1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #define CREATE_TRACE_POINTS 10 #include <trace/events/sched.h> 11 #undef CREATE_TRACE_POINTS 12 13 #include "sched.h" 14 15 #include <linux/nospec.h> 16 17 #include <linux/kcov.h> 18 #include <linux/scs.h> 19 20 #include <asm/switch_to.h> 21 #include <asm/tlb.h> 22 23 #include "../workqueue_internal.h" 24 #include "../../fs/io-wq.h" 25 #include "../smpboot.h" 26 27 #include "pelt.h" 28 #include "smp.h" 29 30 /* 31 * Export tracepoints that act as a bare tracehook (ie: have no trace event 32 * associated with them) to allow external modules to probe them. 33 */ 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 44 45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 46 47 #ifdef CONFIG_SCHED_DEBUG 48 /* 49 * Debugging: various feature bits 50 * 51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 52 * sysctl_sched_features, defined in sched.h, to allow constants propagation 53 * at compile time and compiler optimization based on features default. 54 */ 55 #define SCHED_FEAT(name, enabled) \ 56 (1UL << __SCHED_FEAT_##name) * enabled | 57 const_debug unsigned int sysctl_sched_features = 58 #include "features.h" 59 0; 60 #undef SCHED_FEAT 61 62 /* 63 * Print a warning if need_resched is set for the given duration (if 64 * LATENCY_WARN is enabled). 65 * 66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 67 * per boot. 68 */ 69 __read_mostly int sysctl_resched_latency_warn_ms = 100; 70 __read_mostly int sysctl_resched_latency_warn_once = 1; 71 #endif /* CONFIG_SCHED_DEBUG */ 72 73 /* 74 * Number of tasks to iterate in a single balance run. 75 * Limited because this is done with IRQs disabled. 76 */ 77 const_debug unsigned int sysctl_sched_nr_migrate = 32; 78 79 /* 80 * period over which we measure -rt task CPU usage in us. 81 * default: 1s 82 */ 83 unsigned int sysctl_sched_rt_period = 1000000; 84 85 __read_mostly int scheduler_running; 86 87 #ifdef CONFIG_SCHED_CORE 88 89 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 90 91 /* kernel prio, less is more */ 92 static inline int __task_prio(struct task_struct *p) 93 { 94 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 95 return -2; 96 97 if (rt_prio(p->prio)) /* includes deadline */ 98 return p->prio; /* [-1, 99] */ 99 100 if (p->sched_class == &idle_sched_class) 101 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 102 103 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 104 } 105 106 /* 107 * l(a,b) 108 * le(a,b) := !l(b,a) 109 * g(a,b) := l(b,a) 110 * ge(a,b) := !l(a,b) 111 */ 112 113 /* real prio, less is less */ 114 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 115 { 116 117 int pa = __task_prio(a), pb = __task_prio(b); 118 119 if (-pa < -pb) 120 return true; 121 122 if (-pb < -pa) 123 return false; 124 125 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 126 return !dl_time_before(a->dl.deadline, b->dl.deadline); 127 128 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 129 return cfs_prio_less(a, b, in_fi); 130 131 return false; 132 } 133 134 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 135 { 136 if (a->core_cookie < b->core_cookie) 137 return true; 138 139 if (a->core_cookie > b->core_cookie) 140 return false; 141 142 /* flip prio, so high prio is leftmost */ 143 if (prio_less(b, a, task_rq(a)->core->core_forceidle)) 144 return true; 145 146 return false; 147 } 148 149 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 150 151 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 152 { 153 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 154 } 155 156 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 157 { 158 const struct task_struct *p = __node_2_sc(node); 159 unsigned long cookie = (unsigned long)key; 160 161 if (cookie < p->core_cookie) 162 return -1; 163 164 if (cookie > p->core_cookie) 165 return 1; 166 167 return 0; 168 } 169 170 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 171 { 172 rq->core->core_task_seq++; 173 174 if (!p->core_cookie) 175 return; 176 177 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 178 } 179 180 void sched_core_dequeue(struct rq *rq, struct task_struct *p) 181 { 182 rq->core->core_task_seq++; 183 184 if (!sched_core_enqueued(p)) 185 return; 186 187 rb_erase(&p->core_node, &rq->core_tree); 188 RB_CLEAR_NODE(&p->core_node); 189 } 190 191 /* 192 * Find left-most (aka, highest priority) task matching @cookie. 193 */ 194 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 195 { 196 struct rb_node *node; 197 198 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 199 /* 200 * The idle task always matches any cookie! 201 */ 202 if (!node) 203 return idle_sched_class.pick_task(rq); 204 205 return __node_2_sc(node); 206 } 207 208 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 209 { 210 struct rb_node *node = &p->core_node; 211 212 node = rb_next(node); 213 if (!node) 214 return NULL; 215 216 p = container_of(node, struct task_struct, core_node); 217 if (p->core_cookie != cookie) 218 return NULL; 219 220 return p; 221 } 222 223 /* 224 * Magic required such that: 225 * 226 * raw_spin_rq_lock(rq); 227 * ... 228 * raw_spin_rq_unlock(rq); 229 * 230 * ends up locking and unlocking the _same_ lock, and all CPUs 231 * always agree on what rq has what lock. 232 * 233 * XXX entirely possible to selectively enable cores, don't bother for now. 234 */ 235 236 static DEFINE_MUTEX(sched_core_mutex); 237 static atomic_t sched_core_count; 238 static struct cpumask sched_core_mask; 239 240 static void __sched_core_flip(bool enabled) 241 { 242 int cpu, t, i; 243 244 cpus_read_lock(); 245 246 /* 247 * Toggle the online cores, one by one. 248 */ 249 cpumask_copy(&sched_core_mask, cpu_online_mask); 250 for_each_cpu(cpu, &sched_core_mask) { 251 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 252 253 i = 0; 254 local_irq_disable(); 255 for_each_cpu(t, smt_mask) { 256 /* supports up to SMT8 */ 257 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 258 } 259 260 for_each_cpu(t, smt_mask) 261 cpu_rq(t)->core_enabled = enabled; 262 263 for_each_cpu(t, smt_mask) 264 raw_spin_unlock(&cpu_rq(t)->__lock); 265 local_irq_enable(); 266 267 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 268 } 269 270 /* 271 * Toggle the offline CPUs. 272 */ 273 cpumask_copy(&sched_core_mask, cpu_possible_mask); 274 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask); 275 276 for_each_cpu(cpu, &sched_core_mask) 277 cpu_rq(cpu)->core_enabled = enabled; 278 279 cpus_read_unlock(); 280 } 281 282 static void sched_core_assert_empty(void) 283 { 284 int cpu; 285 286 for_each_possible_cpu(cpu) 287 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 288 } 289 290 static void __sched_core_enable(void) 291 { 292 static_branch_enable(&__sched_core_enabled); 293 /* 294 * Ensure all previous instances of raw_spin_rq_*lock() have finished 295 * and future ones will observe !sched_core_disabled(). 