xref: /openbmc/linux/kernel/sched/core.c (revision 07c7c6bf)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include "sched.h"
9 
10 #include <linux/nospec.h>
11 
12 #include <linux/kcov.h>
13 
14 #include <asm/switch_to.h>
15 #include <asm/tlb.h>
16 
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
19 
20 #include "pelt.h"
21 
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
24 
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
26 
27 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
28 /*
29  * Debugging: various feature bits
30  *
31  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32  * sysctl_sched_features, defined in sched.h, to allow constants propagation
33  * at compile time and compiler optimization based on features default.
34  */
35 #define SCHED_FEAT(name, enabled)	\
36 	(1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug unsigned int sysctl_sched_features =
38 #include "features.h"
39 	0;
40 #undef SCHED_FEAT
41 #endif
42 
43 /*
44  * Number of tasks to iterate in a single balance run.
45  * Limited because this is done with IRQs disabled.
46  */
47 const_debug unsigned int sysctl_sched_nr_migrate = 32;
48 
49 /*
50  * period over which we measure -rt task CPU usage in us.
51  * default: 1s
52  */
53 unsigned int sysctl_sched_rt_period = 1000000;
54 
55 __read_mostly int scheduler_running;
56 
57 /*
58  * part of the period that we allow rt tasks to run in us.
59  * default: 0.95s
60  */
61 int sysctl_sched_rt_runtime = 950000;
62 
63 /*
64  * __task_rq_lock - lock the rq @p resides on.
65  */
66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
67 	__acquires(rq->lock)
68 {
69 	struct rq *rq;
70 
71 	lockdep_assert_held(&p->pi_lock);
72 
73 	for (;;) {
74 		rq = task_rq(p);
75 		raw_spin_lock(&rq->lock);
76 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
77 			rq_pin_lock(rq, rf);
78 			return rq;
79 		}
80 		raw_spin_unlock(&rq->lock);
81 
82 		while (unlikely(task_on_rq_migrating(p)))
83 			cpu_relax();
84 	}
85 }
86 
87 /*
88  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
89  */
90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
91 	__acquires(p->pi_lock)
92 	__acquires(rq->lock)
93 {
94 	struct rq *rq;
95 
96 	for (;;) {
97 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
98 		rq = task_rq(p);
99 		raw_spin_lock(&rq->lock);
100 		/*
101 		 *	move_queued_task()		task_rq_lock()
102 		 *
103 		 *	ACQUIRE (rq->lock)
104 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
105 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
106 		 *	[S] ->cpu = new_cpu		[L] task_rq()
107 		 *					[L] ->on_rq
108 		 *	RELEASE (rq->lock)
109 		 *
110 		 * If we observe the old CPU in task_rq_lock(), the acquire of
111 		 * the old rq->lock will fully serialize against the stores.
112 		 *
113 		 * If we observe the new CPU in task_rq_lock(), the address
114 		 * dependency headed by '[L] rq = task_rq()' and the acquire
115 		 * will pair with the WMB to ensure we then also see migrating.
116 		 */
117 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
118 			rq_pin_lock(rq, rf);
119 			return rq;
120 		}
121 		raw_spin_unlock(&rq->lock);
122 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
123 
124 		while (unlikely(task_on_rq_migrating(p)))
125 			cpu_relax();
126 	}
127 }
128 
129 /*
130  * RQ-clock updating methods:
131  */
132 
133 static void update_rq_clock_task(struct rq *rq, s64 delta)
134 {
135 /*
136  * In theory, the compile should just see 0 here, and optimize out the call
137  * to sched_rt_avg_update. But I don't trust it...
138  */
139 	s64 __maybe_unused steal = 0, irq_delta = 0;
140 
141 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
142 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
143 
144 	/*
145 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
146 	 * this case when a previous update_rq_clock() happened inside a
147 	 * {soft,}irq region.
148 	 *
149 	 * When this happens, we stop ->clock_task and only update the
150 	 * prev_irq_time stamp to account for the part that fit, so that a next
151 	 * update will consume the rest. This ensures ->clock_task is
152 	 * monotonic.
153 	 *
154 	 * It does however cause some slight miss-attribution of {soft,}irq
155 	 * time, a more accurate solution would be to update the irq_time using
156 	 * the current rq->clock timestamp, except that would require using
157 	 * atomic ops.
158 	 */
159 	if (irq_delta > delta)
160 		irq_delta = delta;
161 
162 	rq->prev_irq_time += irq_delta;
163 	delta -= irq_delta;
164 #endif
165 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
166 	if (static_key_false((&paravirt_steal_rq_enabled))) {
167 		steal = paravirt_steal_clock(cpu_of(rq));
168 		steal -= rq->prev_steal_time_rq;
169 
170 		if (unlikely(steal > delta))
171 			steal = delta;
172 
173 		rq->prev_steal_time_rq += steal;
174 		delta -= steal;
175 	}
176 #endif
177 
178 	rq->clock_task += delta;
179 
180 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
181 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
182 		update_irq_load_avg(rq, irq_delta + steal);
183 #endif
184 	update_rq_clock_pelt(rq, delta);
185 }
186 
187 void update_rq_clock(struct rq *rq)
188 {
189 	s64 delta;
190 
191 	lockdep_assert_held(&rq->lock);
192 
193 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
194 		return;
195 
196 #ifdef CONFIG_SCHED_DEBUG
197 	if (sched_feat(WARN_DOUBLE_CLOCK))
198 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
199 	rq->clock_update_flags |= RQCF_UPDATED;
200 #endif
201 
202 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
203 	if (delta < 0)
204 		return;
205 	rq->clock += delta;
206 	update_rq_clock_task(rq, delta);
207 }
208 
209 
210 #ifdef CONFIG_SCHED_HRTICK
211 /*
212  * Use HR-timers to deliver accurate preemption points.
213  */
214 
215 static void hrtick_clear(struct rq *rq)
216 {
217 	if (hrtimer_active(&rq->hrtick_timer))
218 		hrtimer_cancel(&rq->hrtick_timer);
219 }
220 
221 /*
222  * High-resolution timer tick.
223  * Runs from hardirq context with interrupts disabled.
224  */
225 static enum hrtimer_restart hrtick(struct hrtimer *timer)
226 {
227 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
228 	struct rq_flags rf;
229 
230 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
231 
232 	rq_lock(rq, &rf);
233 	update_rq_clock(rq);
234 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
235 	rq_unlock(rq, &rf);
236 
237 	return HRTIMER_NORESTART;
238 }
239 
240 #ifdef CONFIG_SMP
241 
242 static void __hrtick_restart(struct rq *rq)
243 {
244 	struct hrtimer *timer = &rq->hrtick_timer;
245 
246 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
247 }
248 
249 /*
250  * called from hardirq (IPI) context
251  */
252 static void __hrtick_start(void *arg)
253 {
254 	struct rq *rq = arg;
255 	struct rq_flags rf;
256 
257 	rq_lock(rq, &rf);
258 	__hrtick_restart(rq);
259 	rq->hrtick_csd_pending = 0;
260 	rq_unlock(rq, &rf);
261 }
262 
263 /*
264  * Called to set the hrtick timer state.
265  *
266  * called with rq->lock held and irqs disabled
267  */
268 void hrtick_start(struct rq *rq, u64 delay)
269 {
270 	struct hrtimer *timer = &rq->hrtick_timer;
271 	ktime_t time;
272 	s64 delta;
273 
274 	/*
275 	 * Don't schedule slices shorter than 10000ns, that just
276 	 * doesn't make sense and can cause timer DoS.
277 	 */
278 	delta = max_t(s64, delay, 10000LL);
279 	time = ktime_add_ns(timer->base->get_time(), delta);
280 
281 	hrtimer_set_expires(timer, time);
282 
283 	if (rq == this_rq()) {
284 		__hrtick_restart(rq);
285 	} else if (!rq->hrtick_csd_pending) {
286 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
287 		rq->hrtick_csd_pending = 1;
288 	}
289 }
290 
291 #else
292 /*
293  * Called to set the hrtick timer state.
294  *
295  * called with rq->lock held and irqs disabled
296  */
297 void hrtick_start(struct rq *rq, u64 delay)
298 {
299 	/*
300 	 * Don't schedule slices shorter than 10000ns, that just
301 	 * doesn't make sense. Rely on vruntime for fairness.
302 	 */
303 	delay = max_t(u64, delay, 10000LL);
304 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
305 		      HRTIMER_MODE_REL_PINNED);
306 }
307 #endif /* CONFIG_SMP */
308 
309 static void hrtick_rq_init(struct rq *rq)
310 {
311 #ifdef CONFIG_SMP
312 	rq->hrtick_csd_pending = 0;
313 
314 	rq->hrtick_csd.flags = 0;
315 	rq->hrtick_csd.func = __hrtick_start;
316 	rq->hrtick_csd.info = rq;
317 #endif
318 
319 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
320 	rq->hrtick_timer.function = hrtick;
321 }
322 #else	/* CONFIG_SCHED_HRTICK */
323 static inline void hrtick_clear(struct rq *rq)
324 {
325 }
326 
327 static inline void hrtick_rq_init(struct rq *rq)
328 {
329 }
330 #endif	/* CONFIG_SCHED_HRTICK */
331 
332 /*
333  * cmpxchg based fetch_or, macro so it works for different integer types
334  */
335 #define fetch_or(ptr, mask)						\
336 	({								\
337 		typeof(ptr) _ptr = (ptr);				\
338 		typeof(mask) _mask = (mask);				\
339 		typeof(*_ptr) _old, _val = *_ptr;			\
340 									\
341 		for (;;) {						\
342 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
343 			if (_old == _val)				\
344 				break;					\
345 			_val = _old;					\
346 		}							\
347 	_old;								\
348 })
349 
350 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
351 /*
352  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
353  * this avoids any races wrt polling state changes and thereby avoids
354  * spurious IPIs.
355  */
356 static bool set_nr_and_not_polling(struct task_struct *p)
357 {
358 	struct thread_info *ti = task_thread_info(p);
359 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
360 }
361 
362 /*
363  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
364  *
365  * If this returns true, then the idle task promises to call
366  * sched_ttwu_pending() and reschedule soon.
367  */
368 static bool set_nr_if_polling(struct task_struct *p)
369 {
370 	struct thread_info *ti = task_thread_info(p);
371 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
372 
373 	for (;;) {
374 		if (!(val & _TIF_POLLING_NRFLAG))
375 			return false;
376 		if (val & _TIF_NEED_RESCHED)
377 			return true;
378 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
379 		if (old == val)
380 			break;
381 		val = old;
382 	}
383 	return true;
384 }
385 
386 #else
387 static bool set_nr_and_not_polling(struct task_struct *p)
388 {
389 	set_tsk_need_resched(p);
390 	return true;
391 }
392 
393 #ifdef CONFIG_SMP
394 static bool set_nr_if_polling(struct task_struct *p)
395 {
396 	return false;
397 }
398 #endif
399 #endif
400 
401 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
402 {
403 	struct wake_q_node *node = &task->wake_q;
404 
405 	/*
406 	 * Atomically grab the task, if ->wake_q is !nil already it means
407 	 * its already queued (either by us or someone else) and will get the
408 	 * wakeup due to that.
409 	 *
410 	 * In order to ensure that a pending wakeup will observe our pending
411 	 * state, even in the failed case, an explicit smp_mb() must be used.
412 	 */
413 	smp_mb__before_atomic();
414 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
415 		return false;
416 
417 	/*
418 	 * The head is context local, there can be no concurrency.
419 	 */
420 	*head->lastp = node;
421 	head->lastp = &node->next;
422 	return true;
423 }
424 
425 /**
426  * wake_q_add() - queue a wakeup for 'later' waking.
427  * @head: the wake_q_head to add @task to
428  * @task: the task to queue for 'later' wakeup
429  *
430  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
431  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
432  * instantly.
433  *
434  * This function must be used as-if it were wake_up_process(); IOW the task
435  * must be ready to be woken at this location.
436  */
437 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
438 {
439 	if (__wake_q_add(head, task))
440 		get_task_struct(task);
441 }
442 
443 /**
444  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
445  * @head: the wake_q_head to add @task to
446  * @task: the task to queue for 'later' wakeup
447  *
448  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
449  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
450  * instantly.
451  *
452  * This function must be used as-if it were wake_up_process(); IOW the task
453  * must be ready to be woken at this location.
454  *
455  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
456  * that already hold reference to @task can call the 'safe' version and trust
457  * wake_q to do the right thing depending whether or not the @task is already
458  * queued for wakeup.
459  */
460 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
461 {
462 	if (!__wake_q_add(head, task))
463 		put_task_struct(task);
464 }
465 
466 void wake_up_q(struct wake_q_head *head)
467 {
468 	struct wake_q_node *node = head->first;
469 
470 	while (node != WAKE_Q_TAIL) {
471 		struct task_struct *task;
472 
473 		task = container_of(node, struct task_struct, wake_q);
474 		BUG_ON(!task);
475 		/* Task can safely be re-inserted now: */
476 		node = node->next;
477 		task->wake_q.next = NULL;
478 
479 		/*
480 		 * wake_up_process() executes a full barrier, which pairs with
481 		 * the queueing in wake_q_add() so as not to miss wakeups.
482 		 */
483 		wake_up_process(task);
484 		put_task_struct(task);
485 	}
486 }
487 
488 /*
489  * resched_curr - mark rq's current task 'to be rescheduled now'.
490  *
491  * On UP this means the setting of the need_resched flag, on SMP it
492  * might also involve a cross-CPU call to trigger the scheduler on
493  * the target CPU.
494  */
495 void resched_curr(struct rq *rq)
496 {
497 	struct task_struct *curr = rq->curr;
498 	int cpu;
499 
500 	lockdep_assert_held(&rq->lock);
501 
502 	if (test_tsk_need_resched(curr))
503 		return;
504 
505 	cpu = cpu_of(rq);
506 
507 	if (cpu == smp_processor_id()) {
508 		set_tsk_need_resched(curr);
509 		set_preempt_need_resched();
510 		return;
511 	}
512 
513 	if (set_nr_and_not_polling(curr))
514 		smp_send_reschedule(cpu);
515 	else
516 		trace_sched_wake_idle_without_ipi(cpu);
517 }
518 
519 void resched_cpu(int cpu)
520 {
521 	struct rq *rq = cpu_rq(cpu);
522 	unsigned long flags;
523 
524 	raw_spin_lock_irqsave(&rq->lock, flags);
525 	if (cpu_online(cpu) || cpu == smp_processor_id())
526 		resched_curr(rq);
527 	raw_spin_unlock_irqrestore(&rq->lock, flags);
528 }
529 
530 #ifdef CONFIG_SMP
531 #ifdef CONFIG_NO_HZ_COMMON
532 /*
533  * In the semi idle case, use the nearest busy CPU for migrating timers
534  * from an idle CPU.  This is good for power-savings.
535  *
536  * We don't do similar optimization for completely idle system, as
537  * selecting an idle CPU will add more delays to the timers than intended
538  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
539  */
540 int get_nohz_timer_target(void)
541 {
542 	int i, cpu = smp_processor_id();
543 	struct sched_domain *sd;
544 
545 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
546 		return cpu;
547 
548 	rcu_read_lock();
549 	for_each_domain(cpu, sd) {
550 		for_each_cpu(i, sched_domain_span(sd)) {
551 			if (cpu == i)
552 				continue;
553 
554 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
555 				cpu = i;
556 				goto unlock;
557 			}
558 		}
559 	}
560 
561 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
562 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
563 unlock:
564 	rcu_read_unlock();
565 	return cpu;
566 }
567 
568 /*
569  * When add_timer_on() enqueues a timer into the timer wheel of an
570  * idle CPU then this timer might expire before the next timer event
571  * which is scheduled to wake up that CPU. In case of a completely
572  * idle system the next event might even be infinite time into the
573  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
574  * leaves the inner idle loop so the newly added timer is taken into
575  * account when the CPU goes back to idle and evaluates the timer
576  * wheel for the next timer event.
577  */
578 static void wake_up_idle_cpu(int cpu)
579 {
580 	struct rq *rq = cpu_rq(cpu);
581 
582 	if (cpu == smp_processor_id())
583 		return;
584 
585 	if (set_nr_and_not_polling(rq->idle))
586 		smp_send_reschedule(cpu);
587 	else
588 		trace_sched_wake_idle_without_ipi(cpu);
589 }
590 
591 static bool wake_up_full_nohz_cpu(int cpu)
592 {
593 	/*
594 	 * We just need the target to call irq_exit() and re-evaluate
595 	 * the next tick. The nohz full kick at least implies that.
596 	 * If needed we can still optimize that later with an
597 	 * empty IRQ.
598 	 */
599 	if (cpu_is_offline(cpu))
600 		return true;  /* Don't try to wake offline CPUs. */
601 	if (tick_nohz_full_cpu(cpu)) {
602 		if (cpu != smp_processor_id() ||
603 		    tick_nohz_tick_stopped())
604 			tick_nohz_full_kick_cpu(cpu);
605 		return true;
606 	}
607 
608 	return false;
609 }
610 
611 /*
612  * Wake up the specified CPU.  If the CPU is going offline, it is the
613  * caller's responsibility to deal with the lost wakeup, for example,
614  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
615  */
616 void wake_up_nohz_cpu(int cpu)
617 {
618 	if (!wake_up_full_nohz_cpu(cpu))
619 		wake_up_idle_cpu(cpu);
620 }
621 
622 static inline bool got_nohz_idle_kick(void)
623 {
624 	int cpu = smp_processor_id();
625 
626 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
627 		return false;
628 
629 	if (idle_cpu(cpu) && !need_resched())
630 		return true;
631 
632 	/*
633 	 * We can't run Idle Load Balance on this CPU for this time so we
634 	 * cancel it and clear NOHZ_BALANCE_KICK
635 	 */
636 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
637 	return false;
638 }
639 
640 #else /* CONFIG_NO_HZ_COMMON */
641 
642 static inline bool got_nohz_idle_kick(void)
643 {
644 	return false;
645 }
646 
647 #endif /* CONFIG_NO_HZ_COMMON */
648 
649 #ifdef CONFIG_NO_HZ_FULL
650 bool sched_can_stop_tick(struct rq *rq)
651 {
652 	int fifo_nr_running;
653 
654 	/* Deadline tasks, even if single, need the tick */
655 	if (rq->dl.dl_nr_running)
656 		return false;
657 
658 	/*
659 	 * If there are more than one RR tasks, we need the tick to effect the
660 	 * actual RR behaviour.
661 	 */
662 	if (rq->rt.rr_nr_running) {
663 		if (rq->rt.rr_nr_running == 1)
664 			return true;
665 		else
666 			return false;
667 	}
668 
669 	/*
670 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
671 	 * forced preemption between FIFO tasks.
672 	 */
673 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
674 	if (fifo_nr_running)
675 		return true;
676 
677 	/*
678 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
679 	 * if there's more than one we need the tick for involuntary
680 	 * preemption.
681 	 */
682 	if (rq->nr_running > 1)
683 		return false;
684 
685 	return true;
686 }
687 #endif /* CONFIG_NO_HZ_FULL */
688 #endif /* CONFIG_SMP */
689 
690 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692 /*
693  * Iterate task_group tree rooted at *from, calling @down when first entering a
694  * node and @up when leaving it for the final time.
695  *
696  * Caller must hold rcu_lock or sufficient equivalent.
697  */
698 int walk_tg_tree_from(struct task_group *from,
699 			     tg_visitor down, tg_visitor up, void *data)
700 {
701 	struct task_group *parent, *child;
702 	int ret;
703 
704 	parent = from;
705 
706 down:
707 	ret = (*down)(parent, data);
708 	if (ret)
709 		goto out;
710 	list_for_each_entry_rcu(child, &parent->children, siblings) {
711 		parent = child;
712 		goto down;
713 
714 up:
715 		continue;
716 	}
717 	ret = (*up)(parent, data);
718 	if (ret || parent == from)
719 		goto out;
720 
721 	child = parent;
722 	parent = parent->parent;
723 	if (parent)
724 		goto up;
725 out:
726 	return ret;
727 }
728 
729 int tg_nop(struct task_group *tg, void *data)
730 {
731 	return 0;
732 }
733 #endif
734 
735 static void set_load_weight(struct task_struct *p, bool update_load)
736 {
737 	int prio = p->static_prio - MAX_RT_PRIO;
738 	struct load_weight *load = &p->se.load;
739 
740 	/*
741 	 * SCHED_IDLE tasks get minimal weight:
742 	 */
743 	if (task_has_idle_policy(p)) {
744 		load->weight = scale_load(WEIGHT_IDLEPRIO);
745 		load->inv_weight = WMULT_IDLEPRIO;
746 		p->se.runnable_weight = load->weight;
747 		return;
748 	}
749 
750 	/*
751 	 * SCHED_OTHER tasks have to update their load when changing their
752 	 * weight
753 	 */
754 	if (update_load && p->sched_class == &fair_sched_class) {
755 		reweight_task(p, prio);
756 	} else {
757 		load->weight = scale_load(sched_prio_to_weight[prio]);
758 		load->inv_weight = sched_prio_to_wmult[prio];
759 		p->se.runnable_weight = load->weight;
760 	}
761 }
762 
763 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	if (!(flags & ENQUEUE_NOCLOCK))
766 		update_rq_clock(rq);
767 
768 	if (!(flags & ENQUEUE_RESTORE)) {
769 		sched_info_queued(rq, p);
770 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
771 	}
772 
773 	p->sched_class->enqueue_task(rq, p, flags);
774 }
775 
776 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
777 {
778 	if (!(flags & DEQUEUE_NOCLOCK))
779 		update_rq_clock(rq);
780 
781 	if (!(flags & DEQUEUE_SAVE)) {
782 		sched_info_dequeued(rq, p);
783 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
784 	}
785 
786 	p->sched_class->dequeue_task(rq, p, flags);
787 }
788 
789 void activate_task(struct rq *rq, struct task_struct *p, int flags)
790 {
791 	if (task_contributes_to_load(p))
792 		rq->nr_uninterruptible--;
793 
794 	enqueue_task(rq, p, flags);
795 
796 	p->on_rq = TASK_ON_RQ_QUEUED;
797 }
798 
799 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
800 {
801 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
802 
803 	if (task_contributes_to_load(p))
804 		rq->nr_uninterruptible++;
805 
806 	dequeue_task(rq, p, flags);
807 }
808 
809 /*
810  * __normal_prio - return the priority that is based on the static prio
811  */
812 static inline int __normal_prio(struct task_struct *p)
813 {
814 	return p->static_prio;
815 }
816 
817 /*
818  * Calculate the expected normal priority: i.e. priority
819  * without taking RT-inheritance into account. Might be
820  * boosted by interactivity modifiers. Changes upon fork,
821  * setprio syscalls, and whenever the interactivity
822  * estimator recalculates.
823  */
824 static inline int normal_prio(struct task_struct *p)
825 {
826 	int prio;
827 
828 	if (task_has_dl_policy(p))
829 		prio = MAX_DL_PRIO-1;
830 	else if (task_has_rt_policy(p))
831 		prio = MAX_RT_PRIO-1 - p->rt_priority;
832 	else
833 		prio = __normal_prio(p);
834 	return prio;
835 }
836 
837 /*
838  * Calculate the current priority, i.e. the priority
839  * taken into account by the scheduler. This value might
840  * be boosted by RT tasks, or might be boosted by
841  * interactivity modifiers. Will be RT if the task got
842  * RT-boosted. If not then it returns p->normal_prio.
843  */
844 static int effective_prio(struct task_struct *p)
845 {
846 	p->normal_prio = normal_prio(p);
847 	/*
848 	 * If we are RT tasks or we were boosted to RT priority,
849 	 * keep the priority unchanged. Otherwise, update priority
850 	 * to the normal priority:
851 	 */
852 	if (!rt_prio(p->prio))
853 		return p->normal_prio;
854 	return p->prio;
855 }
856 
857 /**
858  * task_curr - is this task currently executing on a CPU?
859  * @p: the task in question.
860  *
861  * Return: 1 if the task is currently executing. 0 otherwise.
862  */
863 inline int task_curr(const struct task_struct *p)
864 {
865 	return cpu_curr(task_cpu(p)) == p;
866 }
867 
868 /*
869  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
870  * use the balance_callback list if you want balancing.
871  *
872  * this means any call to check_class_changed() must be followed by a call to
873  * balance_callback().
874  */
875 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
876 				       const struct sched_class *prev_class,
877 				       int oldprio)
878 {
879 	if (prev_class != p->sched_class) {
880 		if (prev_class->switched_from)
881 			prev_class->switched_from(rq, p);
882 
883 		p->sched_class->switched_to(rq, p);
884 	} else if (oldprio != p->prio || dl_task(p))
885 		p->sched_class->prio_changed(rq, p, oldprio);
886 }
887 
888 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
889 {
890 	const struct sched_class *class;
891 
892 	if (p->sched_class == rq->curr->sched_class) {
893 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
894 	} else {
895 		for_each_class(class) {
896 			if (class == rq->curr->sched_class)
897 				break;
898 			if (class == p->sched_class) {
899 				resched_curr(rq);
900 				break;
901 			}
902 		}
903 	}
904 
905 	/*
906 	 * A queue event has occurred, and we're going to schedule.  In
907 	 * this case, we can save a useless back to back clock update.
908 	 */
909 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
910 		rq_clock_skip_update(rq);
911 }
912 
913 #ifdef CONFIG_SMP
914 
915 static inline bool is_per_cpu_kthread(struct task_struct *p)
916 {
917 	if (!(p->flags & PF_KTHREAD))
918 		return false;
919 
920 	if (p->nr_cpus_allowed != 1)
921 		return false;
922 
923 	return true;
924 }
925 
926 /*
927  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
928  * __set_cpus_allowed_ptr() and select_fallback_rq().
929  */
930 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
931 {
932 	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
933 		return false;
934 
935 	if (is_per_cpu_kthread(p))
936 		return cpu_online(cpu);
937 
938 	return cpu_active(cpu);
939 }
940 
941 /*
942  * This is how migration works:
943  *
944  * 1) we invoke migration_cpu_stop() on the target CPU using
945  *    stop_one_cpu().
946  * 2) stopper starts to run (implicitly forcing the migrated thread
947  *    off the CPU)
948  * 3) it checks whether the migrated task is still in the wrong runqueue.
949  * 4) if it's in the wrong runqueue then the migration thread removes
950  *    it and puts it into the right queue.
951  * 5) stopper completes and stop_one_cpu() returns and the migration
952  *    is done.
953  */
954 
955 /*
956  * move_queued_task - move a queued task to new rq.
957  *
958  * Returns (locked) new rq. Old rq's lock is released.
