent = child; 712 goto down; 713 714 up: 715 continue; 716 } 717 ret = (*up)(parent, data); 718 if (ret || parent == from) 719 goto out; 720 721 child = parent; 722 parent = parent->parent; 723 if (parent) 724 goto up; 725 out: 726 return ret; 727 } 728 729 int tg_nop(struct task_group *tg, void *data) 730 { 731 return 0; 732 } 733 #endif 734 735 static void set_load_weight(struct task_struct *p, bool update_load) 736 { 737 int prio = p->static_prio - MAX_RT_PRIO; 738 struct load_weight *load = &p->se.load; 739 740 /* 741 * SCHED_IDLE tasks get minimal weight: 742 */ 743 if (task_has_idle_policy(p)) { 744 load->weight = scale_load(WEIGHT_IDLEPRIO); 745 load->inv_weight = WMULT_IDLEPRIO; 746 p->se.runnable_weight = load->weight; 747 return; 748 } 749 750 /* 751 * SCHED_OTHER tasks have to update their load when changing their 752 * weight 753 */ 754 if (update_load && p->sched_class == &fair_sched_class) { 755 reweight_task(p, prio); 756 } else { 757 load->weight = scale_load(sched_prio_to_weight[prio]); 758 load->inv_weight = sched_prio_to_wmult[prio]; 759 p->se.runnable_weight = load->weight; 760 } 761 } 762 763 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 if (!(flags & ENQUEUE_NOCLOCK)) 766 update_rq_clock(rq); 767 768 if (!(flags & ENQUEUE_RESTORE)) { 769 sched_info_queued(rq, p); 770 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 771 } 772 773 p->sched_class->enqueue_task(rq, p, flags); 774 } 775 776 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 777 { 778 if (!(flags & DEQUEUE_NOCLOCK)) 779 update_rq_clock(rq); 780 781 if (!(flags & DEQUEUE_SAVE)) { 782 sched_info_dequeued(rq, p); 783 psi_dequeue(p, flags & DEQUEUE_SLEEP); 784 } 785 786 p->sched_class->dequeue_task(rq, p, flags); 787 } 788 789 void activate_task(struct rq *rq, struct task_struct *p, int flags) 790 { 791 if (task_contributes_to_load(p)) 792 rq->nr_uninterruptible--; 793 794 enqueue_task(rq, p, flags); 795 796 p->on_rq = TASK_ON_RQ_QUEUED; 797 } 798 799 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 800 { 801 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 802 803 if (task_contributes_to_load(p)) 804 rq->nr_uninterruptible++; 805 806 dequeue_task(rq, p, flags); 807 } 808 809 /* 810 * __normal_prio - return the priority that is based on the static prio 811 */ 812 static inline int __normal_prio(struct task_struct *p) 813 { 814 return p->static_prio; 815 } 816 817 /* 818 * Calculate the expected normal priority: i.e. priority 819 * without taking RT-inheritance into account. Might be 820 * boosted by interactivity modifiers. Changes upon fork, 821 * setprio syscalls, and whenever the interactivity 822 * estimator recalculates. 823 */ 824 static inline int normal_prio(struct task_struct *p) 825 { 826 int prio; 827 828 if (task_has_dl_policy(p)) 829 prio = MAX_DL_PRIO-1; 830 else if (task_has_rt_policy(p)) 831 prio = MAX_RT_PRIO-1 - p->rt_priority; 832 else 833 prio = __normal_prio(p); 834 return prio; 835 } 836 837 /* 838 * Calculate the current priority, i.e. the priority 839 * taken into account by the scheduler. This value might 840 * be boosted by RT tasks, or might be boosted by 841 * interactivity modifiers. Will be RT if the task got 842 * RT-boosted. If not then it returns p->normal_prio. 843 */ 844 static int effective_prio(struct task_struct *p) 845 { 846 p->normal_prio = normal_prio(p); 847 /* 848 * If we are RT tasks or we were boosted to RT priority, 849 * keep the priority unchanged. Otherwise, update priority 850 * to the normal priority: 851 */ 852 if (!rt_prio(p->prio)) 853 return p->normal_prio; 854 return p->prio; 855 } 856 857 /** 858 * task_curr - is this task currently executing on a CPU? 859 * @p: the task in question. 860 * 861 * Return: 1 if the task is currently executing. 0 otherwise. 862 */ 863 inline int task_curr(const struct task_struct *p) 864 { 865 return cpu_curr(task_cpu(p)) == p; 866 } 867 868 /* 869 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 870 * use the balance_callback list if you want balancing. 871 * 872 * this means any call to check_class_changed() must be followed by a call to 873 * balance_callback(). 874 */ 875 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 876 const struct sched_class *prev_class, 877 int oldprio) 878 { 879 if (prev_class != p->sched_class) { 880 if (prev_class->switched_from) 881 prev_class->switched_from(rq, p); 882 883 p->sched_class->switched_to(rq, p); 884 } else if (oldprio != p->prio || dl_task(p)) 885 p->sched_class->prio_changed(rq, p, oldprio); 886 } 887 888 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 889 { 890 const struct sched_class *class; 891 892 if (p->sched_class == rq->curr->sched_class) { 893 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 894 } else { 895 for_each_class(class) { 896 if (class == rq->curr->sched_class) 897 break; 898 if (class == p->sched_class) { 899 resched_curr(rq); 900 break; 901 } 902 } 903 } 904 905 /* 906 * A queue event has occurred, and we're going to schedule. In 907 * this case, we can save a useless back to back clock update. 908 */ 909 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 910 rq_clock_skip_update(rq); 911 } 912 913 #ifdef CONFIG_SMP 914 915 static inline bool is_per_cpu_kthread(struct task_struct *p) 916 { 917 if (!(p->flags & PF_KTHREAD)) 918 return false; 919 920 if (p->nr_cpus_allowed != 1) 921 return false; 922 923 return true; 924 } 925 926 /* 927 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 928 * __set_cpus_allowed_ptr() and select_fallback_rq(). 929 */ 930 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 931 { 932 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 933 return false; 934 935 if (is_per_cpu_kthread(p)) 936 return cpu_online(cpu); 937 938 return cpu_active(cpu); 939 } 940 941 /* 942 * This is how migration works: 943 * 944 * 1) we invoke migration_cpu_stop() on the target CPU using 945 * stop_one_cpu(). 946 * 2) stopper starts to run (implicitly forcing the migrated thread 947 * off the CPU) 948 * 3) it checks whether the migrated task is still in the wrong runqueue. 949 * 4) if it's in the wrong runqueue then the migration thread removes 950 * it and puts it into the right queue. 951 * 5) stopper completes and stop_one_cpu() returns and the migration 952 * is done. 953 */ 954 955 /* 956 * move_queued_task - move a queued task to new rq. 957 * 958 * Returns (locked) new rq. Old rq's lock is released. 959 */ 960 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 961 struct task_struct *p, int new_cpu) 962 { 963 lockdep_assert_held(&rq->lock); 964 965 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 966 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 967 set_task_cpu(p, new_cpu); 968 rq_unlock(rq, rf); 969 970 rq = cpu_rq(new_cpu); 971 972 rq_lock(rq, rf); 973 BUG_ON(task_cpu(p) != new_cpu); 974 enqueue_task(rq, p, 0); 975 p->on_rq = TASK_ON_RQ_QUEUED; 976 check_preempt_curr(rq, p, 0); 977 978 return rq; 979 } 980 981 struct migration_arg { 982 struct task_struct *task; 983 int dest_cpu; 984 }; 985 986 /* 987 * Move (not current) task off this CPU, onto the destination CPU. We're doing 988 * this because either it can't run here any more (set_cpus_allowed() 989 * away from this CPU, or CPU going down), or because we're 990 * attempting to rebalance this task on exec (sched_exec). 991 * 992 * So we race with normal scheduler movements, but that's OK, as long 993 * as the task is no longer on this CPU. 994 */ 995 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 996 struct task_struct *p, int dest_cpu) 997 { 998 /* Affinity changed (again). */ 999 if (!is_cpu_allowed(p, dest_cpu)) 1000 return rq; 1001 1002 update_rq_clock(rq); 1003 rq = move_queued_task(rq, rf, p, dest_cpu); 1004 1005 return rq; 1006 } 1007 1008 /* 1009 * migration_cpu_stop - this will be executed by a highprio stopper thread 1010 * and performs thread migration by bumping thread off CPU then 1011 * 'pushing' onto another runqueue. 1012 */ 1013 static int migration_cpu_stop(void *data) 1014 { 1015 struct migration_arg *arg = data; 1016 struct task_struct *p = arg->task; 1017 struct rq *rq = this_rq(); 1018 struct rq_flags rf; 1019 1020 /* 1021 * The original target CPU might have gone down and we might 1022 * be on another CPU but it doesn't matter. 1023 */ 1024 local_irq_disable(); 1025 /* 1026 * We need to explicitly wake pending tasks before running 1027 * __migrate_task() such that we will not miss enforcing cpus_allowed 1028 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1029 */ 1030 sched_ttwu_pending(); 1031 1032 raw_spin_lock(&p->pi_lock); 1033 rq_lock(rq, &rf); 1034 /* 1035 * If task_rq(p) != rq, it cannot be migrated here, because we're 1036 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1037 * we're holding p->pi_lock. 1038 */ 1039 if (task_rq(p) == rq) { 1040 if (task_on_rq_queued(p)) 1041 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1042 else 1043 p->wake_cpu = arg->dest_cpu; 1044 } 1045 rq_unlock(rq, &rf); 1046 raw_spin_unlock(&p->pi_lock); 1047 1048 local_irq_enable(); 1049 return 0; 1050 } 1051 1052 /* 1053 * sched_class::set_cpus_allowed must do the below, but is not required to 1054 * actually call this function. 1055 */ 1056 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1057 { 1058 cpumask_copy(&p->cpus_allowed, new_mask); 1059 p->nr_cpus_allowed = cpumask_weight(new_mask); 1060 } 1061 1062 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1063 { 1064 struct rq *rq = task_rq(p); 1065 bool queued, running; 1066 1067 lockdep_assert_held(&p->pi_lock); 1068 1069 queued = task_on_rq_queued(p); 1070 running = task_current(rq, p); 1071 1072 if (queued) { 1073 /* 1074 * Because __kthread_bind() calls this on blocked tasks without 1075 * holding rq->lock. 1076 */ 1077 lockdep_assert_held(&rq->lock); 1078 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1079 } 1080 if (running) 1081 put_prev_task(rq, p); 1082 1083 p->sched_class->set_cpus_allowed(p, new_mask); 1084 1085 if (queued) 1086 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1087 if (running) 1088 set_curr_task(rq, p); 1089 } 1090 1091 /* 1092 * Change a given task's CPU affinity. Migrate the thread to a 1093 * proper CPU and schedule it away if the CPU it's executing on 1094 * is removed from the allowed bitmask. 1095 * 1096 * NOTE: the caller must have a valid reference to the task, the 1097 * task must not exit() & deallocate itself prematurely. The 1098 * call is not atomic; no spinlocks may be held. 1099 */ 1100 static int __set_cpus_allowed_ptr(struct task_struct *p, 1101 const struct cpumask *new_mask, bool check) 1102 { 1103 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1104 unsigned int dest_cpu; 1105 struct rq_flags rf; 1106 struct rq *rq; 1107 int ret = 0; 1108 1109 rq = task_rq_lock(p, &rf); 1110 update_rq_clock(rq); 1111 1112 if (p->flags & PF_KTHREAD) { 1113 /* 1114 * Kernel threads are allowed on online && !active CPUs 1115 */ 1116 cpu_valid_mask = cpu_online_mask; 1117 } 1118 1119 /* 1120 * Must re-check here, to close a race against __kthread_bind(), 1121 * sched_setaffinity() is not guaranteed to observe the flag. 1122 */ 1123 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1124 ret = -EINVAL; 1125 goto out; 1126 } 1127 1128 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1129 goto out; 1130 1131 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1132 ret = -EINVAL; 1133 goto out; 1134 } 1135 1136 do_set_cpus_allowed(p, new_mask); 1137 1138 if (p->flags & PF_KTHREAD) { 1139 /* 1140 * For kernel threads that do indeed end up on online && 1141 * !active we want to ensure they are strict per-CPU threads. 1142 */ 1143 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1144 !cpumask_intersects(new_mask, cpu_active_mask) && 1145 p->nr_cpus_allowed != 1); 1146 } 1147 1148 /* Can the task run on the task's current CPU? If so, we're done */ 1149 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1150 goto out; 1151 1152 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1153 if (task_running(rq, p) || p->state == TASK_WAKING) { 1154 struct migration_arg arg = { p, dest_cpu }; 1155 /* Need help from migration thread: drop lock and wait. */ 1156 task_rq_unlock(rq, p, &rf); 1157 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1158 return 0; 1159 } else if (task_on_rq_queued(p)) { 1160 /* 1161 * OK, since we're going to drop the lock immediately 1162 * afterwards anyway. 1163 */ 1164 rq = move_queued_task(rq, &rf, p, dest_cpu); 1165 } 1166 out: 1167 task_rq_unlock(rq, p, &rf); 1168 1169 return ret; 1170 } 1171 1172 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1173 { 1174 return __set_cpus_allowed_ptr(p, new_mask, false); 1175 } 1176 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1177 1178 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1179 { 1180 #ifdef CONFIG_SCHED_DEBUG 1181 /* 1182 * We should never call set_task_cpu() on a blocked task, 1183 * ttwu() will sort out the placement. 1184 */ 1185 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1186 !p->on_rq); 1187 1188 /* 1189 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1190 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1191 * time relying on p->on_rq. 1192 */ 1193 WARN_ON_ONCE(p->state == TASK_RUNNING && 1194 p->sched_class == &fair_sched_class && 1195 (p->on_rq && !task_on_rq_migrating(p))); 1196 1197 #ifdef CONFIG_LOCKDEP 1198 /* 1199 * The caller should hold either p->pi_lock or rq->lock, when changing 1200 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1201 * 1202 * sched_move_task() holds both and thus holding either pins the cgroup, 1203 * see task_group(). 1204 * 1205 * Furthermore, all task_rq users should acquire both locks, see 1206 * task_rq_lock(). 1207 */ 1208 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1209 lockdep_is_held(&task_rq(p)->lock))); 1210 #endif 1211 /* 1212 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1213 */ 1214 WARN_ON_ONCE(!cpu_online(new_cpu)); 1215 #endif 1216 1217 trace_sched_migrate_task(p, new_cpu); 1218 1219 if (task_cpu(p) != new_cpu) { 1220 if (p->sched_class->migrate_task_rq) 1221 p->sched_class->migrate_task_rq(p, new_cpu); 1222 p->se.nr_migrations++; 1223 rseq_migrate(p); 1224 perf_event_task_migrate(p); 1225 } 1226 1227 __set_task_cpu(p, new_cpu); 1228 } 1229 1230 #ifdef CONFIG_NUMA_BALANCING 1231 static void __migrate_swap_task(struct task_struct *p, int cpu) 1232 { 1233 if (task_on_rq_queued(p)) { 1234 struct rq *src_rq, *dst_rq; 1235 struct rq_flags srf, drf; 1236 1237 src_rq = task_rq(p); 1238 dst_rq = cpu_rq(cpu); 1239 1240 rq_pin_lock(src_rq, &srf); 1241 rq_pin_lock(dst_rq, &drf); 1242 1243 deactivate_task(src_rq, p, 0); 1244 set_task_cpu(p, cpu); 1245 activate_task(dst_rq, p, 0); 1246 check_preempt_curr(dst_rq, p, 0); 1247 1248 rq_unpin_lock(dst_rq, &drf); 1249 rq_unpin_lock(src_rq, &srf); 1250 1251 } else { 1252 /* 1253 * Task isn't running anymore; make it appear like we migrated 1254 * it before it went to sleep. This means on wakeup we make the 1255 * previous CPU our target instead of where it really is. 1256 */ 1257 p->wake_cpu = cpu; 1258 } 1259 } 1260 1261 struct migration_swap_arg { 1262 struct task_struct *src_task, *dst_task; 1263 int src_cpu, dst_cpu; 1264 }; 1265 1266 static int migrate_swap_stop(void *data) 1267 { 1268 struct migration_swap_arg *arg = data; 1269 struct rq *src_rq, *dst_rq; 1270 int ret = -EAGAIN; 1271 1272 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1273 return -EAGAIN; 1274 1275 src_rq = cpu_rq(arg->src_cpu); 1276 dst_rq = cpu_rq(arg->dst_cpu); 1277 1278 double_raw_lock(&arg->src_task->pi_lock, 1279 &arg->dst_task->pi_lock); 1280 double_rq_lock(src_rq, dst_rq); 1281 1282 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1283 goto unlock; 1284 1285 if (task_cpu(arg->src_task) != arg->src_cpu) 1286 goto unlock; 1287 1288 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1289 goto unlock; 1290 1291 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1292 goto unlock; 1293 1294 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1295 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1296 1297 ret = 0; 1298 1299 unlock: 1300 double_rq_unlock(src_rq, dst_rq); 1301 raw_spin_unlock(&arg->dst_task->pi_lock); 1302 raw_spin_unlock(&arg->src_task->pi_lock); 1303 1304 return ret; 1305 } 1306 1307 /* 1308 * Cross migrate two tasks 1309 */ 1310 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1311 int target_cpu, int curr_cpu) 1312 { 1313 struct migration_swap_arg arg; 1314 int ret = -EINVAL; 1315 1316 arg = (struct migration_swap_arg){ 1317 .src_task = cur, 1318 .src_cpu = curr_cpu, 1319 .dst_task = p, 1320 .dst_cpu = target_cpu, 1321 }; 1322 1323 if (arg.src_cpu == arg.dst_cpu) 1324 goto out; 1325 1326 /* 1327 * These three tests are all lockless; this is OK since all of them 1328 * will be re-checked with proper locks held further down the line. 1329 */ 1330 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1331 goto out; 1332 1333 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1334 goto out; 1335 1336 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1337 goto out; 1338 1339 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1340 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1341 1342 out: 1343 return ret; 1344 } 1345 #endif /* CONFIG_NUMA_BALANCING */ 1346 1347 /* 1348 * wait_task_inactive - wait for a thread to unschedule. 1349 * 1350 * If @match_state is nonzero, it's the @p->state value just checked and 1351 * not expected to change. If it changes, i.e. @p might have woken up, 1352 * then return zero. When we succeed in waiting for @p to be off its CPU, 1353 * we return a positive number (its total switch count). If a second call 1354 * a short while later returns the same number, the caller can be sure that 1355 * @p has remained unscheduled the whole time. 1356 * 1357 * The caller must ensure that the task *will* unschedule sometime soon, 1358 * else this function might spin for a *long* time. This function can't 1359 * be called with interrupts off, or it may introduce deadlock with 1360 * smp_call_function() if an IPI is sent by the same process we are 1361 * waiting to become inactive. 1362 */ 1363 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1364 { 1365 int running, queued; 1366 struct rq_flags rf; 1367 unsigned long ncsw; 1368 struct rq *rq; 1369 1370 for (;;) { 1371 /* 1372 * We do the initial early heuristics without holding 1373 * any task-queue locks at all. We'll only try to get 1374 * the runqueue lock when things look like they will 1375 * work out! 1376 */ 1377 rq = task_rq(p); 1378 1379 /* 1380 * If the task is actively running on another CPU 1381 * still, just relax and busy-wait without holding 1382 * any locks. 1383 * 1384 * NOTE! Since we don't hold any locks, it's not 1385 * even sure that "rq" stays as the right runqueue! 1386 * But we don't care, since "task_running()" will 1387 * return false if the runqueue has changed and p 1388 * is actually now running somewhere else! 1389 */ 1390 while (task_running(rq, p)) { 1391 if (match_state && unlikely(p->state != match_state)) 1392 return 0; 1393 cpu_relax(); 1394 } 1395 1396 /* 1397 * Ok, time to look more closely! We need the rq 1398 * lock now, to be *sure*. If we're wrong, we'll 1399 * just go back and repeat. 1400 */ 1401 rq = task_rq_lock(p, &rf); 1402 trace_sched_wait_task(p); 1403 running = task_running(rq, p); 1404 queued = task_on_rq_queued(p); 1405 ncsw = 0; 1406 if (!match_state || p->state == match_state) 1407 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1408 task_rq_unlock(rq, p, &rf); 1409 1410 /* 1411 * If it changed from the expected state, bail out now. 1412 */ 1413 if (unlikely(!ncsw)) 1414 break; 1415 1416 /* 1417 * Was it really running after all now that we 1418 * checked with the proper locks actually held? 1419 * 1420 * Oops. Go back and try again.. 1421 */ 1422 if (unlikely(running)) { 1423 cpu_relax(); 1424 continue; 1425 } 1426 1427 /* 1428 * It's not enough that it's not actively running, 1429 * it must be off the runqueue _entirely_, and not 1430 * preempted! 1431 * 1432 * So if it was still runnable (but just not actively 1433 * running right now), it's preempted, and we should 1434 * yield - it could be a while. 1435 */ 1436 if (unlikely(queued)) { 1437 ktime_t to = NSEC_PER_SEC / HZ; 1438 1439 set_current_state(TASK_UNINTERRUPTIBLE); 1440 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1441 continue; 1442 } 1443 1444 /* 1445 * Ahh, all good. It wasn't running, and it wasn't 1446 * runnable, which means that it will never become 1447 * running in the future either. We're all done! 1448 */ 1449 break; 1450 } 1451 1452 return ncsw; 1453 } 1454 1455 /*** 1456 * kick_process - kick a running thread to enter/exit the kernel 1457 * @p: the to-be-kicked thread 1458 * 1459 * Cause a process which is running on another CPU to enter 1460 * kernel-mode, without any delay. (to get signals handled.) 1461 * 1462 * NOTE: this function doesn't have to take the runqueue lock, 1463 * because all it wants to ensure is that the remote task enters 1464 * the kernel. If the IPI races and the task has been migrated 1465 * to another CPU then no harm is done and the purpose has been 1466 * achieved as well. 1467 */ 1468 void kick_process(struct task_struct *p) 1469 { 1470 int cpu; 1471 1472 preempt_disable(); 1473 cpu = task_cpu(p); 1474 if ((cpu != smp_processor_id()) && task_curr(p)) 1475 smp_send_reschedule(cpu); 1476 preempt_enable(); 1477 } 1478 EXPORT_SYMBOL_GPL(kick_process); 1479 1480 /* 1481 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1482 * 1483 * A few notes on cpu_active vs cpu_online: 1484 * 1485 * - cpu_active must be a subset of cpu_online 1486 * 1487 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1488 * see __set_cpus_allowed_ptr(). At this point the newly online 1489 * CPU isn't yet part of the sched domains, and balancing will not 1490 * see it. 1491 * 1492 * - on CPU-down we clear cpu_active() to mask the sched domains and 1493 * avoid the load balancer to place new tasks on the to be removed 1494 * CPU. Existing tasks will remain running there and will be taken 1495 * off. 1496 * 1497 * This means that fallback selection must not select !active CPUs. 1498 * And can assume that any active CPU must be online. Conversely 1499 * select_task_rq() below may allow selection of !active CPUs in order 1500 * to satisfy the above rules. 