296 */ 297 synchronize_rcu(); 298 __sched_core_flip(true); 299 sched_core_assert_empty(); 300 } 301 302 static void __sched_core_disable(void) 303 { 304 sched_core_assert_empty(); 305 __sched_core_flip(false); 306 static_branch_disable(&__sched_core_enabled); 307 } 308 309 void sched_core_get(void) 310 { 311 if (atomic_inc_not_zero(&sched_core_count)) 312 return; 313 314 mutex_lock(&sched_core_mutex); 315 if (!atomic_read(&sched_core_count)) 316 __sched_core_enable(); 317 318 smp_mb__before_atomic(); 319 atomic_inc(&sched_core_count); 320 mutex_unlock(&sched_core_mutex); 321 } 322 323 static void __sched_core_put(struct work_struct *work) 324 { 325 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 326 __sched_core_disable(); 327 mutex_unlock(&sched_core_mutex); 328 } 329 } 330 331 void sched_core_put(void) 332 { 333 static DECLARE_WORK(_work, __sched_core_put); 334 335 /* 336 * "There can be only one" 337 * 338 * Either this is the last one, or we don't actually need to do any 339 * 'work'. If it is the last *again*, we rely on 340 * WORK_STRUCT_PENDING_BIT. 341 */ 342 if (!atomic_add_unless(&sched_core_count, -1, 1)) 343 schedule_work(&_work); 344 } 345 346 #else /* !CONFIG_SCHED_CORE */ 347 348 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 349 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { } 350 351 #endif /* CONFIG_SCHED_CORE */ 352 353 /* 354 * part of the period that we allow rt tasks to run in us. 355 * default: 0.95s 356 */ 357 int sysctl_sched_rt_runtime = 950000; 358 359 360 /* 361 * Serialization rules: 362 * 363 * Lock order: 364 * 365 * p->pi_lock 366 * rq->lock 367 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 368 * 369 * rq1->lock 370 * rq2->lock where: rq1 < rq2 371 * 372 * Regular state: 373 * 374 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 375 * local CPU's rq->lock, it optionally removes the task from the runqueue and 376 * always looks at the local rq data structures to find the most eligible task 377 * to run next. 378 * 379 * Task enqueue is also under rq->lock, possibly taken from another CPU. 380 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 381 * the local CPU to avoid bouncing the runqueue state around [ see 382 * ttwu_queue_wakelist() ] 383 * 384 * Task wakeup, specifically wakeups that involve migration, are horribly 385 * complicated to avoid having to take two rq->locks. 386 * 387 * Special state: 388 * 389 * System-calls and anything external will use task_rq_lock() which acquires 390 * both p->pi_lock and rq->lock. As a consequence the state they change is 391 * stable while holding either lock: 392 * 393 * - sched_setaffinity()/ 394 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 395 * - set_user_nice(): p->se.load, p->*prio 396 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 397 * p->se.load, p->rt_priority, 398 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 399 * - sched_setnuma(): p->numa_preferred_nid 400 * - sched_move_task()/ 401 * cpu_cgroup_fork(): p->sched_task_group 402 * - uclamp_update_active() p->uclamp* 403 * 404 * p->state <- TASK_*: 405 * 406 * is changed locklessly using set_current_state(), __set_current_state() or 407 * set_special_state(), see their respective comments, or by 408 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 409 * concurrent self. 410 * 411 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 412 * 413 * is set by activate_task() and cleared by deactivate_task(), under 414 * rq->lock. Non-zero indicates the task is runnable, the special 415 * ON_RQ_MIGRATING state is used for migration without holding both 416 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 417 * 418 * p->on_cpu <- { 0, 1 }: 419 * 420 * is set by prepare_task() and cleared by finish_task() such that it will be 421 * set before p is scheduled-in and cleared after p is scheduled-out, both 422 * under rq->lock. Non-zero indicates the task is running on its CPU. 423 * 424 * [ The astute reader will observe that it is possible for two tasks on one 425 * CPU to have ->on_cpu = 1 at the same time. ] 426 * 427 * task_cpu(p): is changed by set_task_cpu(), the rules are: 428 * 429 * - Don't call set_task_cpu() on a blocked task: 430 * 431 * We don't care what CPU we're not running on, this simplifies hotplug, 432 * the CPU assignment of blocked tasks isn't required to be valid. 433 * 434 * - for try_to_wake_up(), called under p->pi_lock: 435 * 436 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 437 * 438 * - for migration called under rq->lock: 439 * [ see task_on_rq_migrating() in task_rq_lock() ] 440 * 441 * o move_queued_task() 442 * o detach_task() 443 * 444 * - for migration called under double_rq_lock(): 445 * 446 * o __migrate_swap_task() 447 * o push_rt_task() / pull_rt_task() 448 * o push_dl_task() / pull_dl_task() 449 * o dl_task_offline_migration() 450 * 451 */ 452 453 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 454 { 455 raw_spinlock_t *lock; 456 457 /* Matches synchronize_rcu() in __sched_core_enable() */ 458 preempt_disable(); 459 if (sched_core_disabled()) { 460 raw_spin_lock_nested(&rq->__lock, subclass); 461 /* preempt_count *MUST* be > 1 */ 462 preempt_enable_no_resched(); 463 return; 464 } 465 466 for (;;) { 467 lock = __rq_lockp(rq); 468 raw_spin_lock_nested(lock, subclass); 469 if (likely(lock == __rq_lockp(rq))) { 470 /* preempt_count *MUST* be > 1 */ 471 preempt_enable_no_resched(); 472 return; 473 } 474 raw_spin_unlock(lock); 475 } 476 } 477 478 bool raw_spin_rq_trylock(struct rq *rq) 479 { 480 raw_spinlock_t *lock; 481 bool ret; 482 483 /* Matches synchronize_rcu() in __sched_core_enable() */ 484 preempt_disable(); 485 if (sched_core_disabled()) { 486 ret = raw_spin_trylock(&rq->__lock); 487 preempt_enable(); 488 return ret; 489 } 490 491 for (;;) { 492 lock = __rq_lockp(rq); 493 ret = raw_spin_trylock(lock); 494 if (!ret || (likely(lock == __rq_lockp(rq)))) { 495 preempt_enable(); 496 return ret; 497 } 498 raw_spin_unlock(lock); 499 } 500 } 501 502 void raw_spin_rq_unlock(struct rq *rq) 503 { 504 raw_spin_unlock(rq_lockp(rq)); 505 } 506 507 #ifdef CONFIG_SMP 508 /* 509 * double_rq_lock - safely lock two runqueues 510 */ 511 void double_rq_lock(struct rq *rq1, struct rq *rq2) 512 { 513 lockdep_assert_irqs_disabled(); 514 515 if (rq_order_less(rq2, rq1)) 516 swap(rq1, rq2); 517 518 raw_spin_rq_lock(rq1); 519 if (__rq_lockp(rq1) == __rq_lockp(rq2)) 520 return; 521 522 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 523 } 524 #endif 525 526 /* 527 * __task_rq_lock - lock the rq @p resides on. 528 */ 529 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 530 __acquires(rq->lock) 531 { 532 struct rq *rq; 533 534 lockdep_assert_held(&p->pi_lock); 535 536 for (;;) { 537 rq = task_rq(p); 538 raw_spin_rq_lock(rq); 539 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 540 rq_pin_lock(rq, rf); 541 return rq; 542 } 543 raw_spin_rq_unlock(rq); 544 545 while (unlikely(task_on_rq_migrating(p))) 546 cpu_relax(); 547 } 548 } 549 550 /* 551 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 552 */ 553 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 554 __acquires(p->pi_lock) 555 __acquires(rq->lock) 556 { 557 struct rq *rq; 558 559 for (;;) { 560 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 561 rq = task_rq(p); 562 raw_spin_rq_lock(rq); 563 /* 564 * move_queued_task() task_rq_lock() 565 * 566 * ACQUIRE (rq->lock) 567 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 568 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 569 * [S] ->cpu = new_cpu [L] task_rq() 570 * [L] ->on_rq 571 * RELEASE (rq->lock) 572 * 573 * If we observe the old CPU in task_rq_lock(), the acquire of 574 * the old rq->lock will fully serialize against the stores. 575 * 576 * If we observe the new CPU in task_rq_lock(), the address 577 * dependency headed by '[L] rq = task_rq()' and the acquire 578 * will pair with the WMB to ensure we then also see migrating. 