959  */
960 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
961 				   struct task_struct *p, int new_cpu)
962 {
963 	lockdep_assert_held(&rq->lock);
964 
965 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
966 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
967 	set_task_cpu(p, new_cpu);
968 	rq_unlock(rq, rf);
969 
970 	rq = cpu_rq(new_cpu);
971 
972 	rq_lock(rq, rf);
973 	BUG_ON(task_cpu(p) != new_cpu);
974 	enqueue_task(rq, p, 0);
975 	p->on_rq = TASK_ON_RQ_QUEUED;
976 	check_preempt_curr(rq, p, 0);
977 
978 	return rq;
979 }
980 
981 struct migration_arg {
982 	struct task_struct *task;
983 	int dest_cpu;
984 };
985 
986 /*
987  * Move (not current) task off this CPU, onto the destination CPU. We're doing
988  * this because either it can't run here any more (set_cpus_allowed()
989  * away from this CPU, or CPU going down), or because we're
990  * attempting to rebalance this task on exec (sched_exec).
991  *
992  * So we race with normal scheduler movements, but that's OK, as long
993  * as the task is no longer on this CPU.
994  */
995 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
996 				 struct task_struct *p, int dest_cpu)
997 {
998 	/* Affinity changed (again). */
999 	if (!is_cpu_allowed(p, dest_cpu))
1000 		return rq;
1001 
1002 	update_rq_clock(rq);
1003 	rq = move_queued_task(rq, rf, p, dest_cpu);
1004 
1005 	return rq;
1006 }
1007 
1008 /*
1009  * migration_cpu_stop - this will be executed by a highprio stopper thread
1010  * and performs thread migration by bumping thread off CPU then
1011  * 'pushing' onto another runqueue.
1012  */
1013 static int migration_cpu_stop(void *data)
1014 {
1015 	struct migration_arg *arg = data;
1016 	struct task_struct *p = arg->task;
1017 	struct rq *rq = this_rq();
1018 	struct rq_flags rf;
1019 
1020 	/*
1021 	 * The original target CPU might have gone down and we might
1022 	 * be on another CPU but it doesn't matter.
1023 	 */
1024 	local_irq_disable();
1025 	/*
1026 	 * We need to explicitly wake pending tasks before running
1027 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1028 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1029 	 */
1030 	sched_ttwu_pending();
1031 
1032 	raw_spin_lock(&p->pi_lock);
1033 	rq_lock(rq, &rf);
1034 	/*
1035 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1036 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1037 	 * we're holding p->pi_lock.
1038 	 */
1039 	if (task_rq(p) == rq) {
1040 		if (task_on_rq_queued(p))
1041 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1042 		else
1043 			p->wake_cpu = arg->dest_cpu;
1044 	}
1045 	rq_unlock(rq, &rf);
1046 	raw_spin_unlock(&p->pi_lock);
1047 
1048 	local_irq_enable();
1049 	return 0;
1050 }
1051 
1052 /*
1053  * sched_class::set_cpus_allowed must do the below, but is not required to
1054  * actually call this function.
1055  */
1056 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1057 {
1058 	cpumask_copy(&p->cpus_allowed, new_mask);
1059 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1060 }
1061 
1062 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1063 {
1064 	struct rq *rq = task_rq(p);
1065 	bool queued, running;
1066 
1067 	lockdep_assert_held(&p->pi_lock);
1068 
1069 	queued = task_on_rq_queued(p);
1070 	running = task_current(rq, p);
1071 
1072 	if (queued) {
1073 		/*
1074 		 * Because __kthread_bind() calls this on blocked tasks without
1075 		 * holding rq->lock.
1076 		 */
1077 		lockdep_assert_held(&rq->lock);
1078 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1079 	}
1080 	if (running)
1081 		put_prev_task(rq, p);
1082 
1083 	p->sched_class->set_cpus_allowed(p, new_mask);
1084 
1085 	if (queued)
1086 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1087 	if (running)
1088 		set_curr_task(rq, p);
1089 }
1090 
1091 /*
1092  * Change a given task's CPU affinity. Migrate the thread to a
1093  * proper CPU and schedule it away if the CPU it's executing on
1094  * is removed from the allowed bitmask.
1095  *
1096  * NOTE: the caller must have a valid reference to the task, the
1097  * task must not exit() & deallocate itself prematurely. The
1098  * call is not atomic; no spinlocks may be held.
1099  */
1100 static int __set_cpus_allowed_ptr(struct task_struct *p,
1101 				  const struct cpumask *new_mask, bool check)
1102 {
1103 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1104 	unsigned int dest_cpu;
1105 	struct rq_flags rf;
1106 	struct rq *rq;
1107 	int ret = 0;
1108 
1109 	rq = task_rq_lock(p, &rf);
1110 	update_rq_clock(rq);
1111 
1112 	if (p->flags & PF_KTHREAD) {
1113 		/*
1114 		 * Kernel threads are allowed on online && !active CPUs
1115 		 */
1116 		cpu_valid_mask = cpu_online_mask;
1117 	}
1118 
1119 	/*
1120 	 * Must re-check here, to close a race against __kthread_bind(),
1121 	 * sched_setaffinity() is not guaranteed to observe the flag.
1122 	 */
1123 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1124 		ret = -EINVAL;
1125 		goto out;
1126 	}
1127 
1128 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1129 		goto out;
1130 
1131 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1132 		ret = -EINVAL;
1133 		goto out;
1134 	}
1135 
1136 	do_set_cpus_allowed(p, new_mask);
1137 
1138 	if (p->flags & PF_KTHREAD) {
1139 		/*
1140 		 * For kernel threads that do indeed end up on online &&
1141 		 * !active we want to ensure they are strict per-CPU threads.
1142 		 */
1143 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1144 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1145 			p->nr_cpus_allowed != 1);
1146 	}
1147 
1148 	/* Can the task run on the task's current CPU? If so, we're done */
1149 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1150 		goto out;
1151 
1152 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1153 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1154 		struct migration_arg arg = { p, dest_cpu };
1155 		/* Need help from migration thread: drop lock and wait. */
1156 		task_rq_unlock(rq, p, &rf);
1157 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1158 		return 0;
1159 	} else if (task_on_rq_queued(p)) {
1160 		/*
1161 		 * OK, since we're going to drop the lock immediately
1162 		 * afterwards anyway.
1163 		 */
1164 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1165 	}
1166 out:
1167 	task_rq_unlock(rq, p, &rf);
1168 
1169 	return ret;
1170 }
1171 
1172 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1173 {
1174 	return __set_cpus_allowed_ptr(p, new_mask, false);
1175 }
1176 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1177 
1178 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1179 {
1180 #ifdef CONFIG_SCHED_DEBUG
1181 	/*
1182 	 * We should never call set_task_cpu() on a blocked task,
1183 	 * ttwu() will sort out the placement.
1184 	 */
1185 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1186 			!p->on_rq);
1187 
1188 	/*
1189 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1190 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1191 	 * time relying on p->on_rq.
1192 	 */
1193 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1194 		     p->sched_class == &fair_sched_class &&
1195 		     (p->on_rq && !task_on_rq_migrating(p)));
1196 
1197 #ifdef CONFIG_LOCKDEP
1198 	/*
1199 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1200 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1201 	 *
1202 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1203 	 * see task_group().
1204 	 *
1205 	 * Furthermore, all task_rq users should acquire both locks, see
1206 	 * task_rq_lock().
1207 	 */
1208 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1209 				      lockdep_is_held(&task_rq(p)->lock)));
1210 #endif
1211 	/*
1212 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1213 	 */
1214 	WARN_ON_ONCE(!cpu_online(new_cpu));
1215 #endif
1216 
1217 	trace_sched_migrate_task(p, new_cpu);
1218 
1219 	if (task_cpu(p) != new_cpu) {
1220 		if (p->sched_class->migrate_task_rq)
1221 			p->sched_class->migrate_task_rq(p, new_cpu);
1222 		p->se.nr_migrations++;
1223 		rseq_migrate(p);
1224 		perf_event_task_migrate(p);
1225 	}
1226 
1227 	__set_task_cpu(p, new_cpu);
1228 }
1229 
1230 #ifdef CONFIG_NUMA_BALANCING
1231 static void __migrate_swap_task(struct task_struct *p, int cpu)
1232 {
1233 	if (task_on_rq_queued(p)) {
1234 		struct rq *src_rq, *dst_rq;
1235 		struct rq_flags srf, drf;
1236 
1237 		src_rq = task_rq(p);
1238 		dst_rq = cpu_rq(cpu);
1239 
1240 		rq_pin_lock(src_rq, &srf);
1241 		rq_pin_lock(dst_rq, &drf);
1242 
1243 		deactivate_task(src_rq, p, 0);
1244 		set_task_cpu(p, cpu);
1245 		activate_task(dst_rq, p, 0);
1246 		check_preempt_curr(dst_rq, p, 0);
1247 
1248 		rq_unpin_lock(dst_rq, &drf);
1249 		rq_unpin_lock(src_rq, &srf);
1250 
1251 	} else {
1252 		/*
1253 		 * Task isn't running anymore; make it appear like we migrated
1254 		 * it before it went to sleep. This means on wakeup we make the
1255 		 * previous CPU our target instead of where it really is.
1256 		 */
1257 		p->wake_cpu = cpu;
1258 	}
1259 }
1260 
1261 struct migration_swap_arg {
1262 	struct task_struct *src_task, *dst_task;
1263 	int src_cpu, dst_cpu;
1264 };
1265 
1266 static int migrate_swap_stop(void *data)
1267 {
1268 	struct migration_swap_arg *arg = data;
1269 	struct rq *src_rq, *dst_rq;
1270 	int ret = -EAGAIN;
1271 
1272 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1273 		return -EAGAIN;
1274 
1275 	src_rq = cpu_rq(arg->src_cpu);
1276 	dst_rq = cpu_rq(arg->dst_cpu);
1277 
1278 	double_raw_lock(&arg->src_task->pi_lock,
1279 			&arg->dst_task->pi_lock);
1280 	double_rq_lock(src_rq, dst_rq);
1281 
1282 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1283 		goto unlock;
1284 
1285 	if (task_cpu(arg->src_task) != arg->src_cpu)
1286 		goto unlock;
1287 
1288 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1289 		goto unlock;
1290 
1291 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1292 		goto unlock;
1293 
1294 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1295 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1296 
1297 	ret = 0;
1298 
1299 unlock:
1300 	double_rq_unlock(src_rq, dst_rq);
1301 	raw_spin_unlock(&arg->dst_task->pi_lock);
1302 	raw_spin_unlock(&arg->src_task->pi_lock);
1303 
1304 	return ret;
1305 }
1306 
1307 /*
1308  * Cross migrate two tasks
1309  */
1310 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1311 		int target_cpu, int curr_cpu)
1312 {
1313 	struct migration_swap_arg arg;
1314 	int ret = -EINVAL;
1315 
1316 	arg = (struct migration_swap_arg){
1317 		.src_task = cur,
1318 		.src_cpu = curr_cpu,
1319 		.dst_task = p,
1320 		.dst_cpu = target_cpu,
1321 	};
1322 
1323 	if (arg.src_cpu == arg.dst_cpu)
1324 		goto out;
1325 
1326 	/*
1327 	 * These three tests are all lockless; this is OK since all of them
1328 	 * will be re-checked with proper locks held further down the line.
1329 	 */
1330 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1331 		goto out;
1332 
1333 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1334 		goto out;
1335 
1336 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1337 		goto out;
1338 
1339 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1340 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1341 
1342 out:
1343 	return ret;
1344 }
1345 #endif /* CONFIG_NUMA_BALANCING */
1346 
1347 /*
1348  * wait_task_inactive - wait for a thread to unschedule.
1349  *
1350  * If @match_state is nonzero, it's the @p->state value just checked and
1351  * not expected to change.  If it changes, i.e. @p might have woken up,
1352  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1353  * we return a positive number (its total switch count).  If a second call
1354  * a short while later returns the same number, the caller can be sure that
1355  * @p has remained unscheduled the whole time.
1356  *
1357  * The caller must ensure that the task *will* unschedule sometime soon,
1358  * else this function might spin for a *long* time. This function can't
1359  * be called with interrupts off, or it may introduce deadlock with
1360  * smp_call_function() if an IPI is sent by the same process we are
1361  * waiting to become inactive.
1362  */
1363 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1364 {
1365 	int running, queued;
1366 	struct rq_flags rf;
1367 	unsigned long ncsw;
1368 	struct rq *rq;
1369 
1370 	for (;;) {
1371 		/*
1372 		 * We do the initial early heuristics without holding
1373 		 * any task-queue locks at all. We'll only try to get
1374 		 * the runqueue lock when things look like they will
1375 		 * work out!
1376 		 */
1377 		rq = task_rq(p);
1378 
1379 		/*
1380 		 * If the task is actively running on another CPU
1381 		 * still, just relax and busy-wait without holding
1382 		 * any locks.
1383 		 *
1384 		 * NOTE! Since we don't hold any locks, it's not
1385 		 * even sure that "rq" stays as the right runqueue!
1386 		 * But we don't care, since "task_running()" will
1387 		 * return false if the runqueue has changed and p
1388 		 * is actually now running somewhere else!
1389 		 */
1390 		while (task_running(rq, p)) {
1391 			if (match_state && unlikely(p->state != match_state))
1392 				return 0;
1393 			cpu_relax();
1394 		}
1395 
1396 		/*
1397 		 * Ok, time to look more closely! We need the rq
1398 		 * lock now, to be *sure*. If we're wrong, we'll
1399 		 * just go back and repeat.
1400 		 */
1401 		rq = task_rq_lock(p, &rf);
1402 		trace_sched_wait_task(p);
1403 		running = task_running(rq, p);
1404 		queued = task_on_rq_queued(p);
1405 		ncsw = 0;
1406 		if (!match_state || p->state == match_state)
1407 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1408 		task_rq_unlock(rq, p, &rf);
1409 
1410 		/*
1411 		 * If it changed from the expected state, bail out now.
1412 		 */
1413 		if (unlikely(!ncsw))
1414 			break;
1415 
1416 		/*
1417 		 * Was it really running after all now that we
1418 		 * checked with the proper locks actually held?
1419 		 *
1420 		 * Oops. Go back and try again..
1421 		 */
1422 		if (unlikely(running)) {
1423 			cpu_relax();
1424 			continue;
1425 		}
1426 
1427 		/*
1428 		 * It's not enough that it's not actively running,
1429 		 * it must be off the runqueue _entirely_, and not
1430 		 * preempted!
1431 		 *
1432 		 * So if it was still runnable (but just not actively
1433 		 * running right now), it's preempted, and we should
1434 		 * yield - it could be a while.
1435 		 */
1436 		if (unlikely(queued)) {
1437 			ktime_t to = NSEC_PER_SEC / HZ;
1438 
1439 			set_current_state(TASK_UNINTERRUPTIBLE);
1440 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1441 			continue;
1442 		}
1443 
1444 		/*
1445 		 * Ahh, all good. It wasn't running, and it wasn't
1446 		 * runnable, which means that it will never become
1447 		 * running in the future either. We're all done!
1448 		 */
1449 		break;
1450 	}
1451 
1452 	return ncsw;
1453 }
1454 
1455 /***
1456  * kick_process - kick a running thread to enter/exit the kernel
1457  * @p: the to-be-kicked thread
1458  *
1459  * Cause a process which is running on another CPU to enter
1460  * kernel-mode, without any delay. (to get signals handled.)
1461  *
1462  * NOTE: this function doesn't have to take the runqueue lock,
1463  * because all it wants to ensure is that the remote task enters
1464  * the kernel. If the IPI races and the task has been migrated
1465  * to another CPU then no harm is done and the purpose has been
1466  * achieved as well.
1467  */
1468 void kick_process(struct task_struct *p)
1469 {
1470 	int cpu;
1471 
1472 	preempt_disable();
1473 	cpu = task_cpu(p);
1474 	if ((cpu != smp_processor_id()) && task_curr(p))
1475 		smp_send_reschedule(cpu);
1476 	preempt_enable();
1477 }
1478 EXPORT_SYMBOL_GPL(kick_process);
1479 
1480 /*
1481  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1482  *
1483  * A few notes on cpu_active vs cpu_online:
1484  *
1485  *  - cpu_active must be a subset of cpu_online
1486  *
1487  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1488  *    see __set_cpus_allowed_ptr(). At this point the newly online
1489  *    CPU isn't yet part of the sched domains, and balancing will not
1490  *    see it.
1491  *
1492  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1493  *    avoid the load balancer to place new tasks on the to be removed
1494  *    CPU. Existing tasks will remain running there and will be taken
1495  *    off.
1496  *
1497  * This means that fallback selection must not select !active CPUs.
1498  * And can assume that any active CPU must be online. Conversely
1499  * select_task_rq() below may allow selection of !active CPUs in order
1500  * to satisfy the above rules.
1501  */
1502 static int select_fallback_rq(int cpu, struct task_struct *p)
1503 {
1504 	int nid = cpu_to_node(cpu);
1505 	const struct cpumask *nodemask = NULL;
1506 	enum { cpuset, possible, fail } state = cpuset;
1507 	int dest_cpu;
1508 
1509 	/*
1510 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1511 	 * will return -1. There is no CPU on the node, and we should
1512 	 * select the CPU on the other node.
1513 	 */
1514 	if (nid != -1) {
1515 		nodemask = cpumask_of_node(nid);
1516 
1517 		/* Look for allowed, online CPU in same node. */
1518 		for_each_cpu(dest_cpu, nodemask) {
1519 			if (!cpu_active(dest_cpu))
1520 				continue;
1521 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1522 				return dest_cpu;
1523 		}
1524 	}
1525 
1526 	for (;;) {
1527 		/* Any allowed, online CPU? */
1528 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1529 			if (!is_cpu_allowed(p, dest_cpu))
1530 				continue;
1531 
1532 			goto out;
1533 		}
1534 
1535 		/* No more Mr. Nice Guy. */
1536 		switch (state) {
1537 		case cpuset:
1538 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1539 				cpuset_cpus_allowed_fallback(p);
1540 				state = possible;
1541 				break;
1542 			}
1543 			/* Fall-through */
1544 		case possible:
1545 			do_set_cpus_allowed(p, cpu_possible_mask);
1546 			state = fail;
1547 			break;
1548 
1549 		case fail:
1550 			BUG();
1551 			break;
1552 		}
1553 	}
1554 
1555 out:
1556 	if (state != cpuset) {
1557 		/*
1558 		 * Don't tell them about moving exiting tasks or
1559 		 * kernel threads (both mm NULL), since they never
1560 		 * leave kernel.
1561 		 */
1562 		if (p->mm && printk_ratelimit()) {
1563 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1564 					task_pid_nr(p), p->comm, cpu);
1565 		}
1566 	}
1567 
1568 	return dest_cpu;
1569 }
1570 
1571 /*
1572  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1573  */
1574 static inline
1575 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1576 {
1577 	lockdep_assert_held(&p->pi_lock);
1578 
1579 	if (p->nr_cpus_allowed > 1)
1580 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1581 	else
1582 		cpu = cpumask_any(&p->cpus_allowed);
1583 
1584 	/*
1585 	 * In order not to call set_task_cpu() on a blocking task we need
1586 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1587 	 * CPU.
1588 	 *
1589 	 * Since this is common to all placement strategies, this lives here.
1590 	 *
1591 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1592 	 *   not worry about this generic constraint ]
1593 	 */
1594 	if (unlikely(!is_cpu_allowed(p, cpu)))
1595 		cpu = select_fallback_rq(task_cpu(p), p);
1596 
1597 	return cpu;
1598 }
1599 
1600 static void update_avg(u64 *avg, u64 sample)
1601 {
1602 	s64 diff = sample - *avg;
1603 	*avg += diff >> 3;
1604 }
1605 
1606 void sched_set_stop_task(int cpu, struct task_struct *stop)
1607 {
1608 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1609 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1610 
1611 	if (stop) {
1612 		/*
1613 		 * Make it appear like a SCHED_FIFO task, its something
1614 		 * userspace knows about and won't get confused about.
1615 		 *
1616 		 * Also, it will make PI more or less work without too
1617 		 * much confusion -- but then, stop work should not
1618 		 * rely on PI working anyway.
1619 		 */
1620 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1621 
1622 		stop->sched_class = &stop_sched_class;
1623 	}
1624 
1625 	cpu_rq(cpu)->stop = stop;
1626 
1627 	if (old_stop) {
1628 		/*
1629 		 * Reset it back to a normal scheduling class so that
1630 		 * it can die in pieces.
1631 		 */
1632 		old_stop->sched_class = &rt_sched_class;
1633 	}
1634 }
1635 
1636 #else
1637 
1638 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1639 					 const struct cpumask *new_mask, bool check)
1640 {
1641 	return set_cpus_allowed_ptr(p, new_mask);
1642 }
1643 
1644 #endif /* CONFIG_SMP */
1645 
1646 static void
1647 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1648 {
1649 	struct rq *rq;
1650 
1651 	if (!schedstat_enabled())
1652 		return;
1653 
1654 	rq = this_rq();
1655 
1656 #ifdef CONFIG_SMP
1657 	if (cpu == rq->cpu) {
1658 		__schedstat_inc(rq->ttwu_local);
1659 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1660 	} else {
1661 		struct sched_domain *sd;
1662 
1663 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1664 		rcu_read_lock();
1665 		for_each_domain(rq->cpu, sd) {
1666 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1667 				__schedstat_inc(sd->ttwu_wake_remote);
1668 				break;
1669 			}
1670 		}
1671 		rcu_read_unlock();
1672 	}
1673 
1674 	if (wake_flags & WF_MIGRATED)
1675 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1676 #endif /* CONFIG_SMP */
1677 
1678 	__schedstat_inc(rq->ttwu_count);
1679 	__schedstat_inc(p->se.statistics.nr_wakeups);
1680 
1681 	if (wake_flags & WF_SYNC)
1682 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1683 }
1684 
1685 /*
1686  * Mark the task runnable and perform wakeup-preemption.
1687  */
1688 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1689 			   struct rq_flags *rf)
1690 {
1691 	check_preempt_curr(rq, p, wake_flags);
1692 	p->state = TASK_RUNNING;
1693 	trace_sched_wakeup(p);
1694 
1695 #ifdef CONFIG_SMP
1696 	if (p->sched_class->task_woken) {
1697 		/*
1698 		 * Our task @p is fully woken up and running; so its safe to
1699 		 * drop the rq->lock, hereafter rq is only used for statistics.
1700 		 */
1701 		rq_unpin_lock(rq, rf);
1702 		p->sched_class->task_woken(rq, p);
1703 		rq_repin_lock(rq, rf);
1704 	}
1705 
1706 	if (rq->idle_stamp) {
1707 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1708 		u64 max = 2*rq->max_idle_balance_cost;
1709 
1710 		update_avg(&rq->avg_idle, delta);
1711 
1712 		if (rq->avg_idle > max)
1713 			rq->avg_idle = max;
1714 
1715 		rq->idle_stamp = 0;
1716 	}
1717 #endif
1718 }
1719 
1720 static void
1721 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1722 		 struct rq_flags *rf)
1723 {
1724 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1725 
1726 	lockdep_assert_held(&rq->lock);
1727 
1728 #ifdef CONFIG_SMP
1729 	if (p->sched_contributes_to_load)
1730 		rq->nr_uninterruptible--;
1731 
1732 	if (wake_flags & WF_MIGRATED)
1733 		en_flags |= ENQUEUE_MIGRATED;
1734 #endif
1735 
1736 	activate_task(rq, p, en_flags);
1737 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1738 }
1739 
1740 /*
1741  * Called in case the task @p isn't fully descheduled from its runqueue,
1742  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1743  * since all we need to do is flip p->state to TASK_RUNNING, since
1744  * the task is still ->on_rq.
1745  */
1746 static int ttwu_remote(struct task_struct *p, int wake_flags)
1747 {
1748 	struct rq_flags rf;
1749 	struct rq *rq;
1750 	int ret = 0;
1751 
1752 	rq = __task_rq_lock(p, &rf);
1753 	if (task_on_rq_queued(p)) {
1754 		/* check_preempt_curr() may use rq clock */
1755 		update_rq_clock(rq);
1756 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1757 		ret = 1;
1758 	}
1759 	__task_rq_unlock(rq, &rf);
1760 
1761 	return ret;
1762 }
1763 
1764 #ifdef CONFIG_SMP
1765 void sched_ttwu_pending(void)
1766 {
1767 	struct rq *rq = this_rq();
1768 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1769 	struct task_struct *p, *t;
1770 	struct rq_flags rf;
1771 
1772 	if (!llist)
1773 		return;
1774 
1775 	rq_lock_irqsave(rq, &rf);
1776 	update_rq_clock(rq);
1777 
1778 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1779 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1780 
1781 	rq_unlock_irqrestore(rq, &rf);
1782 }
1783 
1784 void scheduler_ipi(void)
1785 {
1786 	/*
1787 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1788 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1789 	 * this IPI.
1790 	 */
1791 	preempt_fold_need_resched();
1792 
1793 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1794 		return;
1795 
1796 	/*
1797 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1798 	 * traditionally all their work was done from the interrupt return
1799 	 * path. Now that we actually do some work, we need to make sure
1800 	 * we do call them.
1801 	 *
1802 	 * Some archs already do call them, luckily irq_enter/exit nest
1803 	 * properly.
1804 	 *
1805 	 * Arguably we should visit all archs and update all handlers,
1806 	 * however a fair share of IPIs are still resched only so this would
1807 	 * somewhat pessimize the simple resched case.
1808 	 */
1809 	irq_enter();
1810 	sched_ttwu_pending();
1811 
1812 	/*
1813 	 * Check if someone kicked us for doing the nohz idle load balance.
1814 	 */
1815 	if (unlikely(got_nohz_idle_kick())) {
1816 		this_rq()->idle_balance = 1;
1817 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1818 	}
1819 	irq_exit();
1820 }
1821 
1822 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1823 {
1824 	struct rq *rq = cpu_rq(cpu);
1825 
1826 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1827 
1828 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1829 		if (!set_nr_if_polling(rq->idle))
1830 			smp_send_reschedule(cpu);
1831 		else
1832 			trace_sched_wake_idle_without_ipi(cpu);
1833 	}
1834 }
1835 
1836 void wake_up_if_idle(int cpu)
1837 {
1838 	struct rq *rq = cpu_rq(cpu);
1839 	struct rq_flags rf;
1840 
1841 	rcu_read_lock();
1842 
1843 	if (!is_idle_task(rcu_dereference(rq->curr)))
1844 		goto out;
1845 
1846 	if (set_nr_if_polling(rq->idle)) {
1847 		trace_sched_wake_idle_without_ipi(cpu);
1848 	} else {
1849 		rq_lock_irqsave(rq, &rf);
1850 		if (is_idle_task(rq->curr))
1851 			smp_send_reschedule(cpu);
1852 		/* Else CPU is not idle, do nothing here: */
1853 		rq_unlock_irqrestore(rq, &rf);
1854 	}
1855 
1856 out:
1857 	rcu_read_unlock();
1858 }
1859 
1860 bool cpus_share_cache(int this_cpu, int that_cpu)
1861 {
1862 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1863 }
1864 #endif /* CONFIG_SMP */
1865 
1866 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1867 {
1868 	struct rq *rq = cpu_rq(cpu);
1869 	struct rq_flags rf;
1870 
1871 #if defined(CONFIG_SMP)
1872 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1873 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1874 		ttwu_queue_remote(p, cpu, wake_flags);
1875 		return;
1876 	}
1877 #endif
1878 
1879 	rq_lock(rq, &rf);
1880 	update_rq_clock(rq);
1881 	ttwu_do_activate(rq, p, wake_flags, &rf);
1882 	rq_unlock(rq, &rf);
1883 }
1884 
1885 /*
1886  * Notes on Program-Order guarantees on SMP systems.