1501 */ 1502 static int select_fallback_rq(int cpu, struct task_struct *p) 1503 { 1504 int nid = cpu_to_node(cpu); 1505 const struct cpumask *nodemask = NULL; 1506 enum { cpuset, possible, fail } state = cpuset; 1507 int dest_cpu; 1508 1509 /* 1510 * If the node that the CPU is on has been offlined, cpu_to_node() 1511 * will return -1. There is no CPU on the node, and we should 1512 * select the CPU on the other node. 1513 */ 1514 if (nid != -1) { 1515 nodemask = cpumask_of_node(nid); 1516 1517 /* Look for allowed, online CPU in same node. */ 1518 for_each_cpu(dest_cpu, nodemask) { 1519 if (!cpu_active(dest_cpu)) 1520 continue; 1521 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1522 return dest_cpu; 1523 } 1524 } 1525 1526 for (;;) { 1527 /* Any allowed, online CPU? */ 1528 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1529 if (!is_cpu_allowed(p, dest_cpu)) 1530 continue; 1531 1532 goto out; 1533 } 1534 1535 /* No more Mr. Nice Guy. */ 1536 switch (state) { 1537 case cpuset: 1538 if (IS_ENABLED(CONFIG_CPUSETS)) { 1539 cpuset_cpus_allowed_fallback(p); 1540 state = possible; 1541 break; 1542 } 1543 /* Fall-through */ 1544 case possible: 1545 do_set_cpus_allowed(p, cpu_possible_mask); 1546 state = fail; 1547 break; 1548 1549 case fail: 1550 BUG(); 1551 break; 1552 } 1553 } 1554 1555 out: 1556 if (state != cpuset) { 1557 /* 1558 * Don't tell them about moving exiting tasks or 1559 * kernel threads (both mm NULL), since they never 1560 * leave kernel. 1561 */ 1562 if (p->mm && printk_ratelimit()) { 1563 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1564 task_pid_nr(p), p->comm, cpu); 1565 } 1566 } 1567 1568 return dest_cpu; 1569 } 1570 1571 /* 1572 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1573 */ 1574 static inline 1575 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1576 { 1577 lockdep_assert_held(&p->pi_lock); 1578 1579 if (p->nr_cpus_allowed > 1) 1580 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1581 else 1582 cpu = cpumask_any(&p->cpus_allowed); 1583 1584 /* 1585 * In order not to call set_task_cpu() on a blocking task we need 1586 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1587 * CPU. 1588 * 1589 * Since this is common to all placement strategies, this lives here. 1590 * 1591 * [ this allows ->select_task() to simply return task_cpu(p) and 1592 * not worry about this generic constraint ] 1593 */ 1594 if (unlikely(!is_cpu_allowed(p, cpu))) 1595 cpu = select_fallback_rq(task_cpu(p), p); 1596 1597 return cpu; 1598 } 1599 1600 static void update_avg(u64 *avg, u64 sample) 1601 { 1602 s64 diff = sample - *avg; 1603 *avg += diff >> 3; 1604 } 1605 1606 void sched_set_stop_task(int cpu, struct task_struct *stop) 1607 { 1608 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1609 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1610 1611 if (stop) { 1612 /* 1613 * Make it appear like a SCHED_FIFO task, its something 1614 * userspace knows about and won't get confused about. 1615 * 1616 * Also, it will make PI more or less work without too 1617 * much confusion -- but then, stop work should not 1618 * rely on PI working anyway. 1619 */ 1620 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1621 1622 stop->sched_class = &stop_sched_class; 1623 } 1624 1625 cpu_rq(cpu)->stop = stop; 1626 1627 if (old_stop) { 1628 /* 1629 * Reset it back to a normal scheduling class so that 1630 * it can die in pieces. 1631 */ 1632 old_stop->sched_class = &rt_sched_class; 1633 } 1634 } 1635 1636 #else 1637 1638 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1639 const struct cpumask *new_mask, bool check) 1640 { 1641 return set_cpus_allowed_ptr(p, new_mask); 1642 } 1643 1644 #endif /* CONFIG_SMP */ 1645 1646 static void 1647 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1648 { 1649 struct rq *rq; 1650 1651 if (!schedstat_enabled()) 1652 return; 1653 1654 rq = this_rq(); 1655 1656 #ifdef CONFIG_SMP 1657 if (cpu == rq->cpu) { 1658 __schedstat_inc(rq->ttwu_local); 1659 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1660 } else { 1661 struct sched_domain *sd; 1662 1663 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1664 rcu_read_lock(); 1665 for_each_domain(rq->cpu, sd) { 1666 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1667 __schedstat_inc(sd->ttwu_wake_remote); 1668 break; 1669 } 1670 } 1671 rcu_read_unlock(); 1672 } 1673 1674 if (wake_flags & WF_MIGRATED) 1675 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1676 #endif /* CONFIG_SMP */ 1677 1678 __schedstat_inc(rq->ttwu_count); 1679 __schedstat_inc(p->se.statistics.nr_wakeups); 1680 1681 if (wake_flags & WF_SYNC) 1682 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1683 } 1684 1685 /* 1686 * Mark the task runnable and perform wakeup-preemption. 1687 */ 1688 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1689 struct rq_flags *rf) 1690 { 1691 check_preempt_curr(rq, p, wake_flags); 1692 p->state = TASK_RUNNING; 1693 trace_sched_wakeup(p); 1694 1695 #ifdef CONFIG_SMP 1696 if (p->sched_class->task_woken) { 1697 /* 1698 * Our task @p is fully woken up and running; so its safe to 1699 * drop the rq->lock, hereafter rq is only used for statistics. 1700 */ 1701 rq_unpin_lock(rq, rf); 1702 p->sched_class->task_woken(rq, p); 1703 rq_repin_lock(rq, rf); 1704 } 1705 1706 if (rq->idle_stamp) { 1707 u64 delta = rq_clock(rq) - rq->idle_stamp; 1708 u64 max = 2*rq->max_idle_balance_cost; 1709 1710 update_avg(&rq->avg_idle, delta); 1711 1712 if (rq->avg_idle > max) 1713 rq->avg_idle = max; 1714 1715 rq->idle_stamp = 0; 1716 } 1717 #endif 1718 } 1719 1720 static void 1721 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1722 struct rq_flags *rf) 1723 { 1724 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1725 1726 lockdep_assert_held(&rq->lock); 1727 1728 #ifdef CONFIG_SMP 1729 if (p->sched_contributes_to_load) 1730 rq->nr_uninterruptible--; 1731 1732 if (wake_flags & WF_MIGRATED) 1733 en_flags |= ENQUEUE_MIGRATED; 1734 #endif 1735 1736 activate_task(rq, p, en_flags); 1737 ttwu_do_wakeup(rq, p, wake_flags, rf); 1738 } 1739 1740 /* 1741 * Called in case the task @p isn't fully descheduled from its runqueue, 1742 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1743 * since all we need to do is flip p->state to TASK_RUNNING, since 1744 * the task is still ->on_rq. 1745 */ 1746 static int ttwu_remote(struct task_struct *p, int wake_flags) 1747 { 1748 struct rq_flags rf; 1749 struct rq *rq; 1750 int ret = 0; 1751 1752 rq = __task_rq_lock(p, &rf); 1753 if (task_on_rq_queued(p)) { 1754 /* check_preempt_curr() may use rq clock */ 1755 update_rq_clock(rq); 1756 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1757 ret = 1; 1758 } 1759 __task_rq_unlock(rq, &rf); 1760 1761 return ret; 1762 } 1763 1764 #ifdef CONFIG_SMP 1765 void sched_ttwu_pending(void) 1766 { 1767 struct rq *rq = this_rq(); 1768 struct llist_node *llist = llist_del_all(&rq->wake_list); 1769 struct task_struct *p, *t; 1770 struct rq_flags rf; 1771 1772 if (!llist) 1773 return; 1774 1775 rq_lock_irqsave(rq, &rf); 1776 update_rq_clock(rq); 1777 1778 llist_for_each_entry_safe(p, t, llist, wake_entry) 1779 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1780 1781 rq_unlock_irqrestore(rq, &rf); 1782 } 1783 1784 void scheduler_ipi(void) 1785 { 1786 /* 1787 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1788 * TIF_NEED_RESCHED remotely (for the first time) will also send 1789 * this IPI. 1790 */ 1791 preempt_fold_need_resched(); 1792 1793 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1794 return; 1795 1796 /* 1797 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1798 * traditionally all their work was done from the interrupt return 1799 * path. Now that we actually do some work, we need to make sure 1800 * we do call them. 1801 * 1802 * Some archs already do call them, luckily irq_enter/exit nest 1803 * properly. 1804 * 1805 * Arguably we should visit all archs and update all handlers, 1806 * however a fair share of IPIs are still resched only so this would 1807 * somewhat pessimize the simple resched case. 1808 */ 1809 irq_enter(); 1810 sched_ttwu_pending(); 1811 1812 /* 1813 * Check if someone kicked us for doing the nohz idle load balance. 1814 */ 1815 if (unlikely(got_nohz_idle_kick())) { 1816 this_rq()->idle_balance = 1; 1817 raise_softirq_irqoff(SCHED_SOFTIRQ); 1818 } 1819 irq_exit(); 1820 } 1821 1822 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1823 { 1824 struct rq *rq = cpu_rq(cpu); 1825 1826 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1827 1828 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1829 if (!set_nr_if_polling(rq->idle)) 1830 smp_send_reschedule(cpu); 1831 else 1832 trace_sched_wake_idle_without_ipi(cpu); 1833 } 1834 } 1835 1836 void wake_up_if_idle(int cpu) 1837 { 1838 struct rq *rq = cpu_rq(cpu); 1839 struct rq_flags rf; 1840 1841 rcu_read_lock(); 1842 1843 if (!is_idle_task(rcu_dereference(rq->curr))) 1844 goto out; 1845 1846 if (set_nr_if_polling(rq->idle)) { 1847 trace_sched_wake_idle_without_ipi(cpu); 1848 } else { 1849 rq_lock_irqsave(rq, &rf); 1850 if (is_idle_task(rq->curr)) 1851 smp_send_reschedule(cpu); 1852 /* Else CPU is not idle, do nothing here: */ 1853 rq_unlock_irqrestore(rq, &rf); 1854 } 1855 1856 out: 1857 rcu_read_unlock(); 1858 } 1859 1860 bool cpus_share_cache(int this_cpu, int that_cpu) 1861 { 1862 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1863 } 1864 #endif /* CONFIG_SMP */ 1865 1866 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1867 { 1868 struct rq *rq = cpu_rq(cpu); 1869 struct rq_flags rf; 1870 1871 #if defined(CONFIG_SMP) 1872 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1873 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1874 ttwu_queue_remote(p, cpu, wake_flags); 1875 return; 1876 } 1877 #endif 1878 1879 rq_lock(rq, &rf); 1880 update_rq_clock(rq); 1881 ttwu_do_activate(rq, p, wake_flags, &rf); 1882 rq_unlock(rq, &rf); 1883 } 1884 1885 /* 1886 * Notes on Program-Order guarantees on SMP systems. 1887 * 1888 * MIGRATION 1889 * 1890 * The basic program-order guarantee on SMP systems is that when a task [t] 1891 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1892 * execution on its new CPU [c1]. 1893 * 1894 * For migration (of runnable tasks) this is provided by the following means: 1895 * 1896 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1897 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1898 * rq(c1)->lock (if not at the same time, then in that order). 1899 * C) LOCK of the rq(c1)->lock scheduling in task 1900 * 1901 * Release/acquire chaining guarantees that B happens after A and C after B. 1902 * Note: the CPU doing B need not be c0 or c1 1903 * 1904 * Example: 1905 * 1906 * CPU0 CPU1 CPU2 1907 * 1908 * LOCK rq(0)->lock 1909 * sched-out X 1910 * sched-in Y 1911 * UNLOCK rq(0)->lock 1912 * 1913 * LOCK rq(0)->lock // orders against CPU0 1914 * dequeue X 1915 * UNLOCK rq(0)->lock 1916 * 1917 * LOCK rq(1)->lock 1918 * enqueue X 1919 * UNLOCK rq(1)->lock 1920 * 1921 * LOCK rq(1)->lock // orders against CPU2 1922 * sched-out Z 1923 * sched-in X 1924 * UNLOCK rq(1)->lock 1925 * 1926 * 1927 * BLOCKING -- aka. SLEEP + WAKEUP 1928 * 1929 * For blocking we (obviously) need to provide the same guarantee as for 1930 * migration. However the means are completely different as there is no lock 1931 * chain to provide order. Instead we do: 1932 * 1933 * 1) smp_store_release(X->on_cpu, 0) 1934 * 2) smp_cond_load_acquire(!X->on_cpu) 1935 * 1936 * Example: 1937 * 1938 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1939 * 1940 * LOCK rq(0)->lock LOCK X->pi_lock 1941 * dequeue X 1942 * sched-out X 1943 * smp_store_release(X->on_cpu, 0); 1944 * 1945 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1946 * X->state = WAKING 1947 * set_task_cpu(X,2) 1948 * 1949 * LOCK rq(2)->lock 1950 * enqueue X 1951 * X->state = RUNNING 1952 * UNLOCK rq(2)->lock 1953 * 1954 * LOCK rq(2)->lock // orders against CPU1 1955 * sched-out Z 1956 * sched-in X 1957 * UNLOCK rq(2)->lock 1958 * 1959 * UNLOCK X->pi_lock 1960 * UNLOCK rq(0)->lock 1961 * 1962 * 1963 * However, for wakeups there is a second guarantee we must provide, namely we 1964 * must ensure that CONDITION=1 done by the caller can not be reordered with 1965 * accesses to the task state; see try_to_wake_up() and set_current_state(). 1966 */ 1967 1968 /** 1969 * try_to_wake_up - wake up a thread 1970 * @p: the thread to be awakened 1971 * @state: the mask of task states that can be woken 1972 * @wake_flags: wake modifier flags (WF_*) 1973 * 1974 * If (@state & @p->state) @p->state = TASK_RUNNING. 1975 * 1976 * If the task was not queued/runnable, also place it back on a runqueue. 1977 * 1978 * Atomic against schedule() which would dequeue a task, also see 1979 * set_current_state(). 1980 * 1981 * This function executes a full memory barrier before accessing the task 1982 * state; see set_current_state(). 1983 * 1984 * Return: %true if @p->state changes (an actual wakeup was done), 1985 * %false otherwise. 1986 */ 1987 static int 1988 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1989 { 1990 unsigned long flags; 1991 int cpu, success = 0; 1992 1993 /* 1994 * If we are going to wake up a thread waiting for CONDITION we 1995 * need to ensure that CONDITION=1 done by the caller can not be 1996 * reordered with p->state check below. This pairs with mb() in 1997 * set_current_state() the waiting thread does. 1998 */ 1999 raw_spin_lock_irqsave(&p->pi_lock, flags); 2000 smp_mb__after_spinlock(); 2001 if (!(p->state & state)) 2002 goto out; 2003 2004 trace_sched_waking(p); 2005 2006 /* We're going to change ->state: */ 2007 success = 1; 2008 cpu = task_cpu(p); 2009 2010 /* 2011 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2012 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2013 * in smp_cond_load_acquire() below. 2014 * 2015 * sched_ttwu_pending() try_to_wake_up() 2016 * STORE p->on_rq = 1 LOAD p->state 2017 * UNLOCK rq->lock 2018 * 2019 * __schedule() (switch to task 'p') 2020 * LOCK rq->lock smp_rmb(); 2021 * smp_mb__after_spinlock(); 2022 * UNLOCK rq->lock 2023 * 2024 * [task p] 2025 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2026 * 2027 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2028 * __schedule(). See the comment for smp_mb__after_spinlock(). 2029 */ 2030 smp_rmb(); 2031 if (p->on_rq && ttwu_remote(p, wake_flags)) 2032 goto stat; 2033 2034 #ifdef CONFIG_SMP 2035 /* 2036 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2037 * possible to, falsely, observe p->on_cpu == 0. 2038 * 2039 * One must be running (->on_cpu == 1) in order to remove oneself 2040 * from the runqueue. 2041 * 2042 * __schedule() (switch to task 'p') try_to_wake_up() 2043 * STORE p->on_cpu = 1 LOAD p->on_rq 2044 * UNLOCK rq->lock 2045 * 2046 * __schedule() (put 'p' to sleep) 2047 * LOCK rq->lock smp_rmb(); 2048 * smp_mb__after_spinlock(); 2049 * STORE p->on_rq = 0 LOAD p->on_cpu 2050 * 2051 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2052 * __schedule(). See the comment for smp_mb__after_spinlock(). 2053 */ 2054 smp_rmb(); 2055 2056 /* 2057 * If the owning (remote) CPU is still in the middle of schedule() with 2058 * this task as prev, wait until its done referencing the task. 2059 * 2060 * Pairs with the smp_store_release() in finish_task(). 2061 * 2062 * This ensures that tasks getting woken will be fully ordered against 2063 * their previous state and preserve Program Order. 2064 */ 2065 smp_cond_load_acquire(&p->on_cpu, !VAL); 2066 2067 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2068 p->state = TASK_WAKING; 2069 2070 if (p->in_iowait) { 2071 delayacct_blkio_end(p); 2072 atomic_dec(&task_rq(p)->nr_iowait); 2073 } 2074 2075 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2076 if (task_cpu(p) != cpu) { 2077 wake_flags |= WF_MIGRATED; 2078 psi_ttwu_dequeue(p); 2079 set_task_cpu(p, cpu); 2080 } 2081 2082 #else /* CONFIG_SMP */ 2083 2084 if (p->in_iowait) { 2085 delayacct_blkio_end(p); 2086 atomic_dec(&task_rq(p)->nr_iowait); 2087 } 2088 2089 #endif /* CONFIG_SMP */ 2090 2091 ttwu_queue(p, cpu, wake_flags); 2092 stat: 2093 ttwu_stat(p, cpu, wake_flags); 2094 out: 2095 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2096 2097 return success; 2098 } 2099 2100 /** 2101 * wake_up_process - Wake up a specific process 2102 * @p: The process to be woken up. 2103 * 2104 * Attempt to wake up the nominated process and move it to the set of runnable 2105 * processes. 2106 * 2107 * Return: 1 if the process was woken up, 0 if it was already running. 2108 * 2109 * This function executes a full memory barrier before accessing the task state. 2110 */ 2111 int wake_up_process(struct task_struct *p) 2112 { 2113 return try_to_wake_up(p, TASK_NORMAL, 0); 2114 } 2115 EXPORT_SYMBOL(wake_up_process); 2116 2117 int wake_up_state(struct task_struct *p, unsigned int state) 2118 { 2119 return try_to_wake_up(p, state, 0); 2120 } 2121 2122 /* 2123 * Perform scheduler related setup for a newly forked process p. 2124 * p is forked by current. 2125 * 2126 * __sched_fork() is basic setup used by init_idle() too: 2127 */ 2128 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2129 { 2130 p->on_rq = 0; 2131 2132 p->se.on_rq = 0; 2133 p->se.exec_start = 0; 2134 p->se.sum_exec_runtime = 0; 2135 p->se.prev_sum_exec_runtime = 0; 2136 p->se.nr_migrations = 0; 2137 p->se.vruntime = 0; 2138 INIT_LIST_HEAD(&p->se.group_node); 2139 2140 #ifdef CONFIG_FAIR_GROUP_SCHED 2141 p->se.cfs_rq = NULL; 2142 #endif 2143 2144 #ifdef CONFIG_SCHEDSTATS 2145 /* Even if schedstat is disabled, there should not be garbage */ 2146 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2147 #endif 2148 2149 RB_CLEAR_NODE(&p->dl.rb_node); 2150 init_dl_task_timer(&p->dl); 2151 init_dl_inactive_task_timer(&p->dl); 2152 __dl_clear_params(p); 2153 2154 INIT_LIST_HEAD(&p->rt.run_list); 2155 p->rt.timeout = 0; 2156 p->rt.time_slice = sched_rr_timeslice; 2157 p->rt.on_rq = 0; 2158 p->rt.on_list = 0; 2159 2160 #ifdef CONFIG_PREEMPT_NOTIFIERS 2161 INIT_HLIST_HEAD(&p->preempt_notifiers); 2162 #endif 2163 2164 #ifdef CONFIG_COMPACTION 2165 p->capture_control = NULL; 2166 #endif 2167 init_numa_balancing(clone_flags, p); 2168 } 2169 2170 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2171 2172 #ifdef CONFIG_NUMA_BALANCING 2173 2174 void set_numabalancing_state(bool enabled) 2175 { 2176 if (enabled) 2177 static_branch_enable(&sched_numa_balancing); 2178 else 2179 static_branch_disable(&sched_numa_balancing); 2180 } 2181 2182 #ifdef CONFIG_PROC_SYSCTL 2183 int sysctl_numa_balancing(struct ctl_table *table, int write, 2184 void __user *buffer, size_t *lenp, loff_t *ppos) 2185 { 2186 struct ctl_table t; 2187 int err; 2188 int state = static_branch_likely(&sched_numa_balancing); 2189 2190 if (write && !capable(CAP_SYS_ADMIN)) 2191 return -EPERM; 2192 2193 t = *table; 2194 t.data = &state; 2195 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2196 if (err < 0) 2197 return err; 2198 if (write) 2199 set_numabalancing_state(state); 2200 return err; 2201 } 2202 #endif 2203 #endif 2204 2205 #ifdef CONFIG_SCHEDSTATS 2206 2207 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2208 static bool __initdata __sched_schedstats = false; 2209 2210 static void set_schedstats(bool enabled) 2211 { 2212 if (enabled) 2213 static_branch_enable(&sched_schedstats); 2214 else 2215 static_branch_disable(&sched_schedstats); 2216 } 2217 2218 void force_schedstat_enabled(void) 2219 { 2220 if (!schedstat_enabled()) { 2221 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2222 static_branch_enable(&sched_schedstats); 2223 } 2224 } 2225 2226 static int __init setup_schedstats(char *str) 2227 { 2228 int ret = 0; 2229 if (!str) 2230 goto out; 2231 2232 /* 2233 * This code is called before jump labels have been set up, so we can't 2234 * change the static branch directly just yet. Instead set a temporary 2235 * variable so init_schedstats() can do it later. 2236 */ 2237 if (!strcmp(str, "enable")) { 2238 __sched_schedstats = true; 2239 ret = 1; 2240 } else if (!strcmp(str, "disable")) { 2241 __sched_schedstats = false; 2242 ret = 1; 2243 } 2244 out: 2245 if (!ret) 2246 pr_warn("Unable to parse schedstats=\n"); 2247 2248 return ret; 2249 } 2250 __setup("schedstats=", setup_schedstats); 2251 2252 static void __init init_schedstats(void) 2253 { 2254 set_schedstats(__sched_schedstats); 2255 } 2256 2257 #ifdef CONFIG_PROC_SYSCTL 2258 int sysctl_schedstats(struct ctl_table *table, int write, 2259 void __user *buffer, size_t *lenp, loff_t *ppos) 2260 { 2261 struct ctl_table t; 2262 int err; 2263 int state = static_branch_likely(&sched_schedstats); 2264 2265 if (write && !capable(CAP_SYS_ADMIN)) 2266 return -EPERM; 2267 2268 t = *table; 2269 t.data = &state; 2270 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2271 if (err < 0) 2272 return err; 2273 if (write) 2274 set_schedstats(state); 2275 return err; 2276 } 2277 #endif /* CONFIG_PROC_SYSCTL */ 2278 #else /* !CONFIG_SCHEDSTATS */ 2279 static inline void init_schedstats(void) {} 2280 #endif /* CONFIG_SCHEDSTATS */ 2281 2282 /* 2283 * fork()/clone()-time setup: 2284 */ 2285 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2286 { 2287 unsigned long flags; 2288 2289 __sched_fork(clone_flags, p); 2290 /* 2291 * We mark the process as NEW here. This guarantees that 2292 * nobody will actually run it, and a signal or other external 2293 * event cannot wake it up and insert it on the runqueue either. 2294 */ 2295 p->state = TASK_NEW; 2296 2297 /* 2298 * Make sure we do not leak PI boosting priority to the child. 2299 */ 2300 p->prio = current->normal_prio; 2301 2302 /* 2303 * Revert to default priority/policy on fork if requested. 2304 */ 2305 if (unlikely(p->sched_reset_on_fork)) { 2306 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2307 p->policy = SCHED_NORMAL; 2308 p->static_prio = NICE_TO_PRIO(0); 2309 p->rt_priority = 0; 2310 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2311 p->static_prio = NICE_TO_PRIO(0); 2312 2313 p->prio = p->normal_prio = __normal_prio(p); 2314 set_load_weight(p, false); 2315 2316 /* 2317 * We don't need the reset flag anymore after the fork. It has 2318 * fulfilled its duty: 2319 */ 2320 p->sched_reset_on_fork = 0; 2321 } 2322 2323 if (dl_prio(p->prio)) 2324 return -EAGAIN; 2325 else if (rt_prio(p->prio)) 2326 p->sched_class = &rt_sched_class; 2327 else 2328 p->sched_class = &fair_sched_class; 2329 2330 init_entity_runnable_average(&p->se); 2331 2332 /* 2333 * The child is not yet in the pid-hash so no cgroup attach races, 2334 * and the cgroup is pinned to this child due to cgroup_fork() 2335 * is ran before sched_fork(). 