1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/irq_regs.h> 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <linux/sched/rseq_api.h> 82 #include <trace/events/sched.h> 83 #undef CREATE_TRACE_POINTS 84 85 #include "sched.h" 86 #include "stats.h" 87 #include "autogroup.h" 88 89 #include "autogroup.h" 90 #include "pelt.h" 91 #include "smp.h" 92 #include "stats.h" 93 94 #include "../workqueue_internal.h" 95 #include "../../io_uring/io-wq.h" 96 #include "../smpboot.h" 97 98 /* 99 * Export tracepoints that act as a bare tracehook (ie: have no trace event 100 * associated with them) to allow external modules to probe them. 101 */ 102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 113 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 #ifdef CONFIG_SCHED_DEBUG 117 /* 118 * Debugging: various feature bits 119 * 120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 121 * sysctl_sched_features, defined in sched.h, to allow constants propagation 122 * at compile time and compiler optimization based on features default. 123 */ 124 #define SCHED_FEAT(name, enabled) \ 125 (1UL << __SCHED_FEAT_##name) * enabled | 126 const_debug unsigned int sysctl_sched_features = 127 #include "features.h" 128 0; 129 #undef SCHED_FEAT 130 131 /* 132 * Print a warning if need_resched is set for the given duration (if 133 * LATENCY_WARN is enabled). 134 * 135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 136 * per boot. 137 */ 138 __read_mostly int sysctl_resched_latency_warn_ms = 100; 139 __read_mostly int sysctl_resched_latency_warn_once = 1; 140 #endif /* CONFIG_SCHED_DEBUG */ 141 142 /* 143 * Number of tasks to iterate in a single balance run. 144 * Limited because this is done with IRQs disabled. 145 */ 146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 147 148 __read_mostly int scheduler_running; 149 150 #ifdef CONFIG_SCHED_CORE 151 152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 153 154 /* kernel prio, less is more */ 155 static inline int __task_prio(struct task_struct *p) 156 { 157 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 158 return -2; 159 160 if (rt_prio(p->prio)) /* includes deadline */ 161 return p->prio; /* [-1, 99] */ 162 163 if (p->sched_class == &idle_sched_class) 164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 165 166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 167 } 168 169 /* 170 * l(a,b) 171 * le(a,b) := !l(b,a) 172 * g(a,b) := l(b,a) 173 * ge(a,b) := !l(a,b) 174 */ 175 176 /* real prio, less is less */ 177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 178 { 179 180 int pa = __task_prio(a), pb = __task_prio(b); 181 182 if (-pa < -pb) 183 return true; 184 185 if (-pb < -pa) 186 return false; 187 188 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 189 return !dl_time_before(a->dl.deadline, b->dl.deadline); 190 191 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 192 return cfs_prio_less(a, b, in_fi); 193 194 return false; 195 } 196 197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 198 { 199 if (a->core_cookie < b->core_cookie) 200 return true; 201 202 if (a->core_cookie > b->core_cookie) 203 return false; 204 205 /* flip prio, so high prio is leftmost */ 206 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 207 return true; 208 209 return false; 210 } 211 212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 213 214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 215 { 216 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 217 } 218 219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 220 { 221 const struct task_struct *p = __node_2_sc(node); 222 unsigned long cookie = (unsigned long)key; 223 224 if (cookie < p->core_cookie) 225 return -1; 226 227 if (cookie > p->core_cookie) 228 return 1; 229 230 return 0; 231 } 232 233 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 234 { 235 rq->core->core_task_seq++; 236 237 if (!p->core_cookie) 238 return; 239 240 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 241 } 242 243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 244 { 245 rq->core->core_task_seq++; 246 247 if (sched_core_enqueued(p)) { 248 rb_erase(&p->core_node, &rq->core_tree); 249 RB_CLEAR_NODE(&p->core_node); 250 } 251 252 /* 253 * Migrating the last task off the cpu, with the cpu in forced idle 254 * state. Reschedule to create an accounting edge for forced idle, 255 * and re-examine whether the core is still in forced idle state. 256 */ 257 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 258 rq->core->core_forceidle_count && rq->curr == rq->idle) 259 resched_curr(rq); 260 } 261 262 /* 263 * Find left-most (aka, highest priority) task matching @cookie. 264 */ 265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 266 { 267 struct rb_node *node; 268 269 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 270 /* 271 * The idle task always matches any cookie! 272 */ 273 if (!node) 274 return idle_sched_class.pick_task(rq); 275 276 return __node_2_sc(node); 277 } 278 279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 280 { 281 struct rb_node *node = &p->core_node; 282 283 node = rb_next(node); 284 if (!node) 285 return NULL; 286 287 p = container_of(node, struct task_struct, core_node); 288 if (p->core_cookie != cookie) 289 return NULL; 290 291 return p; 292 } 293 294 /* 295 * Magic required such that: 296 * 297 * raw_spin_rq_lock(rq); 298 * ... 299 * raw_spin_rq_unlock(rq); 300 * 301 * ends up locking and unlocking the _same_ lock, and all CPUs 302 * always agree on what rq has what lock. 303 * 304 * XXX entirely possible to selectively enable cores, don't bother for now. 305 */ 306 307 static DEFINE_MUTEX(sched_core_mutex); 308 static atomic_t sched_core_count; 309 static struct cpumask sched_core_mask; 310 311 static void sched_core_lock(int cpu, unsigned long *flags) 312 { 313 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 314 int t, i = 0; 315 316 local_irq_save(*flags); 317 for_each_cpu(t, smt_mask) 318 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 319 } 320 321 static void sched_core_unlock(int cpu, unsigned long *flags) 322 { 323 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 324 int t; 325 326 for_each_cpu(t, smt_mask) 327 raw_spin_unlock(&cpu_rq(t)->__lock); 328 local_irq_restore(*flags); 329 } 330 331 static void __sched_core_flip(bool enabled) 332 { 333 unsigned long flags; 334 int cpu, t; 335 336 cpus_read_lock(); 337 338 /* 339 * Toggle the online cores, one by one. 340 */ 341 cpumask_copy(&sched_core_mask, cpu_online_mask); 342 for_each_cpu(cpu, &sched_core_mask) { 343 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 344 345 sched_core_lock(cpu, &flags); 346 347 for_each_cpu(t, smt_mask) 348 cpu_rq(t)->core_enabled = enabled; 349 350 cpu_rq(cpu)->core->core_forceidle_start = 0; 351 352 sched_core_unlock(cpu, &flags); 353 354 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 355 } 356 357 /* 358 * Toggle the offline CPUs. 359 */ 360 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 361 cpu_rq(cpu)->core_enabled = enabled; 362 363 cpus_read_unlock(); 364 } 365 366 static void sched_core_assert_empty(void) 367 { 368 int cpu; 369 370 for_each_possible_cpu(cpu) 371 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 372 } 373 374 static void __sched_core_enable(void) 375 { 376 static_branch_enable(&__sched_core_enabled); 377 /* 378 * Ensure all previous instances of raw_spin_rq_*lock() have finished 379 * and future ones will observe !sched_core_disabled(). 380 */ 381 synchronize_rcu(); 382 __sched_core_flip(true); 383 sched_core_assert_empty(); 384 } 385 386 static void __sched_core_disable(void) 387 { 388 sched_core_assert_empty(); 389 __sched_core_flip(false); 390 static_branch_disable(&__sched_core_enabled); 391 } 392 393 void sched_core_get(void) 394 { 395 if (atomic_inc_not_zero(&sched_core_count)) 396 return; 397 398 mutex_lock(&sched_core_mutex); 399 if (!atomic_read(&sched_core_count)) 400 __sched_core_enable(); 401 402 smp_mb__before_atomic(); 403 atomic_inc(&sched_core_count); 404 mutex_unlock(&sched_core_mutex); 405 } 406 407 static void __sched_core_put(struct work_struct *work) 408 { 409 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 410 __sched_core_disable(); 411 mutex_unlock(&sched_core_mutex); 412 } 413 } 414 415 void sched_core_put(void) 416 { 417 static DECLARE_WORK(_work, __sched_core_put); 418 419 /* 420 * "There can be only one" 421 * 422 * Either this is the last one, or we don't actually need to do any 423 * 'work'. If it is the last *again*, we rely on 424 * WORK_STRUCT_PENDING_BIT. 425 */ 426 if (!atomic_add_unless(&sched_core_count, -1, 1)) 427 schedule_work(&_work); 428 } 429 430 #else /* !CONFIG_SCHED_CORE */ 431 432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 433 static inline void 434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 435 436 #endif /* CONFIG_SCHED_CORE */ 437 438 /* 439 * Serialization rules: 440 * 441 * Lock order: 442 * 443 * p->pi_lock 444 * rq->lock 445 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 446 * 447 * rq1->lock 448 * rq2->lock where: rq1 < rq2 449 * 450 * Regular state: 451 * 452 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 453 * local CPU's rq->lock, it optionally removes the task from the runqueue and 454 * always looks at the local rq data structures to find the most eligible task 455 * to run next. 456 * 457 * Task enqueue is also under rq->lock, possibly taken from another CPU. 458 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 459 * the local CPU to avoid bouncing the runqueue state around [ see 460 * ttwu_queue_wakelist() ] 461 * 462 * Task wakeup, specifically wakeups that involve migration, are horribly 463 * complicated to avoid having to take two rq->locks. 464 * 465 * Special state: 466 * 467 * System-calls and anything external will use task_rq_lock() which acquires 468 * both p->pi_lock and rq->lock. As a consequence the state they change is 469 * stable while holding either lock: 470 * 471 * - sched_setaffinity()/ 472 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 473 * - set_user_nice(): p->se.load, p->*prio 474 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 475 * p->se.load, p->rt_priority, 476 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 477 * - sched_setnuma(): p->numa_preferred_nid 478 * - sched_move_task(): p->sched_task_group 479 * - uclamp_update_active() p->uclamp* 480 * 481 * p->state <- TASK_*: 482 * 483 * is changed locklessly using set_current_state(), __set_current_state() or 484 * set_special_state(), see their respective comments, or by 485 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 486 * concurrent self. 487 * 488 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 489 * 490 * is set by activate_task() and cleared by deactivate_task(), under 491 * rq->lock. Non-zero indicates the task is runnable, the special 492 * ON_RQ_MIGRATING state is used for migration without holding both 493 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 494 * 495 * p->on_cpu <- { 0, 1 }: 496 * 497 * is set by prepare_task() and cleared by finish_task() such that it will be 498 * set before p is scheduled-in and cleared after p is scheduled-out, both 499 * under rq->lock. Non-zero indicates the task is running on its CPU. 500 * 501 * [ The astute reader will observe that it is possible for two tasks on one 502 * CPU to have ->on_cpu = 1 at the same time. ] 503 * 504 * task_cpu(p): is changed by set_task_cpu(), the rules are: 505 * 506 * - Don't call set_task_cpu() on a blocked task: 507 * 508 * We don't care what CPU we're not running on, this simplifies hotplug, 509 * the CPU assignment of blocked tasks isn't required to be valid. 510 * 511 * - for try_to_wake_up(), called under p->pi_lock: 512 * 513 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 514 * 515 * - for migration called under rq->lock: 516 * [ see task_on_rq_migrating() in task_rq_lock() ] 517 * 518 * o move_queued_task() 519 * o detach_task() 520 * 521 * - for migration called under double_rq_lock(): 522 * 523 * o __migrate_swap_task() 524 * o push_rt_task() / pull_rt_task() 525 * o push_dl_task() / pull_dl_task() 526 * o dl_task_offline_migration() 527 * 528 */ 529 530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 531 { 532 raw_spinlock_t *lock; 533 534 /* Matches synchronize_rcu() in __sched_core_enable() */ 535 preempt_disable(); 536 if (sched_core_disabled()) { 537 raw_spin_lock_nested(&rq->__lock, subclass); 538 /* preempt_count *MUST* be > 1 */ 539 preempt_enable_no_resched(); 540 return; 541 } 542 543 for (;;) { 544 lock = __rq_lockp(rq); 545 raw_spin_lock_nested(lock, subclass); 546 if (likely(lock == __rq_lockp(rq))) { 547 /* preempt_count *MUST* be > 1 */ 548 preempt_enable_no_resched(); 549 return; 550 } 551 raw_spin_unlock(lock); 552 } 553 } 554 555 bool raw_spin_rq_trylock(struct rq *rq) 556 { 557 raw_spinlock_t *lock; 558 bool ret; 559 560 /* Matches synchronize_rcu() in __sched_core_enable() */ 561 preempt_disable(); 562 if (sched_core_disabled()) { 563 ret = raw_spin_trylock(&rq->__lock); 564 preempt_enable(); 565 return ret; 566 } 567 568 for (;;) { 569 lock = __rq_lockp(rq); 570 ret = raw_spin_trylock(lock); 571 if (!ret || (likely(lock == __rq_lockp(rq)))) { 572 preempt_enable(); 573 return ret; 574 } 575 raw_spin_unlock(lock); 576 } 577 } 578 579 void raw_spin_rq_unlock(struct rq *rq) 580 { 581 raw_spin_unlock(rq_lockp(rq)); 582 } 583 584 #ifdef CONFIG_SMP 585 /* 586 * double_rq_lock - safely lock two runqueues 587 */ 588 void double_rq_lock(struct rq *rq1, struct rq *rq2) 589 { 590 lockdep_assert_irqs_disabled(); 591 592 if (rq_order_less(rq2, rq1)) 593 swap(rq1, rq2); 594 595 raw_spin_rq_lock(rq1); 596 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 597 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 598 599 double_rq_clock_clear_update(rq1, rq2); 600 } 601 #endif 602 603 /* 604 * __task_rq_lock - lock the rq @p resides on. 605 */ 606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 607 __acquires(rq->lock) 608 { 609 struct rq *rq; 610 611 lockdep_assert_held(&p->pi_lock); 612 613 for (;;) { 614 rq = task_rq(p); 615 raw_spin_rq_lock(rq); 616 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 617 rq_pin_lock(rq, rf); 618 return rq; 619 } 620 raw_spin_rq_unlock(rq); 621 622 while (unlikely(task_on_rq_migrating(p))) 623 cpu_relax(); 624 } 625 } 626 627 /* 628 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 629 */ 630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 631 __acquires(p->pi_lock) 632 __acquires(rq->lock) 633 { 634 struct rq *rq; 635 636 for (;;) { 637 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 638 rq = task_rq(p); 639 raw_spin_rq_lock(rq); 640 /* 641 * move_queued_task() task_rq_lock() 642 * 643 * ACQUIRE (rq->lock) 644 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 645 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 646 * [S] ->cpu = new_cpu [L] task_rq() 647 * [L] ->on_rq 648 * RELEASE (rq->lock) 649 * 650 * If we observe the old CPU in task_rq_lock(), the acquire of 651 * the old rq->lock will fully serialize against the stores. 652 * 653 * If we observe the new CPU in task_rq_lock(), the address 654 * dependency headed by '[L] rq = task_rq()' and the acquire 655 * will pair with the WMB to ensure we then also see migrating. 656 */ 657 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 658 rq_pin_lock(rq, rf); 659 return rq; 660 } 661 raw_spin_rq_unlock(rq); 662 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 663 664 while (unlikely(task_on_rq_migrating(p))) 665 cpu_relax(); 666 } 667 } 668 669 /* 670 * RQ-clock updating methods: 671 */ 672 673 static void update_rq_clock_task(struct rq *rq, s64 delta) 674 { 675 /* 676 * In theory, the compile should just see 0 here, and optimize out the call 677 * to sched_rt_avg_update. But I don't trust it... 678 */ 679 s64 __maybe_unused steal = 0, irq_delta = 0; 680 681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 682 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 683 684 /* 685 * Since irq_time is only updated on {soft,}irq_exit, we might run into 686 * this case when a previous update_rq_clock() happened inside a 687 * {soft,}irq region. 688 * 689 * When this happens, we stop ->clock_task and only update the 690 * prev_irq_time stamp to account for the part that fit, so that a next 691 * update will consume the rest. This ensures ->clock_task is 692 * monotonic. 693 * 694 * It does however cause some slight miss-attribution of {soft,}irq 695 * time, a more accurate solution would be to update the irq_time using 696 * the current rq->clock timestamp, except that would require using 697 * atomic ops. 698 */ 699 if (irq_delta > delta) 700 irq_delta = delta; 701 702 rq->prev_irq_time += irq_delta; 703 delta -= irq_delta; 704 psi_account_irqtime(rq->curr, irq_delta); 705 #endif 706 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 707 if (static_key_false((¶virt_steal_rq_enabled))) { 708 steal = paravirt_steal_clock(cpu_of(rq)); 709 steal -= rq->prev_steal_time_rq; 710 711 if (unlikely(steal > delta)) 712 steal = delta; 713 714 rq->prev_steal_time_rq += steal; 715 delta -= steal; 716 } 717 #endif 718 719 rq->clock_task += delta; 720 721 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 722 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 723 update_irq_load_avg(rq, irq_delta + steal); 724 #endif 725 update_rq_clock_pelt(rq, delta); 726 } 727 728 void update_rq_clock(struct rq *rq) 729 { 730 s64 delta; 731 732 lockdep_assert_rq_held(rq); 733 734 if (rq->clock_update_flags & RQCF_ACT_SKIP) 735 return; 736 737 #ifdef CONFIG_SCHED_DEBUG 738 if (sched_feat(WARN_DOUBLE_CLOCK)) 739 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 740 rq->clock_update_flags |= RQCF_UPDATED; 741 #endif 742 743 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 744 if (delta < 0) 745 return; 746 rq->clock += delta; 747 update_rq_clock_task(rq, delta); 748 } 749 750 #ifdef CONFIG_SCHED_HRTICK 751 /* 752 * Use HR-timers to deliver accurate preemption points. 753 */ 754 755 static void hrtick_clear(struct rq *rq) 756 { 757 if (hrtimer_active(&rq->hrtick_timer)) 758 hrtimer_cancel(&rq->hrtick_timer); 759 } 760 761 /* 762 * High-resolution timer tick. 763 * Runs from hardirq context with interrupts disabled. 764 */ 765 static enum hrtimer_restart hrtick(struct hrtimer *timer) 766 { 767 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 768 struct rq_flags rf; 769 770 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 771 772 rq_lock(rq, &rf); 773 update_rq_clock(rq); 774 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 775 rq_unlock(rq, &rf); 776 777 return HRTIMER_NORESTART; 778 } 779 780 #ifdef CONFIG_SMP 781 782 static void __hrtick_restart(struct rq *rq) 783 { 784 struct hrtimer *timer = &rq->hrtick_timer; 785 ktime_t time = rq->hrtick_time; 786 787 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 788 } 789 790 /* 791 * called from hardirq (IPI) context 792 */ 793 static void __hrtick_start(void *arg) 794 { 795 struct rq *rq = arg; 796 struct rq_flags rf; 797 798 rq_lock(rq, &rf); 799 __hrtick_restart(rq); 800 rq_unlock(rq, &rf); 801 } 802 803 /* 804 * Called to set the hrtick timer state. 805 * 806 * called with rq->lock held and irqs disabled 807 */ 808 void hrtick_start(struct rq *rq, u64 delay) 809 { 810 struct hrtimer *timer = &rq->hrtick_timer; 811 s64 delta; 812 813 /* 814 * Don't schedule slices shorter than 10000ns, that just 815 * doesn't make sense and can cause timer DoS. 816 */ 817 delta = max_t(s64, delay, 10000LL); 818 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 819 820 if (rq == this_rq()) 821 __hrtick_restart(rq); 822 else 823 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 824 } 825 826 #else 827 /* 828 * Called to set the hrtick timer state. 829 * 830 * called with rq->lock held and irqs disabled 831 */ 832 void hrtick_start(struct rq *rq, u64 delay) 833 { 834 /* 835 * Don't schedule slices shorter than 10000ns, that just 836 * doesn't make sense. Rely on vruntime for fairness. 837 */ 838 delay = max_t(u64, delay, 10000LL); 839 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 840 HRTIMER_MODE_REL_PINNED_HARD); 841 } 842 843 #endif /* CONFIG_SMP */ 844 845 static void hrtick_rq_init(struct rq *rq) 846 { 847 #ifdef CONFIG_SMP 848 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 849 #endif 850 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 851 rq->hrtick_timer.function = hrtick; 852 } 853 #else /* CONFIG_SCHED_HRTICK */ 854 static inline void hrtick_clear(struct rq *rq) 855 { 856 } 857 858 static inline void hrtick_rq_init(struct rq *rq) 859 { 860 } 861 #endif /* CONFIG_SCHED_HRTICK */ 862 863 /* 864 * cmpxchg based fetch_or, macro so it works for different integer types 865 */ 866 #define fetch_or(ptr, mask) \ 867 ({ \ 868 typeof(ptr) _ptr = (ptr); \ 869 typeof(mask) _mask = (mask); \ 870 typeof(*_ptr) _val = *_ptr; \ 871 \ 872 do { \ 873 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 874 _val; \ 875 }) 876 877 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 878 /* 879 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 880 * this avoids any races wrt polling state changes and thereby avoids 881 * spurious IPIs. 882 */ 883 static inline bool set_nr_and_not_polling(struct task_struct *p) 884 { 885 struct thread_info *ti = task_thread_info(p); 886 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 887 } 888 889 /* 890 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 891 * 892 * If this returns true, then the idle task promises to call 893 * sched_ttwu_pending() and reschedule soon. 894 */ 895 static bool set_nr_if_polling(struct task_struct *p) 896 { 897 struct thread_info *ti = task_thread_info(p); 898 typeof(ti->flags) val = READ_ONCE(ti->flags); 899 900 for (;;) { 901 if (!(val & _TIF_POLLING_NRFLAG)) 902 return false; 903 if (val & _TIF_NEED_RESCHED) 904 return true; 905 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) 906 break; 907 } 908 return true; 909 } 910 911 #else 912 static inline bool set_nr_and_not_polling(struct task_struct *p) 913 { 914 set_tsk_need_resched(p); 915 return true; 916 } 917 918 #ifdef CONFIG_SMP 919 static inline bool set_nr_if_polling(struct task_struct *p) 920 { 921 return false; 922 } 923 #endif 924 #endif 925 926 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 927 { 928 struct wake_q_node *node = &task->wake_q; 929 930 /* 931 * Atomically grab the task, if ->wake_q is !nil already it means 932 * it's already queued (either by us or someone else) and will get the 933 * wakeup due to that. 934 * 935 * In order to ensure that a pending wakeup will observe our pending 936 * state, even in the failed case, an explicit smp_mb() must be used. 937 */ 938 smp_mb__before_atomic(); 939 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 940 return false; 941 942 /* 943 * The head is context local, there can be no concurrency. 944 */ 945 *head->lastp = node; 946 head->lastp = &node->next; 947 return true; 948 } 949 950 /** 951 * wake_q_add() - queue a wakeup for 'later' waking. 952 * @head: the wake_q_head to add @task to 953 * @task: the task to queue for 'later' wakeup 954 * 955 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 956 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 957 * instantly. 958 * 959 * This function must be used as-if it were wake_up_process(); IOW the task 960 * must be ready to be woken at this location. 961 */ 962 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 963 { 964 if (__wake_q_add(head, task)) 965 get_task_struct(task); 966 } 967 968 /** 969 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 970 * @head: the wake_q_head to add @task to 971 * @task: the task to queue for 'later' wakeup 972 * 973 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 974 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 975 * instantly. 976 * 977 * This function must be used as-if it were wake_up_process(); IOW the task 978 * must be ready to be woken at this location. 979 * 980 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 981 * that already hold reference to @task can call the 'safe' version and trust 982 * wake_q to do the right thing depending whether or not the @task is already 983 * queued for wakeup. 984 */ 985 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 986 { 987 if (!__wake_q_add(head, task)) 988 put_task_struct(task); 989 } 990 991 void wake_up_q(struct wake_q_head *head) 992 { 993 struct wake_q_node *node = head->first; 994 995 while (node != WAKE_Q_TAIL) { 996 struct task_struct *task; 997 998 task = container_of(node, struct task_struct, wake_q); 999 /* Task can safely be re-inserted now: */ 1000 node = node->next; 1001 task->wake_q.next = NULL; 1002 1003 /* 1004 * wake_up_process() executes a full barrier, which pairs with 1005 * the queueing in wake_q_add() so as not to miss wakeups. 1006 */ 1007 wake_up_process(task); 1008 put_task_struct(task); 1009 } 1010 } 1011 1012 /* 1013 * resched_curr - mark rq's current task 'to be rescheduled now'. 1014 * 1015 * On UP this means the setting of the need_resched flag, on SMP it 1016 * might also involve a cross-CPU call to trigger the scheduler on 1017 * the target CPU. 1018 */ 1019 void resched_curr(struct rq *rq) 1020 { 1021 struct task_struct *curr = rq->curr; 1022 int cpu; 1023 1024 lockdep_assert_rq_held(rq); 1025 1026 if (test_tsk_need_resched(curr)) 1027 return; 1028 1029 cpu = cpu_of(rq); 1030 1031 if (cpu == smp_processor_id()) { 1032 set_tsk_need_resched(curr); 1033 set_preempt_need_resched(); 1034 return; 1035 } 1036 1037 if (set_nr_and_not_polling(curr)) 1038 smp_send_reschedule(cpu); 1039 else 1040 trace_sched_wake_idle_without_ipi(cpu); 1041 } 1042 1043 void resched_cpu(int cpu) 1044 { 1045 struct rq *rq = cpu_rq(cpu); 1046 unsigned long flags; 1047 1048 raw_spin_rq_lock_irqsave(rq, flags); 1049 if (cpu_online(cpu) || cpu == smp_processor_id()) 1050 resched_curr(rq); 1051 raw_spin_rq_unlock_irqrestore(rq, flags); 1052 } 1053 1054 #ifdef CONFIG_SMP 1055 #ifdef CONFIG_NO_HZ_COMMON 1056 /* 1057 * In the semi idle case, use the nearest busy CPU for migrating timers 1058 * from an idle CPU. This is good for power-savings. 1059 * 1060 * We don't do similar optimization for completely idle system, as 1061 * selecting an idle CPU will add more delays to the timers than intended 1062 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1063 */ 1064 int get_nohz_timer_target(void) 1065 { 1066 int i, cpu = smp_processor_id(), default_cpu = -1; 1067 struct sched_domain *sd; 1068 const struct cpumask *hk_mask; 1069 1070 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1071 if (!idle_cpu(cpu)) 1072 return cpu; 1073 default_cpu = cpu; 1074 } 1075 1076 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1077 1078 rcu_read_lock(); 1079 for_each_domain(cpu, sd) { 1080 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1081 if (cpu == i) 1082 continue; 1083 1084 if (!idle_cpu(i)) { 1085 cpu = i; 1086 goto unlock; 1087 } 1088 } 1089 } 1090 1091 if (default_cpu == -1) 1092 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1093 cpu = default_cpu; 1094 unlock: 1095 rcu_read_unlock(); 1096 return cpu; 1097 } 1098 1099 /* 1100 * When add_timer_on() enqueues a timer into the timer wheel of an 1101 * idle CPU then this timer might expire before the next timer event 1102 * which is scheduled to wake up that CPU. In case of a completely 1103 * idle system the next event might even be infinite time into the 1104 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1105 * leaves the inner idle loop so the newly added timer is taken into 1106 * account when the CPU goes back to idle and evaluates the timer 1107 * wheel for the next timer event. 1108 */ 1109 static void wake_up_idle_cpu(int cpu) 1110 { 1111 struct rq *rq = cpu_rq(cpu); 1112 1113 if (cpu == smp_processor_id()) 1114 return; 1115 1116 if (set_nr_and_not_polling(rq->idle)) 1117 smp_send_reschedule(cpu); 1118 else 1119 trace_sched_wake_idle_without_ipi(cpu); 1120 } 1121 1122 static bool wake_up_full_nohz_cpu(int cpu) 1123 { 1124 /* 1125 * We just need the target to call irq_exit() and re-evaluate 1126 * the next tick. The nohz full kick at least implies that. 1127 * If needed we can still optimize that later with an 1128 * empty IRQ. 1129 */ 1130 if (cpu_is_offline(cpu)) 1131 return true; /* Don't try to wake offline CPUs. */ 1132 if (tick_nohz_full_cpu(cpu)) { 1133 if (cpu != smp_processor_id() || 1134 tick_nohz_tick_stopped()) 1135 tick_nohz_full_kick_cpu(cpu); 1136 return true; 1137 } 1138 1139 return false; 1140 } 1141 1142 /* 1143 * Wake up the specified CPU. If the CPU is going offline, it is the 1144 * caller's responsibility to deal with the lost wakeup, for example, 1145 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1146 */ 1147 void wake_up_nohz_cpu(int cpu) 1148 { 1149 if (!wake_up_full_nohz_cpu(cpu)) 1150 wake_up_idle_cpu(cpu); 1151 } 1152 1153 static void nohz_csd_func(void *info) 1154 { 1155 struct rq *rq = info; 1156 int cpu = cpu_of(rq); 1157 unsigned int flags; 1158 1159 /* 1160 * Release the rq::nohz_csd. 1161 */ 1162 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1163 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1164 1165 rq->idle_balance = idle_cpu(cpu); 1166 if (rq->idle_balance && !need_resched()) { 1167 rq->nohz_idle_balance = flags; 1168 raise_softirq_irqoff(SCHED_SOFTIRQ); 1169 } 1170 } 1171 1172 #endif /* CONFIG_NO_HZ_COMMON */ 1173 1174 #ifdef CONFIG_NO_HZ_FULL 1175 bool sched_can_stop_tick(struct rq *rq) 1176 { 1177 int fifo_nr_running; 1178 1179 /* Deadline tasks, even if single, need the tick */ 1180 if (rq->dl.dl_nr_running) 1181 return false; 1182 1183 /* 1184 * If there are more than one RR tasks, we need the tick to affect the 1185 * actual RR behaviour. 1186 */ 1187 if (rq->rt.rr_nr_running) { 1188 if (rq->rt.rr_nr_running == 1) 1189 return true; 1190 else 1191 return false; 1192 } 1193 1194 /* 1195 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1196 * forced preemption between FIFO tasks. 1197 */ 1198 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1199 if (fifo_nr_running) 1200 return true; 1201 1202 /* 1203 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1204 * if there's more than one we need the tick for involuntary 1205 * preemption. 1206 */ 1207 if (rq->nr_running > 1) 1208 return false; 1209 1210 return true; 1211 } 1212 #endif /* CONFIG_NO_HZ_FULL */ 1213 #endif /* CONFIG_SMP */ 1214 1215 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1216 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1217 /* 1218 * Iterate task_group tree rooted at *from, calling @down when first entering a 1219 * node and @up when leaving it for the final time. 1220 * 1221 * Caller must hold rcu_lock or sufficient equivalent. 1222 */ 1223 int walk_tg_tree_from(struct task_group *from, 1224 tg_visitor down, tg_visitor up, void *data) 1225 { 1226 struct task_group *parent, *child; 1227 int ret; 1228 1229 parent = from; 1230 1231 down: 1232 ret = (*down)(parent, data); 1233 if (ret) 1234 goto out; 1235 list_for_each_entry_rcu(child, &parent->children, siblings) { 1236 parent = child; 1237 goto down; 1238 1239 up: 1240 continue; 1241 } 1242 ret = (*up)(parent, data); 1243 if (ret || parent == from) 1244 goto out; 1245 1246 child = parent; 1247 parent = parent->parent; 1248 if (parent) 1249 goto up; 1250 out: 1251 return ret; 1252 } 1253 1254 int tg_nop(struct task_group *tg, void *data) 1255 { 1256 return 0; 1257 } 1258 #endif 1259 1260 static void set_load_weight(struct task_struct *p, bool update_load) 1261 { 1262 int prio = p->static_prio - MAX_RT_PRIO; 1263 struct load_weight *load = &p->se.load; 1264 1265 /* 1266 * SCHED_IDLE tasks get minimal weight: 1267 */ 1268 if (task_has_idle_policy(p)) { 1269 load->weight = scale_load(WEIGHT_IDLEPRIO); 1270 load->inv_weight = WMULT_IDLEPRIO; 1271 return; 1272 } 1273 1274 /* 1275 * SCHED_OTHER tasks have to update their load when changing their 1276 * weight 1277 */ 1278 if (update_load && p->sched_class == &fair_sched_class) { 1279 reweight_task(p, prio); 1280 } else { 1281 load->weight = scale_load(sched_prio_to_weight[prio]); 1282 load->inv_weight = sched_prio_to_wmult[prio]; 1283 } 1284 } 1285 1286 #ifdef CONFIG_UCLAMP_TASK 1287 /* 1288 * Serializes updates of utilization clamp values 1289 * 1290 * The (slow-path) user-space triggers utilization clamp value updates which 1291 * can require updates on (fast-path) scheduler's data structures used to 1292 * support enqueue/dequeue operations. 1293 * While the per-CPU rq lock protects fast-path update operations, user-space 1294 * requests are serialized using a mutex to reduce the risk of conflicting 1295 * updates or API abuses. 1296 */ 1297 static DEFINE_MUTEX(uclamp_mutex); 1298 1299 /* Max allowed minimum utilization */ 1300 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1301 1302 /* Max allowed maximum utilization */ 1303 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1304 1305 /* 1306 * By default RT tasks run at the maximum performance point/capacity of the 1307 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1308 * SCHED_CAPACITY_SCALE. 1309 * 1310 * This knob allows admins to change the default behavior when uclamp is being 1311 * used. In battery powered devices, particularly, running at the maximum 1312 * capacity and frequency will increase energy consumption and shorten the 1313 * battery life. 1314 * 1315 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1316 * 1317 * This knob will not override the system default sched_util_clamp_min defined 1318 * above. 1319 */ 1320 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1321 1322 /* All clamps are required to be less or equal than these values */ 1323 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1324 1325 /* 1326 * This static key is used to reduce the uclamp overhead in the fast path. It 1327 * primarily disables the call to uclamp_rq_{inc, dec}() in 1328 * enqueue/dequeue_task(). 1329 * 1330 * This allows users to continue to enable uclamp in their kernel config with 1331 * minimum uclamp overhead in the fast path. 1332 * 1333 * As soon as userspace modifies any of the uclamp knobs, the static key is 1334 * enabled, since we have an actual users that make use of uclamp 1335 * functionality. 1336 * 1337 * The knobs that would enable this static key are: 1338 * 1339 * * A task modifying its uclamp value with sched_setattr(). 1340 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1341 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1342 */ 1343 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1344 1345 /* Integer rounded range for each bucket */ 1346 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1347 1348 #define for_each_clamp_id(clamp_id) \ 1349 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1350 1351 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1352 { 1353 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1354 } 1355 1356 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1357 { 1358 if (clamp_id == UCLAMP_MIN) 1359 return 0; 1360 return SCHED_CAPACITY_SCALE; 1361 } 1362 1363 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1364 unsigned int value, bool user_defined) 1365 { 1366 uc_se->value = value; 1367 uc_se->bucket_id = uclamp_bucket_id(value); 1368 uc_se->user_defined = user_defined; 1369 } 1370 1371 static inline unsigned int 1372 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1373 unsigned int clamp_value) 1374 { 1375 /* 1376 * Avoid blocked utilization pushing up the frequency when we go 1377 * idle (which drops the max-clamp) by retaining the last known 1378 * max-clamp. 1379 */ 1380 if (clamp_id == UCLAMP_MAX) { 1381 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1382 return clamp_value; 1383 } 1384 1385 return uclamp_none(UCLAMP_MIN); 1386 } 1387 1388 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1389 unsigned int clamp_value) 1390 { 1391 /* Reset max-clamp retention only on idle exit */ 1392 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1393 return; 1394 1395 uclamp_rq_set(rq, clamp_id, clamp_value); 1396 } 1397 1398 static inline 1399 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1400 unsigned int clamp_value) 1401 { 1402 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1403 int bucket_id = UCLAMP_BUCKETS - 1; 1404 1405 /* 1406 * Since both min and max clamps are max aggregated, find the 1407 * top most bucket with tasks in. 1408 */ 1409 for ( ; bucket_id >= 0; bucket_id--) { 1410 if (!bucket[bucket_id].tasks) 1411 continue; 1412 return bucket[bucket_id].value; 1413 } 1414 1415 /* No tasks -- default clamp values */ 1416 return uclamp_idle_value(rq, clamp_id, clamp_value); 1417 } 1418 1419 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1420 { 1421 unsigned int default_util_min; 1422 struct uclamp_se *uc_se; 1423 1424 lockdep_assert_held(&p->pi_lock); 1425 1426 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1427 1428 /* Only sync if user didn't override the default */ 1429 if (uc_se->user_defined) 1430 return; 1431 1432 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1433 uclamp_se_set(uc_se, default_util_min, false); 1434 } 1435 1436 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1437 { 1438 struct rq_flags rf; 1439 struct rq *rq; 1440 1441 if (!rt_task(p)) 1442 return; 1443 1444 /* Protect updates to p->uclamp_* */ 1445 rq = task_rq_lock(p, &rf); 1446 __uclamp_update_util_min_rt_default(p); 1447 task_rq_unlock(rq, p, &rf); 1448 } 1449 1450 static inline struct uclamp_se 1451 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1452 { 1453 /* Copy by value as we could modify it */ 1454 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1455 #ifdef CONFIG_UCLAMP_TASK_GROUP 1456 unsigned int tg_min, tg_max, value; 1457 1458 /* 1459 * Tasks in autogroups or root task group will be 1460 * restricted by system defaults. 1461 */ 1462 if (task_group_is_autogroup(task_group(p))) 1463 return uc_req; 1464 if (task_group(p) == &root_task_group) 1465 return uc_req; 1466 1467 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1468 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1469 value = uc_req.value; 1470 value = clamp(value, tg_min, tg_max); 1471 uclamp_se_set(&uc_req, value, false); 1472 #endif 1473 1474 return uc_req; 1475 } 1476 1477 /* 1478 * The effective clamp bucket index of a task depends on, by increasing 1479 * priority: 1480 * - the task specific clamp value, when explicitly requested from userspace 1481 * - the task group effective clamp value, for tasks not either in the root 1482 * group or in an autogroup 1483 * - the system default clamp value, defined by the sysadmin 1484 */ 1485 static inline struct uclamp_se 1486 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1487 { 1488 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1489 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1490 1491 /* System default restrictions always apply */ 1492 if (unlikely(uc_req.value > uc_max.value)) 1493 return uc_max; 1494 1495 return uc_req; 1496 } 1497 1498 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1499 { 1500 struct uclamp_se uc_eff; 1501 1502 /* Task currently refcounted: use back-annotated (effective) value */ 1503 if (p->uclamp[clamp_id].active) 1504 return (unsigned long)p->uclamp[clamp_id].value; 1505 1506 uc_eff = uclamp_eff_get(p, clamp_id); 1507 1508 return (unsigned long)uc_eff.value; 1509 } 1510 1511 /* 1512 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1513 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1514 * updates the rq's clamp value if required. 1515 * 1516 * Tasks can have a task-specific value requested from user-space, track 1517 * within each bucket the maximum value for tasks refcounted in it. 1518 * This "local max aggregation" allows to track the exact "requested" value 1519 * for each bucket when all its RUNNABLE tasks require the same clamp. 1520 */ 1521 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1522 enum uclamp_id clamp_id) 1523 { 1524 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1525 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1526 struct uclamp_bucket *bucket; 1527 1528 lockdep_assert_rq_held(rq); 1529 1530 /* Update task effective clamp */ 1531 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1532 1533 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1534 bucket->tasks++; 1535 uc_se->active = true; 1536 1537 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1538 1539 /* 1540 * Local max aggregation: rq buckets always track the max 1541 * "requested" clamp value of its RUNNABLE tasks. 