1887  *
1888  *  MIGRATION
1889  *
1890  * The basic program-order guarantee on SMP systems is that when a task [t]
1891  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1892  * execution on its new CPU [c1].
1893  *
1894  * For migration (of runnable tasks) this is provided by the following means:
1895  *
1896  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1897  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1898  *     rq(c1)->lock (if not at the same time, then in that order).
1899  *  C) LOCK of the rq(c1)->lock scheduling in task
1900  *
1901  * Release/acquire chaining guarantees that B happens after A and C after B.
1902  * Note: the CPU doing B need not be c0 or c1
1903  *
1904  * Example:
1905  *
1906  *   CPU0            CPU1            CPU2
1907  *
1908  *   LOCK rq(0)->lock
1909  *   sched-out X
1910  *   sched-in Y
1911  *   UNLOCK rq(0)->lock
1912  *
1913  *                                   LOCK rq(0)->lock // orders against CPU0
1914  *                                   dequeue X
1915  *                                   UNLOCK rq(0)->lock
1916  *
1917  *                                   LOCK rq(1)->lock
1918  *                                   enqueue X
1919  *                                   UNLOCK rq(1)->lock
1920  *
1921  *                   LOCK rq(1)->lock // orders against CPU2
1922  *                   sched-out Z
1923  *                   sched-in X
1924  *                   UNLOCK rq(1)->lock
1925  *
1926  *
1927  *  BLOCKING -- aka. SLEEP + WAKEUP
1928  *
1929  * For blocking we (obviously) need to provide the same guarantee as for
1930  * migration. However the means are completely different as there is no lock
1931  * chain to provide order. Instead we do:
1932  *
1933  *   1) smp_store_release(X->on_cpu, 0)
1934  *   2) smp_cond_load_acquire(!X->on_cpu)
1935  *
1936  * Example:
1937  *
1938  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1939  *
1940  *   LOCK rq(0)->lock LOCK X->pi_lock
1941  *   dequeue X
1942  *   sched-out X
1943  *   smp_store_release(X->on_cpu, 0);
1944  *
1945  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1946  *                    X->state = WAKING
1947  *                    set_task_cpu(X,2)
1948  *
1949  *                    LOCK rq(2)->lock
1950  *                    enqueue X
1951  *                    X->state = RUNNING
1952  *                    UNLOCK rq(2)->lock
1953  *
1954  *                                          LOCK rq(2)->lock // orders against CPU1
1955  *                                          sched-out Z
1956  *                                          sched-in X
1957  *                                          UNLOCK rq(2)->lock
1958  *
1959  *                    UNLOCK X->pi_lock
1960  *   UNLOCK rq(0)->lock
1961  *
1962  *
1963  * However, for wakeups there is a second guarantee we must provide, namely we
1964  * must ensure that CONDITION=1 done by the caller can not be reordered with
1965  * accesses to the task state; see try_to_wake_up() and set_current_state().
1966  */
1967 
1968 /**
1969  * try_to_wake_up - wake up a thread
1970  * @p: the thread to be awakened
1971  * @state: the mask of task states that can be woken
1972  * @wake_flags: wake modifier flags (WF_*)
1973  *
1974  * If (@state & @p->state) @p->state = TASK_RUNNING.
1975  *
1976  * If the task was not queued/runnable, also place it back on a runqueue.
1977  *
1978  * Atomic against schedule() which would dequeue a task, also see
1979  * set_current_state().
1980  *
1981  * This function executes a full memory barrier before accessing the task
1982  * state; see set_current_state().
1983  *
1984  * Return: %true if @p->state changes (an actual wakeup was done),
1985  *	   %false otherwise.
1986  */
1987 static int
1988 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1989 {
1990 	unsigned long flags;
1991 	int cpu, success = 0;
1992 
1993 	/*
1994 	 * If we are going to wake up a thread waiting for CONDITION we
1995 	 * need to ensure that CONDITION=1 done by the caller can not be
1996 	 * reordered with p->state check below. This pairs with mb() in
1997 	 * set_current_state() the waiting thread does.
1998 	 */
1999 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2000 	smp_mb__after_spinlock();
2001 	if (!(p->state & state))
2002 		goto out;
2003 
2004 	trace_sched_waking(p);
2005 
2006 	/* We're going to change ->state: */
2007 	success = 1;
2008 	cpu = task_cpu(p);
2009 
2010 	/*
2011 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2012 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2013 	 * in smp_cond_load_acquire() below.
2014 	 *
2015 	 * sched_ttwu_pending()			try_to_wake_up()
2016 	 *   STORE p->on_rq = 1			  LOAD p->state
2017 	 *   UNLOCK rq->lock
2018 	 *
2019 	 * __schedule() (switch to task 'p')
2020 	 *   LOCK rq->lock			  smp_rmb();
2021 	 *   smp_mb__after_spinlock();
2022 	 *   UNLOCK rq->lock
2023 	 *
2024 	 * [task p]
2025 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2026 	 *
2027 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2028 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2029 	 */
2030 	smp_rmb();
2031 	if (p->on_rq && ttwu_remote(p, wake_flags))
2032 		goto stat;
2033 
2034 #ifdef CONFIG_SMP
2035 	/*
2036 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2037 	 * possible to, falsely, observe p->on_cpu == 0.
2038 	 *
2039 	 * One must be running (->on_cpu == 1) in order to remove oneself
2040 	 * from the runqueue.
2041 	 *
2042 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2043 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2044 	 *   UNLOCK rq->lock
2045 	 *
2046 	 * __schedule() (put 'p' to sleep)
2047 	 *   LOCK rq->lock			  smp_rmb();
2048 	 *   smp_mb__after_spinlock();
2049 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2050 	 *
2051 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2052 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2053 	 */
2054 	smp_rmb();
2055 
2056 	/*
2057 	 * If the owning (remote) CPU is still in the middle of schedule() with
2058 	 * this task as prev, wait until its done referencing the task.
2059 	 *
2060 	 * Pairs with the smp_store_release() in finish_task().
2061 	 *
2062 	 * This ensures that tasks getting woken will be fully ordered against
2063 	 * their previous state and preserve Program Order.
2064 	 */
2065 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2066 
2067 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2068 	p->state = TASK_WAKING;
2069 
2070 	if (p->in_iowait) {
2071 		delayacct_blkio_end(p);
2072 		atomic_dec(&task_rq(p)->nr_iowait);
2073 	}
2074 
2075 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2076 	if (task_cpu(p) != cpu) {
2077 		wake_flags |= WF_MIGRATED;
2078 		psi_ttwu_dequeue(p);
2079 		set_task_cpu(p, cpu);
2080 	}
2081 
2082 #else /* CONFIG_SMP */
2083 
2084 	if (p->in_iowait) {
2085 		delayacct_blkio_end(p);
2086 		atomic_dec(&task_rq(p)->nr_iowait);
2087 	}
2088 
2089 #endif /* CONFIG_SMP */
2090 
2091 	ttwu_queue(p, cpu, wake_flags);
2092 stat:
2093 	ttwu_stat(p, cpu, wake_flags);
2094 out:
2095 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2096 
2097 	return success;
2098 }
2099 
2100 /**
2101  * wake_up_process - Wake up a specific process
2102  * @p: The process to be woken up.
2103  *
2104  * Attempt to wake up the nominated process and move it to the set of runnable
2105  * processes.
2106  *
2107  * Return: 1 if the process was woken up, 0 if it was already running.
2108  *
2109  * This function executes a full memory barrier before accessing the task state.
2110  */
2111 int wake_up_process(struct task_struct *p)
2112 {
2113 	return try_to_wake_up(p, TASK_NORMAL, 0);
2114 }
2115 EXPORT_SYMBOL(wake_up_process);
2116 
2117 int wake_up_state(struct task_struct *p, unsigned int state)
2118 {
2119 	return try_to_wake_up(p, state, 0);
2120 }
2121 
2122 /*
2123  * Perform scheduler related setup for a newly forked process p.
2124  * p is forked by current.
2125  *
2126  * __sched_fork() is basic setup used by init_idle() too:
2127  */
2128 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2129 {
2130 	p->on_rq			= 0;
2131 
2132 	p->se.on_rq			= 0;
2133 	p->se.exec_start		= 0;
2134 	p->se.sum_exec_runtime		= 0;
2135 	p->se.prev_sum_exec_runtime	= 0;
2136 	p->se.nr_migrations		= 0;
2137 	p->se.vruntime			= 0;
2138 	INIT_LIST_HEAD(&p->se.group_node);
2139 
2140 #ifdef CONFIG_FAIR_GROUP_SCHED
2141 	p->se.cfs_rq			= NULL;
2142 #endif
2143 
2144 #ifdef CONFIG_SCHEDSTATS
2145 	/* Even if schedstat is disabled, there should not be garbage */
2146 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2147 #endif
2148 
2149 	RB_CLEAR_NODE(&p->dl.rb_node);
2150 	init_dl_task_timer(&p->dl);
2151 	init_dl_inactive_task_timer(&p->dl);
2152 	__dl_clear_params(p);
2153 
2154 	INIT_LIST_HEAD(&p->rt.run_list);
2155 	p->rt.timeout		= 0;
2156 	p->rt.time_slice	= sched_rr_timeslice;
2157 	p->rt.on_rq		= 0;
2158 	p->rt.on_list		= 0;
2159 
2160 #ifdef CONFIG_PREEMPT_NOTIFIERS
2161 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2162 #endif
2163 
2164 #ifdef CONFIG_COMPACTION
2165 	p->capture_control = NULL;
2166 #endif
2167 	init_numa_balancing(clone_flags, p);
2168 }
2169 
2170 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2171 
2172 #ifdef CONFIG_NUMA_BALANCING
2173 
2174 void set_numabalancing_state(bool enabled)
2175 {
2176 	if (enabled)
2177 		static_branch_enable(&sched_numa_balancing);
2178 	else
2179 		static_branch_disable(&sched_numa_balancing);
2180 }
2181 
2182 #ifdef CONFIG_PROC_SYSCTL
2183 int sysctl_numa_balancing(struct ctl_table *table, int write,
2184 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2185 {
2186 	struct ctl_table t;
2187 	int err;
2188 	int state = static_branch_likely(&sched_numa_balancing);
2189 
2190 	if (write && !capable(CAP_SYS_ADMIN))
2191 		return -EPERM;
2192 
2193 	t = *table;
2194 	t.data = &state;
2195 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2196 	if (err < 0)
2197 		return err;
2198 	if (write)
2199 		set_numabalancing_state(state);
2200 	return err;
2201 }
2202 #endif
2203 #endif
2204 
2205 #ifdef CONFIG_SCHEDSTATS
2206 
2207 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2208 static bool __initdata __sched_schedstats = false;
2209 
2210 static void set_schedstats(bool enabled)
2211 {
2212 	if (enabled)
2213 		static_branch_enable(&sched_schedstats);
2214 	else
2215 		static_branch_disable(&sched_schedstats);
2216 }
2217 
2218 void force_schedstat_enabled(void)
2219 {
2220 	if (!schedstat_enabled()) {
2221 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2222 		static_branch_enable(&sched_schedstats);
2223 	}
2224 }
2225 
2226 static int __init setup_schedstats(char *str)
2227 {
2228 	int ret = 0;
2229 	if (!str)
2230 		goto out;
2231 
2232 	/*
2233 	 * This code is called before jump labels have been set up, so we can't
2234 	 * change the static branch directly just yet.  Instead set a temporary
2235 	 * variable so init_schedstats() can do it later.
2236 	 */
2237 	if (!strcmp(str, "enable")) {
2238 		__sched_schedstats = true;
2239 		ret = 1;
2240 	} else if (!strcmp(str, "disable")) {
2241 		__sched_schedstats = false;
2242 		ret = 1;
2243 	}
2244 out:
2245 	if (!ret)
2246 		pr_warn("Unable to parse schedstats=\n");
2247 
2248 	return ret;
2249 }
2250 __setup("schedstats=", setup_schedstats);
2251 
2252 static void __init init_schedstats(void)
2253 {
2254 	set_schedstats(__sched_schedstats);
2255 }
2256 
2257 #ifdef CONFIG_PROC_SYSCTL
2258 int sysctl_schedstats(struct ctl_table *table, int write,
2259 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2260 {
2261 	struct ctl_table t;
2262 	int err;
2263 	int state = static_branch_likely(&sched_schedstats);
2264 
2265 	if (write && !capable(CAP_SYS_ADMIN))
2266 		return -EPERM;
2267 
2268 	t = *table;
2269 	t.data = &state;
2270 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2271 	if (err < 0)
2272 		return err;
2273 	if (write)
2274 		set_schedstats(state);
2275 	return err;
2276 }
2277 #endif /* CONFIG_PROC_SYSCTL */
2278 #else  /* !CONFIG_SCHEDSTATS */
2279 static inline void init_schedstats(void) {}
2280 #endif /* CONFIG_SCHEDSTATS */
2281 
2282 /*
2283  * fork()/clone()-time setup:
2284  */
2285 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2286 {
2287 	unsigned long flags;
2288 
2289 	__sched_fork(clone_flags, p);
2290 	/*
2291 	 * We mark the process as NEW here. This guarantees that
2292 	 * nobody will actually run it, and a signal or other external
2293 	 * event cannot wake it up and insert it on the runqueue either.
2294 	 */
2295 	p->state = TASK_NEW;
2296 
2297 	/*
2298 	 * Make sure we do not leak PI boosting priority to the child.
2299 	 */
2300 	p->prio = current->normal_prio;
2301 
2302 	/*
2303 	 * Revert to default priority/policy on fork if requested.
2304 	 */
2305 	if (unlikely(p->sched_reset_on_fork)) {
2306 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2307 			p->policy = SCHED_NORMAL;
2308 			p->static_prio = NICE_TO_PRIO(0);
2309 			p->rt_priority = 0;
2310 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2311 			p->static_prio = NICE_TO_PRIO(0);
2312 
2313 		p->prio = p->normal_prio = __normal_prio(p);
2314 		set_load_weight(p, false);
2315 
2316 		/*
2317 		 * We don't need the reset flag anymore after the fork. It has
2318 		 * fulfilled its duty:
2319 		 */
2320 		p->sched_reset_on_fork = 0;
2321 	}
2322 
2323 	if (dl_prio(p->prio))
2324 		return -EAGAIN;
2325 	else if (rt_prio(p->prio))
2326 		p->sched_class = &rt_sched_class;
2327 	else
2328 		p->sched_class = &fair_sched_class;
2329 
2330 	init_entity_runnable_average(&p->se);
2331 
2332 	/*
2333 	 * The child is not yet in the pid-hash so no cgroup attach races,
2334 	 * and the cgroup is pinned to this child due to cgroup_fork()
2335 	 * is ran before sched_fork().
2336 	 *
2337 	 * Silence PROVE_RCU.
2338 	 */
2339 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2340 	/*
2341 	 * We're setting the CPU for the first time, we don't migrate,
2342 	 * so use __set_task_cpu().
2343 	 */
2344 	__set_task_cpu(p, smp_processor_id());
2345 	if (p->sched_class->task_fork)
2346 		p->sched_class->task_fork(p);
2347 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2348 
2349 #ifdef CONFIG_SCHED_INFO
2350 	if (likely(sched_info_on()))
2351 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2352 #endif
2353 #if defined(CONFIG_SMP)
2354 	p->on_cpu = 0;
2355 #endif
2356 	init_task_preempt_count(p);
2357 #ifdef CONFIG_SMP
2358 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2359 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2360 #endif
2361 	return 0;
2362 }
2363 
2364 unsigned long to_ratio(u64 period, u64 runtime)
2365 {
2366 	if (runtime == RUNTIME_INF)
2367 		return BW_UNIT;
2368 
2369 	/*
2370 	 * Doing this here saves a lot of checks in all
2371 	 * the calling paths, and returning zero seems
2372 	 * safe for them anyway.
2373 	 */
2374 	if (period == 0)
2375 		return 0;
2376 
2377 	return div64_u64(runtime << BW_SHIFT, period);
2378 }
2379 
2380 /*
2381  * wake_up_new_task - wake up a newly created task for the first time.
2382  *
2383  * This function will do some initial scheduler statistics housekeeping
2384  * that must be done for every newly created context, then puts the task
2385  * on the runqueue and wakes it.
2386  */
2387 void wake_up_new_task(struct task_struct *p)
2388 {
2389 	struct rq_flags rf;
2390 	struct rq *rq;
2391 
2392 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2393 	p->state = TASK_RUNNING;
2394 #ifdef CONFIG_SMP
2395 	/*
2396 	 * Fork balancing, do it here and not earlier because:
2397 	 *  - cpus_allowed can change in the fork path
2398 	 *  - any previously selected CPU might disappear through hotplug
2399 	 *
2400 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2401 	 * as we're not fully set-up yet.
2402 	 */
2403 	p->recent_used_cpu = task_cpu(p);
2404 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2405 #endif
2406 	rq = __task_rq_lock(p, &rf);
2407 	update_rq_clock(rq);
2408 	post_init_entity_util_avg(p);
2409 
2410 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2411 	trace_sched_wakeup_new(p);
2412 	check_preempt_curr(rq, p, WF_FORK);
2413 #ifdef CONFIG_SMP
2414 	if (p->sched_class->task_woken) {
2415 		/*
2416 		 * Nothing relies on rq->lock after this, so its fine to
2417 		 * drop it.
2418 		 */
2419 		rq_unpin_lock(rq, &rf);
2420 		p->sched_class->task_woken(rq, p);
2421 		rq_repin_lock(rq, &rf);
2422 	}
2423 #endif
2424 	task_rq_unlock(rq, p, &rf);
2425 }
2426 
2427 #ifdef CONFIG_PREEMPT_NOTIFIERS
2428 
2429 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2430 
2431 void preempt_notifier_inc(void)
2432 {
2433 	static_branch_inc(&preempt_notifier_key);
2434 }
2435 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2436 
2437 void preempt_notifier_dec(void)
2438 {
2439 	static_branch_dec(&preempt_notifier_key);
2440 }
2441 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2442 
2443 /**
2444  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2445  * @notifier: notifier struct to register
2446  */
2447 void preempt_notifier_register(struct preempt_notifier *notifier)
2448 {
2449 	if (!static_branch_unlikely(&preempt_notifier_key))
2450 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2451 
2452 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2453 }
2454 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2455 
2456 /**
2457  * preempt_notifier_unregister - no longer interested in preemption notifications
2458  * @notifier: notifier struct to unregister
2459  *
2460  * This is *not* safe to call from within a preemption notifier.
2461  */
2462 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2463 {
2464 	hlist_del(&notifier->link);
2465 }
2466 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2467 
2468 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2469 {
2470 	struct preempt_notifier *notifier;
2471 
2472 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2473 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2474 }
2475 
2476 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2477 {
2478 	if (static_branch_unlikely(&preempt_notifier_key))
2479 		__fire_sched_in_preempt_notifiers(curr);
2480 }
2481 
2482 static void
2483 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2484 				   struct task_struct *next)
2485 {
2486 	struct preempt_notifier *notifier;
2487 
2488 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2489 		notifier->ops->sched_out(notifier, next);
2490 }
2491 
2492 static __always_inline void
2493 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2494 				 struct task_struct *next)
2495 {
2496 	if (static_branch_unlikely(&preempt_notifier_key))
2497 		__fire_sched_out_preempt_notifiers(curr, next);
2498 }
2499 
2500 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2501 
2502 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2503 {
2504 }
2505 
2506 static inline void
2507 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2508 				 struct task_struct *next)
2509 {
2510 }
2511 
2512 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2513 
2514 static inline void prepare_task(struct task_struct *next)
2515 {
2516 #ifdef CONFIG_SMP
2517 	/*
2518 	 * Claim the task as running, we do this before switching to it
2519 	 * such that any running task will have this set.
2520 	 */
2521 	next->on_cpu = 1;
2522 #endif
2523 }
2524 
2525 static inline void finish_task(struct task_struct *prev)
2526 {
2527 #ifdef CONFIG_SMP
2528 	/*
2529 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2530 	 * We must ensure this doesn't happen until the switch is completely
2531 	 * finished.
2532 	 *
2533 	 * In particular, the load of prev->state in finish_task_switch() must
2534 	 * happen before this.
2535 	 *
2536 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2537 	 */
2538 	smp_store_release(&prev->on_cpu, 0);
2539 #endif
2540 }
2541 
2542 static inline void
2543 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2544 {
2545 	/*
2546 	 * Since the runqueue lock will be released by the next
2547 	 * task (which is an invalid locking op but in the case
2548 	 * of the scheduler it's an obvious special-case), so we
2549 	 * do an early lockdep release here:
2550 	 */
2551 	rq_unpin_lock(rq, rf);
2552 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2553 #ifdef CONFIG_DEBUG_SPINLOCK
2554 	/* this is a valid case when another task releases the spinlock */
2555 	rq->lock.owner = next;
2556 #endif
2557 }
2558 
2559 static inline void finish_lock_switch(struct rq *rq)
2560 {
2561 	/*
2562 	 * If we are tracking spinlock dependencies then we have to
2563 	 * fix up the runqueue lock - which gets 'carried over' from
2564 	 * prev into current:
2565 	 */
2566 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2567 	raw_spin_unlock_irq(&rq->lock);
2568 }
2569 
2570 /*
2571  * NOP if the arch has not defined these:
2572  */
2573 
2574 #ifndef prepare_arch_switch
2575 # define prepare_arch_switch(next)	do { } while (0)
2576 #endif
2577 
2578 #ifndef finish_arch_post_lock_switch
2579 # define finish_arch_post_lock_switch()	do { } while (0)
2580 #endif
2581 
2582 /**
2583  * prepare_task_switch - prepare to switch tasks
2584  * @rq: the runqueue preparing to switch
2585  * @prev: the current task that is being switched out
2586  * @next: the task we are going to switch to.
2587  *
2588  * This is called with the rq lock held and interrupts off. It must
2589  * be paired with a subsequent finish_task_switch after the context
2590  * switch.
2591  *
2592  * prepare_task_switch sets up locking and calls architecture specific
2593  * hooks.
2594  */
2595 static inline void
2596 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2597 		    struct task_struct *next)
2598 {
2599 	kcov_prepare_switch(prev);
2600 	sched_info_switch(rq, prev, next);
2601 	perf_event_task_sched_out(prev, next);
2602 	rseq_preempt(prev);
2603 	fire_sched_out_preempt_notifiers(prev, next);
2604 	prepare_task(next);
2605 	prepare_arch_switch(next);
2606 }
2607 
2608 /**
2609  * finish_task_switch - clean up after a task-switch
2610  * @prev: the thread we just switched away from.
2611  *
2612  * finish_task_switch must be called after the context switch, paired
2613  * with a prepare_task_switch call before the context switch.
2614  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2615  * and do any other architecture-specific cleanup actions.
2616  *
2617  * Note that we may have delayed dropping an mm in context_switch(). If
2618  * so, we finish that here outside of the runqueue lock. (Doing it
2619  * with the lock held can cause deadlocks; see schedule() for
2620  * details.)
2621  *
2622  * The context switch have flipped the stack from under us and restored the
2623  * local variables which were saved when this task called schedule() in the
2624  * past. prev == current is still correct but we need to recalculate this_rq
2625  * because prev may have moved to another CPU.
2626  */
2627 static struct rq *finish_task_switch(struct task_struct *prev)
2628 	__releases(rq->lock)
2629 {
2630 	struct rq *rq = this_rq();
2631 	struct mm_struct *mm = rq->prev_mm;
2632 	long prev_state;
2633 
2634 	/*
2635 	 * The previous task will have left us with a preempt_count of 2
2636 	 * because it left us after:
2637 	 *
2638 	 *	schedule()
2639 	 *	  preempt_disable();			// 1
2640 	 *	  __schedule()
2641 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2642 	 *
2643 	 * Also, see FORK_PREEMPT_COUNT.
2644 	 */
2645 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2646 		      "corrupted preempt_count: %s/%d/0x%x\n",
2647 		      current->comm, current->pid, preempt_count()))
2648 		preempt_count_set(FORK_PREEMPT_COUNT);
2649 
2650 	rq->prev_mm = NULL;
2651 
2652 	/*
2653 	 * A task struct has one reference for the use as "current".
2654 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2655 	 * schedule one last time. The schedule call will never return, and
2656 	 * the scheduled task must drop that reference.
2657 	 *
2658 	 * We must observe prev->state before clearing prev->on_cpu (in
2659 	 * finish_task), otherwise a concurrent wakeup can get prev
2660 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2661 	 * transition, resulting in a double drop.
2662 	 */
2663 	prev_state = prev->state;
2664 	vtime_task_switch(prev);
2665 	perf_event_task_sched_in(prev, current);
2666 	finish_task(prev);
2667 	finish_lock_switch(rq);
2668 	finish_arch_post_lock_switch();
2669 	kcov_finish_switch(current);
2670 
2671 	fire_sched_in_preempt_notifiers(current);
2672 	/*
2673 	 * When switching through a kernel thread, the loop in
2674 	 * membarrier_{private,global}_expedited() may have observed that
2675 	 * kernel thread and not issued an IPI. It is therefore possible to
2676 	 * schedule between user->kernel->user threads without passing though
2677 	 * switch_mm(). Membarrier requires a barrier after storing to
2678 	 * rq->curr, before returning to userspace, so provide them here:
2679 	 *
2680 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2681 	 *   provided by mmdrop(),
2682 	 * - a sync_core for SYNC_CORE.
2683 	 */
2684 	if (mm) {
2685 		membarrier_mm_sync_core_before_usermode(mm);
2686 		mmdrop(mm);
2687 	}
2688 	if (unlikely(prev_state == TASK_DEAD)) {
2689 		if (prev->sched_class->task_dead)
2690 			prev->sched_class->task_dead(prev);
2691 
2692 		/*
2693 		 * Remove function-return probe instances associated with this
2694 		 * task and put them back on the free list.
2695 		 */
2696 		kprobe_flush_task(prev);
2697 
2698 		/* Task is done with its stack. */
2699 		put_task_stack(prev);
2700 
2701 		put_task_struct(prev);
2702 	}
2703 
2704 	tick_nohz_task_switch();
2705 	return rq;
2706 }
2707 
2708 #ifdef CONFIG_SMP
2709 
2710 /* rq->lock is NOT held, but preemption is disabled */
2711 static void __balance_callback(struct rq *rq)
2712 {
2713 	struct callback_head *head, *next;
2714 	void (*func)(struct rq *rq);
2715 	unsigned long flags;
2716 
2717 	raw_spin_lock_irqsave(&rq->lock, flags);
2718 	head = rq->balance_callback;
2719 	rq->balance_callback = NULL;
2720 	while (head) {
2721 		func = (void (*)(struct rq *))head->func;
2722 		next = head->next;
2723 		head->next = NULL;
2724 		head = next;
2725 
2726 		func(rq);
2727 	}
2728 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2729 }
2730 
2731 static inline void balance_callback(struct rq *rq)
2732 {
2733 	if (unlikely(rq->balance_callback))
2734 		__balance_callback(rq);
2735 }
2736 
2737 #else
2738 
2739 static inline void balance_callback(struct rq *rq)
2740 {
2741 }
2742 
2743 #endif
2744 
2745 /**
2746  * schedule_tail - first thing a freshly forked thread must call.