2336 * 2337 * Silence PROVE_RCU. 2338 */ 2339 raw_spin_lock_irqsave(&p->pi_lock, flags); 2340 /* 2341 * We're setting the CPU for the first time, we don't migrate, 2342 * so use __set_task_cpu(). 2343 */ 2344 __set_task_cpu(p, smp_processor_id()); 2345 if (p->sched_class->task_fork) 2346 p->sched_class->task_fork(p); 2347 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2348 2349 #ifdef CONFIG_SCHED_INFO 2350 if (likely(sched_info_on())) 2351 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2352 #endif 2353 #if defined(CONFIG_SMP) 2354 p->on_cpu = 0; 2355 #endif 2356 init_task_preempt_count(p); 2357 #ifdef CONFIG_SMP 2358 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2359 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2360 #endif 2361 return 0; 2362 } 2363 2364 unsigned long to_ratio(u64 period, u64 runtime) 2365 { 2366 if (runtime == RUNTIME_INF) 2367 return BW_UNIT; 2368 2369 /* 2370 * Doing this here saves a lot of checks in all 2371 * the calling paths, and returning zero seems 2372 * safe for them anyway. 2373 */ 2374 if (period == 0) 2375 return 0; 2376 2377 return div64_u64(runtime << BW_SHIFT, period); 2378 } 2379 2380 /* 2381 * wake_up_new_task - wake up a newly created task for the first time. 2382 * 2383 * This function will do some initial scheduler statistics housekeeping 2384 * that must be done for every newly created context, then puts the task 2385 * on the runqueue and wakes it. 2386 */ 2387 void wake_up_new_task(struct task_struct *p) 2388 { 2389 struct rq_flags rf; 2390 struct rq *rq; 2391 2392 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2393 p->state = TASK_RUNNING; 2394 #ifdef CONFIG_SMP 2395 /* 2396 * Fork balancing, do it here and not earlier because: 2397 * - cpus_allowed can change in the fork path 2398 * - any previously selected CPU might disappear through hotplug 2399 * 2400 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2401 * as we're not fully set-up yet. 2402 */ 2403 p->recent_used_cpu = task_cpu(p); 2404 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2405 #endif 2406 rq = __task_rq_lock(p, &rf); 2407 update_rq_clock(rq); 2408 post_init_entity_util_avg(p); 2409 2410 activate_task(rq, p, ENQUEUE_NOCLOCK); 2411 trace_sched_wakeup_new(p); 2412 check_preempt_curr(rq, p, WF_FORK); 2413 #ifdef CONFIG_SMP 2414 if (p->sched_class->task_woken) { 2415 /* 2416 * Nothing relies on rq->lock after this, so its fine to 2417 * drop it. 2418 */ 2419 rq_unpin_lock(rq, &rf); 2420 p->sched_class->task_woken(rq, p); 2421 rq_repin_lock(rq, &rf); 2422 } 2423 #endif 2424 task_rq_unlock(rq, p, &rf); 2425 } 2426 2427 #ifdef CONFIG_PREEMPT_NOTIFIERS 2428 2429 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2430 2431 void preempt_notifier_inc(void) 2432 { 2433 static_branch_inc(&preempt_notifier_key); 2434 } 2435 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2436 2437 void preempt_notifier_dec(void) 2438 { 2439 static_branch_dec(&preempt_notifier_key); 2440 } 2441 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2442 2443 /** 2444 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2445 * @notifier: notifier struct to register 2446 */ 2447 void preempt_notifier_register(struct preempt_notifier *notifier) 2448 { 2449 if (!static_branch_unlikely(&preempt_notifier_key)) 2450 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2451 2452 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2453 } 2454 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2455 2456 /** 2457 * preempt_notifier_unregister - no longer interested in preemption notifications 2458 * @notifier: notifier struct to unregister 2459 * 2460 * This is *not* safe to call from within a preemption notifier. 2461 */ 2462 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2463 { 2464 hlist_del(¬ifier->link); 2465 } 2466 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2467 2468 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2469 { 2470 struct preempt_notifier *notifier; 2471 2472 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2473 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2474 } 2475 2476 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2477 { 2478 if (static_branch_unlikely(&preempt_notifier_key)) 2479 __fire_sched_in_preempt_notifiers(curr); 2480 } 2481 2482 static void 2483 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2484 struct task_struct *next) 2485 { 2486 struct preempt_notifier *notifier; 2487 2488 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2489 notifier->ops->sched_out(notifier, next); 2490 } 2491 2492 static __always_inline void 2493 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2494 struct task_struct *next) 2495 { 2496 if (static_branch_unlikely(&preempt_notifier_key)) 2497 __fire_sched_out_preempt_notifiers(curr, next); 2498 } 2499 2500 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2501 2502 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2503 { 2504 } 2505 2506 static inline void 2507 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2508 struct task_struct *next) 2509 { 2510 } 2511 2512 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2513 2514 static inline void prepare_task(struct task_struct *next) 2515 { 2516 #ifdef CONFIG_SMP 2517 /* 2518 * Claim the task as running, we do this before switching to it 2519 * such that any running task will have this set. 2520 */ 2521 next->on_cpu = 1; 2522 #endif 2523 } 2524 2525 static inline void finish_task(struct task_struct *prev) 2526 { 2527 #ifdef CONFIG_SMP 2528 /* 2529 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2530 * We must ensure this doesn't happen until the switch is completely 2531 * finished. 2532 * 2533 * In particular, the load of prev->state in finish_task_switch() must 2534 * happen before this. 2535 * 2536 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2537 */ 2538 smp_store_release(&prev->on_cpu, 0); 2539 #endif 2540 } 2541 2542 static inline void 2543 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2544 { 2545 /* 2546 * Since the runqueue lock will be released by the next 2547 * task (which is an invalid locking op but in the case 2548 * of the scheduler it's an obvious special-case), so we 2549 * do an early lockdep release here: 2550 */ 2551 rq_unpin_lock(rq, rf); 2552 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2553 #ifdef CONFIG_DEBUG_SPINLOCK 2554 /* this is a valid case when another task releases the spinlock */ 2555 rq->lock.owner = next; 2556 #endif 2557 } 2558 2559 static inline void finish_lock_switch(struct rq *rq) 2560 { 2561 /* 2562 * If we are tracking spinlock dependencies then we have to 2563 * fix up the runqueue lock - which gets 'carried over' from 2564 * prev into current: 2565 */ 2566 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2567 raw_spin_unlock_irq(&rq->lock); 2568 } 2569 2570 /* 2571 * NOP if the arch has not defined these: 2572 */ 2573 2574 #ifndef prepare_arch_switch 2575 # define prepare_arch_switch(next) do { } while (0) 2576 #endif 2577 2578 #ifndef finish_arch_post_lock_switch 2579 # define finish_arch_post_lock_switch() do { } while (0) 2580 #endif 2581 2582 /** 2583 * prepare_task_switch - prepare to switch tasks 2584 * @rq: the runqueue preparing to switch 2585 * @prev: the current task that is being switched out 2586 * @next: the task we are going to switch to. 2587 * 2588 * This is called with the rq lock held and interrupts off. It must 2589 * be paired with a subsequent finish_task_switch after the context 2590 * switch. 2591 * 2592 * prepare_task_switch sets up locking and calls architecture specific 2593 * hooks. 2594 */ 2595 static inline void 2596 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2597 struct task_struct *next) 2598 { 2599 kcov_prepare_switch(prev); 2600 sched_info_switch(rq, prev, next); 2601 perf_event_task_sched_out(prev, next); 2602 rseq_preempt(prev); 2603 fire_sched_out_preempt_notifiers(prev, next); 2604 prepare_task(next); 2605 prepare_arch_switch(next); 2606 } 2607 2608 /** 2609 * finish_task_switch - clean up after a task-switch 2610 * @prev: the thread we just switched away from. 2611 * 2612 * finish_task_switch must be called after the context switch, paired 2613 * with a prepare_task_switch call before the context switch. 2614 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2615 * and do any other architecture-specific cleanup actions. 2616 * 2617 * Note that we may have delayed dropping an mm in context_switch(). If 2618 * so, we finish that here outside of the runqueue lock. (Doing it 2619 * with the lock held can cause deadlocks; see schedule() for 2620 * details.) 2621 * 2622 * The context switch have flipped the stack from under us and restored the 2623 * local variables which were saved when this task called schedule() in the 2624 * past. prev == current is still correct but we need to recalculate this_rq 2625 * because prev may have moved to another CPU. 2626 */ 2627 static struct rq *finish_task_switch(struct task_struct *prev) 2628 __releases(rq->lock) 2629 { 2630 struct rq *rq = this_rq(); 2631 struct mm_struct *mm = rq->prev_mm; 2632 long prev_state; 2633 2634 /* 2635 * The previous task will have left us with a preempt_count of 2 2636 * because it left us after: 2637 * 2638 * schedule() 2639 * preempt_disable(); // 1 2640 * __schedule() 2641 * raw_spin_lock_irq(&rq->lock) // 2 2642 * 2643 * Also, see FORK_PREEMPT_COUNT. 2644 */ 2645 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2646 "corrupted preempt_count: %s/%d/0x%x\n", 2647 current->comm, current->pid, preempt_count())) 2648 preempt_count_set(FORK_PREEMPT_COUNT); 2649 2650 rq->prev_mm = NULL; 2651 2652 /* 2653 * A task struct has one reference for the use as "current". 2654 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2655 * schedule one last time. The schedule call will never return, and 2656 * the scheduled task must drop that reference. 2657 * 2658 * We must observe prev->state before clearing prev->on_cpu (in 2659 * finish_task), otherwise a concurrent wakeup can get prev 2660 * running on another CPU and we could rave with its RUNNING -> DEAD 2661 * transition, resulting in a double drop. 2662 */ 2663 prev_state = prev->state; 2664 vtime_task_switch(prev); 2665 perf_event_task_sched_in(prev, current); 2666 finish_task(prev); 2667 finish_lock_switch(rq); 2668 finish_arch_post_lock_switch(); 2669 kcov_finish_switch(current); 2670 2671 fire_sched_in_preempt_notifiers(current); 2672 /* 2673 * When switching through a kernel thread, the loop in 2674 * membarrier_{private,global}_expedited() may have observed that 2675 * kernel thread and not issued an IPI. It is therefore possible to 2676 * schedule between user->kernel->user threads without passing though 2677 * switch_mm(). Membarrier requires a barrier after storing to 2678 * rq->curr, before returning to userspace, so provide them here: 2679 * 2680 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2681 * provided by mmdrop(), 2682 * - a sync_core for SYNC_CORE. 2683 */ 2684 if (mm) { 2685 membarrier_mm_sync_core_before_usermode(mm); 2686 mmdrop(mm); 2687 } 2688 if (unlikely(prev_state == TASK_DEAD)) { 2689 if (prev->sched_class->task_dead) 2690 prev->sched_class->task_dead(prev); 2691 2692 /* 2693 * Remove function-return probe instances associated with this 2694 * task and put them back on the free list. 2695 */ 2696 kprobe_flush_task(prev); 2697 2698 /* Task is done with its stack. */ 2699 put_task_stack(prev); 2700 2701 put_task_struct(prev); 2702 } 2703 2704 tick_nohz_task_switch(); 2705 return rq; 2706 } 2707 2708 #ifdef CONFIG_SMP 2709 2710 /* rq->lock is NOT held, but preemption is disabled */ 2711 static void __balance_callback(struct rq *rq) 2712 { 2713 struct callback_head *head, *next; 2714 void (*func)(struct rq *rq); 2715 unsigned long flags; 2716 2717 raw_spin_lock_irqsave(&rq->lock, flags); 2718 head = rq->balance_callback; 2719 rq->balance_callback = NULL; 2720 while (head) { 2721 func = (void (*)(struct rq *))head->func; 2722 next = head->next; 2723 head->next = NULL; 2724 head = next; 2725 2726 func(rq); 2727 } 2728 raw_spin_unlock_irqrestore(&rq->lock, flags); 2729 } 2730 2731 static inline void balance_callback(struct rq *rq) 2732 { 2733 if (unlikely(rq->balance_callback)) 2734 __balance_callback(rq); 2735 } 2736 2737 #else 2738 2739 static inline void balance_callback(struct rq *rq) 2740 { 2741 } 2742 2743 #endif 2744 2745 /** 2746 * schedule_tail - first thing a freshly forked thread must call. 2747 * @prev: the thread we just switched away from. 2748 */ 2749 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2750 __releases(rq->lock) 2751 { 2752 struct rq *rq; 2753 2754 /* 2755 * New tasks start with FORK_PREEMPT_COUNT, see there and 2756 * finish_task_switch() for details. 2757 * 2758 * finish_task_switch() will drop rq->lock() and lower preempt_count 2759 * and the preempt_enable() will end up enabling preemption (on 2760 * PREEMPT_COUNT kernels). 2761 */ 2762 2763 rq = finish_task_switch(prev); 2764 balance_callback(rq); 2765 preempt_enable(); 2766 2767 if (current->set_child_tid) 2768 put_user(task_pid_vnr(current), current->set_child_tid); 2769 2770 calculate_sigpending(); 2771 } 2772 2773 /* 2774 * context_switch - switch to the new MM and the new thread's register state. 2775 */ 2776 static __always_inline struct rq * 2777 context_switch(struct rq *rq, struct task_struct *prev, 2778 struct task_struct *next, struct rq_flags *rf) 2779 { 2780 struct mm_struct *mm, *oldmm; 2781 2782 prepare_task_switch(rq, prev, next); 2783 2784 mm = next->mm; 2785 oldmm = prev->active_mm; 2786 /* 2787 * For paravirt, this is coupled with an exit in switch_to to 2788 * combine the page table reload and the switch backend into 2789 * one hypercall. 2790 */ 2791 arch_start_context_switch(prev); 2792 2793 /* 2794 * If mm is non-NULL, we pass through switch_mm(). If mm is 2795 * NULL, we will pass through mmdrop() in finish_task_switch(). 2796 * Both of these contain the full memory barrier required by 2797 * membarrier after storing to rq->curr, before returning to 2798 * user-space. 2799 */ 2800 if (!mm) { 2801 next->active_mm = oldmm; 2802 mmgrab(oldmm); 2803 enter_lazy_tlb(oldmm, next); 2804 } else 2805 switch_mm_irqs_off(oldmm, mm, next); 2806 2807 if (!prev->mm) { 2808 prev->active_mm = NULL; 2809 rq->prev_mm = oldmm; 2810 } 2811 2812 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2813 2814 prepare_lock_switch(rq, next, rf); 2815 2816 /* Here we just switch the register state and the stack. */ 2817 switch_to(prev, next, prev); 2818 barrier(); 2819 2820 return finish_task_switch(prev); 2821 } 2822 2823 /* 2824 * nr_running and nr_context_switches: 2825 * 2826 * externally visible scheduler statistics: current number of runnable 2827 * threads, total number of context switches performed since bootup. 2828 */ 2829 unsigned long nr_running(void) 2830 { 2831 unsigned long i, sum = 0; 2832 2833 for_each_online_cpu(i) 2834 sum += cpu_rq(i)->nr_running; 2835 2836 return sum; 2837 } 2838 2839 /* 2840 * Check if only the current task is running on the CPU. 2841 * 2842 * Caution: this function does not check that the caller has disabled 2843 * preemption, thus the result might have a time-of-check-to-time-of-use 2844 * race. The caller is responsible to use it correctly, for example: 2845 * 2846 * - from a non-preemptible section (of course) 2847 * 2848 * - from a thread that is bound to a single CPU 2849 * 2850 * - in a loop with very short iterations (e.g. a polling loop) 2851 */ 2852 bool single_task_running(void) 2853 { 2854 return raw_rq()->nr_running == 1; 2855 } 2856 EXPORT_SYMBOL(single_task_running); 2857 2858 unsigned long long nr_context_switches(void) 2859 { 2860 int i; 2861 unsigned long long sum = 0; 2862 2863 for_each_possible_cpu(i) 2864 sum += cpu_rq(i)->nr_switches; 2865 2866 return sum; 2867 } 2868 2869 /* 2870 * Consumers of these two interfaces, like for example the cpuidle menu 2871 * governor, are using nonsensical data. Preferring shallow idle state selection 2872 * for a CPU that has IO-wait which might not even end up running the task when 2873 * it does become runnable. 2874 */ 2875 2876 unsigned long nr_iowait_cpu(int cpu) 2877 { 2878 return atomic_read(&cpu_rq(cpu)->nr_iowait); 2879 } 2880 2881 /* 2882 * IO-wait accounting, and how its mostly bollocks (on SMP). 2883 * 2884 * The idea behind IO-wait account is to account the idle time that we could 2885 * have spend running if it were not for IO. That is, if we were to improve the 2886 * storage performance, we'd have a proportional reduction in IO-wait time. 2887 * 2888 * This all works nicely on UP, where, when a task blocks on IO, we account 2889 * idle time as IO-wait, because if the storage were faster, it could've been 2890 * running and we'd not be idle. 2891 * 2892 * This has been extended to SMP, by doing the same for each CPU. This however 2893 * is broken. 2894 * 2895 * Imagine for instance the case where two tasks block on one CPU, only the one 2896 * CPU will have IO-wait accounted, while the other has regular idle. Even 2897 * though, if the storage were faster, both could've ran at the same time, 2898 * utilising both CPUs. 2899 * 2900 * This means, that when looking globally, the current IO-wait accounting on 2901 * SMP is a lower bound, by reason of under accounting. 2902 * 2903 * Worse, since the numbers are provided per CPU, they are sometimes 2904 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2905 * associated with any one particular CPU, it can wake to another CPU than it 2906 * blocked on. This means the per CPU IO-wait number is meaningless. 2907 * 2908 * Task CPU affinities can make all that even more 'interesting'. 2909 */ 2910 2911 unsigned long nr_iowait(void) 2912 { 2913 unsigned long i, sum = 0; 2914 2915 for_each_possible_cpu(i) 2916 sum += nr_iowait_cpu(i); 2917 2918 return sum; 2919 } 2920 2921 #ifdef CONFIG_SMP 2922 2923 /* 2924 * sched_exec - execve() is a valuable balancing opportunity, because at 2925 * this point the task has the smallest effective memory and cache footprint. 2926 */ 2927 void sched_exec(void) 2928 { 2929 struct task_struct *p = current; 2930 unsigned long flags; 2931 int dest_cpu; 2932 2933 raw_spin_lock_irqsave(&p->pi_lock, flags); 2934 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2935 if (dest_cpu == smp_processor_id()) 2936 goto unlock; 2937 2938 if (likely(cpu_active(dest_cpu))) { 2939 struct migration_arg arg = { p, dest_cpu }; 2940 2941 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2942 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2943 return; 2944 } 2945 unlock: 2946 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2947 } 2948 2949 #endif 2950 2951 DEFINE_PER_CPU(struct kernel_stat, kstat); 2952 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2953 2954 EXPORT_PER_CPU_SYMBOL(kstat); 2955 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2956 2957 /* 2958 * The function fair_sched_class.update_curr accesses the struct curr 2959 * and its field curr->exec_start; when called from task_sched_runtime(), 2960 * we observe a high rate of cache misses in practice. 2961 * Prefetching this data results in improved performance. 2962 */ 2963 static inline void prefetch_curr_exec_start(struct task_struct *p) 2964 { 2965 #ifdef CONFIG_FAIR_GROUP_SCHED 2966 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 2967 #else 2968 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 2969 #endif 2970 prefetch(curr); 2971 prefetch(&curr->exec_start); 2972 } 2973 2974 /* 2975 * Return accounted runtime for the task. 2976 * In case the task is currently running, return the runtime plus current's 2977 * pending runtime that have not been accounted yet. 2978 */ 2979 unsigned long long task_sched_runtime(struct task_struct *p) 2980 { 2981 struct rq_flags rf; 2982 struct rq *rq; 2983 u64 ns; 2984 2985 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2986 /* 2987 * 64-bit doesn't need locks to atomically read a 64-bit value. 2988 * So we have a optimization chance when the task's delta_exec is 0. 2989 * Reading ->on_cpu is racy, but this is ok. 2990 * 2991 * If we race with it leaving CPU, we'll take a lock. So we're correct. 2992 * If we race with it entering CPU, unaccounted time is 0. This is 2993 * indistinguishable from the read occurring a few cycles earlier. 2994 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2995 * been accounted, so we're correct here as well. 2996 */ 2997 if (!p->on_cpu || !task_on_rq_queued(p)) 2998 return p->se.sum_exec_runtime; 2999 #endif 3000 3001 rq = task_rq_lock(p, &rf); 3002 /* 3003 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3004 * project cycles that may never be accounted to this 3005 * thread, breaking clock_gettime(). 3006 */ 3007 if (task_current(rq, p) && task_on_rq_queued(p)) { 3008 prefetch_curr_exec_start(p); 3009 update_rq_clock(rq); 3010 p->sched_class->update_curr(rq); 3011 } 3012 ns = p->se.sum_exec_runtime; 3013 task_rq_unlock(rq, p, &rf); 3014 3015 return ns; 3016 } 3017 3018 /* 3019 * This function gets called by the timer code, with HZ frequency. 3020 * We call it with interrupts disabled. 3021 */ 3022 void scheduler_tick(void) 3023 { 3024 int cpu = smp_processor_id(); 3025 struct rq *rq = cpu_rq(cpu); 3026 struct task_struct *curr = rq->curr; 3027 struct rq_flags rf; 3028 3029 sched_clock_tick(); 3030 3031 rq_lock(rq, &rf); 3032 3033 update_rq_clock(rq); 3034 curr->sched_class->task_tick(rq, curr, 0); 3035 cpu_load_update_active(rq); 3036 calc_global_load_tick(rq); 3037 psi_task_tick(rq); 3038 3039 rq_unlock(rq, &rf); 3040 3041 perf_event_task_tick(); 3042 3043 #ifdef CONFIG_SMP 3044 rq->idle_balance = idle_cpu(cpu); 3045 trigger_load_balance(rq); 3046 #endif 3047 } 3048 3049 #ifdef CONFIG_NO_HZ_FULL 3050 3051 struct tick_work { 3052 int cpu; 3053 struct delayed_work work; 3054 }; 3055 3056 static struct tick_work __percpu *tick_work_cpu; 3057 3058 static void sched_tick_remote(struct work_struct *work) 3059 { 3060 struct delayed_work *dwork = to_delayed_work(work); 3061 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3062 int cpu = twork->cpu; 3063 struct rq *rq = cpu_rq(cpu); 3064 struct task_struct *curr; 3065 struct rq_flags rf; 3066 u64 delta; 3067 3068 /* 3069 * Handle the tick only if it appears the remote CPU is running in full 3070 * dynticks mode. The check is racy by nature, but missing a tick or 3071 * having one too much is no big deal because the scheduler tick updates 3072 * statistics and checks timeslices in a time-independent way, regardless 3073 * of when exactly it is running. 