1542 */ 1543 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1544 bucket->value = uc_se->value; 1545 1546 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1547 uclamp_rq_set(rq, clamp_id, uc_se->value); 1548 } 1549 1550 /* 1551 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1552 * is released. If this is the last task reference counting the rq's max 1553 * active clamp value, then the rq's clamp value is updated. 1554 * 1555 * Both refcounted tasks and rq's cached clamp values are expected to be 1556 * always valid. If it's detected they are not, as defensive programming, 1557 * enforce the expected state and warn. 1558 */ 1559 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1560 enum uclamp_id clamp_id) 1561 { 1562 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1563 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1564 struct uclamp_bucket *bucket; 1565 unsigned int bkt_clamp; 1566 unsigned int rq_clamp; 1567 1568 lockdep_assert_rq_held(rq); 1569 1570 /* 1571 * If sched_uclamp_used was enabled after task @p was enqueued, 1572 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1573 * 1574 * In this case the uc_se->active flag should be false since no uclamp 1575 * accounting was performed at enqueue time and we can just return 1576 * here. 1577 * 1578 * Need to be careful of the following enqueue/dequeue ordering 1579 * problem too 1580 * 1581 * enqueue(taskA) 1582 * // sched_uclamp_used gets enabled 1583 * enqueue(taskB) 1584 * dequeue(taskA) 1585 * // Must not decrement bucket->tasks here 1586 * dequeue(taskB) 1587 * 1588 * where we could end up with stale data in uc_se and 1589 * bucket[uc_se->bucket_id]. 1590 * 1591 * The following check here eliminates the possibility of such race. 1592 */ 1593 if (unlikely(!uc_se->active)) 1594 return; 1595 1596 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1597 1598 SCHED_WARN_ON(!bucket->tasks); 1599 if (likely(bucket->tasks)) 1600 bucket->tasks--; 1601 1602 uc_se->active = false; 1603 1604 /* 1605 * Keep "local max aggregation" simple and accept to (possibly) 1606 * overboost some RUNNABLE tasks in the same bucket. 1607 * The rq clamp bucket value is reset to its base value whenever 1608 * there are no more RUNNABLE tasks refcounting it. 1609 */ 1610 if (likely(bucket->tasks)) 1611 return; 1612 1613 rq_clamp = uclamp_rq_get(rq, clamp_id); 1614 /* 1615 * Defensive programming: this should never happen. If it happens, 1616 * e.g. due to future modification, warn and fixup the expected value. 1617 */ 1618 SCHED_WARN_ON(bucket->value > rq_clamp); 1619 if (bucket->value >= rq_clamp) { 1620 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1621 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1622 } 1623 } 1624 1625 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1626 { 1627 enum uclamp_id clamp_id; 1628 1629 /* 1630 * Avoid any overhead until uclamp is actually used by the userspace. 1631 * 1632 * The condition is constructed such that a NOP is generated when 1633 * sched_uclamp_used is disabled. 1634 */ 1635 if (!static_branch_unlikely(&sched_uclamp_used)) 1636 return; 1637 1638 if (unlikely(!p->sched_class->uclamp_enabled)) 1639 return; 1640 1641 for_each_clamp_id(clamp_id) 1642 uclamp_rq_inc_id(rq, p, clamp_id); 1643 1644 /* Reset clamp idle holding when there is one RUNNABLE task */ 1645 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1646 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1647 } 1648 1649 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1650 { 1651 enum uclamp_id clamp_id; 1652 1653 /* 1654 * Avoid any overhead until uclamp is actually used by the userspace. 1655 * 1656 * The condition is constructed such that a NOP is generated when 1657 * sched_uclamp_used is disabled. 1658 */ 1659 if (!static_branch_unlikely(&sched_uclamp_used)) 1660 return; 1661 1662 if (unlikely(!p->sched_class->uclamp_enabled)) 1663 return; 1664 1665 for_each_clamp_id(clamp_id) 1666 uclamp_rq_dec_id(rq, p, clamp_id); 1667 } 1668 1669 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1670 enum uclamp_id clamp_id) 1671 { 1672 if (!p->uclamp[clamp_id].active) 1673 return; 1674 1675 uclamp_rq_dec_id(rq, p, clamp_id); 1676 uclamp_rq_inc_id(rq, p, clamp_id); 1677 1678 /* 1679 * Make sure to clear the idle flag if we've transiently reached 0 1680 * active tasks on rq. 1681 */ 1682 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1683 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1684 } 1685 1686 static inline void 1687 uclamp_update_active(struct task_struct *p) 1688 { 1689 enum uclamp_id clamp_id; 1690 struct rq_flags rf; 1691 struct rq *rq; 1692 1693 /* 1694 * Lock the task and the rq where the task is (or was) queued. 1695 * 1696 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1697 * price to pay to safely serialize util_{min,max} updates with 1698 * enqueues, dequeues and migration operations. 1699 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1700 */ 1701 rq = task_rq_lock(p, &rf); 1702 1703 /* 1704 * Setting the clamp bucket is serialized by task_rq_lock(). 1705 * If the task is not yet RUNNABLE and its task_struct is not 1706 * affecting a valid clamp bucket, the next time it's enqueued, 1707 * it will already see the updated clamp bucket value. 1708 */ 1709 for_each_clamp_id(clamp_id) 1710 uclamp_rq_reinc_id(rq, p, clamp_id); 1711 1712 task_rq_unlock(rq, p, &rf); 1713 } 1714 1715 #ifdef CONFIG_UCLAMP_TASK_GROUP 1716 static inline void 1717 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1718 { 1719 struct css_task_iter it; 1720 struct task_struct *p; 1721 1722 css_task_iter_start(css, 0, &it); 1723 while ((p = css_task_iter_next(&it))) 1724 uclamp_update_active(p); 1725 css_task_iter_end(&it); 1726 } 1727 1728 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1729 #endif 1730 1731 #ifdef CONFIG_SYSCTL 1732 #ifdef CONFIG_UCLAMP_TASK 1733 #ifdef CONFIG_UCLAMP_TASK_GROUP 1734 static void uclamp_update_root_tg(void) 1735 { 1736 struct task_group *tg = &root_task_group; 1737 1738 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1739 sysctl_sched_uclamp_util_min, false); 1740 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1741 sysctl_sched_uclamp_util_max, false); 1742 1743 rcu_read_lock(); 1744 cpu_util_update_eff(&root_task_group.css); 1745 rcu_read_unlock(); 1746 } 1747 #else 1748 static void uclamp_update_root_tg(void) { } 1749 #endif 1750 1751 static void uclamp_sync_util_min_rt_default(void) 1752 { 1753 struct task_struct *g, *p; 1754 1755 /* 1756 * copy_process() sysctl_uclamp 1757 * uclamp_min_rt = X; 1758 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1759 * // link thread smp_mb__after_spinlock() 1760 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1761 * sched_post_fork() for_each_process_thread() 1762 * __uclamp_sync_rt() __uclamp_sync_rt() 1763 * 1764 * Ensures that either sched_post_fork() will observe the new 1765 * uclamp_min_rt or for_each_process_thread() will observe the new 1766 * task. 1767 */ 1768 read_lock(&tasklist_lock); 1769 smp_mb__after_spinlock(); 1770 read_unlock(&tasklist_lock); 1771 1772 rcu_read_lock(); 1773 for_each_process_thread(g, p) 1774 uclamp_update_util_min_rt_default(p); 1775 rcu_read_unlock(); 1776 } 1777 1778 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1779 void *buffer, size_t *lenp, loff_t *ppos) 1780 { 1781 bool update_root_tg = false; 1782 int old_min, old_max, old_min_rt; 1783 int result; 1784 1785 mutex_lock(&uclamp_mutex); 1786 old_min = sysctl_sched_uclamp_util_min; 1787 old_max = sysctl_sched_uclamp_util_max; 1788 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1789 1790 result = proc_dointvec(table, write, buffer, lenp, ppos); 1791 if (result) 1792 goto undo; 1793 if (!write) 1794 goto done; 1795 1796 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1797 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1798 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1799 1800 result = -EINVAL; 1801 goto undo; 1802 } 1803 1804 if (old_min != sysctl_sched_uclamp_util_min) { 1805 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1806 sysctl_sched_uclamp_util_min, false); 1807 update_root_tg = true; 1808 } 1809 if (old_max != sysctl_sched_uclamp_util_max) { 1810 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1811 sysctl_sched_uclamp_util_max, false); 1812 update_root_tg = true; 1813 } 1814 1815 if (update_root_tg) { 1816 static_branch_enable(&sched_uclamp_used); 1817 uclamp_update_root_tg(); 1818 } 1819 1820 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1821 static_branch_enable(&sched_uclamp_used); 1822 uclamp_sync_util_min_rt_default(); 1823 } 1824 1825 /* 1826 * We update all RUNNABLE tasks only when task groups are in use. 1827 * Otherwise, keep it simple and do just a lazy update at each next 1828 * task enqueue time. 1829 */ 1830 1831 goto done; 1832 1833 undo: 1834 sysctl_sched_uclamp_util_min = old_min; 1835 sysctl_sched_uclamp_util_max = old_max; 1836 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1837 done: 1838 mutex_unlock(&uclamp_mutex); 1839 1840 return result; 1841 } 1842 #endif 1843 #endif 1844 1845 static int uclamp_validate(struct task_struct *p, 1846 const struct sched_attr *attr) 1847 { 1848 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1849 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1850 1851 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1852 util_min = attr->sched_util_min; 1853 1854 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1855 return -EINVAL; 1856 } 1857 1858 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1859 util_max = attr->sched_util_max; 1860 1861 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1862 return -EINVAL; 1863 } 1864 1865 if (util_min != -1 && util_max != -1 && util_min > util_max) 1866 return -EINVAL; 1867 1868 /* 1869 * We have valid uclamp attributes; make sure uclamp is enabled. 1870 * 1871 * We need to do that here, because enabling static branches is a 1872 * blocking operation which obviously cannot be done while holding 1873 * scheduler locks. 1874 */ 1875 static_branch_enable(&sched_uclamp_used); 1876 1877 return 0; 1878 } 1879 1880 static bool uclamp_reset(const struct sched_attr *attr, 1881 enum uclamp_id clamp_id, 1882 struct uclamp_se *uc_se) 1883 { 1884 /* Reset on sched class change for a non user-defined clamp value. */ 1885 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1886 !uc_se->user_defined) 1887 return true; 1888 1889 /* Reset on sched_util_{min,max} == -1. */ 1890 if (clamp_id == UCLAMP_MIN && 1891 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1892 attr->sched_util_min == -1) { 1893 return true; 1894 } 1895 1896 if (clamp_id == UCLAMP_MAX && 1897 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1898 attr->sched_util_max == -1) { 1899 return true; 1900 } 1901 1902 return false; 1903 } 1904 1905 static void __setscheduler_uclamp(struct task_struct *p, 1906 const struct sched_attr *attr) 1907 { 1908 enum uclamp_id clamp_id; 1909 1910 for_each_clamp_id(clamp_id) { 1911 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1912 unsigned int value; 1913 1914 if (!uclamp_reset(attr, clamp_id, uc_se)) 1915 continue; 1916 1917 /* 1918 * RT by default have a 100% boost value that could be modified 1919 * at runtime. 1920 */ 1921 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1922 value = sysctl_sched_uclamp_util_min_rt_default; 1923 else 1924 value = uclamp_none(clamp_id); 1925 1926 uclamp_se_set(uc_se, value, false); 1927 1928 } 1929 1930 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1931 return; 1932 1933 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1934 attr->sched_util_min != -1) { 1935 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1936 attr->sched_util_min, true); 1937 } 1938 1939 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1940 attr->sched_util_max != -1) { 1941 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1942 attr->sched_util_max, true); 1943 } 1944 } 1945 1946 static void uclamp_fork(struct task_struct *p) 1947 { 1948 enum uclamp_id clamp_id; 1949 1950 /* 1951 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1952 * as the task is still at its early fork stages. 1953 */ 1954 for_each_clamp_id(clamp_id) 1955 p->uclamp[clamp_id].active = false; 1956 1957 if (likely(!p->sched_reset_on_fork)) 1958 return; 1959 1960 for_each_clamp_id(clamp_id) { 1961 uclamp_se_set(&p->uclamp_req[clamp_id], 1962 uclamp_none(clamp_id), false); 1963 } 1964 } 1965 1966 static void uclamp_post_fork(struct task_struct *p) 1967 { 1968 uclamp_update_util_min_rt_default(p); 1969 } 1970 1971 static void __init init_uclamp_rq(struct rq *rq) 1972 { 1973 enum uclamp_id clamp_id; 1974 struct uclamp_rq *uc_rq = rq->uclamp; 1975 1976 for_each_clamp_id(clamp_id) { 1977 uc_rq[clamp_id] = (struct uclamp_rq) { 1978 .value = uclamp_none(clamp_id) 1979 }; 1980 } 1981 1982 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1983 } 1984 1985 static void __init init_uclamp(void) 1986 { 1987 struct uclamp_se uc_max = {}; 1988 enum uclamp_id clamp_id; 1989 int cpu; 1990 1991 for_each_possible_cpu(cpu) 1992 init_uclamp_rq(cpu_rq(cpu)); 1993 1994 for_each_clamp_id(clamp_id) { 1995 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1996 uclamp_none(clamp_id), false); 1997 } 1998 1999 /* System defaults allow max clamp values for both indexes */ 2000 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2001 for_each_clamp_id(clamp_id) { 2002 uclamp_default[clamp_id] = uc_max; 2003 #ifdef CONFIG_UCLAMP_TASK_GROUP 2004 root_task_group.uclamp_req[clamp_id] = uc_max; 2005 root_task_group.uclamp[clamp_id] = uc_max; 2006 #endif 2007 } 2008 } 2009 2010 #else /* CONFIG_UCLAMP_TASK */ 2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2013 static inline int uclamp_validate(struct task_struct *p, 2014 const struct sched_attr *attr) 2015 { 2016 return -EOPNOTSUPP; 2017 } 2018 static void __setscheduler_uclamp(struct task_struct *p, 2019 const struct sched_attr *attr) { } 2020 static inline void uclamp_fork(struct task_struct *p) { } 2021 static inline void uclamp_post_fork(struct task_struct *p) { } 2022 static inline void init_uclamp(void) { } 2023 #endif /* CONFIG_UCLAMP_TASK */ 2024 2025 bool sched_task_on_rq(struct task_struct *p) 2026 { 2027 return task_on_rq_queued(p); 2028 } 2029 2030 unsigned long get_wchan(struct task_struct *p) 2031 { 2032 unsigned long ip = 0; 2033 unsigned int state; 2034 2035 if (!p || p == current) 2036 return 0; 2037 2038 /* Only get wchan if task is blocked and we can keep it that way. */ 2039 raw_spin_lock_irq(&p->pi_lock); 2040 state = READ_ONCE(p->__state); 2041 smp_rmb(); /* see try_to_wake_up() */ 2042 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2043 ip = __get_wchan(p); 2044 raw_spin_unlock_irq(&p->pi_lock); 2045 2046 return ip; 2047 } 2048 2049 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2050 { 2051 if (!(flags & ENQUEUE_NOCLOCK)) 2052 update_rq_clock(rq); 2053 2054 if (!(flags & ENQUEUE_RESTORE)) { 2055 sched_info_enqueue(rq, p); 2056 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 2057 } 2058 2059 uclamp_rq_inc(rq, p); 2060 p->sched_class->enqueue_task(rq, p, flags); 2061 2062 if (sched_core_enabled(rq)) 2063 sched_core_enqueue(rq, p); 2064 } 2065 2066 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2067 { 2068 if (sched_core_enabled(rq)) 2069 sched_core_dequeue(rq, p, flags); 2070 2071 if (!(flags & DEQUEUE_NOCLOCK)) 2072 update_rq_clock(rq); 2073 2074 if (!(flags & DEQUEUE_SAVE)) { 2075 sched_info_dequeue(rq, p); 2076 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2077 } 2078 2079 uclamp_rq_dec(rq, p); 2080 p->sched_class->dequeue_task(rq, p, flags); 2081 } 2082 2083 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2084 { 2085 enqueue_task(rq, p, flags); 2086 2087 p->on_rq = TASK_ON_RQ_QUEUED; 2088 } 2089 2090 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2091 { 2092 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2093 2094 dequeue_task(rq, p, flags); 2095 } 2096 2097 static inline int __normal_prio(int policy, int rt_prio, int nice) 2098 { 2099 int prio; 2100 2101 if (dl_policy(policy)) 2102 prio = MAX_DL_PRIO - 1; 2103 else if (rt_policy(policy)) 2104 prio = MAX_RT_PRIO - 1 - rt_prio; 2105 else 2106 prio = NICE_TO_PRIO(nice); 2107 2108 return prio; 2109 } 2110 2111 /* 2112 * Calculate the expected normal priority: i.e. priority 2113 * without taking RT-inheritance into account. Might be 2114 * boosted by interactivity modifiers. Changes upon fork, 2115 * setprio syscalls, and whenever the interactivity 2116 * estimator recalculates. 2117 */ 2118 static inline int normal_prio(struct task_struct *p) 2119 { 2120 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2121 } 2122 2123 /* 2124 * Calculate the current priority, i.e. the priority 2125 * taken into account by the scheduler. This value might 2126 * be boosted by RT tasks, or might be boosted by 2127 * interactivity modifiers. Will be RT if the task got 2128 * RT-boosted. If not then it returns p->normal_prio. 2129 */ 2130 static int effective_prio(struct task_struct *p) 2131 { 2132 p->normal_prio = normal_prio(p); 2133 /* 2134 * If we are RT tasks or we were boosted to RT priority, 2135 * keep the priority unchanged. Otherwise, update priority 2136 * to the normal priority: 2137 */ 2138 if (!rt_prio(p->prio)) 2139 return p->normal_prio; 2140 return p->prio; 2141 } 2142 2143 /** 2144 * task_curr - is this task currently executing on a CPU? 2145 * @p: the task in question. 2146 * 2147 * Return: 1 if the task is currently executing. 0 otherwise. 2148 */ 2149 inline int task_curr(const struct task_struct *p) 2150 { 2151 return cpu_curr(task_cpu(p)) == p; 2152 } 2153 2154 /* 2155 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2156 * use the balance_callback list if you want balancing. 2157 * 2158 * this means any call to check_class_changed() must be followed by a call to 2159 * balance_callback(). 2160 */ 2161 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2162 const struct sched_class *prev_class, 2163 int oldprio) 2164 { 2165 if (prev_class != p->sched_class) { 2166 if (prev_class->switched_from) 2167 prev_class->switched_from(rq, p); 2168 2169 p->sched_class->switched_to(rq, p); 2170 } else if (oldprio != p->prio || dl_task(p)) 2171 p->sched_class->prio_changed(rq, p, oldprio); 2172 } 2173 2174 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2175 { 2176 if (p->sched_class == rq->curr->sched_class) 2177 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2178 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2179 resched_curr(rq); 2180 2181 /* 2182 * A queue event has occurred, and we're going to schedule. In 2183 * this case, we can save a useless back to back clock update. 2184 */ 2185 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2186 rq_clock_skip_update(rq); 2187 } 2188 2189 #ifdef CONFIG_SMP 2190 2191 static void 2192 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2193 2194 static int __set_cpus_allowed_ptr(struct task_struct *p, 2195 struct affinity_context *ctx); 2196 2197 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2198 { 2199 struct affinity_context ac = { 2200 .new_mask = cpumask_of(rq->cpu), 2201 .flags = SCA_MIGRATE_DISABLE, 2202 }; 2203 2204 if (likely(!p->migration_disabled)) 2205 return; 2206 2207 if (p->cpus_ptr != &p->cpus_mask) 2208 return; 2209 2210 /* 2211 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2212 */ 2213 __do_set_cpus_allowed(p, &ac); 2214 } 2215 2216 void migrate_disable(void) 2217 { 2218 struct task_struct *p = current; 2219 2220 if (p->migration_disabled) { 2221 p->migration_disabled++; 2222 return; 2223 } 2224 2225 preempt_disable(); 2226 this_rq()->nr_pinned++; 2227 p->migration_disabled = 1; 2228 preempt_enable(); 2229 } 2230 EXPORT_SYMBOL_GPL(migrate_disable); 2231 2232 void migrate_enable(void) 2233 { 2234 struct task_struct *p = current; 2235 struct affinity_context ac = { 2236 .new_mask = &p->cpus_mask, 2237 .flags = SCA_MIGRATE_ENABLE, 2238 }; 2239 2240 if (p->migration_disabled > 1) { 2241 p->migration_disabled--; 2242 return; 2243 } 2244 2245 if (WARN_ON_ONCE(!p->migration_disabled)) 2246 return; 2247 2248 /* 2249 * Ensure stop_task runs either before or after this, and that 2250 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2251 */ 2252 preempt_disable(); 2253 if (p->cpus_ptr != &p->cpus_mask) 2254 __set_cpus_allowed_ptr(p, &ac); 2255 /* 2256 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2257 * regular cpus_mask, otherwise things that race (eg. 2258 * select_fallback_rq) get confused. 2259 */ 2260 barrier(); 2261 p->migration_disabled = 0; 2262 this_rq()->nr_pinned--; 2263 preempt_enable(); 2264 } 2265 EXPORT_SYMBOL_GPL(migrate_enable); 2266 2267 static inline bool rq_has_pinned_tasks(struct rq *rq) 2268 { 2269 return rq->nr_pinned; 2270 } 2271 2272 /* 2273 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2274 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2275 */ 2276 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2277 { 2278 /* When not in the task's cpumask, no point in looking further. */ 2279 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2280 return false; 2281 2282 /* migrate_disabled() must be allowed to finish. */ 2283 if (is_migration_disabled(p)) 2284 return cpu_online(cpu); 2285 2286 /* Non kernel threads are not allowed during either online or offline. */ 2287 if (!(p->flags & PF_KTHREAD)) 2288 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2289 2290 /* KTHREAD_IS_PER_CPU is always allowed. */ 2291 if (kthread_is_per_cpu(p)) 2292 return cpu_online(cpu); 2293 2294 /* Regular kernel threads don't get to stay during offline. */ 2295 if (cpu_dying(cpu)) 2296 return false; 2297 2298 /* But are allowed during online. */ 2299 return cpu_online(cpu); 2300 } 2301 2302 /* 2303 * This is how migration works: 2304 * 2305 * 1) we invoke migration_cpu_stop() on the target CPU using 2306 * stop_one_cpu(). 2307 * 2) stopper starts to run (implicitly forcing the migrated thread 2308 * off the CPU) 2309 * 3) it checks whether the migrated task is still in the wrong runqueue. 2310 * 4) if it's in the wrong runqueue then the migration thread removes 2311 * it and puts it into the right queue. 2312 * 5) stopper completes and stop_one_cpu() returns and the migration 2313 * is done. 2314 */ 2315 2316 /* 2317 * move_queued_task - move a queued task to new rq. 2318 * 2319 * Returns (locked) new rq. Old rq's lock is released. 2320 */ 2321 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2322 struct task_struct *p, int new_cpu) 2323 { 2324 lockdep_assert_rq_held(rq); 2325 2326 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2327 set_task_cpu(p, new_cpu); 2328 rq_unlock(rq, rf); 2329 2330 rq = cpu_rq(new_cpu); 2331 2332 rq_lock(rq, rf); 2333 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2334 activate_task(rq, p, 0); 2335 check_preempt_curr(rq, p, 0); 2336 2337 return rq; 2338 } 2339 2340 struct migration_arg { 2341 struct task_struct *task; 2342 int dest_cpu; 2343 struct set_affinity_pending *pending; 2344 }; 2345 2346 /* 2347 * @refs: number of wait_for_completion() 2348 * @stop_pending: is @stop_work in use 2349 */ 2350 struct set_affinity_pending { 2351 refcount_t refs; 2352 unsigned int stop_pending; 2353 struct completion done; 2354 struct cpu_stop_work stop_work; 2355 struct migration_arg arg; 2356 }; 2357 2358 /* 2359 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2360 * this because either it can't run here any more (set_cpus_allowed() 2361 * away from this CPU, or CPU going down), or because we're 2362 * attempting to rebalance this task on exec (sched_exec). 2363 * 2364 * So we race with normal scheduler movements, but that's OK, as long 2365 * as the task is no longer on this CPU. 2366 */ 2367 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2368 struct task_struct *p, int dest_cpu) 2369 { 2370 /* Affinity changed (again). */ 2371 if (!is_cpu_allowed(p, dest_cpu)) 2372 return rq; 2373 2374 update_rq_clock(rq); 2375 rq = move_queued_task(rq, rf, p, dest_cpu); 2376 2377 return rq; 2378 } 2379 2380 /* 2381 * migration_cpu_stop - this will be executed by a highprio stopper thread 2382 * and performs thread migration by bumping thread off CPU then 2383 * 'pushing' onto another runqueue. 2384 */ 2385 static int migration_cpu_stop(void *data) 2386 { 2387 struct migration_arg *arg = data; 2388 struct set_affinity_pending *pending = arg->pending; 2389 struct task_struct *p = arg->task; 2390 struct rq *rq = this_rq(); 2391 bool complete = false; 2392 struct rq_flags rf; 2393 2394 /* 2395 * The original target CPU might have gone down and we might 2396 * be on another CPU but it doesn't matter. 2397 */ 2398 local_irq_save(rf.flags); 2399 /* 2400 * We need to explicitly wake pending tasks before running 2401 * __migrate_task() such that we will not miss enforcing cpus_ptr 2402 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2403 */ 2404 flush_smp_call_function_queue(); 2405 2406 raw_spin_lock(&p->pi_lock); 2407 rq_lock(rq, &rf); 2408 2409 /* 2410 * If we were passed a pending, then ->stop_pending was set, thus 2411 * p->migration_pending must have remained stable. 2412 */ 2413 WARN_ON_ONCE(pending && pending != p->migration_pending); 2414 2415 /* 2416 * If task_rq(p) != rq, it cannot be migrated here, because we're 2417 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2418 * we're holding p->pi_lock. 2419 */ 2420 if (task_rq(p) == rq) { 2421 if (is_migration_disabled(p)) 2422 goto out; 2423 2424 if (pending) { 2425 p->migration_pending = NULL; 2426 complete = true; 2427 2428 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2429 goto out; 2430 } 2431 2432 if (task_on_rq_queued(p)) 2433 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2434 else 2435 p->wake_cpu = arg->dest_cpu; 2436 2437 /* 2438 * XXX __migrate_task() can fail, at which point we might end 2439 * up running on a dodgy CPU, AFAICT this can only happen 2440 * during CPU hotplug, at which point we'll get pushed out 2441 * anyway, so it's probably not a big deal. 2442 */ 2443 2444 } else if (pending) { 2445 /* 2446 * This happens when we get migrated between migrate_enable()'s 2447 * preempt_enable() and scheduling the stopper task. At that 2448 * point we're a regular task again and not current anymore. 2449 * 2450 * A !PREEMPT kernel has a giant hole here, which makes it far 2451 * more likely. 2452 */ 2453 2454 /* 2455 * The task moved before the stopper got to run. We're holding 2456 * ->pi_lock, so the allowed mask is stable - if it got 2457 * somewhere allowed, we're done. 2458 */ 2459 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2460 p->migration_pending = NULL; 2461 complete = true; 2462 goto out; 2463 } 2464 2465 /* 2466 * When migrate_enable() hits a rq mis-match we can't reliably 2467 * determine is_migration_disabled() and so have to chase after 2468 * it. 2469 */ 2470 WARN_ON_ONCE(!pending->stop_pending); 2471 task_rq_unlock(rq, p, &rf); 2472 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2473 &pending->arg, &pending->stop_work); 2474 return 0; 2475 } 2476 out: 2477 if (pending) 2478 pending->stop_pending = false; 2479 task_rq_unlock(rq, p, &rf); 2480 2481 if (complete) 2482 complete_all(&pending->done); 2483 2484 return 0; 2485 } 2486 2487 int push_cpu_stop(void *arg) 2488 { 2489 struct rq *lowest_rq = NULL, *rq = this_rq(); 2490 struct task_struct *p = arg; 2491 2492 raw_spin_lock_irq(&p->pi_lock); 2493 raw_spin_rq_lock(rq); 2494 2495 if (task_rq(p) != rq) 2496 goto out_unlock; 2497 2498 if (is_migration_disabled(p)) { 2499 p->migration_flags |= MDF_PUSH; 2500 goto out_unlock; 2501 } 2502 2503 p->migration_flags &= ~MDF_PUSH; 2504 2505 if (p->sched_class->find_lock_rq) 2506 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2507 2508 if (!lowest_rq) 2509 goto out_unlock; 2510 2511 // XXX validate p is still the highest prio task 2512 if (task_rq(p) == rq) { 2513 deactivate_task(rq, p, 0); 2514 set_task_cpu(p, lowest_rq->cpu); 2515 activate_task(lowest_rq, p, 0); 2516 resched_curr(lowest_rq); 2517 } 2518 2519 double_unlock_balance(rq, lowest_rq); 2520 2521 out_unlock: 2522 rq->push_busy = false; 2523 raw_spin_rq_unlock(rq); 2524 raw_spin_unlock_irq(&p->pi_lock); 2525 2526 put_task_struct(p); 2527 return 0; 2528 } 2529 2530 /* 2531 * sched_class::set_cpus_allowed must do the below, but is not required to 2532 * actually call this function. 2533 */ 2534 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2535 { 2536 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2537 p->cpus_ptr = ctx->new_mask; 2538 return; 2539 } 2540 2541 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2542 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2543 2544 /* 2545 * Swap in a new user_cpus_ptr if SCA_USER flag set 2546 */ 2547 if (ctx->flags & SCA_USER) 2548 swap(p->user_cpus_ptr, ctx->user_mask); 2549 } 2550 2551 static void 2552 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2553 { 2554 struct rq *rq = task_rq(p); 2555 bool queued, running; 2556 2557 /* 2558 * This here violates the locking rules for affinity, since we're only 2559 * supposed to change these variables while holding both rq->lock and 2560 * p->pi_lock. 2561 * 2562 * HOWEVER, it magically works, because ttwu() is the only code that 2563 * accesses these variables under p->pi_lock and only does so after 2564 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2565 * before finish_task(). 2566 * 2567 * XXX do further audits, this smells like something putrid. 2568 */ 2569 if (ctx->flags & SCA_MIGRATE_DISABLE) 2570 SCHED_WARN_ON(!p->on_cpu); 2571 else 2572 lockdep_assert_held(&p->pi_lock); 2573 2574 queued = task_on_rq_queued(p); 2575 running = task_current(rq, p); 2576 2577 if (queued) { 2578 /* 2579 * Because __kthread_bind() calls this on blocked tasks without 2580 * holding rq->lock. 2581 */ 2582 lockdep_assert_rq_held(rq); 2583 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2584 } 2585 if (running) 2586 put_prev_task(rq, p); 2587 2588 p->sched_class->set_cpus_allowed(p, ctx); 2589 2590 if (queued) 2591 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2592 if (running) 2593 set_next_task(rq, p); 2594 } 2595 2596 /* 2597 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2598 * affinity (if any) should be destroyed too. 2599 */ 2600 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2601 { 2602 struct affinity_context ac = { 2603 .new_mask = new_mask, 2604 .user_mask = NULL, 2605 .flags = SCA_USER, /* clear the user requested mask */ 2606 }; 2607 union cpumask_rcuhead { 2608 cpumask_t cpumask; 2609 struct rcu_head rcu; 2610 }; 2611 2612 __do_set_cpus_allowed(p, &ac); 2613 2614 /* 2615 * Because this is called with p->pi_lock held, it is not possible 2616 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2617 * kfree_rcu(). 2618 */ 2619 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2620 } 2621 2622 static cpumask_t *alloc_user_cpus_ptr(int node) 2623 { 2624 /* 2625 * See do_set_cpus_allowed() above for the rcu_head usage. 2626 */ 2627 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2628 2629 return kmalloc_node(size, GFP_KERNEL, node); 2630 } 2631 2632 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2633 int node) 2634 { 2635 cpumask_t *user_mask; 2636 unsigned long flags; 2637 2638 /* 2639 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2640 * may differ by now due to racing. 2641 */ 2642 dst->user_cpus_ptr = NULL; 2643 2644 /* 2645 * This check is racy and losing the race is a valid situation. 2646 * It is not worth the extra overhead of taking the pi_lock on 2647 * every fork/clone. 2648 */ 2649 if (data_race(!src->user_cpus_ptr)) 2650 return 0; 2651 2652 user_mask = alloc_user_cpus_ptr(node); 2653 if (!user_mask) 2654 return -ENOMEM; 2655 2656 /* 2657 * Use pi_lock to protect content of user_cpus_ptr 2658 * 2659 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2660 * do_set_cpus_allowed(). 2661 */ 2662 raw_spin_lock_irqsave(&src->pi_lock, flags); 2663 if (src->user_cpus_ptr) { 2664 swap(dst->user_cpus_ptr, user_mask); 2665 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2666 } 2667 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2668 2669 if (unlikely(user_mask)) 2670 kfree(user_mask); 2671 2672 return 0; 2673 } 2674 2675 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2676 { 2677 struct cpumask *user_mask = NULL; 2678 2679 swap(p->user_cpus_ptr, user_mask); 2680 2681 return user_mask; 2682 } 2683 2684 void release_user_cpus_ptr(struct task_struct *p) 2685 { 2686 kfree(clear_user_cpus_ptr(p)); 2687 } 2688 2689 /* 2690 * This function is wildly self concurrent; here be dragons. 2691 * 2692 * 2693 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2694 * designated task is enqueued on an allowed CPU. If that task is currently 2695 * running, we have to kick it out using the CPU stopper. 2696 * 2697 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2698 * Consider: 2699 * 2700 * Initial conditions: P0->cpus_mask = [0, 1] 2701 * 2702 * P0@CPU0 P1 2703 * 2704 * migrate_disable(); 2705 * <preempted> 2706 * set_cpus_allowed_ptr(P0, [1]); 2707 * 2708 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2709 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2710 * This means we need the following scheme: 2711 * 2712 * P0@CPU0 P1 2713 * 2714 * migrate_disable(); 2715 * <preempted> 2716 * set_cpus_allowed_ptr(P0, [1]); 2717 * <blocks> 2718 * <resumes> 2719 * migrate_enable(); 2720 * __set_cpus_allowed_ptr(); 2721 * <wakes local stopper> 2722 * `--> <woken on migration completion> 2723 * 2724 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2725 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2726 * task p are serialized by p->pi_lock, which we can leverage: the one that 2727 * should come into effect at the end of the Migrate-Disable region is the last 2728 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2729 * but we still need to properly signal those waiting tasks at the appropriate 2730 * moment. 2731 * 2732 * This is implemented using struct set_affinity_pending. The first 2733 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2734 * setup an instance of that struct and install it on the targeted task_struct. 2735 * Any and all further callers will reuse that instance. Those then wait for 2736 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2737 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2738 * 2739 * 2740 * (1) In the cases covered above. There is one more where the completion is 2741 * signaled within affine_move_task() itself: when a subsequent affinity request 2742 * occurs after the stopper bailed out due to the targeted task still being 2743 * Migrate-Disable. Consider: 2744 * 2745 * Initial conditions: P0->cpus_mask = [0, 1] 2746 * 2747 * CPU0 P1 P2 2748 * <P0> 2749 * migrate_disable(); 2750 * <preempted> 2751 * set_cpus_allowed_ptr(P0, [1]); 2752 * <blocks> 2753 * <migration/0> 2754 * migration_cpu_stop() 2755 * is_migration_disabled() 2756 * <bails> 2757 * set_cpus_allowed_ptr(P0, [0, 1]); 2758 * <signal completion> 2759 * <awakes> 2760 * 2761 * Note that the above is safe vs a concurrent migrate_enable(), as any 2762 * pending affinity completion is preceded by an uninstallation of 2763 * p->migration_pending done with p->pi_lock held. 2764 */ 2765 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2766 int dest_cpu, unsigned int flags) 2767 __releases(rq->lock) 2768 __releases(p->pi_lock) 2769 { 2770 struct set_affinity_pending my_pending = { }, *pending = NULL; 2771 bool stop_pending, complete = false; 2772 2773 /* Can the task run on the task's current CPU? If so, we're done */ 2774 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2775 struct task_struct *push_task = NULL; 2776 2777 if ((flags & SCA_MIGRATE_ENABLE) && 2778 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2779 rq->push_busy = true; 2780 push_task = get_task_struct(p); 2781 } 2782 2783 /* 2784 * If there are pending waiters, but no pending stop_work, 2785 * then complete now. 2786 */ 2787 pending = p->migration_pending; 2788 if (pending && !pending->stop_pending) { 2789 p->migration_pending = NULL; 2790 complete = true; 2791 } 2792 2793 task_rq_unlock(rq, p, rf); 2794 2795 if (push_task) { 2796 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2797 p, &rq->push_work); 2798 } 2799 2800 if (complete) 2801 complete_all(&pending->done); 2802 2803 return 0; 2804 } 2805 2806 if (!(flags & SCA_MIGRATE_ENABLE)) { 2807 /* serialized by p->pi_lock */ 2808 if (!p->migration_pending) { 2809 /* Install the request */ 2810 refcount_set(&my_pending.refs, 1); 2811 init_completion(&my_pending.done); 2812 my_pending.arg = (struct migration_arg) { 2813 .task = p, 2814 .dest_cpu = dest_cpu, 2815 .pending = &my_pending, 2816 }; 2817 2818 p->migration_pending = &my_pending; 2819 } else { 2820 pending = p->migration_pending; 2821 refcount_inc(&pending->refs); 2822 /* 2823 * Affinity has changed, but we've already installed a 2824 * pending. migration_cpu_stop() *must* see this, else 2825 * we risk a completion of the pending despite having a 2826 * task on a disallowed CPU. 2827 * 2828 * Serialized by p->pi_lock, so this is safe. 2829 */ 2830 pending->arg.dest_cpu = dest_cpu; 2831 } 2832 } 2833 pending = p->migration_pending; 2834 /* 2835 * - !MIGRATE_ENABLE: 2836 * we'll have installed a pending if there wasn't one already. 2837 * 2838 * - MIGRATE_ENABLE: 2839 * we're here because the current CPU isn't matching anymore, 2840 * the only way that can happen is because of a concurrent 2841 * set_cpus_allowed_ptr() call, which should then still be 2842 * pending completion. 2843 * 2844 * Either way, we really should have a @pending here. 2845 */ 2846 if (WARN_ON_ONCE(!pending)) { 2847 task_rq_unlock(rq, p, rf); 2848 return -EINVAL; 2849 } 2850 2851 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2852 /* 2853 * MIGRATE_ENABLE gets here because 'p == current', but for 2854 * anything else we cannot do is_migration_disabled(), punt 2855 * and have the stopper function handle it all race-free. 2856 */ 2857 stop_pending = pending->stop_pending; 2858 if (!stop_pending) 2859 pending->stop_pending = true; 2860 2861 if (flags & SCA_MIGRATE_ENABLE) 2862 p->migration_flags &= ~MDF_PUSH; 2863 2864 task_rq_unlock(rq, p, rf); 2865 2866 if (!stop_pending) { 2867 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2868 &pending->arg, &pending->stop_work); 2869 } 2870 2871 if (flags & SCA_MIGRATE_ENABLE) 2872 return 0; 2873 } else { 2874 2875 if (!is_migration_disabled(p)) { 2876 if (task_on_rq_queued(p)) 2877 rq = move_queued_task(rq, rf, p, dest_cpu); 2878 2879 if (!pending->stop_pending) { 2880 p->migration_pending = NULL; 2881 complete = true; 2882 } 2883 } 2884 task_rq_unlock(rq, p, rf); 2885 2886 if (complete) 2887 complete_all(&pending->done); 2888 } 2889 2890 wait_for_completion(&pending->done); 2891 2892 if (refcount_dec_and_test(&pending->refs)) 2893 wake_up_var(&pending->refs); /* No UaF, just an address */ 2894 2895 /* 2896 * Block the original owner of &pending until all subsequent callers 2897 * have seen the completion and decremented the refcount 2898 */ 2899 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2900 2901 /* ARGH */ 2902 WARN_ON_ONCE(my_pending.stop_pending); 2903 2904 return 0; 2905 } 2906 2907 /* 2908 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2909 */ 2910 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2911 struct affinity_context *ctx, 2912 struct rq *rq, 2913 struct rq_flags *rf) 2914 __releases(rq->lock) 2915 __releases(p->pi_lock) 2916 { 2917 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2918 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2919 bool kthread = p->flags & PF_KTHREAD; 2920 unsigned int dest_cpu; 2921 int ret = 0; 2922 2923 update_rq_clock(rq); 2924 2925 if (kthread || is_migration_disabled(p)) { 2926 /* 2927 * Kernel threads are allowed on online && !active CPUs, 2928 * however, during cpu-hot-unplug, even these might get pushed 2929 * away if not KTHREAD_IS_PER_CPU. 2930 * 2931 * Specifically, migration_disabled() tasks must not fail the 2932 * cpumask_any_and_distribute() pick below, esp. so on 2933 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2934 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2935 */ 2936 cpu_valid_mask = cpu_online_mask; 2937 } 2938 2939 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 2940 ret = -EINVAL; 2941 goto out; 2942 } 2943 2944 /* 2945 * Must re-check here, to close a race against __kthread_bind(), 2946 * sched_setaffinity() is not guaranteed to observe the flag. 2947 */ 2948 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2949 ret = -EINVAL; 2950 goto out; 2951 } 2952 2953 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 2954 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) 2955 goto out; 2956 2957 if (WARN_ON_ONCE(p == current && 2958 is_migration_disabled(p) && 2959 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 2960 ret = -EBUSY; 2961 goto out; 2962 } 2963 } 2964 2965 /* 2966 * Picking a ~random cpu helps in cases where we are changing affinity 2967 * for groups of tasks (ie. cpuset), so that load balancing is not 2968 * immediately required to distribute the tasks within their new mask. 2969 */ 2970 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 2971 if (dest_cpu >= nr_cpu_ids) { 2972 ret = -EINVAL; 2973 goto out; 2974 } 2975 2976 __do_set_cpus_allowed(p, ctx); 2977 2978 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 2979 2980 out: 2981 task_rq_unlock(rq, p, rf); 2982 2983 return ret; 2984 } 2985 2986 /* 2987 * Change a given task's CPU affinity. Migrate the thread to a 2988 * proper CPU and schedule it away if the CPU it's executing on 2989 * is removed from the allowed bitmask. 