579 */ 580 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 581 rq_pin_lock(rq, rf); 582 return rq; 583 } 584 raw_spin_rq_unlock(rq); 585 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 586 587 while (unlikely(task_on_rq_migrating(p))) 588 cpu_relax(); 589 } 590 } 591 592 /* 593 * RQ-clock updating methods: 594 */ 595 596 static void update_rq_clock_task(struct rq *rq, s64 delta) 597 { 598 /* 599 * In theory, the compile should just see 0 here, and optimize out the call 600 * to sched_rt_avg_update. But I don't trust it... 601 */ 602 s64 __maybe_unused steal = 0, irq_delta = 0; 603 604 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 605 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 606 607 /* 608 * Since irq_time is only updated on {soft,}irq_exit, we might run into 609 * this case when a previous update_rq_clock() happened inside a 610 * {soft,}irq region. 611 * 612 * When this happens, we stop ->clock_task and only update the 613 * prev_irq_time stamp to account for the part that fit, so that a next 614 * update will consume the rest. This ensures ->clock_task is 615 * monotonic. 616 * 617 * It does however cause some slight miss-attribution of {soft,}irq 618 * time, a more accurate solution would be to update the irq_time using 619 * the current rq->clock timestamp, except that would require using 620 * atomic ops. 621 */ 622 if (irq_delta > delta) 623 irq_delta = delta; 624 625 rq->prev_irq_time += irq_delta; 626 delta -= irq_delta; 627 #endif 628 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 629 if (static_key_false((¶virt_steal_rq_enabled))) { 630 steal = paravirt_steal_clock(cpu_of(rq)); 631 steal -= rq->prev_steal_time_rq; 632 633 if (unlikely(steal > delta)) 634 steal = delta; 635 636 rq->prev_steal_time_rq += steal; 637 delta -= steal; 638 } 639 #endif 640 641 rq->clock_task += delta; 642 643 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 644 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 645 update_irq_load_avg(rq, irq_delta + steal); 646 #endif 647 update_rq_clock_pelt(rq, delta); 648 } 649 650 void update_rq_clock(struct rq *rq) 651 { 652 s64 delta; 653 654 lockdep_assert_rq_held(rq); 655 656 if (rq->clock_update_flags & RQCF_ACT_SKIP) 657 return; 658 659 #ifdef CONFIG_SCHED_DEBUG 660 if (sched_feat(WARN_DOUBLE_CLOCK)) 661 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 662 rq->clock_update_flags |= RQCF_UPDATED; 663 #endif 664 665 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 666 if (delta < 0) 667 return; 668 rq->clock += delta; 669 update_rq_clock_task(rq, delta); 670 } 671 672 #ifdef CONFIG_SCHED_HRTICK 673 /* 674 * Use HR-timers to deliver accurate preemption points. 675 */ 676 677 static void hrtick_clear(struct rq *rq) 678 { 679 if (hrtimer_active(&rq->hrtick_timer)) 680 hrtimer_cancel(&rq->hrtick_timer); 681 } 682 683 /* 684 * High-resolution timer tick. 685 * Runs from hardirq context with interrupts disabled. 686 */ 687 static enum hrtimer_restart hrtick(struct hrtimer *timer) 688 { 689 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 690 struct rq_flags rf; 691 692 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 693 694 rq_lock(rq, &rf); 695 update_rq_clock(rq); 696 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 697 rq_unlock(rq, &rf); 698 699 return HRTIMER_NORESTART; 700 } 701 702 #ifdef CONFIG_SMP 703 704 static void __hrtick_restart(struct rq *rq) 705 { 706 struct hrtimer *timer = &rq->hrtick_timer; 707 ktime_t time = rq->hrtick_time; 708 709 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 710 } 711 712 /* 713 * called from hardirq (IPI) context 714 */ 715 static void __hrtick_start(void *arg) 716 { 717 struct rq *rq = arg; 718 struct rq_flags rf; 719 720 rq_lock(rq, &rf); 721 __hrtick_restart(rq); 722 rq_unlock(rq, &rf); 723 } 724 725 /* 726 * Called to set the hrtick timer state. 727 * 728 * called with rq->lock held and irqs disabled 729 */ 730 void hrtick_start(struct rq *rq, u64 delay) 731 { 732 struct hrtimer *timer = &rq->hrtick_timer; 733 s64 delta; 734 735 /* 736 * Don't schedule slices shorter than 10000ns, that just 737 * doesn't make sense and can cause timer DoS. 738 */ 739 delta = max_t(s64, delay, 10000LL); 740 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 741 742 if (rq == this_rq()) 743 __hrtick_restart(rq); 744 else 745 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 746 } 747 748 #else 749 /* 750 * Called to set the hrtick timer state. 751 * 752 * called with rq->lock held and irqs disabled 753 */ 754 void hrtick_start(struct rq *rq, u64 delay) 755 { 756 /* 757 * Don't schedule slices shorter than 10000ns, that just 758 * doesn't make sense. Rely on vruntime for fairness. 759 */ 760 delay = max_t(u64, delay, 10000LL); 761 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 762 HRTIMER_MODE_REL_PINNED_HARD); 763 } 764 765 #endif /* CONFIG_SMP */ 766 767 static void hrtick_rq_init(struct rq *rq) 768 { 769 #ifdef CONFIG_SMP 770 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 771 #endif 772 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 773 rq->hrtick_timer.function = hrtick; 774 } 775 #else /* CONFIG_SCHED_HRTICK */ 776 static inline void hrtick_clear(struct rq *rq) 777 { 778 } 779 780 static inline void hrtick_rq_init(struct rq *rq) 781 { 782 } 783 #endif /* CONFIG_SCHED_HRTICK */ 784 785 /* 786 * cmpxchg based fetch_or, macro so it works for different integer types 787 */ 788 #define fetch_or(ptr, mask) \ 789 ({ \ 790 typeof(ptr) _ptr = (ptr); \ 791 typeof(mask) _mask = (mask); \ 792 typeof(*_ptr) _old, _val = *_ptr; \ 793 \ 794 for (;;) { \ 795 _old = cmpxchg(_ptr, _val, _val | _mask); \ 796 if (_old == _val) \ 797 break; \ 798 _val = _old; \ 799 } \ 800 _old; \ 801 }) 802 803 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 804 /* 805 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 806 * this avoids any races wrt polling state changes and thereby avoids 807 * spurious IPIs. 808 */ 809 static bool set_nr_and_not_polling(struct task_struct *p) 810 { 811 struct thread_info *ti = task_thread_info(p); 812 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 813 } 814 815 /* 816 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 817 * 818 * If this returns true, then the idle task promises to call 819 * sched_ttwu_pending() and reschedule soon. 820 */ 821 static bool set_nr_if_polling(struct task_struct *p) 822 { 823 struct thread_info *ti = task_thread_info(p); 824 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 825 826 for (;;) { 827 if (!(val & _TIF_POLLING_NRFLAG)) 828 return false; 829 if (val & _TIF_NEED_RESCHED) 830 return true; 831 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 832 if (old == val) 833 break; 834 val = old; 835 } 836 return true; 837 } 838 839 #else 840 static bool set_nr_and_not_polling(struct task_struct *p) 841 { 842 set_tsk_need_resched(p); 843 return true; 844 } 845 846 #ifdef CONFIG_SMP 847 static bool set_nr_if_polling(struct task_struct *p) 848 { 849 return false; 850 } 851 #endif 852 #endif 853 854 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 855 { 856 struct wake_q_node *node = &task->wake_q; 857 858 /* 859 * Atomically grab the task, if ->wake_q is !nil already it means 860 * it's already queued (either by us or someone else) and will get the 861 * wakeup due to that. 862 * 863 * In order to ensure that a pending wakeup will observe our pending 864 * state, even in the failed case, an explicit smp_mb() must be used. 865 */ 866 smp_mb__before_atomic(); 867 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 868 return false; 869 870 /* 871 * The head is context local, there can be no concurrency. 872 */ 873 *head->lastp = node; 874 head->lastp = &node->next; 875 return true; 876 } 877 878 /** 879 * wake_q_add() - queue a wakeup for 'later' waking. 