3074 */ 3075 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu)) 3076 goto out_requeue; 3077 3078 rq_lock_irq(rq, &rf); 3079 curr = rq->curr; 3080 if (is_idle_task(curr)) 3081 goto out_unlock; 3082 3083 update_rq_clock(rq); 3084 delta = rq_clock_task(rq) - curr->se.exec_start; 3085 3086 /* 3087 * Make sure the next tick runs within a reasonable 3088 * amount of time. 3089 */ 3090 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3091 curr->sched_class->task_tick(rq, curr, 0); 3092 3093 out_unlock: 3094 rq_unlock_irq(rq, &rf); 3095 3096 out_requeue: 3097 /* 3098 * Run the remote tick once per second (1Hz). This arbitrary 3099 * frequency is large enough to avoid overload but short enough 3100 * to keep scheduler internal stats reasonably up to date. 3101 */ 3102 queue_delayed_work(system_unbound_wq, dwork, HZ); 3103 } 3104 3105 static void sched_tick_start(int cpu) 3106 { 3107 struct tick_work *twork; 3108 3109 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3110 return; 3111 3112 WARN_ON_ONCE(!tick_work_cpu); 3113 3114 twork = per_cpu_ptr(tick_work_cpu, cpu); 3115 twork->cpu = cpu; 3116 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3117 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3118 } 3119 3120 #ifdef CONFIG_HOTPLUG_CPU 3121 static void sched_tick_stop(int cpu) 3122 { 3123 struct tick_work *twork; 3124 3125 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3126 return; 3127 3128 WARN_ON_ONCE(!tick_work_cpu); 3129 3130 twork = per_cpu_ptr(tick_work_cpu, cpu); 3131 cancel_delayed_work_sync(&twork->work); 3132 } 3133 #endif /* CONFIG_HOTPLUG_CPU */ 3134 3135 int __init sched_tick_offload_init(void) 3136 { 3137 tick_work_cpu = alloc_percpu(struct tick_work); 3138 BUG_ON(!tick_work_cpu); 3139 3140 return 0; 3141 } 3142 3143 #else /* !CONFIG_NO_HZ_FULL */ 3144 static inline void sched_tick_start(int cpu) { } 3145 static inline void sched_tick_stop(int cpu) { } 3146 #endif 3147 3148 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3149 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3150 /* 3151 * If the value passed in is equal to the current preempt count 3152 * then we just disabled preemption. Start timing the latency. 3153 */ 3154 static inline void preempt_latency_start(int val) 3155 { 3156 if (preempt_count() == val) { 3157 unsigned long ip = get_lock_parent_ip(); 3158 #ifdef CONFIG_DEBUG_PREEMPT 3159 current->preempt_disable_ip = ip; 3160 #endif 3161 trace_preempt_off(CALLER_ADDR0, ip); 3162 } 3163 } 3164 3165 void preempt_count_add(int val) 3166 { 3167 #ifdef CONFIG_DEBUG_PREEMPT 3168 /* 3169 * Underflow? 3170 */ 3171 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3172 return; 3173 #endif 3174 __preempt_count_add(val); 3175 #ifdef CONFIG_DEBUG_PREEMPT 3176 /* 3177 * Spinlock count overflowing soon? 3178 */ 3179 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3180 PREEMPT_MASK - 10); 3181 #endif 3182 preempt_latency_start(val); 3183 } 3184 EXPORT_SYMBOL(preempt_count_add); 3185 NOKPROBE_SYMBOL(preempt_count_add); 3186 3187 /* 3188 * If the value passed in equals to the current preempt count 3189 * then we just enabled preemption. Stop timing the latency. 3190 */ 3191 static inline void preempt_latency_stop(int val) 3192 { 3193 if (preempt_count() == val) 3194 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3195 } 3196 3197 void preempt_count_sub(int val) 3198 { 3199 #ifdef CONFIG_DEBUG_PREEMPT 3200 /* 3201 * Underflow? 3202 */ 3203 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3204 return; 3205 /* 3206 * Is the spinlock portion underflowing? 3207 */ 3208 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3209 !(preempt_count() & PREEMPT_MASK))) 3210 return; 3211 #endif 3212 3213 preempt_latency_stop(val); 3214 __preempt_count_sub(val); 3215 } 3216 EXPORT_SYMBOL(preempt_count_sub); 3217 NOKPROBE_SYMBOL(preempt_count_sub); 3218 3219 #else 3220 static inline void preempt_latency_start(int val) { } 3221 static inline void preempt_latency_stop(int val) { } 3222 #endif 3223 3224 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3225 { 3226 #ifdef CONFIG_DEBUG_PREEMPT 3227 return p->preempt_disable_ip; 3228 #else 3229 return 0; 3230 #endif 3231 } 3232 3233 /* 3234 * Print scheduling while atomic bug: 3235 */ 3236 static noinline void __schedule_bug(struct task_struct *prev) 3237 { 3238 /* Save this before calling printk(), since that will clobber it */ 3239 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3240 3241 if (oops_in_progress) 3242 return; 3243 3244 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3245 prev->comm, prev->pid, preempt_count()); 3246 3247 debug_show_held_locks(prev); 3248 print_modules(); 3249 if (irqs_disabled()) 3250 print_irqtrace_events(prev); 3251 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3252 && in_atomic_preempt_off()) { 3253 pr_err("Preemption disabled at:"); 3254 print_ip_sym(preempt_disable_ip); 3255 pr_cont("\n"); 3256 } 3257 if (panic_on_warn) 3258 panic("scheduling while atomic\n"); 3259 3260 dump_stack(); 3261 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3262 } 3263 3264 /* 3265 * Various schedule()-time debugging checks and statistics: 3266 */ 3267 static inline void schedule_debug(struct task_struct *prev) 3268 { 3269 #ifdef CONFIG_SCHED_STACK_END_CHECK 3270 if (task_stack_end_corrupted(prev)) 3271 panic("corrupted stack end detected inside scheduler\n"); 3272 #endif 3273 3274 if (unlikely(in_atomic_preempt_off())) { 3275 __schedule_bug(prev); 3276 preempt_count_set(PREEMPT_DISABLED); 3277 } 3278 rcu_sleep_check(); 3279 3280 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3281 3282 schedstat_inc(this_rq()->sched_count); 3283 } 3284 3285 /* 3286 * Pick up the highest-prio task: 3287 */ 3288 static inline struct task_struct * 3289 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3290 { 3291 const struct sched_class *class; 3292 struct task_struct *p; 3293 3294 /* 3295 * Optimization: we know that if all tasks are in the fair class we can 3296 * call that function directly, but only if the @prev task wasn't of a 3297 * higher scheduling class, because otherwise those loose the 3298 * opportunity to pull in more work from other CPUs. 3299 */ 3300 if (likely((prev->sched_class == &idle_sched_class || 3301 prev->sched_class == &fair_sched_class) && 3302 rq->nr_running == rq->cfs.h_nr_running)) { 3303 3304 p = fair_sched_class.pick_next_task(rq, prev, rf); 3305 if (unlikely(p == RETRY_TASK)) 3306 goto again; 3307 3308 /* Assumes fair_sched_class->next == idle_sched_class */ 3309 if (unlikely(!p)) 3310 p = idle_sched_class.pick_next_task(rq, prev, rf); 3311 3312 return p; 3313 } 3314 3315 again: 3316 for_each_class(class) { 3317 p = class->pick_next_task(rq, prev, rf); 3318 if (p) { 3319 if (unlikely(p == RETRY_TASK)) 3320 goto again; 3321 return p; 3322 } 3323 } 3324 3325 /* The idle class should always have a runnable task: */ 3326 BUG(); 3327 } 3328 3329 /* 3330 * __schedule() is the main scheduler function. 3331 * 3332 * The main means of driving the scheduler and thus entering this function are: 3333 * 3334 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3335 * 3336 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3337 * paths. For example, see arch/x86/entry_64.S. 3338 * 3339 * To drive preemption between tasks, the scheduler sets the flag in timer 3340 * interrupt handler scheduler_tick(). 3341 * 3342 * 3. Wakeups don't really cause entry into schedule(). They add a 3343 * task to the run-queue and that's it. 3344 * 3345 * Now, if the new task added to the run-queue preempts the current 3346 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3347 * called on the nearest possible occasion: 3348 * 3349 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3350 * 3351 * - in syscall or exception context, at the next outmost 3352 * preempt_enable(). (this might be as soon as the wake_up()'s 3353 * spin_unlock()!) 3354 * 3355 * - in IRQ context, return from interrupt-handler to 3356 * preemptible context 3357 * 3358 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3359 * then at the next: 3360 * 3361 * - cond_resched() call 3362 * - explicit schedule() call 3363 * - return from syscall or exception to user-space 3364 * - return from interrupt-handler to user-space 3365 * 3366 * WARNING: must be called with preemption disabled! 3367 */ 3368 static void __sched notrace __schedule(bool preempt) 3369 { 3370 struct task_struct *prev, *next; 3371 unsigned long *switch_count; 3372 struct rq_flags rf; 3373 struct rq *rq; 3374 int cpu; 3375 3376 cpu = smp_processor_id(); 3377 rq = cpu_rq(cpu); 3378 prev = rq->curr; 3379 3380 schedule_debug(prev); 3381 3382 if (sched_feat(HRTICK)) 3383 hrtick_clear(rq); 3384 3385 local_irq_disable(); 3386 rcu_note_context_switch(preempt); 3387 3388 /* 3389 * Make sure that signal_pending_state()->signal_pending() below 3390 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3391 * done by the caller to avoid the race with signal_wake_up(). 3392 * 3393 * The membarrier system call requires a full memory barrier 3394 * after coming from user-space, before storing to rq->curr. 3395 */ 3396 rq_lock(rq, &rf); 3397 smp_mb__after_spinlock(); 3398 3399 /* Promote REQ to ACT */ 3400 rq->clock_update_flags <<= 1; 3401 update_rq_clock(rq); 3402 3403 switch_count = &prev->nivcsw; 3404 if (!preempt && prev->state) { 3405 if (signal_pending_state(prev->state, prev)) { 3406 prev->state = TASK_RUNNING; 3407 } else { 3408 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3409 3410 if (prev->in_iowait) { 3411 atomic_inc(&rq->nr_iowait); 3412 delayacct_blkio_start(); 3413 } 3414 } 3415 switch_count = &prev->nvcsw; 3416 } 3417 3418 next = pick_next_task(rq, prev, &rf); 3419 clear_tsk_need_resched(prev); 3420 clear_preempt_need_resched(); 3421 3422 if (likely(prev != next)) { 3423 rq->nr_switches++; 3424 rq->curr = next; 3425 /* 3426 * The membarrier system call requires each architecture 3427 * to have a full memory barrier after updating 3428 * rq->curr, before returning to user-space. 3429 * 3430 * Here are the schemes providing that barrier on the 3431 * various architectures: 3432 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3433 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3434 * - finish_lock_switch() for weakly-ordered 3435 * architectures where spin_unlock is a full barrier, 3436 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3437 * is a RELEASE barrier), 3438 */ 3439 ++*switch_count; 3440 3441 trace_sched_switch(preempt, prev, next); 3442 3443 /* Also unlocks the rq: */ 3444 rq = context_switch(rq, prev, next, &rf); 3445 } else { 3446 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3447 rq_unlock_irq(rq, &rf); 3448 } 3449 3450 balance_callback(rq); 3451 } 3452 3453 void __noreturn do_task_dead(void) 3454 { 3455 /* Causes final put_task_struct in finish_task_switch(): */ 3456 set_special_state(TASK_DEAD); 3457 3458 /* Tell freezer to ignore us: */ 3459 current->flags |= PF_NOFREEZE; 3460 3461 __schedule(false); 3462 BUG(); 3463 3464 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3465 for (;;) 3466 cpu_relax(); 3467 } 3468 3469 static inline void sched_submit_work(struct task_struct *tsk) 3470 { 3471 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3472 return; 3473 3474 /* 3475 * If a worker went to sleep, notify and ask workqueue whether 3476 * it wants to wake up a task to maintain concurrency. 3477 * As this function is called inside the schedule() context, 3478 * we disable preemption to avoid it calling schedule() again 3479 * in the possible wakeup of a kworker. 3480 */ 3481 if (tsk->flags & PF_WQ_WORKER) { 3482 preempt_disable(); 3483 wq_worker_sleeping(tsk); 3484 preempt_enable_no_resched(); 3485 } 3486 3487 /* 3488 * If we are going to sleep and we have plugged IO queued, 3489 * make sure to submit it to avoid deadlocks. 3490 */ 3491 if (blk_needs_flush_plug(tsk)) 3492 blk_schedule_flush_plug(tsk); 3493 } 3494 3495 static void sched_update_worker(struct task_struct *tsk) 3496 { 3497 if (tsk->flags & PF_WQ_WORKER) 3498 wq_worker_running(tsk); 3499 } 3500 3501 asmlinkage __visible void __sched schedule(void) 3502 { 3503 struct task_struct *tsk = current; 3504 3505 sched_submit_work(tsk); 3506 do { 3507 preempt_disable(); 3508 __schedule(false); 3509 sched_preempt_enable_no_resched(); 3510 } while (need_resched()); 3511 sched_update_worker(tsk); 3512 } 3513 EXPORT_SYMBOL(schedule); 3514 3515 /* 3516 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3517 * state (have scheduled out non-voluntarily) by making sure that all 3518 * tasks have either left the run queue or have gone into user space. 3519 * As idle tasks do not do either, they must not ever be preempted 3520 * (schedule out non-voluntarily). 3521 * 3522 * schedule_idle() is similar to schedule_preempt_disable() except that it 3523 * never enables preemption because it does not call sched_submit_work(). 3524 */ 3525 void __sched schedule_idle(void) 3526 { 3527 /* 3528 * As this skips calling sched_submit_work(), which the idle task does 3529 * regardless because that function is a nop when the task is in a 3530 * TASK_RUNNING state, make sure this isn't used someplace that the 3531 * current task can be in any other state. Note, idle is always in the 3532 * TASK_RUNNING state. 3533 */ 3534 WARN_ON_ONCE(current->state); 3535 do { 3536 __schedule(false); 3537 } while (need_resched()); 3538 } 3539 3540 #ifdef CONFIG_CONTEXT_TRACKING 3541 asmlinkage __visible void __sched schedule_user(void) 3542 { 3543 /* 3544 * If we come here after a random call to set_need_resched(), 3545 * or we have been woken up remotely but the IPI has not yet arrived, 3546 * we haven't yet exited the RCU idle mode. Do it here manually until 3547 * we find a better solution. 3548 * 3549 * NB: There are buggy callers of this function. Ideally we 3550 * should warn if prev_state != CONTEXT_USER, but that will trigger 3551 * too frequently to make sense yet. 3552 */ 3553 enum ctx_state prev_state = exception_enter(); 3554 schedule(); 3555 exception_exit(prev_state); 3556 } 3557 #endif 3558 3559 /** 3560 * schedule_preempt_disabled - called with preemption disabled 3561 * 3562 * Returns with preemption disabled. Note: preempt_count must be 1 3563 */ 3564 void __sched schedule_preempt_disabled(void) 3565 { 3566 sched_preempt_enable_no_resched(); 3567 schedule(); 3568 preempt_disable(); 3569 } 3570 3571 static void __sched notrace preempt_schedule_common(void) 3572 { 3573 do { 3574 /* 3575 * Because the function tracer can trace preempt_count_sub() 3576 * and it also uses preempt_enable/disable_notrace(), if 3577 * NEED_RESCHED is set, the preempt_enable_notrace() called 3578 * by the function tracer will call this function again and 3579 * cause infinite recursion. 3580 * 3581 * Preemption must be disabled here before the function 3582 * tracer can trace. Break up preempt_disable() into two 3583 * calls. One to disable preemption without fear of being 3584 * traced. The other to still record the preemption latency, 3585 * which can also be traced by the function tracer. 3586 */ 3587 preempt_disable_notrace(); 3588 preempt_latency_start(1); 3589 __schedule(true); 3590 preempt_latency_stop(1); 3591 preempt_enable_no_resched_notrace(); 3592 3593 /* 3594 * Check again in case we missed a preemption opportunity 3595 * between schedule and now. 3596 */ 3597 } while (need_resched()); 3598 } 3599 3600 #ifdef CONFIG_PREEMPT 3601 /* 3602 * this is the entry point to schedule() from in-kernel preemption 3603 * off of preempt_enable. Kernel preemptions off return from interrupt 3604 * occur there and call schedule directly. 3605 */ 3606 asmlinkage __visible void __sched notrace preempt_schedule(void) 3607 { 3608 /* 3609 * If there is a non-zero preempt_count or interrupts are disabled, 3610 * we do not want to preempt the current task. Just return.. 3611 */ 3612 if (likely(!preemptible())) 3613 return; 3614 3615 preempt_schedule_common(); 3616 } 3617 NOKPROBE_SYMBOL(preempt_schedule); 3618 EXPORT_SYMBOL(preempt_schedule); 3619 3620 /** 3621 * preempt_schedule_notrace - preempt_schedule called by tracing 3622 * 3623 * The tracing infrastructure uses preempt_enable_notrace to prevent 3624 * recursion and tracing preempt enabling caused by the tracing 3625 * infrastructure itself. But as tracing can happen in areas coming 3626 * from userspace or just about to enter userspace, a preempt enable 3627 * can occur before user_exit() is called. This will cause the scheduler 3628 * to be called when the system is still in usermode. 3629 * 3630 * To prevent this, the preempt_enable_notrace will use this function 3631 * instead of preempt_schedule() to exit user context if needed before 3632 * calling the scheduler. 3633 */ 3634 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3635 { 3636 enum ctx_state prev_ctx; 3637 3638 if (likely(!preemptible())) 3639 return; 3640 3641 do { 3642 /* 3643 * Because the function tracer can trace preempt_count_sub() 3644 * and it also uses preempt_enable/disable_notrace(), if 3645 * NEED_RESCHED is set, the preempt_enable_notrace() called 3646 * by the function tracer will call this function again and 3647 * cause infinite recursion. 3648 * 3649 * Preemption must be disabled here before the function 3650 * tracer can trace. Break up preempt_disable() into two 3651 * calls. One to disable preemption without fear of being 3652 * traced. The other to still record the preemption latency, 3653 * which can also be traced by the function tracer. 3654 */ 3655 preempt_disable_notrace(); 3656 preempt_latency_start(1); 3657 /* 3658 * Needs preempt disabled in case user_exit() is traced 3659 * and the tracer calls preempt_enable_notrace() causing 3660 * an infinite recursion. 3661 */ 3662 prev_ctx = exception_enter(); 3663 __schedule(true); 3664 exception_exit(prev_ctx); 3665 3666 preempt_latency_stop(1); 3667 preempt_enable_no_resched_notrace(); 3668 } while (need_resched()); 3669 } 3670 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3671 3672 #endif /* CONFIG_PREEMPT */ 3673 3674 /* 3675 * this is the entry point to schedule() from kernel preemption 3676 * off of irq context. 3677 * Note, that this is called and return with irqs disabled. This will 3678 * protect us against recursive calling from irq. 3679 */ 3680 asmlinkage __visible void __sched preempt_schedule_irq(void) 3681 { 3682 enum ctx_state prev_state; 3683 3684 /* Catch callers which need to be fixed */ 3685 BUG_ON(preempt_count() || !irqs_disabled()); 3686 3687 prev_state = exception_enter(); 3688 3689 do { 3690 preempt_disable(); 3691 local_irq_enable(); 3692 __schedule(true); 3693 local_irq_disable(); 3694 sched_preempt_enable_no_resched(); 3695 } while (need_resched()); 3696 3697 exception_exit(prev_state); 3698 } 3699 3700 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3701 void *key) 3702 { 3703 return try_to_wake_up(curr->private, mode, wake_flags); 3704 } 3705 EXPORT_SYMBOL(default_wake_function); 3706 3707 #ifdef CONFIG_RT_MUTEXES 3708 3709 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3710 { 3711 if (pi_task) 3712 prio = min(prio, pi_task->prio); 3713 3714 return prio; 3715 } 3716 3717 static inline int rt_effective_prio(struct task_struct *p, int prio) 3718 { 3719 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3720 3721 return __rt_effective_prio(pi_task, prio); 3722 } 3723 3724 /* 3725 * rt_mutex_setprio - set the current priority of a task 3726 * @p: task to boost 3727 * @pi_task: donor task 3728 * 3729 * This function changes the 'effective' priority of a task. It does 3730 * not touch ->normal_prio like __setscheduler(). 3731 * 3732 * Used by the rt_mutex code to implement priority inheritance 3733 * logic. Call site only calls if the priority of the task changed. 3734 */ 3735 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3736 { 3737 int prio, oldprio, queued, running, queue_flag = 3738 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3739 const struct sched_class *prev_class; 3740 struct rq_flags rf; 3741 struct rq *rq; 3742 3743 /* XXX used to be waiter->prio, not waiter->task->prio */ 3744 prio = __rt_effective_prio(pi_task, p->normal_prio); 3745 3746 /* 3747 * If nothing changed; bail early. 3748 */ 3749 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3750 return; 3751 3752 rq = __task_rq_lock(p, &rf); 3753 update_rq_clock(rq); 3754 /* 3755 * Set under pi_lock && rq->lock, such that the value can be used under 3756 * either lock. 3757 * 3758 * Note that there is loads of tricky to make this pointer cache work 3759 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3760 * ensure a task is de-boosted (pi_task is set to NULL) before the 3761 * task is allowed to run again (and can exit). This ensures the pointer 3762 * points to a blocked task -- which guaratees the task is present. 3763 */ 3764 p->pi_top_task = pi_task; 3765 3766 /* 3767 * For FIFO/RR we only need to set prio, if that matches we're done. 3768 */ 3769 if (prio == p->prio && !dl_prio(prio)) 3770 goto out_unlock; 3771 3772 /* 3773 * Idle task boosting is a nono in general. There is one 3774 * exception, when PREEMPT_RT and NOHZ is active: 3775 * 3776 * The idle task calls get_next_timer_interrupt() and holds 3777 * the timer wheel base->lock on the CPU and another CPU wants 3778 * to access the timer (probably to cancel it). We can safely 3779 * ignore the boosting request, as the idle CPU runs this code 3780 * with interrupts disabled and will complete the lock 3781 * protected section without being interrupted. So there is no 3782 * real need to boost. 