2990 * 2991 * NOTE: the caller must have a valid reference to the task, the 2992 * task must not exit() & deallocate itself prematurely. The 2993 * call is not atomic; no spinlocks may be held. 2994 */ 2995 static int __set_cpus_allowed_ptr(struct task_struct *p, 2996 struct affinity_context *ctx) 2997 { 2998 struct rq_flags rf; 2999 struct rq *rq; 3000 3001 rq = task_rq_lock(p, &rf); 3002 /* 3003 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3004 * flags are set. 3005 */ 3006 if (p->user_cpus_ptr && 3007 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3008 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3009 ctx->new_mask = rq->scratch_mask; 3010 3011 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3012 } 3013 3014 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3015 { 3016 struct affinity_context ac = { 3017 .new_mask = new_mask, 3018 .flags = 0, 3019 }; 3020 3021 return __set_cpus_allowed_ptr(p, &ac); 3022 } 3023 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3024 3025 /* 3026 * Change a given task's CPU affinity to the intersection of its current 3027 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3028 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3029 * affinity or use cpu_online_mask instead. 3030 * 3031 * If the resulting mask is empty, leave the affinity unchanged and return 3032 * -EINVAL. 3033 */ 3034 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3035 struct cpumask *new_mask, 3036 const struct cpumask *subset_mask) 3037 { 3038 struct affinity_context ac = { 3039 .new_mask = new_mask, 3040 .flags = 0, 3041 }; 3042 struct rq_flags rf; 3043 struct rq *rq; 3044 int err; 3045 3046 rq = task_rq_lock(p, &rf); 3047 3048 /* 3049 * Forcefully restricting the affinity of a deadline task is 3050 * likely to cause problems, so fail and noisily override the 3051 * mask entirely. 3052 */ 3053 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3054 err = -EPERM; 3055 goto err_unlock; 3056 } 3057 3058 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3059 err = -EINVAL; 3060 goto err_unlock; 3061 } 3062 3063 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3064 3065 err_unlock: 3066 task_rq_unlock(rq, p, &rf); 3067 return err; 3068 } 3069 3070 /* 3071 * Restrict the CPU affinity of task @p so that it is a subset of 3072 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3073 * old affinity mask. If the resulting mask is empty, we warn and walk 3074 * up the cpuset hierarchy until we find a suitable mask. 3075 */ 3076 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3077 { 3078 cpumask_var_t new_mask; 3079 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3080 3081 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3082 3083 /* 3084 * __migrate_task() can fail silently in the face of concurrent 3085 * offlining of the chosen destination CPU, so take the hotplug 3086 * lock to ensure that the migration succeeds. 3087 */ 3088 cpus_read_lock(); 3089 if (!cpumask_available(new_mask)) 3090 goto out_set_mask; 3091 3092 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3093 goto out_free_mask; 3094 3095 /* 3096 * We failed to find a valid subset of the affinity mask for the 3097 * task, so override it based on its cpuset hierarchy. 3098 */ 3099 cpuset_cpus_allowed(p, new_mask); 3100 override_mask = new_mask; 3101 3102 out_set_mask: 3103 if (printk_ratelimit()) { 3104 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3105 task_pid_nr(p), p->comm, 3106 cpumask_pr_args(override_mask)); 3107 } 3108 3109 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3110 out_free_mask: 3111 cpus_read_unlock(); 3112 free_cpumask_var(new_mask); 3113 } 3114 3115 static int 3116 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3117 3118 /* 3119 * Restore the affinity of a task @p which was previously restricted by a 3120 * call to force_compatible_cpus_allowed_ptr(). 3121 * 3122 * It is the caller's responsibility to serialise this with any calls to 3123 * force_compatible_cpus_allowed_ptr(@p). 3124 */ 3125 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3126 { 3127 struct affinity_context ac = { 3128 .new_mask = task_user_cpus(p), 3129 .flags = 0, 3130 }; 3131 int ret; 3132 3133 /* 3134 * Try to restore the old affinity mask with __sched_setaffinity(). 3135 * Cpuset masking will be done there too. 3136 */ 3137 ret = __sched_setaffinity(p, &ac); 3138 WARN_ON_ONCE(ret); 3139 } 3140 3141 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3142 { 3143 #ifdef CONFIG_SCHED_DEBUG 3144 unsigned int state = READ_ONCE(p->__state); 3145 3146 /* 3147 * We should never call set_task_cpu() on a blocked task, 3148 * ttwu() will sort out the placement. 3149 */ 3150 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3151 3152 /* 3153 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3154 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3155 * time relying on p->on_rq. 3156 */ 3157 WARN_ON_ONCE(state == TASK_RUNNING && 3158 p->sched_class == &fair_sched_class && 3159 (p->on_rq && !task_on_rq_migrating(p))); 3160 3161 #ifdef CONFIG_LOCKDEP 3162 /* 3163 * The caller should hold either p->pi_lock or rq->lock, when changing 3164 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3165 * 3166 * sched_move_task() holds both and thus holding either pins the cgroup, 3167 * see task_group(). 3168 * 3169 * Furthermore, all task_rq users should acquire both locks, see 3170 * task_rq_lock(). 3171 */ 3172 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3173 lockdep_is_held(__rq_lockp(task_rq(p))))); 3174 #endif 3175 /* 3176 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3177 */ 3178 WARN_ON_ONCE(!cpu_online(new_cpu)); 3179 3180 WARN_ON_ONCE(is_migration_disabled(p)); 3181 #endif 3182 3183 trace_sched_migrate_task(p, new_cpu); 3184 3185 if (task_cpu(p) != new_cpu) { 3186 if (p->sched_class->migrate_task_rq) 3187 p->sched_class->migrate_task_rq(p, new_cpu); 3188 p->se.nr_migrations++; 3189 rseq_migrate(p); 3190 perf_event_task_migrate(p); 3191 } 3192 3193 __set_task_cpu(p, new_cpu); 3194 } 3195 3196 #ifdef CONFIG_NUMA_BALANCING 3197 static void __migrate_swap_task(struct task_struct *p, int cpu) 3198 { 3199 if (task_on_rq_queued(p)) { 3200 struct rq *src_rq, *dst_rq; 3201 struct rq_flags srf, drf; 3202 3203 src_rq = task_rq(p); 3204 dst_rq = cpu_rq(cpu); 3205 3206 rq_pin_lock(src_rq, &srf); 3207 rq_pin_lock(dst_rq, &drf); 3208 3209 deactivate_task(src_rq, p, 0); 3210 set_task_cpu(p, cpu); 3211 activate_task(dst_rq, p, 0); 3212 check_preempt_curr(dst_rq, p, 0); 3213 3214 rq_unpin_lock(dst_rq, &drf); 3215 rq_unpin_lock(src_rq, &srf); 3216 3217 } else { 3218 /* 3219 * Task isn't running anymore; make it appear like we migrated 3220 * it before it went to sleep. This means on wakeup we make the 3221 * previous CPU our target instead of where it really is. 3222 */ 3223 p->wake_cpu = cpu; 3224 } 3225 } 3226 3227 struct migration_swap_arg { 3228 struct task_struct *src_task, *dst_task; 3229 int src_cpu, dst_cpu; 3230 }; 3231 3232 static int migrate_swap_stop(void *data) 3233 { 3234 struct migration_swap_arg *arg = data; 3235 struct rq *src_rq, *dst_rq; 3236 int ret = -EAGAIN; 3237 3238 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3239 return -EAGAIN; 3240 3241 src_rq = cpu_rq(arg->src_cpu); 3242 dst_rq = cpu_rq(arg->dst_cpu); 3243 3244 double_raw_lock(&arg->src_task->pi_lock, 3245 &arg->dst_task->pi_lock); 3246 double_rq_lock(src_rq, dst_rq); 3247 3248 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3249 goto unlock; 3250 3251 if (task_cpu(arg->src_task) != arg->src_cpu) 3252 goto unlock; 3253 3254 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3255 goto unlock; 3256 3257 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3258 goto unlock; 3259 3260 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3261 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3262 3263 ret = 0; 3264 3265 unlock: 3266 double_rq_unlock(src_rq, dst_rq); 3267 raw_spin_unlock(&arg->dst_task->pi_lock); 3268 raw_spin_unlock(&arg->src_task->pi_lock); 3269 3270 return ret; 3271 } 3272 3273 /* 3274 * Cross migrate two tasks 3275 */ 3276 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3277 int target_cpu, int curr_cpu) 3278 { 3279 struct migration_swap_arg arg; 3280 int ret = -EINVAL; 3281 3282 arg = (struct migration_swap_arg){ 3283 .src_task = cur, 3284 .src_cpu = curr_cpu, 3285 .dst_task = p, 3286 .dst_cpu = target_cpu, 3287 }; 3288 3289 if (arg.src_cpu == arg.dst_cpu) 3290 goto out; 3291 3292 /* 3293 * These three tests are all lockless; this is OK since all of them 3294 * will be re-checked with proper locks held further down the line. 3295 */ 3296 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3297 goto out; 3298 3299 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3300 goto out; 3301 3302 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3303 goto out; 3304 3305 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3306 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3307 3308 out: 3309 return ret; 3310 } 3311 #endif /* CONFIG_NUMA_BALANCING */ 3312 3313 /* 3314 * wait_task_inactive - wait for a thread to unschedule. 3315 * 3316 * Wait for the thread to block in any of the states set in @match_state. 3317 * If it changes, i.e. @p might have woken up, then return zero. When we 3318 * succeed in waiting for @p to be off its CPU, we return a positive number 3319 * (its total switch count). If a second call a short while later returns the 3320 * same number, the caller can be sure that @p has remained unscheduled the 3321 * whole time. 3322 * 3323 * The caller must ensure that the task *will* unschedule sometime soon, 3324 * else this function might spin for a *long* time. This function can't 3325 * be called with interrupts off, or it may introduce deadlock with 3326 * smp_call_function() if an IPI is sent by the same process we are 3327 * waiting to become inactive. 3328 */ 3329 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3330 { 3331 int running, queued; 3332 struct rq_flags rf; 3333 unsigned long ncsw; 3334 struct rq *rq; 3335 3336 for (;;) { 3337 /* 3338 * We do the initial early heuristics without holding 3339 * any task-queue locks at all. We'll only try to get 3340 * the runqueue lock when things look like they will 3341 * work out! 3342 */ 3343 rq = task_rq(p); 3344 3345 /* 3346 * If the task is actively running on another CPU 3347 * still, just relax and busy-wait without holding 3348 * any locks. 3349 * 3350 * NOTE! Since we don't hold any locks, it's not 3351 * even sure that "rq" stays as the right runqueue! 3352 * But we don't care, since "task_on_cpu()" will 3353 * return false if the runqueue has changed and p 3354 * is actually now running somewhere else! 3355 */ 3356 while (task_on_cpu(rq, p)) { 3357 if (!(READ_ONCE(p->__state) & match_state)) 3358 return 0; 3359 cpu_relax(); 3360 } 3361 3362 /* 3363 * Ok, time to look more closely! We need the rq 3364 * lock now, to be *sure*. If we're wrong, we'll 3365 * just go back and repeat. 3366 */ 3367 rq = task_rq_lock(p, &rf); 3368 trace_sched_wait_task(p); 3369 running = task_on_cpu(rq, p); 3370 queued = task_on_rq_queued(p); 3371 ncsw = 0; 3372 if (READ_ONCE(p->__state) & match_state) 3373 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3374 task_rq_unlock(rq, p, &rf); 3375 3376 /* 3377 * If it changed from the expected state, bail out now. 3378 */ 3379 if (unlikely(!ncsw)) 3380 break; 3381 3382 /* 3383 * Was it really running after all now that we 3384 * checked with the proper locks actually held? 3385 * 3386 * Oops. Go back and try again.. 3387 */ 3388 if (unlikely(running)) { 3389 cpu_relax(); 3390 continue; 3391 } 3392 3393 /* 3394 * It's not enough that it's not actively running, 3395 * it must be off the runqueue _entirely_, and not 3396 * preempted! 3397 * 3398 * So if it was still runnable (but just not actively 3399 * running right now), it's preempted, and we should 3400 * yield - it could be a while. 3401 */ 3402 if (unlikely(queued)) { 3403 ktime_t to = NSEC_PER_SEC / HZ; 3404 3405 set_current_state(TASK_UNINTERRUPTIBLE); 3406 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3407 continue; 3408 } 3409 3410 /* 3411 * Ahh, all good. It wasn't running, and it wasn't 3412 * runnable, which means that it will never become 3413 * running in the future either. We're all done! 3414 */ 3415 break; 3416 } 3417 3418 return ncsw; 3419 } 3420 3421 /*** 3422 * kick_process - kick a running thread to enter/exit the kernel 3423 * @p: the to-be-kicked thread 3424 * 3425 * Cause a process which is running on another CPU to enter 3426 * kernel-mode, without any delay. (to get signals handled.) 3427 * 3428 * NOTE: this function doesn't have to take the runqueue lock, 3429 * because all it wants to ensure is that the remote task enters 3430 * the kernel. If the IPI races and the task has been migrated 3431 * to another CPU then no harm is done and the purpose has been 3432 * achieved as well. 3433 */ 3434 void kick_process(struct task_struct *p) 3435 { 3436 int cpu; 3437 3438 preempt_disable(); 3439 cpu = task_cpu(p); 3440 if ((cpu != smp_processor_id()) && task_curr(p)) 3441 smp_send_reschedule(cpu); 3442 preempt_enable(); 3443 } 3444 EXPORT_SYMBOL_GPL(kick_process); 3445 3446 /* 3447 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3448 * 3449 * A few notes on cpu_active vs cpu_online: 3450 * 3451 * - cpu_active must be a subset of cpu_online 3452 * 3453 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3454 * see __set_cpus_allowed_ptr(). At this point the newly online 3455 * CPU isn't yet part of the sched domains, and balancing will not 3456 * see it. 3457 * 3458 * - on CPU-down we clear cpu_active() to mask the sched domains and 3459 * avoid the load balancer to place new tasks on the to be removed 3460 * CPU. Existing tasks will remain running there and will be taken 3461 * off. 3462 * 3463 * This means that fallback selection must not select !active CPUs. 3464 * And can assume that any active CPU must be online. Conversely 3465 * select_task_rq() below may allow selection of !active CPUs in order 3466 * to satisfy the above rules. 3467 */ 3468 static int select_fallback_rq(int cpu, struct task_struct *p) 3469 { 3470 int nid = cpu_to_node(cpu); 3471 const struct cpumask *nodemask = NULL; 3472 enum { cpuset, possible, fail } state = cpuset; 3473 int dest_cpu; 3474 3475 /* 3476 * If the node that the CPU is on has been offlined, cpu_to_node() 3477 * will return -1. There is no CPU on the node, and we should 3478 * select the CPU on the other node. 3479 */ 3480 if (nid != -1) { 3481 nodemask = cpumask_of_node(nid); 3482 3483 /* Look for allowed, online CPU in same node. */ 3484 for_each_cpu(dest_cpu, nodemask) { 3485 if (is_cpu_allowed(p, dest_cpu)) 3486 return dest_cpu; 3487 } 3488 } 3489 3490 for (;;) { 3491 /* Any allowed, online CPU? */ 3492 for_each_cpu(dest_cpu, p->cpus_ptr) { 3493 if (!is_cpu_allowed(p, dest_cpu)) 3494 continue; 3495 3496 goto out; 3497 } 3498 3499 /* No more Mr. Nice Guy. */ 3500 switch (state) { 3501 case cpuset: 3502 if (cpuset_cpus_allowed_fallback(p)) { 3503 state = possible; 3504 break; 3505 } 3506 fallthrough; 3507 case possible: 3508 /* 3509 * XXX When called from select_task_rq() we only 3510 * hold p->pi_lock and again violate locking order. 3511 * 3512 * More yuck to audit. 3513 */ 3514 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3515 state = fail; 3516 break; 3517 case fail: 3518 BUG(); 3519 break; 3520 } 3521 } 3522 3523 out: 3524 if (state != cpuset) { 3525 /* 3526 * Don't tell them about moving exiting tasks or 3527 * kernel threads (both mm NULL), since they never 3528 * leave kernel. 3529 */ 3530 if (p->mm && printk_ratelimit()) { 3531 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3532 task_pid_nr(p), p->comm, cpu); 3533 } 3534 } 3535 3536 return dest_cpu; 3537 } 3538 3539 /* 3540 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3541 */ 3542 static inline 3543 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3544 { 3545 lockdep_assert_held(&p->pi_lock); 3546 3547 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3548 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3549 else 3550 cpu = cpumask_any(p->cpus_ptr); 3551 3552 /* 3553 * In order not to call set_task_cpu() on a blocking task we need 3554 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3555 * CPU. 3556 * 3557 * Since this is common to all placement strategies, this lives here. 3558 * 3559 * [ this allows ->select_task() to simply return task_cpu(p) and 3560 * not worry about this generic constraint ] 3561 */ 3562 if (unlikely(!is_cpu_allowed(p, cpu))) 3563 cpu = select_fallback_rq(task_cpu(p), p); 3564 3565 return cpu; 3566 } 3567 3568 void sched_set_stop_task(int cpu, struct task_struct *stop) 3569 { 3570 static struct lock_class_key stop_pi_lock; 3571 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3572 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3573 3574 if (stop) { 3575 /* 3576 * Make it appear like a SCHED_FIFO task, its something 3577 * userspace knows about and won't get confused about. 3578 * 3579 * Also, it will make PI more or less work without too 3580 * much confusion -- but then, stop work should not 3581 * rely on PI working anyway. 3582 */ 3583 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3584 3585 stop->sched_class = &stop_sched_class; 3586 3587 /* 3588 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3589 * adjust the effective priority of a task. As a result, 3590 * rt_mutex_setprio() can trigger (RT) balancing operations, 3591 * which can then trigger wakeups of the stop thread to push 3592 * around the current task. 3593 * 3594 * The stop task itself will never be part of the PI-chain, it 3595 * never blocks, therefore that ->pi_lock recursion is safe. 3596 * Tell lockdep about this by placing the stop->pi_lock in its 3597 * own class. 3598 */ 3599 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3600 } 3601 3602 cpu_rq(cpu)->stop = stop; 3603 3604 if (old_stop) { 3605 /* 3606 * Reset it back to a normal scheduling class so that 3607 * it can die in pieces. 3608 */ 3609 old_stop->sched_class = &rt_sched_class; 3610 } 3611 } 3612 3613 #else /* CONFIG_SMP */ 3614 3615 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3616 struct affinity_context *ctx) 3617 { 3618 return set_cpus_allowed_ptr(p, ctx->new_mask); 3619 } 3620 3621 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3622 3623 static inline bool rq_has_pinned_tasks(struct rq *rq) 3624 { 3625 return false; 3626 } 3627 3628 static inline cpumask_t *alloc_user_cpus_ptr(int node) 3629 { 3630 return NULL; 3631 } 3632 3633 #endif /* !CONFIG_SMP */ 3634 3635 static void 3636 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3637 { 3638 struct rq *rq; 3639 3640 if (!schedstat_enabled()) 3641 return; 3642 3643 rq = this_rq(); 3644 3645 #ifdef CONFIG_SMP 3646 if (cpu == rq->cpu) { 3647 __schedstat_inc(rq->ttwu_local); 3648 __schedstat_inc(p->stats.nr_wakeups_local); 3649 } else { 3650 struct sched_domain *sd; 3651 3652 __schedstat_inc(p->stats.nr_wakeups_remote); 3653 rcu_read_lock(); 3654 for_each_domain(rq->cpu, sd) { 3655 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3656 __schedstat_inc(sd->ttwu_wake_remote); 3657 break; 3658 } 3659 } 3660 rcu_read_unlock(); 3661 } 3662 3663 if (wake_flags & WF_MIGRATED) 3664 __schedstat_inc(p->stats.nr_wakeups_migrate); 3665 #endif /* CONFIG_SMP */ 3666 3667 __schedstat_inc(rq->ttwu_count); 3668 __schedstat_inc(p->stats.nr_wakeups); 3669 3670 if (wake_flags & WF_SYNC) 3671 __schedstat_inc(p->stats.nr_wakeups_sync); 3672 } 3673 3674 /* 3675 * Mark the task runnable and perform wakeup-preemption. 3676 */ 3677 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3678 struct rq_flags *rf) 3679 { 3680 check_preempt_curr(rq, p, wake_flags); 3681 WRITE_ONCE(p->__state, TASK_RUNNING); 3682 trace_sched_wakeup(p); 3683 3684 #ifdef CONFIG_SMP 3685 if (p->sched_class->task_woken) { 3686 /* 3687 * Our task @p is fully woken up and running; so it's safe to 3688 * drop the rq->lock, hereafter rq is only used for statistics. 3689 */ 3690 rq_unpin_lock(rq, rf); 3691 p->sched_class->task_woken(rq, p); 3692 rq_repin_lock(rq, rf); 3693 } 3694 3695 if (rq->idle_stamp) { 3696 u64 delta = rq_clock(rq) - rq->idle_stamp; 3697 u64 max = 2*rq->max_idle_balance_cost; 3698 3699 update_avg(&rq->avg_idle, delta); 3700 3701 if (rq->avg_idle > max) 3702 rq->avg_idle = max; 3703 3704 rq->wake_stamp = jiffies; 3705 rq->wake_avg_idle = rq->avg_idle / 2; 3706 3707 rq->idle_stamp = 0; 3708 } 3709 #endif 3710 } 3711 3712 static void 3713 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3714 struct rq_flags *rf) 3715 { 3716 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3717 3718 lockdep_assert_rq_held(rq); 3719 3720 if (p->sched_contributes_to_load) 3721 rq->nr_uninterruptible--; 3722 3723 #ifdef CONFIG_SMP 3724 if (wake_flags & WF_MIGRATED) 3725 en_flags |= ENQUEUE_MIGRATED; 3726 else 3727 #endif 3728 if (p->in_iowait) { 3729 delayacct_blkio_end(p); 3730 atomic_dec(&task_rq(p)->nr_iowait); 3731 } 3732 3733 activate_task(rq, p, en_flags); 3734 ttwu_do_wakeup(rq, p, wake_flags, rf); 3735 } 3736 3737 /* 3738 * Consider @p being inside a wait loop: 3739 * 3740 * for (;;) { 3741 * set_current_state(TASK_UNINTERRUPTIBLE); 3742 * 3743 * if (CONDITION) 3744 * break; 3745 * 3746 * schedule(); 3747 * } 3748 * __set_current_state(TASK_RUNNING); 3749 * 3750 * between set_current_state() and schedule(). In this case @p is still 3751 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3752 * an atomic manner. 3753 * 3754 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3755 * then schedule() must still happen and p->state can be changed to 3756 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3757 * need to do a full wakeup with enqueue. 3758 * 3759 * Returns: %true when the wakeup is done, 3760 * %false otherwise. 3761 */ 3762 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3763 { 3764 struct rq_flags rf; 3765 struct rq *rq; 3766 int ret = 0; 3767 3768 rq = __task_rq_lock(p, &rf); 3769 if (task_on_rq_queued(p)) { 3770 /* check_preempt_curr() may use rq clock */ 3771 update_rq_clock(rq); 3772 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3773 ret = 1; 3774 } 3775 __task_rq_unlock(rq, &rf); 3776 3777 return ret; 3778 } 3779 3780 #ifdef CONFIG_SMP 3781 void sched_ttwu_pending(void *arg) 3782 { 3783 struct llist_node *llist = arg; 3784 struct rq *rq = this_rq(); 3785 struct task_struct *p, *t; 3786 struct rq_flags rf; 3787 3788 if (!llist) 3789 return; 3790 3791 rq_lock_irqsave(rq, &rf); 3792 update_rq_clock(rq); 3793 3794 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3795 if (WARN_ON_ONCE(p->on_cpu)) 3796 smp_cond_load_acquire(&p->on_cpu, !VAL); 3797 3798 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3799 set_task_cpu(p, cpu_of(rq)); 3800 3801 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3802 } 3803 3804 /* 3805 * Must be after enqueueing at least once task such that 3806 * idle_cpu() does not observe a false-negative -- if it does, 3807 * it is possible for select_idle_siblings() to stack a number 3808 * of tasks on this CPU during that window. 3809 * 3810 * It is ok to clear ttwu_pending when another task pending. 3811 * We will receive IPI after local irq enabled and then enqueue it. 3812 * Since now nr_running > 0, idle_cpu() will always get correct result. 3813 */ 3814 WRITE_ONCE(rq->ttwu_pending, 0); 3815 rq_unlock_irqrestore(rq, &rf); 3816 } 3817 3818 void send_call_function_single_ipi(int cpu) 3819 { 3820 struct rq *rq = cpu_rq(cpu); 3821 3822 if (!set_nr_if_polling(rq->idle)) 3823 arch_send_call_function_single_ipi(cpu); 3824 else 3825 trace_sched_wake_idle_without_ipi(cpu); 3826 } 3827 3828 /* 3829 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3830 * necessary. The wakee CPU on receipt of the IPI will queue the task 3831 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3832 * of the wakeup instead of the waker. 3833 */ 3834 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3835 { 3836 struct rq *rq = cpu_rq(cpu); 3837 3838 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3839 3840 WRITE_ONCE(rq->ttwu_pending, 1); 3841 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3842 } 3843 3844 void wake_up_if_idle(int cpu) 3845 { 3846 struct rq *rq = cpu_rq(cpu); 3847 struct rq_flags rf; 3848 3849 rcu_read_lock(); 3850 3851 if (!is_idle_task(rcu_dereference(rq->curr))) 3852 goto out; 3853 3854 rq_lock_irqsave(rq, &rf); 3855 if (is_idle_task(rq->curr)) 3856 resched_curr(rq); 3857 /* Else CPU is not idle, do nothing here: */ 3858 rq_unlock_irqrestore(rq, &rf); 3859 3860 out: 3861 rcu_read_unlock(); 3862 } 3863 3864 bool cpus_share_cache(int this_cpu, int that_cpu) 3865 { 3866 if (this_cpu == that_cpu) 3867 return true; 3868 3869 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3870 } 3871 3872 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3873 { 3874 /* 3875 * Do not complicate things with the async wake_list while the CPU is 3876 * in hotplug state. 3877 */ 3878 if (!cpu_active(cpu)) 3879 return false; 3880 3881 /* Ensure the task will still be allowed to run on the CPU. */ 3882 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3883 return false; 3884 3885 /* 3886 * If the CPU does not share cache, then queue the task on the 3887 * remote rqs wakelist to avoid accessing remote data. 3888 */ 3889 if (!cpus_share_cache(smp_processor_id(), cpu)) 3890 return true; 3891 3892 if (cpu == smp_processor_id()) 3893 return false; 3894 3895 /* 3896 * If the wakee cpu is idle, or the task is descheduling and the 3897 * only running task on the CPU, then use the wakelist to offload 3898 * the task activation to the idle (or soon-to-be-idle) CPU as 3899 * the current CPU is likely busy. nr_running is checked to 3900 * avoid unnecessary task stacking. 3901 * 3902 * Note that we can only get here with (wakee) p->on_rq=0, 3903 * p->on_cpu can be whatever, we've done the dequeue, so 3904 * the wakee has been accounted out of ->nr_running. 3905 */ 3906 if (!cpu_rq(cpu)->nr_running) 3907 return true; 3908 3909 return false; 3910 } 3911 3912 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3913 { 3914 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3915 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3916 __ttwu_queue_wakelist(p, cpu, wake_flags); 3917 return true; 3918 } 3919 3920 return false; 3921 } 3922 3923 #else /* !CONFIG_SMP */ 3924 3925 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3926 { 3927 return false; 3928 } 3929 3930 #endif /* CONFIG_SMP */ 3931 3932 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3933 { 3934 struct rq *rq = cpu_rq(cpu); 3935 struct rq_flags rf; 3936 3937 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3938 return; 3939 3940 rq_lock(rq, &rf); 3941 update_rq_clock(rq); 3942 ttwu_do_activate(rq, p, wake_flags, &rf); 3943 rq_unlock(rq, &rf); 3944 } 3945 3946 /* 3947 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3948 * 3949 * The caller holds p::pi_lock if p != current or has preemption 3950 * disabled when p == current. 3951 * 3952 * The rules of PREEMPT_RT saved_state: 3953 * 3954 * The related locking code always holds p::pi_lock when updating 3955 * p::saved_state, which means the code is fully serialized in both cases. 3956 * 3957 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3958 * bits set. This allows to distinguish all wakeup scenarios. 3959 */ 3960 static __always_inline 3961 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3962 { 3963 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3964 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3965 state != TASK_RTLOCK_WAIT); 3966 } 3967 3968 if (READ_ONCE(p->__state) & state) { 3969 *success = 1; 3970 return true; 3971 } 3972 3973 #ifdef CONFIG_PREEMPT_RT 3974 /* 3975 * Saved state preserves the task state across blocking on 3976 * an RT lock. If the state matches, set p::saved_state to 3977 * TASK_RUNNING, but do not wake the task because it waits 3978 * for a lock wakeup. Also indicate success because from 3979 * the regular waker's point of view this has succeeded. 3980 * 3981 * After acquiring the lock the task will restore p::__state 3982 * from p::saved_state which ensures that the regular 3983 * wakeup is not lost. The restore will also set 3984 * p::saved_state to TASK_RUNNING so any further tests will 3985 * not result in false positives vs. @success 3986 */ 3987 if (p->saved_state & state) { 3988 p->saved_state = TASK_RUNNING; 3989 *success = 1; 3990 } 3991 #endif 3992 return false; 3993 } 3994 3995 /* 3996 * Notes on Program-Order guarantees on SMP systems. 3997 * 3998 * MIGRATION 3999 * 4000 * The basic program-order guarantee on SMP systems is that when a task [t] 4001 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4002 * execution on its new CPU [c1]. 4003 * 4004 * For migration (of runnable tasks) this is provided by the following means: 4005 * 4006 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4007 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4008 * rq(c1)->lock (if not at the same time, then in that order). 4009 * C) LOCK of the rq(c1)->lock scheduling in task 4010 * 4011 * Release/acquire chaining guarantees that B happens after A and C after B. 4012 * Note: the CPU doing B need not be c0 or c1 4013 * 4014 * Example: 4015 * 4016 * CPU0 CPU1 CPU2 4017 * 4018 * LOCK rq(0)->lock 4019 * sched-out X 4020 * sched-in Y 4021 * UNLOCK rq(0)->lock 4022 * 4023 * LOCK rq(0)->lock // orders against CPU0 4024 * dequeue X 4025 * UNLOCK rq(0)->lock 4026 * 4027 * LOCK rq(1)->lock 4028 * enqueue X 4029 * UNLOCK rq(1)->lock 4030 * 4031 * LOCK rq(1)->lock // orders against CPU2 4032 * sched-out Z 4033 * sched-in X 4034 * UNLOCK rq(1)->lock 4035 * 4036 * 4037 * BLOCKING -- aka. SLEEP + WAKEUP 4038 * 4039 * For blocking we (obviously) need to provide the same guarantee as for 4040 * migration. However the means are completely different as there is no lock 4041 * chain to provide order. Instead we do: 4042 * 4043 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4044 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4045 * 4046 * Example: 4047 * 4048 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4049 * 4050 * LOCK rq(0)->lock LOCK X->pi_lock 4051 * dequeue X 4052 * sched-out X 4053 * smp_store_release(X->on_cpu, 0); 4054 * 4055 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4056 * X->state = WAKING 4057 * set_task_cpu(X,2) 4058 * 4059 * LOCK rq(2)->lock 4060 * enqueue X 4061 * X->state = RUNNING 4062 * UNLOCK rq(2)->lock 4063 * 4064 * LOCK rq(2)->lock // orders against CPU1 4065 * sched-out Z 4066 * sched-in X 4067 * UNLOCK rq(2)->lock 4068 * 4069 * UNLOCK X->pi_lock 4070 * UNLOCK rq(0)->lock 4071 * 4072 * 4073 * However, for wakeups there is a second guarantee we must provide, namely we 4074 * must ensure that CONDITION=1 done by the caller can not be reordered with 4075 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4076 */ 4077 4078 /** 4079 * try_to_wake_up - wake up a thread 4080 * @p: the thread to be awakened 4081 * @state: the mask of task states that can be woken 4082 * @wake_flags: wake modifier flags (WF_*) 4083 * 4084 * Conceptually does: 4085 * 4086 * If (@state & @p->state) @p->state = TASK_RUNNING. 4087 * 4088 * If the task was not queued/runnable, also place it back on a runqueue. 4089 * 4090 * This function is atomic against schedule() which would dequeue the task. 4091 * 4092 * It issues a full memory barrier before accessing @p->state, see the comment 4093 * with set_current_state(). 4094 * 4095 * Uses p->pi_lock to serialize against concurrent wake-ups. 4096 * 4097 * Relies on p->pi_lock stabilizing: 4098 * - p->sched_class 4099 * - p->cpus_ptr 4100 * - p->sched_task_group 4101 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4102 * 4103 * Tries really hard to only take one task_rq(p)->lock for performance. 4104 * Takes rq->lock in: 4105 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4106 * - ttwu_queue() -- new rq, for enqueue of the task; 4107 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4108 * 4109 * As a consequence we race really badly with just about everything. See the 4110 * many memory barriers and their comments for details. 4111 * 4112 * Return: %true if @p->state changes (an actual wakeup was done), 4113 * %false otherwise. 4114 */ 4115 static int 4116 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4117 { 4118 unsigned long flags; 4119 int cpu, success = 0; 4120 4121 preempt_disable(); 4122 if (p == current) { 4123 /* 4124 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4125 * == smp_processor_id()'. Together this means we can special 4126 * case the whole 'p->on_rq && ttwu_runnable()' case below 4127 * without taking any locks. 4128 * 4129 * In particular: 4130 * - we rely on Program-Order guarantees for all the ordering, 4131 * - we're serialized against set_special_state() by virtue of 4132 * it disabling IRQs (this allows not taking ->pi_lock). 4133 */ 4134 if (!ttwu_state_match(p, state, &success)) 4135 goto out; 4136 4137 trace_sched_waking(p); 4138 WRITE_ONCE(p->__state, TASK_RUNNING); 4139 trace_sched_wakeup(p); 4140 goto out; 4141 } 4142 4143 /* 4144 * If we are going to wake up a thread waiting for CONDITION we 4145 * need to ensure that CONDITION=1 done by the caller can not be 4146 * reordered with p->state check below. This pairs with smp_store_mb() 4147 * in set_current_state() that the waiting thread does. 4148 */ 4149 raw_spin_lock_irqsave(&p->pi_lock, flags); 4150 smp_mb__after_spinlock(); 4151 if (!ttwu_state_match(p, state, &success)) 4152 goto unlock; 4153 4154 trace_sched_waking(p); 4155 4156 /* 4157 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4158 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4159 * in smp_cond_load_acquire() below. 4160 * 4161 * sched_ttwu_pending() try_to_wake_up() 4162 * STORE p->on_rq = 1 LOAD p->state 4163 * UNLOCK rq->lock 4164 * 4165 * __schedule() (switch to task 'p') 4166 * LOCK rq->lock smp_rmb(); 4167 * smp_mb__after_spinlock(); 4168 * UNLOCK rq->lock 4169 * 4170 * [task p] 4171 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4172 * 4173 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4174 * __schedule(). See the comment for smp_mb__after_spinlock(). 4175 * 4176 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4177 */ 4178 smp_rmb(); 4179 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4180 goto unlock; 4181 4182 #ifdef CONFIG_SMP 4183 /* 4184 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4185 * possible to, falsely, observe p->on_cpu == 0. 4186 * 4187 * One must be running (->on_cpu == 1) in order to remove oneself 4188 * from the runqueue. 4189 * 4190 * __schedule() (switch to task 'p') try_to_wake_up() 4191 * STORE p->on_cpu = 1 LOAD p->on_rq 4192 * UNLOCK rq->lock 4193 * 4194 * __schedule() (put 'p' to sleep) 4195 * LOCK rq->lock smp_rmb(); 4196 * smp_mb__after_spinlock(); 4197 * STORE p->on_rq = 0 LOAD p->on_cpu 4198 * 4199 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4200 * __schedule(). See the comment for smp_mb__after_spinlock(). 4201 * 4202 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4203 * schedule()'s deactivate_task() has 'happened' and p will no longer 4204 * care about it's own p->state. See the comment in __schedule(). 4205 */ 4206 smp_acquire__after_ctrl_dep(); 4207 4208 /* 4209 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4210 * == 0), which means we need to do an enqueue, change p->state to 4211 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4212 * enqueue, such as ttwu_queue_wakelist(). 4213 */ 4214 WRITE_ONCE(p->__state, TASK_WAKING); 4215 4216 /* 4217 * If the owning (remote) CPU is still in the middle of schedule() with 4218 * this task as prev, considering queueing p on the remote CPUs wake_list 4219 * which potentially sends an IPI instead of spinning on p->on_cpu to 4220 * let the waker make forward progress. This is safe because IRQs are 4221 * disabled and the IPI will deliver after on_cpu is cleared. 4222 * 4223 * Ensure we load task_cpu(p) after p->on_cpu: 4224 * 4225 * set_task_cpu(p, cpu); 4226 * STORE p->cpu = @cpu 4227 * __schedule() (switch to task 'p') 4228 * LOCK rq->lock 4229 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4230 * STORE p->on_cpu = 1 LOAD p->cpu 4231 * 4232 * to ensure we observe the correct CPU on which the task is currently 4233 * scheduling. 4234 */ 4235 if (smp_load_acquire(&p->on_cpu) && 4236 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4237 goto unlock; 4238 4239 /* 4240 * If the owning (remote) CPU is still in the middle of schedule() with 4241 * this task as prev, wait until it's done referencing the task. 4242 * 4243 * Pairs with the smp_store_release() in finish_task(). 4244 * 4245 * This ensures that tasks getting woken will be fully ordered against 4246 * their previous state and preserve Program Order. 4247 */ 4248 smp_cond_load_acquire(&p->on_cpu, !VAL); 4249 4250 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4251 if (task_cpu(p) != cpu) { 4252 if (p->in_iowait) { 4253 delayacct_blkio_end(p); 4254 atomic_dec(&task_rq(p)->nr_iowait); 4255 } 4256 4257 wake_flags |= WF_MIGRATED; 4258 psi_ttwu_dequeue(p); 4259 set_task_cpu(p, cpu); 4260 } 4261 #else 4262 cpu = task_cpu(p); 4263 #endif /* CONFIG_SMP */ 4264 4265 ttwu_queue(p, cpu, wake_flags); 4266 unlock: 4267 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4268 out: 4269 if (success) 4270 ttwu_stat(p, task_cpu(p), wake_flags); 4271 preempt_enable(); 4272 4273 return success; 4274 } 4275 4276 static bool __task_needs_rq_lock(struct task_struct *p) 4277 { 4278 unsigned int state = READ_ONCE(p->__state); 4279 4280 /* 4281 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4282 * the task is blocked. Make sure to check @state since ttwu() can drop 4283 * locks at the end, see ttwu_queue_wakelist(). 4284 */ 4285 if (state == TASK_RUNNING || state == TASK_WAKING) 4286 return true; 4287 4288 /* 4289 * Ensure we load p->on_rq after p->__state, otherwise it would be 4290 * possible to, falsely, observe p->on_rq == 0. 4291 * 4292 * See try_to_wake_up() for a longer comment. 4293 */ 4294 smp_rmb(); 4295 if (p->on_rq) 4296 return true; 4297 4298 #ifdef CONFIG_SMP 4299 /* 4300 * Ensure the task has finished __schedule() and will not be referenced 4301 * anymore. Again, see try_to_wake_up() for a longer comment. 4302 */ 4303 smp_rmb(); 4304 smp_cond_load_acquire(&p->on_cpu, !VAL); 4305 #endif 4306 4307 return false; 4308 } 4309 4310 /** 4311 * task_call_func - Invoke a function on task in fixed state 4312 * @p: Process for which the function is to be invoked, can be @current. 4313 * @func: Function to invoke. 4314 * @arg: Argument to function. 4315 * 4316 * Fix the task in it's current state by avoiding wakeups and or rq operations 4317 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4318 * to work out what the state is, if required. Given that @func can be invoked 4319 * with a runqueue lock held, it had better be quite lightweight. 