880 * @head: the wake_q_head to add @task to 881 * @task: the task to queue for 'later' wakeup 882 * 883 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 884 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 885 * instantly. 886 * 887 * This function must be used as-if it were wake_up_process(); IOW the task 888 * must be ready to be woken at this location. 889 */ 890 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 891 { 892 if (__wake_q_add(head, task)) 893 get_task_struct(task); 894 } 895 896 /** 897 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 898 * @head: the wake_q_head to add @task to 899 * @task: the task to queue for 'later' wakeup 900 * 901 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 902 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 903 * instantly. 904 * 905 * This function must be used as-if it were wake_up_process(); IOW the task 906 * must be ready to be woken at this location. 907 * 908 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 909 * that already hold reference to @task can call the 'safe' version and trust 910 * wake_q to do the right thing depending whether or not the @task is already 911 * queued for wakeup. 912 */ 913 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 914 { 915 if (!__wake_q_add(head, task)) 916 put_task_struct(task); 917 } 918 919 void wake_up_q(struct wake_q_head *head) 920 { 921 struct wake_q_node *node = head->first; 922 923 while (node != WAKE_Q_TAIL) { 924 struct task_struct *task; 925 926 task = container_of(node, struct task_struct, wake_q); 927 /* Task can safely be re-inserted now: */ 928 node = node->next; 929 task->wake_q.next = NULL; 930 931 /* 932 * wake_up_process() executes a full barrier, which pairs with 933 * the queueing in wake_q_add() so as not to miss wakeups. 934 */ 935 wake_up_process(task); 936 put_task_struct(task); 937 } 938 } 939 940 /* 941 * resched_curr - mark rq's current task 'to be rescheduled now'. 942 * 943 * On UP this means the setting of the need_resched flag, on SMP it 944 * might also involve a cross-CPU call to trigger the scheduler on 945 * the target CPU. 946 */ 947 void resched_curr(struct rq *rq) 948 { 949 struct task_struct *curr = rq->curr; 950 int cpu; 951 952 lockdep_assert_rq_held(rq); 953 954 if (test_tsk_need_resched(curr)) 955 return; 956 957 cpu = cpu_of(rq); 958 959 if (cpu == smp_processor_id()) { 960 set_tsk_need_resched(curr); 961 set_preempt_need_resched(); 962 return; 963 } 964 965 if (set_nr_and_not_polling(curr)) 966 smp_send_reschedule(cpu); 967 else 968 trace_sched_wake_idle_without_ipi(cpu); 969 } 970 971 void resched_cpu(int cpu) 972 { 973 struct rq *rq = cpu_rq(cpu); 974 unsigned long flags; 975 976 raw_spin_rq_lock_irqsave(rq, flags); 977 if (cpu_online(cpu) || cpu == smp_processor_id()) 978 resched_curr(rq); 979 raw_spin_rq_unlock_irqrestore(rq, flags); 980 } 981 982 #ifdef CONFIG_SMP 983 #ifdef CONFIG_NO_HZ_COMMON 984 /* 985 * In the semi idle case, use the nearest busy CPU for migrating timers 986 * from an idle CPU. This is good for power-savings. 987 * 988 * We don't do similar optimization for completely idle system, as 989 * selecting an idle CPU will add more delays to the timers than intended 990 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 991 */ 992 int get_nohz_timer_target(void) 993 { 994 int i, cpu = smp_processor_id(), default_cpu = -1; 995 struct sched_domain *sd; 996 997 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 998 if (!idle_cpu(cpu)) 999 return cpu; 1000 default_cpu = cpu; 1001 } 1002 1003 rcu_read_lock(); 1004 for_each_domain(cpu, sd) { 1005 for_each_cpu_and(i, sched_domain_span(sd), 1006 housekeeping_cpumask(HK_FLAG_TIMER)) { 1007 if (cpu == i) 1008 continue; 1009 1010 if (!idle_cpu(i)) { 1011 cpu = i; 1012 goto unlock; 1013 } 1014 } 1015 } 1016 1017 if (default_cpu == -1) 1018 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 1019 cpu = default_cpu; 1020 unlock: 1021 rcu_read_unlock(); 1022 return cpu; 1023 } 1024 1025 /* 1026 * When add_timer_on() enqueues a timer into the timer wheel of an 1027 * idle CPU then this timer might expire before the next timer event 1028 * which is scheduled to wake up that CPU. In case of a completely 1029 * idle system the next event might even be infinite time into the 1030 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1031 * leaves the inner idle loop so the newly added timer is taken into 1032 * account when the CPU goes back to idle and evaluates the timer 1033 * wheel for the next timer event. 1034 */ 1035 static void wake_up_idle_cpu(int cpu) 1036 { 1037 struct rq *rq = cpu_rq(cpu); 1038 1039 if (cpu == smp_processor_id()) 1040 return; 1041 1042 if (set_nr_and_not_polling(rq->idle)) 1043 smp_send_reschedule(cpu); 1044 else 1045 trace_sched_wake_idle_without_ipi(cpu); 1046 } 1047 1048 static bool wake_up_full_nohz_cpu(int cpu) 1049 { 1050 /* 1051 * We just need the target to call irq_exit() and re-evaluate 1052 * the next tick. The nohz full kick at least implies that. 1053 * If needed we can still optimize that later with an 1054 * empty IRQ. 1055 */ 1056 if (cpu_is_offline(cpu)) 1057 return true; /* Don't try to wake offline CPUs. */ 1058 if (tick_nohz_full_cpu(cpu)) { 1059 if (cpu != smp_processor_id() || 1060 tick_nohz_tick_stopped()) 1061 tick_nohz_full_kick_cpu(cpu); 1062 return true; 1063 } 1064 1065 return false; 1066 } 1067 1068 /* 1069 * Wake up the specified CPU. If the CPU is going offline, it is the 1070 * caller's responsibility to deal with the lost wakeup, for example, 1071 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1072 */ 1073 void wake_up_nohz_cpu(int cpu) 1074 { 1075 if (!wake_up_full_nohz_cpu(cpu)) 1076 wake_up_idle_cpu(cpu); 1077 } 1078 1079 static void nohz_csd_func(void *info) 1080 { 1081 struct rq *rq = info; 1082 int cpu = cpu_of(rq); 1083 unsigned int flags; 1084 1085 /* 1086 * Release the rq::nohz_csd. 1087 */ 1088 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1089 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1090 1091 rq->idle_balance = idle_cpu(cpu); 1092 if (rq->idle_balance && !need_resched()) { 1093 rq->nohz_idle_balance = flags; 1094 raise_softirq_irqoff(SCHED_SOFTIRQ); 1095 } 1096 } 1097 1098 #endif /* CONFIG_NO_HZ_COMMON */ 1099 1100 #ifdef CONFIG_NO_HZ_FULL 1101 bool sched_can_stop_tick(struct rq *rq) 1102 { 1103 int fifo_nr_running; 1104 1105 /* Deadline tasks, even if single, need the tick */ 1106 if (rq->dl.dl_nr_running) 1107 return false; 1108 1109 /* 1110 * If there are more than one RR tasks, we need the tick to affect the 1111 * actual RR behaviour. 1112 */ 1113 if (rq->rt.rr_nr_running) { 1114 if (rq->rt.rr_nr_running == 1) 1115 return true; 1116 else 1117 return false; 1118 } 1119 1120 /* 1121 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1122 * forced preemption between FIFO tasks. 1123 */ 1124 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1125 if (fifo_nr_running) 1126 return true; 1127 1128 /* 1129 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1130 * if there's more than one we need the tick for involuntary 1131 * preemption. 1132 */ 1133 if (rq->nr_running > 1) 1134 return false; 1135 1136 return true; 1137 } 1138 #endif /* CONFIG_NO_HZ_FULL */ 1139 #endif /* CONFIG_SMP */ 1140 1141 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1142 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1143 /* 1144 * Iterate task_group tree rooted at *from, calling @down when first entering a 1145 * node and @up when leaving it for the final time. 1146 * 1147 * Caller must hold rcu_lock or sufficient equivalent. 