3783 */ 3784 if (unlikely(p == rq->idle)) { 3785 WARN_ON(p != rq->curr); 3786 WARN_ON(p->pi_blocked_on); 3787 goto out_unlock; 3788 } 3789 3790 trace_sched_pi_setprio(p, pi_task); 3791 oldprio = p->prio; 3792 3793 if (oldprio == prio) 3794 queue_flag &= ~DEQUEUE_MOVE; 3795 3796 prev_class = p->sched_class; 3797 queued = task_on_rq_queued(p); 3798 running = task_current(rq, p); 3799 if (queued) 3800 dequeue_task(rq, p, queue_flag); 3801 if (running) 3802 put_prev_task(rq, p); 3803 3804 /* 3805 * Boosting condition are: 3806 * 1. -rt task is running and holds mutex A 3807 * --> -dl task blocks on mutex A 3808 * 3809 * 2. -dl task is running and holds mutex A 3810 * --> -dl task blocks on mutex A and could preempt the 3811 * running task 3812 */ 3813 if (dl_prio(prio)) { 3814 if (!dl_prio(p->normal_prio) || 3815 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3816 p->dl.dl_boosted = 1; 3817 queue_flag |= ENQUEUE_REPLENISH; 3818 } else 3819 p->dl.dl_boosted = 0; 3820 p->sched_class = &dl_sched_class; 3821 } else if (rt_prio(prio)) { 3822 if (dl_prio(oldprio)) 3823 p->dl.dl_boosted = 0; 3824 if (oldprio < prio) 3825 queue_flag |= ENQUEUE_HEAD; 3826 p->sched_class = &rt_sched_class; 3827 } else { 3828 if (dl_prio(oldprio)) 3829 p->dl.dl_boosted = 0; 3830 if (rt_prio(oldprio)) 3831 p->rt.timeout = 0; 3832 p->sched_class = &fair_sched_class; 3833 } 3834 3835 p->prio = prio; 3836 3837 if (queued) 3838 enqueue_task(rq, p, queue_flag); 3839 if (running) 3840 set_curr_task(rq, p); 3841 3842 check_class_changed(rq, p, prev_class, oldprio); 3843 out_unlock: 3844 /* Avoid rq from going away on us: */ 3845 preempt_disable(); 3846 __task_rq_unlock(rq, &rf); 3847 3848 balance_callback(rq); 3849 preempt_enable(); 3850 } 3851 #else 3852 static inline int rt_effective_prio(struct task_struct *p, int prio) 3853 { 3854 return prio; 3855 } 3856 #endif 3857 3858 void set_user_nice(struct task_struct *p, long nice) 3859 { 3860 bool queued, running; 3861 int old_prio, delta; 3862 struct rq_flags rf; 3863 struct rq *rq; 3864 3865 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3866 return; 3867 /* 3868 * We have to be careful, if called from sys_setpriority(), 3869 * the task might be in the middle of scheduling on another CPU. 3870 */ 3871 rq = task_rq_lock(p, &rf); 3872 update_rq_clock(rq); 3873 3874 /* 3875 * The RT priorities are set via sched_setscheduler(), but we still 3876 * allow the 'normal' nice value to be set - but as expected 3877 * it wont have any effect on scheduling until the task is 3878 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3879 */ 3880 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3881 p->static_prio = NICE_TO_PRIO(nice); 3882 goto out_unlock; 3883 } 3884 queued = task_on_rq_queued(p); 3885 running = task_current(rq, p); 3886 if (queued) 3887 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3888 if (running) 3889 put_prev_task(rq, p); 3890 3891 p->static_prio = NICE_TO_PRIO(nice); 3892 set_load_weight(p, true); 3893 old_prio = p->prio; 3894 p->prio = effective_prio(p); 3895 delta = p->prio - old_prio; 3896 3897 if (queued) { 3898 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3899 /* 3900 * If the task increased its priority or is running and 3901 * lowered its priority, then reschedule its CPU: 3902 */ 3903 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3904 resched_curr(rq); 3905 } 3906 if (running) 3907 set_curr_task(rq, p); 3908 out_unlock: 3909 task_rq_unlock(rq, p, &rf); 3910 } 3911 EXPORT_SYMBOL(set_user_nice); 3912 3913 /* 3914 * can_nice - check if a task can reduce its nice value 3915 * @p: task 3916 * @nice: nice value 3917 */ 3918 int can_nice(const struct task_struct *p, const int nice) 3919 { 3920 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3921 int nice_rlim = nice_to_rlimit(nice); 3922 3923 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3924 capable(CAP_SYS_NICE)); 3925 } 3926 3927 #ifdef __ARCH_WANT_SYS_NICE 3928 3929 /* 3930 * sys_nice - change the priority of the current process. 3931 * @increment: priority increment 3932 * 3933 * sys_setpriority is a more generic, but much slower function that 3934 * does similar things. 3935 */ 3936 SYSCALL_DEFINE1(nice, int, increment) 3937 { 3938 long nice, retval; 3939 3940 /* 3941 * Setpriority might change our priority at the same moment. 3942 * We don't have to worry. Conceptually one call occurs first 3943 * and we have a single winner. 3944 */ 3945 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3946 nice = task_nice(current) + increment; 3947 3948 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3949 if (increment < 0 && !can_nice(current, nice)) 3950 return -EPERM; 3951 3952 retval = security_task_setnice(current, nice); 3953 if (retval) 3954 return retval; 3955 3956 set_user_nice(current, nice); 3957 return 0; 3958 } 3959 3960 #endif 3961 3962 /** 3963 * task_prio - return the priority value of a given task. 3964 * @p: the task in question. 3965 * 3966 * Return: The priority value as seen by users in /proc. 3967 * RT tasks are offset by -200. Normal tasks are centered 3968 * around 0, value goes from -16 to +15. 3969 */ 3970 int task_prio(const struct task_struct *p) 3971 { 3972 return p->prio - MAX_RT_PRIO; 3973 } 3974 3975 /** 3976 * idle_cpu - is a given CPU idle currently? 3977 * @cpu: the processor in question. 3978 * 3979 * Return: 1 if the CPU is currently idle. 0 otherwise. 3980 */ 3981 int idle_cpu(int cpu) 3982 { 3983 struct rq *rq = cpu_rq(cpu); 3984 3985 if (rq->curr != rq->idle) 3986 return 0; 3987 3988 if (rq->nr_running) 3989 return 0; 3990 3991 #ifdef CONFIG_SMP 3992 if (!llist_empty(&rq->wake_list)) 3993 return 0; 3994 #endif 3995 3996 return 1; 3997 } 3998 3999 /** 4000 * available_idle_cpu - is a given CPU idle for enqueuing work. 4001 * @cpu: the CPU in question. 4002 * 4003 * Return: 1 if the CPU is currently idle. 0 otherwise. 4004 */ 4005 int available_idle_cpu(int cpu) 4006 { 4007 if (!idle_cpu(cpu)) 4008 return 0; 4009 4010 if (vcpu_is_preempted(cpu)) 4011 return 0; 4012 4013 return 1; 4014 } 4015 4016 /** 4017 * idle_task - return the idle task for a given CPU. 4018 * @cpu: the processor in question. 4019 * 4020 * Return: The idle task for the CPU @cpu. 4021 */ 4022 struct task_struct *idle_task(int cpu) 4023 { 4024 return cpu_rq(cpu)->idle; 4025 } 4026 4027 /** 4028 * find_process_by_pid - find a process with a matching PID value. 4029 * @pid: the pid in question. 4030 * 4031 * The task of @pid, if found. %NULL otherwise. 4032 */ 4033 static struct task_struct *find_process_by_pid(pid_t pid) 4034 { 4035 return pid ? find_task_by_vpid(pid) : current; 4036 } 4037 4038 /* 4039 * sched_setparam() passes in -1 for its policy, to let the functions 4040 * it calls know not to change it. 4041 */ 4042 #define SETPARAM_POLICY -1 4043 4044 static void __setscheduler_params(struct task_struct *p, 4045 const struct sched_attr *attr) 4046 { 4047 int policy = attr->sched_policy; 4048 4049 if (policy == SETPARAM_POLICY) 4050 policy = p->policy; 4051 4052 p->policy = policy; 4053 4054 if (dl_policy(policy)) 4055 __setparam_dl(p, attr); 4056 else if (fair_policy(policy)) 4057 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4058 4059 /* 4060 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4061 * !rt_policy. Always setting this ensures that things like 4062 * getparam()/getattr() don't report silly values for !rt tasks. 4063 */ 4064 p->rt_priority = attr->sched_priority; 4065 p->normal_prio = normal_prio(p); 4066 set_load_weight(p, true); 4067 } 4068 4069 /* Actually do priority change: must hold pi & rq lock. */ 4070 static void __setscheduler(struct rq *rq, struct task_struct *p, 4071 const struct sched_attr *attr, bool keep_boost) 4072 { 4073 __setscheduler_params(p, attr); 4074 4075 /* 4076 * Keep a potential priority boosting if called from 4077 * sched_setscheduler(). 4078 */ 4079 p->prio = normal_prio(p); 4080 if (keep_boost) 4081 p->prio = rt_effective_prio(p, p->prio); 4082 4083 if (dl_prio(p->prio)) 4084 p->sched_class = &dl_sched_class; 4085 else if (rt_prio(p->prio)) 4086 p->sched_class = &rt_sched_class; 4087 else 4088 p->sched_class = &fair_sched_class; 4089 } 4090 4091 /* 4092 * Check the target process has a UID that matches the current process's: 4093 */ 4094 static bool check_same_owner(struct task_struct *p) 4095 { 4096 const struct cred *cred = current_cred(), *pcred; 4097 bool match; 4098 4099 rcu_read_lock(); 4100 pcred = __task_cred(p); 4101 match = (uid_eq(cred->euid, pcred->euid) || 4102 uid_eq(cred->euid, pcred->uid)); 4103 rcu_read_unlock(); 4104 return match; 4105 } 4106 4107 static int __sched_setscheduler(struct task_struct *p, 4108 const struct sched_attr *attr, 4109 bool user, bool pi) 4110 { 4111 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4112 MAX_RT_PRIO - 1 - attr->sched_priority; 4113 int retval, oldprio, oldpolicy = -1, queued, running; 4114 int new_effective_prio, policy = attr->sched_policy; 4115 const struct sched_class *prev_class; 4116 struct rq_flags rf; 4117 int reset_on_fork; 4118 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4119 struct rq *rq; 4120 4121 /* The pi code expects interrupts enabled */ 4122 BUG_ON(pi && in_interrupt()); 4123 recheck: 4124 /* Double check policy once rq lock held: */ 4125 if (policy < 0) { 4126 reset_on_fork = p->sched_reset_on_fork; 4127 policy = oldpolicy = p->policy; 4128 } else { 4129 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4130 4131 if (!valid_policy(policy)) 4132 return -EINVAL; 4133 } 4134 4135 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4136 return -EINVAL; 4137 4138 /* 4139 * Valid priorities for SCHED_FIFO and SCHED_RR are 4140 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4141 * SCHED_BATCH and SCHED_IDLE is 0. 4142 */ 4143 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4144 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4145 return -EINVAL; 4146 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4147 (rt_policy(policy) != (attr->sched_priority != 0))) 4148 return -EINVAL; 4149 4150 /* 4151 * Allow unprivileged RT tasks to decrease priority: 4152 */ 4153 if (user && !capable(CAP_SYS_NICE)) { 4154 if (fair_policy(policy)) { 4155 if (attr->sched_nice < task_nice(p) && 4156 !can_nice(p, attr->sched_nice)) 4157 return -EPERM; 4158 } 4159 4160 if (rt_policy(policy)) { 4161 unsigned long rlim_rtprio = 4162 task_rlimit(p, RLIMIT_RTPRIO); 4163 4164 /* Can't set/change the rt policy: */ 4165 if (policy != p->policy && !rlim_rtprio) 4166 return -EPERM; 4167 4168 /* Can't increase priority: */ 4169 if (attr->sched_priority > p->rt_priority && 4170 attr->sched_priority > rlim_rtprio) 4171 return -EPERM; 4172 } 4173 4174 /* 4175 * Can't set/change SCHED_DEADLINE policy at all for now 4176 * (safest behavior); in the future we would like to allow 4177 * unprivileged DL tasks to increase their relative deadline 4178 * or reduce their runtime (both ways reducing utilization) 4179 */ 4180 if (dl_policy(policy)) 4181 return -EPERM; 4182 4183 /* 4184 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4185 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4186 */ 4187 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4188 if (!can_nice(p, task_nice(p))) 4189 return -EPERM; 4190 } 4191 4192 /* Can't change other user's priorities: */ 4193 if (!check_same_owner(p)) 4194 return -EPERM; 4195 4196 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4197 if (p->sched_reset_on_fork && !reset_on_fork) 4198 return -EPERM; 4199 } 4200 4201 if (user) { 4202 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4203 return -EINVAL; 4204 4205 retval = security_task_setscheduler(p); 4206 if (retval) 4207 return retval; 4208 } 4209 4210 /* 4211 * Make sure no PI-waiters arrive (or leave) while we are 4212 * changing the priority of the task: 4213 * 4214 * To be able to change p->policy safely, the appropriate 4215 * runqueue lock must be held. 4216 */ 4217 rq = task_rq_lock(p, &rf); 4218 update_rq_clock(rq); 4219 4220 /* 4221 * Changing the policy of the stop threads its a very bad idea: 4222 */ 4223 if (p == rq->stop) { 4224 task_rq_unlock(rq, p, &rf); 4225 return -EINVAL; 4226 } 4227 4228 /* 4229 * If not changing anything there's no need to proceed further, 4230 * but store a possible modification of reset_on_fork. 4231 */ 4232 if (unlikely(policy == p->policy)) { 4233 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4234 goto change; 4235 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4236 goto change; 4237 if (dl_policy(policy) && dl_param_changed(p, attr)) 4238 goto change; 4239 4240 p->sched_reset_on_fork = reset_on_fork; 4241 task_rq_unlock(rq, p, &rf); 4242 return 0; 4243 } 4244 change: 4245 4246 if (user) { 4247 #ifdef CONFIG_RT_GROUP_SCHED 4248 /* 4249 * Do not allow realtime tasks into groups that have no runtime 4250 * assigned. 4251 */ 4252 if (rt_bandwidth_enabled() && rt_policy(policy) && 4253 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4254 !task_group_is_autogroup(task_group(p))) { 4255 task_rq_unlock(rq, p, &rf); 4256 return -EPERM; 4257 } 4258 #endif 4259 #ifdef CONFIG_SMP 4260 if (dl_bandwidth_enabled() && dl_policy(policy) && 4261 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4262 cpumask_t *span = rq->rd->span; 4263 4264 /* 4265 * Don't allow tasks with an affinity mask smaller than 4266 * the entire root_domain to become SCHED_DEADLINE. We 4267 * will also fail if there's no bandwidth available. 4268 */ 4269 if (!cpumask_subset(span, &p->cpus_allowed) || 4270 rq->rd->dl_bw.bw == 0) { 4271 task_rq_unlock(rq, p, &rf); 4272 return -EPERM; 4273 } 4274 } 4275 #endif 4276 } 4277 4278 /* Re-check policy now with rq lock held: */ 4279 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4280 policy = oldpolicy = -1; 4281 task_rq_unlock(rq, p, &rf); 4282 goto recheck; 4283 } 4284 4285 /* 4286 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4287 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4288 * is available. 4289 */ 4290 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4291 task_rq_unlock(rq, p, &rf); 4292 return -EBUSY; 4293 } 4294 4295 p->sched_reset_on_fork = reset_on_fork; 4296 oldprio = p->prio; 4297 4298 if (pi) { 4299 /* 4300 * Take priority boosted tasks into account. If the new 4301 * effective priority is unchanged, we just store the new 4302 * normal parameters and do not touch the scheduler class and 4303 * the runqueue. This will be done when the task deboost 4304 * itself. 4305 */ 4306 new_effective_prio = rt_effective_prio(p, newprio); 4307 if (new_effective_prio == oldprio) 4308 queue_flags &= ~DEQUEUE_MOVE; 4309 } 4310 4311 queued = task_on_rq_queued(p); 4312 running = task_current(rq, p); 4313 if (queued) 4314 dequeue_task(rq, p, queue_flags); 4315 if (running) 4316 put_prev_task(rq, p); 4317 4318 prev_class = p->sched_class; 4319 __setscheduler(rq, p, attr, pi); 4320 4321 if (queued) { 4322 /* 4323 * We enqueue to tail when the priority of a task is 4324 * increased (user space view). 4325 */ 4326 if (oldprio < p->prio) 4327 queue_flags |= ENQUEUE_HEAD; 4328 4329 enqueue_task(rq, p, queue_flags); 4330 } 4331 if (running) 4332 set_curr_task(rq, p); 4333 4334 check_class_changed(rq, p, prev_class, oldprio); 4335 4336 /* Avoid rq from going away on us: */ 4337 preempt_disable(); 4338 task_rq_unlock(rq, p, &rf); 4339 4340 if (pi) 4341 rt_mutex_adjust_pi(p); 4342 4343 /* Run balance callbacks after we've adjusted the PI chain: */ 4344 balance_callback(rq); 4345 preempt_enable(); 4346 4347 return 0; 4348 } 4349 4350 static int _sched_setscheduler(struct task_struct *p, int policy, 4351 const struct sched_param *param, bool check) 4352 { 4353 struct sched_attr attr = { 4354 .sched_policy = policy, 4355 .sched_priority = param->sched_priority, 4356 .sched_nice = PRIO_TO_NICE(p->static_prio), 4357 }; 4358 4359 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4360 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4361 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4362 policy &= ~SCHED_RESET_ON_FORK; 4363 attr.sched_policy = policy; 4364 } 4365 4366 return __sched_setscheduler(p, &attr, check, true); 4367 } 4368 /** 4369 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4370 * @p: the task in question. 4371 * @policy: new policy. 4372 * @param: structure containing the new RT priority. 4373 * 4374 * Return: 0 on success. An error code otherwise. 4375 * 4376 * NOTE that the task may be already dead. 4377 */ 4378 int sched_setscheduler(struct task_struct *p, int policy, 4379 const struct sched_param *param) 4380 { 4381 return _sched_setscheduler(p, policy, param, true); 4382 } 4383 EXPORT_SYMBOL_GPL(sched_setscheduler); 4384 4385 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4386 { 4387 return __sched_setscheduler(p, attr, true, true); 4388 } 4389 EXPORT_SYMBOL_GPL(sched_setattr); 4390 4391 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4392 { 4393 return __sched_setscheduler(p, attr, false, true); 4394 } 4395 4396 /** 4397 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4398 * @p: the task in question. 4399 * @policy: new policy. 4400 * @param: structure containing the new RT priority. 4401 * 4402 * Just like sched_setscheduler, only don't bother checking if the 4403 * current context has permission. For example, this is needed in 4404 * stop_machine(): we create temporary high priority worker threads, 4405 * but our caller might not have that capability. 4406 * 4407 * Return: 0 on success. An error code otherwise. 4408 */ 4409 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4410 const struct sched_param *param) 4411 { 4412 return _sched_setscheduler(p, policy, param, false); 4413 } 4414 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4415 4416 static int 4417 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4418 { 4419 struct sched_param lparam; 4420 struct task_struct *p; 4421 int retval; 4422 4423 if (!param || pid < 0) 4424 return -EINVAL; 4425 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4426 return -EFAULT; 4427 4428 rcu_read_lock(); 4429 retval = -ESRCH; 4430 p = find_process_by_pid(pid); 4431 if (p != NULL) 4432 retval = sched_setscheduler(p, policy, &lparam); 4433 rcu_read_unlock(); 4434 4435 return retval; 4436 } 4437 4438 /* 4439 * Mimics kernel/events/core.c perf_copy_attr(). 4440 */ 4441 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4442 { 4443 u32 size; 4444 int ret; 4445 4446 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0)) 4447 return -EFAULT; 4448 4449 /* Zero the full structure, so that a short copy will be nice: */ 4450 memset(attr, 0, sizeof(*attr)); 4451 4452 ret = get_user(size, &uattr->size); 4453 if (ret) 4454 return ret; 4455 4456 /* Bail out on silly large: */ 4457 if (size > PAGE_SIZE) 4458 goto err_size; 4459 4460 /* ABI compatibility quirk: */ 4461 if (!size) 4462 size = SCHED_ATTR_SIZE_VER0; 4463 4464 if (size < SCHED_ATTR_SIZE_VER0) 4465 goto err_size; 4466 4467 /* 4468 * If we're handed a bigger struct than we know of, 4469 * ensure all the unknown bits are 0 - i.e. new 4470 * user-space does not rely on any kernel feature 4471 * extensions we dont know about yet. 4472 */ 4473 if (size > sizeof(*attr)) { 4474 unsigned char __user *addr; 4475 unsigned char __user *end; 4476 unsigned char val; 4477 4478 addr = (void __user *)uattr + sizeof(*attr); 4479 end = (void __user *)uattr + size; 4480 4481 for (; addr < end; addr++) { 4482 ret = get_user(val, addr); 4483 if (ret) 4484 return ret; 4485 if (val) 4486 goto err_size; 4487 } 4488 size = sizeof(*attr); 4489 } 4490 4491 ret = copy_from_user(attr, uattr, size); 4492 if (ret) 4493 return -EFAULT; 4494 4495 /* 4496 * XXX: Do we want to be lenient like existing syscalls; or do we want 4497 * to be strict and return an error on out-of-bounds values? 4498 */ 4499 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4500 4501 return 0; 4502 4503 err_size: 4504 put_user(sizeof(*attr), &uattr->size); 4505 return -E2BIG; 4506 } 4507 4508 /** 4509 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4510 * @pid: the pid in question. 4511 * @policy: new policy. 4512 * @param: structure containing the new RT priority. 4513 * 4514 * Return: 0 on success. An error code otherwise. 4515 */ 4516 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4517 { 4518 if (policy < 0) 4519 return -EINVAL; 4520 4521 return do_sched_setscheduler(pid, policy, param); 4522 } 4523 4524 /** 4525 * sys_sched_setparam - set/change the RT priority of a thread 4526 * @pid: the pid in question. 4527 * @param: structure containing the new RT priority. 4528 * 4529 * Return: 0 on success. An error code otherwise. 4530 */ 4531 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4532 { 4533 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4534 } 4535 4536 /** 4537 * sys_sched_setattr - same as above, but with extended sched_attr 4538 * @pid: the pid in question. 4539 * @uattr: structure containing the extended parameters. 4540 * @flags: for future extension. 4541 */ 4542 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4543 unsigned int, flags) 4544 { 4545 struct sched_attr attr; 4546 struct task_struct *p; 4547 int retval; 4548 4549 if (!uattr || pid < 0 || flags) 4550 return -EINVAL; 4551 4552 retval = sched_copy_attr(uattr, &attr); 4553 if (retval) 4554 return retval; 4555 4556 if ((int)attr.sched_policy < 0) 4557 return -EINVAL; 4558 4559 rcu_read_lock(); 4560 retval = -ESRCH; 4561 p = find_process_by_pid(pid); 4562 if (p != NULL) 4563 retval = sched_setattr(p, &attr); 4564 rcu_read_unlock(); 4565 4566 return retval; 4567 } 4568 4569 /** 4570 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4571 * @pid: the pid in question. 4572 * 4573 * Return: On success, the policy of the thread. Otherwise, a negative error 4574 * code. 4575 */ 4576 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4577 { 4578 struct task_struct *p; 4579 int retval; 4580 4581 if (pid < 0) 4582 return -EINVAL; 4583 4584 retval = -ESRCH; 4585 rcu_read_lock(); 4586 p = find_process_by_pid(pid); 4587 if (p) { 4588 retval = security_task_getscheduler(p); 4589 if (!retval) 4590 retval = p->policy 4591 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4592 } 4593 rcu_read_unlock(); 4594 return retval; 4595 } 4596 4597 /** 4598 * sys_sched_getparam - get the RT priority of a thread 4599 * @pid: the pid in question. 4600 * @param: structure containing the RT priority. 4601 * 4602 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4603 * code. 4604 */ 4605 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4606 { 4607 struct sched_param lp = { .sched_priority = 0 }; 4608 struct task_struct *p; 4609 int retval; 4610 4611 if (!param || pid < 0) 4612 return -EINVAL; 4613 4614 rcu_read_lock(); 4615 p = find_process_by_pid(pid); 4616 retval = -ESRCH; 4617 if (!p) 4618 goto out_unlock; 4619 4620 retval = security_task_getscheduler(p); 4621 if (retval) 4622 goto out_unlock; 4623 4624 if (task_has_rt_policy(p)) 4625 lp.sched_priority = p->rt_priority; 4626 rcu_read_unlock(); 4627 4628 /* 4629 * This one might sleep, we cannot do it with a spinlock held ... 