4320 * 4321 * Returns: 4322 * Whatever @func returns 4323 */ 4324 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4325 { 4326 struct rq *rq = NULL; 4327 struct rq_flags rf; 4328 int ret; 4329 4330 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4331 4332 if (__task_needs_rq_lock(p)) 4333 rq = __task_rq_lock(p, &rf); 4334 4335 /* 4336 * At this point the task is pinned; either: 4337 * - blocked and we're holding off wakeups (pi->lock) 4338 * - woken, and we're holding off enqueue (rq->lock) 4339 * - queued, and we're holding off schedule (rq->lock) 4340 * - running, and we're holding off de-schedule (rq->lock) 4341 * 4342 * The called function (@func) can use: task_curr(), p->on_rq and 4343 * p->__state to differentiate between these states. 4344 */ 4345 ret = func(p, arg); 4346 4347 if (rq) 4348 rq_unlock(rq, &rf); 4349 4350 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4351 return ret; 4352 } 4353 4354 /** 4355 * cpu_curr_snapshot - Return a snapshot of the currently running task 4356 * @cpu: The CPU on which to snapshot the task. 4357 * 4358 * Returns the task_struct pointer of the task "currently" running on 4359 * the specified CPU. If the same task is running on that CPU throughout, 4360 * the return value will be a pointer to that task's task_struct structure. 4361 * If the CPU did any context switches even vaguely concurrently with the 4362 * execution of this function, the return value will be a pointer to the 4363 * task_struct structure of a randomly chosen task that was running on 4364 * that CPU somewhere around the time that this function was executing. 4365 * 4366 * If the specified CPU was offline, the return value is whatever it 4367 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4368 * task, but there is no guarantee. Callers wishing a useful return 4369 * value must take some action to ensure that the specified CPU remains 4370 * online throughout. 4371 * 4372 * This function executes full memory barriers before and after fetching 4373 * the pointer, which permits the caller to confine this function's fetch 4374 * with respect to the caller's accesses to other shared variables. 4375 */ 4376 struct task_struct *cpu_curr_snapshot(int cpu) 4377 { 4378 struct task_struct *t; 4379 4380 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4381 t = rcu_dereference(cpu_curr(cpu)); 4382 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4383 return t; 4384 } 4385 4386 /** 4387 * wake_up_process - Wake up a specific process 4388 * @p: The process to be woken up. 4389 * 4390 * Attempt to wake up the nominated process and move it to the set of runnable 4391 * processes. 4392 * 4393 * Return: 1 if the process was woken up, 0 if it was already running. 4394 * 4395 * This function executes a full memory barrier before accessing the task state. 4396 */ 4397 int wake_up_process(struct task_struct *p) 4398 { 4399 return try_to_wake_up(p, TASK_NORMAL, 0); 4400 } 4401 EXPORT_SYMBOL(wake_up_process); 4402 4403 int wake_up_state(struct task_struct *p, unsigned int state) 4404 { 4405 return try_to_wake_up(p, state, 0); 4406 } 4407 4408 /* 4409 * Perform scheduler related setup for a newly forked process p. 4410 * p is forked by current. 4411 * 4412 * __sched_fork() is basic setup used by init_idle() too: 4413 */ 4414 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4415 { 4416 p->on_rq = 0; 4417 4418 p->se.on_rq = 0; 4419 p->se.exec_start = 0; 4420 p->se.sum_exec_runtime = 0; 4421 p->se.prev_sum_exec_runtime = 0; 4422 p->se.nr_migrations = 0; 4423 p->se.vruntime = 0; 4424 INIT_LIST_HEAD(&p->se.group_node); 4425 4426 #ifdef CONFIG_FAIR_GROUP_SCHED 4427 p->se.cfs_rq = NULL; 4428 #endif 4429 4430 #ifdef CONFIG_SCHEDSTATS 4431 /* Even if schedstat is disabled, there should not be garbage */ 4432 memset(&p->stats, 0, sizeof(p->stats)); 4433 #endif 4434 4435 RB_CLEAR_NODE(&p->dl.rb_node); 4436 init_dl_task_timer(&p->dl); 4437 init_dl_inactive_task_timer(&p->dl); 4438 __dl_clear_params(p); 4439 4440 INIT_LIST_HEAD(&p->rt.run_list); 4441 p->rt.timeout = 0; 4442 p->rt.time_slice = sched_rr_timeslice; 4443 p->rt.on_rq = 0; 4444 p->rt.on_list = 0; 4445 4446 #ifdef CONFIG_PREEMPT_NOTIFIERS 4447 INIT_HLIST_HEAD(&p->preempt_notifiers); 4448 #endif 4449 4450 #ifdef CONFIG_COMPACTION 4451 p->capture_control = NULL; 4452 #endif 4453 init_numa_balancing(clone_flags, p); 4454 #ifdef CONFIG_SMP 4455 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4456 p->migration_pending = NULL; 4457 #endif 4458 } 4459 4460 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4461 4462 #ifdef CONFIG_NUMA_BALANCING 4463 4464 int sysctl_numa_balancing_mode; 4465 4466 static void __set_numabalancing_state(bool enabled) 4467 { 4468 if (enabled) 4469 static_branch_enable(&sched_numa_balancing); 4470 else 4471 static_branch_disable(&sched_numa_balancing); 4472 } 4473 4474 void set_numabalancing_state(bool enabled) 4475 { 4476 if (enabled) 4477 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4478 else 4479 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4480 __set_numabalancing_state(enabled); 4481 } 4482 4483 #ifdef CONFIG_PROC_SYSCTL 4484 static void reset_memory_tiering(void) 4485 { 4486 struct pglist_data *pgdat; 4487 4488 for_each_online_pgdat(pgdat) { 4489 pgdat->nbp_threshold = 0; 4490 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4491 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4492 } 4493 } 4494 4495 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4496 void *buffer, size_t *lenp, loff_t *ppos) 4497 { 4498 struct ctl_table t; 4499 int err; 4500 int state = sysctl_numa_balancing_mode; 4501 4502 if (write && !capable(CAP_SYS_ADMIN)) 4503 return -EPERM; 4504 4505 t = *table; 4506 t.data = &state; 4507 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4508 if (err < 0) 4509 return err; 4510 if (write) { 4511 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4512 (state & NUMA_BALANCING_MEMORY_TIERING)) 4513 reset_memory_tiering(); 4514 sysctl_numa_balancing_mode = state; 4515 __set_numabalancing_state(state); 4516 } 4517 return err; 4518 } 4519 #endif 4520 #endif 4521 4522 #ifdef CONFIG_SCHEDSTATS 4523 4524 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4525 4526 static void set_schedstats(bool enabled) 4527 { 4528 if (enabled) 4529 static_branch_enable(&sched_schedstats); 4530 else 4531 static_branch_disable(&sched_schedstats); 4532 } 4533 4534 void force_schedstat_enabled(void) 4535 { 4536 if (!schedstat_enabled()) { 4537 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4538 static_branch_enable(&sched_schedstats); 4539 } 4540 } 4541 4542 static int __init setup_schedstats(char *str) 4543 { 4544 int ret = 0; 4545 if (!str) 4546 goto out; 4547 4548 if (!strcmp(str, "enable")) { 4549 set_schedstats(true); 4550 ret = 1; 4551 } else if (!strcmp(str, "disable")) { 4552 set_schedstats(false); 4553 ret = 1; 4554 } 4555 out: 4556 if (!ret) 4557 pr_warn("Unable to parse schedstats=\n"); 4558 4559 return ret; 4560 } 4561 __setup("schedstats=", setup_schedstats); 4562 4563 #ifdef CONFIG_PROC_SYSCTL 4564 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4565 size_t *lenp, loff_t *ppos) 4566 { 4567 struct ctl_table t; 4568 int err; 4569 int state = static_branch_likely(&sched_schedstats); 4570 4571 if (write && !capable(CAP_SYS_ADMIN)) 4572 return -EPERM; 4573 4574 t = *table; 4575 t.data = &state; 4576 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4577 if (err < 0) 4578 return err; 4579 if (write) 4580 set_schedstats(state); 4581 return err; 4582 } 4583 #endif /* CONFIG_PROC_SYSCTL */ 4584 #endif /* CONFIG_SCHEDSTATS */ 4585 4586 #ifdef CONFIG_SYSCTL 4587 static struct ctl_table sched_core_sysctls[] = { 4588 #ifdef CONFIG_SCHEDSTATS 4589 { 4590 .procname = "sched_schedstats", 4591 .data = NULL, 4592 .maxlen = sizeof(unsigned int), 4593 .mode = 0644, 4594 .proc_handler = sysctl_schedstats, 4595 .extra1 = SYSCTL_ZERO, 4596 .extra2 = SYSCTL_ONE, 4597 }, 4598 #endif /* CONFIG_SCHEDSTATS */ 4599 #ifdef CONFIG_UCLAMP_TASK 4600 { 4601 .procname = "sched_util_clamp_min", 4602 .data = &sysctl_sched_uclamp_util_min, 4603 .maxlen = sizeof(unsigned int), 4604 .mode = 0644, 4605 .proc_handler = sysctl_sched_uclamp_handler, 4606 }, 4607 { 4608 .procname = "sched_util_clamp_max", 4609 .data = &sysctl_sched_uclamp_util_max, 4610 .maxlen = sizeof(unsigned int), 4611 .mode = 0644, 4612 .proc_handler = sysctl_sched_uclamp_handler, 4613 }, 4614 { 4615 .procname = "sched_util_clamp_min_rt_default", 4616 .data = &sysctl_sched_uclamp_util_min_rt_default, 4617 .maxlen = sizeof(unsigned int), 4618 .mode = 0644, 4619 .proc_handler = sysctl_sched_uclamp_handler, 4620 }, 4621 #endif /* CONFIG_UCLAMP_TASK */ 4622 #ifdef CONFIG_NUMA_BALANCING 4623 { 4624 .procname = "numa_balancing", 4625 .data = NULL, /* filled in by handler */ 4626 .maxlen = sizeof(unsigned int), 4627 .mode = 0644, 4628 .proc_handler = sysctl_numa_balancing, 4629 .extra1 = SYSCTL_ZERO, 4630 .extra2 = SYSCTL_FOUR, 4631 }, 4632 #endif /* CONFIG_NUMA_BALANCING */ 4633 {} 4634 }; 4635 static int __init sched_core_sysctl_init(void) 4636 { 4637 register_sysctl_init("kernel", sched_core_sysctls); 4638 return 0; 4639 } 4640 late_initcall(sched_core_sysctl_init); 4641 #endif /* CONFIG_SYSCTL */ 4642 4643 /* 4644 * fork()/clone()-time setup: 4645 */ 4646 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4647 { 4648 __sched_fork(clone_flags, p); 4649 /* 4650 * We mark the process as NEW here. This guarantees that 4651 * nobody will actually run it, and a signal or other external 4652 * event cannot wake it up and insert it on the runqueue either. 4653 */ 4654 p->__state = TASK_NEW; 4655 4656 /* 4657 * Make sure we do not leak PI boosting priority to the child. 4658 */ 4659 p->prio = current->normal_prio; 4660 4661 uclamp_fork(p); 4662 4663 /* 4664 * Revert to default priority/policy on fork if requested. 4665 */ 4666 if (unlikely(p->sched_reset_on_fork)) { 4667 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4668 p->policy = SCHED_NORMAL; 4669 p->static_prio = NICE_TO_PRIO(0); 4670 p->rt_priority = 0; 4671 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4672 p->static_prio = NICE_TO_PRIO(0); 4673 4674 p->prio = p->normal_prio = p->static_prio; 4675 set_load_weight(p, false); 4676 4677 /* 4678 * We don't need the reset flag anymore after the fork. It has 4679 * fulfilled its duty: 4680 */ 4681 p->sched_reset_on_fork = 0; 4682 } 4683 4684 if (dl_prio(p->prio)) 4685 return -EAGAIN; 4686 else if (rt_prio(p->prio)) 4687 p->sched_class = &rt_sched_class; 4688 else 4689 p->sched_class = &fair_sched_class; 4690 4691 init_entity_runnable_average(&p->se); 4692 4693 4694 #ifdef CONFIG_SCHED_INFO 4695 if (likely(sched_info_on())) 4696 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4697 #endif 4698 #if defined(CONFIG_SMP) 4699 p->on_cpu = 0; 4700 #endif 4701 init_task_preempt_count(p); 4702 #ifdef CONFIG_SMP 4703 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4704 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4705 #endif 4706 return 0; 4707 } 4708 4709 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4710 { 4711 unsigned long flags; 4712 4713 /* 4714 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4715 * required yet, but lockdep gets upset if rules are violated. 4716 */ 4717 raw_spin_lock_irqsave(&p->pi_lock, flags); 4718 #ifdef CONFIG_CGROUP_SCHED 4719 if (1) { 4720 struct task_group *tg; 4721 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4722 struct task_group, css); 4723 tg = autogroup_task_group(p, tg); 4724 p->sched_task_group = tg; 4725 } 4726 #endif 4727 rseq_migrate(p); 4728 /* 4729 * We're setting the CPU for the first time, we don't migrate, 4730 * so use __set_task_cpu(). 4731 */ 4732 __set_task_cpu(p, smp_processor_id()); 4733 if (p->sched_class->task_fork) 4734 p->sched_class->task_fork(p); 4735 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4736 } 4737 4738 void sched_post_fork(struct task_struct *p) 4739 { 4740 uclamp_post_fork(p); 4741 } 4742 4743 unsigned long to_ratio(u64 period, u64 runtime) 4744 { 4745 if (runtime == RUNTIME_INF) 4746 return BW_UNIT; 4747 4748 /* 4749 * Doing this here saves a lot of checks in all 4750 * the calling paths, and returning zero seems 4751 * safe for them anyway. 4752 */ 4753 if (period == 0) 4754 return 0; 4755 4756 return div64_u64(runtime << BW_SHIFT, period); 4757 } 4758 4759 /* 4760 * wake_up_new_task - wake up a newly created task for the first time. 4761 * 4762 * This function will do some initial scheduler statistics housekeeping 4763 * that must be done for every newly created context, then puts the task 4764 * on the runqueue and wakes it. 4765 */ 4766 void wake_up_new_task(struct task_struct *p) 4767 { 4768 struct rq_flags rf; 4769 struct rq *rq; 4770 4771 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4772 WRITE_ONCE(p->__state, TASK_RUNNING); 4773 #ifdef CONFIG_SMP 4774 /* 4775 * Fork balancing, do it here and not earlier because: 4776 * - cpus_ptr can change in the fork path 4777 * - any previously selected CPU might disappear through hotplug 4778 * 4779 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4780 * as we're not fully set-up yet. 4781 */ 4782 p->recent_used_cpu = task_cpu(p); 4783 rseq_migrate(p); 4784 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4785 #endif 4786 rq = __task_rq_lock(p, &rf); 4787 update_rq_clock(rq); 4788 post_init_entity_util_avg(p); 4789 4790 activate_task(rq, p, ENQUEUE_NOCLOCK); 4791 trace_sched_wakeup_new(p); 4792 check_preempt_curr(rq, p, WF_FORK); 4793 #ifdef CONFIG_SMP 4794 if (p->sched_class->task_woken) { 4795 /* 4796 * Nothing relies on rq->lock after this, so it's fine to 4797 * drop it. 4798 */ 4799 rq_unpin_lock(rq, &rf); 4800 p->sched_class->task_woken(rq, p); 4801 rq_repin_lock(rq, &rf); 4802 } 4803 #endif 4804 task_rq_unlock(rq, p, &rf); 4805 } 4806 4807 #ifdef CONFIG_PREEMPT_NOTIFIERS 4808 4809 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4810 4811 void preempt_notifier_inc(void) 4812 { 4813 static_branch_inc(&preempt_notifier_key); 4814 } 4815 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4816 4817 void preempt_notifier_dec(void) 4818 { 4819 static_branch_dec(&preempt_notifier_key); 4820 } 4821 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4822 4823 /** 4824 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4825 * @notifier: notifier struct to register 4826 */ 4827 void preempt_notifier_register(struct preempt_notifier *notifier) 4828 { 4829 if (!static_branch_unlikely(&preempt_notifier_key)) 4830 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4831 4832 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4833 } 4834 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4835 4836 /** 4837 * preempt_notifier_unregister - no longer interested in preemption notifications 4838 * @notifier: notifier struct to unregister 4839 * 4840 * This is *not* safe to call from within a preemption notifier. 4841 */ 4842 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4843 { 4844 hlist_del(¬ifier->link); 4845 } 4846 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4847 4848 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4849 { 4850 struct preempt_notifier *notifier; 4851 4852 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4853 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4854 } 4855 4856 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4857 { 4858 if (static_branch_unlikely(&preempt_notifier_key)) 4859 __fire_sched_in_preempt_notifiers(curr); 4860 } 4861 4862 static void 4863 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4864 struct task_struct *next) 4865 { 4866 struct preempt_notifier *notifier; 4867 4868 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4869 notifier->ops->sched_out(notifier, next); 4870 } 4871 4872 static __always_inline void 4873 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4874 struct task_struct *next) 4875 { 4876 if (static_branch_unlikely(&preempt_notifier_key)) 4877 __fire_sched_out_preempt_notifiers(curr, next); 4878 } 4879 4880 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4881 4882 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4883 { 4884 } 4885 4886 static inline void 4887 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4888 struct task_struct *next) 4889 { 4890 } 4891 4892 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4893 4894 static inline void prepare_task(struct task_struct *next) 4895 { 4896 #ifdef CONFIG_SMP 4897 /* 4898 * Claim the task as running, we do this before switching to it 4899 * such that any running task will have this set. 4900 * 4901 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4902 * its ordering comment. 4903 */ 4904 WRITE_ONCE(next->on_cpu, 1); 4905 #endif 4906 } 4907 4908 static inline void finish_task(struct task_struct *prev) 4909 { 4910 #ifdef CONFIG_SMP 4911 /* 4912 * This must be the very last reference to @prev from this CPU. After 4913 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4914 * must ensure this doesn't happen until the switch is completely 4915 * finished. 4916 * 4917 * In particular, the load of prev->state in finish_task_switch() must 4918 * happen before this. 4919 * 4920 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4921 */ 4922 smp_store_release(&prev->on_cpu, 0); 4923 #endif 4924 } 4925 4926 #ifdef CONFIG_SMP 4927 4928 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4929 { 4930 void (*func)(struct rq *rq); 4931 struct balance_callback *next; 4932 4933 lockdep_assert_rq_held(rq); 4934 4935 while (head) { 4936 func = (void (*)(struct rq *))head->func; 4937 next = head->next; 4938 head->next = NULL; 4939 head = next; 4940 4941 func(rq); 4942 } 4943 } 4944 4945 static void balance_push(struct rq *rq); 4946 4947 /* 4948 * balance_push_callback is a right abuse of the callback interface and plays 4949 * by significantly different rules. 4950 * 4951 * Where the normal balance_callback's purpose is to be ran in the same context 4952 * that queued it (only later, when it's safe to drop rq->lock again), 4953 * balance_push_callback is specifically targeted at __schedule(). 4954 * 4955 * This abuse is tolerated because it places all the unlikely/odd cases behind 4956 * a single test, namely: rq->balance_callback == NULL. 4957 */ 4958 struct balance_callback balance_push_callback = { 4959 .next = NULL, 4960 .func = balance_push, 4961 }; 4962 4963 static inline struct balance_callback * 4964 __splice_balance_callbacks(struct rq *rq, bool split) 4965 { 4966 struct balance_callback *head = rq->balance_callback; 4967 4968 if (likely(!head)) 4969 return NULL; 4970 4971 lockdep_assert_rq_held(rq); 4972 /* 4973 * Must not take balance_push_callback off the list when 4974 * splice_balance_callbacks() and balance_callbacks() are not 4975 * in the same rq->lock section. 4976 * 4977 * In that case it would be possible for __schedule() to interleave 4978 * and observe the list empty. 4979 */ 4980 if (split && head == &balance_push_callback) 4981 head = NULL; 4982 else 4983 rq->balance_callback = NULL; 4984 4985 return head; 4986 } 4987 4988 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 4989 { 4990 return __splice_balance_callbacks(rq, true); 4991 } 4992 4993 static void __balance_callbacks(struct rq *rq) 4994 { 4995 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4996 } 4997 4998 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 4999 { 5000 unsigned long flags; 5001 5002 if (unlikely(head)) { 5003 raw_spin_rq_lock_irqsave(rq, flags); 5004 do_balance_callbacks(rq, head); 5005 raw_spin_rq_unlock_irqrestore(rq, flags); 5006 } 5007 } 5008 5009 #else 5010 5011 static inline void __balance_callbacks(struct rq *rq) 5012 { 5013 } 5014 5015 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 5016 { 5017 return NULL; 5018 } 5019 5020 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 5021 { 5022 } 5023 5024 #endif 5025 5026 static inline void 5027 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5028 { 5029 /* 5030 * Since the runqueue lock will be released by the next 5031 * task (which is an invalid locking op but in the case 5032 * of the scheduler it's an obvious special-case), so we 5033 * do an early lockdep release here: 5034 */ 5035 rq_unpin_lock(rq, rf); 5036 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5037 #ifdef CONFIG_DEBUG_SPINLOCK 5038 /* this is a valid case when another task releases the spinlock */ 5039 rq_lockp(rq)->owner = next; 5040 #endif 5041 } 5042 5043 static inline void finish_lock_switch(struct rq *rq) 5044 { 5045 /* 5046 * If we are tracking spinlock dependencies then we have to 5047 * fix up the runqueue lock - which gets 'carried over' from 5048 * prev into current: 5049 */ 5050 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5051 __balance_callbacks(rq); 5052 raw_spin_rq_unlock_irq(rq); 5053 } 5054 5055 /* 5056 * NOP if the arch has not defined these: 5057 */ 5058 5059 #ifndef prepare_arch_switch 5060 # define prepare_arch_switch(next) do { } while (0) 5061 #endif 5062 5063 #ifndef finish_arch_post_lock_switch 5064 # define finish_arch_post_lock_switch() do { } while (0) 5065 #endif 5066 5067 static inline void kmap_local_sched_out(void) 5068 { 5069 #ifdef CONFIG_KMAP_LOCAL 5070 if (unlikely(current->kmap_ctrl.idx)) 5071 __kmap_local_sched_out(); 5072 #endif 5073 } 5074 5075 static inline void kmap_local_sched_in(void) 5076 { 5077 #ifdef CONFIG_KMAP_LOCAL 5078 if (unlikely(current->kmap_ctrl.idx)) 5079 __kmap_local_sched_in(); 5080 #endif 5081 } 5082 5083 /** 5084 * prepare_task_switch - prepare to switch tasks 5085 * @rq: the runqueue preparing to switch 5086 * @prev: the current task that is being switched out 5087 * @next: the task we are going to switch to. 5088 * 5089 * This is called with the rq lock held and interrupts off. It must 5090 * be paired with a subsequent finish_task_switch after the context 5091 * switch. 5092 * 5093 * prepare_task_switch sets up locking and calls architecture specific 5094 * hooks. 5095 */ 5096 static inline void 5097 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5098 struct task_struct *next) 5099 { 5100 kcov_prepare_switch(prev); 5101 sched_info_switch(rq, prev, next); 5102 perf_event_task_sched_out(prev, next); 5103 rseq_preempt(prev); 5104 fire_sched_out_preempt_notifiers(prev, next); 5105 kmap_local_sched_out(); 5106 prepare_task(next); 5107 prepare_arch_switch(next); 5108 } 5109 5110 /** 5111 * finish_task_switch - clean up after a task-switch 5112 * @prev: the thread we just switched away from. 5113 * 5114 * finish_task_switch must be called after the context switch, paired 5115 * with a prepare_task_switch call before the context switch. 5116 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5117 * and do any other architecture-specific cleanup actions. 5118 * 5119 * Note that we may have delayed dropping an mm in context_switch(). If 5120 * so, we finish that here outside of the runqueue lock. (Doing it 5121 * with the lock held can cause deadlocks; see schedule() for 5122 * details.) 5123 * 5124 * The context switch have flipped the stack from under us and restored the 5125 * local variables which were saved when this task called schedule() in the 5126 * past. prev == current is still correct but we need to recalculate this_rq 5127 * because prev may have moved to another CPU. 5128 */ 5129 static struct rq *finish_task_switch(struct task_struct *prev) 5130 __releases(rq->lock) 5131 { 5132 struct rq *rq = this_rq(); 5133 struct mm_struct *mm = rq->prev_mm; 5134 unsigned int prev_state; 5135 5136 /* 5137 * The previous task will have left us with a preempt_count of 2 5138 * because it left us after: 5139 * 5140 * schedule() 5141 * preempt_disable(); // 1 5142 * __schedule() 5143 * raw_spin_lock_irq(&rq->lock) // 2 5144 * 5145 * Also, see FORK_PREEMPT_COUNT. 5146 */ 5147 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5148 "corrupted preempt_count: %s/%d/0x%x\n", 5149 current->comm, current->pid, preempt_count())) 5150 preempt_count_set(FORK_PREEMPT_COUNT); 5151 5152 rq->prev_mm = NULL; 5153 5154 /* 5155 * A task struct has one reference for the use as "current". 5156 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5157 * schedule one last time. The schedule call will never return, and 5158 * the scheduled task must drop that reference. 5159 * 5160 * We must observe prev->state before clearing prev->on_cpu (in 5161 * finish_task), otherwise a concurrent wakeup can get prev 5162 * running on another CPU and we could rave with its RUNNING -> DEAD 5163 * transition, resulting in a double drop. 5164 */ 5165 prev_state = READ_ONCE(prev->__state); 5166 vtime_task_switch(prev); 5167 perf_event_task_sched_in(prev, current); 5168 finish_task(prev); 5169 tick_nohz_task_switch(); 5170 finish_lock_switch(rq); 5171 finish_arch_post_lock_switch(); 5172 kcov_finish_switch(current); 5173 /* 5174 * kmap_local_sched_out() is invoked with rq::lock held and 5175 * interrupts disabled. There is no requirement for that, but the 5176 * sched out code does not have an interrupt enabled section. 5177 * Restoring the maps on sched in does not require interrupts being 5178 * disabled either. 5179 */ 5180 kmap_local_sched_in(); 5181 5182 fire_sched_in_preempt_notifiers(current); 5183 /* 5184 * When switching through a kernel thread, the loop in 5185 * membarrier_{private,global}_expedited() may have observed that 5186 * kernel thread and not issued an IPI. It is therefore possible to 5187 * schedule between user->kernel->user threads without passing though 5188 * switch_mm(). Membarrier requires a barrier after storing to 5189 * rq->curr, before returning to userspace, so provide them here: 5190 * 5191 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5192 * provided by mmdrop(), 5193 * - a sync_core for SYNC_CORE. 5194 */ 5195 if (mm) { 5196 membarrier_mm_sync_core_before_usermode(mm); 5197 mmdrop_sched(mm); 5198 } 5199 if (unlikely(prev_state == TASK_DEAD)) { 5200 if (prev->sched_class->task_dead) 5201 prev->sched_class->task_dead(prev); 5202 5203 /* Task is done with its stack. */ 5204 put_task_stack(prev); 5205 5206 put_task_struct_rcu_user(prev); 5207 } 5208 5209 return rq; 5210 } 5211 5212 /** 5213 * schedule_tail - first thing a freshly forked thread must call. 5214 * @prev: the thread we just switched away from. 5215 */ 5216 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5217 __releases(rq->lock) 5218 { 5219 /* 5220 * New tasks start with FORK_PREEMPT_COUNT, see there and 5221 * finish_task_switch() for details. 5222 * 5223 * finish_task_switch() will drop rq->lock() and lower preempt_count 5224 * and the preempt_enable() will end up enabling preemption (on 5225 * PREEMPT_COUNT kernels). 5226 */ 5227 5228 finish_task_switch(prev); 5229 preempt_enable(); 5230 5231 if (current->set_child_tid) 5232 put_user(task_pid_vnr(current), current->set_child_tid); 5233 5234 calculate_sigpending(); 5235 } 5236 5237 /* 5238 * context_switch - switch to the new MM and the new thread's register state. 5239 */ 5240 static __always_inline struct rq * 5241 context_switch(struct rq *rq, struct task_struct *prev, 5242 struct task_struct *next, struct rq_flags *rf) 5243 { 5244 prepare_task_switch(rq, prev, next); 5245 5246 /* 5247 * For paravirt, this is coupled with an exit in switch_to to 5248 * combine the page table reload and the switch backend into 5249 * one hypercall. 5250 */ 5251 arch_start_context_switch(prev); 5252 5253 /* 5254 * kernel -> kernel lazy + transfer active 5255 * user -> kernel lazy + mmgrab() active 5256 * 5257 * kernel -> user switch + mmdrop() active 5258 * user -> user switch 5259 */ 5260 if (!next->mm) { // to kernel 5261 enter_lazy_tlb(prev->active_mm, next); 5262 5263 next->active_mm = prev->active_mm; 5264 if (prev->mm) // from user 5265 mmgrab(prev->active_mm); 5266 else 5267 prev->active_mm = NULL; 5268 } else { // to user 5269 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5270 /* 5271 * sys_membarrier() requires an smp_mb() between setting 5272 * rq->curr / membarrier_switch_mm() and returning to userspace. 5273 * 5274 * The below provides this either through switch_mm(), or in 5275 * case 'prev->active_mm == next->mm' through 5276 * finish_task_switch()'s mmdrop(). 5277 */ 5278 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5279 lru_gen_use_mm(next->mm); 5280 5281 if (!prev->mm) { // from kernel 5282 /* will mmdrop() in finish_task_switch(). */ 5283 rq->prev_mm = prev->active_mm; 5284 prev->active_mm = NULL; 5285 } 5286 } 5287 5288 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5289 5290 prepare_lock_switch(rq, next, rf); 5291 5292 /* Here we just switch the register state and the stack. */ 5293 switch_to(prev, next, prev); 5294 barrier(); 5295 5296 return finish_task_switch(prev); 5297 } 5298 5299 /* 5300 * nr_running and nr_context_switches: 5301 * 5302 * externally visible scheduler statistics: current number of runnable 5303 * threads, total number of context switches performed since bootup. 5304 */ 5305 unsigned int nr_running(void) 5306 { 5307 unsigned int i, sum = 0; 5308 5309 for_each_online_cpu(i) 5310 sum += cpu_rq(i)->nr_running; 5311 5312 return sum; 5313 } 5314 5315 /* 5316 * Check if only the current task is running on the CPU. 5317 * 5318 * Caution: this function does not check that the caller has disabled 5319 * preemption, thus the result might have a time-of-check-to-time-of-use 5320 * race. The caller is responsible to use it correctly, for example: 5321 * 5322 * - from a non-preemptible section (of course) 5323 * 5324 * - from a thread that is bound to a single CPU 5325 * 5326 * - in a loop with very short iterations (e.g. a polling loop) 5327 */ 5328 bool single_task_running(void) 5329 { 5330 return raw_rq()->nr_running == 1; 5331 } 5332 EXPORT_SYMBOL(single_task_running); 5333 5334 unsigned long long nr_context_switches(void) 5335 { 5336 int i; 5337 unsigned long long sum = 0; 5338 5339 for_each_possible_cpu(i) 5340 sum += cpu_rq(i)->nr_switches; 5341 5342 return sum; 5343 } 5344 5345 /* 5346 * Consumers of these two interfaces, like for example the cpuidle menu 5347 * governor, are using nonsensical data. Preferring shallow idle state selection 5348 * for a CPU that has IO-wait which might not even end up running the task when 5349 * it does become runnable. 5350 */ 5351 5352 unsigned int nr_iowait_cpu(int cpu) 5353 { 5354 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5355 } 5356 5357 /* 5358 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5359 * 5360 * The idea behind IO-wait account is to account the idle time that we could 5361 * have spend running if it were not for IO. That is, if we were to improve the 5362 * storage performance, we'd have a proportional reduction in IO-wait time. 5363 * 5364 * This all works nicely on UP, where, when a task blocks on IO, we account 5365 * idle time as IO-wait, because if the storage were faster, it could've been 5366 * running and we'd not be idle. 5367 * 5368 * This has been extended to SMP, by doing the same for each CPU. This however 5369 * is broken. 5370 * 5371 * Imagine for instance the case where two tasks block on one CPU, only the one 5372 * CPU will have IO-wait accounted, while the other has regular idle. Even 5373 * though, if the storage were faster, both could've ran at the same time, 5374 * utilising both CPUs. 5375 * 5376 * This means, that when looking globally, the current IO-wait accounting on 5377 * SMP is a lower bound, by reason of under accounting. 5378 * 5379 * Worse, since the numbers are provided per CPU, they are sometimes 5380 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5381 * associated with any one particular CPU, it can wake to another CPU than it 5382 * blocked on. This means the per CPU IO-wait number is meaningless. 5383 * 5384 * Task CPU affinities can make all that even more 'interesting'. 5385 */ 5386 5387 unsigned int nr_iowait(void) 5388 { 5389 unsigned int i, sum = 0; 5390 5391 for_each_possible_cpu(i) 5392 sum += nr_iowait_cpu(i); 5393 5394 return sum; 5395 } 5396 5397 #ifdef CONFIG_SMP 5398 5399 /* 5400 * sched_exec - execve() is a valuable balancing opportunity, because at 5401 * this point the task has the smallest effective memory and cache footprint. 5402 */ 5403 void sched_exec(void) 5404 { 5405 struct task_struct *p = current; 5406 unsigned long flags; 5407 int dest_cpu; 5408 5409 raw_spin_lock_irqsave(&p->pi_lock, flags); 5410 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5411 if (dest_cpu == smp_processor_id()) 5412 goto unlock; 5413 5414 if (likely(cpu_active(dest_cpu))) { 5415 struct migration_arg arg = { p, dest_cpu }; 5416 5417 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5418 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5419 return; 5420 } 5421 unlock: 5422 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5423 } 5424 5425 #endif 5426 5427 DEFINE_PER_CPU(struct kernel_stat, kstat); 5428 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5429 5430 EXPORT_PER_CPU_SYMBOL(kstat); 5431 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5432 5433 /* 5434 * The function fair_sched_class.update_curr accesses the struct curr 5435 * and its field curr->exec_start; when called from task_sched_runtime(), 5436 * we observe a high rate of cache misses in practice. 5437 * Prefetching this data results in improved performance. 5438 */ 5439 static inline void prefetch_curr_exec_start(struct task_struct *p) 5440 { 5441 #ifdef CONFIG_FAIR_GROUP_SCHED 5442 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5443 #else 5444 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5445 #endif 5446 prefetch(curr); 5447 prefetch(&curr->exec_start); 5448 } 5449 5450 /* 5451 * Return accounted runtime for the task. 5452 * In case the task is currently running, return the runtime plus current's 5453 * pending runtime that have not been accounted yet. 5454 */ 5455 unsigned long long task_sched_runtime(struct task_struct *p) 5456 { 5457 struct rq_flags rf; 5458 struct rq *rq; 5459 u64 ns; 5460 5461 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5462 /* 5463 * 64-bit doesn't need locks to atomically read a 64-bit value. 5464 * So we have a optimization chance when the task's delta_exec is 0. 5465 * Reading ->on_cpu is racy, but this is ok. 5466 * 5467 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5468 * If we race with it entering CPU, unaccounted time is 0. This is 5469 * indistinguishable from the read occurring a few cycles earlier. 5470 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5471 * been accounted, so we're correct here as well. 5472 */ 5473 if (!p->on_cpu || !task_on_rq_queued(p)) 5474 return p->se.sum_exec_runtime; 5475 #endif 5476 5477 rq = task_rq_lock(p, &rf); 5478 /* 5479 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5480 * project cycles that may never be accounted to this 5481 * thread, breaking clock_gettime(). 5482 */ 5483 if (task_current(rq, p) && task_on_rq_queued(p)) { 5484 prefetch_curr_exec_start(p); 5485 update_rq_clock(rq); 5486 p->sched_class->update_curr(rq); 5487 } 5488 ns = p->se.sum_exec_runtime; 5489 task_rq_unlock(rq, p, &rf); 5490 5491 return ns; 5492 } 5493 5494 #ifdef CONFIG_SCHED_DEBUG 5495 static u64 cpu_resched_latency(struct rq *rq) 5496 { 5497 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5498 u64 resched_latency, now = rq_clock(rq); 5499 static bool warned_once; 5500 5501 if (sysctl_resched_latency_warn_once && warned_once) 5502 return 0; 5503 5504 if (!need_resched() || !latency_warn_ms) 5505 return 0; 5506 5507 if (system_state == SYSTEM_BOOTING) 5508 return 0; 5509 5510 if (!rq->last_seen_need_resched_ns) { 5511 rq->last_seen_need_resched_ns = now; 5512 rq->ticks_without_resched = 0; 5513 return 0; 5514 } 5515 5516 rq->ticks_without_resched++; 5517 resched_latency = now - rq->last_seen_need_resched_ns; 5518 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5519 return 0; 5520 5521 warned_once = true; 5522 5523 return resched_latency; 5524 } 5525 5526 static int __init setup_resched_latency_warn_ms(char *str) 5527 { 5528 long val; 5529 5530 if ((kstrtol(str, 0, &val))) { 5531 pr_warn("Unable to set resched_latency_warn_ms\n"); 5532 return 1; 5533 } 5534 5535 sysctl_resched_latency_warn_ms = val; 5536 return 1; 5537 } 5538 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5539 #else 5540 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5541 #endif /* CONFIG_SCHED_DEBUG */ 5542 5543 /* 5544 * This function gets called by the timer code, with HZ frequency. 5545 * We call it with interrupts disabled. 5546 */ 5547 void scheduler_tick(void) 5548 { 5549 int cpu = smp_processor_id(); 5550 struct rq *rq = cpu_rq(cpu); 5551 struct task_struct *curr = rq->curr; 5552 struct rq_flags rf; 5553 unsigned long thermal_pressure; 5554 u64 resched_latency; 5555 5556 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5557 arch_scale_freq_tick(); 5558 5559 sched_clock_tick(); 5560 5561 rq_lock(rq, &rf); 5562 5563 update_rq_clock(rq); 5564 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5565 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5566 curr->sched_class->task_tick(rq, curr, 0); 5567 if (sched_feat(LATENCY_WARN)) 5568 resched_latency = cpu_resched_latency(rq); 5569 calc_global_load_tick(rq); 5570 sched_core_tick(rq); 5571 5572 rq_unlock(rq, &rf); 5573 5574 if (sched_feat(LATENCY_WARN) && resched_latency) 5575 resched_latency_warn(cpu, resched_latency); 5576 5577 perf_event_task_tick(); 5578 5579 #ifdef CONFIG_SMP 5580 rq->idle_balance = idle_cpu(cpu); 5581 trigger_load_balance(rq); 5582 #endif 5583 } 5584 5585 #ifdef CONFIG_NO_HZ_FULL 5586 5587 struct tick_work { 5588 int cpu; 5589 atomic_t state; 5590 struct delayed_work work; 5591 }; 5592 /* Values for ->state, see diagram below. */ 5593 #define TICK_SCHED_REMOTE_OFFLINE 0 5594 #define TICK_SCHED_REMOTE_OFFLINING 1 5595 #define TICK_SCHED_REMOTE_RUNNING 2 5596 5597 /* 5598 * State diagram for ->state: 5599 * 5600 * 5601 * TICK_SCHED_REMOTE_OFFLINE 5602 * | ^ 5603 * | | 5604 * | | sched_tick_remote() 5605 * | | 5606 * | | 5607 * +--TICK_SCHED_REMOTE_OFFLINING 5608 * | ^ 5609 * | | 5610 * sched_tick_start() | | sched_tick_stop() 5611 * | | 5612 * V | 5613 * TICK_SCHED_REMOTE_RUNNING 5614 * 5615 * 5616 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5617 * and sched_tick_start() are happy to leave the state in RUNNING. 5618 */ 5619 5620 static struct tick_work __percpu *tick_work_cpu; 5621 5622 static void sched_tick_remote(struct work_struct *work) 5623 { 5624 struct delayed_work *dwork = to_delayed_work(work); 5625 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5626 int cpu = twork->cpu; 5627 struct rq *rq = cpu_rq(cpu); 5628 struct task_struct *curr; 5629 struct rq_flags rf; 5630 u64 delta; 5631 int os; 5632 5633 /* 5634 * Handle the tick only if it appears the remote CPU is running in full 5635 * dynticks mode. The check is racy by nature, but missing a tick or 5636 * having one too much is no big deal because the scheduler tick updates 5637 * statistics and checks timeslices in a time-independent way, regardless 5638 * of when exactly it is running. 5639 */ 5640 if (!tick_nohz_tick_stopped_cpu(cpu)) 5641 goto out_requeue; 5642 5643 rq_lock_irq(rq, &rf); 5644 curr = rq->curr; 5645 if (cpu_is_offline(cpu)) 5646 goto out_unlock; 5647 5648 update_rq_clock(rq); 5649 5650 if (!is_idle_task(curr)) { 5651 /* 5652 * Make sure the next tick runs within a reasonable 5653 * amount of time. 5654 */ 5655 delta = rq_clock_task(rq) - curr->se.exec_start; 5656 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5657 } 5658 curr->sched_class->task_tick(rq, curr, 0); 5659 5660 calc_load_nohz_remote(rq); 5661 out_unlock: 5662 rq_unlock_irq(rq, &rf); 5663 out_requeue: 5664 5665 /* 5666 * Run the remote tick once per second (1Hz). This arbitrary 5667 * frequency is large enough to avoid overload but short enough 5668 * to keep scheduler internal stats reasonably up to date. But 5669 * first update state to reflect hotplug activity if required. 