1148 */ 1149 int walk_tg_tree_from(struct task_group *from, 1150 tg_visitor down, tg_visitor up, void *data) 1151 { 1152 struct task_group *parent, *child; 1153 int ret; 1154 1155 parent = from; 1156 1157 down: 1158 ret = (*down)(parent, data); 1159 if (ret) 1160 goto out; 1161 list_for_each_entry_rcu(child, &parent->children, siblings) { 1162 parent = child; 1163 goto down; 1164 1165 up: 1166 continue; 1167 } 1168 ret = (*up)(parent, data); 1169 if (ret || parent == from) 1170 goto out; 1171 1172 child = parent; 1173 parent = parent->parent; 1174 if (parent) 1175 goto up; 1176 out: 1177 return ret; 1178 } 1179 1180 int tg_nop(struct task_group *tg, void *data) 1181 { 1182 return 0; 1183 } 1184 #endif 1185 1186 static void set_load_weight(struct task_struct *p, bool update_load) 1187 { 1188 int prio = p->static_prio - MAX_RT_PRIO; 1189 struct load_weight *load = &p->se.load; 1190 1191 /* 1192 * SCHED_IDLE tasks get minimal weight: 1193 */ 1194 if (task_has_idle_policy(p)) { 1195 load->weight = scale_load(WEIGHT_IDLEPRIO); 1196 load->inv_weight = WMULT_IDLEPRIO; 1197 return; 1198 } 1199 1200 /* 1201 * SCHED_OTHER tasks have to update their load when changing their 1202 * weight 1203 */ 1204 if (update_load && p->sched_class == &fair_sched_class) { 1205 reweight_task(p, prio); 1206 } else { 1207 load->weight = scale_load(sched_prio_to_weight[prio]); 1208 load->inv_weight = sched_prio_to_wmult[prio]; 1209 } 1210 } 1211 1212 #ifdef CONFIG_UCLAMP_TASK 1213 /* 1214 * Serializes updates of utilization clamp values 1215 * 1216 * The (slow-path) user-space triggers utilization clamp value updates which 1217 * can require updates on (fast-path) scheduler's data structures used to 1218 * support enqueue/dequeue operations. 1219 * While the per-CPU rq lock protects fast-path update operations, user-space 1220 * requests are serialized using a mutex to reduce the risk of conflicting 1221 * updates or API abuses. 1222 */ 1223 static DEFINE_MUTEX(uclamp_mutex); 1224 1225 /* Max allowed minimum utilization */ 1226 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1227 1228 /* Max allowed maximum utilization */ 1229 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1230 1231 /* 1232 * By default RT tasks run at the maximum performance point/capacity of the 1233 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1234 * SCHED_CAPACITY_SCALE. 1235 * 1236 * This knob allows admins to change the default behavior when uclamp is being 1237 * used. In battery powered devices, particularly, running at the maximum 1238 * capacity and frequency will increase energy consumption and shorten the 1239 * battery life. 1240 * 1241 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1242 * 1243 * This knob will not override the system default sched_util_clamp_min defined 1244 * above. 1245 */ 1246 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1247 1248 /* All clamps are required to be less or equal than these values */ 1249 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1250 1251 /* 1252 * This static key is used to reduce the uclamp overhead in the fast path. It 1253 * primarily disables the call to uclamp_rq_{inc, dec}() in 1254 * enqueue/dequeue_task(). 1255 * 1256 * This allows users to continue to enable uclamp in their kernel config with 1257 * minimum uclamp overhead in the fast path. 1258 * 1259 * As soon as userspace modifies any of the uclamp knobs, the static key is 1260 * enabled, since we have an actual users that make use of uclamp 1261 * functionality. 1262 * 1263 * The knobs that would enable this static key are: 1264 * 1265 * * A task modifying its uclamp value with sched_setattr(). 1266 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1267 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1268 */ 1269 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1270 1271 /* Integer rounded range for each bucket */ 1272 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1273 1274 #define for_each_clamp_id(clamp_id) \ 1275 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1276 1277 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1278 { 1279 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1280 } 1281 1282 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1283 { 1284 if (clamp_id == UCLAMP_MIN) 1285 return 0; 1286 return SCHED_CAPACITY_SCALE; 1287 } 1288 1289 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1290 unsigned int value, bool user_defined) 1291 { 1292 uc_se->value = value; 1293 uc_se->bucket_id = uclamp_bucket_id(value); 1294 uc_se->user_defined = user_defined; 1295 } 1296 1297 static inline unsigned int 1298 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1299 unsigned int clamp_value) 1300 { 1301 /* 1302 * Avoid blocked utilization pushing up the frequency when we go 1303 * idle (which drops the max-clamp) by retaining the last known 1304 * max-clamp. 1305 */ 1306 if (clamp_id == UCLAMP_MAX) { 1307 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1308 return clamp_value; 1309 } 1310 1311 return uclamp_none(UCLAMP_MIN); 1312 } 1313 1314 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1315 unsigned int clamp_value) 1316 { 1317 /* Reset max-clamp retention only on idle exit */ 1318 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1319 return; 1320 1321 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 1322 } 1323 1324 static inline 1325 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1326 unsigned int clamp_value) 1327 { 1328 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1329 int bucket_id = UCLAMP_BUCKETS - 1; 1330 1331 /* 1332 * Since both min and max clamps are max aggregated, find the 1333 * top most bucket with tasks in. 1334 */ 1335 for ( ; bucket_id >= 0; bucket_id--) { 1336 if (!bucket[bucket_id].tasks) 1337 continue; 1338 return bucket[bucket_id].value; 1339 } 1340 1341 /* No tasks -- default clamp values */ 1342 return uclamp_idle_value(rq, clamp_id, clamp_value); 1343 } 1344 1345 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1346 { 1347 unsigned int default_util_min; 1348 struct uclamp_se *uc_se; 1349 1350 lockdep_assert_held(&p->pi_lock); 1351 1352 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1353 1354 /* Only sync if user didn't override the default */ 1355 if (uc_se->user_defined) 1356 return; 1357 1358 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1359 uclamp_se_set(uc_se, default_util_min, false); 1360 } 1361 1362 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1363 { 1364 struct rq_flags rf; 1365 struct rq *rq; 1366 1367 if (!rt_task(p)) 1368 return; 1369 1370 /* Protect updates to p->uclamp_* */ 1371 rq = task_rq_lock(p, &rf); 1372 __uclamp_update_util_min_rt_default(p); 1373 task_rq_unlock(rq, p, &rf); 1374 } 1375 1376 static void uclamp_sync_util_min_rt_default(void) 1377 { 1378 struct task_struct *g, *p; 1379 1380 /* 1381 * copy_process() sysctl_uclamp 1382 * uclamp_min_rt = X; 1383 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1384 * // link thread smp_mb__after_spinlock() 1385 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1386 * sched_post_fork() for_each_process_thread() 1387 * __uclamp_sync_rt() __uclamp_sync_rt() 1388 * 1389 * Ensures that either sched_post_fork() will observe the new 1390 * uclamp_min_rt or for_each_process_thread() will observe the new 1391 * task. 1392 */ 1393 read_lock(&tasklist_lock); 1394 smp_mb__after_spinlock(); 1395 read_unlock(&tasklist_lock); 1396 1397 rcu_read_lock(); 1398 for_each_process_thread(g, p) 1399 uclamp_update_util_min_rt_default(p); 1400 rcu_read_unlock(); 1401 } 1402 1403 static inline struct uclamp_se 1404 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1405 { 1406 /* Copy by value as we could modify it */ 1407 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1408 #ifdef CONFIG_UCLAMP_TASK_GROUP 1409 unsigned int tg_min, tg_max, value; 1410 1411 /* 1412 * Tasks in autogroups or root task group will be 1413 * restricted by system defaults. 