4630 */ 4631 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4632 4633 return retval; 4634 4635 out_unlock: 4636 rcu_read_unlock(); 4637 return retval; 4638 } 4639 4640 static int sched_read_attr(struct sched_attr __user *uattr, 4641 struct sched_attr *attr, 4642 unsigned int usize) 4643 { 4644 int ret; 4645 4646 if (!access_ok(uattr, usize)) 4647 return -EFAULT; 4648 4649 /* 4650 * If we're handed a smaller struct than we know of, 4651 * ensure all the unknown bits are 0 - i.e. old 4652 * user-space does not get uncomplete information. 4653 */ 4654 if (usize < sizeof(*attr)) { 4655 unsigned char *addr; 4656 unsigned char *end; 4657 4658 addr = (void *)attr + usize; 4659 end = (void *)attr + sizeof(*attr); 4660 4661 for (; addr < end; addr++) { 4662 if (*addr) 4663 return -EFBIG; 4664 } 4665 4666 attr->size = usize; 4667 } 4668 4669 ret = copy_to_user(uattr, attr, attr->size); 4670 if (ret) 4671 return -EFAULT; 4672 4673 return 0; 4674 } 4675 4676 /** 4677 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4678 * @pid: the pid in question. 4679 * @uattr: structure containing the extended parameters. 4680 * @size: sizeof(attr) for fwd/bwd comp. 4681 * @flags: for future extension. 4682 */ 4683 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4684 unsigned int, size, unsigned int, flags) 4685 { 4686 struct sched_attr attr = { 4687 .size = sizeof(struct sched_attr), 4688 }; 4689 struct task_struct *p; 4690 int retval; 4691 4692 if (!uattr || pid < 0 || size > PAGE_SIZE || 4693 size < SCHED_ATTR_SIZE_VER0 || flags) 4694 return -EINVAL; 4695 4696 rcu_read_lock(); 4697 p = find_process_by_pid(pid); 4698 retval = -ESRCH; 4699 if (!p) 4700 goto out_unlock; 4701 4702 retval = security_task_getscheduler(p); 4703 if (retval) 4704 goto out_unlock; 4705 4706 attr.sched_policy = p->policy; 4707 if (p->sched_reset_on_fork) 4708 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4709 if (task_has_dl_policy(p)) 4710 __getparam_dl(p, &attr); 4711 else if (task_has_rt_policy(p)) 4712 attr.sched_priority = p->rt_priority; 4713 else 4714 attr.sched_nice = task_nice(p); 4715 4716 rcu_read_unlock(); 4717 4718 retval = sched_read_attr(uattr, &attr, size); 4719 return retval; 4720 4721 out_unlock: 4722 rcu_read_unlock(); 4723 return retval; 4724 } 4725 4726 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4727 { 4728 cpumask_var_t cpus_allowed, new_mask; 4729 struct task_struct *p; 4730 int retval; 4731 4732 rcu_read_lock(); 4733 4734 p = find_process_by_pid(pid); 4735 if (!p) { 4736 rcu_read_unlock(); 4737 return -ESRCH; 4738 } 4739 4740 /* Prevent p going away */ 4741 get_task_struct(p); 4742 rcu_read_unlock(); 4743 4744 if (p->flags & PF_NO_SETAFFINITY) { 4745 retval = -EINVAL; 4746 goto out_put_task; 4747 } 4748 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4749 retval = -ENOMEM; 4750 goto out_put_task; 4751 } 4752 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4753 retval = -ENOMEM; 4754 goto out_free_cpus_allowed; 4755 } 4756 retval = -EPERM; 4757 if (!check_same_owner(p)) { 4758 rcu_read_lock(); 4759 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4760 rcu_read_unlock(); 4761 goto out_free_new_mask; 4762 } 4763 rcu_read_unlock(); 4764 } 4765 4766 retval = security_task_setscheduler(p); 4767 if (retval) 4768 goto out_free_new_mask; 4769 4770 4771 cpuset_cpus_allowed(p, cpus_allowed); 4772 cpumask_and(new_mask, in_mask, cpus_allowed); 4773 4774 /* 4775 * Since bandwidth control happens on root_domain basis, 4776 * if admission test is enabled, we only admit -deadline 4777 * tasks allowed to run on all the CPUs in the task's 4778 * root_domain. 4779 */ 4780 #ifdef CONFIG_SMP 4781 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4782 rcu_read_lock(); 4783 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4784 retval = -EBUSY; 4785 rcu_read_unlock(); 4786 goto out_free_new_mask; 4787 } 4788 rcu_read_unlock(); 4789 } 4790 #endif 4791 again: 4792 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4793 4794 if (!retval) { 4795 cpuset_cpus_allowed(p, cpus_allowed); 4796 if (!cpumask_subset(new_mask, cpus_allowed)) { 4797 /* 4798 * We must have raced with a concurrent cpuset 4799 * update. Just reset the cpus_allowed to the 4800 * cpuset's cpus_allowed 4801 */ 4802 cpumask_copy(new_mask, cpus_allowed); 4803 goto again; 4804 } 4805 } 4806 out_free_new_mask: 4807 free_cpumask_var(new_mask); 4808 out_free_cpus_allowed: 4809 free_cpumask_var(cpus_allowed); 4810 out_put_task: 4811 put_task_struct(p); 4812 return retval; 4813 } 4814 4815 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4816 struct cpumask *new_mask) 4817 { 4818 if (len < cpumask_size()) 4819 cpumask_clear(new_mask); 4820 else if (len > cpumask_size()) 4821 len = cpumask_size(); 4822 4823 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4824 } 4825 4826 /** 4827 * sys_sched_setaffinity - set the CPU affinity of a process 4828 * @pid: pid of the process 4829 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4830 * @user_mask_ptr: user-space pointer to the new CPU mask 4831 * 4832 * Return: 0 on success. An error code otherwise. 4833 */ 4834 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4835 unsigned long __user *, user_mask_ptr) 4836 { 4837 cpumask_var_t new_mask; 4838 int retval; 4839 4840 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4841 return -ENOMEM; 4842 4843 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4844 if (retval == 0) 4845 retval = sched_setaffinity(pid, new_mask); 4846 free_cpumask_var(new_mask); 4847 return retval; 4848 } 4849 4850 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4851 { 4852 struct task_struct *p; 4853 unsigned long flags; 4854 int retval; 4855 4856 rcu_read_lock(); 4857 4858 retval = -ESRCH; 4859 p = find_process_by_pid(pid); 4860 if (!p) 4861 goto out_unlock; 4862 4863 retval = security_task_getscheduler(p); 4864 if (retval) 4865 goto out_unlock; 4866 4867 raw_spin_lock_irqsave(&p->pi_lock, flags); 4868 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4869 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4870 4871 out_unlock: 4872 rcu_read_unlock(); 4873 4874 return retval; 4875 } 4876 4877 /** 4878 * sys_sched_getaffinity - get the CPU affinity of a process 4879 * @pid: pid of the process 4880 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4881 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4882 * 4883 * Return: size of CPU mask copied to user_mask_ptr on success. An 4884 * error code otherwise. 4885 */ 4886 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4887 unsigned long __user *, user_mask_ptr) 4888 { 4889 int ret; 4890 cpumask_var_t mask; 4891 4892 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4893 return -EINVAL; 4894 if (len & (sizeof(unsigned long)-1)) 4895 return -EINVAL; 4896 4897 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4898 return -ENOMEM; 4899 4900 ret = sched_getaffinity(pid, mask); 4901 if (ret == 0) { 4902 unsigned int retlen = min(len, cpumask_size()); 4903 4904 if (copy_to_user(user_mask_ptr, mask, retlen)) 4905 ret = -EFAULT; 4906 else 4907 ret = retlen; 4908 } 4909 free_cpumask_var(mask); 4910 4911 return ret; 4912 } 4913 4914 /** 4915 * sys_sched_yield - yield the current processor to other threads. 4916 * 4917 * This function yields the current CPU to other tasks. If there are no 4918 * other threads running on this CPU then this function will return. 4919 * 4920 * Return: 0. 4921 */ 4922 static void do_sched_yield(void) 4923 { 4924 struct rq_flags rf; 4925 struct rq *rq; 4926 4927 rq = this_rq_lock_irq(&rf); 4928 4929 schedstat_inc(rq->yld_count); 4930 current->sched_class->yield_task(rq); 4931 4932 /* 4933 * Since we are going to call schedule() anyway, there's 4934 * no need to preempt or enable interrupts: 4935 */ 4936 preempt_disable(); 4937 rq_unlock(rq, &rf); 4938 sched_preempt_enable_no_resched(); 4939 4940 schedule(); 4941 } 4942 4943 SYSCALL_DEFINE0(sched_yield) 4944 { 4945 do_sched_yield(); 4946 return 0; 4947 } 4948 4949 #ifndef CONFIG_PREEMPT 4950 int __sched _cond_resched(void) 4951 { 4952 if (should_resched(0)) { 4953 preempt_schedule_common(); 4954 return 1; 4955 } 4956 rcu_all_qs(); 4957 return 0; 4958 } 4959 EXPORT_SYMBOL(_cond_resched); 4960 #endif 4961 4962 /* 4963 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4964 * call schedule, and on return reacquire the lock. 4965 * 4966 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4967 * operations here to prevent schedule() from being called twice (once via 4968 * spin_unlock(), once by hand). 4969 */ 4970 int __cond_resched_lock(spinlock_t *lock) 4971 { 4972 int resched = should_resched(PREEMPT_LOCK_OFFSET); 4973 int ret = 0; 4974 4975 lockdep_assert_held(lock); 4976 4977 if (spin_needbreak(lock) || resched) { 4978 spin_unlock(lock); 4979 if (resched) 4980 preempt_schedule_common(); 4981 else 4982 cpu_relax(); 4983 ret = 1; 4984 spin_lock(lock); 4985 } 4986 return ret; 4987 } 4988 EXPORT_SYMBOL(__cond_resched_lock); 4989 4990 /** 4991 * yield - yield the current processor to other threads. 4992 * 4993 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4994 * 4995 * The scheduler is at all times free to pick the calling task as the most 4996 * eligible task to run, if removing the yield() call from your code breaks 4997 * it, its already broken. 4998 * 4999 * Typical broken usage is: 5000 * 5001 * while (!event) 5002 * yield(); 5003 * 5004 * where one assumes that yield() will let 'the other' process run that will 5005 * make event true. If the current task is a SCHED_FIFO task that will never 5006 * happen. Never use yield() as a progress guarantee!! 5007 * 5008 * If you want to use yield() to wait for something, use wait_event(). 5009 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5010 * If you still want to use yield(), do not! 5011 */ 5012 void __sched yield(void) 5013 { 5014 set_current_state(TASK_RUNNING); 5015 do_sched_yield(); 5016 } 5017 EXPORT_SYMBOL(yield); 5018 5019 /** 5020 * yield_to - yield the current processor to another thread in 5021 * your thread group, or accelerate that thread toward the 5022 * processor it's on. 5023 * @p: target task 5024 * @preempt: whether task preemption is allowed or not 5025 * 5026 * It's the caller's job to ensure that the target task struct 5027 * can't go away on us before we can do any checks. 5028 * 5029 * Return: 5030 * true (>0) if we indeed boosted the target task. 5031 * false (0) if we failed to boost the target. 5032 * -ESRCH if there's no task to yield to. 5033 */ 5034 int __sched yield_to(struct task_struct *p, bool preempt) 5035 { 5036 struct task_struct *curr = current; 5037 struct rq *rq, *p_rq; 5038 unsigned long flags; 5039 int yielded = 0; 5040 5041 local_irq_save(flags); 5042 rq = this_rq(); 5043 5044 again: 5045 p_rq = task_rq(p); 5046 /* 5047 * If we're the only runnable task on the rq and target rq also 5048 * has only one task, there's absolutely no point in yielding. 5049 */ 5050 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5051 yielded = -ESRCH; 5052 goto out_irq; 5053 } 5054 5055 double_rq_lock(rq, p_rq); 5056 if (task_rq(p) != p_rq) { 5057 double_rq_unlock(rq, p_rq); 5058 goto again; 5059 } 5060 5061 if (!curr->sched_class->yield_to_task) 5062 goto out_unlock; 5063 5064 if (curr->sched_class != p->sched_class) 5065 goto out_unlock; 5066 5067 if (task_running(p_rq, p) || p->state) 5068 goto out_unlock; 5069 5070 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5071 if (yielded) { 5072 schedstat_inc(rq->yld_count); 5073 /* 5074 * Make p's CPU reschedule; pick_next_entity takes care of 5075 * fairness. 5076 */ 5077 if (preempt && rq != p_rq) 5078 resched_curr(p_rq); 5079 } 5080 5081 out_unlock: 5082 double_rq_unlock(rq, p_rq); 5083 out_irq: 5084 local_irq_restore(flags); 5085 5086 if (yielded > 0) 5087 schedule(); 5088 5089 return yielded; 5090 } 5091 EXPORT_SYMBOL_GPL(yield_to); 5092 5093 int io_schedule_prepare(void) 5094 { 5095 int old_iowait = current->in_iowait; 5096 5097 current->in_iowait = 1; 5098 blk_schedule_flush_plug(current); 5099 5100 return old_iowait; 5101 } 5102 5103 void io_schedule_finish(int token) 5104 { 5105 current->in_iowait = token; 5106 } 5107 5108 /* 5109 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5110 * that process accounting knows that this is a task in IO wait state. 5111 */ 5112 long __sched io_schedule_timeout(long timeout) 5113 { 5114 int token; 5115 long ret; 5116 5117 token = io_schedule_prepare(); 5118 ret = schedule_timeout(timeout); 5119 io_schedule_finish(token); 5120 5121 return ret; 5122 } 5123 EXPORT_SYMBOL(io_schedule_timeout); 5124 5125 void io_schedule(void) 5126 { 5127 int token; 5128 5129 token = io_schedule_prepare(); 5130 schedule(); 5131 io_schedule_finish(token); 5132 } 5133 EXPORT_SYMBOL(io_schedule); 5134 5135 /** 5136 * sys_sched_get_priority_max - return maximum RT priority. 5137 * @policy: scheduling class. 5138 * 5139 * Return: On success, this syscall returns the maximum 5140 * rt_priority that can be used by a given scheduling class. 5141 * On failure, a negative error code is returned. 5142 */ 5143 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5144 { 5145 int ret = -EINVAL; 5146 5147 switch (policy) { 5148 case SCHED_FIFO: 5149 case SCHED_RR: 5150 ret = MAX_USER_RT_PRIO-1; 5151 break; 5152 case SCHED_DEADLINE: 5153 case SCHED_NORMAL: 5154 case SCHED_BATCH: 5155 case SCHED_IDLE: 5156 ret = 0; 5157 break; 5158 } 5159 return ret; 5160 } 5161 5162 /** 5163 * sys_sched_get_priority_min - return minimum RT priority. 5164 * @policy: scheduling class. 5165 * 5166 * Return: On success, this syscall returns the minimum 5167 * rt_priority that can be used by a given scheduling class. 5168 * On failure, a negative error code is returned. 5169 */ 5170 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5171 { 5172 int ret = -EINVAL; 5173 5174 switch (policy) { 5175 case SCHED_FIFO: 5176 case SCHED_RR: 5177 ret = 1; 5178 break; 5179 case SCHED_DEADLINE: 5180 case SCHED_NORMAL: 5181 case SCHED_BATCH: 5182 case SCHED_IDLE: 5183 ret = 0; 5184 } 5185 return ret; 5186 } 5187 5188 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5189 { 5190 struct task_struct *p; 5191 unsigned int time_slice; 5192 struct rq_flags rf; 5193 struct rq *rq; 5194 int retval; 5195 5196 if (pid < 0) 5197 return -EINVAL; 5198 5199 retval = -ESRCH; 5200 rcu_read_lock(); 5201 p = find_process_by_pid(pid); 5202 if (!p) 5203 goto out_unlock; 5204 5205 retval = security_task_getscheduler(p); 5206 if (retval) 5207 goto out_unlock; 5208 5209 rq = task_rq_lock(p, &rf); 5210 time_slice = 0; 5211 if (p->sched_class->get_rr_interval) 5212 time_slice = p->sched_class->get_rr_interval(rq, p); 5213 task_rq_unlock(rq, p, &rf); 5214 5215 rcu_read_unlock(); 5216 jiffies_to_timespec64(time_slice, t); 5217 return 0; 5218 5219 out_unlock: 5220 rcu_read_unlock(); 5221 return retval; 5222 } 5223 5224 /** 5225 * sys_sched_rr_get_interval - return the default timeslice of a process. 5226 * @pid: pid of the process. 5227 * @interval: userspace pointer to the timeslice value. 5228 * 5229 * this syscall writes the default timeslice value of a given process 5230 * into the user-space timespec buffer. A value of '0' means infinity. 5231 * 5232 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5233 * an error code. 5234 */ 5235 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5236 struct __kernel_timespec __user *, interval) 5237 { 5238 struct timespec64 t; 5239 int retval = sched_rr_get_interval(pid, &t); 5240 5241 if (retval == 0) 5242 retval = put_timespec64(&t, interval); 5243 5244 return retval; 5245 } 5246 5247 #ifdef CONFIG_COMPAT_32BIT_TIME 5248 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 5249 struct old_timespec32 __user *, interval) 5250 { 5251 struct timespec64 t; 5252 int retval = sched_rr_get_interval(pid, &t); 5253 5254 if (retval == 0) 5255 retval = put_old_timespec32(&t, interval); 5256 return retval; 5257 } 5258 #endif 5259 5260 void sched_show_task(struct task_struct *p) 5261 { 5262 unsigned long free = 0; 5263 int ppid; 5264 5265 if (!try_get_task_stack(p)) 5266 return; 5267 5268 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5269 5270 if (p->state == TASK_RUNNING) 5271 printk(KERN_CONT " running task "); 5272 #ifdef CONFIG_DEBUG_STACK_USAGE 5273 free = stack_not_used(p); 5274 #endif 5275 ppid = 0; 5276 rcu_read_lock(); 5277 if (pid_alive(p)) 5278 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5279 rcu_read_unlock(); 5280 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5281 task_pid_nr(p), ppid, 5282 (unsigned long)task_thread_info(p)->flags); 5283 5284 print_worker_info(KERN_INFO, p); 5285 show_stack(p, NULL); 5286 put_task_stack(p); 5287 } 5288 EXPORT_SYMBOL_GPL(sched_show_task); 5289 5290 static inline bool 5291 state_filter_match(unsigned long state_filter, struct task_struct *p) 5292 { 5293 /* no filter, everything matches */ 5294 if (!state_filter) 5295 return true; 5296 5297 /* filter, but doesn't match */ 5298 if (!(p->state & state_filter)) 5299 return false; 5300 5301 /* 5302 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5303 * TASK_KILLABLE). 5304 */ 5305 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5306 return false; 5307 5308 return true; 5309 } 5310 5311 5312 void show_state_filter(unsigned long state_filter) 5313 { 5314 struct task_struct *g, *p; 5315 5316 #if BITS_PER_LONG == 32 5317 printk(KERN_INFO 5318 " task PC stack pid father\n"); 5319 #else 5320 printk(KERN_INFO 5321 " task PC stack pid father\n"); 5322 #endif 5323 rcu_read_lock(); 5324 for_each_process_thread(g, p) { 5325 /* 5326 * reset the NMI-timeout, listing all files on a slow 5327 * console might take a lot of time: 5328 * Also, reset softlockup watchdogs on all CPUs, because 5329 * another CPU might be blocked waiting for us to process 5330 * an IPI. 5331 */ 5332 touch_nmi_watchdog(); 5333 touch_all_softlockup_watchdogs(); 5334 if (state_filter_match(state_filter, p)) 5335 sched_show_task(p); 5336 } 5337 5338 #ifdef CONFIG_SCHED_DEBUG 5339 if (!state_filter) 5340 sysrq_sched_debug_show(); 5341 #endif 5342 rcu_read_unlock(); 5343 /* 5344 * Only show locks if all tasks are dumped: 5345 */ 5346 if (!state_filter) 5347 debug_show_all_locks(); 5348 } 5349 5350 /** 5351 * init_idle - set up an idle thread for a given CPU 5352 * @idle: task in question 5353 * @cpu: CPU the idle task belongs to 5354 * 5355 * NOTE: this function does not set the idle thread's NEED_RESCHED 5356 * flag, to make booting more robust. 5357 */ 5358 void init_idle(struct task_struct *idle, int cpu) 5359 { 5360 struct rq *rq = cpu_rq(cpu); 5361 unsigned long flags; 5362 5363 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5364 raw_spin_lock(&rq->lock); 5365 5366 __sched_fork(0, idle); 5367 idle->state = TASK_RUNNING; 5368 idle->se.exec_start = sched_clock(); 5369 idle->flags |= PF_IDLE; 5370 5371 kasan_unpoison_task_stack(idle); 5372 5373 #ifdef CONFIG_SMP 5374 /* 5375 * Its possible that init_idle() gets called multiple times on a task, 5376 * in that case do_set_cpus_allowed() will not do the right thing. 5377 * 5378 * And since this is boot we can forgo the serialization. 5379 */ 5380 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5381 #endif 5382 /* 5383 * We're having a chicken and egg problem, even though we are 5384 * holding rq->lock, the CPU isn't yet set to this CPU so the 5385 * lockdep check in task_group() will fail. 5386 * 5387 * Similar case to sched_fork(). / Alternatively we could 5388 * use task_rq_lock() here and obtain the other rq->lock. 5389 * 5390 * Silence PROVE_RCU 5391 */ 5392 rcu_read_lock(); 5393 __set_task_cpu(idle, cpu); 5394 rcu_read_unlock(); 5395 5396 rq->curr = rq->idle = idle; 5397 idle->on_rq = TASK_ON_RQ_QUEUED; 5398 #ifdef CONFIG_SMP 5399 idle->on_cpu = 1; 5400 #endif 5401 raw_spin_unlock(&rq->lock); 5402 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5403 5404 /* Set the preempt count _outside_ the spinlocks! */ 5405 init_idle_preempt_count(idle, cpu); 5406 5407 /* 5408 * The idle tasks have their own, simple scheduling class: 5409 */ 5410 idle->sched_class = &idle_sched_class; 5411 ftrace_graph_init_idle_task(idle, cpu); 5412 vtime_init_idle(idle, cpu); 5413 #ifdef CONFIG_SMP 5414 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5415 #endif 5416 } 5417 5418 #ifdef CONFIG_SMP 5419 5420 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5421 const struct cpumask *trial) 5422 { 5423 int ret = 1; 5424 5425 if (!cpumask_weight(cur)) 5426 return ret; 5427 5428 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5429 5430 return ret; 5431 } 5432 5433 int task_can_attach(struct task_struct *p, 5434 const struct cpumask *cs_cpus_allowed) 5435 { 5436 int ret = 0; 5437 5438 /* 5439 * Kthreads which disallow setaffinity shouldn't be moved 5440 * to a new cpuset; we don't want to change their CPU 5441 * affinity and isolating such threads by their set of 5442 * allowed nodes is unnecessary. Thus, cpusets are not 5443 * applicable for such threads. This prevents checking for 5444 * success of set_cpus_allowed_ptr() on all attached tasks 5445 * before cpus_allowed may be changed. 5446 */ 5447 if (p->flags & PF_NO_SETAFFINITY) { 5448 ret = -EINVAL; 5449 goto out; 5450 } 5451 5452 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5453 cs_cpus_allowed)) 5454 ret = dl_task_can_attach(p, cs_cpus_allowed); 5455 5456 out: 5457 return ret; 5458 } 5459 5460 bool sched_smp_initialized __read_mostly; 5461 5462 #ifdef CONFIG_NUMA_BALANCING 5463 /* Migrate current task p to target_cpu */ 5464 int migrate_task_to(struct task_struct *p, int target_cpu) 5465 { 5466 struct migration_arg arg = { p, target_cpu }; 5467 int curr_cpu = task_cpu(p); 5468 5469 if (curr_cpu == target_cpu) 5470 return 0; 5471 5472 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5473 return -EINVAL; 5474 5475 /* TODO: This is not properly updating schedstats */ 5476 5477 trace_sched_move_numa(p, curr_cpu, target_cpu); 5478 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5479 } 5480 5481 /* 5482 * Requeue a task on a given node and accurately track the number of NUMA 5483 * tasks on the runqueues 5484 */ 5485 void sched_setnuma(struct task_struct *p, int nid) 5486 { 5487 bool queued, running; 5488 struct rq_flags rf; 5489 struct rq *rq; 5490 5491 rq = task_rq_lock(p, &rf); 5492 queued = task_on_rq_queued(p); 5493 running = task_current(rq, p); 5494 5495 if (queued) 5496 dequeue_task(rq, p, DEQUEUE_SAVE); 5497 if (running) 5498 put_prev_task(rq, p); 5499 5500 p->numa_preferred_nid = nid; 5501 5502 if (queued) 5503 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5504 if (running) 5505 set_curr_task(rq, p); 5506 task_rq_unlock(rq, p, &rf); 5507 } 5508 #endif /* CONFIG_NUMA_BALANCING */ 5509 5510 #ifdef CONFIG_HOTPLUG_CPU 5511 /* 5512 * Ensure that the idle task is using init_mm right before its CPU goes 5513 * offline. 