5670 */ 5671 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5672 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5673 if (os == TICK_SCHED_REMOTE_RUNNING) 5674 queue_delayed_work(system_unbound_wq, dwork, HZ); 5675 } 5676 5677 static void sched_tick_start(int cpu) 5678 { 5679 int os; 5680 struct tick_work *twork; 5681 5682 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5683 return; 5684 5685 WARN_ON_ONCE(!tick_work_cpu); 5686 5687 twork = per_cpu_ptr(tick_work_cpu, cpu); 5688 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5689 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5690 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5691 twork->cpu = cpu; 5692 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5693 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5694 } 5695 } 5696 5697 #ifdef CONFIG_HOTPLUG_CPU 5698 static void sched_tick_stop(int cpu) 5699 { 5700 struct tick_work *twork; 5701 int os; 5702 5703 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5704 return; 5705 5706 WARN_ON_ONCE(!tick_work_cpu); 5707 5708 twork = per_cpu_ptr(tick_work_cpu, cpu); 5709 /* There cannot be competing actions, but don't rely on stop-machine. */ 5710 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5711 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5712 /* Don't cancel, as this would mess up the state machine. */ 5713 } 5714 #endif /* CONFIG_HOTPLUG_CPU */ 5715 5716 int __init sched_tick_offload_init(void) 5717 { 5718 tick_work_cpu = alloc_percpu(struct tick_work); 5719 BUG_ON(!tick_work_cpu); 5720 return 0; 5721 } 5722 5723 #else /* !CONFIG_NO_HZ_FULL */ 5724 static inline void sched_tick_start(int cpu) { } 5725 static inline void sched_tick_stop(int cpu) { } 5726 #endif 5727 5728 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5729 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5730 /* 5731 * If the value passed in is equal to the current preempt count 5732 * then we just disabled preemption. Start timing the latency. 5733 */ 5734 static inline void preempt_latency_start(int val) 5735 { 5736 if (preempt_count() == val) { 5737 unsigned long ip = get_lock_parent_ip(); 5738 #ifdef CONFIG_DEBUG_PREEMPT 5739 current->preempt_disable_ip = ip; 5740 #endif 5741 trace_preempt_off(CALLER_ADDR0, ip); 5742 } 5743 } 5744 5745 void preempt_count_add(int val) 5746 { 5747 #ifdef CONFIG_DEBUG_PREEMPT 5748 /* 5749 * Underflow? 5750 */ 5751 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5752 return; 5753 #endif 5754 __preempt_count_add(val); 5755 #ifdef CONFIG_DEBUG_PREEMPT 5756 /* 5757 * Spinlock count overflowing soon? 5758 */ 5759 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5760 PREEMPT_MASK - 10); 5761 #endif 5762 preempt_latency_start(val); 5763 } 5764 EXPORT_SYMBOL(preempt_count_add); 5765 NOKPROBE_SYMBOL(preempt_count_add); 5766 5767 /* 5768 * If the value passed in equals to the current preempt count 5769 * then we just enabled preemption. Stop timing the latency. 5770 */ 5771 static inline void preempt_latency_stop(int val) 5772 { 5773 if (preempt_count() == val) 5774 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5775 } 5776 5777 void preempt_count_sub(int val) 5778 { 5779 #ifdef CONFIG_DEBUG_PREEMPT 5780 /* 5781 * Underflow? 5782 */ 5783 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5784 return; 5785 /* 5786 * Is the spinlock portion underflowing? 5787 */ 5788 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5789 !(preempt_count() & PREEMPT_MASK))) 5790 return; 5791 #endif 5792 5793 preempt_latency_stop(val); 5794 __preempt_count_sub(val); 5795 } 5796 EXPORT_SYMBOL(preempt_count_sub); 5797 NOKPROBE_SYMBOL(preempt_count_sub); 5798 5799 #else 5800 static inline void preempt_latency_start(int val) { } 5801 static inline void preempt_latency_stop(int val) { } 5802 #endif 5803 5804 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5805 { 5806 #ifdef CONFIG_DEBUG_PREEMPT 5807 return p->preempt_disable_ip; 5808 #else 5809 return 0; 5810 #endif 5811 } 5812 5813 /* 5814 * Print scheduling while atomic bug: 5815 */ 5816 static noinline void __schedule_bug(struct task_struct *prev) 5817 { 5818 /* Save this before calling printk(), since that will clobber it */ 5819 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5820 5821 if (oops_in_progress) 5822 return; 5823 5824 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5825 prev->comm, prev->pid, preempt_count()); 5826 5827 debug_show_held_locks(prev); 5828 print_modules(); 5829 if (irqs_disabled()) 5830 print_irqtrace_events(prev); 5831 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5832 && in_atomic_preempt_off()) { 5833 pr_err("Preemption disabled at:"); 5834 print_ip_sym(KERN_ERR, preempt_disable_ip); 5835 } 5836 check_panic_on_warn("scheduling while atomic"); 5837 5838 dump_stack(); 5839 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5840 } 5841 5842 /* 5843 * Various schedule()-time debugging checks and statistics: 5844 */ 5845 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5846 { 5847 #ifdef CONFIG_SCHED_STACK_END_CHECK 5848 if (task_stack_end_corrupted(prev)) 5849 panic("corrupted stack end detected inside scheduler\n"); 5850 5851 if (task_scs_end_corrupted(prev)) 5852 panic("corrupted shadow stack detected inside scheduler\n"); 5853 #endif 5854 5855 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5856 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5857 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5858 prev->comm, prev->pid, prev->non_block_count); 5859 dump_stack(); 5860 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5861 } 5862 #endif 5863 5864 if (unlikely(in_atomic_preempt_off())) { 5865 __schedule_bug(prev); 5866 preempt_count_set(PREEMPT_DISABLED); 5867 } 5868 rcu_sleep_check(); 5869 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5870 5871 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5872 5873 schedstat_inc(this_rq()->sched_count); 5874 } 5875 5876 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5877 struct rq_flags *rf) 5878 { 5879 #ifdef CONFIG_SMP 5880 const struct sched_class *class; 5881 /* 5882 * We must do the balancing pass before put_prev_task(), such 5883 * that when we release the rq->lock the task is in the same 5884 * state as before we took rq->lock. 5885 * 5886 * We can terminate the balance pass as soon as we know there is 5887 * a runnable task of @class priority or higher. 5888 */ 5889 for_class_range(class, prev->sched_class, &idle_sched_class) { 5890 if (class->balance(rq, prev, rf)) 5891 break; 5892 } 5893 #endif 5894 5895 put_prev_task(rq, prev); 5896 } 5897 5898 /* 5899 * Pick up the highest-prio task: 5900 */ 5901 static inline struct task_struct * 5902 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5903 { 5904 const struct sched_class *class; 5905 struct task_struct *p; 5906 5907 /* 5908 * Optimization: we know that if all tasks are in the fair class we can 5909 * call that function directly, but only if the @prev task wasn't of a 5910 * higher scheduling class, because otherwise those lose the 5911 * opportunity to pull in more work from other CPUs. 5912 */ 5913 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5914 rq->nr_running == rq->cfs.h_nr_running)) { 5915 5916 p = pick_next_task_fair(rq, prev, rf); 5917 if (unlikely(p == RETRY_TASK)) 5918 goto restart; 5919 5920 /* Assume the next prioritized class is idle_sched_class */ 5921 if (!p) { 5922 put_prev_task(rq, prev); 5923 p = pick_next_task_idle(rq); 5924 } 5925 5926 return p; 5927 } 5928 5929 restart: 5930 put_prev_task_balance(rq, prev, rf); 5931 5932 for_each_class(class) { 5933 p = class->pick_next_task(rq); 5934 if (p) 5935 return p; 5936 } 5937 5938 BUG(); /* The idle class should always have a runnable task. */ 5939 } 5940 5941 #ifdef CONFIG_SCHED_CORE 5942 static inline bool is_task_rq_idle(struct task_struct *t) 5943 { 5944 return (task_rq(t)->idle == t); 5945 } 5946 5947 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5948 { 5949 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5950 } 5951 5952 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5953 { 5954 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5955 return true; 5956 5957 return a->core_cookie == b->core_cookie; 5958 } 5959 5960 static inline struct task_struct *pick_task(struct rq *rq) 5961 { 5962 const struct sched_class *class; 5963 struct task_struct *p; 5964 5965 for_each_class(class) { 5966 p = class->pick_task(rq); 5967 if (p) 5968 return p; 5969 } 5970 5971 BUG(); /* The idle class should always have a runnable task. */ 5972 } 5973 5974 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5975 5976 static void queue_core_balance(struct rq *rq); 5977 5978 static struct task_struct * 5979 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5980 { 5981 struct task_struct *next, *p, *max = NULL; 5982 const struct cpumask *smt_mask; 5983 bool fi_before = false; 5984 bool core_clock_updated = (rq == rq->core); 5985 unsigned long cookie; 5986 int i, cpu, occ = 0; 5987 struct rq *rq_i; 5988 bool need_sync; 5989 5990 if (!sched_core_enabled(rq)) 5991 return __pick_next_task(rq, prev, rf); 5992 5993 cpu = cpu_of(rq); 5994 5995 /* Stopper task is switching into idle, no need core-wide selection. */ 5996 if (cpu_is_offline(cpu)) { 5997 /* 5998 * Reset core_pick so that we don't enter the fastpath when 5999 * coming online. core_pick would already be migrated to 6000 * another cpu during offline. 6001 */ 6002 rq->core_pick = NULL; 6003 return __pick_next_task(rq, prev, rf); 6004 } 6005 6006 /* 6007 * If there were no {en,de}queues since we picked (IOW, the task 6008 * pointers are all still valid), and we haven't scheduled the last 6009 * pick yet, do so now. 6010 * 6011 * rq->core_pick can be NULL if no selection was made for a CPU because 6012 * it was either offline or went offline during a sibling's core-wide 6013 * selection. In this case, do a core-wide selection. 6014 */ 6015 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6016 rq->core->core_pick_seq != rq->core_sched_seq && 6017 rq->core_pick) { 6018 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6019 6020 next = rq->core_pick; 6021 if (next != prev) { 6022 put_prev_task(rq, prev); 6023 set_next_task(rq, next); 6024 } 6025 6026 rq->core_pick = NULL; 6027 goto out; 6028 } 6029 6030 put_prev_task_balance(rq, prev, rf); 6031 6032 smt_mask = cpu_smt_mask(cpu); 6033 need_sync = !!rq->core->core_cookie; 6034 6035 /* reset state */ 6036 rq->core->core_cookie = 0UL; 6037 if (rq->core->core_forceidle_count) { 6038 if (!core_clock_updated) { 6039 update_rq_clock(rq->core); 6040 core_clock_updated = true; 6041 } 6042 sched_core_account_forceidle(rq); 6043 /* reset after accounting force idle */ 6044 rq->core->core_forceidle_start = 0; 6045 rq->core->core_forceidle_count = 0; 6046 rq->core->core_forceidle_occupation = 0; 6047 need_sync = true; 6048 fi_before = true; 6049 } 6050 6051 /* 6052 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6053 * 6054 * @task_seq guards the task state ({en,de}queues) 6055 * @pick_seq is the @task_seq we did a selection on 6056 * @sched_seq is the @pick_seq we scheduled 6057 * 6058 * However, preemptions can cause multiple picks on the same task set. 6059 * 'Fix' this by also increasing @task_seq for every pick. 6060 */ 6061 rq->core->core_task_seq++; 6062 6063 /* 6064 * Optimize for common case where this CPU has no cookies 6065 * and there are no cookied tasks running on siblings. 6066 */ 6067 if (!need_sync) { 6068 next = pick_task(rq); 6069 if (!next->core_cookie) { 6070 rq->core_pick = NULL; 6071 /* 6072 * For robustness, update the min_vruntime_fi for 6073 * unconstrained picks as well. 6074 */ 6075 WARN_ON_ONCE(fi_before); 6076 task_vruntime_update(rq, next, false); 6077 goto out_set_next; 6078 } 6079 } 6080 6081 /* 6082 * For each thread: do the regular task pick and find the max prio task 6083 * amongst them. 6084 * 6085 * Tie-break prio towards the current CPU 6086 */ 6087 for_each_cpu_wrap(i, smt_mask, cpu) { 6088 rq_i = cpu_rq(i); 6089 6090 /* 6091 * Current cpu always has its clock updated on entrance to 6092 * pick_next_task(). If the current cpu is not the core, 6093 * the core may also have been updated above. 6094 */ 6095 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6096 update_rq_clock(rq_i); 6097 6098 p = rq_i->core_pick = pick_task(rq_i); 6099 if (!max || prio_less(max, p, fi_before)) 6100 max = p; 6101 } 6102 6103 cookie = rq->core->core_cookie = max->core_cookie; 6104 6105 /* 6106 * For each thread: try and find a runnable task that matches @max or 6107 * force idle. 6108 */ 6109 for_each_cpu(i, smt_mask) { 6110 rq_i = cpu_rq(i); 6111 p = rq_i->core_pick; 6112 6113 if (!cookie_equals(p, cookie)) { 6114 p = NULL; 6115 if (cookie) 6116 p = sched_core_find(rq_i, cookie); 6117 if (!p) 6118 p = idle_sched_class.pick_task(rq_i); 6119 } 6120 6121 rq_i->core_pick = p; 6122 6123 if (p == rq_i->idle) { 6124 if (rq_i->nr_running) { 6125 rq->core->core_forceidle_count++; 6126 if (!fi_before) 6127 rq->core->core_forceidle_seq++; 6128 } 6129 } else { 6130 occ++; 6131 } 6132 } 6133 6134 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6135 rq->core->core_forceidle_start = rq_clock(rq->core); 6136 rq->core->core_forceidle_occupation = occ; 6137 } 6138 6139 rq->core->core_pick_seq = rq->core->core_task_seq; 6140 next = rq->core_pick; 6141 rq->core_sched_seq = rq->core->core_pick_seq; 6142 6143 /* Something should have been selected for current CPU */ 6144 WARN_ON_ONCE(!next); 6145 6146 /* 6147 * Reschedule siblings 6148 * 6149 * NOTE: L1TF -- at this point we're no longer running the old task and 6150 * sending an IPI (below) ensures the sibling will no longer be running 6151 * their task. This ensures there is no inter-sibling overlap between 6152 * non-matching user state. 6153 */ 6154 for_each_cpu(i, smt_mask) { 6155 rq_i = cpu_rq(i); 6156 6157 /* 6158 * An online sibling might have gone offline before a task 6159 * could be picked for it, or it might be offline but later 6160 * happen to come online, but its too late and nothing was 6161 * picked for it. That's Ok - it will pick tasks for itself, 6162 * so ignore it. 6163 */ 6164 if (!rq_i->core_pick) 6165 continue; 6166 6167 /* 6168 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6169 * fi_before fi update? 6170 * 0 0 1 6171 * 0 1 1 6172 * 1 0 1 6173 * 1 1 0 6174 */ 6175 if (!(fi_before && rq->core->core_forceidle_count)) 6176 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6177 6178 rq_i->core_pick->core_occupation = occ; 6179 6180 if (i == cpu) { 6181 rq_i->core_pick = NULL; 6182 continue; 6183 } 6184 6185 /* Did we break L1TF mitigation requirements? */ 6186 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6187 6188 if (rq_i->curr == rq_i->core_pick) { 6189 rq_i->core_pick = NULL; 6190 continue; 6191 } 6192 6193 resched_curr(rq_i); 6194 } 6195 6196 out_set_next: 6197 set_next_task(rq, next); 6198 out: 6199 if (rq->core->core_forceidle_count && next == rq->idle) 6200 queue_core_balance(rq); 6201 6202 return next; 6203 } 6204 6205 static bool try_steal_cookie(int this, int that) 6206 { 6207 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6208 struct task_struct *p; 6209 unsigned long cookie; 6210 bool success = false; 6211 6212 local_irq_disable(); 6213 double_rq_lock(dst, src); 6214 6215 cookie = dst->core->core_cookie; 6216 if (!cookie) 6217 goto unlock; 6218 6219 if (dst->curr != dst->idle) 6220 goto unlock; 6221 6222 p = sched_core_find(src, cookie); 6223 if (p == src->idle) 6224 goto unlock; 6225 6226 do { 6227 if (p == src->core_pick || p == src->curr) 6228 goto next; 6229 6230 if (!is_cpu_allowed(p, this)) 6231 goto next; 6232 6233 if (p->core_occupation > dst->idle->core_occupation) 6234 goto next; 6235 6236 deactivate_task(src, p, 0); 6237 set_task_cpu(p, this); 6238 activate_task(dst, p, 0); 6239 6240 resched_curr(dst); 6241 6242 success = true; 6243 break; 6244 6245 next: 6246 p = sched_core_next(p, cookie); 6247 } while (p); 6248 6249 unlock: 6250 double_rq_unlock(dst, src); 6251 local_irq_enable(); 6252 6253 return success; 6254 } 6255 6256 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6257 { 6258 int i; 6259 6260 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 6261 if (i == cpu) 6262 continue; 6263 6264 if (need_resched()) 6265 break; 6266 6267 if (try_steal_cookie(cpu, i)) 6268 return true; 6269 } 6270 6271 return false; 6272 } 6273 6274 static void sched_core_balance(struct rq *rq) 6275 { 6276 struct sched_domain *sd; 6277 int cpu = cpu_of(rq); 6278 6279 preempt_disable(); 6280 rcu_read_lock(); 6281 raw_spin_rq_unlock_irq(rq); 6282 for_each_domain(cpu, sd) { 6283 if (need_resched()) 6284 break; 6285 6286 if (steal_cookie_task(cpu, sd)) 6287 break; 6288 } 6289 raw_spin_rq_lock_irq(rq); 6290 rcu_read_unlock(); 6291 preempt_enable(); 6292 } 6293 6294 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6295 6296 static void queue_core_balance(struct rq *rq) 6297 { 6298 if (!sched_core_enabled(rq)) 6299 return; 6300 6301 if (!rq->core->core_cookie) 6302 return; 6303 6304 if (!rq->nr_running) /* not forced idle */ 6305 return; 6306 6307 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6308 } 6309 6310 static void sched_core_cpu_starting(unsigned int cpu) 6311 { 6312 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6313 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6314 unsigned long flags; 6315 int t; 6316 6317 sched_core_lock(cpu, &flags); 6318 6319 WARN_ON_ONCE(rq->core != rq); 6320 6321 /* if we're the first, we'll be our own leader */ 6322 if (cpumask_weight(smt_mask) == 1) 6323 goto unlock; 6324 6325 /* find the leader */ 6326 for_each_cpu(t, smt_mask) { 6327 if (t == cpu) 6328 continue; 6329 rq = cpu_rq(t); 6330 if (rq->core == rq) { 6331 core_rq = rq; 6332 break; 6333 } 6334 } 6335 6336 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6337 goto unlock; 6338 6339 /* install and validate core_rq */ 6340 for_each_cpu(t, smt_mask) { 6341 rq = cpu_rq(t); 6342 6343 if (t == cpu) 6344 rq->core = core_rq; 6345 6346 WARN_ON_ONCE(rq->core != core_rq); 6347 } 6348 6349 unlock: 6350 sched_core_unlock(cpu, &flags); 6351 } 6352 6353 static void sched_core_cpu_deactivate(unsigned int cpu) 6354 { 6355 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6356 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6357 unsigned long flags; 6358 int t; 6359 6360 sched_core_lock(cpu, &flags); 6361 6362 /* if we're the last man standing, nothing to do */ 6363 if (cpumask_weight(smt_mask) == 1) { 6364 WARN_ON_ONCE(rq->core != rq); 6365 goto unlock; 6366 } 6367 6368 /* if we're not the leader, nothing to do */ 6369 if (rq->core != rq) 6370 goto unlock; 6371 6372 /* find a new leader */ 6373 for_each_cpu(t, smt_mask) { 6374 if (t == cpu) 6375 continue; 6376 core_rq = cpu_rq(t); 6377 break; 6378 } 6379 6380 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6381 goto unlock; 6382 6383 /* copy the shared state to the new leader */ 6384 core_rq->core_task_seq = rq->core_task_seq; 6385 core_rq->core_pick_seq = rq->core_pick_seq; 6386 core_rq->core_cookie = rq->core_cookie; 6387 core_rq->core_forceidle_count = rq->core_forceidle_count; 6388 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6389 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6390 6391 /* 6392 * Accounting edge for forced idle is handled in pick_next_task(). 6393 * Don't need another one here, since the hotplug thread shouldn't 6394 * have a cookie. 6395 */ 6396 core_rq->core_forceidle_start = 0; 6397 6398 /* install new leader */ 6399 for_each_cpu(t, smt_mask) { 6400 rq = cpu_rq(t); 6401 rq->core = core_rq; 6402 } 6403 6404 unlock: 6405 sched_core_unlock(cpu, &flags); 6406 } 6407 6408 static inline void sched_core_cpu_dying(unsigned int cpu) 6409 { 6410 struct rq *rq = cpu_rq(cpu); 6411 6412 if (rq->core != rq) 6413 rq->core = rq; 6414 } 6415 6416 #else /* !CONFIG_SCHED_CORE */ 6417 6418 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6419 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6420 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6421 6422 static struct task_struct * 6423 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6424 { 6425 return __pick_next_task(rq, prev, rf); 6426 } 6427 6428 #endif /* CONFIG_SCHED_CORE */ 6429 6430 /* 6431 * Constants for the sched_mode argument of __schedule(). 6432 * 6433 * The mode argument allows RT enabled kernels to differentiate a 6434 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6435 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6436 * optimize the AND operation out and just check for zero. 6437 */ 6438 #define SM_NONE 0x0 6439 #define SM_PREEMPT 0x1 6440 #define SM_RTLOCK_WAIT 0x2 6441 6442 #ifndef CONFIG_PREEMPT_RT 6443 # define SM_MASK_PREEMPT (~0U) 6444 #else 6445 # define SM_MASK_PREEMPT SM_PREEMPT 6446 #endif 6447 6448 /* 6449 * __schedule() is the main scheduler function. 6450 * 6451 * The main means of driving the scheduler and thus entering this function are: 6452 * 6453 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6454 * 6455 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6456 * paths. For example, see arch/x86/entry_64.S. 6457 * 6458 * To drive preemption between tasks, the scheduler sets the flag in timer 6459 * interrupt handler scheduler_tick(). 6460 * 6461 * 3. Wakeups don't really cause entry into schedule(). They add a 6462 * task to the run-queue and that's it. 6463 * 6464 * Now, if the new task added to the run-queue preempts the current 6465 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6466 * called on the nearest possible occasion: 6467 * 6468 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6469 * 6470 * - in syscall or exception context, at the next outmost 6471 * preempt_enable(). (this might be as soon as the wake_up()'s 6472 * spin_unlock()!) 6473 * 6474 * - in IRQ context, return from interrupt-handler to 6475 * preemptible context 6476 * 6477 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6478 * then at the next: 6479 * 6480 * - cond_resched() call 6481 * - explicit schedule() call 6482 * - return from syscall or exception to user-space 6483 * - return from interrupt-handler to user-space 6484 * 6485 * WARNING: must be called with preemption disabled! 6486 */ 6487 static void __sched notrace __schedule(unsigned int sched_mode) 6488 { 6489 struct task_struct *prev, *next; 6490 unsigned long *switch_count; 6491 unsigned long prev_state; 6492 struct rq_flags rf; 6493 struct rq *rq; 6494 int cpu; 6495 6496 cpu = smp_processor_id(); 6497 rq = cpu_rq(cpu); 6498 prev = rq->curr; 6499 6500 schedule_debug(prev, !!sched_mode); 6501 6502 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6503 hrtick_clear(rq); 6504 6505 local_irq_disable(); 6506 rcu_note_context_switch(!!sched_mode); 6507 6508 /* 6509 * Make sure that signal_pending_state()->signal_pending() below 6510 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6511 * done by the caller to avoid the race with signal_wake_up(): 6512 * 6513 * __set_current_state(@state) signal_wake_up() 6514 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6515 * wake_up_state(p, state) 6516 * LOCK rq->lock LOCK p->pi_state 6517 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6518 * if (signal_pending_state()) if (p->state & @state) 6519 * 6520 * Also, the membarrier system call requires a full memory barrier 6521 * after coming from user-space, before storing to rq->curr. 6522 */ 6523 rq_lock(rq, &rf); 6524 smp_mb__after_spinlock(); 6525 6526 /* Promote REQ to ACT */ 6527 rq->clock_update_flags <<= 1; 6528 update_rq_clock(rq); 6529 6530 switch_count = &prev->nivcsw; 6531 6532 /* 6533 * We must load prev->state once (task_struct::state is volatile), such 6534 * that we form a control dependency vs deactivate_task() below. 6535 */ 6536 prev_state = READ_ONCE(prev->__state); 6537 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6538 if (signal_pending_state(prev_state, prev)) { 6539 WRITE_ONCE(prev->__state, TASK_RUNNING); 6540 } else { 6541 prev->sched_contributes_to_load = 6542 (prev_state & TASK_UNINTERRUPTIBLE) && 6543 !(prev_state & TASK_NOLOAD) && 6544 !(prev_state & TASK_FROZEN); 6545 6546 if (prev->sched_contributes_to_load) 6547 rq->nr_uninterruptible++; 6548 6549 /* 6550 * __schedule() ttwu() 6551 * prev_state = prev->state; if (p->on_rq && ...) 6552 * if (prev_state) goto out; 6553 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6554 * p->state = TASK_WAKING 6555 * 6556 * Where __schedule() and ttwu() have matching control dependencies. 6557 * 6558 * After this, schedule() must not care about p->state any more. 6559 */ 6560 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6561 6562 if (prev->in_iowait) { 6563 atomic_inc(&rq->nr_iowait); 6564 delayacct_blkio_start(); 6565 } 6566 } 6567 switch_count = &prev->nvcsw; 6568 } 6569 6570 next = pick_next_task(rq, prev, &rf); 6571 clear_tsk_need_resched(prev); 6572 clear_preempt_need_resched(); 6573 #ifdef CONFIG_SCHED_DEBUG 6574 rq->last_seen_need_resched_ns = 0; 6575 #endif 6576 6577 if (likely(prev != next)) { 6578 rq->nr_switches++; 6579 /* 6580 * RCU users of rcu_dereference(rq->curr) may not see 6581 * changes to task_struct made by pick_next_task(). 6582 */ 6583 RCU_INIT_POINTER(rq->curr, next); 6584 /* 6585 * The membarrier system call requires each architecture 6586 * to have a full memory barrier after updating 6587 * rq->curr, before returning to user-space. 6588 * 6589 * Here are the schemes providing that barrier on the 6590 * various architectures: 6591 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6592 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6593 * - finish_lock_switch() for weakly-ordered 6594 * architectures where spin_unlock is a full barrier, 6595 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6596 * is a RELEASE barrier), 6597 */ 6598 ++*switch_count; 6599 6600 migrate_disable_switch(rq, prev); 6601 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6602 6603 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6604 6605 /* Also unlocks the rq: */ 6606 rq = context_switch(rq, prev, next, &rf); 6607 } else { 6608 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6609 6610 rq_unpin_lock(rq, &rf); 6611 __balance_callbacks(rq); 6612 raw_spin_rq_unlock_irq(rq); 6613 } 6614 } 6615 6616 void __noreturn do_task_dead(void) 6617 { 6618 /* Causes final put_task_struct in finish_task_switch(): */ 6619 set_special_state(TASK_DEAD); 6620 6621 /* Tell freezer to ignore us: */ 6622 current->flags |= PF_NOFREEZE; 6623 6624 __schedule(SM_NONE); 6625 BUG(); 6626 6627 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6628 for (;;) 6629 cpu_relax(); 6630 } 6631 6632 static inline void sched_submit_work(struct task_struct *tsk) 6633 { 6634 unsigned int task_flags; 6635 6636 if (task_is_running(tsk)) 6637 return; 6638 6639 task_flags = tsk->flags; 6640 /* 6641 * If a worker goes to sleep, notify and ask workqueue whether it 6642 * wants to wake up a task to maintain concurrency. 6643 */ 6644 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6645 if (task_flags & PF_WQ_WORKER) 6646 wq_worker_sleeping(tsk); 6647 else 6648 io_wq_worker_sleeping(tsk); 6649 } 6650 6651 /* 6652 * spinlock and rwlock must not flush block requests. This will 6653 * deadlock if the callback attempts to acquire a lock which is 6654 * already acquired. 6655 */ 6656 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6657 6658 /* 6659 * If we are going to sleep and we have plugged IO queued, 6660 * make sure to submit it to avoid deadlocks. 6661 */ 6662 blk_flush_plug(tsk->plug, true); 6663 } 6664 6665 static void sched_update_worker(struct task_struct *tsk) 6666 { 6667 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6668 if (tsk->flags & PF_WQ_WORKER) 6669 wq_worker_running(tsk); 6670 else 6671 io_wq_worker_running(tsk); 6672 } 6673 } 6674 6675 asmlinkage __visible void __sched schedule(void) 6676 { 6677 struct task_struct *tsk = current; 6678 6679 sched_submit_work(tsk); 6680 do { 6681 preempt_disable(); 6682 __schedule(SM_NONE); 6683 sched_preempt_enable_no_resched(); 6684 } while (need_resched()); 6685 sched_update_worker(tsk); 6686 } 6687 EXPORT_SYMBOL(schedule); 6688 6689 /* 6690 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6691 * state (have scheduled out non-voluntarily) by making sure that all 6692 * tasks have either left the run queue or have gone into user space. 6693 * As idle tasks do not do either, they must not ever be preempted 6694 * (schedule out non-voluntarily). 6695 * 6696 * schedule_idle() is similar to schedule_preempt_disable() except that it 6697 * never enables preemption because it does not call sched_submit_work(). 6698 */ 6699 void __sched schedule_idle(void) 6700 { 6701 /* 6702 * As this skips calling sched_submit_work(), which the idle task does 6703 * regardless because that function is a nop when the task is in a 6704 * TASK_RUNNING state, make sure this isn't used someplace that the 6705 * current task can be in any other state. Note, idle is always in the 6706 * TASK_RUNNING state. 6707 */ 6708 WARN_ON_ONCE(current->__state); 6709 do { 6710 __schedule(SM_NONE); 6711 } while (need_resched()); 6712 } 6713 6714 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6715 asmlinkage __visible void __sched schedule_user(void) 6716 { 6717 /* 6718 * If we come here after a random call to set_need_resched(), 6719 * or we have been woken up remotely but the IPI has not yet arrived, 6720 * we haven't yet exited the RCU idle mode. Do it here manually until 6721 * we find a better solution. 6722 * 6723 * NB: There are buggy callers of this function. Ideally we 6724 * should warn if prev_state != CONTEXT_USER, but that will trigger 6725 * too frequently to make sense yet. 6726 */ 6727 enum ctx_state prev_state = exception_enter(); 6728 schedule(); 6729 exception_exit(prev_state); 6730 } 6731 #endif 6732 6733 /** 6734 * schedule_preempt_disabled - called with preemption disabled 6735 * 6736 * Returns with preemption disabled. Note: preempt_count must be 1 6737 */ 6738 void __sched schedule_preempt_disabled(void) 6739 { 6740 sched_preempt_enable_no_resched(); 6741 schedule(); 6742 preempt_disable(); 6743 } 6744 6745 #ifdef CONFIG_PREEMPT_RT 6746 void __sched notrace schedule_rtlock(void) 6747 { 6748 do { 6749 preempt_disable(); 6750 __schedule(SM_RTLOCK_WAIT); 6751 sched_preempt_enable_no_resched(); 6752 } while (need_resched()); 6753 } 6754 NOKPROBE_SYMBOL(schedule_rtlock); 6755 #endif 6756 6757 static void __sched notrace preempt_schedule_common(void) 6758 { 6759 do { 6760 /* 6761 * Because the function tracer can trace preempt_count_sub() 6762 * and it also uses preempt_enable/disable_notrace(), if 6763 * NEED_RESCHED is set, the preempt_enable_notrace() called 6764 * by the function tracer will call this function again and 6765 * cause infinite recursion. 6766 * 6767 * Preemption must be disabled here before the function 6768 * tracer can trace. Break up preempt_disable() into two 6769 * calls. One to disable preemption without fear of being 6770 * traced. The other to still record the preemption latency, 6771 * which can also be traced by the function tracer. 6772 */ 6773 preempt_disable_notrace(); 6774 preempt_latency_start(1); 6775 __schedule(SM_PREEMPT); 6776 preempt_latency_stop(1); 6777 preempt_enable_no_resched_notrace(); 6778 6779 /* 6780 * Check again in case we missed a preemption opportunity 6781 * between schedule and now. 6782 */ 6783 } while (need_resched()); 6784 } 6785 6786 #ifdef CONFIG_PREEMPTION 6787 /* 6788 * This is the entry point to schedule() from in-kernel preemption 6789 * off of preempt_enable. 6790 */ 6791 asmlinkage __visible void __sched notrace preempt_schedule(void) 6792 { 6793 /* 6794 * If there is a non-zero preempt_count or interrupts are disabled, 6795 * we do not want to preempt the current task. Just return.. 6796 */ 6797 if (likely(!preemptible())) 6798 return; 6799 preempt_schedule_common(); 6800 } 6801 NOKPROBE_SYMBOL(preempt_schedule); 6802 EXPORT_SYMBOL(preempt_schedule); 6803 6804 #ifdef CONFIG_PREEMPT_DYNAMIC 6805 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6806 #ifndef preempt_schedule_dynamic_enabled 6807 #define preempt_schedule_dynamic_enabled preempt_schedule 6808 #define preempt_schedule_dynamic_disabled NULL 6809 #endif 6810 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6811 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6812 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6813 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6814 void __sched notrace dynamic_preempt_schedule(void) 6815 { 6816 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6817 return; 6818 preempt_schedule(); 6819 } 6820 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6821 EXPORT_SYMBOL(dynamic_preempt_schedule); 6822 #endif 6823 #endif 6824 6825 /** 6826 * preempt_schedule_notrace - preempt_schedule called by tracing 6827 * 6828 * The tracing infrastructure uses preempt_enable_notrace to prevent 6829 * recursion and tracing preempt enabling caused by the tracing 6830 * infrastructure itself. But as tracing can happen in areas coming 6831 * from userspace or just about to enter userspace, a preempt enable 6832 * can occur before user_exit() is called. This will cause the scheduler 6833 * to be called when the system is still in usermode. 6834 * 6835 * To prevent this, the preempt_enable_notrace will use this function 6836 * instead of preempt_schedule() to exit user context if needed before 6837 * calling the scheduler. 6838 */ 6839 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6840 { 6841 enum ctx_state prev_ctx; 6842 6843 if (likely(!preemptible())) 6844 return; 6845 6846 do { 6847 /* 6848 * Because the function tracer can trace preempt_count_sub() 6849 * and it also uses preempt_enable/disable_notrace(), if 6850 * NEED_RESCHED is set, the preempt_enable_notrace() called 6851 * by the function tracer will call this function again and 6852 * cause infinite recursion. 6853 * 6854 * Preemption must be disabled here before the function 6855 * tracer can trace. Break up preempt_disable() into two 6856 * calls. One to disable preemption without fear of being 6857 * traced. The other to still record the preemption latency, 6858 * which can also be traced by the function tracer. 6859 */ 6860 preempt_disable_notrace(); 6861 preempt_latency_start(1); 6862 /* 6863 * Needs preempt disabled in case user_exit() is traced 6864 * and the tracer calls preempt_enable_notrace() causing 6865 * an infinite recursion. 6866 */ 6867 prev_ctx = exception_enter(); 6868 __schedule(SM_PREEMPT); 6869 exception_exit(prev_ctx); 6870 6871 preempt_latency_stop(1); 6872 preempt_enable_no_resched_notrace(); 6873 } while (need_resched()); 6874 } 6875 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6876 6877 #ifdef CONFIG_PREEMPT_DYNAMIC 6878 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6879 #ifndef preempt_schedule_notrace_dynamic_enabled 6880 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6881 #define preempt_schedule_notrace_dynamic_disabled NULL 6882 #endif 6883 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6884 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6885 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6886 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6887 void __sched notrace dynamic_preempt_schedule_notrace(void) 6888 { 6889 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6890 return; 6891 preempt_schedule_notrace(); 6892 } 6893 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6894 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6895 #endif 6896 #endif 6897 6898 #endif /* CONFIG_PREEMPTION */ 6899 6900 /* 6901 * This is the entry point to schedule() from kernel preemption 6902 * off of irq context. 6903 * Note, that this is called and return with irqs disabled. This will 6904 * protect us against recursive calling from irq. 6905 */ 6906 asmlinkage __visible void __sched preempt_schedule_irq(void) 6907 { 6908 enum ctx_state prev_state; 6909 6910 /* Catch callers which need to be fixed */ 6911 BUG_ON(preempt_count() || !irqs_disabled()); 6912 6913 prev_state = exception_enter(); 6914 6915 do { 6916 preempt_disable(); 6917 local_irq_enable(); 6918 __schedule(SM_PREEMPT); 6919 local_irq_disable(); 6920 sched_preempt_enable_no_resched(); 6921 } while (need_resched()); 6922 6923 exception_exit(prev_state); 6924 } 6925 6926 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6927 void *key) 6928 { 6929 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6930 return try_to_wake_up(curr->private, mode, wake_flags); 6931 } 6932 EXPORT_SYMBOL(default_wake_function); 6933 6934 static void __setscheduler_prio(struct task_struct *p, int prio) 6935 { 6936 if (dl_prio(prio)) 6937 p->sched_class = &dl_sched_class; 6938 else if (rt_prio(prio)) 6939 p->sched_class = &rt_sched_class; 6940 else 6941 p->sched_class = &fair_sched_class; 6942 6943 p->prio = prio; 6944 } 6945 6946 #ifdef CONFIG_RT_MUTEXES 6947 6948 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6949 { 6950 if (pi_task) 6951 prio = min(prio, pi_task->prio); 6952 6953 return prio; 6954 } 6955 6956 static inline int rt_effective_prio(struct task_struct *p, int prio) 6957 { 6958 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6959 6960 return __rt_effective_prio(pi_task, prio); 6961 } 6962 6963 /* 6964 * rt_mutex_setprio - set the current priority of a task 6965 * @p: task to boost 6966 * @pi_task: donor task 6967 * 6968 * This function changes the 'effective' priority of a task. It does 6969 * not touch ->normal_prio like __setscheduler(). 6970 * 6971 * Used by the rt_mutex code to implement priority inheritance 6972 * logic. Call site only calls if the priority of the task changed. 6973 */ 6974 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6975 { 6976 int prio, oldprio, queued, running, queue_flag = 6977 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6978 const struct sched_class *prev_class; 6979 struct rq_flags rf; 6980 struct rq *rq; 6981 6982 /* XXX used to be waiter->prio, not waiter->task->prio */ 6983 prio = __rt_effective_prio(pi_task, p->normal_prio); 6984 6985 /* 6986 * If nothing changed; bail early. 6987 */ 6988 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6989 return; 6990 6991 rq = __task_rq_lock(p, &rf); 6992 update_rq_clock(rq); 6993 /* 6994 * Set under pi_lock && rq->lock, such that the value can be used under 6995 * either lock. 6996 * 6997 * Note that there is loads of tricky to make this pointer cache work 6998 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6999 * ensure a task is de-boosted (pi_task is set to NULL) before the 7000 * task is allowed to run again (and can exit). This ensures the pointer 7001 * points to a blocked task -- which guarantees the task is present. 7002 */ 7003 p->pi_top_task = pi_task; 7004 7005 /* 7006 * For FIFO/RR we only need to set prio, if that matches we're done. 7007 */ 7008 if (prio == p->prio && !dl_prio(prio)) 7009 goto out_unlock; 7010 7011 /* 7012 * Idle task boosting is a nono in general. There is one 7013 * exception, when PREEMPT_RT and NOHZ is active: 7014 * 7015 * The idle task calls get_next_timer_interrupt() and holds 7016 * the timer wheel base->lock on the CPU and another CPU wants 7017 * to access the timer (probably to cancel it). We can safely 7018 * ignore the boosting request, as the idle CPU runs this code 7019 * with interrupts disabled and will complete the lock 7020 * protected section without being interrupted. So there is no 7021 * real need to boost. 