1414 */ 1415 if (task_group_is_autogroup(task_group(p))) 1416 return uc_req; 1417 if (task_group(p) == &root_task_group) 1418 return uc_req; 1419 1420 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1421 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1422 value = uc_req.value; 1423 value = clamp(value, tg_min, tg_max); 1424 uclamp_se_set(&uc_req, value, false); 1425 #endif 1426 1427 return uc_req; 1428 } 1429 1430 /* 1431 * The effective clamp bucket index of a task depends on, by increasing 1432 * priority: 1433 * - the task specific clamp value, when explicitly requested from userspace 1434 * - the task group effective clamp value, for tasks not either in the root 1435 * group or in an autogroup 1436 * - the system default clamp value, defined by the sysadmin 1437 */ 1438 static inline struct uclamp_se 1439 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1440 { 1441 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1442 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1443 1444 /* System default restrictions always apply */ 1445 if (unlikely(uc_req.value > uc_max.value)) 1446 return uc_max; 1447 1448 return uc_req; 1449 } 1450 1451 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1452 { 1453 struct uclamp_se uc_eff; 1454 1455 /* Task currently refcounted: use back-annotated (effective) value */ 1456 if (p->uclamp[clamp_id].active) 1457 return (unsigned long)p->uclamp[clamp_id].value; 1458 1459 uc_eff = uclamp_eff_get(p, clamp_id); 1460 1461 return (unsigned long)uc_eff.value; 1462 } 1463 1464 /* 1465 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1466 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1467 * updates the rq's clamp value if required. 1468 * 1469 * Tasks can have a task-specific value requested from user-space, track 1470 * within each bucket the maximum value for tasks refcounted in it. 1471 * This "local max aggregation" allows to track the exact "requested" value 1472 * for each bucket when all its RUNNABLE tasks require the same clamp. 1473 */ 1474 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1475 enum uclamp_id clamp_id) 1476 { 1477 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1478 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1479 struct uclamp_bucket *bucket; 1480 1481 lockdep_assert_rq_held(rq); 1482 1483 /* Update task effective clamp */ 1484 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1485 1486 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1487 bucket->tasks++; 1488 uc_se->active = true; 1489 1490 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1491 1492 /* 1493 * Local max aggregation: rq buckets always track the max 1494 * "requested" clamp value of its RUNNABLE tasks. 1495 */ 1496 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1497 bucket->value = uc_se->value; 1498 1499 if (uc_se->value > READ_ONCE(uc_rq->value)) 1500 WRITE_ONCE(uc_rq->value, uc_se->value); 1501 } 1502 1503 /* 1504 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1505 * is released. If this is the last task reference counting the rq's max 1506 * active clamp value, then the rq's clamp value is updated. 1507 * 1508 * Both refcounted tasks and rq's cached clamp values are expected to be 1509 * always valid. If it's detected they are not, as defensive programming, 1510 * enforce the expected state and warn. 1511 */ 1512 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1513 enum uclamp_id clamp_id) 1514 { 1515 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1516 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1517 struct uclamp_bucket *bucket; 1518 unsigned int bkt_clamp; 1519 unsigned int rq_clamp; 1520 1521 lockdep_assert_rq_held(rq); 1522 1523 /* 1524 * If sched_uclamp_used was enabled after task @p was enqueued, 1525 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1526 * 1527 * In this case the uc_se->active flag should be false since no uclamp 1528 * accounting was performed at enqueue time and we can just return 1529 * here. 1530 * 1531 * Need to be careful of the following enqueue/dequeue ordering 1532 * problem too 1533 * 1534 * enqueue(taskA) 1535 * // sched_uclamp_used gets enabled 1536 * enqueue(taskB) 1537 * dequeue(taskA) 1538 * // Must not decrement bucket->tasks here 1539 * dequeue(taskB) 1540 * 1541 * where we could end up with stale data in uc_se and 1542 * bucket[uc_se->bucket_id]. 1543 * 1544 * The following check here eliminates the possibility of such race. 1545 */ 1546 if (unlikely(!uc_se->active)) 1547 return; 1548 1549 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1550 1551 SCHED_WARN_ON(!bucket->tasks); 1552 if (likely(bucket->tasks)) 1553 bucket->tasks--; 1554 1555 uc_se->active = false; 1556 1557 /* 1558 * Keep "local max aggregation" simple and accept to (possibly) 1559 * overboost some RUNNABLE tasks in the same bucket. 1560 * The rq clamp bucket value is reset to its base value whenever 1561 * there are no more RUNNABLE tasks refcounting it. 1562 */ 1563 if (likely(bucket->tasks)) 1564 return; 1565 1566 rq_clamp = READ_ONCE(uc_rq->value); 1567 /* 1568 * Defensive programming: this should never happen. If it happens, 1569 * e.g. due to future modification, warn and fixup the expected value. 1570 */ 1571 SCHED_WARN_ON(bucket->value > rq_clamp); 1572 if (bucket->value >= rq_clamp) { 1573 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1574 WRITE_ONCE(uc_rq->value, bkt_clamp); 1575 } 1576 } 1577 1578 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1579 { 1580 enum uclamp_id clamp_id; 1581 1582 /* 1583 * Avoid any overhead until uclamp is actually used by the userspace. 1584 * 1585 * The condition is constructed such that a NOP is generated when 1586 * sched_uclamp_used is disabled. 1587 */ 1588 if (!static_branch_unlikely(&sched_uclamp_used)) 1589 return; 1590 1591 if (unlikely(!p->sched_class->uclamp_enabled)) 1592 return; 1593 1594 for_each_clamp_id(clamp_id) 1595 uclamp_rq_inc_id(rq, p, clamp_id); 1596 1597 /* Reset clamp idle holding when there is one RUNNABLE task */ 1598 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1599 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1600 } 1601 1602 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1603 { 1604 enum uclamp_id clamp_id; 1605 1606 /* 1607 * Avoid any overhead until uclamp is actually used by the userspace. 1608 * 1609 * The condition is constructed such that a NOP is generated when 1610 * sched_uclamp_used is disabled. 1611 */ 1612 if (!static_branch_unlikely(&sched_uclamp_used)) 1613 return; 1614 1615 if (unlikely(!p->sched_class->uclamp_enabled)) 1616 return; 1617 1618 for_each_clamp_id(clamp_id) 1619 uclamp_rq_dec_id(rq, p, clamp_id); 1620 } 1621 1622 static inline void 1623 uclamp_update_active(struct task_struct *p) 1624 { 1625 enum uclamp_id clamp_id; 1626 struct rq_flags rf; 1627 struct rq *rq; 1628 1629 /* 1630 * Lock the task and the rq where the task is (or was) queued. 1631 * 1632 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1633 * price to pay to safely serialize util_{min,max} updates with 1634 * enqueues, dequeues and migration operations. 1635 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1636 */ 1637 rq = task_rq_lock(p, &rf); 1638 1639 /* 1640 * Setting the clamp bucket is serialized by task_rq_lock(). 