2747  * @prev: the thread we just switched away from.
2748  */
2749 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2750 	__releases(rq->lock)
2751 {
2752 	struct rq *rq;
2753 
2754 	/*
2755 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2756 	 * finish_task_switch() for details.
2757 	 *
2758 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2759 	 * and the preempt_enable() will end up enabling preemption (on
2760 	 * PREEMPT_COUNT kernels).
2761 	 */
2762 
2763 	rq = finish_task_switch(prev);
2764 	balance_callback(rq);
2765 	preempt_enable();
2766 
2767 	if (current->set_child_tid)
2768 		put_user(task_pid_vnr(current), current->set_child_tid);
2769 
2770 	calculate_sigpending();
2771 }
2772 
2773 /*
2774  * context_switch - switch to the new MM and the new thread's register state.
2775  */
2776 static __always_inline struct rq *
2777 context_switch(struct rq *rq, struct task_struct *prev,
2778 	       struct task_struct *next, struct rq_flags *rf)
2779 {
2780 	struct mm_struct *mm, *oldmm;
2781 
2782 	prepare_task_switch(rq, prev, next);
2783 
2784 	mm = next->mm;
2785 	oldmm = prev->active_mm;
2786 	/*
2787 	 * For paravirt, this is coupled with an exit in switch_to to
2788 	 * combine the page table reload and the switch backend into
2789 	 * one hypercall.
2790 	 */
2791 	arch_start_context_switch(prev);
2792 
2793 	/*
2794 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2795 	 * NULL, we will pass through mmdrop() in finish_task_switch().
2796 	 * Both of these contain the full memory barrier required by
2797 	 * membarrier after storing to rq->curr, before returning to
2798 	 * user-space.
2799 	 */
2800 	if (!mm) {
2801 		next->active_mm = oldmm;
2802 		mmgrab(oldmm);
2803 		enter_lazy_tlb(oldmm, next);
2804 	} else
2805 		switch_mm_irqs_off(oldmm, mm, next);
2806 
2807 	if (!prev->mm) {
2808 		prev->active_mm = NULL;
2809 		rq->prev_mm = oldmm;
2810 	}
2811 
2812 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2813 
2814 	prepare_lock_switch(rq, next, rf);
2815 
2816 	/* Here we just switch the register state and the stack. */
2817 	switch_to(prev, next, prev);
2818 	barrier();
2819 
2820 	return finish_task_switch(prev);
2821 }
2822 
2823 /*
2824  * nr_running and nr_context_switches:
2825  *
2826  * externally visible scheduler statistics: current number of runnable
2827  * threads, total number of context switches performed since bootup.
2828  */
2829 unsigned long nr_running(void)
2830 {
2831 	unsigned long i, sum = 0;
2832 
2833 	for_each_online_cpu(i)
2834 		sum += cpu_rq(i)->nr_running;
2835 
2836 	return sum;
2837 }
2838 
2839 /*
2840  * Check if only the current task is running on the CPU.
2841  *
2842  * Caution: this function does not check that the caller has disabled
2843  * preemption, thus the result might have a time-of-check-to-time-of-use
2844  * race.  The caller is responsible to use it correctly, for example:
2845  *
2846  * - from a non-preemptible section (of course)
2847  *
2848  * - from a thread that is bound to a single CPU
2849  *
2850  * - in a loop with very short iterations (e.g. a polling loop)
2851  */
2852 bool single_task_running(void)
2853 {
2854 	return raw_rq()->nr_running == 1;
2855 }
2856 EXPORT_SYMBOL(single_task_running);
2857 
2858 unsigned long long nr_context_switches(void)
2859 {
2860 	int i;
2861 	unsigned long long sum = 0;
2862 
2863 	for_each_possible_cpu(i)
2864 		sum += cpu_rq(i)->nr_switches;
2865 
2866 	return sum;
2867 }
2868 
2869 /*
2870  * Consumers of these two interfaces, like for example the cpuidle menu
2871  * governor, are using nonsensical data. Preferring shallow idle state selection
2872  * for a CPU that has IO-wait which might not even end up running the task when
2873  * it does become runnable.
2874  */
2875 
2876 unsigned long nr_iowait_cpu(int cpu)
2877 {
2878 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
2879 }
2880 
2881 /*
2882  * IO-wait accounting, and how its mostly bollocks (on SMP).
2883  *
2884  * The idea behind IO-wait account is to account the idle time that we could
2885  * have spend running if it were not for IO. That is, if we were to improve the
2886  * storage performance, we'd have a proportional reduction in IO-wait time.
2887  *
2888  * This all works nicely on UP, where, when a task blocks on IO, we account
2889  * idle time as IO-wait, because if the storage were faster, it could've been
2890  * running and we'd not be idle.
2891  *
2892  * This has been extended to SMP, by doing the same for each CPU. This however
2893  * is broken.
2894  *
2895  * Imagine for instance the case where two tasks block on one CPU, only the one
2896  * CPU will have IO-wait accounted, while the other has regular idle. Even
2897  * though, if the storage were faster, both could've ran at the same time,
2898  * utilising both CPUs.
2899  *
2900  * This means, that when looking globally, the current IO-wait accounting on
2901  * SMP is a lower bound, by reason of under accounting.
2902  *
2903  * Worse, since the numbers are provided per CPU, they are sometimes
2904  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2905  * associated with any one particular CPU, it can wake to another CPU than it
2906  * blocked on. This means the per CPU IO-wait number is meaningless.
2907  *
2908  * Task CPU affinities can make all that even more 'interesting'.
2909  */
2910 
2911 unsigned long nr_iowait(void)
2912 {
2913 	unsigned long i, sum = 0;
2914 
2915 	for_each_possible_cpu(i)
2916 		sum += nr_iowait_cpu(i);
2917 
2918 	return sum;
2919 }
2920 
2921 #ifdef CONFIG_SMP
2922 
2923 /*
2924  * sched_exec - execve() is a valuable balancing opportunity, because at
2925  * this point the task has the smallest effective memory and cache footprint.
2926  */
2927 void sched_exec(void)
2928 {
2929 	struct task_struct *p = current;
2930 	unsigned long flags;
2931 	int dest_cpu;
2932 
2933 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2934 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2935 	if (dest_cpu == smp_processor_id())
2936 		goto unlock;
2937 
2938 	if (likely(cpu_active(dest_cpu))) {
2939 		struct migration_arg arg = { p, dest_cpu };
2940 
2941 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2942 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2943 		return;
2944 	}
2945 unlock:
2946 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2947 }
2948 
2949 #endif
2950 
2951 DEFINE_PER_CPU(struct kernel_stat, kstat);
2952 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2953 
2954 EXPORT_PER_CPU_SYMBOL(kstat);
2955 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2956 
2957 /*
2958  * The function fair_sched_class.update_curr accesses the struct curr
2959  * and its field curr->exec_start; when called from task_sched_runtime(),
2960  * we observe a high rate of cache misses in practice.
2961  * Prefetching this data results in improved performance.
2962  */
2963 static inline void prefetch_curr_exec_start(struct task_struct *p)
2964 {
2965 #ifdef CONFIG_FAIR_GROUP_SCHED
2966 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2967 #else
2968 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2969 #endif
2970 	prefetch(curr);
2971 	prefetch(&curr->exec_start);
2972 }
2973 
2974 /*
2975  * Return accounted runtime for the task.
2976  * In case the task is currently running, return the runtime plus current's
2977  * pending runtime that have not been accounted yet.
2978  */
2979 unsigned long long task_sched_runtime(struct task_struct *p)
2980 {
2981 	struct rq_flags rf;
2982 	struct rq *rq;
2983 	u64 ns;
2984 
2985 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2986 	/*
2987 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
2988 	 * So we have a optimization chance when the task's delta_exec is 0.
2989 	 * Reading ->on_cpu is racy, but this is ok.
2990 	 *
2991 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
2992 	 * If we race with it entering CPU, unaccounted time is 0. This is
2993 	 * indistinguishable from the read occurring a few cycles earlier.
2994 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2995 	 * been accounted, so we're correct here as well.
2996 	 */
2997 	if (!p->on_cpu || !task_on_rq_queued(p))
2998 		return p->se.sum_exec_runtime;
2999 #endif
3000 
3001 	rq = task_rq_lock(p, &rf);
3002 	/*
3003 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3004 	 * project cycles that may never be accounted to this
3005 	 * thread, breaking clock_gettime().
3006 	 */
3007 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3008 		prefetch_curr_exec_start(p);
3009 		update_rq_clock(rq);
3010 		p->sched_class->update_curr(rq);
3011 	}
3012 	ns = p->se.sum_exec_runtime;
3013 	task_rq_unlock(rq, p, &rf);
3014 
3015 	return ns;
3016 }
3017 
3018 /*
3019  * This function gets called by the timer code, with HZ frequency.
3020  * We call it with interrupts disabled.
3021  */
3022 void scheduler_tick(void)
3023 {
3024 	int cpu = smp_processor_id();
3025 	struct rq *rq = cpu_rq(cpu);
3026 	struct task_struct *curr = rq->curr;
3027 	struct rq_flags rf;
3028 
3029 	sched_clock_tick();
3030 
3031 	rq_lock(rq, &rf);
3032 
3033 	update_rq_clock(rq);
3034 	curr->sched_class->task_tick(rq, curr, 0);
3035 	cpu_load_update_active(rq);
3036 	calc_global_load_tick(rq);
3037 	psi_task_tick(rq);
3038 
3039 	rq_unlock(rq, &rf);
3040 
3041 	perf_event_task_tick();
3042 
3043 #ifdef CONFIG_SMP
3044 	rq->idle_balance = idle_cpu(cpu);
3045 	trigger_load_balance(rq);
3046 #endif
3047 }
3048 
3049 #ifdef CONFIG_NO_HZ_FULL
3050 
3051 struct tick_work {
3052 	int			cpu;
3053 	struct delayed_work	work;
3054 };
3055 
3056 static struct tick_work __percpu *tick_work_cpu;
3057 
3058 static void sched_tick_remote(struct work_struct *work)
3059 {
3060 	struct delayed_work *dwork = to_delayed_work(work);
3061 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3062 	int cpu = twork->cpu;
3063 	struct rq *rq = cpu_rq(cpu);
3064 	struct task_struct *curr;
3065 	struct rq_flags rf;
3066 	u64 delta;
3067 
3068 	/*
3069 	 * Handle the tick only if it appears the remote CPU is running in full
3070 	 * dynticks mode. The check is racy by nature, but missing a tick or
3071 	 * having one too much is no big deal because the scheduler tick updates
3072 	 * statistics and checks timeslices in a time-independent way, regardless
3073 	 * of when exactly it is running.
3074 	 */
3075 	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3076 		goto out_requeue;
3077 
3078 	rq_lock_irq(rq, &rf);
3079 	curr = rq->curr;
3080 	if (is_idle_task(curr))
3081 		goto out_unlock;
3082 
3083 	update_rq_clock(rq);
3084 	delta = rq_clock_task(rq) - curr->se.exec_start;
3085 
3086 	/*
3087 	 * Make sure the next tick runs within a reasonable
3088 	 * amount of time.
3089 	 */
3090 	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3091 	curr->sched_class->task_tick(rq, curr, 0);
3092 
3093 out_unlock:
3094 	rq_unlock_irq(rq, &rf);
3095 
3096 out_requeue:
3097 	/*
3098 	 * Run the remote tick once per second (1Hz). This arbitrary
3099 	 * frequency is large enough to avoid overload but short enough
3100 	 * to keep scheduler internal stats reasonably up to date.
3101 	 */
3102 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3103 }
3104 
3105 static void sched_tick_start(int cpu)
3106 {
3107 	struct tick_work *twork;
3108 
3109 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3110 		return;
3111 
3112 	WARN_ON_ONCE(!tick_work_cpu);
3113 
3114 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3115 	twork->cpu = cpu;
3116 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3117 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3118 }
3119 
3120 #ifdef CONFIG_HOTPLUG_CPU
3121 static void sched_tick_stop(int cpu)
3122 {
3123 	struct tick_work *twork;
3124 
3125 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3126 		return;
3127 
3128 	WARN_ON_ONCE(!tick_work_cpu);
3129 
3130 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3131 	cancel_delayed_work_sync(&twork->work);
3132 }
3133 #endif /* CONFIG_HOTPLUG_CPU */
3134 
3135 int __init sched_tick_offload_init(void)
3136 {
3137 	tick_work_cpu = alloc_percpu(struct tick_work);
3138 	BUG_ON(!tick_work_cpu);
3139 
3140 	return 0;
3141 }
3142 
3143 #else /* !CONFIG_NO_HZ_FULL */
3144 static inline void sched_tick_start(int cpu) { }
3145 static inline void sched_tick_stop(int cpu) { }
3146 #endif
3147 
3148 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3149 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3150 /*
3151  * If the value passed in is equal to the current preempt count
3152  * then we just disabled preemption. Start timing the latency.
3153  */
3154 static inline void preempt_latency_start(int val)
3155 {
3156 	if (preempt_count() == val) {
3157 		unsigned long ip = get_lock_parent_ip();
3158 #ifdef CONFIG_DEBUG_PREEMPT
3159 		current->preempt_disable_ip = ip;
3160 #endif
3161 		trace_preempt_off(CALLER_ADDR0, ip);
3162 	}
3163 }
3164 
3165 void preempt_count_add(int val)
3166 {
3167 #ifdef CONFIG_DEBUG_PREEMPT
3168 	/*
3169 	 * Underflow?
3170 	 */
3171 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3172 		return;
3173 #endif
3174 	__preempt_count_add(val);
3175 #ifdef CONFIG_DEBUG_PREEMPT
3176 	/*
3177 	 * Spinlock count overflowing soon?
3178 	 */
3179 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3180 				PREEMPT_MASK - 10);
3181 #endif
3182 	preempt_latency_start(val);
3183 }
3184 EXPORT_SYMBOL(preempt_count_add);
3185 NOKPROBE_SYMBOL(preempt_count_add);
3186 
3187 /*
3188  * If the value passed in equals to the current preempt count
3189  * then we just enabled preemption. Stop timing the latency.
3190  */
3191 static inline void preempt_latency_stop(int val)
3192 {
3193 	if (preempt_count() == val)
3194 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3195 }
3196 
3197 void preempt_count_sub(int val)
3198 {
3199 #ifdef CONFIG_DEBUG_PREEMPT
3200 	/*
3201 	 * Underflow?
3202 	 */
3203 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3204 		return;
3205 	/*
3206 	 * Is the spinlock portion underflowing?
3207 	 */
3208 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3209 			!(preempt_count() & PREEMPT_MASK)))
3210 		return;
3211 #endif
3212 
3213 	preempt_latency_stop(val);
3214 	__preempt_count_sub(val);
3215 }
3216 EXPORT_SYMBOL(preempt_count_sub);
3217 NOKPROBE_SYMBOL(preempt_count_sub);
3218 
3219 #else
3220 static inline void preempt_latency_start(int val) { }
3221 static inline void preempt_latency_stop(int val) { }
3222 #endif
3223 
3224 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3225 {
3226 #ifdef CONFIG_DEBUG_PREEMPT
3227 	return p->preempt_disable_ip;
3228 #else
3229 	return 0;
3230 #endif
3231 }
3232 
3233 /*
3234  * Print scheduling while atomic bug:
3235  */
3236 static noinline void __schedule_bug(struct task_struct *prev)
3237 {
3238 	/* Save this before calling printk(), since that will clobber it */
3239 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3240 
3241 	if (oops_in_progress)
3242 		return;
3243 
3244 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3245 		prev->comm, prev->pid, preempt_count());
3246 
3247 	debug_show_held_locks(prev);
3248 	print_modules();
3249 	if (irqs_disabled())
3250 		print_irqtrace_events(prev);
3251 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3252 	    && in_atomic_preempt_off()) {
3253 		pr_err("Preemption disabled at:");
3254 		print_ip_sym(preempt_disable_ip);
3255 		pr_cont("\n");
3256 	}
3257 	if (panic_on_warn)
3258 		panic("scheduling while atomic\n");
3259 
3260 	dump_stack();
3261 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3262 }
3263 
3264 /*
3265  * Various schedule()-time debugging checks and statistics:
3266  */
3267 static inline void schedule_debug(struct task_struct *prev)
3268 {
3269 #ifdef CONFIG_SCHED_STACK_END_CHECK
3270 	if (task_stack_end_corrupted(prev))
3271 		panic("corrupted stack end detected inside scheduler\n");
3272 #endif
3273 
3274 	if (unlikely(in_atomic_preempt_off())) {
3275 		__schedule_bug(prev);
3276 		preempt_count_set(PREEMPT_DISABLED);
3277 	}
3278 	rcu_sleep_check();
3279 
3280 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3281 
3282 	schedstat_inc(this_rq()->sched_count);
3283 }
3284 
3285 /*
3286  * Pick up the highest-prio task:
3287  */
3288 static inline struct task_struct *
3289 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3290 {
3291 	const struct sched_class *class;
3292 	struct task_struct *p;
3293 
3294 	/*
3295 	 * Optimization: we know that if all tasks are in the fair class we can
3296 	 * call that function directly, but only if the @prev task wasn't of a
3297 	 * higher scheduling class, because otherwise those loose the
3298 	 * opportunity to pull in more work from other CPUs.
3299 	 */
3300 	if (likely((prev->sched_class == &idle_sched_class ||
3301 		    prev->sched_class == &fair_sched_class) &&
3302 		   rq->nr_running == rq->cfs.h_nr_running)) {
3303 
3304 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3305 		if (unlikely(p == RETRY_TASK))
3306 			goto again;
3307 
3308 		/* Assumes fair_sched_class->next == idle_sched_class */
3309 		if (unlikely(!p))
3310 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3311 
3312 		return p;
3313 	}
3314 
3315 again:
3316 	for_each_class(class) {
3317 		p = class->pick_next_task(rq, prev, rf);
3318 		if (p) {
3319 			if (unlikely(p == RETRY_TASK))
3320 				goto again;
3321 			return p;
3322 		}
3323 	}
3324 
3325 	/* The idle class should always have a runnable task: */
3326 	BUG();
3327 }
3328 
3329 /*
3330  * __schedule() is the main scheduler function.
3331  *
3332  * The main means of driving the scheduler and thus entering this function are:
3333  *
3334  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3335  *
3336  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3337  *      paths. For example, see arch/x86/entry_64.S.
3338  *
3339  *      To drive preemption between tasks, the scheduler sets the flag in timer
3340  *      interrupt handler scheduler_tick().
3341  *
3342  *   3. Wakeups don't really cause entry into schedule(). They add a
3343  *      task to the run-queue and that's it.
3344  *
3345  *      Now, if the new task added to the run-queue preempts the current
3346  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3347  *      called on the nearest possible occasion:
3348  *
3349  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3350  *
3351  *         - in syscall or exception context, at the next outmost
3352  *           preempt_enable(). (this might be as soon as the wake_up()'s
3353  *           spin_unlock()!)
3354  *
3355  *         - in IRQ context, return from interrupt-handler to
3356  *           preemptible context
3357  *
3358  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3359  *         then at the next:
3360  *
3361  *          - cond_resched() call
3362  *          - explicit schedule() call
3363  *          - return from syscall or exception to user-space
3364  *          - return from interrupt-handler to user-space
3365  *
3366  * WARNING: must be called with preemption disabled!
3367  */
3368 static void __sched notrace __schedule(bool preempt)
3369 {
3370 	struct task_struct *prev, *next;
3371 	unsigned long *switch_count;
3372 	struct rq_flags rf;
3373 	struct rq *rq;
3374 	int cpu;
3375 
3376 	cpu = smp_processor_id();
3377 	rq = cpu_rq(cpu);
3378 	prev = rq->curr;
3379 
3380 	schedule_debug(prev);
3381 
3382 	if (sched_feat(HRTICK))
3383 		hrtick_clear(rq);
3384 
3385 	local_irq_disable();
3386 	rcu_note_context_switch(preempt);
3387 
3388 	/*
3389 	 * Make sure that signal_pending_state()->signal_pending() below
3390 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3391 	 * done by the caller to avoid the race with signal_wake_up().
3392 	 *
3393 	 * The membarrier system call requires a full memory barrier
3394 	 * after coming from user-space, before storing to rq->curr.
3395 	 */
3396 	rq_lock(rq, &rf);
3397 	smp_mb__after_spinlock();
3398 
3399 	/* Promote REQ to ACT */
3400 	rq->clock_update_flags <<= 1;
3401 	update_rq_clock(rq);
3402 
3403 	switch_count = &prev->nivcsw;
3404 	if (!preempt && prev->state) {
3405 		if (signal_pending_state(prev->state, prev)) {
3406 			prev->state = TASK_RUNNING;
3407 		} else {
3408 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3409 
3410 			if (prev->in_iowait) {
3411 				atomic_inc(&rq->nr_iowait);
3412 				delayacct_blkio_start();
3413 			}
3414 		}
3415 		switch_count = &prev->nvcsw;
3416 	}
3417 
3418 	next = pick_next_task(rq, prev, &rf);
3419 	clear_tsk_need_resched(prev);
3420 	clear_preempt_need_resched();
3421 
3422 	if (likely(prev != next)) {
3423 		rq->nr_switches++;
3424 		rq->curr = next;
3425 		/*
3426 		 * The membarrier system call requires each architecture
3427 		 * to have a full memory barrier after updating
3428 		 * rq->curr, before returning to user-space.
3429 		 *
3430 		 * Here are the schemes providing that barrier on the
3431 		 * various architectures:
3432 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3433 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3434 		 * - finish_lock_switch() for weakly-ordered
3435 		 *   architectures where spin_unlock is a full barrier,
3436 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3437 		 *   is a RELEASE barrier),
3438 		 */
3439 		++*switch_count;
3440 
3441 		trace_sched_switch(preempt, prev, next);
3442 
3443 		/* Also unlocks the rq: */
3444 		rq = context_switch(rq, prev, next, &rf);
3445 	} else {
3446 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3447 		rq_unlock_irq(rq, &rf);
3448 	}
3449 
3450 	balance_callback(rq);
3451 }
3452 
3453 void __noreturn do_task_dead(void)
3454 {
3455 	/* Causes final put_task_struct in finish_task_switch(): */
3456 	set_special_state(TASK_DEAD);
3457 
3458 	/* Tell freezer to ignore us: */
3459 	current->flags |= PF_NOFREEZE;
3460 
3461 	__schedule(false);
3462 	BUG();
3463 
3464 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3465 	for (;;)
3466 		cpu_relax();
3467 }
3468 
3469 static inline void sched_submit_work(struct task_struct *tsk)
3470 {
3471 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3472 		return;
3473 
3474 	/*
3475 	 * If a worker went to sleep, notify and ask workqueue whether
3476 	 * it wants to wake up a task to maintain concurrency.
3477 	 * As this function is called inside the schedule() context,
3478 	 * we disable preemption to avoid it calling schedule() again
3479 	 * in the possible wakeup of a kworker.
3480 	 */
3481 	if (tsk->flags & PF_WQ_WORKER) {
3482 		preempt_disable();
3483 		wq_worker_sleeping(tsk);
3484 		preempt_enable_no_resched();
3485 	}
3486 
3487 	/*
3488 	 * If we are going to sleep and we have plugged IO queued,
3489 	 * make sure to submit it to avoid deadlocks.
3490 	 */
3491 	if (blk_needs_flush_plug(tsk))
3492 		blk_schedule_flush_plug(tsk);
3493 }
3494 
3495 static void sched_update_worker(struct task_struct *tsk)
3496 {
3497 	if (tsk->flags & PF_WQ_WORKER)
3498 		wq_worker_running(tsk);
3499 }
3500 
3501 asmlinkage __visible void __sched schedule(void)
3502 {
3503 	struct task_struct *tsk = current;
3504 
3505 	sched_submit_work(tsk);
3506 	do {
3507 		preempt_disable();
3508 		__schedule(false);
3509 		sched_preempt_enable_no_resched();
3510 	} while (need_resched());
3511 	sched_update_worker(tsk);
3512 }
3513 EXPORT_SYMBOL(schedule);
3514 
3515 /*
3516  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3517  * state (have scheduled out non-voluntarily) by making sure that all
3518  * tasks have either left the run queue or have gone into user space.
3519  * As idle tasks do not do either, they must not ever be preempted
3520  * (schedule out non-voluntarily).
3521  *
3522  * schedule_idle() is similar to schedule_preempt_disable() except that it
3523  * never enables preemption because it does not call sched_submit_work().
3524  */
3525 void __sched schedule_idle(void)
3526 {
3527 	/*
3528 	 * As this skips calling sched_submit_work(), which the idle task does
3529 	 * regardless because that function is a nop when the task is in a
3530 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3531 	 * current task can be in any other state. Note, idle is always in the
3532 	 * TASK_RUNNING state.
3533 	 */
3534 	WARN_ON_ONCE(current->state);
3535 	do {
3536 		__schedule(false);
3537 	} while (need_resched());
3538 }
3539 
3540 #ifdef CONFIG_CONTEXT_TRACKING
3541 asmlinkage __visible void __sched schedule_user(void)
3542 {
3543 	/*
3544 	 * If we come here after a random call to set_need_resched(),
3545 	 * or we have been woken up remotely but the IPI has not yet arrived,
3546 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3547 	 * we find a better solution.
3548 	 *
3549 	 * NB: There are buggy callers of this function.  Ideally we
3550 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3551 	 * too frequently to make sense yet.
3552 	 */
3553 	enum ctx_state prev_state = exception_enter();
3554 	schedule();
3555 	exception_exit(prev_state);
3556 }
3557 #endif
3558 
3559 /**
3560  * schedule_preempt_disabled - called with preemption disabled
3561  *
3562  * Returns with preemption disabled. Note: preempt_count must be 1
3563  */
3564 void __sched schedule_preempt_disabled(void)
3565 {
3566 	sched_preempt_enable_no_resched();
3567 	schedule();
3568 	preempt_disable();
3569 }
3570 
3571 static void __sched notrace preempt_schedule_common(void)
3572 {
3573 	do {
3574 		/*
3575 		 * Because the function tracer can trace preempt_count_sub()
3576 		 * and it also uses preempt_enable/disable_notrace(), if
3577 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3578 		 * by the function tracer will call this function again and
3579 		 * cause infinite recursion.