7022 */ 7023 if (unlikely(p == rq->idle)) { 7024 WARN_ON(p != rq->curr); 7025 WARN_ON(p->pi_blocked_on); 7026 goto out_unlock; 7027 } 7028 7029 trace_sched_pi_setprio(p, pi_task); 7030 oldprio = p->prio; 7031 7032 if (oldprio == prio) 7033 queue_flag &= ~DEQUEUE_MOVE; 7034 7035 prev_class = p->sched_class; 7036 queued = task_on_rq_queued(p); 7037 running = task_current(rq, p); 7038 if (queued) 7039 dequeue_task(rq, p, queue_flag); 7040 if (running) 7041 put_prev_task(rq, p); 7042 7043 /* 7044 * Boosting condition are: 7045 * 1. -rt task is running and holds mutex A 7046 * --> -dl task blocks on mutex A 7047 * 7048 * 2. -dl task is running and holds mutex A 7049 * --> -dl task blocks on mutex A and could preempt the 7050 * running task 7051 */ 7052 if (dl_prio(prio)) { 7053 if (!dl_prio(p->normal_prio) || 7054 (pi_task && dl_prio(pi_task->prio) && 7055 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7056 p->dl.pi_se = pi_task->dl.pi_se; 7057 queue_flag |= ENQUEUE_REPLENISH; 7058 } else { 7059 p->dl.pi_se = &p->dl; 7060 } 7061 } else if (rt_prio(prio)) { 7062 if (dl_prio(oldprio)) 7063 p->dl.pi_se = &p->dl; 7064 if (oldprio < prio) 7065 queue_flag |= ENQUEUE_HEAD; 7066 } else { 7067 if (dl_prio(oldprio)) 7068 p->dl.pi_se = &p->dl; 7069 if (rt_prio(oldprio)) 7070 p->rt.timeout = 0; 7071 } 7072 7073 __setscheduler_prio(p, prio); 7074 7075 if (queued) 7076 enqueue_task(rq, p, queue_flag); 7077 if (running) 7078 set_next_task(rq, p); 7079 7080 check_class_changed(rq, p, prev_class, oldprio); 7081 out_unlock: 7082 /* Avoid rq from going away on us: */ 7083 preempt_disable(); 7084 7085 rq_unpin_lock(rq, &rf); 7086 __balance_callbacks(rq); 7087 raw_spin_rq_unlock(rq); 7088 7089 preempt_enable(); 7090 } 7091 #else 7092 static inline int rt_effective_prio(struct task_struct *p, int prio) 7093 { 7094 return prio; 7095 } 7096 #endif 7097 7098 void set_user_nice(struct task_struct *p, long nice) 7099 { 7100 bool queued, running; 7101 int old_prio; 7102 struct rq_flags rf; 7103 struct rq *rq; 7104 7105 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 7106 return; 7107 /* 7108 * We have to be careful, if called from sys_setpriority(), 7109 * the task might be in the middle of scheduling on another CPU. 7110 */ 7111 rq = task_rq_lock(p, &rf); 7112 update_rq_clock(rq); 7113 7114 /* 7115 * The RT priorities are set via sched_setscheduler(), but we still 7116 * allow the 'normal' nice value to be set - but as expected 7117 * it won't have any effect on scheduling until the task is 7118 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7119 */ 7120 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7121 p->static_prio = NICE_TO_PRIO(nice); 7122 goto out_unlock; 7123 } 7124 queued = task_on_rq_queued(p); 7125 running = task_current(rq, p); 7126 if (queued) 7127 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7128 if (running) 7129 put_prev_task(rq, p); 7130 7131 p->static_prio = NICE_TO_PRIO(nice); 7132 set_load_weight(p, true); 7133 old_prio = p->prio; 7134 p->prio = effective_prio(p); 7135 7136 if (queued) 7137 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7138 if (running) 7139 set_next_task(rq, p); 7140 7141 /* 7142 * If the task increased its priority or is running and 7143 * lowered its priority, then reschedule its CPU: 7144 */ 7145 p->sched_class->prio_changed(rq, p, old_prio); 7146 7147 out_unlock: 7148 task_rq_unlock(rq, p, &rf); 7149 } 7150 EXPORT_SYMBOL(set_user_nice); 7151 7152 /* 7153 * is_nice_reduction - check if nice value is an actual reduction 7154 * 7155 * Similar to can_nice() but does not perform a capability check. 7156 * 7157 * @p: task 7158 * @nice: nice value 7159 */ 7160 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7161 { 7162 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7163 int nice_rlim = nice_to_rlimit(nice); 7164 7165 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7166 } 7167 7168 /* 7169 * can_nice - check if a task can reduce its nice value 7170 * @p: task 7171 * @nice: nice value 7172 */ 7173 int can_nice(const struct task_struct *p, const int nice) 7174 { 7175 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7176 } 7177 7178 #ifdef __ARCH_WANT_SYS_NICE 7179 7180 /* 7181 * sys_nice - change the priority of the current process. 7182 * @increment: priority increment 7183 * 7184 * sys_setpriority is a more generic, but much slower function that 7185 * does similar things. 7186 */ 7187 SYSCALL_DEFINE1(nice, int, increment) 7188 { 7189 long nice, retval; 7190 7191 /* 7192 * Setpriority might change our priority at the same moment. 7193 * We don't have to worry. Conceptually one call occurs first 7194 * and we have a single winner. 7195 */ 7196 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7197 nice = task_nice(current) + increment; 7198 7199 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7200 if (increment < 0 && !can_nice(current, nice)) 7201 return -EPERM; 7202 7203 retval = security_task_setnice(current, nice); 7204 if (retval) 7205 return retval; 7206 7207 set_user_nice(current, nice); 7208 return 0; 7209 } 7210 7211 #endif 7212 7213 /** 7214 * task_prio - return the priority value of a given task. 7215 * @p: the task in question. 7216 * 7217 * Return: The priority value as seen by users in /proc. 7218 * 7219 * sched policy return value kernel prio user prio/nice 7220 * 7221 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7222 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7223 * deadline -101 -1 0 7224 */ 7225 int task_prio(const struct task_struct *p) 7226 { 7227 return p->prio - MAX_RT_PRIO; 7228 } 7229 7230 /** 7231 * idle_cpu - is a given CPU idle currently? 7232 * @cpu: the processor in question. 7233 * 7234 * Return: 1 if the CPU is currently idle. 0 otherwise. 7235 */ 7236 int idle_cpu(int cpu) 7237 { 7238 struct rq *rq = cpu_rq(cpu); 7239 7240 if (rq->curr != rq->idle) 7241 return 0; 7242 7243 if (rq->nr_running) 7244 return 0; 7245 7246 #ifdef CONFIG_SMP 7247 if (rq->ttwu_pending) 7248 return 0; 7249 #endif 7250 7251 return 1; 7252 } 7253 7254 /** 7255 * available_idle_cpu - is a given CPU idle for enqueuing work. 7256 * @cpu: the CPU in question. 7257 * 7258 * Return: 1 if the CPU is currently idle. 0 otherwise. 7259 */ 7260 int available_idle_cpu(int cpu) 7261 { 7262 if (!idle_cpu(cpu)) 7263 return 0; 7264 7265 if (vcpu_is_preempted(cpu)) 7266 return 0; 7267 7268 return 1; 7269 } 7270 7271 /** 7272 * idle_task - return the idle task for a given CPU. 7273 * @cpu: the processor in question. 7274 * 7275 * Return: The idle task for the CPU @cpu. 7276 */ 7277 struct task_struct *idle_task(int cpu) 7278 { 7279 return cpu_rq(cpu)->idle; 7280 } 7281 7282 #ifdef CONFIG_SMP 7283 /* 7284 * This function computes an effective utilization for the given CPU, to be 7285 * used for frequency selection given the linear relation: f = u * f_max. 7286 * 7287 * The scheduler tracks the following metrics: 7288 * 7289 * cpu_util_{cfs,rt,dl,irq}() 7290 * cpu_bw_dl() 7291 * 7292 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7293 * synchronized windows and are thus directly comparable. 7294 * 7295 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7296 * which excludes things like IRQ and steal-time. These latter are then accrued 7297 * in the irq utilization. 7298 * 7299 * The DL bandwidth number otoh is not a measured metric but a value computed 7300 * based on the task model parameters and gives the minimal utilization 7301 * required to meet deadlines. 7302 */ 7303 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7304 enum cpu_util_type type, 7305 struct task_struct *p) 7306 { 7307 unsigned long dl_util, util, irq, max; 7308 struct rq *rq = cpu_rq(cpu); 7309 7310 max = arch_scale_cpu_capacity(cpu); 7311 7312 if (!uclamp_is_used() && 7313 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7314 return max; 7315 } 7316 7317 /* 7318 * Early check to see if IRQ/steal time saturates the CPU, can be 7319 * because of inaccuracies in how we track these -- see 7320 * update_irq_load_avg(). 7321 */ 7322 irq = cpu_util_irq(rq); 7323 if (unlikely(irq >= max)) 7324 return max; 7325 7326 /* 7327 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7328 * CFS tasks and we use the same metric to track the effective 7329 * utilization (PELT windows are synchronized) we can directly add them 7330 * to obtain the CPU's actual utilization. 7331 * 7332 * CFS and RT utilization can be boosted or capped, depending on 7333 * utilization clamp constraints requested by currently RUNNABLE 7334 * tasks. 7335 * When there are no CFS RUNNABLE tasks, clamps are released and 7336 * frequency will be gracefully reduced with the utilization decay. 7337 */ 7338 util = util_cfs + cpu_util_rt(rq); 7339 if (type == FREQUENCY_UTIL) 7340 util = uclamp_rq_util_with(rq, util, p); 7341 7342 dl_util = cpu_util_dl(rq); 7343 7344 /* 7345 * For frequency selection we do not make cpu_util_dl() a permanent part 7346 * of this sum because we want to use cpu_bw_dl() later on, but we need 7347 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7348 * that we select f_max when there is no idle time. 7349 * 7350 * NOTE: numerical errors or stop class might cause us to not quite hit 7351 * saturation when we should -- something for later. 7352 */ 7353 if (util + dl_util >= max) 7354 return max; 7355 7356 /* 7357 * OTOH, for energy computation we need the estimated running time, so 7358 * include util_dl and ignore dl_bw. 7359 */ 7360 if (type == ENERGY_UTIL) 7361 util += dl_util; 7362 7363 /* 7364 * There is still idle time; further improve the number by using the 7365 * irq metric. Because IRQ/steal time is hidden from the task clock we 7366 * need to scale the task numbers: 7367 * 7368 * max - irq 7369 * U' = irq + --------- * U 7370 * max 7371 */ 7372 util = scale_irq_capacity(util, irq, max); 7373 util += irq; 7374 7375 /* 7376 * Bandwidth required by DEADLINE must always be granted while, for 7377 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7378 * to gracefully reduce the frequency when no tasks show up for longer 7379 * periods of time. 7380 * 7381 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7382 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7383 * an interface. So, we only do the latter for now. 7384 */ 7385 if (type == FREQUENCY_UTIL) 7386 util += cpu_bw_dl(rq); 7387 7388 return min(max, util); 7389 } 7390 7391 unsigned long sched_cpu_util(int cpu) 7392 { 7393 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7394 } 7395 #endif /* CONFIG_SMP */ 7396 7397 /** 7398 * find_process_by_pid - find a process with a matching PID value. 7399 * @pid: the pid in question. 7400 * 7401 * The task of @pid, if found. %NULL otherwise. 7402 */ 7403 static struct task_struct *find_process_by_pid(pid_t pid) 7404 { 7405 return pid ? find_task_by_vpid(pid) : current; 7406 } 7407 7408 /* 7409 * sched_setparam() passes in -1 for its policy, to let the functions 7410 * it calls know not to change it. 7411 */ 7412 #define SETPARAM_POLICY -1 7413 7414 static void __setscheduler_params(struct task_struct *p, 7415 const struct sched_attr *attr) 7416 { 7417 int policy = attr->sched_policy; 7418 7419 if (policy == SETPARAM_POLICY) 7420 policy = p->policy; 7421 7422 p->policy = policy; 7423 7424 if (dl_policy(policy)) 7425 __setparam_dl(p, attr); 7426 else if (fair_policy(policy)) 7427 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7428 7429 /* 7430 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7431 * !rt_policy. Always setting this ensures that things like 7432 * getparam()/getattr() don't report silly values for !rt tasks. 7433 */ 7434 p->rt_priority = attr->sched_priority; 7435 p->normal_prio = normal_prio(p); 7436 set_load_weight(p, true); 7437 } 7438 7439 /* 7440 * Check the target process has a UID that matches the current process's: 7441 */ 7442 static bool check_same_owner(struct task_struct *p) 7443 { 7444 const struct cred *cred = current_cred(), *pcred; 7445 bool match; 7446 7447 rcu_read_lock(); 7448 pcred = __task_cred(p); 7449 match = (uid_eq(cred->euid, pcred->euid) || 7450 uid_eq(cred->euid, pcred->uid)); 7451 rcu_read_unlock(); 7452 return match; 7453 } 7454 7455 /* 7456 * Allow unprivileged RT tasks to decrease priority. 7457 * Only issue a capable test if needed and only once to avoid an audit 7458 * event on permitted non-privileged operations: 7459 */ 7460 static int user_check_sched_setscheduler(struct task_struct *p, 7461 const struct sched_attr *attr, 7462 int policy, int reset_on_fork) 7463 { 7464 if (fair_policy(policy)) { 7465 if (attr->sched_nice < task_nice(p) && 7466 !is_nice_reduction(p, attr->sched_nice)) 7467 goto req_priv; 7468 } 7469 7470 if (rt_policy(policy)) { 7471 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7472 7473 /* Can't set/change the rt policy: */ 7474 if (policy != p->policy && !rlim_rtprio) 7475 goto req_priv; 7476 7477 /* Can't increase priority: */ 7478 if (attr->sched_priority > p->rt_priority && 7479 attr->sched_priority > rlim_rtprio) 7480 goto req_priv; 7481 } 7482 7483 /* 7484 * Can't set/change SCHED_DEADLINE policy at all for now 7485 * (safest behavior); in the future we would like to allow 7486 * unprivileged DL tasks to increase their relative deadline 7487 * or reduce their runtime (both ways reducing utilization) 7488 */ 7489 if (dl_policy(policy)) 7490 goto req_priv; 7491 7492 /* 7493 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7494 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7495 */ 7496 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7497 if (!is_nice_reduction(p, task_nice(p))) 7498 goto req_priv; 7499 } 7500 7501 /* Can't change other user's priorities: */ 7502 if (!check_same_owner(p)) 7503 goto req_priv; 7504 7505 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7506 if (p->sched_reset_on_fork && !reset_on_fork) 7507 goto req_priv; 7508 7509 return 0; 7510 7511 req_priv: 7512 if (!capable(CAP_SYS_NICE)) 7513 return -EPERM; 7514 7515 return 0; 7516 } 7517 7518 static int __sched_setscheduler(struct task_struct *p, 7519 const struct sched_attr *attr, 7520 bool user, bool pi) 7521 { 7522 int oldpolicy = -1, policy = attr->sched_policy; 7523 int retval, oldprio, newprio, queued, running; 7524 const struct sched_class *prev_class; 7525 struct balance_callback *head; 7526 struct rq_flags rf; 7527 int reset_on_fork; 7528 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7529 struct rq *rq; 7530 7531 /* The pi code expects interrupts enabled */ 7532 BUG_ON(pi && in_interrupt()); 7533 recheck: 7534 /* Double check policy once rq lock held: */ 7535 if (policy < 0) { 7536 reset_on_fork = p->sched_reset_on_fork; 7537 policy = oldpolicy = p->policy; 7538 } else { 7539 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7540 7541 if (!valid_policy(policy)) 7542 return -EINVAL; 7543 } 7544 7545 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7546 return -EINVAL; 7547 7548 /* 7549 * Valid priorities for SCHED_FIFO and SCHED_RR are 7550 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7551 * SCHED_BATCH and SCHED_IDLE is 0. 7552 */ 7553 if (attr->sched_priority > MAX_RT_PRIO-1) 7554 return -EINVAL; 7555 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7556 (rt_policy(policy) != (attr->sched_priority != 0))) 7557 return -EINVAL; 7558 7559 if (user) { 7560 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7561 if (retval) 7562 return retval; 7563 7564 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7565 return -EINVAL; 7566 7567 retval = security_task_setscheduler(p); 7568 if (retval) 7569 return retval; 7570 } 7571 7572 /* Update task specific "requested" clamps */ 7573 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7574 retval = uclamp_validate(p, attr); 7575 if (retval) 7576 return retval; 7577 } 7578 7579 if (pi) 7580 cpuset_read_lock(); 7581 7582 /* 7583 * Make sure no PI-waiters arrive (or leave) while we are 7584 * changing the priority of the task: 7585 * 7586 * To be able to change p->policy safely, the appropriate 7587 * runqueue lock must be held. 7588 */ 7589 rq = task_rq_lock(p, &rf); 7590 update_rq_clock(rq); 7591 7592 /* 7593 * Changing the policy of the stop threads its a very bad idea: 7594 */ 7595 if (p == rq->stop) { 7596 retval = -EINVAL; 7597 goto unlock; 7598 } 7599 7600 /* 7601 * If not changing anything there's no need to proceed further, 7602 * but store a possible modification of reset_on_fork. 7603 */ 7604 if (unlikely(policy == p->policy)) { 7605 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7606 goto change; 7607 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7608 goto change; 7609 if (dl_policy(policy) && dl_param_changed(p, attr)) 7610 goto change; 7611 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7612 goto change; 7613 7614 p->sched_reset_on_fork = reset_on_fork; 7615 retval = 0; 7616 goto unlock; 7617 } 7618 change: 7619 7620 if (user) { 7621 #ifdef CONFIG_RT_GROUP_SCHED 7622 /* 7623 * Do not allow realtime tasks into groups that have no runtime 7624 * assigned. 7625 */ 7626 if (rt_bandwidth_enabled() && rt_policy(policy) && 7627 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7628 !task_group_is_autogroup(task_group(p))) { 7629 retval = -EPERM; 7630 goto unlock; 7631 } 7632 #endif 7633 #ifdef CONFIG_SMP 7634 if (dl_bandwidth_enabled() && dl_policy(policy) && 7635 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7636 cpumask_t *span = rq->rd->span; 7637 7638 /* 7639 * Don't allow tasks with an affinity mask smaller than 7640 * the entire root_domain to become SCHED_DEADLINE. We 7641 * will also fail if there's no bandwidth available. 7642 */ 7643 if (!cpumask_subset(span, p->cpus_ptr) || 7644 rq->rd->dl_bw.bw == 0) { 7645 retval = -EPERM; 7646 goto unlock; 7647 } 7648 } 7649 #endif 7650 } 7651 7652 /* Re-check policy now with rq lock held: */ 7653 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7654 policy = oldpolicy = -1; 7655 task_rq_unlock(rq, p, &rf); 7656 if (pi) 7657 cpuset_read_unlock(); 7658 goto recheck; 7659 } 7660 7661 /* 7662 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7663 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7664 * is available. 7665 */ 7666 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7667 retval = -EBUSY; 7668 goto unlock; 7669 } 7670 7671 p->sched_reset_on_fork = reset_on_fork; 7672 oldprio = p->prio; 7673 7674 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7675 if (pi) { 7676 /* 7677 * Take priority boosted tasks into account. If the new 7678 * effective priority is unchanged, we just store the new 7679 * normal parameters and do not touch the scheduler class and 7680 * the runqueue. This will be done when the task deboost 7681 * itself. 7682 */ 7683 newprio = rt_effective_prio(p, newprio); 7684 if (newprio == oldprio) 7685 queue_flags &= ~DEQUEUE_MOVE; 7686 } 7687 7688 queued = task_on_rq_queued(p); 7689 running = task_current(rq, p); 7690 if (queued) 7691 dequeue_task(rq, p, queue_flags); 7692 if (running) 7693 put_prev_task(rq, p); 7694 7695 prev_class = p->sched_class; 7696 7697 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7698 __setscheduler_params(p, attr); 7699 __setscheduler_prio(p, newprio); 7700 } 7701 __setscheduler_uclamp(p, attr); 7702 7703 if (queued) { 7704 /* 7705 * We enqueue to tail when the priority of a task is 7706 * increased (user space view). 7707 */ 7708 if (oldprio < p->prio) 7709 queue_flags |= ENQUEUE_HEAD; 7710 7711 enqueue_task(rq, p, queue_flags); 7712 } 7713 if (running) 7714 set_next_task(rq, p); 7715 7716 check_class_changed(rq, p, prev_class, oldprio); 7717 7718 /* Avoid rq from going away on us: */ 7719 preempt_disable(); 7720 head = splice_balance_callbacks(rq); 7721 task_rq_unlock(rq, p, &rf); 7722 7723 if (pi) { 7724 cpuset_read_unlock(); 7725 rt_mutex_adjust_pi(p); 7726 } 7727 7728 /* Run balance callbacks after we've adjusted the PI chain: */ 7729 balance_callbacks(rq, head); 7730 preempt_enable(); 7731 7732 return 0; 7733 7734 unlock: 7735 task_rq_unlock(rq, p, &rf); 7736 if (pi) 7737 cpuset_read_unlock(); 7738 return retval; 7739 } 7740 7741 static int _sched_setscheduler(struct task_struct *p, int policy, 7742 const struct sched_param *param, bool check) 7743 { 7744 struct sched_attr attr = { 7745 .sched_policy = policy, 7746 .sched_priority = param->sched_priority, 7747 .sched_nice = PRIO_TO_NICE(p->static_prio), 7748 }; 7749 7750 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7751 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7752 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7753 policy &= ~SCHED_RESET_ON_FORK; 7754 attr.sched_policy = policy; 7755 } 7756 7757 return __sched_setscheduler(p, &attr, check, true); 7758 } 7759 /** 7760 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7761 * @p: the task in question. 7762 * @policy: new policy. 7763 * @param: structure containing the new RT priority. 7764 * 7765 * Use sched_set_fifo(), read its comment. 7766 * 7767 * Return: 0 on success. An error code otherwise. 7768 * 7769 * NOTE that the task may be already dead. 7770 */ 7771 int sched_setscheduler(struct task_struct *p, int policy, 7772 const struct sched_param *param) 7773 { 7774 return _sched_setscheduler(p, policy, param, true); 7775 } 7776 7777 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7778 { 7779 return __sched_setscheduler(p, attr, true, true); 7780 } 7781 7782 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7783 { 7784 return __sched_setscheduler(p, attr, false, true); 7785 } 7786 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7787 7788 /** 7789 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7790 * @p: the task in question. 7791 * @policy: new policy. 7792 * @param: structure containing the new RT priority. 7793 * 7794 * Just like sched_setscheduler, only don't bother checking if the 7795 * current context has permission. For example, this is needed in 7796 * stop_machine(): we create temporary high priority worker threads, 7797 * but our caller might not have that capability. 7798 * 7799 * Return: 0 on success. An error code otherwise. 7800 */ 7801 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7802 const struct sched_param *param) 7803 { 7804 return _sched_setscheduler(p, policy, param, false); 7805 } 7806 7807 /* 7808 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7809 * incapable of resource management, which is the one thing an OS really should 7810 * be doing. 7811 * 7812 * This is of course the reason it is limited to privileged users only. 7813 * 7814 * Worse still; it is fundamentally impossible to compose static priority 7815 * workloads. You cannot take two correctly working static prio workloads 7816 * and smash them together and still expect them to work. 7817 * 7818 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7819 * 7820 * MAX_RT_PRIO / 2 7821 * 7822 * The administrator _MUST_ configure the system, the kernel simply doesn't 7823 * know enough information to make a sensible choice. 7824 */ 7825 void sched_set_fifo(struct task_struct *p) 7826 { 7827 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7828 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7829 } 7830 EXPORT_SYMBOL_GPL(sched_set_fifo); 7831 7832 /* 7833 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7834 */ 7835 void sched_set_fifo_low(struct task_struct *p) 7836 { 7837 struct sched_param sp = { .sched_priority = 1 }; 7838 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7839 } 7840 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7841 7842 void sched_set_normal(struct task_struct *p, int nice) 7843 { 7844 struct sched_attr attr = { 7845 .sched_policy = SCHED_NORMAL, 7846 .sched_nice = nice, 7847 }; 7848 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7849 } 7850 EXPORT_SYMBOL_GPL(sched_set_normal); 7851 7852 static int 7853 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7854 { 7855 struct sched_param lparam; 7856 struct task_struct *p; 7857 int retval; 7858 7859 if (!param || pid < 0) 7860 return -EINVAL; 7861 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7862 return -EFAULT; 7863 7864 rcu_read_lock(); 7865 retval = -ESRCH; 7866 p = find_process_by_pid(pid); 7867 if (likely(p)) 7868 get_task_struct(p); 7869 rcu_read_unlock(); 7870 7871 if (likely(p)) { 7872 retval = sched_setscheduler(p, policy, &lparam); 7873 put_task_struct(p); 7874 } 7875 7876 return retval; 7877 } 7878 7879 /* 7880 * Mimics kernel/events/core.c perf_copy_attr(). 7881 */ 7882 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7883 { 7884 u32 size; 7885 int ret; 7886 7887 /* Zero the full structure, so that a short copy will be nice: */ 7888 memset(attr, 0, sizeof(*attr)); 7889 7890 ret = get_user(size, &uattr->size); 7891 if (ret) 7892 return ret; 7893 7894 /* ABI compatibility quirk: */ 7895 if (!size) 7896 size = SCHED_ATTR_SIZE_VER0; 7897 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7898 goto err_size; 7899 7900 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7901 if (ret) { 7902 if (ret == -E2BIG) 7903 goto err_size; 7904 return ret; 7905 } 7906 7907 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7908 size < SCHED_ATTR_SIZE_VER1) 7909 return -EINVAL; 7910 7911 /* 7912 * XXX: Do we want to be lenient like existing syscalls; or do we want 7913 * to be strict and return an error on out-of-bounds values? 7914 */ 7915 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7916 7917 return 0; 7918 7919 err_size: 7920 put_user(sizeof(*attr), &uattr->size); 7921 return -E2BIG; 7922 } 7923 7924 static void get_params(struct task_struct *p, struct sched_attr *attr) 7925 { 7926 if (task_has_dl_policy(p)) 7927 __getparam_dl(p, attr); 7928 else if (task_has_rt_policy(p)) 7929 attr->sched_priority = p->rt_priority; 7930 else 7931 attr->sched_nice = task_nice(p); 7932 } 7933 7934 /** 7935 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7936 * @pid: the pid in question. 7937 * @policy: new policy. 7938 * @param: structure containing the new RT priority. 7939 * 7940 * Return: 0 on success. An error code otherwise. 7941 */ 7942 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7943 { 7944 if (policy < 0) 7945 return -EINVAL; 7946 7947 return do_sched_setscheduler(pid, policy, param); 7948 } 7949 7950 /** 7951 * sys_sched_setparam - set/change the RT priority of a thread 7952 * @pid: the pid in question. 7953 * @param: structure containing the new RT priority. 7954 * 7955 * Return: 0 on success. An error code otherwise. 7956 */ 7957 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7958 { 7959 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7960 } 7961 7962 /** 7963 * sys_sched_setattr - same as above, but with extended sched_attr 7964 * @pid: the pid in question. 7965 * @uattr: structure containing the extended parameters. 7966 * @flags: for future extension. 7967 */ 7968 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7969 unsigned int, flags) 7970 { 7971 struct sched_attr attr; 7972 struct task_struct *p; 7973 int retval; 7974 7975 if (!uattr || pid < 0 || flags) 7976 return -EINVAL; 7977 7978 retval = sched_copy_attr(uattr, &attr); 7979 if (retval) 7980 return retval; 7981 7982 if ((int)attr.sched_policy < 0) 7983 return -EINVAL; 7984 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7985 attr.sched_policy = SETPARAM_POLICY; 7986 7987 rcu_read_lock(); 7988 retval = -ESRCH; 7989 p = find_process_by_pid(pid); 7990 if (likely(p)) 7991 get_task_struct(p); 7992 rcu_read_unlock(); 7993 7994 if (likely(p)) { 7995 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7996 get_params(p, &attr); 7997 retval = sched_setattr(p, &attr); 7998 put_task_struct(p); 7999 } 8000 8001 return retval; 8002 } 8003 8004 /** 8005 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 8006 * @pid: the pid in question. 8007 * 8008 * Return: On success, the policy of the thread. Otherwise, a negative error 8009 * code. 8010 */ 8011 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 8012 { 8013 struct task_struct *p; 8014 int retval; 8015 8016 if (pid < 0) 8017 return -EINVAL; 8018 8019 retval = -ESRCH; 8020 rcu_read_lock(); 8021 p = find_process_by_pid(pid); 8022 if (p) { 8023 retval = security_task_getscheduler(p); 8024 if (!retval) 8025 retval = p->policy 8026 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 8027 } 8028 rcu_read_unlock(); 8029 return retval; 8030 } 8031 8032 /** 8033 * sys_sched_getparam - get the RT priority of a thread 8034 * @pid: the pid in question. 8035 * @param: structure containing the RT priority. 8036 * 8037 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 8038 * code. 8039 */ 8040 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 8041 { 8042 struct sched_param lp = { .sched_priority = 0 }; 8043 struct task_struct *p; 8044 int retval; 8045 8046 if (!param || pid < 0) 8047 return -EINVAL; 8048 8049 rcu_read_lock(); 8050 p = find_process_by_pid(pid); 8051 retval = -ESRCH; 8052 if (!p) 8053 goto out_unlock; 8054 8055 retval = security_task_getscheduler(p); 8056 if (retval) 8057 goto out_unlock; 8058 8059 if (task_has_rt_policy(p)) 8060 lp.sched_priority = p->rt_priority; 8061 rcu_read_unlock(); 8062 8063 /* 8064 * This one might sleep, we cannot do it with a spinlock held ... 8065 */ 8066 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 8067 8068 return retval; 8069 8070 out_unlock: 8071 rcu_read_unlock(); 8072 return retval; 8073 } 8074 8075 /* 8076 * Copy the kernel size attribute structure (which might be larger 8077 * than what user-space knows about) to user-space. 8078 * 8079 * Note that all cases are valid: user-space buffer can be larger or 8080 * smaller than the kernel-space buffer. The usual case is that both 8081 * have the same size. 8082 */ 8083 static int 8084 sched_attr_copy_to_user(struct sched_attr __user *uattr, 8085 struct sched_attr *kattr, 8086 unsigned int usize) 8087 { 8088 unsigned int ksize = sizeof(*kattr); 8089 8090 if (!access_ok(uattr, usize)) 8091 return -EFAULT; 8092 8093 /* 8094 * sched_getattr() ABI forwards and backwards compatibility: 8095 * 8096 * If usize == ksize then we just copy everything to user-space and all is good. 8097 * 8098 * If usize < ksize then we only copy as much as user-space has space for, 8099 * this keeps ABI compatibility as well. We skip the rest. 8100 * 8101 * If usize > ksize then user-space is using a newer version of the ABI, 8102 * which part the kernel doesn't know about. Just ignore it - tooling can 8103 * detect the kernel's knowledge of attributes from the attr->size value 8104 * which is set to ksize in this case. 8105 */ 8106 kattr->size = min(usize, ksize); 8107 8108 if (copy_to_user(uattr, kattr, kattr->size)) 8109 return -EFAULT; 8110 8111 return 0; 8112 } 8113 8114 /** 8115 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 8116 * @pid: the pid in question. 8117 * @uattr: structure containing the extended parameters. 8118 * @usize: sizeof(attr) for fwd/bwd comp. 8119 * @flags: for future extension. 8120 */ 8121 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8122 unsigned int, usize, unsigned int, flags) 8123 { 8124 struct sched_attr kattr = { }; 8125 struct task_struct *p; 8126 int retval; 8127 8128 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8129 usize < SCHED_ATTR_SIZE_VER0 || flags) 8130 return -EINVAL; 8131 8132 rcu_read_lock(); 8133 p = find_process_by_pid(pid); 8134 retval = -ESRCH; 8135 if (!p) 8136 goto out_unlock; 8137 8138 retval = security_task_getscheduler(p); 8139 if (retval) 8140 goto out_unlock; 8141 8142 kattr.sched_policy = p->policy; 8143 if (p->sched_reset_on_fork) 8144 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8145 get_params(p, &kattr); 8146 kattr.sched_flags &= SCHED_FLAG_ALL; 8147 8148 #ifdef CONFIG_UCLAMP_TASK 8149 /* 8150 * This could race with another potential updater, but this is fine 8151 * because it'll correctly read the old or the new value. We don't need 8152 * to guarantee who wins the race as long as it doesn't return garbage. 8153 */ 8154 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8155 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8156 #endif 8157 8158 rcu_read_unlock(); 8159 8160 return sched_attr_copy_to_user(uattr, &kattr, usize); 8161 8162 out_unlock: 8163 rcu_read_unlock(); 8164 return retval; 8165 } 8166 8167 #ifdef CONFIG_SMP 8168 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8169 { 8170 int ret = 0; 8171 8172 /* 8173 * If the task isn't a deadline task or admission control is 8174 * disabled then we don't care about affinity changes. 8175 */ 8176 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8177 return 0; 8178 8179 /* 8180 * Since bandwidth control happens on root_domain basis, 8181 * if admission test is enabled, we only admit -deadline 8182 * tasks allowed to run on all the CPUs in the task's 8183 * root_domain. 8184 */ 8185 rcu_read_lock(); 8186 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8187 ret = -EBUSY; 8188 rcu_read_unlock(); 8189 return ret; 8190 } 8191 #endif 8192 8193 static int 8194 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) 8195 { 8196 int retval; 8197 cpumask_var_t cpus_allowed, new_mask; 8198 8199 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8200 return -ENOMEM; 8201 8202 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8203 retval = -ENOMEM; 8204 goto out_free_cpus_allowed; 8205 } 8206 8207 cpuset_cpus_allowed(p, cpus_allowed); 8208 cpumask_and(new_mask, ctx->new_mask, cpus_allowed); 8209 8210 ctx->new_mask = new_mask; 8211 ctx->flags |= SCA_CHECK; 8212 8213 retval = dl_task_check_affinity(p, new_mask); 8214 if (retval) 8215 goto out_free_new_mask; 8216 8217 retval = __set_cpus_allowed_ptr(p, ctx); 8218 if (retval) 8219 goto out_free_new_mask; 8220 8221 cpuset_cpus_allowed(p, cpus_allowed); 8222 if (!cpumask_subset(new_mask, cpus_allowed)) { 8223 /* 8224 * We must have raced with a concurrent cpuset update. 8225 * Just reset the cpumask to the cpuset's cpus_allowed. 8226 */ 8227 cpumask_copy(new_mask, cpus_allowed); 8228 8229 /* 8230 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() 8231 * will restore the previous user_cpus_ptr value. 8232 * 8233 * In the unlikely event a previous user_cpus_ptr exists, 8234 * we need to further restrict the mask to what is allowed 8235 * by that old user_cpus_ptr. 8236 */ 8237 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { 8238 bool empty = !cpumask_and(new_mask, new_mask, 8239 ctx->user_mask); 8240 8241 if (WARN_ON_ONCE(empty)) 8242 cpumask_copy(new_mask, cpus_allowed); 8243 } 8244 __set_cpus_allowed_ptr(p, ctx); 8245 retval = -EINVAL; 8246 } 8247 8248 out_free_new_mask: 8249 free_cpumask_var(new_mask); 8250 out_free_cpus_allowed: 8251 free_cpumask_var(cpus_allowed); 8252 return retval; 8253 } 8254 8255 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8256 { 8257 struct affinity_context ac; 8258 struct cpumask *user_mask; 8259 struct task_struct *p; 8260 int retval; 8261 8262 rcu_read_lock(); 8263 8264 p = find_process_by_pid(pid); 8265 if (!p) { 8266 rcu_read_unlock(); 8267 return -ESRCH; 8268 } 8269 8270 /* Prevent p going away */ 8271 get_task_struct(p); 8272 rcu_read_unlock(); 8273 8274 if (p->flags & PF_NO_SETAFFINITY) { 8275 retval = -EINVAL; 8276 goto out_put_task; 8277 } 8278 8279 if (!check_same_owner(p)) { 8280 rcu_read_lock(); 8281 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8282 rcu_read_unlock(); 8283 retval = -EPERM; 8284 goto out_put_task; 8285 } 8286 rcu_read_unlock(); 8287 } 8288 8289 retval = security_task_setscheduler(p); 8290 if (retval) 8291 goto out_put_task; 8292 8293 /* 8294 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and 8295 * alloc_user_cpus_ptr() returns NULL. 8296 */ 8297 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); 8298 if (user_mask) { 8299 cpumask_copy(user_mask, in_mask); 8300 } else if (IS_ENABLED(CONFIG_SMP)) { 8301 retval = -ENOMEM; 8302 goto out_put_task; 8303 } 8304 8305 ac = (struct affinity_context){ 8306 .new_mask = in_mask, 8307 .user_mask = user_mask, 8308 .flags = SCA_USER, 8309 }; 8310 8311 retval = __sched_setaffinity(p, &ac); 8312 kfree(ac.user_mask); 8313 8314 out_put_task: 8315 put_task_struct(p); 8316 return retval; 8317 } 8318 8319 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8320 struct cpumask *new_mask) 8321 { 8322 if (len < cpumask_size()) 8323 cpumask_clear(new_mask); 8324 else if (len > cpumask_size()) 8325 len = cpumask_size(); 8326 8327 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8328 } 8329 8330 /** 8331 * sys_sched_setaffinity - set the CPU affinity of a process 8332 * @pid: pid of the process 8333 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8334 * @user_mask_ptr: user-space pointer to the new CPU mask 8335 * 8336 * Return: 0 on success. An error code otherwise. 8337 */ 8338 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8339 unsigned long __user *, user_mask_ptr) 8340 { 8341 cpumask_var_t new_mask; 8342 int retval; 8343 8344 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8345 return -ENOMEM; 8346 8347 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8348 if (retval == 0) 8349 retval = sched_setaffinity(pid, new_mask); 8350 free_cpumask_var(new_mask); 8351 return retval; 8352 } 8353 8354 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8355 { 8356 struct task_struct *p; 8357 unsigned long flags; 8358 int retval; 8359 8360 rcu_read_lock(); 8361 8362 retval = -ESRCH; 8363 p = find_process_by_pid(pid); 8364 if (!p) 8365 goto out_unlock; 8366 8367 retval = security_task_getscheduler(p); 8368 if (retval) 8369 goto out_unlock; 8370 8371 raw_spin_lock_irqsave(&p->pi_lock, flags); 8372 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8373 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8374 8375 out_unlock: 8376 rcu_read_unlock(); 8377 8378 return retval; 8379 } 8380 8381 /** 8382 * sys_sched_getaffinity - get the CPU affinity of a process 8383 * @pid: pid of the process 8384 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8385 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8386 * 8387 * Return: size of CPU mask copied to user_mask_ptr on success. An 8388 * error code otherwise. 8389 */ 8390 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8391 unsigned long __user *, user_mask_ptr) 8392 { 8393 int ret; 8394 cpumask_var_t mask; 8395 8396 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8397 return -EINVAL; 8398 if (len & (sizeof(unsigned long)-1)) 8399 return -EINVAL; 8400 8401 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8402 return -ENOMEM; 8403 8404 ret = sched_getaffinity(pid, mask); 8405 if (ret == 0) { 8406 unsigned int retlen = min(len, cpumask_size()); 8407 8408 if (copy_to_user(user_mask_ptr, mask, retlen)) 8409 ret = -EFAULT; 8410 else 8411 ret = retlen; 8412 } 8413 free_cpumask_var(mask); 8414 8415 return ret; 8416 } 8417 8418 static void do_sched_yield(void) 8419 { 8420 struct rq_flags rf; 8421 struct rq *rq; 8422 8423 rq = this_rq_lock_irq(&rf); 8424 8425 schedstat_inc(rq->yld_count); 8426 current->sched_class->yield_task(rq); 8427 8428 preempt_disable(); 8429 rq_unlock_irq(rq, &rf); 8430 sched_preempt_enable_no_resched(); 8431 8432 schedule(); 8433 } 8434 8435 /** 8436 * sys_sched_yield - yield the current processor to other threads. 8437 * 8438 * This function yields the current CPU to other tasks. If there are no 8439 * other threads running on this CPU then this function will return. 8440 * 8441 * Return: 0. 8442 */ 8443 SYSCALL_DEFINE0(sched_yield) 8444 { 8445 do_sched_yield(); 8446 return 0; 8447 } 8448 8449 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8450 int __sched __cond_resched(void) 8451 { 8452 if (should_resched(0)) { 8453 preempt_schedule_common(); 8454 return 1; 8455 } 8456 /* 8457 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8458 * whether the current CPU is in an RCU read-side critical section, 8459 * so the tick can report quiescent states even for CPUs looping 8460 * in kernel context. In contrast, in non-preemptible kernels, 8461 * RCU readers leave no in-memory hints, which means that CPU-bound 8462 * processes executing in kernel context might never report an 8463 * RCU quiescent state. Therefore, the following code causes 8464 * cond_resched() to report a quiescent state, but only when RCU 8465 * is in urgent need of one. 8466 */ 8467 #ifndef CONFIG_PREEMPT_RCU 8468 rcu_all_qs(); 8469 #endif 8470 return 0; 8471 } 8472 EXPORT_SYMBOL(__cond_resched); 8473 #endif 8474 8475 #ifdef CONFIG_PREEMPT_DYNAMIC 8476 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8477 #define cond_resched_dynamic_enabled __cond_resched 8478 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8479 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8480 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8481 8482 #define might_resched_dynamic_enabled __cond_resched 8483 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8484 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8485 EXPORT_STATIC_CALL_TRAMP(might_resched); 8486 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8487 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8488 int __sched dynamic_cond_resched(void) 8489 { 8490 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8491 return 0; 8492 return __cond_resched(); 8493 } 8494 EXPORT_SYMBOL(dynamic_cond_resched); 8495 8496 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8497 int __sched dynamic_might_resched(void) 8498 { 8499 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8500 return 0; 8501 return __cond_resched(); 8502 } 8503 EXPORT_SYMBOL(dynamic_might_resched); 8504 #endif 8505 #endif 8506 8507 /* 8508 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8509 * call schedule, and on return reacquire the lock. 8510 * 8511 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8512 * operations here to prevent schedule() from being called twice (once via 8513 * spin_unlock(), once by hand). 8514 */ 8515 int __cond_resched_lock(spinlock_t *lock) 8516 { 8517 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8518 int ret = 0; 8519 8520 lockdep_assert_held(lock); 8521 8522 if (spin_needbreak(lock) || resched) { 8523 spin_unlock(lock); 8524 if (!