1641 * If the task is not yet RUNNABLE and its task_struct is not 1642 * affecting a valid clamp bucket, the next time it's enqueued, 1643 * it will already see the updated clamp bucket value. 1644 */ 1645 for_each_clamp_id(clamp_id) { 1646 if (p->uclamp[clamp_id].active) { 1647 uclamp_rq_dec_id(rq, p, clamp_id); 1648 uclamp_rq_inc_id(rq, p, clamp_id); 1649 } 1650 } 1651 1652 task_rq_unlock(rq, p, &rf); 1653 } 1654 1655 #ifdef CONFIG_UCLAMP_TASK_GROUP 1656 static inline void 1657 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1658 { 1659 struct css_task_iter it; 1660 struct task_struct *p; 1661 1662 css_task_iter_start(css, 0, &it); 1663 while ((p = css_task_iter_next(&it))) 1664 uclamp_update_active(p); 1665 css_task_iter_end(&it); 1666 } 1667 1668 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1669 static void uclamp_update_root_tg(void) 1670 { 1671 struct task_group *tg = &root_task_group; 1672 1673 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1674 sysctl_sched_uclamp_util_min, false); 1675 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1676 sysctl_sched_uclamp_util_max, false); 1677 1678 rcu_read_lock(); 1679 cpu_util_update_eff(&root_task_group.css); 1680 rcu_read_unlock(); 1681 } 1682 #else 1683 static void uclamp_update_root_tg(void) { } 1684 #endif 1685 1686 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1687 void *buffer, size_t *lenp, loff_t *ppos) 1688 { 1689 bool update_root_tg = false; 1690 int old_min, old_max, old_min_rt; 1691 int result; 1692 1693 mutex_lock(&uclamp_mutex); 1694 old_min = sysctl_sched_uclamp_util_min; 1695 old_max = sysctl_sched_uclamp_util_max; 1696 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1697 1698 result = proc_dointvec(table, write, buffer, lenp, ppos); 1699 if (result) 1700 goto undo; 1701 if (!write) 1702 goto done; 1703 1704 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1705 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1706 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1707 1708 result = -EINVAL; 1709 goto undo; 1710 } 1711 1712 if (old_min != sysctl_sched_uclamp_util_min) { 1713 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1714 sysctl_sched_uclamp_util_min, false); 1715 update_root_tg = true; 1716 } 1717 if (old_max != sysctl_sched_uclamp_util_max) { 1718 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1719 sysctl_sched_uclamp_util_max, false); 1720 update_root_tg = true; 1721 } 1722 1723 if (update_root_tg) { 1724 static_branch_enable(&sched_uclamp_used); 1725 uclamp_update_root_tg(); 1726 } 1727 1728 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1729 static_branch_enable(&sched_uclamp_used); 1730 uclamp_sync_util_min_rt_default(); 1731 } 1732 1733 /* 1734 * We update all RUNNABLE tasks only when task groups are in use. 1735 * Otherwise, keep it simple and do just a lazy update at each next 1736 * task enqueue time. 1737 */ 1738 1739 goto done; 1740 1741 undo: 1742 sysctl_sched_uclamp_util_min = old_min; 1743 sysctl_sched_uclamp_util_max = old_max; 1744 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1745 done: 1746 mutex_unlock(&uclamp_mutex); 1747 1748 return result; 1749 } 1750 1751 static int uclamp_validate(struct task_struct *p, 1752 const struct sched_attr *attr) 1753 { 1754 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1755 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1756 1757 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1758 util_min = attr->sched_util_min; 1759 1760 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1761 return -EINVAL; 1762 } 1763 1764 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1765 util_max = attr->sched_util_max; 1766 1767 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1768 return -EINVAL; 1769 } 1770 1771 if (util_min != -1 && util_max != -1 && util_min > util_max) 1772 return -EINVAL; 1773 1774 /* 1775 * We have valid uclamp attributes; make sure uclamp is enabled. 1776 * 1777 * We need to do that here, because enabling static branches is a 1778 * blocking operation which obviously cannot be done while holding 1779 * scheduler locks. 1780 */ 1781 static_branch_enable(&sched_uclamp_used); 1782 1783 return 0; 1784 } 1785 1786 static bool uclamp_reset(const struct sched_attr *attr, 1787 enum uclamp_id clamp_id, 1788 struct uclamp_se *uc_se) 1789 { 1790 /* Reset on sched class change for a non user-defined clamp value. */ 1791 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1792 !uc_se->user_defined) 1793 return true; 1794 1795 /* Reset on sched_util_{min,max} == -1. */ 1796 if (clamp_id == UCLAMP_MIN && 1797 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1798 attr->sched_util_min == -1) { 1799 return true; 1800 } 1801 1802 if (clamp_id == UCLAMP_MAX && 1803 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1804 attr->sched_util_max == -1) { 1805 return true; 1806 } 1807 1808 return false; 1809 } 1810 1811 static void __setscheduler_uclamp(struct task_struct *p, 1812 const struct sched_attr *attr) 1813 { 1814 enum uclamp_id clamp_id; 1815 1816 for_each_clamp_id(clamp_id) { 1817 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1818 unsigned int value; 1819 1820 if (!uclamp_reset(attr, clamp_id, uc_se)) 1821 continue; 1822 1823 /* 1824 * RT by default have a 100% boost value that could be modified 1825 * at runtime. 1826 */ 1827 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1828 value = sysctl_sched_uclamp_util_min_rt_default; 1829 else 1830 value = uclamp_none(clamp_id); 1831 1832 uclamp_se_set(uc_se, value, false); 1833 1834 } 1835 1836 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1837 return; 1838 1839 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1840 attr->sched_util_min != -1) { 1841 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1842 attr->sched_util_min, true); 1843 } 1844 1845 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1846 attr->sched_util_max != -1) { 1847 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1848 attr->sched_util_max, true); 1849 } 1850 } 1851 1852 static void uclamp_fork(struct task_struct *p) 1853 { 1854 enum uclamp_id clamp_id; 1855 1856 /* 1857 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1858 * as the task is still at its early fork stages. 1859 */ 1860 for_each_clamp_id(clamp_id) 1861 p->uclamp[clamp_id].active = false; 1862 1863 if (likely(!p->sched_reset_on_fork)) 1864 return; 1865 1866 for_each_clamp_id(clamp_id) { 1867 uclamp_se_set(&p->uclamp_req[clamp_id], 1868 uclamp_none(clamp_id), false); 1869 } 1870 } 1871 1872 static void uclamp_post_fork(struct task_struct *p) 1873 { 1874 uclamp_update_util_min_rt_default(p); 1875 } 1876 1877 static void __init init_uclamp_rq(struct rq *rq) 1878 { 1879 enum uclamp_id clamp_id; 1880 struct uclamp_rq *uc_rq = rq->uclamp; 1881 1882 for_each_clamp_id(clamp_id) { 1883 uc_rq[clamp_id] = (struct uclamp_rq) { 1884 .value = uclamp_none(clamp_id) 1885 }; 1886 } 1887 1888 rq->uclamp_flags = 0; 1889 } 1890 1891 static void __init init_uclamp(void) 1892 { 1893 struct uclamp_se uc_max = {}; 1894 enum uclamp_id clamp_id; 1895 int cpu; 1896 1897 for_each_possible_cpu(cpu) 1898 init_uclamp_rq(cpu_rq(cpu)); 1899 1900 for_each_clamp_id(clamp_id) { 1901 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1902 uclamp_none(clamp_id), false); 1903 } 1904 1905 /* System defaults allow max clamp values for both indexes */ 1906 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1907 for_each_clamp_id(clamp_id) { 1908 uclamp_default[clamp_id] = uc_max; 1909 #ifdef CONFIG_UCLAMP_TASK_GROUP 1910 root_task_group.uclamp_req[clamp_id] = uc_max; 1911 root_task_group.uclamp[clamp_id] = uc_max; 1912 #endif 1913 } 1914 } 1915 1916 #else /* CONFIG_UCLAMP_TASK */ 1917 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1918 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1919 static inline int uclamp_validate(struct task_struct *p, 1920 const struct sched_attr *attr) 1921 { 1922 return -EOPNOTSUPP; 1923 } 1924 static void __setscheduler_uclamp(struct task_struct *p, 1925 const struct sched_attr *attr) { } 1926 static inline void uclamp_fork(struct task_struct *p) { } 1927 static inline void uclamp_post_fork(struct task_struct *p) { } 1928 static inline void init_uclamp(void) { } 1929 #endif /* CONFIG_UCLAMP_TASK */ 1930 1931 bool sched_task_on_rq(struct task_struct *p) 1932 { 1933 return task_on_rq_queued(p); 1934 } 1935 1936 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1937 { 1938 if (!