3580 		 *
3581 		 * Preemption must be disabled here before the function
3582 		 * tracer can trace. Break up preempt_disable() into two
3583 		 * calls. One to disable preemption without fear of being
3584 		 * traced. The other to still record the preemption latency,
3585 		 * which can also be traced by the function tracer.
3586 		 */
3587 		preempt_disable_notrace();
3588 		preempt_latency_start(1);
3589 		__schedule(true);
3590 		preempt_latency_stop(1);
3591 		preempt_enable_no_resched_notrace();
3592 
3593 		/*
3594 		 * Check again in case we missed a preemption opportunity
3595 		 * between schedule and now.
3596 		 */
3597 	} while (need_resched());
3598 }
3599 
3600 #ifdef CONFIG_PREEMPT
3601 /*
3602  * this is the entry point to schedule() from in-kernel preemption
3603  * off of preempt_enable. Kernel preemptions off return from interrupt
3604  * occur there and call schedule directly.
3605  */
3606 asmlinkage __visible void __sched notrace preempt_schedule(void)
3607 {
3608 	/*
3609 	 * If there is a non-zero preempt_count or interrupts are disabled,
3610 	 * we do not want to preempt the current task. Just return..
3611 	 */
3612 	if (likely(!preemptible()))
3613 		return;
3614 
3615 	preempt_schedule_common();
3616 }
3617 NOKPROBE_SYMBOL(preempt_schedule);
3618 EXPORT_SYMBOL(preempt_schedule);
3619 
3620 /**
3621  * preempt_schedule_notrace - preempt_schedule called by tracing
3622  *
3623  * The tracing infrastructure uses preempt_enable_notrace to prevent
3624  * recursion and tracing preempt enabling caused by the tracing
3625  * infrastructure itself. But as tracing can happen in areas coming
3626  * from userspace or just about to enter userspace, a preempt enable
3627  * can occur before user_exit() is called. This will cause the scheduler
3628  * to be called when the system is still in usermode.
3629  *
3630  * To prevent this, the preempt_enable_notrace will use this function
3631  * instead of preempt_schedule() to exit user context if needed before
3632  * calling the scheduler.
3633  */
3634 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3635 {
3636 	enum ctx_state prev_ctx;
3637 
3638 	if (likely(!preemptible()))
3639 		return;
3640 
3641 	do {
3642 		/*
3643 		 * Because the function tracer can trace preempt_count_sub()
3644 		 * and it also uses preempt_enable/disable_notrace(), if
3645 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3646 		 * by the function tracer will call this function again and
3647 		 * cause infinite recursion.
3648 		 *
3649 		 * Preemption must be disabled here before the function
3650 		 * tracer can trace. Break up preempt_disable() into two
3651 		 * calls. One to disable preemption without fear of being
3652 		 * traced. The other to still record the preemption latency,
3653 		 * which can also be traced by the function tracer.
3654 		 */
3655 		preempt_disable_notrace();
3656 		preempt_latency_start(1);
3657 		/*
3658 		 * Needs preempt disabled in case user_exit() is traced
3659 		 * and the tracer calls preempt_enable_notrace() causing
3660 		 * an infinite recursion.
3661 		 */
3662 		prev_ctx = exception_enter();
3663 		__schedule(true);
3664 		exception_exit(prev_ctx);
3665 
3666 		preempt_latency_stop(1);
3667 		preempt_enable_no_resched_notrace();
3668 	} while (need_resched());
3669 }
3670 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3671 
3672 #endif /* CONFIG_PREEMPT */
3673 
3674 /*
3675  * this is the entry point to schedule() from kernel preemption
3676  * off of irq context.
3677  * Note, that this is called and return with irqs disabled. This will
3678  * protect us against recursive calling from irq.
3679  */
3680 asmlinkage __visible void __sched preempt_schedule_irq(void)
3681 {
3682 	enum ctx_state prev_state;
3683 
3684 	/* Catch callers which need to be fixed */
3685 	BUG_ON(preempt_count() || !irqs_disabled());
3686 
3687 	prev_state = exception_enter();
3688 
3689 	do {
3690 		preempt_disable();
3691 		local_irq_enable();
3692 		__schedule(true);
3693 		local_irq_disable();
3694 		sched_preempt_enable_no_resched();
3695 	} while (need_resched());
3696 
3697 	exception_exit(prev_state);
3698 }
3699 
3700 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3701 			  void *key)
3702 {
3703 	return try_to_wake_up(curr->private, mode, wake_flags);
3704 }
3705 EXPORT_SYMBOL(default_wake_function);
3706 
3707 #ifdef CONFIG_RT_MUTEXES
3708 
3709 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3710 {
3711 	if (pi_task)
3712 		prio = min(prio, pi_task->prio);
3713 
3714 	return prio;
3715 }
3716 
3717 static inline int rt_effective_prio(struct task_struct *p, int prio)
3718 {
3719 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3720 
3721 	return __rt_effective_prio(pi_task, prio);
3722 }
3723 
3724 /*
3725  * rt_mutex_setprio - set the current priority of a task
3726  * @p: task to boost
3727  * @pi_task: donor task
3728  *
3729  * This function changes the 'effective' priority of a task. It does
3730  * not touch ->normal_prio like __setscheduler().
3731  *
3732  * Used by the rt_mutex code to implement priority inheritance
3733  * logic. Call site only calls if the priority of the task changed.
3734  */
3735 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3736 {
3737 	int prio, oldprio, queued, running, queue_flag =
3738 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3739 	const struct sched_class *prev_class;
3740 	struct rq_flags rf;
3741 	struct rq *rq;
3742 
3743 	/* XXX used to be waiter->prio, not waiter->task->prio */
3744 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3745 
3746 	/*
3747 	 * If nothing changed; bail early.
3748 	 */
3749 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3750 		return;
3751 
3752 	rq = __task_rq_lock(p, &rf);
3753 	update_rq_clock(rq);
3754 	/*
3755 	 * Set under pi_lock && rq->lock, such that the value can be used under
3756 	 * either lock.
3757 	 *
3758 	 * Note that there is loads of tricky to make this pointer cache work
3759 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3760 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3761 	 * task is allowed to run again (and can exit). This ensures the pointer
3762 	 * points to a blocked task -- which guaratees the task is present.
3763 	 */
3764 	p->pi_top_task = pi_task;
3765 
3766 	/*
3767 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3768 	 */
3769 	if (prio == p->prio && !dl_prio(prio))
3770 		goto out_unlock;
3771 
3772 	/*
3773 	 * Idle task boosting is a nono in general. There is one
3774 	 * exception, when PREEMPT_RT and NOHZ is active:
3775 	 *
3776 	 * The idle task calls get_next_timer_interrupt() and holds
3777 	 * the timer wheel base->lock on the CPU and another CPU wants
3778 	 * to access the timer (probably to cancel it). We can safely
3779 	 * ignore the boosting request, as the idle CPU runs this code
3780 	 * with interrupts disabled and will complete the lock
3781 	 * protected section without being interrupted. So there is no
3782 	 * real need to boost.
3783 	 */
3784 	if (unlikely(p == rq->idle)) {
3785 		WARN_ON(p != rq->curr);
3786 		WARN_ON(p->pi_blocked_on);
3787 		goto out_unlock;
3788 	}
3789 
3790 	trace_sched_pi_setprio(p, pi_task);
3791 	oldprio = p->prio;
3792 
3793 	if (oldprio == prio)
3794 		queue_flag &= ~DEQUEUE_MOVE;
3795 
3796 	prev_class = p->sched_class;
3797 	queued = task_on_rq_queued(p);
3798 	running = task_current(rq, p);
3799 	if (queued)
3800 		dequeue_task(rq, p, queue_flag);
3801 	if (running)
3802 		put_prev_task(rq, p);
3803 
3804 	/*
3805 	 * Boosting condition are:
3806 	 * 1. -rt task is running and holds mutex A
3807 	 *      --> -dl task blocks on mutex A
3808 	 *
3809 	 * 2. -dl task is running and holds mutex A
3810 	 *      --> -dl task blocks on mutex A and could preempt the
3811 	 *          running task
3812 	 */
3813 	if (dl_prio(prio)) {
3814 		if (!dl_prio(p->normal_prio) ||
3815 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3816 			p->dl.dl_boosted = 1;
3817 			queue_flag |= ENQUEUE_REPLENISH;
3818 		} else
3819 			p->dl.dl_boosted = 0;
3820 		p->sched_class = &dl_sched_class;
3821 	} else if (rt_prio(prio)) {
3822 		if (dl_prio(oldprio))
3823 			p->dl.dl_boosted = 0;
3824 		if (oldprio < prio)
3825 			queue_flag |= ENQUEUE_HEAD;
3826 		p->sched_class = &rt_sched_class;
3827 	} else {
3828 		if (dl_prio(oldprio))
3829 			p->dl.dl_boosted = 0;
3830 		if (rt_prio(oldprio))
3831 			p->rt.timeout = 0;
3832 		p->sched_class = &fair_sched_class;
3833 	}
3834 
3835 	p->prio = prio;
3836 
3837 	if (queued)
3838 		enqueue_task(rq, p, queue_flag);
3839 	if (running)
3840 		set_curr_task(rq, p);
3841 
3842 	check_class_changed(rq, p, prev_class, oldprio);
3843 out_unlock:
3844 	/* Avoid rq from going away on us: */
3845 	preempt_disable();
3846 	__task_rq_unlock(rq, &rf);
3847 
3848 	balance_callback(rq);
3849 	preempt_enable();
3850 }
3851 #else
3852 static inline int rt_effective_prio(struct task_struct *p, int prio)
3853 {
3854 	return prio;
3855 }
3856 #endif
3857 
3858 void set_user_nice(struct task_struct *p, long nice)
3859 {
3860 	bool queued, running;
3861 	int old_prio, delta;
3862 	struct rq_flags rf;
3863 	struct rq *rq;
3864 
3865 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3866 		return;
3867 	/*
3868 	 * We have to be careful, if called from sys_setpriority(),
3869 	 * the task might be in the middle of scheduling on another CPU.
3870 	 */
3871 	rq = task_rq_lock(p, &rf);
3872 	update_rq_clock(rq);
3873 
3874 	/*
3875 	 * The RT priorities are set via sched_setscheduler(), but we still
3876 	 * allow the 'normal' nice value to be set - but as expected
3877 	 * it wont have any effect on scheduling until the task is
3878 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3879 	 */
3880 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3881 		p->static_prio = NICE_TO_PRIO(nice);
3882 		goto out_unlock;
3883 	}
3884 	queued = task_on_rq_queued(p);
3885 	running = task_current(rq, p);
3886 	if (queued)
3887 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3888 	if (running)
3889 		put_prev_task(rq, p);
3890 
3891 	p->static_prio = NICE_TO_PRIO(nice);
3892 	set_load_weight(p, true);
3893 	old_prio = p->prio;
3894 	p->prio = effective_prio(p);
3895 	delta = p->prio - old_prio;
3896 
3897 	if (queued) {
3898 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3899 		/*
3900 		 * If the task increased its priority or is running and
3901 		 * lowered its priority, then reschedule its CPU:
3902 		 */
3903 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3904 			resched_curr(rq);
3905 	}
3906 	if (running)
3907 		set_curr_task(rq, p);
3908 out_unlock:
3909 	task_rq_unlock(rq, p, &rf);
3910 }
3911 EXPORT_SYMBOL(set_user_nice);
3912 
3913 /*
3914  * can_nice - check if a task can reduce its nice value
3915  * @p: task
3916  * @nice: nice value
3917  */
3918 int can_nice(const struct task_struct *p, const int nice)
3919 {
3920 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3921 	int nice_rlim = nice_to_rlimit(nice);
3922 
3923 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3924 		capable(CAP_SYS_NICE));
3925 }
3926 
3927 #ifdef __ARCH_WANT_SYS_NICE
3928 
3929 /*
3930  * sys_nice - change the priority of the current process.
3931  * @increment: priority increment
3932  *
3933  * sys_setpriority is a more generic, but much slower function that
3934  * does similar things.
3935  */
3936 SYSCALL_DEFINE1(nice, int, increment)
3937 {
3938 	long nice, retval;
3939 
3940 	/*
3941 	 * Setpriority might change our priority at the same moment.
3942 	 * We don't have to worry. Conceptually one call occurs first
3943 	 * and we have a single winner.
3944 	 */
3945 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3946 	nice = task_nice(current) + increment;
3947 
3948 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3949 	if (increment < 0 && !can_nice(current, nice))
3950 		return -EPERM;
3951 
3952 	retval = security_task_setnice(current, nice);
3953 	if (retval)
3954 		return retval;
3955 
3956 	set_user_nice(current, nice);
3957 	return 0;
3958 }
3959 
3960 #endif
3961 
3962 /**
3963  * task_prio - return the priority value of a given task.
3964  * @p: the task in question.
3965  *
3966  * Return: The priority value as seen by users in /proc.
3967  * RT tasks are offset by -200. Normal tasks are centered
3968  * around 0, value goes from -16 to +15.
3969  */
3970 int task_prio(const struct task_struct *p)
3971 {
3972 	return p->prio - MAX_RT_PRIO;
3973 }
3974 
3975 /**
3976  * idle_cpu - is a given CPU idle currently?
3977  * @cpu: the processor in question.
3978  *
3979  * Return: 1 if the CPU is currently idle. 0 otherwise.
3980  */
3981 int idle_cpu(int cpu)
3982 {
3983 	struct rq *rq = cpu_rq(cpu);
3984 
3985 	if (rq->curr != rq->idle)
3986 		return 0;
3987 
3988 	if (rq->nr_running)
3989 		return 0;
3990 
3991 #ifdef CONFIG_SMP
3992 	if (!llist_empty(&rq->wake_list))
3993 		return 0;
3994 #endif
3995 
3996 	return 1;
3997 }
3998 
3999 /**
4000  * available_idle_cpu - is a given CPU idle for enqueuing work.
4001  * @cpu: the CPU in question.
4002  *
4003  * Return: 1 if the CPU is currently idle. 0 otherwise.
4004  */
4005 int available_idle_cpu(int cpu)
4006 {
4007 	if (!idle_cpu(cpu))
4008 		return 0;
4009 
4010 	if (vcpu_is_preempted(cpu))
4011 		return 0;
4012 
4013 	return 1;
4014 }
4015 
4016 /**
4017  * idle_task - return the idle task for a given CPU.
4018  * @cpu: the processor in question.
4019  *
4020  * Return: The idle task for the CPU @cpu.
4021  */
4022 struct task_struct *idle_task(int cpu)
4023 {
4024 	return cpu_rq(cpu)->idle;
4025 }
4026 
4027 /**
4028  * find_process_by_pid - find a process with a matching PID value.
4029  * @pid: the pid in question.
4030  *
4031  * The task of @pid, if found. %NULL otherwise.
4032  */
4033 static struct task_struct *find_process_by_pid(pid_t pid)
4034 {
4035 	return pid ? find_task_by_vpid(pid) : current;
4036 }
4037 
4038 /*
4039  * sched_setparam() passes in -1 for its policy, to let the functions
4040  * it calls know not to change it.
4041  */
4042 #define SETPARAM_POLICY	-1
4043 
4044 static void __setscheduler_params(struct task_struct *p,
4045 		const struct sched_attr *attr)
4046 {
4047 	int policy = attr->sched_policy;
4048 
4049 	if (policy == SETPARAM_POLICY)
4050 		policy = p->policy;
4051 
4052 	p->policy = policy;
4053 
4054 	if (dl_policy(policy))
4055 		__setparam_dl(p, attr);
4056 	else if (fair_policy(policy))
4057 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4058 
4059 	/*
4060 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4061 	 * !rt_policy. Always setting this ensures that things like
4062 	 * getparam()/getattr() don't report silly values for !rt tasks.
4063 	 */
4064 	p->rt_priority = attr->sched_priority;
4065 	p->normal_prio = normal_prio(p);
4066 	set_load_weight(p, true);
4067 }
4068 
4069 /* Actually do priority change: must hold pi & rq lock. */
4070 static void __setscheduler(struct rq *rq, struct task_struct *p,
4071 			   const struct sched_attr *attr, bool keep_boost)
4072 {
4073 	__setscheduler_params(p, attr);
4074 
4075 	/*
4076 	 * Keep a potential priority boosting if called from
4077 	 * sched_setscheduler().
4078 	 */
4079 	p->prio = normal_prio(p);
4080 	if (keep_boost)
4081 		p->prio = rt_effective_prio(p, p->prio);
4082 
4083 	if (dl_prio(p->prio))
4084 		p->sched_class = &dl_sched_class;
4085 	else if (rt_prio(p->prio))
4086 		p->sched_class = &rt_sched_class;
4087 	else
4088 		p->sched_class = &fair_sched_class;
4089 }
4090 
4091 /*
4092  * Check the target process has a UID that matches the current process's:
4093  */
4094 static bool check_same_owner(struct task_struct *p)
4095 {
4096 	const struct cred *cred = current_cred(), *pcred;
4097 	bool match;
4098 
4099 	rcu_read_lock();
4100 	pcred = __task_cred(p);
4101 	match = (uid_eq(cred->euid, pcred->euid) ||
4102 		 uid_eq(cred->euid, pcred->uid));
4103 	rcu_read_unlock();
4104 	return match;
4105 }
4106 
4107 static int __sched_setscheduler(struct task_struct *p,
4108 				const struct sched_attr *attr,
4109 				bool user, bool pi)
4110 {
4111 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4112 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4113 	int retval, oldprio, oldpolicy = -1, queued, running;
4114 	int new_effective_prio, policy = attr->sched_policy;
4115 	const struct sched_class *prev_class;
4116 	struct rq_flags rf;
4117 	int reset_on_fork;
4118 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4119 	struct rq *rq;
4120 
4121 	/* The pi code expects interrupts enabled */
4122 	BUG_ON(pi && in_interrupt());
4123 recheck:
4124 	/* Double check policy once rq lock held: */
4125 	if (policy < 0) {
4126 		reset_on_fork = p->sched_reset_on_fork;
4127 		policy = oldpolicy = p->policy;
4128 	} else {
4129 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4130 
4131 		if (!valid_policy(policy))
4132 			return -EINVAL;
4133 	}
4134 
4135 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4136 		return -EINVAL;
4137 
4138 	/*
4139 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4140 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4141 	 * SCHED_BATCH and SCHED_IDLE is 0.
4142 	 */
4143 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4144 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4145 		return -EINVAL;
4146 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4147 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4148 		return -EINVAL;
4149 
4150 	/*
4151 	 * Allow unprivileged RT tasks to decrease priority:
4152 	 */
4153 	if (user && !capable(CAP_SYS_NICE)) {
4154 		if (fair_policy(policy)) {
4155 			if (attr->sched_nice < task_nice(p) &&
4156 			    !can_nice(p, attr->sched_nice))
4157 				return -EPERM;
4158 		}
4159 
4160 		if (rt_policy(policy)) {
4161 			unsigned long rlim_rtprio =
4162 					task_rlimit(p, RLIMIT_RTPRIO);
4163 
4164 			/* Can't set/change the rt policy: */
4165 			if (policy != p->policy && !rlim_rtprio)
4166 				return -EPERM;
4167 
4168 			/* Can't increase priority: */
4169 			if (attr->sched_priority > p->rt_priority &&
4170 			    attr->sched_priority > rlim_rtprio)
4171 				return -EPERM;
4172 		}
4173 
4174 		 /*
4175 		  * Can't set/change SCHED_DEADLINE policy at all for now
4176 		  * (safest behavior); in the future we would like to allow
4177 		  * unprivileged DL tasks to increase their relative deadline
4178 		  * or reduce their runtime (both ways reducing utilization)
4179 		  */
4180 		if (dl_policy(policy))
4181 			return -EPERM;
4182 
4183 		/*
4184 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4185 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4186 		 */
4187 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4188 			if (!can_nice(p, task_nice(p)))
4189 				return -EPERM;
4190 		}
4191 
4192 		/* Can't change other user's priorities: */
4193 		if (!check_same_owner(p))
4194 			return -EPERM;
4195 
4196 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4197 		if (p->sched_reset_on_fork && !reset_on_fork)
4198 			return -EPERM;
4199 	}
4200 
4201 	if (user) {
4202 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4203 			return -EINVAL;
4204 
4205 		retval = security_task_setscheduler(p);
4206 		if (retval)
4207 			return retval;
4208 	}
4209 
4210 	/*
4211 	 * Make sure no PI-waiters arrive (or leave) while we are
4212 	 * changing the priority of the task:
4213 	 *
4214 	 * To be able to change p->policy safely, the appropriate
4215 	 * runqueue lock must be held.
4216 	 */
4217 	rq = task_rq_lock(p, &rf);
4218 	update_rq_clock(rq);
4219 
4220 	/*
4221 	 * Changing the policy of the stop threads its a very bad idea:
4222 	 */
4223 	if (p == rq->stop) {
4224 		task_rq_unlock(rq, p, &rf);
4225 		return -EINVAL;
4226 	}
4227 
4228 	/*
4229 	 * If not changing anything there's no need to proceed further,
4230 	 * but store a possible modification of reset_on_fork.
4231 	 */
4232 	if (unlikely(policy == p->policy)) {
4233 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4234 			goto change;
4235 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4236 			goto change;
4237 		if (dl_policy(policy) && dl_param_changed(p, attr))
4238 			goto change;
4239 
4240 		p->sched_reset_on_fork = reset_on_fork;
4241 		task_rq_unlock(rq, p, &rf);
4242 		return 0;
4243 	}
4244 change:
4245 
4246 	if (user) {
4247 #ifdef CONFIG_RT_GROUP_SCHED
4248 		/*
4249 		 * Do not allow realtime tasks into groups that have no runtime
4250 		 * assigned.
4251 		 */
4252 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4253 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4254 				!task_group_is_autogroup(task_group(p))) {
4255 			task_rq_unlock(rq, p, &rf);
4256 			return -EPERM;
4257 		}
4258 #endif
4259 #ifdef CONFIG_SMP
4260 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4261 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4262 			cpumask_t *span = rq->rd->span;
4263 
4264 			/*
4265 			 * Don't allow tasks with an affinity mask smaller than
4266 			 * the entire root_domain to become SCHED_DEADLINE. We
4267 			 * will also fail if there's no bandwidth available.
4268 			 */
4269 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4270 			    rq->rd->dl_bw.bw == 0) {
4271 				task_rq_unlock(rq, p, &rf);
4272 				return -EPERM;
4273 			}
4274 		}
4275 #endif
4276 	}
4277 
4278 	/* Re-check policy now with rq lock held: */
4279 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4280 		policy = oldpolicy = -1;
4281 		task_rq_unlock(rq, p, &rf);
4282 		goto recheck;
4283 	}
4284 
4285 	/*
4286 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4287 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4288 	 * is available.
4289 	 */
4290 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4291 		task_rq_unlock(rq, p, &rf);
4292 		return -EBUSY;
4293 	}
4294 
4295 	p->sched_reset_on_fork = reset_on_fork;
4296 	oldprio = p->prio;
4297 
4298 	if (pi) {
4299 		/*
4300 		 * Take priority boosted tasks into account. If the new
4301 		 * effective priority is unchanged, we just store the new
4302 		 * normal parameters and do not touch the scheduler class and
4303 		 * the runqueue. This will be done when the task deboost
4304 		 * itself.
4305 		 */
4306 		new_effective_prio = rt_effective_prio(p, newprio);
4307 		if (new_effective_prio == oldprio)
4308 			queue_flags &= ~DEQUEUE_MOVE;
4309 	}
4310 
4311 	queued = task_on_rq_queued(p);
4312 	running = task_current(rq, p);
4313 	if (queued)
4314 		dequeue_task(rq, p, queue_flags);
4315 	if (running)
4316 		put_prev_task(rq, p);
4317 
4318 	prev_class = p->sched_class;
4319 	__setscheduler(rq, p, attr, pi);
4320 
4321 	if (queued) {
4322 		/*
4323 		 * We enqueue to tail when the priority of a task is
4324 		 * increased (user space view).
4325 		 */
4326 		if (oldprio < p->prio)
4327 			queue_flags |= ENQUEUE_HEAD;
4328 
4329 		enqueue_task(rq, p, queue_flags);
4330 	}
4331 	if (running)
4332 		set_curr_task(rq, p);
4333 
4334 	check_class_changed(rq, p, prev_class, oldprio);
4335 
4336 	/* Avoid rq from going away on us: */
4337 	preempt_disable();
4338 	task_rq_unlock(rq, p, &rf);
4339 
4340 	if (pi)
4341 		rt_mutex_adjust_pi(p);
4342 
4343 	/* Run balance callbacks after we've adjusted the PI chain: */
4344 	balance_callback(rq);
4345 	preempt_enable();
4346 
4347 	return 0;
4348 }
4349 
4350 static int _sched_setscheduler(struct task_struct *p, int policy,
4351 			       const struct sched_param *param, bool check)
4352 {
4353 	struct sched_attr attr = {
4354 		.sched_policy   = policy,
4355 		.sched_priority = param->sched_priority,
4356 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4357 	};
4358 
4359 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4360 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4361 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4362 		policy &= ~SCHED_RESET_ON_FORK;
4363 		attr.sched_policy = policy;
4364 	}
4365 
4366 	return __sched_setscheduler(p, &attr, check, true);
4367 }
4368 /**
4369  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4370  * @p: the task in question.
4371  * @policy: new policy.
4372  * @param: structure containing the new RT priority.
4373  *
4374  * Return: 0 on success. An error code otherwise.
4375  *
4376  * NOTE that the task may be already dead.
4377  */
4378 int sched_setscheduler(struct task_struct *p, int policy,
4379 		       const struct sched_param *param)
4380 {
4381 	return _sched_setscheduler(p, policy, param, true);
4382 }
4383 EXPORT_SYMBOL_GPL(sched_setscheduler);
4384 
4385 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4386 {
4387 	return __sched_setscheduler(p, attr, true, true);
4388 }
4389 EXPORT_SYMBOL_GPL(sched_setattr);
4390 
4391 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4392 {
4393 	return __sched_setscheduler(p, attr, false, true);
4394 }
4395 
4396 /**
4397  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4398  * @p: the task in question.
4399  * @policy: new policy.
4400  * @param: structure containing the new RT priority.
4401  *
4402  * Just like sched_setscheduler, only don't bother checking if the
4403  * current context has permission.  For example, this is needed in
4404  * stop_machine(): we create temporary high priority worker threads,
4405  * but our caller might not have that capability.
4406  *
4407  * Return: 0 on success. An error code otherwise.
4408  */
4409 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4410 			       const struct sched_param *param)
4411 {
4412 	return _sched_setscheduler(p, policy, param, false);
4413 }
4414 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4415 
4416 static int
4417 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4418 {
4419 	struct sched_param lparam;
4420 	struct task_struct *p;
4421 	int retval;
4422 
4423 	if (!param || pid < 0)
4424 		return -EINVAL;
4425 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4426 		return -EFAULT;
4427 
4428 	rcu_read_lock();
4429 	retval = -ESRCH;
4430 	p = find_process_by_pid(pid);
4431 	if (p != NULL)
4432 		retval = sched_setscheduler(p, policy, &lparam);
4433 	rcu_read_unlock();
4434 
4435 	return retval;
4436 }
4437 
4438 /*
4439  * Mimics kernel/events/core.c perf_copy_attr().