_cond_resched()) 8525 cpu_relax(); 8526 ret = 1; 8527 spin_lock(lock); 8528 } 8529 return ret; 8530 } 8531 EXPORT_SYMBOL(__cond_resched_lock); 8532 8533 int __cond_resched_rwlock_read(rwlock_t *lock) 8534 { 8535 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8536 int ret = 0; 8537 8538 lockdep_assert_held_read(lock); 8539 8540 if (rwlock_needbreak(lock) || resched) { 8541 read_unlock(lock); 8542 if (!_cond_resched()) 8543 cpu_relax(); 8544 ret = 1; 8545 read_lock(lock); 8546 } 8547 return ret; 8548 } 8549 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8550 8551 int __cond_resched_rwlock_write(rwlock_t *lock) 8552 { 8553 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8554 int ret = 0; 8555 8556 lockdep_assert_held_write(lock); 8557 8558 if (rwlock_needbreak(lock) || resched) { 8559 write_unlock(lock); 8560 if (!_cond_resched()) 8561 cpu_relax(); 8562 ret = 1; 8563 write_lock(lock); 8564 } 8565 return ret; 8566 } 8567 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8568 8569 #ifdef CONFIG_PREEMPT_DYNAMIC 8570 8571 #ifdef CONFIG_GENERIC_ENTRY 8572 #include <linux/entry-common.h> 8573 #endif 8574 8575 /* 8576 * SC:cond_resched 8577 * SC:might_resched 8578 * SC:preempt_schedule 8579 * SC:preempt_schedule_notrace 8580 * SC:irqentry_exit_cond_resched 8581 * 8582 * 8583 * NONE: 8584 * cond_resched <- __cond_resched 8585 * might_resched <- RET0 8586 * preempt_schedule <- NOP 8587 * preempt_schedule_notrace <- NOP 8588 * irqentry_exit_cond_resched <- NOP 8589 * 8590 * VOLUNTARY: 8591 * cond_resched <- __cond_resched 8592 * might_resched <- __cond_resched 8593 * preempt_schedule <- NOP 8594 * preempt_schedule_notrace <- NOP 8595 * irqentry_exit_cond_resched <- NOP 8596 * 8597 * FULL: 8598 * cond_resched <- RET0 8599 * might_resched <- RET0 8600 * preempt_schedule <- preempt_schedule 8601 * preempt_schedule_notrace <- preempt_schedule_notrace 8602 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8603 */ 8604 8605 enum { 8606 preempt_dynamic_undefined = -1, 8607 preempt_dynamic_none, 8608 preempt_dynamic_voluntary, 8609 preempt_dynamic_full, 8610 }; 8611 8612 int preempt_dynamic_mode = preempt_dynamic_undefined; 8613 8614 int sched_dynamic_mode(const char *str) 8615 { 8616 if (!strcmp(str, "none")) 8617 return preempt_dynamic_none; 8618 8619 if (!strcmp(str, "voluntary")) 8620 return preempt_dynamic_voluntary; 8621 8622 if (!strcmp(str, "full")) 8623 return preempt_dynamic_full; 8624 8625 return -EINVAL; 8626 } 8627 8628 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8629 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8630 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8631 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8632 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8633 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8634 #else 8635 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8636 #endif 8637 8638 void sched_dynamic_update(int mode) 8639 { 8640 /* 8641 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8642 * the ZERO state, which is invalid. 8643 */ 8644 preempt_dynamic_enable(cond_resched); 8645 preempt_dynamic_enable(might_resched); 8646 preempt_dynamic_enable(preempt_schedule); 8647 preempt_dynamic_enable(preempt_schedule_notrace); 8648 preempt_dynamic_enable(irqentry_exit_cond_resched); 8649 8650 switch (mode) { 8651 case preempt_dynamic_none: 8652 preempt_dynamic_enable(cond_resched); 8653 preempt_dynamic_disable(might_resched); 8654 preempt_dynamic_disable(preempt_schedule); 8655 preempt_dynamic_disable(preempt_schedule_notrace); 8656 preempt_dynamic_disable(irqentry_exit_cond_resched); 8657 pr_info("Dynamic Preempt: none\n"); 8658 break; 8659 8660 case preempt_dynamic_voluntary: 8661 preempt_dynamic_enable(cond_resched); 8662 preempt_dynamic_enable(might_resched); 8663 preempt_dynamic_disable(preempt_schedule); 8664 preempt_dynamic_disable(preempt_schedule_notrace); 8665 preempt_dynamic_disable(irqentry_exit_cond_resched); 8666 pr_info("Dynamic Preempt: voluntary\n"); 8667 break; 8668 8669 case preempt_dynamic_full: 8670 preempt_dynamic_disable(cond_resched); 8671 preempt_dynamic_disable(might_resched); 8672 preempt_dynamic_enable(preempt_schedule); 8673 preempt_dynamic_enable(preempt_schedule_notrace); 8674 preempt_dynamic_enable(irqentry_exit_cond_resched); 8675 pr_info("Dynamic Preempt: full\n"); 8676 break; 8677 } 8678 8679 preempt_dynamic_mode = mode; 8680 } 8681 8682 static int __init setup_preempt_mode(char *str) 8683 { 8684 int mode = sched_dynamic_mode(str); 8685 if (mode < 0) { 8686 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8687 return 0; 8688 } 8689 8690 sched_dynamic_update(mode); 8691 return 1; 8692 } 8693 __setup("preempt=", setup_preempt_mode); 8694 8695 static void __init preempt_dynamic_init(void) 8696 { 8697 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8698 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8699 sched_dynamic_update(preempt_dynamic_none); 8700 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8701 sched_dynamic_update(preempt_dynamic_voluntary); 8702 } else { 8703 /* Default static call setting, nothing to do */ 8704 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8705 preempt_dynamic_mode = preempt_dynamic_full; 8706 pr_info("Dynamic Preempt: full\n"); 8707 } 8708 } 8709 } 8710 8711 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8712 bool preempt_model_##mode(void) \ 8713 { \ 8714 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8715 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8716 } \ 8717 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8718 8719 PREEMPT_MODEL_ACCESSOR(none); 8720 PREEMPT_MODEL_ACCESSOR(voluntary); 8721 PREEMPT_MODEL_ACCESSOR(full); 8722 8723 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8724 8725 static inline void preempt_dynamic_init(void) { } 8726 8727 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8728 8729 /** 8730 * yield - yield the current processor to other threads. 8731 * 8732 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8733 * 8734 * The scheduler is at all times free to pick the calling task as the most 8735 * eligible task to run, if removing the yield() call from your code breaks 8736 * it, it's already broken. 8737 * 8738 * Typical broken usage is: 8739 * 8740 * while (!event) 8741 * yield(); 8742 * 8743 * where one assumes that yield() will let 'the other' process run that will 8744 * make event true. If the current task is a SCHED_FIFO task that will never 8745 * happen. Never use yield() as a progress guarantee!! 8746 * 8747 * If you want to use yield() to wait for something, use wait_event(). 8748 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8749 * If you still want to use yield(), do not! 8750 */ 8751 void __sched yield(void) 8752 { 8753 set_current_state(TASK_RUNNING); 8754 do_sched_yield(); 8755 } 8756 EXPORT_SYMBOL(yield); 8757 8758 /** 8759 * yield_to - yield the current processor to another thread in 8760 * your thread group, or accelerate that thread toward the 8761 * processor it's on. 8762 * @p: target task 8763 * @preempt: whether task preemption is allowed or not 8764 * 8765 * It's the caller's job to ensure that the target task struct 8766 * can't go away on us before we can do any checks. 8767 * 8768 * Return: 8769 * true (>0) if we indeed boosted the target task. 8770 * false (0) if we failed to boost the target. 8771 * -ESRCH if there's no task to yield to. 8772 */ 8773 int __sched yield_to(struct task_struct *p, bool preempt) 8774 { 8775 struct task_struct *curr = current; 8776 struct rq *rq, *p_rq; 8777 unsigned long flags; 8778 int yielded = 0; 8779 8780 local_irq_save(flags); 8781 rq = this_rq(); 8782 8783 again: 8784 p_rq = task_rq(p); 8785 /* 8786 * If we're the only runnable task on the rq and target rq also 8787 * has only one task, there's absolutely no point in yielding. 8788 */ 8789 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8790 yielded = -ESRCH; 8791 goto out_irq; 8792 } 8793 8794 double_rq_lock(rq, p_rq); 8795 if (task_rq(p) != p_rq) { 8796 double_rq_unlock(rq, p_rq); 8797 goto again; 8798 } 8799 8800 if (!curr->sched_class->yield_to_task) 8801 goto out_unlock; 8802 8803 if (curr->sched_class != p->sched_class) 8804 goto out_unlock; 8805 8806 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 8807 goto out_unlock; 8808 8809 yielded = curr->sched_class->yield_to_task(rq, p); 8810 if (yielded) { 8811 schedstat_inc(rq->yld_count); 8812 /* 8813 * Make p's CPU reschedule; pick_next_entity takes care of 8814 * fairness. 8815 */ 8816 if (preempt && rq != p_rq) 8817 resched_curr(p_rq); 8818 } 8819 8820 out_unlock: 8821 double_rq_unlock(rq, p_rq); 8822 out_irq: 8823 local_irq_restore(flags); 8824 8825 if (yielded > 0) 8826 schedule(); 8827 8828 return yielded; 8829 } 8830 EXPORT_SYMBOL_GPL(yield_to); 8831 8832 int io_schedule_prepare(void) 8833 { 8834 int old_iowait = current->in_iowait; 8835 8836 current->in_iowait = 1; 8837 blk_flush_plug(current->plug, true); 8838 return old_iowait; 8839 } 8840 8841 void io_schedule_finish(int token) 8842 { 8843 current->in_iowait = token; 8844 } 8845 8846 /* 8847 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8848 * that process accounting knows that this is a task in IO wait state. 8849 */ 8850 long __sched io_schedule_timeout(long timeout) 8851 { 8852 int token; 8853 long ret; 8854 8855 token = io_schedule_prepare(); 8856 ret = schedule_timeout(timeout); 8857 io_schedule_finish(token); 8858 8859 return ret; 8860 } 8861 EXPORT_SYMBOL(io_schedule_timeout); 8862 8863 void __sched io_schedule(void) 8864 { 8865 int token; 8866 8867 token = io_schedule_prepare(); 8868 schedule(); 8869 io_schedule_finish(token); 8870 } 8871 EXPORT_SYMBOL(io_schedule); 8872 8873 /** 8874 * sys_sched_get_priority_max - return maximum RT priority. 8875 * @policy: scheduling class. 8876 * 8877 * Return: On success, this syscall returns the maximum 8878 * rt_priority that can be used by a given scheduling class. 8879 * On failure, a negative error code is returned. 8880 */ 8881 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8882 { 8883 int ret = -EINVAL; 8884 8885 switch (policy) { 8886 case SCHED_FIFO: 8887 case SCHED_RR: 8888 ret = MAX_RT_PRIO-1; 8889 break; 8890 case SCHED_DEADLINE: 8891 case SCHED_NORMAL: 8892 case SCHED_BATCH: 8893 case SCHED_IDLE: 8894 ret = 0; 8895 break; 8896 } 8897 return ret; 8898 } 8899 8900 /** 8901 * sys_sched_get_priority_min - return minimum RT priority. 8902 * @policy: scheduling class. 8903 * 8904 * Return: On success, this syscall returns the minimum 8905 * rt_priority that can be used by a given scheduling class. 8906 * On failure, a negative error code is returned. 8907 */ 8908 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8909 { 8910 int ret = -EINVAL; 8911 8912 switch (policy) { 8913 case SCHED_FIFO: 8914 case SCHED_RR: 8915 ret = 1; 8916 break; 8917 case SCHED_DEADLINE: 8918 case SCHED_NORMAL: 8919 case SCHED_BATCH: 8920 case SCHED_IDLE: 8921 ret = 0; 8922 } 8923 return ret; 8924 } 8925 8926 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8927 { 8928 struct task_struct *p; 8929 unsigned int time_slice; 8930 struct rq_flags rf; 8931 struct rq *rq; 8932 int retval; 8933 8934 if (pid < 0) 8935 return -EINVAL; 8936 8937 retval = -ESRCH; 8938 rcu_read_lock(); 8939 p = find_process_by_pid(pid); 8940 if (!p) 8941 goto out_unlock; 8942 8943 retval = security_task_getscheduler(p); 8944 if (retval) 8945 goto out_unlock; 8946 8947 rq = task_rq_lock(p, &rf); 8948 time_slice = 0; 8949 if (p->sched_class->get_rr_interval) 8950 time_slice = p->sched_class->get_rr_interval(rq, p); 8951 task_rq_unlock(rq, p, &rf); 8952 8953 rcu_read_unlock(); 8954 jiffies_to_timespec64(time_slice, t); 8955 return 0; 8956 8957 out_unlock: 8958 rcu_read_unlock(); 8959 return retval; 8960 } 8961 8962 /** 8963 * sys_sched_rr_get_interval - return the default timeslice of a process. 8964 * @pid: pid of the process. 8965 * @interval: userspace pointer to the timeslice value. 8966 * 8967 * this syscall writes the default timeslice value of a given process 8968 * into the user-space timespec buffer. A value of '0' means infinity. 8969 * 8970 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8971 * an error code. 8972 */ 8973 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8974 struct __kernel_timespec __user *, interval) 8975 { 8976 struct timespec64 t; 8977 int retval = sched_rr_get_interval(pid, &t); 8978 8979 if (retval == 0) 8980 retval = put_timespec64(&t, interval); 8981 8982 return retval; 8983 } 8984 8985 #ifdef CONFIG_COMPAT_32BIT_TIME 8986 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8987 struct old_timespec32 __user *, interval) 8988 { 8989 struct timespec64 t; 8990 int retval = sched_rr_get_interval(pid, &t); 8991 8992 if (retval == 0) 8993 retval = put_old_timespec32(&t, interval); 8994 return retval; 8995 } 8996 #endif 8997 8998 void sched_show_task(struct task_struct *p) 8999 { 9000 unsigned long free = 0; 9001 int ppid; 9002 9003 if (!try_get_task_stack(p)) 9004 return; 9005 9006 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 9007 9008 if (task_is_running(p)) 9009 pr_cont(" running task "); 9010 #ifdef CONFIG_DEBUG_STACK_USAGE 9011 free = stack_not_used(p); 9012 #endif 9013 ppid = 0; 9014 rcu_read_lock(); 9015 if (pid_alive(p)) 9016 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 9017 rcu_read_unlock(); 9018 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n", 9019 free, task_pid_nr(p), ppid, 9020 read_task_thread_flags(p)); 9021 9022 print_worker_info(KERN_INFO, p); 9023 print_stop_info(KERN_INFO, p); 9024 show_stack(p, NULL, KERN_INFO); 9025 put_task_stack(p); 9026 } 9027 EXPORT_SYMBOL_GPL(sched_show_task); 9028 9029 static inline bool 9030 state_filter_match(unsigned long state_filter, struct task_struct *p) 9031 { 9032 unsigned int state = READ_ONCE(p->__state); 9033 9034 /* no filter, everything matches */ 9035 if (!state_filter) 9036 return true; 9037 9038 /* filter, but doesn't match */ 9039 if (!(state & state_filter)) 9040 return false; 9041 9042 /* 9043 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 9044 * TASK_KILLABLE). 9045 */ 9046 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 9047 return false; 9048 9049 return true; 9050 } 9051 9052 9053 void show_state_filter(unsigned int state_filter) 9054 { 9055 struct task_struct *g, *p; 9056 9057 rcu_read_lock(); 9058 for_each_process_thread(g, p) { 9059 /* 9060 * reset the NMI-timeout, listing all files on a slow 9061 * console might take a lot of time: 9062 * Also, reset softlockup watchdogs on all CPUs, because 9063 * another CPU might be blocked waiting for us to process 9064 * an IPI. 9065 */ 9066 touch_nmi_watchdog(); 9067 touch_all_softlockup_watchdogs(); 9068 if (state_filter_match(state_filter, p)) 9069 sched_show_task(p); 9070 } 9071 9072 #ifdef CONFIG_SCHED_DEBUG 9073 if (!state_filter) 9074 sysrq_sched_debug_show(); 9075 #endif 9076 rcu_read_unlock(); 9077 /* 9078 * Only show locks if all tasks are dumped: 9079 */ 9080 if (!state_filter) 9081 debug_show_all_locks(); 9082 } 9083 9084 /** 9085 * init_idle - set up an idle thread for a given CPU 9086 * @idle: task in question 9087 * @cpu: CPU the idle task belongs to 9088 * 9089 * NOTE: this function does not set the idle thread's NEED_RESCHED 9090 * flag, to make booting more robust. 9091 */ 9092 void __init init_idle(struct task_struct *idle, int cpu) 9093 { 9094 #ifdef CONFIG_SMP 9095 struct affinity_context ac = (struct affinity_context) { 9096 .new_mask = cpumask_of(cpu), 9097 .flags = 0, 9098 }; 9099 #endif 9100 struct rq *rq = cpu_rq(cpu); 9101 unsigned long flags; 9102 9103 __sched_fork(0, idle); 9104 9105 raw_spin_lock_irqsave(&idle->pi_lock, flags); 9106 raw_spin_rq_lock(rq); 9107 9108 idle->__state = TASK_RUNNING; 9109 idle->se.exec_start = sched_clock(); 9110 /* 9111 * PF_KTHREAD should already be set at this point; regardless, make it 9112 * look like a proper per-CPU kthread. 9113 */ 9114 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 9115 kthread_set_per_cpu(idle, cpu); 9116 9117 #ifdef CONFIG_SMP 9118 /* 9119 * It's possible that init_idle() gets called multiple times on a task, 9120 * in that case do_set_cpus_allowed() will not do the right thing. 9121 * 9122 * And since this is boot we can forgo the serialization. 9123 */ 9124 set_cpus_allowed_common(idle, &ac); 9125 #endif 9126 /* 9127 * We're having a chicken and egg problem, even though we are 9128 * holding rq->lock, the CPU isn't yet set to this CPU so the 9129 * lockdep check in task_group() will fail. 9130 * 9131 * Similar case to sched_fork(). / Alternatively we could 9132 * use task_rq_lock() here and obtain the other rq->lock. 9133 * 9134 * Silence PROVE_RCU 9135 */ 9136 rcu_read_lock(); 9137 __set_task_cpu(idle, cpu); 9138 rcu_read_unlock(); 9139 9140 rq->idle = idle; 9141 rcu_assign_pointer(rq->curr, idle); 9142 idle->on_rq = TASK_ON_RQ_QUEUED; 9143 #ifdef CONFIG_SMP 9144 idle->on_cpu = 1; 9145 #endif 9146 raw_spin_rq_unlock(rq); 9147 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 9148 9149 /* Set the preempt count _outside_ the spinlocks! */ 9150 init_idle_preempt_count(idle, cpu); 9151 9152 /* 9153 * The idle tasks have their own, simple scheduling class: 9154 */ 9155 idle->sched_class = &idle_sched_class; 9156 ftrace_graph_init_idle_task(idle, cpu); 9157 vtime_init_idle(idle, cpu); 9158 #ifdef CONFIG_SMP 9159 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 9160 #endif 9161 } 9162 9163 #ifdef CONFIG_SMP 9164 9165 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 9166 const struct cpumask *trial) 9167 { 9168 int ret = 1; 9169 9170 if (cpumask_empty(cur)) 9171 return ret; 9172 9173 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9174 9175 return ret; 9176 } 9177 9178 int task_can_attach(struct task_struct *p, 9179 const struct cpumask *cs_effective_cpus) 9180 { 9181 int ret = 0; 9182 9183 /* 9184 * Kthreads which disallow setaffinity shouldn't be moved 9185 * to a new cpuset; we don't want to change their CPU 9186 * affinity and isolating such threads by their set of 9187 * allowed nodes is unnecessary. Thus, cpusets are not 9188 * applicable for such threads. This prevents checking for 9189 * success of set_cpus_allowed_ptr() on all attached tasks 9190 * before cpus_mask may be changed. 9191 */ 9192 if (p->flags & PF_NO_SETAFFINITY) { 9193 ret = -EINVAL; 9194 goto out; 9195 } 9196 9197 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 9198 cs_effective_cpus)) { 9199 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus); 9200 9201 if (unlikely(cpu >= nr_cpu_ids)) 9202 return -EINVAL; 9203 ret = dl_cpu_busy(cpu, p); 9204 } 9205 9206 out: 9207 return ret; 9208 } 9209 9210 bool sched_smp_initialized __read_mostly; 9211 9212 #ifdef CONFIG_NUMA_BALANCING 9213 /* Migrate current task p to target_cpu */ 9214 int migrate_task_to(struct task_struct *p, int target_cpu) 9215 { 9216 struct migration_arg arg = { p, target_cpu }; 9217 int curr_cpu = task_cpu(p); 9218 9219 if (curr_cpu == target_cpu) 9220 return 0; 9221 9222 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9223 return -EINVAL; 9224 9225 /* TODO: This is not properly updating schedstats */ 9226 9227 trace_sched_move_numa(p, curr_cpu, target_cpu); 9228 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9229 } 9230 9231 /* 9232 * Requeue a task on a given node and accurately track the number of NUMA 9233 * tasks on the runqueues 9234 */ 9235 void sched_setnuma(struct task_struct *p, int nid) 9236 { 9237 bool queued, running; 9238 struct rq_flags rf; 9239 struct rq *rq; 9240 9241 rq = task_rq_lock(p, &rf); 9242 queued = task_on_rq_queued(p); 9243 running = task_current(rq, p); 9244 9245 if (queued) 9246 dequeue_task(rq, p, DEQUEUE_SAVE); 9247 if (running) 9248 put_prev_task(rq, p); 9249 9250 p->numa_preferred_nid = nid; 9251 9252 if (queued) 9253 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9254 if (running) 9255 set_next_task(rq, p); 9256 task_rq_unlock(rq, p, &rf); 9257 } 9258 #endif /* CONFIG_NUMA_BALANCING */ 9259 9260 #ifdef CONFIG_HOTPLUG_CPU 9261 /* 9262 * Ensure that the idle task is using init_mm right before its CPU goes 9263 * offline. 9264 */ 9265 void idle_task_exit(void) 9266 { 9267 struct mm_struct *mm = current->active_mm; 9268 9269 BUG_ON(cpu_online(smp_processor_id())); 9270 BUG_ON(current != this_rq()->idle); 9271 9272 if (mm != &init_mm) { 9273 switch_mm(mm, &init_mm, current); 9274 finish_arch_post_lock_switch(); 9275 } 9276 9277 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9278 } 9279 9280 static int __balance_push_cpu_stop(void *arg) 9281 { 9282 struct task_struct *p = arg; 9283 struct rq *rq = this_rq(); 9284 struct rq_flags rf; 9285 int cpu; 9286 9287 raw_spin_lock_irq(&p->pi_lock); 9288 rq_lock(rq, &rf); 9289 9290 update_rq_clock(rq); 9291 9292 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9293 cpu = select_fallback_rq(rq->cpu, p); 9294 rq = __migrate_task(rq, &rf, p, cpu); 9295 } 9296 9297 rq_unlock(rq, &rf); 9298 raw_spin_unlock_irq(&p->pi_lock); 9299 9300 put_task_struct(p); 9301 9302 return 0; 9303 } 9304 9305 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9306 9307 /* 9308 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9309 * 9310 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9311 * effective when the hotplug motion is down. 9312 */ 9313 static void balance_push(struct rq *rq) 9314 { 9315 struct task_struct *push_task = rq->curr; 9316 9317 lockdep_assert_rq_held(rq); 9318 9319 /* 9320 * Ensure the thing is persistent until balance_push_set(.on = false); 9321 */ 9322 rq->balance_callback = &balance_push_callback; 9323 9324 /* 9325 * Only active while going offline and when invoked on the outgoing 9326 * CPU. 9327 */ 9328 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9329 return; 9330 9331 /* 9332 * Both the cpu-hotplug and stop task are in this case and are 9333 * required to complete the hotplug process. 9334 */ 9335 if (kthread_is_per_cpu(push_task) || 9336 is_migration_disabled(push_task)) { 9337 9338 /* 9339 * If this is the idle task on the outgoing CPU try to wake 9340 * up the hotplug control thread which might wait for the 9341 * last task to vanish. The rcuwait_active() check is 9342 * accurate here because the waiter is pinned on this CPU 9343 * and can't obviously be running in parallel. 9344 * 9345 * On RT kernels this also has to check whether there are 9346 * pinned and scheduled out tasks on the runqueue. They 9347 * need to leave the migrate disabled section first. 9348 */ 9349 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9350 rcuwait_active(&rq->hotplug_wait)) { 9351 raw_spin_rq_unlock(rq); 9352 rcuwait_wake_up(&rq->hotplug_wait); 9353 raw_spin_rq_lock(rq); 9354 } 9355 return; 9356 } 9357 9358 get_task_struct(push_task); 9359 /* 9360 * Temporarily drop rq->lock such that we can wake-up the stop task. 9361 * Both preemption and IRQs are still disabled. 9362 */ 9363 raw_spin_rq_unlock(rq); 9364 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9365 this_cpu_ptr(&push_work)); 9366 /* 9367 * At this point need_resched() is true and we'll take the loop in 9368 * schedule(). The next pick is obviously going to be the stop task 9369 * which kthread_is_per_cpu() and will push this task away. 9370 */ 9371 raw_spin_rq_lock(rq); 9372 } 9373 9374 static void balance_push_set(int cpu, bool on) 9375 { 9376 struct rq *rq = cpu_rq(cpu); 9377 struct rq_flags rf; 9378 9379 rq_lock_irqsave(rq, &rf); 9380 if (on) { 9381 WARN_ON_ONCE(rq->balance_callback); 9382 rq->balance_callback = &balance_push_callback; 9383 } else if (rq->balance_callback == &balance_push_callback) { 9384 rq->balance_callback = NULL; 9385 } 9386 rq_unlock_irqrestore(rq, &rf); 9387 } 9388 9389 /* 9390 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9391 * inactive. All tasks which are not per CPU kernel threads are either 9392 * pushed off this CPU now via balance_push() or placed on a different CPU 9393 * during wakeup. Wait until the CPU is quiescent. 9394 */ 9395 static void balance_hotplug_wait(void) 9396 { 9397 struct rq *rq = this_rq(); 9398 9399 rcuwait_wait_event(&rq->hotplug_wait, 9400 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9401 TASK_UNINTERRUPTIBLE); 9402 } 9403 9404 #else 9405 9406 static inline void balance_push(struct rq *rq) 9407 { 9408 } 9409 9410 static inline void balance_push_set(int cpu, bool on) 9411 { 9412 } 9413 9414 static inline void balance_hotplug_wait(void) 9415 { 9416 } 9417 9418 #endif /* CONFIG_HOTPLUG_CPU */ 9419 9420 void set_rq_online(struct rq *rq) 9421 { 9422 if (!rq->online) { 9423 const struct sched_class *class; 9424 9425 cpumask_set_cpu(rq->cpu, rq->rd->online); 9426 rq->online = 1; 9427 9428 for_each_class(class) { 9429 if (class->rq_online) 9430 class->rq_online(rq); 9431 } 9432 } 9433 } 9434 9435 void set_rq_offline(struct rq *rq) 9436 { 9437 if (rq->online) { 9438 const struct sched_class *class; 9439 9440 for_each_class(class) { 9441 if (class->rq_offline) 9442 class->rq_offline(rq); 9443 } 9444 9445 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9446 rq->online = 0; 9447 } 9448 } 9449 9450 /* 9451 * used to mark begin/end of suspend/resume: 9452 */ 9453 static int num_cpus_frozen; 9454 9455 /* 9456 * Update cpusets according to cpu_active mask. If cpusets are 9457 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9458 * around partition_sched_domains(). 9459 * 9460 * If we come here as part of a suspend/resume, don't touch cpusets because we 9461 * want to restore it back to its original state upon resume anyway. 9462 */ 9463 static void cpuset_cpu_active(void) 9464 { 9465 if (cpuhp_tasks_frozen) { 9466 /* 9467 * num_cpus_frozen tracks how many CPUs are involved in suspend 9468 * resume sequence. As long as this is not the last online 9469 * operation in the resume sequence, just build a single sched 9470 * domain, ignoring cpusets. 9471 */ 9472 partition_sched_domains(1, NULL, NULL); 9473 if (--num_cpus_frozen) 9474 return; 9475 /* 9476 * This is the last CPU online operation. So fall through and 9477 * restore the original sched domains by considering the 9478 * cpuset configurations. 9479 */ 9480 cpuset_force_rebuild(); 9481 } 9482 cpuset_update_active_cpus(); 9483 } 9484 9485 static int cpuset_cpu_inactive(unsigned int cpu) 9486 { 9487 if (!cpuhp_tasks_frozen) { 9488 int ret = dl_cpu_busy(cpu, NULL); 9489 9490 if (ret) 9491 return ret; 9492 cpuset_update_active_cpus(); 9493 } else { 9494 num_cpus_frozen++; 9495 partition_sched_domains(1, NULL, NULL); 9496 } 9497 return 0; 9498 } 9499 9500 int sched_cpu_activate(unsigned int cpu) 9501 { 9502 struct rq *rq = cpu_rq(cpu); 9503 struct rq_flags rf; 9504 9505 /* 9506 * Clear the balance_push callback and prepare to schedule 9507 * regular tasks. 9508 */ 9509 balance_push_set(cpu, false); 9510 9511 #ifdef CONFIG_SCHED_SMT 9512 /* 9513 * When going up, increment the number of cores with SMT present. 9514 */ 9515 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9516 static_branch_inc_cpuslocked(&sched_smt_present); 9517 #endif 9518 set_cpu_active(cpu, true); 9519 9520 if (sched_smp_initialized) { 9521 sched_update_numa(cpu, true); 9522 sched_domains_numa_masks_set(cpu); 9523 cpuset_cpu_active(); 9524 } 9525 9526 /* 9527 * Put the rq online, if not already. This happens: 9528 * 9529 * 1) In the early boot process, because we build the real domains 9530 * after all CPUs have been brought up. 9531 * 9532 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9533 * domains. 9534 */ 9535 rq_lock_irqsave(rq, &rf); 9536 if (rq->rd) { 9537 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9538 set_rq_online(rq); 9539 } 9540 rq_unlock_irqrestore(rq, &rf); 9541 9542 return 0; 9543 } 9544 9545 int sched_cpu_deactivate(unsigned int cpu) 9546 { 9547 struct rq *rq = cpu_rq(cpu); 9548 struct rq_flags rf; 9549 int ret; 9550 9551 /* 9552 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9553 * load balancing when not active 9554 */ 9555 nohz_balance_exit_idle(rq); 9556 9557 set_cpu_active(cpu, false); 9558 9559 /* 9560 * From this point forward, this CPU will refuse to run any task that 9561 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9562 * push those tasks away until this gets cleared, see 9563 * sched_cpu_dying(). 9564 */ 9565 balance_push_set(cpu, true); 9566 9567 /* 9568 * We've cleared cpu_active_mask / set balance_push, wait for all 9569 * preempt-disabled and RCU users of this state to go away such that 9570 * all new such users will observe it. 9571 * 9572 * Specifically, we rely on ttwu to no longer target this CPU, see 9573 * ttwu_queue_cond() and is_cpu_allowed(). 9574 * 9575 * Do sync before park smpboot threads to take care the rcu boost case. 9576 */ 9577 synchronize_rcu(); 9578 9579 rq_lock_irqsave(rq, &rf); 9580 if (rq->rd) { 9581 update_rq_clock(rq); 9582 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9583 set_rq_offline(rq); 9584 } 9585 rq_unlock_irqrestore(rq, &rf); 9586 9587 #ifdef CONFIG_SCHED_SMT 9588 /* 9589 * When going down, decrement the number of cores with SMT present. 9590 */ 9591 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9592 static_branch_dec_cpuslocked(&sched_smt_present); 9593 9594 sched_core_cpu_deactivate(cpu); 9595 #endif 9596 9597 if (!sched_smp_initialized) 9598 return 0; 9599 9600 sched_update_numa(cpu, false); 9601 ret = cpuset_cpu_inactive(cpu); 9602 if (ret) { 9603 balance_push_set(cpu, false); 9604 set_cpu_active(cpu, true); 9605 sched_update_numa(cpu, true); 9606 return ret; 9607 } 9608 sched_domains_numa_masks_clear(cpu); 9609 return 0; 9610 } 9611 9612 static void sched_rq_cpu_starting(unsigned int cpu) 9613 { 9614 struct rq *rq = cpu_rq(cpu); 9615 9616 rq->calc_load_update = calc_load_update; 9617 update_max_interval(); 9618 } 9619 9620 int sched_cpu_starting(unsigned int cpu) 9621 { 9622 sched_core_cpu_starting(cpu); 9623 sched_rq_cpu_starting(cpu); 9624 sched_tick_start(cpu); 9625 return 0; 9626 } 9627 9628 #ifdef CONFIG_HOTPLUG_CPU 9629 9630 /* 9631 * Invoked immediately before the stopper thread is invoked to bring the 9632 * CPU down completely. At this point all per CPU kthreads except the 9633 * hotplug thread (current) and the stopper thread (inactive) have been 9634 * either parked or have been unbound from the outgoing CPU. Ensure that 9635 * any of those which might be on the way out are gone. 9636 * 9637 * If after this point a bound task is being woken on this CPU then the 9638 * responsible hotplug callback has failed to do it's job. 9639 * sched_cpu_dying() will catch it with the appropriate fireworks. 9640 */ 9641 int sched_cpu_wait_empty(unsigned int cpu) 9642 { 9643 balance_hotplug_wait(); 9644 return 0; 9645 } 9646 9647 /* 9648 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9649 * might have. Called from the CPU stopper task after ensuring that the 9650 * stopper is the last running task on the CPU, so nr_active count is 9651 * stable. We need to take the teardown thread which is calling this into 9652 * account, so we hand in adjust = 1 to the load calculation. 9653 * 9654 * Also see the comment "Global load-average calculations". 9655 */ 9656 static void calc_load_migrate(struct rq *rq) 9657 { 9658 long delta = calc_load_fold_active(rq, 1); 9659 9660 if (delta) 9661 atomic_long_add(delta, &calc_load_tasks); 9662 } 9663 9664 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9665 { 9666 struct task_struct *g, *p; 9667 int cpu = cpu_of(rq); 9668 9669 lockdep_assert_rq_held(rq); 9670 9671 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9672 for_each_process_thread(g, p) { 9673 if (task_cpu(p) != cpu) 9674 continue; 9675 9676 if (!task_on_rq_queued(p)) 9677 continue; 9678 9679 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9680 } 9681 } 9682 9683 int sched_cpu_dying(unsigned int cpu) 9684 { 9685 struct rq *rq = cpu_rq(cpu); 9686 struct rq_flags rf; 9687 9688 /* Handle pending wakeups and then migrate everything off */ 9689 sched_tick_stop(cpu); 9690 9691 rq_lock_irqsave(rq, &rf); 9692 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9693 WARN(true, "Dying CPU not properly vacated!"); 9694 dump_rq_tasks(rq, KERN_WARNING); 9695 } 9696 rq_unlock_irqrestore(rq, &rf); 9697 9698 calc_load_migrate(rq); 9699 update_max_interval(); 9700 hrtick_clear(rq); 9701 sched_core_cpu_dying(cpu); 9702 return 0; 9703 } 9704 #endif 9705 9706 void __init sched_init_smp(void) 9707 { 9708 sched_init_numa(NUMA_NO_NODE); 9709 9710 /* 9711 * There's no userspace yet to cause hotplug operations; hence all the 9712 * CPU masks are stable and all blatant races in the below code cannot 9713 * happen. 9714 */ 9715 mutex_lock(&sched_domains_mutex); 9716 sched_init_domains(cpu_active_mask); 9717 mutex_unlock(&sched_domains_mutex); 9718 9719 /* Move init over to a non-isolated CPU */ 9720 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9721 BUG(); 9722 current->flags &= ~PF_NO_SETAFFINITY; 9723 sched_init_granularity(); 9724 9725 init_sched_rt_class(); 9726 init_sched_dl_class(); 9727 9728 sched_smp_initialized = true; 9729 } 9730 9731 static int __init migration_init(void) 9732 { 9733 sched_cpu_starting(smp_processor_id()); 9734 return 0; 9735 } 9736 early_initcall(migration_init); 9737 9738 #else 9739 void __init sched_init_smp(void) 9740 { 9741 sched_init_granularity(); 9742 } 9743 #endif /* CONFIG_SMP */ 9744 9745 int in_sched_functions(unsigned long addr) 9746 { 9747 return in_lock_functions(addr) || 9748 (addr >= (unsigned long)__sched_text_start 9749 && addr < (unsigned long)__sched_text_end); 9750 } 9751 9752 #ifdef CONFIG_CGROUP_SCHED 9753 /* 9754 * Default task group. 9755 * Every task in system belongs to this group at bootup. 9756 */ 9757 struct task_group root_task_group; 9758 LIST_HEAD(task_groups); 9759 9760 /* Cacheline aligned slab cache for task_group */ 9761 static struct kmem_cache *task_group_cache __read_mostly; 9762 #endif 9763 9764 void __init sched_init(void) 9765 { 9766 unsigned long ptr = 0; 9767 int i; 9768 9769 /* Make sure the linker didn't screw up */ 9770 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9771 &fair_sched_class != &rt_sched_class + 1 || 9772 &rt_sched_class != &dl_sched_class + 1); 9773 #ifdef CONFIG_SMP 9774 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9775 #endif 9776 9777 wait_bit_init(); 9778 9779 #ifdef CONFIG_FAIR_GROUP_SCHED 9780 ptr += 2 * nr_cpu_ids * sizeof(void **); 9781 #endif 9782 #ifdef CONFIG_RT_GROUP_SCHED 9783 ptr += 2 * nr_cpu_ids * sizeof(void **); 9784 #endif 9785 if (ptr) { 9786 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9787 9788 #ifdef CONFIG_FAIR_GROUP_SCHED 9789 root_task_group.se = (struct sched_entity **)ptr; 9790 ptr += nr_cpu_ids * sizeof(void **); 9791 9792 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9793 ptr += nr_cpu_ids * sizeof(void **); 9794 9795 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9796 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9797 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9798 #ifdef CONFIG_RT_GROUP_SCHED 9799 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9800 ptr += nr_cpu_ids * sizeof(void **); 9801 9802 root_task_group.rt_rq = (struct rt_rq **)ptr; 9803 ptr += nr_cpu_ids * sizeof(void **); 9804 9805 #endif /* CONFIG_RT_GROUP_SCHED */ 9806 } 9807 9808 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9809 9810 #ifdef CONFIG_SMP 9811 init_defrootdomain(); 9812 #endif 9813 9814 #ifdef CONFIG_RT_GROUP_SCHED 9815 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9816 global_rt_period(), global_rt_runtime()); 9817 #endif /* CONFIG_RT_GROUP_SCHED */ 9818 9819 #ifdef CONFIG_CGROUP_SCHED 9820 task_group_cache = KMEM_CACHE(task_group, 0); 9821 9822 list_add(&root_task_group.list, &task_groups); 9823 INIT_LIST_HEAD(&root_task_group.children); 9824 INIT_LIST_HEAD(&root_task_group.siblings); 9825 autogroup_init(&init_task); 9826 #endif /* CONFIG_CGROUP_SCHED */ 9827 9828 for_each_possible_cpu(i) { 9829 struct rq *rq; 9830 9831 rq = cpu_rq(i); 9832 raw_spin_lock_init(&rq->__lock); 9833 rq->nr_running = 0; 9834 rq->calc_load_active = 0; 9835 rq->calc_load_update = jiffies + LOAD_FREQ; 9836 init_cfs_rq(&rq->cfs); 9837 init_rt_rq(&rq->rt); 9838 init_dl_rq(&rq->dl); 9839 #ifdef CONFIG_FAIR_GROUP_SCHED 9840 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9841 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9842 /* 9843 * How much CPU bandwidth does root_task_group get? 9844 * 9845 * In case of task-groups formed thr' the cgroup filesystem, it 9846 * gets 100% of the CPU resources in the system. This overall 9847 * system CPU resource is divided among the tasks of 9848 * root_task_group and its child task-groups in a fair manner, 9849 * based on each entity's (task or task-group's) weight 9850 * (se->load.weight). 9851 * 9852 * In other words, if root_task_group has 10 tasks of weight 9853 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9854 * then A0's share of the CPU resource is: 9855 * 9856 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9857 * 9858 * We achieve this by letting root_task_group's tasks sit 9859 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9860 */ 9861 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9862 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9863 9864 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9865 #ifdef CONFIG_RT_GROUP_SCHED 9866 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9867 #endif 9868 #ifdef CONFIG_SMP 9869 rq->sd = NULL; 9870 rq->rd = NULL; 9871 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9872 rq->balance_callback = &balance_push_callback; 9873 rq->active_balance = 0; 9874 rq->next_balance = jiffies; 9875 rq->push_cpu = 0; 9876 rq->cpu = i; 9877 rq->online = 0; 9878 rq->idle_stamp = 0; 9879 rq->avg_idle = 2*sysctl_sched_migration_cost; 9880 rq->wake_stamp = jiffies; 9881 rq->wake_avg_idle = rq->avg_idle; 9882 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9883 9884 INIT_LIST_HEAD(&rq->cfs_tasks); 9885 9886 rq_attach_root(rq, &def_root_domain); 9887 #ifdef CONFIG_NO_HZ_COMMON 9888 rq->last_blocked_load_update_tick = jiffies; 9889 atomic_set(&rq->nohz_flags, 0); 9890 9891 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9892 #endif 9893 #ifdef CONFIG_HOTPLUG_CPU 9894 rcuwait_init(&rq->hotplug_wait); 9895 #endif 9896 #endif /* CONFIG_SMP */ 9897 hrtick_rq_init(rq); 9898 atomic_set(&rq->nr_iowait, 0); 9899 9900 #ifdef CONFIG_SCHED_CORE 9901 rq->core = rq; 9902 rq->core_pick = NULL; 9903 rq->core_enabled = 0; 9904 rq->core_tree = RB_ROOT; 9905 rq->core_forceidle_count = 0; 9906 rq->core_forceidle_occupation = 0; 9907 rq->core_forceidle_start = 0; 9908 9909 rq->core_cookie = 0UL; 9910 #endif 9911 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 9912 } 9913 9914 set_load_weight(&init_task, false); 9915 9916 /* 9917 * The boot idle thread does lazy MMU switching as well: 9918 */ 9919 mmgrab(&init_mm); 9920 enter_lazy_tlb(&init_mm, current); 9921 9922 /* 9923 * The idle task doesn't need the kthread struct to function, but it 9924 * is dressed up as a per-CPU kthread and thus needs to play the part 9925 * if we want to avoid special-casing it in code that deals with per-CPU 9926 * kthreads. 9927 */ 9928 WARN_ON(!set_kthread_struct(current)); 9929 9930 /* 9931 * Make us the idle thread. Technically, schedule() should not be 9932 * called from this thread, however somewhere below it might be, 9933 * but because we are the idle thread, we just pick up running again 9934 * when this runqueue becomes "idle". 9935 */ 9936 init_idle(current, smp_processor_id()); 9937 9938 calc_load_update = jiffies + LOAD_FREQ; 9939 9940 #ifdef CONFIG_SMP 9941 idle_thread_set_boot_cpu(); 9942 balance_push_set(smp_processor_id(), false); 9943 #endif 9944 init_sched_fair_class(); 9945 9946 psi_init(); 9947 9948 init_uclamp(); 9949 9950 preempt_dynamic_init(); 9951 9952 scheduler_running = 1; 9953 } 9954 9955 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9956 9957 void __might_sleep(const char *file, int line) 9958 { 9959 unsigned int state = get_current_state(); 9960 /* 9961 * Blocking primitives will set (and therefore destroy) current->state, 9962 * since we will exit with TASK_RUNNING make sure we enter with it, 9963 * otherwise we will destroy state. 