5514 */ 5515 void idle_task_exit(void) 5516 { 5517 struct mm_struct *mm = current->active_mm; 5518 5519 BUG_ON(cpu_online(smp_processor_id())); 5520 5521 if (mm != &init_mm) { 5522 switch_mm(mm, &init_mm, current); 5523 current->active_mm = &init_mm; 5524 finish_arch_post_lock_switch(); 5525 } 5526 mmdrop(mm); 5527 } 5528 5529 /* 5530 * Since this CPU is going 'away' for a while, fold any nr_active delta 5531 * we might have. Assumes we're called after migrate_tasks() so that the 5532 * nr_active count is stable. We need to take the teardown thread which 5533 * is calling this into account, so we hand in adjust = 1 to the load 5534 * calculation. 5535 * 5536 * Also see the comment "Global load-average calculations". 5537 */ 5538 static void calc_load_migrate(struct rq *rq) 5539 { 5540 long delta = calc_load_fold_active(rq, 1); 5541 if (delta) 5542 atomic_long_add(delta, &calc_load_tasks); 5543 } 5544 5545 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5546 { 5547 } 5548 5549 static const struct sched_class fake_sched_class = { 5550 .put_prev_task = put_prev_task_fake, 5551 }; 5552 5553 static struct task_struct fake_task = { 5554 /* 5555 * Avoid pull_{rt,dl}_task() 5556 */ 5557 .prio = MAX_PRIO + 1, 5558 .sched_class = &fake_sched_class, 5559 }; 5560 5561 /* 5562 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5563 * try_to_wake_up()->select_task_rq(). 5564 * 5565 * Called with rq->lock held even though we'er in stop_machine() and 5566 * there's no concurrency possible, we hold the required locks anyway 5567 * because of lock validation efforts. 5568 */ 5569 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5570 { 5571 struct rq *rq = dead_rq; 5572 struct task_struct *next, *stop = rq->stop; 5573 struct rq_flags orf = *rf; 5574 int dest_cpu; 5575 5576 /* 5577 * Fudge the rq selection such that the below task selection loop 5578 * doesn't get stuck on the currently eligible stop task. 5579 * 5580 * We're currently inside stop_machine() and the rq is either stuck 5581 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5582 * either way we should never end up calling schedule() until we're 5583 * done here. 5584 */ 5585 rq->stop = NULL; 5586 5587 /* 5588 * put_prev_task() and pick_next_task() sched 5589 * class method both need to have an up-to-date 5590 * value of rq->clock[_task] 5591 */ 5592 update_rq_clock(rq); 5593 5594 for (;;) { 5595 /* 5596 * There's this thread running, bail when that's the only 5597 * remaining thread: 5598 */ 5599 if (rq->nr_running == 1) 5600 break; 5601 5602 /* 5603 * pick_next_task() assumes pinned rq->lock: 5604 */ 5605 next = pick_next_task(rq, &fake_task, rf); 5606 BUG_ON(!next); 5607 put_prev_task(rq, next); 5608 5609 /* 5610 * Rules for changing task_struct::cpus_allowed are holding 5611 * both pi_lock and rq->lock, such that holding either 5612 * stabilizes the mask. 5613 * 5614 * Drop rq->lock is not quite as disastrous as it usually is 5615 * because !cpu_active at this point, which means load-balance 5616 * will not interfere. Also, stop-machine. 5617 */ 5618 rq_unlock(rq, rf); 5619 raw_spin_lock(&next->pi_lock); 5620 rq_relock(rq, rf); 5621 5622 /* 5623 * Since we're inside stop-machine, _nothing_ should have 5624 * changed the task, WARN if weird stuff happened, because in 5625 * that case the above rq->lock drop is a fail too. 5626 */ 5627 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5628 raw_spin_unlock(&next->pi_lock); 5629 continue; 5630 } 5631 5632 /* Find suitable destination for @next, with force if needed. */ 5633 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5634 rq = __migrate_task(rq, rf, next, dest_cpu); 5635 if (rq != dead_rq) { 5636 rq_unlock(rq, rf); 5637 rq = dead_rq; 5638 *rf = orf; 5639 rq_relock(rq, rf); 5640 } 5641 raw_spin_unlock(&next->pi_lock); 5642 } 5643 5644 rq->stop = stop; 5645 } 5646 #endif /* CONFIG_HOTPLUG_CPU */ 5647 5648 void set_rq_online(struct rq *rq) 5649 { 5650 if (!rq->online) { 5651 const struct sched_class *class; 5652 5653 cpumask_set_cpu(rq->cpu, rq->rd->online); 5654 rq->online = 1; 5655 5656 for_each_class(class) { 5657 if (class->rq_online) 5658 class->rq_online(rq); 5659 } 5660 } 5661 } 5662 5663 void set_rq_offline(struct rq *rq) 5664 { 5665 if (rq->online) { 5666 const struct sched_class *class; 5667 5668 for_each_class(class) { 5669 if (class->rq_offline) 5670 class->rq_offline(rq); 5671 } 5672 5673 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5674 rq->online = 0; 5675 } 5676 } 5677 5678 /* 5679 * used to mark begin/end of suspend/resume: 5680 */ 5681 static int num_cpus_frozen; 5682 5683 /* 5684 * Update cpusets according to cpu_active mask. If cpusets are 5685 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5686 * around partition_sched_domains(). 5687 * 5688 * If we come here as part of a suspend/resume, don't touch cpusets because we 5689 * want to restore it back to its original state upon resume anyway. 5690 */ 5691 static void cpuset_cpu_active(void) 5692 { 5693 if (cpuhp_tasks_frozen) { 5694 /* 5695 * num_cpus_frozen tracks how many CPUs are involved in suspend 5696 * resume sequence. As long as this is not the last online 5697 * operation in the resume sequence, just build a single sched 5698 * domain, ignoring cpusets. 5699 */ 5700 partition_sched_domains(1, NULL, NULL); 5701 if (--num_cpus_frozen) 5702 return; 5703 /* 5704 * This is the last CPU online operation. So fall through and 5705 * restore the original sched domains by considering the 5706 * cpuset configurations. 5707 */ 5708 cpuset_force_rebuild(); 5709 } 5710 cpuset_update_active_cpus(); 5711 } 5712 5713 static int cpuset_cpu_inactive(unsigned int cpu) 5714 { 5715 if (!cpuhp_tasks_frozen) { 5716 if (dl_cpu_busy(cpu)) 5717 return -EBUSY; 5718 cpuset_update_active_cpus(); 5719 } else { 5720 num_cpus_frozen++; 5721 partition_sched_domains(1, NULL, NULL); 5722 } 5723 return 0; 5724 } 5725 5726 int sched_cpu_activate(unsigned int cpu) 5727 { 5728 struct rq *rq = cpu_rq(cpu); 5729 struct rq_flags rf; 5730 5731 #ifdef CONFIG_SCHED_SMT 5732 /* 5733 * When going up, increment the number of cores with SMT present. 5734 */ 5735 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 5736 static_branch_inc_cpuslocked(&sched_smt_present); 5737 #endif 5738 set_cpu_active(cpu, true); 5739 5740 if (sched_smp_initialized) { 5741 sched_domains_numa_masks_set(cpu); 5742 cpuset_cpu_active(); 5743 } 5744 5745 /* 5746 * Put the rq online, if not already. This happens: 5747 * 5748 * 1) In the early boot process, because we build the real domains 5749 * after all CPUs have been brought up. 5750 * 5751 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5752 * domains. 5753 */ 5754 rq_lock_irqsave(rq, &rf); 5755 if (rq->rd) { 5756 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5757 set_rq_online(rq); 5758 } 5759 rq_unlock_irqrestore(rq, &rf); 5760 5761 update_max_interval(); 5762 5763 return 0; 5764 } 5765 5766 int sched_cpu_deactivate(unsigned int cpu) 5767 { 5768 int ret; 5769 5770 set_cpu_active(cpu, false); 5771 /* 5772 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5773 * users of this state to go away such that all new such users will 5774 * observe it. 5775 * 5776 * Do sync before park smpboot threads to take care the rcu boost case. 5777 */ 5778 synchronize_rcu(); 5779 5780 #ifdef CONFIG_SCHED_SMT 5781 /* 5782 * When going down, decrement the number of cores with SMT present. 5783 */ 5784 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 5785 static_branch_dec_cpuslocked(&sched_smt_present); 5786 #endif 5787 5788 if (!sched_smp_initialized) 5789 return 0; 5790 5791 ret = cpuset_cpu_inactive(cpu); 5792 if (ret) { 5793 set_cpu_active(cpu, true); 5794 return ret; 5795 } 5796 sched_domains_numa_masks_clear(cpu); 5797 return 0; 5798 } 5799 5800 static void sched_rq_cpu_starting(unsigned int cpu) 5801 { 5802 struct rq *rq = cpu_rq(cpu); 5803 5804 rq->calc_load_update = calc_load_update; 5805 update_max_interval(); 5806 } 5807 5808 int sched_cpu_starting(unsigned int cpu) 5809 { 5810 sched_rq_cpu_starting(cpu); 5811 sched_tick_start(cpu); 5812 return 0; 5813 } 5814 5815 #ifdef CONFIG_HOTPLUG_CPU 5816 int sched_cpu_dying(unsigned int cpu) 5817 { 5818 struct rq *rq = cpu_rq(cpu); 5819 struct rq_flags rf; 5820 5821 /* Handle pending wakeups and then migrate everything off */ 5822 sched_ttwu_pending(); 5823 sched_tick_stop(cpu); 5824 5825 rq_lock_irqsave(rq, &rf); 5826 if (rq->rd) { 5827 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5828 set_rq_offline(rq); 5829 } 5830 migrate_tasks(rq, &rf); 5831 BUG_ON(rq->nr_running != 1); 5832 rq_unlock_irqrestore(rq, &rf); 5833 5834 calc_load_migrate(rq); 5835 update_max_interval(); 5836 nohz_balance_exit_idle(rq); 5837 hrtick_clear(rq); 5838 return 0; 5839 } 5840 #endif 5841 5842 void __init sched_init_smp(void) 5843 { 5844 sched_init_numa(); 5845 5846 /* 5847 * There's no userspace yet to cause hotplug operations; hence all the 5848 * CPU masks are stable and all blatant races in the below code cannot 5849 * happen. 5850 */ 5851 mutex_lock(&sched_domains_mutex); 5852 sched_init_domains(cpu_active_mask); 5853 mutex_unlock(&sched_domains_mutex); 5854 5855 /* Move init over to a non-isolated CPU */ 5856 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5857 BUG(); 5858 sched_init_granularity(); 5859 5860 init_sched_rt_class(); 5861 init_sched_dl_class(); 5862 5863 sched_smp_initialized = true; 5864 } 5865 5866 static int __init migration_init(void) 5867 { 5868 sched_cpu_starting(smp_processor_id()); 5869 return 0; 5870 } 5871 early_initcall(migration_init); 5872 5873 #else 5874 void __init sched_init_smp(void) 5875 { 5876 sched_init_granularity(); 5877 } 5878 #endif /* CONFIG_SMP */ 5879 5880 int in_sched_functions(unsigned long addr) 5881 { 5882 return in_lock_functions(addr) || 5883 (addr >= (unsigned long)__sched_text_start 5884 && addr < (unsigned long)__sched_text_end); 5885 } 5886 5887 #ifdef CONFIG_CGROUP_SCHED 5888 /* 5889 * Default task group. 5890 * Every task in system belongs to this group at bootup. 5891 */ 5892 struct task_group root_task_group; 5893 LIST_HEAD(task_groups); 5894 5895 /* Cacheline aligned slab cache for task_group */ 5896 static struct kmem_cache *task_group_cache __read_mostly; 5897 #endif 5898 5899 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5900 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5901 5902 void __init sched_init(void) 5903 { 5904 int i, j; 5905 unsigned long alloc_size = 0, ptr; 5906 5907 wait_bit_init(); 5908 5909 #ifdef CONFIG_FAIR_GROUP_SCHED 5910 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5911 #endif 5912 #ifdef CONFIG_RT_GROUP_SCHED 5913 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5914 #endif 5915 if (alloc_size) { 5916 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5917 5918 #ifdef CONFIG_FAIR_GROUP_SCHED 5919 root_task_group.se = (struct sched_entity **)ptr; 5920 ptr += nr_cpu_ids * sizeof(void **); 5921 5922 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5923 ptr += nr_cpu_ids * sizeof(void **); 5924 5925 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5926 #ifdef CONFIG_RT_GROUP_SCHED 5927 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5928 ptr += nr_cpu_ids * sizeof(void **); 5929 5930 root_task_group.rt_rq = (struct rt_rq **)ptr; 5931 ptr += nr_cpu_ids * sizeof(void **); 5932 5933 #endif /* CONFIG_RT_GROUP_SCHED */ 5934 } 5935 #ifdef CONFIG_CPUMASK_OFFSTACK 5936 for_each_possible_cpu(i) { 5937 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 5938 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5939 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 5940 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 5941 } 5942 #endif /* CONFIG_CPUMASK_OFFSTACK */ 5943 5944 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 5945 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 5946 5947 #ifdef CONFIG_SMP 5948 init_defrootdomain(); 5949 #endif 5950 5951 #ifdef CONFIG_RT_GROUP_SCHED 5952 init_rt_bandwidth(&root_task_group.rt_bandwidth, 5953 global_rt_period(), global_rt_runtime()); 5954 #endif /* CONFIG_RT_GROUP_SCHED */ 5955 5956 #ifdef CONFIG_CGROUP_SCHED 5957 task_group_cache = KMEM_CACHE(task_group, 0); 5958 5959 list_add(&root_task_group.list, &task_groups); 5960 INIT_LIST_HEAD(&root_task_group.children); 5961 INIT_LIST_HEAD(&root_task_group.siblings); 5962 autogroup_init(&init_task); 5963 #endif /* CONFIG_CGROUP_SCHED */ 5964 5965 for_each_possible_cpu(i) { 5966 struct rq *rq; 5967 5968 rq = cpu_rq(i); 5969 raw_spin_lock_init(&rq->lock); 5970 rq->nr_running = 0; 5971 rq->calc_load_active = 0; 5972 rq->calc_load_update = jiffies + LOAD_FREQ; 5973 init_cfs_rq(&rq->cfs); 5974 init_rt_rq(&rq->rt); 5975 init_dl_rq(&rq->dl); 5976 #ifdef CONFIG_FAIR_GROUP_SCHED 5977 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 5978 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 5979 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 5980 /* 5981 * How much CPU bandwidth does root_task_group get? 5982 * 5983 * In case of task-groups formed thr' the cgroup filesystem, it 5984 * gets 100% of the CPU resources in the system. This overall 5985 * system CPU resource is divided among the tasks of 5986 * root_task_group and its child task-groups in a fair manner, 5987 * based on each entity's (task or task-group's) weight 5988 * (se->load.weight). 5989 * 5990 * In other words, if root_task_group has 10 tasks of weight 5991 * 1024) and two child groups A0 and A1 (of weight 1024 each), 5992 * then A0's share of the CPU resource is: 5993 * 5994 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 5995 * 5996 * We achieve this by letting root_task_group's tasks sit 5997 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 5998 */ 5999 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6000 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6001 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6002 6003 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6004 #ifdef CONFIG_RT_GROUP_SCHED 6005 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6006 #endif 6007 6008 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6009 rq->cpu_load[j] = 0; 6010 6011 #ifdef CONFIG_SMP 6012 rq->sd = NULL; 6013 rq->rd = NULL; 6014 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6015 rq->balance_callback = NULL; 6016 rq->active_balance = 0; 6017 rq->next_balance = jiffies; 6018 rq->push_cpu = 0; 6019 rq->cpu = i; 6020 rq->online = 0; 6021 rq->idle_stamp = 0; 6022 rq->avg_idle = 2*sysctl_sched_migration_cost; 6023 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6024 6025 INIT_LIST_HEAD(&rq->cfs_tasks); 6026 6027 rq_attach_root(rq, &def_root_domain); 6028 #ifdef CONFIG_NO_HZ_COMMON 6029 rq->last_load_update_tick = jiffies; 6030 rq->last_blocked_load_update_tick = jiffies; 6031 atomic_set(&rq->nohz_flags, 0); 6032 #endif 6033 #endif /* CONFIG_SMP */ 6034 hrtick_rq_init(rq); 6035 atomic_set(&rq->nr_iowait, 0); 6036 } 6037 6038 set_load_weight(&init_task, false); 6039 6040 /* 6041 * The boot idle thread does lazy MMU switching as well: 6042 */ 6043 mmgrab(&init_mm); 6044 enter_lazy_tlb(&init_mm, current); 6045 6046 /* 6047 * Make us the idle thread. Technically, schedule() should not be 6048 * called from this thread, however somewhere below it might be, 6049 * but because we are the idle thread, we just pick up running again 6050 * when this runqueue becomes "idle". 6051 */ 6052 init_idle(current, smp_processor_id()); 6053 6054 calc_load_update = jiffies + LOAD_FREQ; 6055 6056 #ifdef CONFIG_SMP 6057 idle_thread_set_boot_cpu(); 6058 #endif 6059 init_sched_fair_class(); 6060 6061 init_schedstats(); 6062 6063 psi_init(); 6064 6065 scheduler_running = 1; 6066 } 6067 6068 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6069 static inline int preempt_count_equals(int preempt_offset) 6070 { 6071 int nested = preempt_count() + rcu_preempt_depth(); 6072 6073 return (nested == preempt_offset); 6074 } 6075 6076 void __might_sleep(const char *file, int line, int preempt_offset) 6077 { 6078 /* 6079 * Blocking primitives will set (and therefore destroy) current->state, 6080 * since we will exit with TASK_RUNNING make sure we enter with it, 6081 * otherwise we will destroy state. 6082 */ 6083 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6084 "do not call blocking ops when !TASK_RUNNING; " 6085 "state=%lx set at [<%p>] %pS\n", 6086 current->state, 6087 (void *)current->task_state_change, 6088 (void *)current->task_state_change); 6089 6090 ___might_sleep(file, line, preempt_offset); 6091 } 6092 EXPORT_SYMBOL(__might_sleep); 6093 6094 void ___might_sleep(const char *file, int line, int preempt_offset) 6095 { 6096 /* Ratelimiting timestamp: */ 6097 static unsigned long prev_jiffy; 6098 6099 unsigned long preempt_disable_ip; 6100 6101 /* WARN_ON_ONCE() by default, no rate limit required: */ 6102 rcu_sleep_check(); 6103 6104 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6105 !is_idle_task(current)) || 6106 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6107 oops_in_progress) 6108 return; 6109 6110 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6111 return; 6112 prev_jiffy = jiffies; 6113 6114 /* Save this before calling printk(), since that will clobber it: */ 6115 preempt_disable_ip = get_preempt_disable_ip(current); 6116 6117 printk(KERN_ERR 6118 "BUG: sleeping function called from invalid context at %s:%d\n", 6119 file, line); 6120 printk(KERN_ERR 6121 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6122 in_atomic(), irqs_disabled(), 6123 current->pid, current->comm); 6124 6125 if (task_stack_end_corrupted(current)) 6126 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6127 6128 debug_show_held_locks(current); 6129 if (irqs_disabled()) 6130 print_irqtrace_events(current); 6131 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6132 && !preempt_count_equals(preempt_offset)) { 6133 pr_err("Preemption disabled at:"); 6134 print_ip_sym(preempt_disable_ip); 6135 pr_cont("\n"); 6136 } 6137 dump_stack(); 6138 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6139 } 6140 EXPORT_SYMBOL(___might_sleep); 6141 6142 void __cant_sleep(const char *file, int line, int preempt_offset) 6143 { 6144 static unsigned long prev_jiffy; 6145 6146 if (irqs_disabled()) 6147 return; 6148 6149 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 6150 return; 6151 6152 if (preempt_count() > preempt_offset) 6153 return; 6154 6155 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6156 return; 6157 prev_jiffy = jiffies; 6158 6159 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 6160 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6161 in_atomic(), irqs_disabled(), 6162 current->pid, current->comm); 6163 6164 debug_show_held_locks(current); 6165 dump_stack(); 6166 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6167 } 6168 EXPORT_SYMBOL_GPL(__cant_sleep); 6169 #endif 6170 6171 #ifdef CONFIG_MAGIC_SYSRQ 6172 void normalize_rt_tasks(void) 6173 { 6174 struct task_struct *g, *p; 6175 struct sched_attr attr = { 6176 .sched_policy = SCHED_NORMAL, 6177 }; 6178 6179 read_lock(&tasklist_lock); 6180 for_each_process_thread(g, p) { 6181 /* 6182 * Only normalize user tasks: 6183 */ 6184 if (p->flags & PF_KTHREAD) 6185 continue; 6186 6187 p->se.exec_start = 0; 6188 schedstat_set(p->se.statistics.wait_start, 0); 6189 schedstat_set(p->se.statistics.sleep_start, 0); 6190 schedstat_set(p->se.statistics.block_start, 0); 6191 6192 if (!dl_task(p) && !rt_task(p)) { 6193 /* 6194 * Renice negative nice level userspace 6195 * tasks back to 0: 6196 */ 6197 if (task_nice(p) < 0) 6198 set_user_nice(p, 0); 6199 continue; 6200 } 6201 6202 __sched_setscheduler(p, &attr, false, false); 6203 } 6204 read_unlock(&tasklist_lock); 6205 } 6206 6207 #endif /* CONFIG_MAGIC_SYSRQ */ 6208 6209 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6210 /* 6211 * These functions are only useful for the IA64 MCA handling, or kdb. 6212 * 6213 * They can only be called when the whole system has been 6214 * stopped - every CPU needs to be quiescent, and no scheduling 6215 * activity can take place. Using them for anything else would 6216 * be a serious bug, and as a result, they aren't even visible 6217 * under any other configuration. 6218 */ 6219 6220 /** 6221 * curr_task - return the current task for a given CPU. 6222 * @cpu: the processor in question. 6223 * 6224 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6225 * 6226 * Return: The current task for @cpu. 6227 */ 6228 struct task_struct *curr_task(int cpu) 6229 { 6230 return cpu_curr(cpu); 6231 } 6232 6233 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6234 6235 #ifdef CONFIG_IA64 6236 /** 6237 * set_curr_task - set the current task for a given CPU. 6238 * @cpu: the processor in question. 6239 * @p: the task pointer to set. 6240 * 6241 * Description: This function must only be used when non-maskable interrupts 6242 * are serviced on a separate stack. It allows the architecture to switch the 6243 * notion of the current task on a CPU in a non-blocking manner. This function 6244 * must be called with all CPU's synchronized, and interrupts disabled, the 6245 * and caller must save the original value of the current task (see 6246 * curr_task() above) and restore that value before reenabling interrupts and 6247 * re-starting the system. 