4440  */
4441 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4442 {
4443 	u32 size;
4444 	int ret;
4445 
4446 	if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
4447 		return -EFAULT;
4448 
4449 	/* Zero the full structure, so that a short copy will be nice: */
4450 	memset(attr, 0, sizeof(*attr));
4451 
4452 	ret = get_user(size, &uattr->size);
4453 	if (ret)
4454 		return ret;
4455 
4456 	/* Bail out on silly large: */
4457 	if (size > PAGE_SIZE)
4458 		goto err_size;
4459 
4460 	/* ABI compatibility quirk: */
4461 	if (!size)
4462 		size = SCHED_ATTR_SIZE_VER0;
4463 
4464 	if (size < SCHED_ATTR_SIZE_VER0)
4465 		goto err_size;
4466 
4467 	/*
4468 	 * If we're handed a bigger struct than we know of,
4469 	 * ensure all the unknown bits are 0 - i.e. new
4470 	 * user-space does not rely on any kernel feature
4471 	 * extensions we dont know about yet.
4472 	 */
4473 	if (size > sizeof(*attr)) {
4474 		unsigned char __user *addr;
4475 		unsigned char __user *end;
4476 		unsigned char val;
4477 
4478 		addr = (void __user *)uattr + sizeof(*attr);
4479 		end  = (void __user *)uattr + size;
4480 
4481 		for (; addr < end; addr++) {
4482 			ret = get_user(val, addr);
4483 			if (ret)
4484 				return ret;
4485 			if (val)
4486 				goto err_size;
4487 		}
4488 		size = sizeof(*attr);
4489 	}
4490 
4491 	ret = copy_from_user(attr, uattr, size);
4492 	if (ret)
4493 		return -EFAULT;
4494 
4495 	/*
4496 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4497 	 * to be strict and return an error on out-of-bounds values?
4498 	 */
4499 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4500 
4501 	return 0;
4502 
4503 err_size:
4504 	put_user(sizeof(*attr), &uattr->size);
4505 	return -E2BIG;
4506 }
4507 
4508 /**
4509  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4510  * @pid: the pid in question.
4511  * @policy: new policy.
4512  * @param: structure containing the new RT priority.
4513  *
4514  * Return: 0 on success. An error code otherwise.
4515  */
4516 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4517 {
4518 	if (policy < 0)
4519 		return -EINVAL;
4520 
4521 	return do_sched_setscheduler(pid, policy, param);
4522 }
4523 
4524 /**
4525  * sys_sched_setparam - set/change the RT priority of a thread
4526  * @pid: the pid in question.
4527  * @param: structure containing the new RT priority.
4528  *
4529  * Return: 0 on success. An error code otherwise.
4530  */
4531 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4532 {
4533 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4534 }
4535 
4536 /**
4537  * sys_sched_setattr - same as above, but with extended sched_attr
4538  * @pid: the pid in question.
4539  * @uattr: structure containing the extended parameters.
4540  * @flags: for future extension.
4541  */
4542 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4543 			       unsigned int, flags)
4544 {
4545 	struct sched_attr attr;
4546 	struct task_struct *p;
4547 	int retval;
4548 
4549 	if (!uattr || pid < 0 || flags)
4550 		return -EINVAL;
4551 
4552 	retval = sched_copy_attr(uattr, &attr);
4553 	if (retval)
4554 		return retval;
4555 
4556 	if ((int)attr.sched_policy < 0)
4557 		return -EINVAL;
4558 
4559 	rcu_read_lock();
4560 	retval = -ESRCH;
4561 	p = find_process_by_pid(pid);
4562 	if (p != NULL)
4563 		retval = sched_setattr(p, &attr);
4564 	rcu_read_unlock();
4565 
4566 	return retval;
4567 }
4568 
4569 /**
4570  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4571  * @pid: the pid in question.
4572  *
4573  * Return: On success, the policy of the thread. Otherwise, a negative error
4574  * code.
4575  */
4576 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4577 {
4578 	struct task_struct *p;
4579 	int retval;
4580 
4581 	if (pid < 0)
4582 		return -EINVAL;
4583 
4584 	retval = -ESRCH;
4585 	rcu_read_lock();
4586 	p = find_process_by_pid(pid);
4587 	if (p) {
4588 		retval = security_task_getscheduler(p);
4589 		if (!retval)
4590 			retval = p->policy
4591 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4592 	}
4593 	rcu_read_unlock();
4594 	return retval;
4595 }
4596 
4597 /**
4598  * sys_sched_getparam - get the RT priority of a thread
4599  * @pid: the pid in question.
4600  * @param: structure containing the RT priority.
4601  *
4602  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4603  * code.
4604  */
4605 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4606 {
4607 	struct sched_param lp = { .sched_priority = 0 };
4608 	struct task_struct *p;
4609 	int retval;
4610 
4611 	if (!param || pid < 0)
4612 		return -EINVAL;
4613 
4614 	rcu_read_lock();
4615 	p = find_process_by_pid(pid);
4616 	retval = -ESRCH;
4617 	if (!p)
4618 		goto out_unlock;
4619 
4620 	retval = security_task_getscheduler(p);
4621 	if (retval)
4622 		goto out_unlock;
4623 
4624 	if (task_has_rt_policy(p))
4625 		lp.sched_priority = p->rt_priority;
4626 	rcu_read_unlock();
4627 
4628 	/*
4629 	 * This one might sleep, we cannot do it with a spinlock held ...
4630 	 */
4631 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4632 
4633 	return retval;
4634 
4635 out_unlock:
4636 	rcu_read_unlock();
4637 	return retval;
4638 }
4639 
4640 static int sched_read_attr(struct sched_attr __user *uattr,
4641 			   struct sched_attr *attr,
4642 			   unsigned int usize)
4643 {
4644 	int ret;
4645 
4646 	if (!access_ok(uattr, usize))
4647 		return -EFAULT;
4648 
4649 	/*
4650 	 * If we're handed a smaller struct than we know of,
4651 	 * ensure all the unknown bits are 0 - i.e. old
4652 	 * user-space does not get uncomplete information.
4653 	 */
4654 	if (usize < sizeof(*attr)) {
4655 		unsigned char *addr;
4656 		unsigned char *end;
4657 
4658 		addr = (void *)attr + usize;
4659 		end  = (void *)attr + sizeof(*attr);
4660 
4661 		for (; addr < end; addr++) {
4662 			if (*addr)
4663 				return -EFBIG;
4664 		}
4665 
4666 		attr->size = usize;
4667 	}
4668 
4669 	ret = copy_to_user(uattr, attr, attr->size);
4670 	if (ret)
4671 		return -EFAULT;
4672 
4673 	return 0;
4674 }
4675 
4676 /**
4677  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4678  * @pid: the pid in question.
4679  * @uattr: structure containing the extended parameters.
4680  * @size: sizeof(attr) for fwd/bwd comp.
4681  * @flags: for future extension.
4682  */
4683 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4684 		unsigned int, size, unsigned int, flags)
4685 {
4686 	struct sched_attr attr = {
4687 		.size = sizeof(struct sched_attr),
4688 	};
4689 	struct task_struct *p;
4690 	int retval;
4691 
4692 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4693 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4694 		return -EINVAL;
4695 
4696 	rcu_read_lock();
4697 	p = find_process_by_pid(pid);
4698 	retval = -ESRCH;
4699 	if (!p)
4700 		goto out_unlock;
4701 
4702 	retval = security_task_getscheduler(p);
4703 	if (retval)
4704 		goto out_unlock;
4705 
4706 	attr.sched_policy = p->policy;
4707 	if (p->sched_reset_on_fork)
4708 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4709 	if (task_has_dl_policy(p))
4710 		__getparam_dl(p, &attr);
4711 	else if (task_has_rt_policy(p))
4712 		attr.sched_priority = p->rt_priority;
4713 	else
4714 		attr.sched_nice = task_nice(p);
4715 
4716 	rcu_read_unlock();
4717 
4718 	retval = sched_read_attr(uattr, &attr, size);
4719 	return retval;
4720 
4721 out_unlock:
4722 	rcu_read_unlock();
4723 	return retval;
4724 }
4725 
4726 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4727 {
4728 	cpumask_var_t cpus_allowed, new_mask;
4729 	struct task_struct *p;
4730 	int retval;
4731 
4732 	rcu_read_lock();
4733 
4734 	p = find_process_by_pid(pid);
4735 	if (!p) {
4736 		rcu_read_unlock();
4737 		return -ESRCH;
4738 	}
4739 
4740 	/* Prevent p going away */
4741 	get_task_struct(p);
4742 	rcu_read_unlock();
4743 
4744 	if (p->flags & PF_NO_SETAFFINITY) {
4745 		retval = -EINVAL;
4746 		goto out_put_task;
4747 	}
4748 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4749 		retval = -ENOMEM;
4750 		goto out_put_task;
4751 	}
4752 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4753 		retval = -ENOMEM;
4754 		goto out_free_cpus_allowed;
4755 	}
4756 	retval = -EPERM;
4757 	if (!check_same_owner(p)) {
4758 		rcu_read_lock();
4759 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4760 			rcu_read_unlock();
4761 			goto out_free_new_mask;
4762 		}
4763 		rcu_read_unlock();
4764 	}
4765 
4766 	retval = security_task_setscheduler(p);
4767 	if (retval)
4768 		goto out_free_new_mask;
4769 
4770 
4771 	cpuset_cpus_allowed(p, cpus_allowed);
4772 	cpumask_and(new_mask, in_mask, cpus_allowed);
4773 
4774 	/*
4775 	 * Since bandwidth control happens on root_domain basis,
4776 	 * if admission test is enabled, we only admit -deadline
4777 	 * tasks allowed to run on all the CPUs in the task's
4778 	 * root_domain.
4779 	 */
4780 #ifdef CONFIG_SMP
4781 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4782 		rcu_read_lock();
4783 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4784 			retval = -EBUSY;
4785 			rcu_read_unlock();
4786 			goto out_free_new_mask;
4787 		}
4788 		rcu_read_unlock();
4789 	}
4790 #endif
4791 again:
4792 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4793 
4794 	if (!retval) {
4795 		cpuset_cpus_allowed(p, cpus_allowed);
4796 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4797 			/*
4798 			 * We must have raced with a concurrent cpuset
4799 			 * update. Just reset the cpus_allowed to the
4800 			 * cpuset's cpus_allowed
4801 			 */
4802 			cpumask_copy(new_mask, cpus_allowed);
4803 			goto again;
4804 		}
4805 	}
4806 out_free_new_mask:
4807 	free_cpumask_var(new_mask);
4808 out_free_cpus_allowed:
4809 	free_cpumask_var(cpus_allowed);
4810 out_put_task:
4811 	put_task_struct(p);
4812 	return retval;
4813 }
4814 
4815 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4816 			     struct cpumask *new_mask)
4817 {
4818 	if (len < cpumask_size())
4819 		cpumask_clear(new_mask);
4820 	else if (len > cpumask_size())
4821 		len = cpumask_size();
4822 
4823 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4824 }
4825 
4826 /**
4827  * sys_sched_setaffinity - set the CPU affinity of a process
4828  * @pid: pid of the process
4829  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4830  * @user_mask_ptr: user-space pointer to the new CPU mask
4831  *
4832  * Return: 0 on success. An error code otherwise.
4833  */
4834 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4835 		unsigned long __user *, user_mask_ptr)
4836 {
4837 	cpumask_var_t new_mask;
4838 	int retval;
4839 
4840 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4841 		return -ENOMEM;
4842 
4843 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4844 	if (retval == 0)
4845 		retval = sched_setaffinity(pid, new_mask);
4846 	free_cpumask_var(new_mask);
4847 	return retval;
4848 }
4849 
4850 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4851 {
4852 	struct task_struct *p;
4853 	unsigned long flags;
4854 	int retval;
4855 
4856 	rcu_read_lock();
4857 
4858 	retval = -ESRCH;
4859 	p = find_process_by_pid(pid);
4860 	if (!p)
4861 		goto out_unlock;
4862 
4863 	retval = security_task_getscheduler(p);
4864 	if (retval)
4865 		goto out_unlock;
4866 
4867 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4868 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4869 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4870 
4871 out_unlock:
4872 	rcu_read_unlock();
4873 
4874 	return retval;
4875 }
4876 
4877 /**
4878  * sys_sched_getaffinity - get the CPU affinity of a process
4879  * @pid: pid of the process
4880  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4881  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4882  *
4883  * Return: size of CPU mask copied to user_mask_ptr on success. An
4884  * error code otherwise.
4885  */
4886 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4887 		unsigned long __user *, user_mask_ptr)
4888 {
4889 	int ret;
4890 	cpumask_var_t mask;
4891 
4892 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4893 		return -EINVAL;
4894 	if (len & (sizeof(unsigned long)-1))
4895 		return -EINVAL;
4896 
4897 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4898 		return -ENOMEM;
4899 
4900 	ret = sched_getaffinity(pid, mask);
4901 	if (ret == 0) {
4902 		unsigned int retlen = min(len, cpumask_size());
4903 
4904 		if (copy_to_user(user_mask_ptr, mask, retlen))
4905 			ret = -EFAULT;
4906 		else
4907 			ret = retlen;
4908 	}
4909 	free_cpumask_var(mask);
4910 
4911 	return ret;
4912 }
4913 
4914 /**
4915  * sys_sched_yield - yield the current processor to other threads.
4916  *
4917  * This function yields the current CPU to other tasks. If there are no
4918  * other threads running on this CPU then this function will return.
4919  *
4920  * Return: 0.
4921  */
4922 static void do_sched_yield(void)
4923 {
4924 	struct rq_flags rf;
4925 	struct rq *rq;
4926 
4927 	rq = this_rq_lock_irq(&rf);
4928 
4929 	schedstat_inc(rq->yld_count);
4930 	current->sched_class->yield_task(rq);
4931 
4932 	/*
4933 	 * Since we are going to call schedule() anyway, there's
4934 	 * no need to preempt or enable interrupts:
4935 	 */
4936 	preempt_disable();
4937 	rq_unlock(rq, &rf);
4938 	sched_preempt_enable_no_resched();
4939 
4940 	schedule();
4941 }
4942 
4943 SYSCALL_DEFINE0(sched_yield)
4944 {
4945 	do_sched_yield();
4946 	return 0;
4947 }
4948 
4949 #ifndef CONFIG_PREEMPT
4950 int __sched _cond_resched(void)
4951 {
4952 	if (should_resched(0)) {
4953 		preempt_schedule_common();
4954 		return 1;
4955 	}
4956 	rcu_all_qs();
4957 	return 0;
4958 }
4959 EXPORT_SYMBOL(_cond_resched);
4960 #endif
4961 
4962 /*
4963  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4964  * call schedule, and on return reacquire the lock.
4965  *
4966  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4967  * operations here to prevent schedule() from being called twice (once via
4968  * spin_unlock(), once by hand).
4969  */
4970 int __cond_resched_lock(spinlock_t *lock)
4971 {
4972 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4973 	int ret = 0;
4974 
4975 	lockdep_assert_held(lock);
4976 
4977 	if (spin_needbreak(lock) || resched) {
4978 		spin_unlock(lock);
4979 		if (resched)
4980 			preempt_schedule_common();
4981 		else
4982 			cpu_relax();
4983 		ret = 1;
4984 		spin_lock(lock);
4985 	}
4986 	return ret;
4987 }
4988 EXPORT_SYMBOL(__cond_resched_lock);
4989 
4990 /**
4991  * yield - yield the current processor to other threads.
4992  *
4993  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4994  *
4995  * The scheduler is at all times free to pick the calling task as the most
4996  * eligible task to run, if removing the yield() call from your code breaks
4997  * it, its already broken.
4998  *
4999  * Typical broken usage is:
5000  *
5001  * while (!event)
5002  *	yield();
5003  *
5004  * where one assumes that yield() will let 'the other' process run that will
5005  * make event true. If the current task is a SCHED_FIFO task that will never
5006  * happen. Never use yield() as a progress guarantee!!
5007  *
5008  * If you want to use yield() to wait for something, use wait_event().
5009  * If you want to use yield() to be 'nice' for others, use cond_resched().
5010  * If you still want to use yield(), do not!
5011  */
5012 void __sched yield(void)
5013 {
5014 	set_current_state(TASK_RUNNING);
5015 	do_sched_yield();
5016 }
5017 EXPORT_SYMBOL(yield);
5018 
5019 /**
5020  * yield_to - yield the current processor to another thread in
5021  * your thread group, or accelerate that thread toward the
5022  * processor it's on.
5023  * @p: target task
5024  * @preempt: whether task preemption is allowed or not
5025  *
5026  * It's the caller's job to ensure that the target task struct
5027  * can't go away on us before we can do any checks.
5028  *
5029  * Return:
5030  *	true (>0) if we indeed boosted the target task.
5031  *	false (0) if we failed to boost the target.
5032  *	-ESRCH if there's no task to yield to.
5033  */
5034 int __sched yield_to(struct task_struct *p, bool preempt)
5035 {
5036 	struct task_struct *curr = current;
5037 	struct rq *rq, *p_rq;
5038 	unsigned long flags;
5039 	int yielded = 0;
5040 
5041 	local_irq_save(flags);
5042 	rq = this_rq();
5043 
5044 again:
5045 	p_rq = task_rq(p);
5046 	/*
5047 	 * If we're the only runnable task on the rq and target rq also
5048 	 * has only one task, there's absolutely no point in yielding.
5049 	 */
5050 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5051 		yielded = -ESRCH;
5052 		goto out_irq;
5053 	}
5054 
5055 	double_rq_lock(rq, p_rq);
5056 	if (task_rq(p) != p_rq) {
5057 		double_rq_unlock(rq, p_rq);
5058 		goto again;
5059 	}
5060 
5061 	if (!curr->sched_class->yield_to_task)
5062 		goto out_unlock;
5063 
5064 	if (curr->sched_class != p->sched_class)
5065 		goto out_unlock;
5066 
5067 	if (task_running(p_rq, p) || p->state)
5068 		goto out_unlock;
5069 
5070 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5071 	if (yielded) {
5072 		schedstat_inc(rq->yld_count);
5073 		/*
5074 		 * Make p's CPU reschedule; pick_next_entity takes care of
5075 		 * fairness.
5076 		 */
5077 		if (preempt && rq != p_rq)
5078 			resched_curr(p_rq);
5079 	}
5080 
5081 out_unlock:
5082 	double_rq_unlock(rq, p_rq);
5083 out_irq:
5084 	local_irq_restore(flags);
5085 
5086 	if (yielded > 0)
5087 		schedule();
5088 
5089 	return yielded;
5090 }
5091 EXPORT_SYMBOL_GPL(yield_to);
5092 
5093 int io_schedule_prepare(void)
5094 {
5095 	int old_iowait = current->in_iowait;
5096 
5097 	current->in_iowait = 1;
5098 	blk_schedule_flush_plug(current);
5099 
5100 	return old_iowait;
5101 }
5102 
5103 void io_schedule_finish(int token)
5104 {
5105 	current->in_iowait = token;
5106 }
5107 
5108 /*
5109  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5110  * that process accounting knows that this is a task in IO wait state.
5111  */
5112 long __sched io_schedule_timeout(long timeout)
5113 {
5114 	int token;
5115 	long ret;
5116 
5117 	token = io_schedule_prepare();
5118 	ret = schedule_timeout(timeout);
5119 	io_schedule_finish(token);
5120 
5121 	return ret;
5122 }
5123 EXPORT_SYMBOL(io_schedule_timeout);
5124 
5125 void io_schedule(void)
5126 {
5127 	int token;
5128 
5129 	token = io_schedule_prepare();
5130 	schedule();
5131 	io_schedule_finish(token);
5132 }
5133 EXPORT_SYMBOL(io_schedule);
5134 
5135 /**
5136  * sys_sched_get_priority_max - return maximum RT priority.
5137  * @policy: scheduling class.
5138  *
5139  * Return: On success, this syscall returns the maximum
5140  * rt_priority that can be used by a given scheduling class.
5141  * On failure, a negative error code is returned.
5142  */
5143 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5144 {
5145 	int ret = -EINVAL;
5146 
5147 	switch (policy) {
5148 	case SCHED_FIFO:
5149 	case SCHED_RR:
5150 		ret = MAX_USER_RT_PRIO-1;
5151 		break;
5152 	case SCHED_DEADLINE:
5153 	case SCHED_NORMAL:
5154 	case SCHED_BATCH:
5155 	case SCHED_IDLE:
5156 		ret = 0;
5157 		break;
5158 	}
5159 	return ret;
5160 }
5161 
5162 /**
5163  * sys_sched_get_priority_min - return minimum RT priority.
5164  * @policy: scheduling class.
5165  *
5166  * Return: On success, this syscall returns the minimum
5167  * rt_priority that can be used by a given scheduling class.
5168  * On failure, a negative error code is returned.
5169  */
5170 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5171 {
5172 	int ret = -EINVAL;
5173 
5174 	switch (policy) {
5175 	case SCHED_FIFO:
5176 	case SCHED_RR:
5177 		ret = 1;
5178 		break;
5179 	case SCHED_DEADLINE:
5180 	case SCHED_NORMAL:
5181 	case SCHED_BATCH:
5182 	case SCHED_IDLE:
5183 		ret = 0;
5184 	}
5185 	return ret;
5186 }
5187 
5188 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5189 {
5190 	struct task_struct *p;
5191 	unsigned int time_slice;
5192 	struct rq_flags rf;
5193 	struct rq *rq;
5194 	int retval;
5195 
5196 	if (pid < 0)
5197 		return -EINVAL;
5198 
5199 	retval = -ESRCH;
5200 	rcu_read_lock();
5201 	p = find_process_by_pid(pid);
5202 	if (!p)
5203 		goto out_unlock;
5204 
5205 	retval = security_task_getscheduler(p);
5206 	if (retval)
5207 		goto out_unlock;
5208 
5209 	rq = task_rq_lock(p, &rf);
5210 	time_slice = 0;
5211 	if (p->sched_class->get_rr_interval)
5212 		time_slice = p->sched_class->get_rr_interval(rq, p);
5213 	task_rq_unlock(rq, p, &rf);
5214 
5215 	rcu_read_unlock();
5216 	jiffies_to_timespec64(time_slice, t);
5217 	return 0;
5218 
5219 out_unlock:
5220 	rcu_read_unlock();
5221 	return retval;
5222 }
5223 
5224 /**
5225  * sys_sched_rr_get_interval - return the default timeslice of a process.
5226  * @pid: pid of the process.
5227  * @interval: userspace pointer to the timeslice value.
5228  *
5229  * this syscall writes the default timeslice value of a given process
5230  * into the user-space timespec buffer. A value of '0' means infinity.
5231  *
5232  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5233  * an error code.
5234  */
5235 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5236 		struct __kernel_timespec __user *, interval)
5237 {
5238 	struct timespec64 t;
5239 	int retval = sched_rr_get_interval(pid, &t);
5240 
5241 	if (retval == 0)
5242 		retval = put_timespec64(&t, interval);
5243 
5244 	return retval;
5245 }
5246 
5247 #ifdef CONFIG_COMPAT_32BIT_TIME
5248 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5249 		struct old_timespec32 __user *, interval)
5250 {
5251 	struct timespec64 t;
5252 	int retval = sched_rr_get_interval(pid, &t);
5253 
5254 	if (retval == 0)
5255 		retval = put_old_timespec32(&t, interval);
5256 	return retval;
5257 }
5258 #endif
5259 
5260 void sched_show_task(struct task_struct *p)
5261 {
5262 	unsigned long free = 0;
5263 	int ppid;
5264 
5265 	if (!try_get_task_stack(p))
5266 		return;
5267 
5268 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5269 
5270 	if (p->state == TASK_RUNNING)
5271 		printk(KERN_CONT "  running task    ");
5272 #ifdef CONFIG_DEBUG_STACK_USAGE
5273 	free = stack_not_used(p);
5274 #endif
5275 	ppid = 0;
5276 	rcu_read_lock();
5277 	if (pid_alive(p))
5278 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5279 	rcu_read_unlock();
5280 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5281 		task_pid_nr(p), ppid,
5282 		(unsigned long)task_thread_info(p)->flags);
5283 
5284 	print_worker_info(KERN_INFO, p);
5285 	show_stack(p, NULL);
5286 	put_task_stack(p);
5287 }
5288 EXPORT_SYMBOL_GPL(sched_show_task);
5289 
5290 static inline bool
5291 state_filter_match(unsigned long state_filter, struct task_struct *p)
5292 {
5293 	/* no filter, everything matches */
5294 	if (!state_filter)
5295 		return true;
5296 
5297 	/* filter, but doesn't match */
5298 	if (!(p->state & state_filter))
5299 		return false;
5300 
5301 	/*
5302 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5303 	 * TASK_KILLABLE).
5304 	 */
5305 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5306 		return false;
5307 
5308 	return true;
5309 }
5310 
5311 
5312 void show_state_filter(unsigned long state_filter)
5313 {
5314 	struct task_struct *g, *p;
5315 
5316 #if BITS_PER_LONG == 32
5317 	printk(KERN_INFO
5318 		"  task                PC stack   pid father\n");
5319 #else
5320 	printk(KERN_INFO
5321 		"  task                        PC stack   pid father\n");
5322 #endif
5323 	rcu_read_lock();
5324 	for_each_process_thread(g, p) {
5325 		/*
5326 		 * reset the NMI-timeout, listing all files on a slow
5327 		 * console might take a lot of time:
5328 		 * Also, reset softlockup watchdogs on all CPUs, because
5329 		 * another CPU might be blocked waiting for us to process
5330 		 * an IPI.
5331 		 */
5332 		touch_nmi_watchdog();
5333 		touch_all_softlockup_watchdogs();
5334 		if (state_filter_match(state_filter, p))
5335 			sched_show_task(p);
5336 	}
5337 
5338 #ifdef CONFIG_SCHED_DEBUG
5339 	if (!state_filter)
5340 		sysrq_sched_debug_show();
5341 #endif
5342 	rcu_read_unlock();
5343 	/*
5344 	 * Only show locks if all tasks are dumped:
5345 	 */
5346 	if (!state_filter)
5347 		debug_show_all_locks();
5348 }
5349 
5350 /**
5351  * init_idle - set up an idle thread for a given CPU
5352  * @idle: task in question
5353  * @cpu: CPU the idle task belongs to
5354  *
5355  * NOTE: this function does not set the idle thread's NEED_RESCHED
5356  * flag, to make booting more robust.
5357  */
5358 void init_idle(struct task_struct *idle, int cpu)
5359 {
5360 	struct rq *rq = cpu_rq(cpu);
5361 	unsigned long flags;
5362 
5363 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5364 	raw_spin_lock(&rq->lock);
5365 
5366 	__sched_fork(0, idle);
5367 	idle->state = TASK_RUNNING;
5368 	idle->se.exec_start = sched_clock();
5369 	idle->flags |= PF_IDLE;
5370 
5371 	kasan_unpoison_task_stack(idle);
5372 
5373 #ifdef CONFIG_SMP
5374 	/*
5375 	 * Its possible that init_idle() gets called multiple times on a task,
5376 	 * in that case do_set_cpus_allowed() will not do the right thing.