9964 */ 9965 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9966 "do not call blocking ops when !TASK_RUNNING; " 9967 "state=%x set at [<%p>] %pS\n", state, 9968 (void *)current->task_state_change, 9969 (void *)current->task_state_change); 9970 9971 __might_resched(file, line, 0); 9972 } 9973 EXPORT_SYMBOL(__might_sleep); 9974 9975 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9976 { 9977 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9978 return; 9979 9980 if (preempt_count() == preempt_offset) 9981 return; 9982 9983 pr_err("Preemption disabled at:"); 9984 print_ip_sym(KERN_ERR, ip); 9985 } 9986 9987 static inline bool resched_offsets_ok(unsigned int offsets) 9988 { 9989 unsigned int nested = preempt_count(); 9990 9991 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9992 9993 return nested == offsets; 9994 } 9995 9996 void __might_resched(const char *file, int line, unsigned int offsets) 9997 { 9998 /* Ratelimiting timestamp: */ 9999 static unsigned long prev_jiffy; 10000 10001 unsigned long preempt_disable_ip; 10002 10003 /* WARN_ON_ONCE() by default, no rate limit required: */ 10004 rcu_sleep_check(); 10005 10006 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 10007 !is_idle_task(current) && !current->non_block_count) || 10008 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 10009 oops_in_progress) 10010 return; 10011 10012 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10013 return; 10014 prev_jiffy = jiffies; 10015 10016 /* Save this before calling printk(), since that will clobber it: */ 10017 preempt_disable_ip = get_preempt_disable_ip(current); 10018 10019 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 10020 file, line); 10021 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 10022 in_atomic(), irqs_disabled(), current->non_block_count, 10023 current->pid, current->comm); 10024 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 10025 offsets & MIGHT_RESCHED_PREEMPT_MASK); 10026 10027 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 10028 pr_err("RCU nest depth: %d, expected: %u\n", 10029 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 10030 } 10031 10032 if (task_stack_end_corrupted(current)) 10033 pr_emerg("Thread overran stack, or stack corrupted\n"); 10034 10035 debug_show_held_locks(current); 10036 if (irqs_disabled()) 10037 print_irqtrace_events(current); 10038 10039 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 10040 preempt_disable_ip); 10041 10042 dump_stack(); 10043 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10044 } 10045 EXPORT_SYMBOL(__might_resched); 10046 10047 void __cant_sleep(const char *file, int line, int preempt_offset) 10048 { 10049 static unsigned long prev_jiffy; 10050 10051 if (irqs_disabled()) 10052 return; 10053 10054 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10055 return; 10056 10057 if (preempt_count() > preempt_offset) 10058 return; 10059 10060 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10061 return; 10062 prev_jiffy = jiffies; 10063 10064 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 10065 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 10066 in_atomic(), irqs_disabled(), 10067 current->pid, current->comm); 10068 10069 debug_show_held_locks(current); 10070 dump_stack(); 10071 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10072 } 10073 EXPORT_SYMBOL_GPL(__cant_sleep); 10074 10075 #ifdef CONFIG_SMP 10076 void __cant_migrate(const char *file, int line) 10077 { 10078 static unsigned long prev_jiffy; 10079 10080 if (irqs_disabled()) 10081 return; 10082 10083 if (is_migration_disabled(current)) 10084 return; 10085 10086 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10087 return; 10088 10089 if (preempt_count() > 0) 10090 return; 10091 10092 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10093 return; 10094 prev_jiffy = jiffies; 10095 10096 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 10097 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 10098 in_atomic(), irqs_disabled(), is_migration_disabled(current), 10099 current->pid, current->comm); 10100 10101 debug_show_held_locks(current); 10102 dump_stack(); 10103 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10104 } 10105 EXPORT_SYMBOL_GPL(__cant_migrate); 10106 #endif 10107 #endif 10108 10109 #ifdef CONFIG_MAGIC_SYSRQ 10110 void normalize_rt_tasks(void) 10111 { 10112 struct task_struct *g, *p; 10113 struct sched_attr attr = { 10114 .sched_policy = SCHED_NORMAL, 10115 }; 10116 10117 read_lock(&tasklist_lock); 10118 for_each_process_thread(g, p) { 10119 /* 10120 * Only normalize user tasks: 10121 */ 10122 if (p->flags & PF_KTHREAD) 10123 continue; 10124 10125 p->se.exec_start = 0; 10126 schedstat_set(p->stats.wait_start, 0); 10127 schedstat_set(p->stats.sleep_start, 0); 10128 schedstat_set(p->stats.block_start, 0); 10129 10130 if (!dl_task(p) && !rt_task(p)) { 10131 /* 10132 * Renice negative nice level userspace 10133 * tasks back to 0: 10134 */ 10135 if (task_nice(p) < 0) 10136 set_user_nice(p, 0); 10137 continue; 10138 } 10139 10140 __sched_setscheduler(p, &attr, false, false); 10141 } 10142 read_unlock(&tasklist_lock); 10143 } 10144 10145 #endif /* CONFIG_MAGIC_SYSRQ */ 10146 10147 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 10148 /* 10149 * These functions are only useful for the IA64 MCA handling, or kdb. 10150 * 10151 * They can only be called when the whole system has been 10152 * stopped - every CPU needs to be quiescent, and no scheduling 10153 * activity can take place. Using them for anything else would 10154 * be a serious bug, and as a result, they aren't even visible 10155 * under any other configuration. 10156 */ 10157 10158 /** 10159 * curr_task - return the current task for a given CPU. 10160 * @cpu: the processor in question. 10161 * 10162 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10163 * 10164 * Return: The current task for @cpu. 10165 */ 10166 struct task_struct *curr_task(int cpu) 10167 { 10168 return cpu_curr(cpu); 10169 } 10170 10171 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 10172 10173 #ifdef CONFIG_IA64 10174 /** 10175 * ia64_set_curr_task - set the current task for a given CPU. 10176 * @cpu: the processor in question. 10177 * @p: the task pointer to set. 10178 * 10179 * Description: This function must only be used when non-maskable interrupts 10180 * are serviced on a separate stack. It allows the architecture to switch the 10181 * notion of the current task on a CPU in a non-blocking manner. This function 10182 * must be called with all CPU's synchronized, and interrupts disabled, the 10183 * and caller must save the original value of the current task (see 10184 * curr_task() above) and restore that value before reenabling interrupts and 10185 * re-starting the system. 10186 * 10187 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10188 */ 10189 void ia64_set_curr_task(int cpu, struct task_struct *p) 10190 { 10191 cpu_curr(cpu) = p; 10192 } 10193 10194 #endif 10195 10196 #ifdef CONFIG_CGROUP_SCHED 10197 /* task_group_lock serializes the addition/removal of task groups */ 10198 static DEFINE_SPINLOCK(task_group_lock); 10199 10200 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10201 struct task_group *parent) 10202 { 10203 #ifdef CONFIG_UCLAMP_TASK_GROUP 10204 enum uclamp_id clamp_id; 10205 10206 for_each_clamp_id(clamp_id) { 10207 uclamp_se_set(&tg->uclamp_req[clamp_id], 10208 uclamp_none(clamp_id), false); 10209 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10210 } 10211 #endif 10212 } 10213 10214 static void sched_free_group(struct task_group *tg) 10215 { 10216 free_fair_sched_group(tg); 10217 free_rt_sched_group(tg); 10218 autogroup_free(tg); 10219 kmem_cache_free(task_group_cache, tg); 10220 } 10221 10222 static void sched_free_group_rcu(struct rcu_head *rcu) 10223 { 10224 sched_free_group(container_of(rcu, struct task_group, rcu)); 10225 } 10226 10227 static void sched_unregister_group(struct task_group *tg) 10228 { 10229 unregister_fair_sched_group(tg); 10230 unregister_rt_sched_group(tg); 10231 /* 10232 * We have to wait for yet another RCU grace period to expire, as 10233 * print_cfs_stats() might run concurrently. 10234 */ 10235 call_rcu(&tg->rcu, sched_free_group_rcu); 10236 } 10237 10238 /* allocate runqueue etc for a new task group */ 10239 struct task_group *sched_create_group(struct task_group *parent) 10240 { 10241 struct task_group *tg; 10242 10243 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10244 if (!tg) 10245 return ERR_PTR(-ENOMEM); 10246 10247 if (!alloc_fair_sched_group(tg, parent)) 10248 goto err; 10249 10250 if (!alloc_rt_sched_group(tg, parent)) 10251 goto err; 10252 10253 alloc_uclamp_sched_group(tg, parent); 10254 10255 return tg; 10256 10257 err: 10258 sched_free_group(tg); 10259 return ERR_PTR(-ENOMEM); 10260 } 10261 10262 void sched_online_group(struct task_group *tg, struct task_group *parent) 10263 { 10264 unsigned long flags; 10265 10266 spin_lock_irqsave(&task_group_lock, flags); 10267 list_add_rcu(&tg->list, &task_groups); 10268 10269 /* Root should already exist: */ 10270 WARN_ON(!parent); 10271 10272 tg->parent = parent; 10273 INIT_LIST_HEAD(&tg->children); 10274 list_add_rcu(&tg->siblings, &parent->children); 10275 spin_unlock_irqrestore(&task_group_lock, flags); 10276 10277 online_fair_sched_group(tg); 10278 } 10279 10280 /* rcu callback to free various structures associated with a task group */ 10281 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10282 { 10283 /* Now it should be safe to free those cfs_rqs: */ 10284 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10285 } 10286 10287 void sched_destroy_group(struct task_group *tg) 10288 { 10289 /* Wait for possible concurrent references to cfs_rqs complete: */ 10290 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10291 } 10292 10293 void sched_release_group(struct task_group *tg) 10294 { 10295 unsigned long flags; 10296 10297 /* 10298 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10299 * sched_cfs_period_timer()). 10300 * 10301 * For this to be effective, we have to wait for all pending users of 10302 * this task group to leave their RCU critical section to ensure no new 10303 * user will see our dying task group any more. Specifically ensure 10304 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10305 * 10306 * We therefore defer calling unregister_fair_sched_group() to 10307 * sched_unregister_group() which is guarantied to get called only after the 10308 * current RCU grace period has expired. 10309 */ 10310 spin_lock_irqsave(&task_group_lock, flags); 10311 list_del_rcu(&tg->list); 10312 list_del_rcu(&tg->siblings); 10313 spin_unlock_irqrestore(&task_group_lock, flags); 10314 } 10315 10316 static void sched_change_group(struct task_struct *tsk) 10317 { 10318 struct task_group *tg; 10319 10320 /* 10321 * All callers are synchronized by task_rq_lock(); we do not use RCU 10322 * which is pointless here. Thus, we pass "true" to task_css_check() 10323 * to prevent lockdep warnings. 10324 */ 10325 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10326 struct task_group, css); 10327 tg = autogroup_task_group(tsk, tg); 10328 tsk->sched_task_group = tg; 10329 10330 #ifdef CONFIG_FAIR_GROUP_SCHED 10331 if (tsk->sched_class->task_change_group) 10332 tsk->sched_class->task_change_group(tsk); 10333 else 10334 #endif 10335 set_task_rq(tsk, task_cpu(tsk)); 10336 } 10337 10338 /* 10339 * Change task's runqueue when it moves between groups. 10340 * 10341 * The caller of this function should have put the task in its new group by 10342 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10343 * its new group. 10344 */ 10345 void sched_move_task(struct task_struct *tsk) 10346 { 10347 int queued, running, queue_flags = 10348 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10349 struct rq_flags rf; 10350 struct rq *rq; 10351 10352 rq = task_rq_lock(tsk, &rf); 10353 update_rq_clock(rq); 10354 10355 running = task_current(rq, tsk); 10356 queued = task_on_rq_queued(tsk); 10357 10358 if (queued) 10359 dequeue_task(rq, tsk, queue_flags); 10360 if (running) 10361 put_prev_task(rq, tsk); 10362 10363 sched_change_group(tsk); 10364 10365 if (queued) 10366 enqueue_task(rq, tsk, queue_flags); 10367 if (running) { 10368 set_next_task(rq, tsk); 10369 /* 10370 * After changing group, the running task may have joined a 10371 * throttled one but it's still the running task. Trigger a 10372 * resched to make sure that task can still run. 10373 */ 10374 resched_curr(rq); 10375 } 10376 10377 task_rq_unlock(rq, tsk, &rf); 10378 } 10379 10380 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10381 { 10382 return css ? container_of(css, struct task_group, css) : NULL; 10383 } 10384 10385 static struct cgroup_subsys_state * 10386 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10387 { 10388 struct task_group *parent = css_tg(parent_css); 10389 struct task_group *tg; 10390 10391 if (!parent) { 10392 /* This is early initialization for the top cgroup */ 10393 return &root_task_group.css; 10394 } 10395 10396 tg = sched_create_group(parent); 10397 if (IS_ERR(tg)) 10398 return ERR_PTR(-ENOMEM); 10399 10400 return &tg->css; 10401 } 10402 10403 /* Expose task group only after completing cgroup initialization */ 10404 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10405 { 10406 struct task_group *tg = css_tg(css); 10407 struct task_group *parent = css_tg(css->parent); 10408 10409 if (parent) 10410 sched_online_group(tg, parent); 10411 10412 #ifdef CONFIG_UCLAMP_TASK_GROUP 10413 /* Propagate the effective uclamp value for the new group */ 10414 mutex_lock(&uclamp_mutex); 10415 rcu_read_lock(); 10416 cpu_util_update_eff(css); 10417 rcu_read_unlock(); 10418 mutex_unlock(&uclamp_mutex); 10419 #endif 10420 10421 return 0; 10422 } 10423 10424 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10425 { 10426 struct task_group *tg = css_tg(css); 10427 10428 sched_release_group(tg); 10429 } 10430 10431 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10432 { 10433 struct task_group *tg = css_tg(css); 10434 10435 /* 10436 * Relies on the RCU grace period between css_released() and this. 10437 */ 10438 sched_unregister_group(tg); 10439 } 10440 10441 #ifdef CONFIG_RT_GROUP_SCHED 10442 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10443 { 10444 struct task_struct *task; 10445 struct cgroup_subsys_state *css; 10446 10447 cgroup_taskset_for_each(task, css, tset) { 10448 if (!sched_rt_can_attach(css_tg(css), task)) 10449 return -EINVAL; 10450 } 10451 return 0; 10452 } 10453 #endif 10454 10455 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10456 { 10457 struct task_struct *task; 10458 struct cgroup_subsys_state *css; 10459 10460 cgroup_taskset_for_each(task, css, tset) 10461 sched_move_task(task); 10462 } 10463 10464 #ifdef CONFIG_UCLAMP_TASK_GROUP 10465 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10466 { 10467 struct cgroup_subsys_state *top_css = css; 10468 struct uclamp_se *uc_parent = NULL; 10469 struct uclamp_se *uc_se = NULL; 10470 unsigned int eff[UCLAMP_CNT]; 10471 enum uclamp_id clamp_id; 10472 unsigned int clamps; 10473 10474 lockdep_assert_held(&uclamp_mutex); 10475 SCHED_WARN_ON(!rcu_read_lock_held()); 10476 10477 css_for_each_descendant_pre(css, top_css) { 10478 uc_parent = css_tg(css)->parent 10479 ? css_tg(css)->parent->uclamp : NULL; 10480 10481 for_each_clamp_id(clamp_id) { 10482 /* Assume effective clamps matches requested clamps */ 10483 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10484 /* Cap effective clamps with parent's effective clamps */ 10485 if (uc_parent && 10486 eff[clamp_id] > uc_parent[clamp_id].value) { 10487 eff[clamp_id] = uc_parent[clamp_id].value; 10488 } 10489 } 10490 /* Ensure protection is always capped by limit */ 10491 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10492 10493 /* Propagate most restrictive effective clamps */ 10494 clamps = 0x0; 10495 uc_se = css_tg(css)->uclamp; 10496 for_each_clamp_id(clamp_id) { 10497 if (eff[clamp_id] == uc_se[clamp_id].value) 10498 continue; 10499 uc_se[clamp_id].value = eff[clamp_id]; 10500 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10501 clamps |= (0x1 << clamp_id); 10502 } 10503 if (!clamps) { 10504 css = css_rightmost_descendant(css); 10505 continue; 10506 } 10507 10508 /* Immediately update descendants RUNNABLE tasks */ 10509 uclamp_update_active_tasks(css); 10510 } 10511 } 10512 10513 /* 10514 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10515 * C expression. Since there is no way to convert a macro argument (N) into a 10516 * character constant, use two levels of macros. 10517 */ 10518 #define _POW10(exp) ((unsigned int)1e##exp) 10519 #define POW10(exp) _POW10(exp) 10520 10521 struct uclamp_request { 10522 #define UCLAMP_PERCENT_SHIFT 2 10523 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10524 s64 percent; 10525 u64 util; 10526 int ret; 10527 }; 10528 10529 static inline struct uclamp_request 10530 capacity_from_percent(char *buf) 10531 { 10532 struct uclamp_request req = { 10533 .percent = UCLAMP_PERCENT_SCALE, 10534 .util = SCHED_CAPACITY_SCALE, 10535 .ret = 0, 10536 }; 10537 10538 buf = strim(buf); 10539 if (strcmp(buf, "max")) { 10540 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10541 &req.percent); 10542 if (req.ret) 10543 return req; 10544 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10545 req.ret = -ERANGE; 10546 return req; 10547 } 10548 10549 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10550 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10551 } 10552 10553 return req; 10554 } 10555 10556 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10557 size_t nbytes, loff_t off, 10558 enum uclamp_id clamp_id) 10559 { 10560 struct uclamp_request req; 10561 struct task_group *tg; 10562 10563 req = capacity_from_percent(buf); 10564 if (req.ret) 10565 return req.ret; 10566 10567 static_branch_enable(&sched_uclamp_used); 10568 10569 mutex_lock(&uclamp_mutex); 10570 rcu_read_lock(); 10571 10572 tg = css_tg(of_css(of)); 10573 if (tg->uclamp_req[clamp_id].value != req.util) 10574 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10575 10576 /* 10577 * Because of not recoverable conversion rounding we keep track of the 10578 * exact requested value 10579 */ 10580 tg->uclamp_pct[clamp_id] = req.percent; 10581 10582 /* Update effective clamps to track the most restrictive value */ 10583 cpu_util_update_eff(of_css(of)); 10584 10585 rcu_read_unlock(); 10586 mutex_unlock(&uclamp_mutex); 10587 10588 return nbytes; 10589 } 10590 10591 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10592 char *buf, size_t nbytes, 10593 loff_t off) 10594 { 10595 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10596 } 10597 10598 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10599 char *buf, size_t nbytes, 10600 loff_t off) 10601 { 10602 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10603 } 10604 10605 static inline void cpu_uclamp_print(struct seq_file *sf, 10606 enum uclamp_id clamp_id) 10607 { 10608 struct task_group *tg; 10609 u64 util_clamp; 10610 u64 percent; 10611 u32 rem; 10612 10613 rcu_read_lock(); 10614 tg = css_tg(seq_css(sf)); 10615 util_clamp = tg->uclamp_req[clamp_id].value; 10616 rcu_read_unlock(); 10617 10618 if (util_clamp == SCHED_CAPACITY_SCALE) { 10619 seq_puts(sf, "max\n"); 10620 return; 10621 } 10622 10623 percent = tg->uclamp_pct[clamp_id]; 10624 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10625 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10626 } 10627 10628 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10629 { 10630 cpu_uclamp_print(sf, UCLAMP_MIN); 10631 return 0; 10632 } 10633 10634 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10635 { 10636 cpu_uclamp_print(sf, UCLAMP_MAX); 10637 return 0; 10638 } 10639 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10640 10641 #ifdef CONFIG_FAIR_GROUP_SCHED 10642 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10643 struct cftype *cftype, u64 shareval) 10644 { 10645 if (shareval > scale_load_down(ULONG_MAX)) 10646 shareval = MAX_SHARES; 10647 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10648 } 10649 10650 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10651 struct cftype *cft) 10652 { 10653 struct task_group *tg = css_tg(css); 10654 10655 return (u64) scale_load_down(tg->shares); 10656 } 10657 10658 #ifdef CONFIG_CFS_BANDWIDTH 10659 static DEFINE_MUTEX(cfs_constraints_mutex); 10660 10661 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10662 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10663 /* More than 203 days if BW_SHIFT equals 20. */ 10664 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10665 10666 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10667 10668 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10669 u64 burst) 10670 { 10671 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10672 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10673 10674 if (tg == &root_task_group) 10675 return -EINVAL; 10676 10677 /* 10678 * Ensure we have at some amount of bandwidth every period. This is 10679 * to prevent reaching a state of large arrears when throttled via 10680 * entity_tick() resulting in prolonged exit starvation. 10681 */ 10682 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10683 return -EINVAL; 10684 10685 /* 10686 * Likewise, bound things on the other side by preventing insane quota 10687 * periods. This also allows us to normalize in computing quota 10688 * feasibility. 10689 */ 10690 if (period > max_cfs_quota_period) 10691 return -EINVAL; 10692 10693 /* 10694 * Bound quota to defend quota against overflow during bandwidth shift. 10695 */ 10696 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10697 return -EINVAL; 10698 10699 if (quota != RUNTIME_INF && (burst > quota || 10700 burst + quota > max_cfs_runtime)) 10701 return -EINVAL; 10702 10703 /* 10704 * Prevent race between setting of cfs_rq->runtime_enabled and 10705 * unthrottle_offline_cfs_rqs(). 10706 */ 10707 cpus_read_lock(); 10708 mutex_lock(&cfs_constraints_mutex); 10709 ret = __cfs_schedulable(tg, period, quota); 10710 if (ret) 10711 goto out_unlock; 10712 10713 runtime_enabled = quota != RUNTIME_INF; 10714 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10715 /* 10716 * If we need to toggle cfs_bandwidth_used, off->on must occur 10717 * before making related changes, and on->off must occur afterwards 10718 */ 10719 if (runtime_enabled && !runtime_was_enabled) 10720 cfs_bandwidth_usage_inc(); 10721 raw_spin_lock_irq(&cfs_b->lock); 10722 cfs_b->period = ns_to_ktime(period); 10723 cfs_b->quota = quota; 10724 cfs_b->burst = burst; 10725 10726 __refill_cfs_bandwidth_runtime(cfs_b); 10727 10728 /* Restart the period timer (if active) to handle new period expiry: */ 10729 if (runtime_enabled) 10730 start_cfs_bandwidth(cfs_b); 10731 10732 raw_spin_unlock_irq(&cfs_b->lock); 10733 10734 for_each_online_cpu(i) { 10735 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10736 struct rq *rq = cfs_rq->rq; 10737 struct rq_flags rf; 10738 10739 rq_lock_irq(rq, &rf); 10740 cfs_rq->runtime_enabled = runtime_enabled; 10741 cfs_rq->runtime_remaining = 0; 10742 10743 if (cfs_rq->throttled) 10744 unthrottle_cfs_rq(cfs_rq); 10745 rq_unlock_irq(rq, &rf); 10746 } 10747 if (runtime_was_enabled && !runtime_enabled) 10748 cfs_bandwidth_usage_dec(); 10749 out_unlock: 10750 mutex_unlock(&cfs_constraints_mutex); 10751 cpus_read_unlock(); 10752 10753 return ret; 10754 } 10755 10756 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10757 { 10758 u64 quota, period, burst; 10759 10760 period = ktime_to_ns(tg->cfs_bandwidth.period); 10761 burst = tg->cfs_bandwidth.burst; 10762 if (cfs_quota_us < 0) 10763 quota = RUNTIME_INF; 10764 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10765 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10766 else 10767 return -EINVAL; 10768 10769 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10770 } 10771 10772 static long tg_get_cfs_quota(struct task_group *tg) 10773 { 10774 u64 quota_us; 10775 10776 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10777 return -1; 10778 10779 quota_us = tg->cfs_bandwidth.quota; 10780 do_div(quota_us, NSEC_PER_USEC); 10781 10782 return quota_us; 10783 } 10784 10785 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10786 { 10787 u64 quota, period, burst; 10788 10789 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10790 return -EINVAL; 10791 10792 period = (u64)cfs_period_us * NSEC_PER_USEC; 10793 quota = tg->cfs_bandwidth.quota; 10794 burst = tg->cfs_bandwidth.burst; 10795 10796 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10797 } 10798 10799 static long tg_get_cfs_period(struct task_group *tg) 10800 { 10801 u64 cfs_period_us; 10802 10803 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10804 do_div(cfs_period_us, NSEC_PER_USEC); 10805 10806 return cfs_period_us; 10807 } 10808 10809 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10810 { 10811 u64 quota, period, burst; 10812 10813 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10814 return -EINVAL; 10815 10816 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10817 period = ktime_to_ns(tg->cfs_bandwidth.period); 10818 quota = tg->cfs_bandwidth.quota; 10819 10820 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10821 } 10822 10823 static long tg_get_cfs_burst(struct task_group *tg) 10824 { 10825 u64 burst_us; 10826 10827 burst_us = tg->cfs_bandwidth.burst; 10828 do_div(burst_us, NSEC_PER_USEC); 10829 10830 return burst_us; 10831 } 10832 10833 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10834 struct cftype *cft) 10835 { 10836 return tg_get_cfs_quota(css_tg(css)); 10837 } 10838 10839 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10840 struct cftype *cftype, s64 cfs_quota_us) 10841 { 10842 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10843 } 10844 10845 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10846 struct cftype *cft) 10847 { 10848 return tg_get_cfs_period(css_tg(css)); 10849 } 10850 10851 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10852 struct cftype *cftype, u64 cfs_period_us) 10853 { 10854 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10855 } 10856 10857 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10858 struct cftype *cft) 10859 { 10860 return tg_get_cfs_burst(css_tg(css)); 10861 } 10862 10863 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10864 struct cftype *cftype, u64 cfs_burst_us) 10865 { 10866 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10867 } 10868 10869 struct cfs_schedulable_data { 10870 struct task_group *tg; 10871 u64 period, quota; 10872 }; 10873 10874 /* 10875 * normalize group quota/period to be quota/max_period 10876 * note: units are usecs 10877 */ 10878 static u64 normalize_cfs_quota(struct task_group *tg, 10879 struct cfs_schedulable_data *d) 10880 { 10881 u64 quota, period; 10882 10883 if (tg == d->tg) { 10884 period = d->period; 10885 quota = d->quota; 10886 } else { 10887 period = tg_get_cfs_period(tg); 10888 quota = tg_get_cfs_quota(tg); 10889 } 10890 10891 /* note: these should typically be equivalent */ 10892 if (quota == RUNTIME_INF || quota == -1) 10893 return RUNTIME_INF; 10894 10895 return to_ratio(period, quota); 10896 } 10897 10898 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10899 { 10900 struct cfs_schedulable_data *d = data; 10901 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10902 s64 quota = 0, parent_quota = -1; 10903 10904 if (!tg->parent) { 10905 quota = RUNTIME_INF; 10906 } else { 10907 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10908 10909 quota = normalize_cfs_quota(tg, d); 10910 parent_quota = parent_b->hierarchical_quota; 10911 10912 /* 10913 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10914 * always take the min. On cgroup1, only inherit when no 10915 * limit is set: 10916 */ 10917 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10918 quota = min(quota, parent_quota); 10919 } else { 10920 if (quota == RUNTIME_INF) 10921 quota = parent_quota; 10922 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10923 return -EINVAL; 10924 } 10925 } 10926 cfs_b->hierarchical_quota = quota; 10927 10928 return 0; 10929 } 10930 10931 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10932 { 10933 int ret; 10934 struct cfs_schedulable_data data = { 10935 .tg = tg, 10936 .period = period, 10937 .quota = quota, 10938 }; 10939 10940 if (quota != RUNTIME_INF) { 10941 do_div(data.period, NSEC_PER_USEC); 10942 do_div(data.quota, NSEC_PER_USEC); 10943 } 10944 10945 rcu_read_lock(); 10946 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10947 rcu_read_unlock(); 10948 10949 return ret; 10950 } 10951 10952 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10953 { 10954 struct task_group *tg = css_tg(seq_css(sf)); 10955 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10956 10957 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10958 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10959 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10960 10961 if (schedstat_enabled() && tg != &root_task_group) { 10962 struct sched_statistics *stats; 10963 u64 ws = 0; 10964 int i; 10965 10966 for_each_possible_cpu(i) { 10967 stats = __schedstats_from_se(tg->se[i]); 10968 ws += schedstat_val(stats->wait_sum); 10969 } 10970 10971 seq_printf(sf, "wait_sum %llu\n", ws); 10972 } 10973 10974 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10975 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10976 10977 return 0; 10978 } 10979 #endif /* CONFIG_CFS_BANDWIDTH */ 10980 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10981 10982 #ifdef CONFIG_RT_GROUP_SCHED 10983 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10984 struct cftype *cft, s64 val) 10985 { 10986 return sched_group_set_rt_runtime(css_tg(css), val); 10987 } 10988 10989 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10990 struct cftype *cft) 10991 { 10992 return sched_group_rt_runtime(css_tg(css)); 10993 } 10994 10995 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10996 struct cftype *cftype, u64 rt_period_us) 10997 { 10998 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10999 } 11000 11001 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 11002 struct cftype *cft) 11003 { 11004 return sched_group_rt_period(css_tg(css)); 11005 } 11006 #endif /* CONFIG_RT_GROUP_SCHED */ 11007 11008 #ifdef CONFIG_FAIR_GROUP_SCHED 11009 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 11010 struct cftype *cft) 11011 { 11012 return css_tg(css)->idle; 11013 } 11014 11015 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 11016 struct cftype *cft, s64 idle) 11017 { 11018 return sched_group_set_idle(css_tg(css), idle); 11019 } 11020 #endif 11021 11022 static struct cftype cpu_legacy_files[] = { 11023 #ifdef CONFIG_FAIR_GROUP_SCHED 11024 { 11025 .name = "shares", 11026 .read_u64 = cpu_shares_read_u64, 11027 .write_u64 = cpu_shares_write_u64, 11028 }, 11029 { 11030 .name = "idle", 11031 .read_s64 = cpu_idle_read_s64, 11032 .write_s64 = cpu_idle_write_s64, 11033 }, 11034 #endif 11035 #ifdef CONFIG_CFS_BANDWIDTH 11036 { 11037 .name = "cfs_quota_us", 11038 .read_s64 = cpu_cfs_quota_read_s64, 11039 .write_s64 = cpu_cfs_quota_write_s64, 11040 }, 11041 { 11042 .name = "cfs_period_us", 11043 .read_u64 = cpu_cfs_period_read_u64, 11044 .write_u64 = cpu_cfs_period_write_u64, 11045 }, 11046 { 11047 .name = "cfs_burst_us", 11048 .read_u64 = cpu_cfs_burst_read_u64, 11049 .write_u64 = cpu_cfs_burst_write_u64, 11050 }, 11051 { 11052 .name = "stat", 11053 .seq_show = cpu_cfs_stat_show, 11054 }, 11055 #endif 11056 #ifdef CONFIG_RT_GROUP_SCHED 11057 { 11058 .name = "rt_runtime_us", 11059 .read_s64 = cpu_rt_runtime_read, 11060 .write_s64 = cpu_rt_runtime_write, 11061 }, 11062 { 11063 .name = "rt_period_us", 11064 .read_u64 = cpu_rt_period_read_uint, 11065 .write_u64 = cpu_rt_period_write_uint, 11066 }, 11067 #endif 11068 #ifdef CONFIG_UCLAMP_TASK_GROUP 11069 { 11070 .name = "uclamp.min", 11071 .flags = CFTYPE_NOT_ON_ROOT, 11072 .seq_show = cpu_uclamp_min_show, 11073 .write = cpu_uclamp_min_write, 11074 }, 11075 { 11076 .name = "uclamp.max", 11077 .flags = CFTYPE_NOT_ON_ROOT, 11078 .seq_show = cpu_uclamp_max_show, 11079 .write = cpu_uclamp_max_write, 11080 }, 11081 #endif 11082 { } /* Terminate */ 11083 }; 11084 11085 static int cpu_extra_stat_show(struct seq_file *sf, 11086 struct cgroup_subsys_state *css) 11087 { 11088 #ifdef CONFIG_CFS_BANDWIDTH 11089 { 11090 struct task_group *tg = css_tg(css); 11091 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11092 u64 throttled_usec, burst_usec; 11093 11094 throttled_usec = cfs_b->throttled_time; 11095 do_div(throttled_usec, NSEC_PER_USEC); 11096 burst_usec = cfs_b->burst_time; 11097 do_div(burst_usec, NSEC_PER_USEC); 11098 11099 seq_printf(sf, "nr_periods %d\n" 11100 "nr_throttled %d\n" 11101 "throttled_usec %llu\n" 11102 "nr_bursts %d\n" 11103 "burst_usec %llu\n", 11104 cfs_b->nr_periods, cfs_b->nr_throttled, 11105 throttled_usec, cfs_b->nr_burst, burst_usec); 11106 } 11107 #endif 11108 return 0; 11109 } 11110 11111 #ifdef CONFIG_FAIR_GROUP_SCHED 11112 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 11113 struct cftype *cft) 11114 { 11115 struct task_group *tg = css_tg(css); 11116 u64 weight = scale_load_down(tg->shares); 11117 11118 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 11119 } 11120 11121 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 11122 struct cftype *cft, u64 weight) 11123 { 11124 /* 11125 * cgroup weight knobs should use the common MIN, DFL and MAX 11126 * values which are 1, 100 and 10000 respectively. While it loses 11127 * a bit of range on both ends, it maps pretty well onto the shares 11128 * value used by scheduler and the round-trip conversions preserve 11129 * the original value over the entire range. 11130 */ 11131 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 11132 return -ERANGE; 11133 11134 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 11135 11136 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11137 } 11138 11139 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 11140 struct cftype *cft) 11141 { 11142 unsigned long weight = scale_load_down(css_tg(css)->shares); 11143 int last_delta = INT_MAX; 11144 int prio, delta; 11145 11146 /* find the closest nice value to the current weight */ 11147 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 11148 delta = abs(sched_prio_to_weight[prio] - weight); 11149 if (delta >= last_delta) 11150 break; 11151 last_delta = delta; 11152 } 11153 11154 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 11155 } 11156 11157 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 11158 struct cftype *cft, s64 nice) 11159 { 11160 unsigned long weight; 11161 int idx; 11162 11163 if (nice < MIN_NICE || nice > MAX_NICE) 11164 return -ERANGE; 11165 11166 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 11167 idx = array_index_nospec(idx, 40); 11168 weight = sched_prio_to_weight[idx]; 11169 11170 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11171 } 11172 #endif 11173 11174 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11175 long period, long quota) 11176 { 11177 if (quota < 0) 11178 seq_puts(sf, "max"); 11179 else 11180 seq_printf(sf, "%ld", quota); 11181 11182 seq_printf(sf, " %ld\n", period); 11183 } 11184 11185 /* caller should put the current value in *@periodp before calling */ 11186 static int __maybe_unused cpu_period_quota_parse(char *buf, 11187 u64 *periodp, u64 *quotap) 11188 { 11189 char tok[21]; /* U64_MAX */ 11190 11191 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11192 return -EINVAL; 11193 11194 *periodp *= NSEC_PER_USEC; 11195 11196 if (sscanf(tok, "%llu", quotap)) 11197 *quotap *= NSEC_PER_USEC; 11198 else if (!strcmp(tok, "max")) 11199 *quotap = RUNTIME_INF; 11200 else 11201 return -EINVAL; 11202 11203 return 0; 11204 } 11205 11206 #ifdef CONFIG_CFS_BANDWIDTH 11207 static int cpu_max_show(struct seq_file *sf, void *v) 11208 { 11209 struct task_group *tg = css_tg(seq_css(sf)); 11210 11211 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11212 return 0; 11213 } 11214 11215 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11216 char *buf, size_t nbytes, loff_t off) 11217 { 11218 struct task_group *tg = css_tg(of_css(of)); 11219 u64 period = tg_get_cfs_period(tg); 11220 u64 burst = tg_get_cfs_burst(tg); 11221 u64 quota; 11222 int ret; 11223 11224 ret = cpu_period_quota_parse(buf, &period, "a); 11225 if (!ret) 11226 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11227 return ret ?: nbytes; 11228 } 11229 #endif 11230 11231 static struct cftype cpu_files[] = { 11232 #ifdef CONFIG_FAIR_GROUP_SCHED 11233 { 11234 .name = "weight", 11235 .flags = CFTYPE_NOT_ON_ROOT, 11236 .read_u64 = cpu_weight_read_u64, 11237 .write_u64 = cpu_weight_write_u64, 11238 }, 11239 { 11240 .name = "weight.nice", 11241 .flags = CFTYPE_NOT_ON_ROOT, 11242 .read_s64 = cpu_weight_nice_read_s64, 11243 .write_s64 = cpu_weight_nice_write_s64, 11244 }, 11245 { 11246 .name = "idle", 11247 .flags = CFTYPE_NOT_ON_ROOT, 11248 .read_s64 = cpu_idle_read_s64, 11249 .write_s64 = cpu_idle_write_s64, 11250 }, 11251 #endif 11252 #ifdef CONFIG_CFS_BANDWIDTH 11253 { 11254 .name = "max", 11255 .flags = CFTYPE_NOT_ON_ROOT, 11256 .seq_show = cpu_max_show, 11257 .write = cpu_max_write, 11258 }, 11259 { 11260 .name = "max.burst", 11261 .flags = CFTYPE_NOT_ON_ROOT, 11262 .read_u64 = cpu_cfs_burst_read_u64, 11263 .write_u64 = cpu_cfs_burst_write_u64, 11264 }, 11265 #endif 11266 #ifdef CONFIG_UCLAMP_TASK_GROUP 11267 { 11268 .name = "uclamp.min", 11269 .flags = CFTYPE_NOT_ON_ROOT, 11270 .seq_show = cpu_uclamp_min_show, 11271 .write = cpu_uclamp_min_write, 11272 }, 11273 { 11274 .name = "uclamp.max", 11275 .flags = CFTYPE_NOT_ON_ROOT, 11276 .seq_show = cpu_uclamp_max_show, 11277 .write = cpu_uclamp_max_write, 11278 }, 11279 #endif 11280 { } /* terminate */ 11281 }; 11282 11283 struct cgroup_subsys cpu_cgrp_subsys = { 11284 .css_alloc = cpu_cgroup_css_alloc, 11285 .css_online = cpu_cgroup_css_online, 11286 .css_released = cpu_cgroup_css_released, 11287 .css_free = cpu_cgroup_css_free, 11288 .css_extra_stat_show = cpu_extra_stat_show, 11289 #ifdef CONFIG_RT_GROUP_SCHED 11290 .can_attach = cpu_cgroup_can_attach, 11291 #endif 11292 .attach = cpu_cgroup_attach, 11293 .legacy_cftypes = cpu_legacy_files, 11294 .dfl_cftypes = cpu_files, 11295 .early_init = true, 11296 .threaded = true, 11297 }; 11298 11299 #endif /* CONFIG_CGROUP_SCHED */ 11300 11301 void dump_cpu_task(int cpu) 11302 { 11303 if (cpu == smp_processor_id() && in_hardirq()) { 11304 struct pt_regs *regs; 11305 11306 regs = get_irq_regs(); 11307 if (regs) { 11308 show_regs(regs); 11309 return; 11310 } 11311 } 11312 11313 if (trigger_single_cpu_backtrace(cpu)) 11314 return; 11315 11316 pr_info("Task dump for CPU %d:\n", cpu); 11317 sched_show_task(cpu_curr(cpu)); 11318 } 11319 11320 /* 11321 * Nice levels are multiplicative, with a gentle 10% change for every 11322 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11323 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11324 * that remained on nice 0. 11325 * 11326 * The "10% effect" is relative and cumulative: from _any_ nice level, 11327 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11328 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11329 * If a task goes up by ~10% and another task goes down by ~10% then 11330 * the relative distance between them is ~25%.) 11331 */ 11332 const int sched_prio_to_weight[40] = { 11333 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11334 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11335 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11336 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11337 /* 0 */ 1024, 820, 655, 526, 423, 11338 /* 5 */ 335, 272, 215, 172, 137, 11339 /* 10 */ 110, 87, 70, 56, 45, 11340 /* 15 */ 36, 29, 23, 18, 15, 11341 }; 11342 11343 /* 11344 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11345 * 11346 * In cases where the weight does not change often, we can use the 11347 * precalculated inverse to speed up arithmetics by turning divisions 11348 * into multiplications: 11349 */ 11350 const u32 sched_prio_to_wmult[40] = { 11351 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11352 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11353 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11354 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11355 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11356 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11357 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11358 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11359 }; 11360 11361 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11362 { 11363 trace_sched_update_nr_running_tp(rq, count); 11364 } 11365