6248 * 6249 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6250 */ 6251 void ia64_set_curr_task(int cpu, struct task_struct *p) 6252 { 6253 cpu_curr(cpu) = p; 6254 } 6255 6256 #endif 6257 6258 #ifdef CONFIG_CGROUP_SCHED 6259 /* task_group_lock serializes the addition/removal of task groups */ 6260 static DEFINE_SPINLOCK(task_group_lock); 6261 6262 static void sched_free_group(struct task_group *tg) 6263 { 6264 free_fair_sched_group(tg); 6265 free_rt_sched_group(tg); 6266 autogroup_free(tg); 6267 kmem_cache_free(task_group_cache, tg); 6268 } 6269 6270 /* allocate runqueue etc for a new task group */ 6271 struct task_group *sched_create_group(struct task_group *parent) 6272 { 6273 struct task_group *tg; 6274 6275 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6276 if (!tg) 6277 return ERR_PTR(-ENOMEM); 6278 6279 if (!alloc_fair_sched_group(tg, parent)) 6280 goto err; 6281 6282 if (!alloc_rt_sched_group(tg, parent)) 6283 goto err; 6284 6285 return tg; 6286 6287 err: 6288 sched_free_group(tg); 6289 return ERR_PTR(-ENOMEM); 6290 } 6291 6292 void sched_online_group(struct task_group *tg, struct task_group *parent) 6293 { 6294 unsigned long flags; 6295 6296 spin_lock_irqsave(&task_group_lock, flags); 6297 list_add_rcu(&tg->list, &task_groups); 6298 6299 /* Root should already exist: */ 6300 WARN_ON(!parent); 6301 6302 tg->parent = parent; 6303 INIT_LIST_HEAD(&tg->children); 6304 list_add_rcu(&tg->siblings, &parent->children); 6305 spin_unlock_irqrestore(&task_group_lock, flags); 6306 6307 online_fair_sched_group(tg); 6308 } 6309 6310 /* rcu callback to free various structures associated with a task group */ 6311 static void sched_free_group_rcu(struct rcu_head *rhp) 6312 { 6313 /* Now it should be safe to free those cfs_rqs: */ 6314 sched_free_group(container_of(rhp, struct task_group, rcu)); 6315 } 6316 6317 void sched_destroy_group(struct task_group *tg) 6318 { 6319 /* Wait for possible concurrent references to cfs_rqs complete: */ 6320 call_rcu(&tg->rcu, sched_free_group_rcu); 6321 } 6322 6323 void sched_offline_group(struct task_group *tg) 6324 { 6325 unsigned long flags; 6326 6327 /* End participation in shares distribution: */ 6328 unregister_fair_sched_group(tg); 6329 6330 spin_lock_irqsave(&task_group_lock, flags); 6331 list_del_rcu(&tg->list); 6332 list_del_rcu(&tg->siblings); 6333 spin_unlock_irqrestore(&task_group_lock, flags); 6334 } 6335 6336 static void sched_change_group(struct task_struct *tsk, int type) 6337 { 6338 struct task_group *tg; 6339 6340 /* 6341 * All callers are synchronized by task_rq_lock(); we do not use RCU 6342 * which is pointless here. Thus, we pass "true" to task_css_check() 6343 * to prevent lockdep warnings. 6344 */ 6345 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6346 struct task_group, css); 6347 tg = autogroup_task_group(tsk, tg); 6348 tsk->sched_task_group = tg; 6349 6350 #ifdef CONFIG_FAIR_GROUP_SCHED 6351 if (tsk->sched_class->task_change_group) 6352 tsk->sched_class->task_change_group(tsk, type); 6353 else 6354 #endif 6355 set_task_rq(tsk, task_cpu(tsk)); 6356 } 6357 6358 /* 6359 * Change task's runqueue when it moves between groups. 6360 * 6361 * The caller of this function should have put the task in its new group by 6362 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6363 * its new group. 6364 */ 6365 void sched_move_task(struct task_struct *tsk) 6366 { 6367 int queued, running, queue_flags = 6368 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6369 struct rq_flags rf; 6370 struct rq *rq; 6371 6372 rq = task_rq_lock(tsk, &rf); 6373 update_rq_clock(rq); 6374 6375 running = task_current(rq, tsk); 6376 queued = task_on_rq_queued(tsk); 6377 6378 if (queued) 6379 dequeue_task(rq, tsk, queue_flags); 6380 if (running) 6381 put_prev_task(rq, tsk); 6382 6383 sched_change_group(tsk, TASK_MOVE_GROUP); 6384 6385 if (queued) 6386 enqueue_task(rq, tsk, queue_flags); 6387 if (running) 6388 set_curr_task(rq, tsk); 6389 6390 task_rq_unlock(rq, tsk, &rf); 6391 } 6392 6393 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6394 { 6395 return css ? container_of(css, struct task_group, css) : NULL; 6396 } 6397 6398 static struct cgroup_subsys_state * 6399 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6400 { 6401 struct task_group *parent = css_tg(parent_css); 6402 struct task_group *tg; 6403 6404 if (!parent) { 6405 /* This is early initialization for the top cgroup */ 6406 return &root_task_group.css; 6407 } 6408 6409 tg = sched_create_group(parent); 6410 if (IS_ERR(tg)) 6411 return ERR_PTR(-ENOMEM); 6412 6413 return &tg->css; 6414 } 6415 6416 /* Expose task group only after completing cgroup initialization */ 6417 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6418 { 6419 struct task_group *tg = css_tg(css); 6420 struct task_group *parent = css_tg(css->parent); 6421 6422 if (parent) 6423 sched_online_group(tg, parent); 6424 return 0; 6425 } 6426 6427 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6428 { 6429 struct task_group *tg = css_tg(css); 6430 6431 sched_offline_group(tg); 6432 } 6433 6434 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6435 { 6436 struct task_group *tg = css_tg(css); 6437 6438 /* 6439 * Relies on the RCU grace period between css_released() and this. 6440 */ 6441 sched_free_group(tg); 6442 } 6443 6444 /* 6445 * This is called before wake_up_new_task(), therefore we really only 6446 * have to set its group bits, all the other stuff does not apply. 6447 */ 6448 static void cpu_cgroup_fork(struct task_struct *task) 6449 { 6450 struct rq_flags rf; 6451 struct rq *rq; 6452 6453 rq = task_rq_lock(task, &rf); 6454 6455 update_rq_clock(rq); 6456 sched_change_group(task, TASK_SET_GROUP); 6457 6458 task_rq_unlock(rq, task, &rf); 6459 } 6460 6461 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6462 { 6463 struct task_struct *task; 6464 struct cgroup_subsys_state *css; 6465 int ret = 0; 6466 6467 cgroup_taskset_for_each(task, css, tset) { 6468 #ifdef CONFIG_RT_GROUP_SCHED 6469 if (!sched_rt_can_attach(css_tg(css), task)) 6470 return -EINVAL; 6471 #else 6472 /* We don't support RT-tasks being in separate groups */ 6473 if (task->sched_class != &fair_sched_class) 6474 return -EINVAL; 6475 #endif 6476 /* 6477 * Serialize against wake_up_new_task() such that if its 6478 * running, we're sure to observe its full state. 6479 */ 6480 raw_spin_lock_irq(&task->pi_lock); 6481 /* 6482 * Avoid calling sched_move_task() before wake_up_new_task() 6483 * has happened. This would lead to problems with PELT, due to 6484 * move wanting to detach+attach while we're not attached yet. 6485 */ 6486 if (task->state == TASK_NEW) 6487 ret = -EINVAL; 6488 raw_spin_unlock_irq(&task->pi_lock); 6489 6490 if (ret) 6491 break; 6492 } 6493 return ret; 6494 } 6495 6496 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6497 { 6498 struct task_struct *task; 6499 struct cgroup_subsys_state *css; 6500 6501 cgroup_taskset_for_each(task, css, tset) 6502 sched_move_task(task); 6503 } 6504 6505 #ifdef CONFIG_FAIR_GROUP_SCHED 6506 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6507 struct cftype *cftype, u64 shareval) 6508 { 6509 if (shareval > scale_load_down(ULONG_MAX)) 6510 shareval = MAX_SHARES; 6511 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6512 } 6513 6514 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6515 struct cftype *cft) 6516 { 6517 struct task_group *tg = css_tg(css); 6518 6519 return (u64) scale_load_down(tg->shares); 6520 } 6521 6522 #ifdef CONFIG_CFS_BANDWIDTH 6523 static DEFINE_MUTEX(cfs_constraints_mutex); 6524 6525 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6526 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6527 6528 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6529 6530 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6531 { 6532 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6533 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6534 6535 if (tg == &root_task_group) 6536 return -EINVAL; 6537 6538 /* 6539 * Ensure we have at some amount of bandwidth every period. This is 6540 * to prevent reaching a state of large arrears when throttled via 6541 * entity_tick() resulting in prolonged exit starvation. 6542 */ 6543 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6544 return -EINVAL; 6545 6546 /* 6547 * Likewise, bound things on the otherside by preventing insane quota 6548 * periods. This also allows us to normalize in computing quota 6549 * feasibility. 6550 */ 6551 if (period > max_cfs_quota_period) 6552 return -EINVAL; 6553 6554 /* 6555 * Prevent race between setting of cfs_rq->runtime_enabled and 6556 * unthrottle_offline_cfs_rqs(). 6557 */ 6558 get_online_cpus(); 6559 mutex_lock(&cfs_constraints_mutex); 6560 ret = __cfs_schedulable(tg, period, quota); 6561 if (ret) 6562 goto out_unlock; 6563 6564 runtime_enabled = quota != RUNTIME_INF; 6565 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6566 /* 6567 * If we need to toggle cfs_bandwidth_used, off->on must occur 6568 * before making related changes, and on->off must occur afterwards 6569 */ 6570 if (runtime_enabled && !runtime_was_enabled) 6571 cfs_bandwidth_usage_inc(); 6572 raw_spin_lock_irq(&cfs_b->lock); 6573 cfs_b->period = ns_to_ktime(period); 6574 cfs_b->quota = quota; 6575 6576 __refill_cfs_bandwidth_runtime(cfs_b); 6577 6578 /* Restart the period timer (if active) to handle new period expiry: */ 6579 if (runtime_enabled) 6580 start_cfs_bandwidth(cfs_b); 6581 6582 raw_spin_unlock_irq(&cfs_b->lock); 6583 6584 for_each_online_cpu(i) { 6585 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6586 struct rq *rq = cfs_rq->rq; 6587 struct rq_flags rf; 6588 6589 rq_lock_irq(rq, &rf); 6590 cfs_rq->runtime_enabled = runtime_enabled; 6591 cfs_rq->runtime_remaining = 0; 6592 6593 if (cfs_rq->throttled) 6594 unthrottle_cfs_rq(cfs_rq); 6595 rq_unlock_irq(rq, &rf); 6596 } 6597 if (runtime_was_enabled && !runtime_enabled) 6598 cfs_bandwidth_usage_dec(); 6599 out_unlock: 6600 mutex_unlock(&cfs_constraints_mutex); 6601 put_online_cpus(); 6602 6603 return ret; 6604 } 6605 6606 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6607 { 6608 u64 quota, period; 6609 6610 period = ktime_to_ns(tg->cfs_bandwidth.period); 6611 if (cfs_quota_us < 0) 6612 quota = RUNTIME_INF; 6613 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 6614 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6615 else 6616 return -EINVAL; 6617 6618 return tg_set_cfs_bandwidth(tg, period, quota); 6619 } 6620 6621 static long tg_get_cfs_quota(struct task_group *tg) 6622 { 6623 u64 quota_us; 6624 6625 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6626 return -1; 6627 6628 quota_us = tg->cfs_bandwidth.quota; 6629 do_div(quota_us, NSEC_PER_USEC); 6630 6631 return quota_us; 6632 } 6633 6634 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6635 { 6636 u64 quota, period; 6637 6638 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 6639 return -EINVAL; 6640 6641 period = (u64)cfs_period_us * NSEC_PER_USEC; 6642 quota = tg->cfs_bandwidth.quota; 6643 6644 return tg_set_cfs_bandwidth(tg, period, quota); 6645 } 6646 6647 static long tg_get_cfs_period(struct task_group *tg) 6648 { 6649 u64 cfs_period_us; 6650 6651 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6652 do_div(cfs_period_us, NSEC_PER_USEC); 6653 6654 return cfs_period_us; 6655 } 6656 6657 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6658 struct cftype *cft) 6659 { 6660 return tg_get_cfs_quota(css_tg(css)); 6661 } 6662 6663 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6664 struct cftype *cftype, s64 cfs_quota_us) 6665 { 6666 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6667 } 6668 6669 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6670 struct cftype *cft) 6671 { 6672 return tg_get_cfs_period(css_tg(css)); 6673 } 6674 6675 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6676 struct cftype *cftype, u64 cfs_period_us) 6677 { 6678 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6679 } 6680 6681 struct cfs_schedulable_data { 6682 struct task_group *tg; 6683 u64 period, quota; 6684 }; 6685 6686 /* 6687 * normalize group quota/period to be quota/max_period 6688 * note: units are usecs 6689 */ 6690 static u64 normalize_cfs_quota(struct task_group *tg, 6691 struct cfs_schedulable_data *d) 6692 { 6693 u64 quota, period; 6694 6695 if (tg == d->tg) { 6696 period = d->period; 6697 quota = d->quota; 6698 } else { 6699 period = tg_get_cfs_period(tg); 6700 quota = tg_get_cfs_quota(tg); 6701 } 6702 6703 /* note: these should typically be equivalent */ 6704 if (quota == RUNTIME_INF || quota == -1) 6705 return RUNTIME_INF; 6706 6707 return to_ratio(period, quota); 6708 } 6709 6710 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6711 { 6712 struct cfs_schedulable_data *d = data; 6713 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6714 s64 quota = 0, parent_quota = -1; 6715 6716 if (!tg->parent) { 6717 quota = RUNTIME_INF; 6718 } else { 6719 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6720 6721 quota = normalize_cfs_quota(tg, d); 6722 parent_quota = parent_b->hierarchical_quota; 6723 6724 /* 6725 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6726 * always take the min. On cgroup1, only inherit when no 6727 * limit is set: 6728 */ 6729 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6730 quota = min(quota, parent_quota); 6731 } else { 6732 if (quota == RUNTIME_INF) 6733 quota = parent_quota; 6734 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6735 return -EINVAL; 6736 } 6737 } 6738 cfs_b->hierarchical_quota = quota; 6739 6740 return 0; 6741 } 6742 6743 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6744 { 6745 int ret; 6746 struct cfs_schedulable_data data = { 6747 .tg = tg, 6748 .period = period, 6749 .quota = quota, 6750 }; 6751 6752 if (quota != RUNTIME_INF) { 6753 do_div(data.period, NSEC_PER_USEC); 6754 do_div(data.quota, NSEC_PER_USEC); 6755 } 6756 6757 rcu_read_lock(); 6758 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6759 rcu_read_unlock(); 6760 6761 return ret; 6762 } 6763 6764 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6765 { 6766 struct task_group *tg = css_tg(seq_css(sf)); 6767 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6768 6769 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6770 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6771 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6772 6773 if (schedstat_enabled() && tg != &root_task_group) { 6774 u64 ws = 0; 6775 int i; 6776 6777 for_each_possible_cpu(i) 6778 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 6779 6780 seq_printf(sf, "wait_sum %llu\n", ws); 6781 } 6782 6783 return 0; 6784 } 6785 #endif /* CONFIG_CFS_BANDWIDTH */ 6786 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6787 6788 #ifdef CONFIG_RT_GROUP_SCHED 6789 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6790 struct cftype *cft, s64 val) 6791 { 6792 return sched_group_set_rt_runtime(css_tg(css), val); 6793 } 6794 6795 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6796 struct cftype *cft) 6797 { 6798 return sched_group_rt_runtime(css_tg(css)); 6799 } 6800 6801 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6802 struct cftype *cftype, u64 rt_period_us) 6803 { 6804 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6805 } 6806 6807 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6808 struct cftype *cft) 6809 { 6810 return sched_group_rt_period(css_tg(css)); 6811 } 6812 #endif /* CONFIG_RT_GROUP_SCHED */ 6813 6814 static struct cftype cpu_legacy_files[] = { 6815 #ifdef CONFIG_FAIR_GROUP_SCHED 6816 { 6817 .name = "shares", 6818 .read_u64 = cpu_shares_read_u64, 6819 .write_u64 = cpu_shares_write_u64, 6820 }, 6821 #endif 6822 #ifdef CONFIG_CFS_BANDWIDTH 6823 { 6824 .name = "cfs_quota_us", 6825 .read_s64 = cpu_cfs_quota_read_s64, 6826 .write_s64 = cpu_cfs_quota_write_s64, 6827 }, 6828 { 6829 .name = "cfs_period_us", 6830 .read_u64 = cpu_cfs_period_read_u64, 6831 .write_u64 = cpu_cfs_period_write_u64, 6832 }, 6833 { 6834 .name = "stat", 6835 .seq_show = cpu_cfs_stat_show, 6836 }, 6837 #endif 6838 #ifdef CONFIG_RT_GROUP_SCHED 6839 { 6840 .name = "rt_runtime_us", 6841 .read_s64 = cpu_rt_runtime_read, 6842 .write_s64 = cpu_rt_runtime_write, 6843 }, 6844 { 6845 .name = "rt_period_us", 6846 .read_u64 = cpu_rt_period_read_uint, 6847 .write_u64 = cpu_rt_period_write_uint, 6848 }, 6849 #endif 6850 { } /* Terminate */ 6851 }; 6852 6853 static int cpu_extra_stat_show(struct seq_file *sf, 6854 struct cgroup_subsys_state *css) 6855 { 6856 #ifdef CONFIG_CFS_BANDWIDTH 6857 { 6858 struct task_group *tg = css_tg(css); 6859 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6860 u64 throttled_usec; 6861 6862 throttled_usec = cfs_b->throttled_time; 6863 do_div(throttled_usec, NSEC_PER_USEC); 6864 6865 seq_printf(sf, "nr_periods %d\n" 6866 "nr_throttled %d\n" 6867 "throttled_usec %llu\n", 6868 cfs_b->nr_periods, cfs_b->nr_throttled, 6869 throttled_usec); 6870 } 6871 #endif 6872 return 0; 6873 } 6874 6875 #ifdef CONFIG_FAIR_GROUP_SCHED 6876 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6877 struct cftype *cft) 6878 { 6879 struct task_group *tg = css_tg(css); 6880 u64 weight = scale_load_down(tg->shares); 6881 6882 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6883 } 6884 6885 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6886 struct cftype *cft, u64 weight) 6887 { 6888 /* 6889 * cgroup weight knobs should use the common MIN, DFL and MAX 6890 * values which are 1, 100 and 10000 respectively. While it loses 6891 * a bit of range on both ends, it maps pretty well onto the shares 6892 * value used by scheduler and the round-trip conversions preserve 6893 * the original value over the entire range. 6894 */ 6895 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6896 return -ERANGE; 6897 6898 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6899 6900 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6901 } 6902 6903 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6904 struct cftype *cft) 6905 { 6906 unsigned long weight = scale_load_down(css_tg(css)->shares); 6907 int last_delta = INT_MAX; 6908 int prio, delta; 6909 6910 /* find the closest nice value to the current weight */ 6911 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6912 delta = abs(sched_prio_to_weight[prio] - weight); 6913 if (delta >= last_delta) 6914 break; 6915 last_delta = delta; 6916 } 6917 6918 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6919 } 6920 6921 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6922 struct cftype *cft, s64 nice) 6923 { 6924 unsigned long weight; 6925 int idx; 6926 6927 if (nice < MIN_NICE || nice > MAX_NICE) 6928 return -ERANGE; 6929 6930 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 6931 idx = array_index_nospec(idx, 40); 6932 weight = sched_prio_to_weight[idx]; 6933 6934 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6935 } 6936 #endif 6937 6938 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6939 long period, long quota) 6940 { 6941 if (quota < 0) 6942 seq_puts(sf, "max"); 6943 else 6944 seq_printf(sf, "%ld", quota); 6945 6946 seq_printf(sf, " %ld\n", period); 6947 } 6948 6949 /* caller should put the current value in *@periodp before calling */ 6950 static int __maybe_unused cpu_period_quota_parse(char *buf, 6951 u64 *periodp, u64 *quotap) 6952 { 6953 char tok[21]; /* U64_MAX */ 6954 6955 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 6956 return -EINVAL; 6957 6958 *periodp *= NSEC_PER_USEC; 6959 6960 if (sscanf(tok, "%llu", quotap)) 6961 *quotap *= NSEC_PER_USEC; 6962 else if (!strcmp(tok, "max")) 6963 *quotap = RUNTIME_INF; 6964 else 6965 return -EINVAL; 6966 6967 return 0; 6968 } 6969 6970 #ifdef CONFIG_CFS_BANDWIDTH 6971 static int cpu_max_show(struct seq_file *sf, void *v) 6972 { 6973 struct task_group *tg = css_tg(seq_css(sf)); 6974 6975 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6976 return 0; 6977 } 6978 6979 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6980 char *buf, size_t nbytes, loff_t off) 6981 { 6982 struct task_group *tg = css_tg(of_css(of)); 6983 u64 period = tg_get_cfs_period(tg); 6984 u64 quota; 6985 int ret; 6986 6987 ret = cpu_period_quota_parse(buf, &period, "a); 6988 if (!ret) 6989 ret = tg_set_cfs_bandwidth(tg, period, quota); 6990 return ret ?: nbytes; 6991 } 6992 #endif 6993 6994 static struct cftype cpu_files[] = { 6995 #ifdef CONFIG_FAIR_GROUP_SCHED 6996 { 6997 .name = "weight", 6998 .flags = CFTYPE_NOT_ON_ROOT, 6999 .read_u64 = cpu_weight_read_u64, 7000 .write_u64 = cpu_weight_write_u64, 7001 }, 7002 { 7003 .name = "weight.nice", 7004 .flags = CFTYPE_NOT_ON_ROOT, 7005 .read_s64 = cpu_weight_nice_read_s64, 7006 .write_s64 = cpu_weight_nice_write_s64, 7007 }, 7008 #endif 7009 #ifdef CONFIG_CFS_BANDWIDTH 7010 { 7011 .name = "max", 7012 .flags = CFTYPE_NOT_ON_ROOT, 7013 .seq_show = cpu_max_show, 7014 .write = cpu_max_write, 7015 }, 7016 #endif 7017 { } /* terminate */ 7018 }; 7019 7020 struct cgroup_subsys cpu_cgrp_subsys = { 7021 .css_alloc = cpu_cgroup_css_alloc, 7022 .css_online = cpu_cgroup_css_online, 7023 .css_released = cpu_cgroup_css_released, 7024 .css_free = cpu_cgroup_css_free, 7025 .css_extra_stat_show = cpu_extra_stat_show, 7026 .fork = cpu_cgroup_fork, 7027 .can_attach = cpu_cgroup_can_attach, 7028 .attach = cpu_cgroup_attach, 7029 .legacy_cftypes = cpu_legacy_files, 7030 .dfl_cftypes = cpu_files, 7031 .early_init = true, 7032 .threaded = true, 7033 }; 7034 7035 #endif /* CONFIG_CGROUP_SCHED */ 7036 7037 void dump_cpu_task(int cpu) 7038 { 7039 pr_info("Task dump for CPU %d:\n", cpu); 7040 sched_show_task(cpu_curr(cpu)); 7041 } 7042 7043 /* 7044 * Nice levels are multiplicative, with a gentle 10% change for every 7045 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7046 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7047 * that remained on nice 0. 7048 * 7049 * The "10% effect" is relative and cumulative: from _any_ nice level, 7050 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7051 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7052 * If a task goes up by ~10% and another task goes down by ~10% then 7053 * the relative distance between them is ~25%.) 7054 */ 7055 const int sched_prio_to_weight[40] = { 7056 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7057 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7058 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7059 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7060 /* 0 */ 1024, 820, 655, 526, 423, 7061 /* 5 */ 335, 272, 215, 172, 137, 7062 /* 10 */ 110, 87, 70, 56, 45, 7063 /* 15 */ 36, 29, 23, 18, 15, 7064 }; 7065 7066 /* 7067 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7068 * 7069 * In cases where the weight does not change often, we can use the 7070 * precalculated inverse to speed up arithmetics by turning divisions 7071 * into multiplications: 7072 */ 7073 const u32 sched_prio_to_wmult[40] = { 7074 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7075 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7076 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7077 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7078 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7079 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7080 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7081 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7082 }; 7083 7084 #undef CREATE_TRACE_POINTS 7085