5377 	 *
5378 	 * And since this is boot we can forgo the serialization.
5379 	 */
5380 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5381 #endif
5382 	/*
5383 	 * We're having a chicken and egg problem, even though we are
5384 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5385 	 * lockdep check in task_group() will fail.
5386 	 *
5387 	 * Similar case to sched_fork(). / Alternatively we could
5388 	 * use task_rq_lock() here and obtain the other rq->lock.
5389 	 *
5390 	 * Silence PROVE_RCU
5391 	 */
5392 	rcu_read_lock();
5393 	__set_task_cpu(idle, cpu);
5394 	rcu_read_unlock();
5395 
5396 	rq->curr = rq->idle = idle;
5397 	idle->on_rq = TASK_ON_RQ_QUEUED;
5398 #ifdef CONFIG_SMP
5399 	idle->on_cpu = 1;
5400 #endif
5401 	raw_spin_unlock(&rq->lock);
5402 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5403 
5404 	/* Set the preempt count _outside_ the spinlocks! */
5405 	init_idle_preempt_count(idle, cpu);
5406 
5407 	/*
5408 	 * The idle tasks have their own, simple scheduling class:
5409 	 */
5410 	idle->sched_class = &idle_sched_class;
5411 	ftrace_graph_init_idle_task(idle, cpu);
5412 	vtime_init_idle(idle, cpu);
5413 #ifdef CONFIG_SMP
5414 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5415 #endif
5416 }
5417 
5418 #ifdef CONFIG_SMP
5419 
5420 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5421 			      const struct cpumask *trial)
5422 {
5423 	int ret = 1;
5424 
5425 	if (!cpumask_weight(cur))
5426 		return ret;
5427 
5428 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5429 
5430 	return ret;
5431 }
5432 
5433 int task_can_attach(struct task_struct *p,
5434 		    const struct cpumask *cs_cpus_allowed)
5435 {
5436 	int ret = 0;
5437 
5438 	/*
5439 	 * Kthreads which disallow setaffinity shouldn't be moved
5440 	 * to a new cpuset; we don't want to change their CPU
5441 	 * affinity and isolating such threads by their set of
5442 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5443 	 * applicable for such threads.  This prevents checking for
5444 	 * success of set_cpus_allowed_ptr() on all attached tasks
5445 	 * before cpus_allowed may be changed.
5446 	 */
5447 	if (p->flags & PF_NO_SETAFFINITY) {
5448 		ret = -EINVAL;
5449 		goto out;
5450 	}
5451 
5452 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5453 					      cs_cpus_allowed))
5454 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5455 
5456 out:
5457 	return ret;
5458 }
5459 
5460 bool sched_smp_initialized __read_mostly;
5461 
5462 #ifdef CONFIG_NUMA_BALANCING
5463 /* Migrate current task p to target_cpu */
5464 int migrate_task_to(struct task_struct *p, int target_cpu)
5465 {
5466 	struct migration_arg arg = { p, target_cpu };
5467 	int curr_cpu = task_cpu(p);
5468 
5469 	if (curr_cpu == target_cpu)
5470 		return 0;
5471 
5472 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5473 		return -EINVAL;
5474 
5475 	/* TODO: This is not properly updating schedstats */
5476 
5477 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5478 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5479 }
5480 
5481 /*
5482  * Requeue a task on a given node and accurately track the number of NUMA
5483  * tasks on the runqueues
5484  */
5485 void sched_setnuma(struct task_struct *p, int nid)
5486 {
5487 	bool queued, running;
5488 	struct rq_flags rf;
5489 	struct rq *rq;
5490 
5491 	rq = task_rq_lock(p, &rf);
5492 	queued = task_on_rq_queued(p);
5493 	running = task_current(rq, p);
5494 
5495 	if (queued)
5496 		dequeue_task(rq, p, DEQUEUE_SAVE);
5497 	if (running)
5498 		put_prev_task(rq, p);
5499 
5500 	p->numa_preferred_nid = nid;
5501 
5502 	if (queued)
5503 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5504 	if (running)
5505 		set_curr_task(rq, p);
5506 	task_rq_unlock(rq, p, &rf);
5507 }
5508 #endif /* CONFIG_NUMA_BALANCING */
5509 
5510 #ifdef CONFIG_HOTPLUG_CPU
5511 /*
5512  * Ensure that the idle task is using init_mm right before its CPU goes
5513  * offline.
5514  */
5515 void idle_task_exit(void)
5516 {
5517 	struct mm_struct *mm = current->active_mm;
5518 
5519 	BUG_ON(cpu_online(smp_processor_id()));
5520 
5521 	if (mm != &init_mm) {
5522 		switch_mm(mm, &init_mm, current);
5523 		current->active_mm = &init_mm;
5524 		finish_arch_post_lock_switch();
5525 	}
5526 	mmdrop(mm);
5527 }
5528 
5529 /*
5530  * Since this CPU is going 'away' for a while, fold any nr_active delta
5531  * we might have. Assumes we're called after migrate_tasks() so that the
5532  * nr_active count is stable. We need to take the teardown thread which
5533  * is calling this into account, so we hand in adjust = 1 to the load
5534  * calculation.
5535  *
5536  * Also see the comment "Global load-average calculations".
5537  */
5538 static void calc_load_migrate(struct rq *rq)
5539 {
5540 	long delta = calc_load_fold_active(rq, 1);
5541 	if (delta)
5542 		atomic_long_add(delta, &calc_load_tasks);
5543 }
5544 
5545 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5546 {
5547 }
5548 
5549 static const struct sched_class fake_sched_class = {
5550 	.put_prev_task = put_prev_task_fake,
5551 };
5552 
5553 static struct task_struct fake_task = {
5554 	/*
5555 	 * Avoid pull_{rt,dl}_task()
5556 	 */
5557 	.prio = MAX_PRIO + 1,
5558 	.sched_class = &fake_sched_class,
5559 };
5560 
5561 /*
5562  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5563  * try_to_wake_up()->select_task_rq().
5564  *
5565  * Called with rq->lock held even though we'er in stop_machine() and
5566  * there's no concurrency possible, we hold the required locks anyway
5567  * because of lock validation efforts.
5568  */
5569 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5570 {
5571 	struct rq *rq = dead_rq;
5572 	struct task_struct *next, *stop = rq->stop;
5573 	struct rq_flags orf = *rf;
5574 	int dest_cpu;
5575 
5576 	/*
5577 	 * Fudge the rq selection such that the below task selection loop
5578 	 * doesn't get stuck on the currently eligible stop task.
5579 	 *
5580 	 * We're currently inside stop_machine() and the rq is either stuck
5581 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5582 	 * either way we should never end up calling schedule() until we're
5583 	 * done here.
5584 	 */
5585 	rq->stop = NULL;
5586 
5587 	/*
5588 	 * put_prev_task() and pick_next_task() sched
5589 	 * class method both need to have an up-to-date
5590 	 * value of rq->clock[_task]
5591 	 */
5592 	update_rq_clock(rq);
5593 
5594 	for (;;) {
5595 		/*
5596 		 * There's this thread running, bail when that's the only
5597 		 * remaining thread:
5598 		 */
5599 		if (rq->nr_running == 1)
5600 			break;
5601 
5602 		/*
5603 		 * pick_next_task() assumes pinned rq->lock:
5604 		 */
5605 		next = pick_next_task(rq, &fake_task, rf);
5606 		BUG_ON(!next);
5607 		put_prev_task(rq, next);
5608 
5609 		/*
5610 		 * Rules for changing task_struct::cpus_allowed are holding
5611 		 * both pi_lock and rq->lock, such that holding either
5612 		 * stabilizes the mask.
5613 		 *
5614 		 * Drop rq->lock is not quite as disastrous as it usually is
5615 		 * because !cpu_active at this point, which means load-balance
5616 		 * will not interfere. Also, stop-machine.
5617 		 */
5618 		rq_unlock(rq, rf);
5619 		raw_spin_lock(&next->pi_lock);
5620 		rq_relock(rq, rf);
5621 
5622 		/*
5623 		 * Since we're inside stop-machine, _nothing_ should have
5624 		 * changed the task, WARN if weird stuff happened, because in
5625 		 * that case the above rq->lock drop is a fail too.
5626 		 */
5627 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5628 			raw_spin_unlock(&next->pi_lock);
5629 			continue;
5630 		}
5631 
5632 		/* Find suitable destination for @next, with force if needed. */
5633 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5634 		rq = __migrate_task(rq, rf, next, dest_cpu);
5635 		if (rq != dead_rq) {
5636 			rq_unlock(rq, rf);
5637 			rq = dead_rq;
5638 			*rf = orf;
5639 			rq_relock(rq, rf);
5640 		}
5641 		raw_spin_unlock(&next->pi_lock);
5642 	}
5643 
5644 	rq->stop = stop;
5645 }
5646 #endif /* CONFIG_HOTPLUG_CPU */
5647 
5648 void set_rq_online(struct rq *rq)
5649 {
5650 	if (!rq->online) {
5651 		const struct sched_class *class;
5652 
5653 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5654 		rq->online = 1;
5655 
5656 		for_each_class(class) {
5657 			if (class->rq_online)
5658 				class->rq_online(rq);
5659 		}
5660 	}
5661 }
5662 
5663 void set_rq_offline(struct rq *rq)
5664 {
5665 	if (rq->online) {
5666 		const struct sched_class *class;
5667 
5668 		for_each_class(class) {
5669 			if (class->rq_offline)
5670 				class->rq_offline(rq);
5671 		}
5672 
5673 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5674 		rq->online = 0;
5675 	}
5676 }
5677 
5678 /*
5679  * used to mark begin/end of suspend/resume:
5680  */
5681 static int num_cpus_frozen;
5682 
5683 /*
5684  * Update cpusets according to cpu_active mask.  If cpusets are
5685  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5686  * around partition_sched_domains().
5687  *
5688  * If we come here as part of a suspend/resume, don't touch cpusets because we
5689  * want to restore it back to its original state upon resume anyway.
5690  */
5691 static void cpuset_cpu_active(void)
5692 {
5693 	if (cpuhp_tasks_frozen) {
5694 		/*
5695 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5696 		 * resume sequence. As long as this is not the last online
5697 		 * operation in the resume sequence, just build a single sched
5698 		 * domain, ignoring cpusets.
5699 		 */
5700 		partition_sched_domains(1, NULL, NULL);
5701 		if (--num_cpus_frozen)
5702 			return;
5703 		/*
5704 		 * This is the last CPU online operation. So fall through and
5705 		 * restore the original sched domains by considering the
5706 		 * cpuset configurations.
5707 		 */
5708 		cpuset_force_rebuild();
5709 	}
5710 	cpuset_update_active_cpus();
5711 }
5712 
5713 static int cpuset_cpu_inactive(unsigned int cpu)
5714 {
5715 	if (!cpuhp_tasks_frozen) {
5716 		if (dl_cpu_busy(cpu))
5717 			return -EBUSY;
5718 		cpuset_update_active_cpus();
5719 	} else {
5720 		num_cpus_frozen++;
5721 		partition_sched_domains(1, NULL, NULL);
5722 	}
5723 	return 0;
5724 }
5725 
5726 int sched_cpu_activate(unsigned int cpu)
5727 {
5728 	struct rq *rq = cpu_rq(cpu);
5729 	struct rq_flags rf;
5730 
5731 #ifdef CONFIG_SCHED_SMT
5732 	/*
5733 	 * When going up, increment the number of cores with SMT present.
5734 	 */
5735 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5736 		static_branch_inc_cpuslocked(&sched_smt_present);
5737 #endif
5738 	set_cpu_active(cpu, true);
5739 
5740 	if (sched_smp_initialized) {
5741 		sched_domains_numa_masks_set(cpu);
5742 		cpuset_cpu_active();
5743 	}
5744 
5745 	/*
5746 	 * Put the rq online, if not already. This happens:
5747 	 *
5748 	 * 1) In the early boot process, because we build the real domains
5749 	 *    after all CPUs have been brought up.
5750 	 *
5751 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5752 	 *    domains.
5753 	 */
5754 	rq_lock_irqsave(rq, &rf);
5755 	if (rq->rd) {
5756 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5757 		set_rq_online(rq);
5758 	}
5759 	rq_unlock_irqrestore(rq, &rf);
5760 
5761 	update_max_interval();
5762 
5763 	return 0;
5764 }
5765 
5766 int sched_cpu_deactivate(unsigned int cpu)
5767 {
5768 	int ret;
5769 
5770 	set_cpu_active(cpu, false);
5771 	/*
5772 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5773 	 * users of this state to go away such that all new such users will
5774 	 * observe it.
5775 	 *
5776 	 * Do sync before park smpboot threads to take care the rcu boost case.
5777 	 */
5778 	synchronize_rcu();
5779 
5780 #ifdef CONFIG_SCHED_SMT
5781 	/*
5782 	 * When going down, decrement the number of cores with SMT present.
5783 	 */
5784 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5785 		static_branch_dec_cpuslocked(&sched_smt_present);
5786 #endif
5787 
5788 	if (!sched_smp_initialized)
5789 		return 0;
5790 
5791 	ret = cpuset_cpu_inactive(cpu);
5792 	if (ret) {
5793 		set_cpu_active(cpu, true);
5794 		return ret;
5795 	}
5796 	sched_domains_numa_masks_clear(cpu);
5797 	return 0;
5798 }
5799 
5800 static void sched_rq_cpu_starting(unsigned int cpu)
5801 {
5802 	struct rq *rq = cpu_rq(cpu);
5803 
5804 	rq->calc_load_update = calc_load_update;
5805 	update_max_interval();
5806 }
5807 
5808 int sched_cpu_starting(unsigned int cpu)
5809 {
5810 	sched_rq_cpu_starting(cpu);
5811 	sched_tick_start(cpu);
5812 	return 0;
5813 }
5814 
5815 #ifdef CONFIG_HOTPLUG_CPU
5816 int sched_cpu_dying(unsigned int cpu)
5817 {
5818 	struct rq *rq = cpu_rq(cpu);
5819 	struct rq_flags rf;
5820 
5821 	/* Handle pending wakeups and then migrate everything off */
5822 	sched_ttwu_pending();
5823 	sched_tick_stop(cpu);
5824 
5825 	rq_lock_irqsave(rq, &rf);
5826 	if (rq->rd) {
5827 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5828 		set_rq_offline(rq);
5829 	}
5830 	migrate_tasks(rq, &rf);
5831 	BUG_ON(rq->nr_running != 1);
5832 	rq_unlock_irqrestore(rq, &rf);
5833 
5834 	calc_load_migrate(rq);
5835 	update_max_interval();
5836 	nohz_balance_exit_idle(rq);
5837 	hrtick_clear(rq);
5838 	return 0;
5839 }
5840 #endif
5841 
5842 void __init sched_init_smp(void)
5843 {
5844 	sched_init_numa();
5845 
5846 	/*
5847 	 * There's no userspace yet to cause hotplug operations; hence all the
5848 	 * CPU masks are stable and all blatant races in the below code cannot
5849 	 * happen.
5850 	 */
5851 	mutex_lock(&sched_domains_mutex);
5852 	sched_init_domains(cpu_active_mask);
5853 	mutex_unlock(&sched_domains_mutex);
5854 
5855 	/* Move init over to a non-isolated CPU */
5856 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5857 		BUG();
5858 	sched_init_granularity();
5859 
5860 	init_sched_rt_class();
5861 	init_sched_dl_class();
5862 
5863 	sched_smp_initialized = true;
5864 }
5865 
5866 static int __init migration_init(void)
5867 {
5868 	sched_cpu_starting(smp_processor_id());
5869 	return 0;
5870 }
5871 early_initcall(migration_init);
5872 
5873 #else
5874 void __init sched_init_smp(void)
5875 {
5876 	sched_init_granularity();
5877 }
5878 #endif /* CONFIG_SMP */
5879 
5880 int in_sched_functions(unsigned long addr)
5881 {
5882 	return in_lock_functions(addr) ||
5883 		(addr >= (unsigned long)__sched_text_start
5884 		&& addr < (unsigned long)__sched_text_end);
5885 }
5886 
5887 #ifdef CONFIG_CGROUP_SCHED
5888 /*
5889  * Default task group.
5890  * Every task in system belongs to this group at bootup.
5891  */
5892 struct task_group root_task_group;
5893 LIST_HEAD(task_groups);
5894 
5895 /* Cacheline aligned slab cache for task_group */
5896 static struct kmem_cache *task_group_cache __read_mostly;
5897 #endif
5898 
5899 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5900 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5901 
5902 void __init sched_init(void)
5903 {
5904 	int i, j;
5905 	unsigned long alloc_size = 0, ptr;
5906 
5907 	wait_bit_init();
5908 
5909 #ifdef CONFIG_FAIR_GROUP_SCHED
5910 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5911 #endif
5912 #ifdef CONFIG_RT_GROUP_SCHED
5913 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5914 #endif
5915 	if (alloc_size) {
5916 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5917 
5918 #ifdef CONFIG_FAIR_GROUP_SCHED
5919 		root_task_group.se = (struct sched_entity **)ptr;
5920 		ptr += nr_cpu_ids * sizeof(void **);
5921 
5922 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5923 		ptr += nr_cpu_ids * sizeof(void **);
5924 
5925 #endif /* CONFIG_FAIR_GROUP_SCHED */
5926 #ifdef CONFIG_RT_GROUP_SCHED
5927 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5928 		ptr += nr_cpu_ids * sizeof(void **);
5929 
5930 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5931 		ptr += nr_cpu_ids * sizeof(void **);
5932 
5933 #endif /* CONFIG_RT_GROUP_SCHED */
5934 	}
5935 #ifdef CONFIG_CPUMASK_OFFSTACK
5936 	for_each_possible_cpu(i) {
5937 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5938 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5939 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5940 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5941 	}
5942 #endif /* CONFIG_CPUMASK_OFFSTACK */
5943 
5944 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5945 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5946 
5947 #ifdef CONFIG_SMP
5948 	init_defrootdomain();
5949 #endif
5950 
5951 #ifdef CONFIG_RT_GROUP_SCHED
5952 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5953 			global_rt_period(), global_rt_runtime());
5954 #endif /* CONFIG_RT_GROUP_SCHED */
5955 
5956 #ifdef CONFIG_CGROUP_SCHED
5957 	task_group_cache = KMEM_CACHE(task_group, 0);
5958 
5959 	list_add(&root_task_group.list, &task_groups);
5960 	INIT_LIST_HEAD(&root_task_group.children);
5961 	INIT_LIST_HEAD(&root_task_group.siblings);
5962 	autogroup_init(&init_task);
5963 #endif /* CONFIG_CGROUP_SCHED */
5964 
5965 	for_each_possible_cpu(i) {
5966 		struct rq *rq;
5967 
5968 		rq = cpu_rq(i);
5969 		raw_spin_lock_init(&rq->lock);
5970 		rq->nr_running = 0;
5971 		rq->calc_load_active = 0;
5972 		rq->calc_load_update = jiffies + LOAD_FREQ;
5973 		init_cfs_rq(&rq->cfs);
5974 		init_rt_rq(&rq->rt);
5975 		init_dl_rq(&rq->dl);
5976 #ifdef CONFIG_FAIR_GROUP_SCHED
5977 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5978 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5979 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5980 		/*
5981 		 * How much CPU bandwidth does root_task_group get?
5982 		 *
5983 		 * In case of task-groups formed thr' the cgroup filesystem, it
5984 		 * gets 100% of the CPU resources in the system. This overall
5985 		 * system CPU resource is divided among the tasks of
5986 		 * root_task_group and its child task-groups in a fair manner,
5987 		 * based on each entity's (task or task-group's) weight
5988 		 * (se->load.weight).
5989 		 *
5990 		 * In other words, if root_task_group has 10 tasks of weight
5991 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5992 		 * then A0's share of the CPU resource is:
5993 		 *
5994 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5995 		 *
5996 		 * We achieve this by letting root_task_group's tasks sit
5997 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5998 		 */
5999 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6000 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6001 #endif /* CONFIG_FAIR_GROUP_SCHED */
6002 
6003 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6004 #ifdef CONFIG_RT_GROUP_SCHED
6005 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6006 #endif
6007 
6008 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6009 			rq->cpu_load[j] = 0;
6010 
6011 #ifdef CONFIG_SMP
6012 		rq->sd = NULL;
6013 		rq->rd = NULL;
6014 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6015 		rq->balance_callback = NULL;
6016 		rq->active_balance = 0;
6017 		rq->next_balance = jiffies;
6018 		rq->push_cpu = 0;
6019 		rq->cpu = i;
6020 		rq->online = 0;
6021 		rq->idle_stamp = 0;
6022 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6023 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6024 
6025 		INIT_LIST_HEAD(&rq->cfs_tasks);
6026 
6027 		rq_attach_root(rq, &def_root_domain);
6028 #ifdef CONFIG_NO_HZ_COMMON
6029 		rq->last_load_update_tick = jiffies;
6030 		rq->last_blocked_load_update_tick = jiffies;
6031 		atomic_set(&rq->nohz_flags, 0);
6032 #endif
6033 #endif /* CONFIG_SMP */
6034 		hrtick_rq_init(rq);
6035 		atomic_set(&rq->nr_iowait, 0);
6036 	}
6037 
6038 	set_load_weight(&init_task, false);
6039 
6040 	/*
6041 	 * The boot idle thread does lazy MMU switching as well:
6042 	 */
6043 	mmgrab(&init_mm);
6044 	enter_lazy_tlb(&init_mm, current);
6045 
6046 	/*
6047 	 * Make us the idle thread. Technically, schedule() should not be
6048 	 * called from this thread, however somewhere below it might be,
6049 	 * but because we are the idle thread, we just pick up running again
6050 	 * when this runqueue becomes "idle".
6051 	 */
6052 	init_idle(current, smp_processor_id());
6053 
6054 	calc_load_update = jiffies + LOAD_FREQ;
6055 
6056 #ifdef CONFIG_SMP
6057 	idle_thread_set_boot_cpu();
6058 #endif
6059 	init_sched_fair_class();
6060 
6061 	init_schedstats();
6062 
6063 	psi_init();
6064 
6065 	scheduler_running = 1;
6066 }
6067 
6068 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6069 static inline int preempt_count_equals(int preempt_offset)
6070 {
6071 	int nested = preempt_count() + rcu_preempt_depth();
6072 
6073 	return (nested == preempt_offset);
6074 }
6075 
6076 void __might_sleep(const char *file, int line, int preempt_offset)
6077 {
6078 	/*
6079 	 * Blocking primitives will set (and therefore destroy) current->state,
6080 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6081 	 * otherwise we will destroy state.
6082 	 */
6083 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6084 			"do not call blocking ops when !TASK_RUNNING; "
6085 			"state=%lx set at [<%p>] %pS\n",
6086 			current->state,
6087 			(void *)current->task_state_change,
6088 			(void *)current->task_state_change);
6089 
6090 	___might_sleep(file, line, preempt_offset);
6091 }
6092 EXPORT_SYMBOL(__might_sleep);
6093 
6094 void ___might_sleep(const char *file, int line, int preempt_offset)
6095 {
6096 	/* Ratelimiting timestamp: */
6097 	static unsigned long prev_jiffy;
6098 
6099 	unsigned long preempt_disable_ip;
6100 
6101 	/* WARN_ON_ONCE() by default, no rate limit required: */
6102 	rcu_sleep_check();
6103 
6104 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6105 	     !is_idle_task(current)) ||
6106 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6107 	    oops_in_progress)
6108 		return;
6109 
6110 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6111 		return;
6112 	prev_jiffy = jiffies;
6113 
6114 	/* Save this before calling printk(), since that will clobber it: */
6115 	preempt_disable_ip = get_preempt_disable_ip(current);
6116 
6117 	printk(KERN_ERR
6118 		"BUG: sleeping function called from invalid context at %s:%d\n",
6119 			file, line);
6120 	printk(KERN_ERR
6121 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6122 			in_atomic(), irqs_disabled(),
6123 			current->pid, current->comm);
6124 
6125 	if (task_stack_end_corrupted(current))
6126 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6127 
6128 	debug_show_held_locks(current);
6129 	if (irqs_disabled())
6130 		print_irqtrace_events(current);
6131 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6132 	    && !preempt_count_equals(preempt_offset)) {
6133 		pr_err("Preemption disabled at:");
6134 		print_ip_sym(preempt_disable_ip);
6135 		pr_cont("\n");
6136 	}
6137 	dump_stack();
6138 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6139 }
6140 EXPORT_SYMBOL(___might_sleep);
6141 
6142 void __cant_sleep(const char *file, int line, int preempt_offset)
6143 {
6144 	static unsigned long prev_jiffy;
6145 
6146 	if (irqs_disabled())
6147 		return;
6148 
6149 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6150 		return;
6151 
6152 	if (preempt_count() > preempt_offset)
6153 		return;
6154 
6155 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6156 		return;
6157 	prev_jiffy = jiffies;
6158 
6159 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6160 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6161 			in_atomic(), irqs_disabled(),
6162 			current->pid, current->comm);
6163 
6164 	debug_show_held_locks(current);
6165 	dump_stack();
6166 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6167 }
6168 EXPORT_SYMBOL_GPL(__cant_sleep);
6169 #endif
6170 
6171 #ifdef CONFIG_MAGIC_SYSRQ
6172 void normalize_rt_tasks(void)
6173 {
6174 	struct task_struct *g, *p;
6175 	struct sched_attr attr = {
6176 		.sched_policy = SCHED_NORMAL,
6177 	};
6178 
6179 	read_lock(&tasklist_lock);
6180 	for_each_process_thread(g, p) {
6181 		/*
6182 		 * Only normalize user tasks:
6183 		 */
6184 		if (p->flags & PF_KTHREAD)
6185 			continue;
6186 
6187 		p->se.exec_start = 0;
6188 		schedstat_set(p->se.statistics.wait_start,  0);
6189 		schedstat_set(p->se.statistics.sleep_start, 0);
6190 		schedstat_set(p->se.statistics.block_start, 0);
6191 
6192 		if (!dl_task(p) && !rt_task(p)) {
6193 			/*
6194 			 * Renice negative nice level userspace
6195 			 * tasks back to 0:
6196 			 */
6197 			if (task_nice(p) < 0)
6198 				set_user_nice(p, 0);
6199 			continue;
6200 		}
6201 
6202 		__sched_setscheduler(p, &attr, false, false);
6203 	}
6204 	read_unlock(&tasklist_lock);
6205 }
6206 
6207 #endif /* CONFIG_MAGIC_SYSRQ */
6208 
6209 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6210 /*
6211  * These functions are only useful for the IA64 MCA handling, or kdb.
6212  *
6213  * They can only be called when the whole system has been
6214  * stopped - every CPU needs to be quiescent, and no scheduling
6215  * activity can take place. Using them for anything else would
6216  * be a serious bug, and as a result, they aren't even visible
6217  * under any other configuration.
6218  */
6219 
6220 /**
6221  * curr_task - return the current task for a given CPU.
6222  * @cpu: the processor in question.
6223  *
6224  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6225  *
6226  * Return: The current task for @cpu.
6227  */
6228 struct task_struct *curr_task(int cpu)
6229 {
6230 	return cpu_curr(cpu);
6231 }
6232 
6233 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6234 
6235 #ifdef CONFIG_IA64
6236 /**
6237  * set_curr_task - set the current task for a given CPU.
6238  * @cpu: the processor in question.
6239  * @p: the task pointer to set.
6240  *
6241  * Description: This function must only be used when non-maskable interrupts
6242  * are serviced on a separate stack. It allows the architecture to switch the
6243  * notion of the current task on a CPU in a non-blocking manner. This function
6244  * must be called with all CPU's synchronized, and interrupts disabled, the
6245  * and caller must save the original value of the current task (see
6246  * curr_task() above) and restore that value before reenabling interrupts and
6247  * re-starting the system.
6248  *
6249  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6250  */
6251 void ia64_set_curr_task(int cpu, struct task_struct *p)
6252 {
6253 	cpu_curr(cpu) = p;
6254 }
6255 
6256 #endif
6257 
6258 #ifdef CONFIG_CGROUP_SCHED
6259 /* task_group_lock serializes the addition/removal of task groups */
6260 static DEFINE_SPINLOCK(task_group_lock);
6261 
6262 static void sched_free_group(struct task_group *tg)
6263 {
6264 	free_fair_sched_group(tg);
6265 	free_rt_sched_group(tg);
6266 	autogroup_free(tg);
6267 	kmem_cache_free(task_group_cache, tg);
6268 }
6269 
6270 /* allocate runqueue etc for a new task group */
6271 struct task_group *sched_create_group(struct task_group *parent)
6272 {
6273 	struct task_group *tg;
6274 
6275 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6276 	if (!tg)
6277 		return ERR_PTR(-ENOMEM);
6278 
6279 	if (!alloc_fair_sched_group(tg, parent))
6280 		goto err;
6281 
6282 	if (!alloc_rt_sched_group(tg, parent))
6283 		goto err;
6284 
6285 	return tg;
6286 
6287 err:
6288 	sched_free_group(tg);
6289 	return ERR_PTR(-ENOMEM);
6290 }
6291 
6292 void sched_online_group(struct task_group *tg, struct task_group *parent)
6293 {
6294 	unsigned long flags;
6295 
6296 	spin_lock_irqsave(&task_group_lock, flags);
6297 	list_add_rcu(&tg->list, &task_groups);
6298 
6299 	/* Root should already exist: */
6300 	WARN_ON(!parent);
6301 
6302 	tg->parent = parent;
6303 	INIT_LIST_HEAD(&tg->children);
6304 	list_add_rcu(&tg->siblings, &parent->children);
6305 	spin_unlock_irqrestore(&task_group_lock, flags);
6306 
6307 	online_fair_sched_group(tg);
6308 }
6309 
6310 /* rcu callback to free various structures associated with a task group */
6311 static void sched_free_group_rcu(struct rcu_head *rhp)
6312 {
6313 	/* Now it should be safe to free those cfs_rqs: */
6314 	sched_free_group(container_of(rhp, struct task_group, rcu));
6315 }
6316 
6317 void sched_destroy_group(struct task_group *tg)
6318 {
6319 	/* Wait for possible concurrent references to cfs_rqs complete: */
6320 	call_rcu(&tg->rcu, sched_free_group_rcu);
6321 }
6322 
6323 void sched_offline_group(struct task_group *tg)
6324 {
6325 	unsigned long flags;
6326 
6327 	/* End participation in shares distribution: */
6328 	unregister_fair_sched_group(tg);
6329 
6330 	spin_lock_irqsave(&task_group_lock, flags);
6331 	list_del_rcu(&tg->list);
6332 	list_del_rcu(&tg->siblings);
6333 	spin_unlock_irqrestore(&task_group_lock, flags);
6334 }
6335 
6336 static void sched_change_group(struct task_struct *tsk, int type)
6337 {
6338 	struct task_group *tg;
6339 
6340 	/*
6341 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6342 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6343 	 * to prevent lockdep warnings.
6344 	 */
6345 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6346 			  struct task_group, css);
6347 	tg = autogroup_task_group(tsk, tg);
6348 	tsk->sched_task_group = tg;
6349 
6350 #ifdef CONFIG_FAIR_GROUP_SCHED
6351 	if (tsk->sched_class->task_change_group)
6352 		tsk->sched_class->task_change_group(tsk, type);
6353 	else
6354 #endif
6355 		set_task_rq(tsk, task_cpu(tsk));
6356 }
6357 
6358 /*
6359  * Change task's runqueue when it moves between groups.
6360  *
6361  * The caller of this function should have put the task in its new group by
6362  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6363  * its new group.
6364  */
6365 void sched_move_task(struct task_struct *tsk)
6366 {
6367 	int queued, running, queue_flags =
6368 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6369 	struct rq_flags rf;
6370 	struct rq *rq;
6371 
6372 	rq = task_rq_lock(tsk, &rf);
6373 	update_rq_clock(rq);
6374 
6375 	running = task_current(rq, tsk);
6376 	queued = task_on_rq_queued(tsk);
6377 
6378 	if (queued)
6379 		dequeue_task(rq, tsk, queue_flags);
6380 	if (running)
6381 		put_prev_task(rq, tsk);
6382 
6383 	sched_change_group(tsk, TASK_MOVE_GROUP);
6384 
6385 	if (queued)
6386 		enqueue_task(rq, tsk, queue_flags);
6387 	if (running)
6388 		set_curr_task(rq, tsk);
6389 
6390 	task_rq_unlock(rq, tsk, &rf);
6391 }
6392 
6393 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6394 {
6395 	return css ? container_of(css, struct task_group, css) : NULL;
6396 }
6397 
6398 static struct cgroup_subsys_state *
6399 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6400 {
6401 	struct task_group *parent = css_tg(parent_css);
6402 	struct task_group *tg;
6403 
6404 	if (!parent) {
6405 		/* This is early initialization for the top cgroup */
6406 		return &root_task_group.css;
6407 	}
6408 
6409 	tg = sched_create_group(parent);
6410 	if (IS_ERR(tg))
6411 		return ERR_PTR(-ENOMEM);
6412 
6413 	return &tg->css;
6414 }
6415 
6416 /* Expose task group only after completing cgroup initialization */
6417 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6418 {
6419 	struct task_group *tg = css_tg(css);
6420 	struct task_group *parent = css_tg(css->parent);
6421 
6422 	if (parent)
6423 		sched_online_group(tg, parent);
6424 	return 0;
6425 }
6426 
6427 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6428 {
6429 	struct task_group *tg = css_tg(css);
6430 
6431 	sched_offline_group(tg);
6432 }
6433 
6434 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6435 {
6436 	struct task_group *tg = css_tg(css);
6437 
6438 	/*
6439 	 * Relies on the RCU grace period between css_released() and this.
6440 	 */
6441 	sched_free_group(tg);
6442 }
6443 
6444 /*
6445  * This is called before wake_up_new_task(), therefore we really only
6446  * have to set its group bits, all the other stuff does not apply.
6447  */
6448 static void cpu_cgroup_fork(struct task_struct *task)
6449 {
6450 	struct rq_flags rf;
6451 	struct rq *rq;
6452 
6453 	rq = task_rq_lock(task, &rf);
6454 
6455 	update_rq_clock(rq);
6456 	sched_change_group(task, TASK_SET_GROUP);
6457 
6458 	task_rq_unlock(rq, task, &rf);
6459 }
6460 
6461 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6462 {
6463 	struct task_struct *task;
6464 	struct cgroup_subsys_state *css;
6465 	int ret = 0;
6466 
6467 	cgroup_taskset_for_each(task, css, tset) {
6468 #ifdef CONFIG_RT_GROUP_SCHED
6469 		if (!sched_rt_can_attach(css_tg(css), task))
6470 			return -EINVAL;
6471 #else
6472 		/* We don't support RT-tasks being in separate groups */
6473 		if (task->sched_class != &fair_sched_class)
6474 			return -EINVAL;
6475 #endif
6476 		/*
6477 		 * Serialize against wake_up_new_task() such that if its
6478 		 * running, we're sure to observe its full state.
6479 		 */
6480 		raw_spin_lock_irq(&task->pi_lock);
6481 		/*
6482 		 * Avoid calling sched_move_task() before wake_up_new_task()
6483 		 * has happened. This would lead to problems with PELT, due to
6484 		 * move wanting to detach+attach while we're not attached yet.
6485 		 */
6486 		if (task->state == TASK_NEW)
6487 			ret = -EINVAL;
6488 		raw_spin_unlock_irq(&task->pi_lock);
6489 
6490 		if (ret)
6491 			break;
6492 	}
6493 	return ret;
6494 }
6495 
6496 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6497 {
6498 	struct task_struct *task;
6499 	struct cgroup_subsys_state *css;
6500 
6501 	cgroup_taskset_for_each(task, css, tset)
6502 		sched_move_task(task);
6503 }
6504 
6505 #ifdef CONFIG_FAIR_GROUP_SCHED
6506 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6507 				struct cftype *cftype, u64 shareval)
6508 {
6509 	if (shareval > scale_load_down(ULONG_MAX))
6510 		shareval = MAX_SHARES;
6511 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6512 }
6513 
6514 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6515 			       struct cftype *cft)
6516 {
6517 	struct task_group *tg = css_tg(css);
6518 
6519 	return (u64) scale_load_down(tg->shares);
6520 }
6521 
6522 #ifdef CONFIG_CFS_BANDWIDTH
6523 static DEFINE_MUTEX(cfs_constraints_mutex);
6524 
6525 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6526 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6527 
6528 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6529 
6530 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6531 {
6532 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6533 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6534 
6535 	if (tg == &root_task_group)
6536 		return -EINVAL;
6537 
6538 	/*
6539 	 * Ensure we have at some amount of bandwidth every period.  This is
6540 	 * to prevent reaching a state of large arrears when throttled via
6541 	 * entity_tick() resulting in prolonged exit starvation.
6542 	 */
6543 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6544 		return -EINVAL;
6545 
6546 	/*
6547 	 * Likewise, bound things on the otherside by preventing insane quota
6548 	 * periods.  This also allows us to normalize in computing quota
6549 	 * feasibility.
6550 	 */
6551 	if (period > max_cfs_quota_period)
6552 		return -EINVAL;
6553 
6554 	/*
6555 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6556 	 * unthrottle_offline_cfs_rqs().
6557 	 */
6558 	get_online_cpus();
6559 	mutex_lock(&cfs_constraints_mutex);
6560 	ret = __cfs_schedulable(tg, period, quota);
6561 	if (ret)
6562 		goto out_unlock;
6563 
6564 	runtime_enabled = quota != RUNTIME_INF;
6565 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6566 	/*
6567 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6568 	 * before making related changes, and on->off must occur afterwards
6569 	 */
6570 	if (runtime_enabled && !runtime_was_enabled)
6571 		cfs_bandwidth_usage_inc();
6572 	raw_spin_lock_irq(&cfs_b->lock);
6573 	cfs_b->period = ns_to_ktime(period);
6574 	cfs_b->quota = quota;
6575 
6576 	__refill_cfs_bandwidth_runtime(cfs_b);
6577 
6578 	/* Restart the period timer (if active) to handle new period expiry: */
6579 	if (runtime_enabled)
6580 		start_cfs_bandwidth(cfs_b);
6581 
6582 	raw_spin_unlock_irq(&cfs_b->lock);
6583 
6584 	for_each_online_cpu(i) {
6585 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6586 		struct rq *rq = cfs_rq->rq;
6587 		struct rq_flags rf;
6588 
6589 		rq_lock_irq(rq, &rf);
6590 		cfs_rq->runtime_enabled = runtime_enabled;
6591 		cfs_rq->runtime_remaining = 0;
6592 
6593 		if (cfs_rq->throttled)
6594 			unthrottle_cfs_rq(cfs_rq);
6595 		rq_unlock_irq(rq, &rf);
6596 	}
6597 	if (runtime_was_enabled && !runtime_enabled)
6598 		cfs_bandwidth_usage_dec();
6599 out_unlock:
6600 	mutex_unlock(&cfs_constraints_mutex);
6601 	put_online_cpus();
6602 
6603 	return ret;
6604 }
6605 
6606 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6607 {
6608 	u64 quota, period;
6609 
6610 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6611 	if (cfs_quota_us < 0)
6612 		quota = RUNTIME_INF;
6613 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
6614 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6615 	else
6616 		return -EINVAL;
6617 
6618 	return tg_set_cfs_bandwidth(tg, period, quota);
6619 }
6620 
6621 static long tg_get_cfs_quota(struct task_group *tg)
6622 {
6623 	u64 quota_us;
6624 
6625 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6626 		return -1;
6627 
6628 	quota_us = tg->cfs_bandwidth.quota;
6629 	do_div(quota_us, NSEC_PER_USEC);
6630 
6631 	return quota_us;
6632 }
6633 
6634 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6635 {
6636 	u64 quota, period;
6637 
6638 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
6639 		return -EINVAL;
6640 
6641 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6642 	quota = tg->cfs_bandwidth.quota;
6643 
6644 	return tg_set_cfs_bandwidth(tg, period, quota);
6645 }
6646 
6647 static long tg_get_cfs_period(struct task_group *tg)
6648 {
6649 	u64 cfs_period_us;
6650 
6651 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6652 	do_div(cfs_period_us, NSEC_PER_USEC);
6653 
6654 	return cfs_period_us;
6655 }
6656 
6657 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6658 				  struct cftype *cft)
6659 {
6660 	return tg_get_cfs_quota(css_tg(css));
6661 }
6662 
6663 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6664 				   struct cftype *cftype, s64 cfs_quota_us)
6665 {
6666 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6667 }
6668 
6669 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6670 				   struct cftype *cft)
6671 {
6672 	return tg_get_cfs_period(css_tg(css));
6673 }
6674 
6675 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6676 				    struct cftype *cftype, u64 cfs_period_us)
6677 {
6678 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6679 }
6680 
6681 struct cfs_schedulable_data {
6682 	struct task_group *tg;
6683 	u64 period, quota;
6684 };
6685 
6686 /*
6687  * normalize group quota/period to be quota/max_period
6688  * note: units are usecs
6689  */
6690 static u64 normalize_cfs_quota(struct task_group *tg,
6691 			       struct cfs_schedulable_data *d)
6692 {
6693 	u64 quota, period;
6694 
6695 	if (tg == d->tg) {
6696 		period = d->period;
6697 		quota = d->quota;
6698 	} else {
6699 		period = tg_get_cfs_period(tg);
6700 		quota = tg_get_cfs_quota(tg);
6701 	}
6702 
6703 	/* note: these should typically be equivalent */
6704 	if (quota == RUNTIME_INF || quota == -1)
6705 		return RUNTIME_INF;
6706 
6707 	return to_ratio(period, quota);
6708 }
6709 
6710 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6711 {
6712 	struct cfs_schedulable_data *d = data;
6713 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6714 	s64 quota = 0, parent_quota = -1;
6715 
6716 	if (!tg->parent) {
6717 		quota = RUNTIME_INF;
6718 	} else {
6719 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6720 
6721 		quota = normalize_cfs_quota(tg, d);
6722 		parent_quota = parent_b->hierarchical_quota;
6723 
6724 		/*
6725 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
6726 		 * always take the min.  On cgroup1, only inherit when no
6727 		 * limit is set:
6728 		 */
6729 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6730 			quota = min(quota, parent_quota);
6731 		} else {
6732 			if (quota == RUNTIME_INF)
6733 				quota = parent_quota;
6734 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6735 				return -EINVAL;
6736 		}
6737 	}
6738 	cfs_b->hierarchical_quota = quota;
6739 
6740 	return 0;
6741 }
6742 
6743 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6744 {
6745 	int ret;
6746 	struct cfs_schedulable_data data = {
6747 		.tg = tg,
6748 		.period = period,
6749 		.quota = quota,
6750 	};
6751 
6752 	if (quota != RUNTIME_INF) {
6753 		do_div(data.period, NSEC_PER_USEC);
6754 		do_div(data.quota, NSEC_PER_USEC);
6755 	}
6756 
6757 	rcu_read_lock();
6758 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6759 	rcu_read_unlock();
6760 
6761 	return ret;
6762 }
6763 
6764 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6765 {
6766 	struct task_group *tg = css_tg(seq_css(sf));
6767 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6768 
6769 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6770 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6771 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6772 
6773 	if (schedstat_enabled() && tg != &root_task_group) {
6774 		u64 ws = 0;
6775 		int i;
6776 
6777 		for_each_possible_cpu(i)
6778 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6779 
6780 		seq_printf(sf, "wait_sum %llu\n", ws);
6781 	}
6782 
6783 	return 0;
6784 }
6785 #endif /* CONFIG_CFS_BANDWIDTH */
6786 #endif /* CONFIG_FAIR_GROUP_SCHED */
6787 
6788 #ifdef CONFIG_RT_GROUP_SCHED
6789 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6790 				struct cftype *cft, s64 val)
6791 {
6792 	return sched_group_set_rt_runtime(css_tg(css), val);
6793 }
6794 
6795 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6796 			       struct cftype *cft)
6797 {
6798 	return sched_group_rt_runtime(css_tg(css));
6799 }
6800 
6801 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6802 				    struct cftype *cftype, u64 rt_period_us)
6803 {
6804 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6805 }
6806 
6807 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6808 				   struct cftype *cft)
6809 {
6810 	return sched_group_rt_period(css_tg(css));
6811 }
6812 #endif /* CONFIG_RT_GROUP_SCHED */
6813 
6814 static struct cftype cpu_legacy_files[] = {
6815 #ifdef CONFIG_FAIR_GROUP_SCHED
6816 	{
6817 		.name = "shares",
6818 		.read_u64 = cpu_shares_read_u64,
6819 		.write_u64 = cpu_shares_write_u64,
6820 	},
6821 #endif
6822 #ifdef CONFIG_CFS_BANDWIDTH
6823 	{
6824 		.name = "cfs_quota_us",
6825 		.read_s64 = cpu_cfs_quota_read_s64,
6826 		.write_s64 = cpu_cfs_quota_write_s64,
6827 	},
6828 	{
6829 		.name = "cfs_period_us",
6830 		.read_u64 = cpu_cfs_period_read_u64,
6831 		.write_u64 = cpu_cfs_period_write_u64,
6832 	},
6833 	{
6834 		.name = "stat",
6835 		.seq_show = cpu_cfs_stat_show,
6836 	},
6837 #endif
6838 #ifdef CONFIG_RT_GROUP_SCHED
6839 	{
6840 		.name = "rt_runtime_us",
6841 		.read_s64 = cpu_rt_runtime_read,
6842 		.write_s64 = cpu_rt_runtime_write,
6843 	},
6844 	{
6845 		.name = "rt_period_us",
6846 		.read_u64 = cpu_rt_period_read_uint,
6847 		.write_u64 = cpu_rt_period_write_uint,
6848 	},
6849 #endif
6850 	{ }	/* Terminate */
6851 };
6852 
6853 static int cpu_extra_stat_show(struct seq_file *sf,
6854 			       struct cgroup_subsys_state *css)
6855 {
6856 #ifdef CONFIG_CFS_BANDWIDTH
6857 	{
6858 		struct task_group *tg = css_tg(css);
6859 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6860 		u64 throttled_usec;
6861 
6862 		throttled_usec = cfs_b->throttled_time;
6863 		do_div(throttled_usec, NSEC_PER_USEC);
6864 
6865 		seq_printf(sf, "nr_periods %d\n"
6866 			   "nr_throttled %d\n"
6867 			   "throttled_usec %llu\n",
6868 			   cfs_b->nr_periods, cfs_b->nr_throttled,
6869 			   throttled_usec);
6870 	}
6871 #endif
6872 	return 0;
6873 }
6874 
6875 #ifdef CONFIG_FAIR_GROUP_SCHED
6876 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6877 			       struct cftype *cft)
6878 {
6879 	struct task_group *tg = css_tg(css);
6880 	u64 weight = scale_load_down(tg->shares);
6881 
6882 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6883 }
6884 
6885 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6886 				struct cftype *cft, u64 weight)
6887 {
6888 	/*
6889 	 * cgroup weight knobs should use the common MIN, DFL and MAX
6890 	 * values which are 1, 100 and 10000 respectively.  While it loses
6891 	 * a bit of range on both ends, it maps pretty well onto the shares
6892 	 * value used by scheduler and the round-trip conversions preserve
6893 	 * the original value over the entire range.
6894 	 */
6895 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6896 		return -ERANGE;
6897 
6898 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6899 
6900 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6901 }
6902 
6903 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6904 				    struct cftype *cft)
6905 {
6906 	unsigned long weight = scale_load_down(css_tg(css)->shares);
6907 	int last_delta = INT_MAX;
6908 	int prio, delta;
6909 
6910 	/* find the closest nice value to the current weight */
6911 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6912 		delta = abs(sched_prio_to_weight[prio] - weight);
6913 		if (delta >= last_delta)
6914 			break;
6915 		last_delta = delta;
6916 	}
6917 
6918 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6919 }
6920 
6921 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6922 				     struct cftype *cft, s64 nice)
6923 {
6924 	unsigned long weight;
6925 	int idx;
6926 
6927 	if (nice < MIN_NICE || nice > MAX_NICE)
6928 		return -ERANGE;
6929 
6930 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6931 	idx = array_index_nospec(idx, 40);
6932 	weight = sched_prio_to_weight[idx];
6933 
6934 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6935 }
6936 #endif
6937 
6938 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6939 						  long period, long quota)
6940 {
6941 	if (quota < 0)
6942 		seq_puts(sf, "max");
6943 	else
6944 		seq_printf(sf, "%ld", quota);
6945 
6946 	seq_printf(sf, " %ld\n", period);
6947 }
6948 
6949 /* caller should put the current value in *@periodp before calling */
6950 static int __maybe_unused cpu_period_quota_parse(char *buf,
6951 						 u64 *periodp, u64 *quotap)
6952 {
6953 	char tok[21];	/* U64_MAX */
6954 
6955 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
6956 		return -EINVAL;
6957 
6958 	*periodp *= NSEC_PER_USEC;
6959 
6960 	if (sscanf(tok, "%llu", quotap))
6961 		*quotap *= NSEC_PER_USEC;
6962 	else if (!strcmp(tok, "max"))
6963 		*quotap = RUNTIME_INF;
6964 	else
6965 		return -EINVAL;
6966 
6967 	return 0;
6968 }
6969 
6970 #ifdef CONFIG_CFS_BANDWIDTH
6971 static int cpu_max_show(struct seq_file *sf, void *v)
6972 {
6973 	struct task_group *tg = css_tg(seq_css(sf));
6974 
6975 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6976 	return 0;
6977 }
6978 
6979 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6980 			     char *buf, size_t nbytes, loff_t off)
6981 {
6982 	struct task_group *tg = css_tg(of_css(of));
6983 	u64 period = tg_get_cfs_period(tg);
6984 	u64 quota;
6985 	int ret;
6986 
6987 	ret = cpu_period_quota_parse(buf, &period, &quota);
6988 	if (!ret)
6989 		ret = tg_set_cfs_bandwidth(tg, period, quota);
6990 	return ret ?: nbytes;
6991 }
6992 #endif
6993 
6994 static struct cftype cpu_files[] = {
6995 #ifdef CONFIG_FAIR_GROUP_SCHED
6996 	{
6997 		.name = "weight",
6998 		.flags = CFTYPE_NOT_ON_ROOT,
6999 		.read_u64 = cpu_weight_read_u64,
7000 		.write_u64 = cpu_weight_write_u64,
7001 	},
7002 	{
7003 		.name = "weight.nice",
7004 		.flags = CFTYPE_NOT_ON_ROOT,
7005 		.read_s64 = cpu_weight_nice_read_s64,
7006 		.write_s64 = cpu_weight_nice_write_s64,
7007 	},
7008 #endif
7009 #ifdef CONFIG_CFS_BANDWIDTH
7010 	{
7011 		.name = "max",
7012 		.flags = CFTYPE_NOT_ON_ROOT,
7013 		.seq_show = cpu_max_show,
7014 		.write = cpu_max_write,
7015 	},
7016 #endif
7017 	{ }	/* terminate */
7018 };
7019 
7020 struct cgroup_subsys cpu_cgrp_subsys = {
7021 	.css_alloc	= cpu_cgroup_css_alloc,
7022 	.css_online	= cpu_cgroup_css_online,
7023 	.css_released	= cpu_cgroup_css_released,
7024 	.css_free	= cpu_cgroup_css_free,
7025 	.css_extra_stat_show = cpu_extra_stat_show,
7026 	.fork		= cpu_cgroup_fork,
7027 	.can_attach	= cpu_cgroup_can_attach,
7028 	.attach		= cpu_cgroup_attach,
7029 	.legacy_cftypes	= cpu_legacy_files,
7030 	.dfl_cftypes	= cpu_files,
7031 	.early_init	= true,
7032 	.threaded	= true,
7033 };
7034 
7035 #endif	/* CONFIG_CGROUP_SCHED */
7036 
7037 void dump_cpu_task(int cpu)
7038 {
7039 	pr_info("Task dump for CPU %d:\n", cpu);
7040 	sched_show_task(cpu_curr(cpu));
7041 }
7042 
7043 /*
7044  * Nice levels are multiplicative, with a gentle 10% change for every
7045  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7046  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7047  * that remained on nice 0.
7048  *
7049  * The "10% effect" is relative and cumulative: from _any_ nice level,
7050  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7051  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7052  * If a task goes up by ~10% and another task goes down by ~10% then
7053  * the relative distance between them is ~25%.)
7054  */
7055 const int sched_prio_to_weight[40] = {
7056  /* -20 */     88761,     71755,     56483,     46273,     36291,
7057  /* -15 */     29154,     23254,     18705,     14949,     11916,
7058  /* -10 */      9548,      7620,      6100,      4904,      3906,
7059  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7060  /*   0 */      1024,       820,       655,       526,       423,
7061  /*   5 */       335,       272,       215,       172,       137,
7062  /*  10 */       110,        87,        70,        56,        45,
7063  /*  15 */        36,        29,        23,        18,        15,
7064 };
7065 
7066 /*
7067  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7068  *
7069  * In cases where the weight does not change often, we can use the
7070  * precalculated inverse to speed up arithmetics by turning divisions
7071  * into multiplications:
7072  */
7073 const u32 sched_prio_to_wmult[40] = {
7074  /* -20 */     48388,     59856,     76040,     92818,    118348,
7075  /* -15 */    147320,    184698,    229616,    287308,    360437,
7076  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7077  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7078  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7079  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7080  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7081  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7082 };
7083 
7084 #undef CREATE_TRACE_POINTS
7085