(flags & ENQUEUE_NOCLOCK)) 1939 update_rq_clock(rq); 1940 1941 if (!(flags & ENQUEUE_RESTORE)) { 1942 sched_info_enqueue(rq, p); 1943 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1944 } 1945 1946 uclamp_rq_inc(rq, p); 1947 p->sched_class->enqueue_task(rq, p, flags); 1948 1949 if (sched_core_enabled(rq)) 1950 sched_core_enqueue(rq, p); 1951 } 1952 1953 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1954 { 1955 if (sched_core_enabled(rq)) 1956 sched_core_dequeue(rq, p); 1957 1958 if (!(flags & DEQUEUE_NOCLOCK)) 1959 update_rq_clock(rq); 1960 1961 if (!(flags & DEQUEUE_SAVE)) { 1962 sched_info_dequeue(rq, p); 1963 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1964 } 1965 1966 uclamp_rq_dec(rq, p); 1967 p->sched_class->dequeue_task(rq, p, flags); 1968 } 1969 1970 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1971 { 1972 enqueue_task(rq, p, flags); 1973 1974 p->on_rq = TASK_ON_RQ_QUEUED; 1975 } 1976 1977 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1978 { 1979 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1980 1981 dequeue_task(rq, p, flags); 1982 } 1983 1984 /* 1985 * __normal_prio - return the priority that is based on the static prio 1986 */ 1987 static inline int __normal_prio(struct task_struct *p) 1988 { 1989 return p->static_prio; 1990 } 1991 1992 /* 1993 * Calculate the expected normal priority: i.e. priority 1994 * without taking RT-inheritance into account. Might be 1995 * boosted by interactivity modifiers. Changes upon fork, 1996 * setprio syscalls, and whenever the interactivity 1997 * estimator recalculates. 1998 */ 1999 static inline int normal_prio(struct task_struct *p) 2000 { 2001 int prio; 2002 2003 if (task_has_dl_policy(p)) 2004 prio = MAX_DL_PRIO-1; 2005 else if (task_has_rt_policy(p)) 2006 prio = MAX_RT_PRIO-1 - p->rt_priority; 2007 else 2008 prio = __normal_prio(p); 2009 return prio; 2010 } 2011 2012 /* 2013 * Calculate the current priority, i.e. the priority 2014 * taken into account by the scheduler. This value might 2015 * be boosted by RT tasks, or might be boosted by 2016 * interactivity modifiers. Will be RT if the task got 2017 * RT-boosted. If not then it returns p->normal_prio. 2018 */ 2019 static int effective_prio(struct task_struct *p) 2020 { 2021 p->normal_prio = normal_prio(p); 2022 /* 2023 * If we are RT tasks or we were boosted to RT priority, 2024 * keep the priority unchanged. Otherwise, update priority 2025 * to the normal priority: 2026 */ 2027 if (!rt_prio(p->prio)) 2028 return p->normal_prio; 2029 return p->prio; 2030 } 2031 2032 /** 2033 * task_curr - is this task currently executing on a CPU? 2034 * @p: the task in question. 2035 * 2036 * Return: 1 if the task is currently executing. 0 otherwise. 2037 */ 2038 inline int task_curr(const struct task_struct *p) 2039 { 2040 return cpu_curr(task_cpu(p)) == p; 2041 } 2042 2043 /* 2044 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2045 * use the balance_callback list if you want balancing. 2046 * 2047 * this means any call to check_class_changed() must be followed by a call to 2048 * balance_callback(). 2049 */ 2050 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2051 const struct sched_class *prev_class, 2052 int oldprio) 2053 { 2054 if (prev_class != p->sched_class) { 2055 if (prev_class->switched_from) 2056 prev_class->switched_from(rq, p); 2057 2058 p->sched_class->switched_to(rq, p); 2059 } else if (oldprio != p->prio || dl_task(p)) 2060 p->sched_class->prio_changed(rq, p, oldprio); 2061 } 2062 2063 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2064 { 2065 if (p->sched_class == rq->curr->sched_class) 2066 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2067 else if (p->sched_class > rq->curr->sched_class) 2068 resched_curr(rq); 2069 2070 /* 2071 * A queue event has occurred, and we're going to schedule. In 2072 * this case, we can save a useless back to back clock update. 2073 */ 2074 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2075 rq_clock_skip_update(rq); 2076 } 2077 2078 #ifdef CONFIG_SMP 2079 2080 static void 2081 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2082 2083 static int __set_cpus_allowed_ptr(struct task_struct *p, 2084 const struct cpumask *new_mask, 2085 u32 flags); 2086 2087 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2088 { 2089 if (likely(!p->migration_disabled)) 2090 return; 2091 2092 if (p->cpus_ptr != &p->cpus_mask) 2093 return; 2094 2095 /* 2096 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2097 */ 2098 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 2099 } 2100 2101 void migrate_disable(void) 2102 { 2103 struct task_struct *p = current; 2104 2105 if (p->migration_disabled) { 2106 p->migration_disabled++; 2107 return; 2108 } 2109 2110 preempt_disable(); 2111 this_rq()->nr_pinned++; 2112 p->migration_disabled = 1; 2113 preempt_enable(); 2114 } 2115 EXPORT_SYMBOL_GPL(migrate_disable); 2116 2117 void migrate_enable(void) 2118 { 2119 struct task_struct *p = current; 2120 2121 if (p->migration_disabled > 1) { 2122 p->migration_disabled--; 2123 return; 2124 } 2125 2126 /* 2127 * Ensure stop_task runs either before or after this, and that 2128 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2129 */ 2130 preempt_disable(); 2131 if (p->cpus_ptr != &p->cpus_mask) 2132 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 2133 /* 2134 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2135 * regular cpus_mask, otherwise things that race (eg. 2136 * select_fallback_rq) get confused. 2137 */ 2138 barrier(); 2139 p->migration_disabled = 0; 2140 this_rq()->nr_pinned--; 2141 preempt_enable(); 2142 } 2143 EXPORT_SYMBOL_GPL(migrate_enable); 2144 2145 static inline bool rq_has_pinned_tasks(struct rq *rq) 2146 { 2147 return rq->nr_pinned; 2148 } 2149 2150 /* 2151 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2152 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2153 */ 2154 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2155 { 2156 /* When not in the task's cpumask, no point in looking further. */ 2157 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2158 return false; 2159 2160 /* migrate_disabled() must be allowed to finish. */ 2161 if (is_migration_disabled(p)) 2162 return cpu_online(cpu); 2163 2164 /* Non kernel threads are not allowed during either online or offline. */ 2165 if (!(p->flags & PF_KTHREAD)) 2166 return cpu_active(cpu); 2167 2168 /* KTHREAD_IS_PER_CPU is always allowed. */ 2169 if (kthread_is_per_cpu(p)) 2170 return cpu_online(cpu); 2171 2172 /* Regular kernel threads don't get to stay during offline. */ 2173 if (cpu_dying(cpu)) 2174 return false; 2175 2176 /* But are allowed during online. */ 2177 return cpu_online(cpu); 2178 } 2179 2180 /* 2181 * This is how migration works: 2182 * 2183 * 1) we invoke migration_cpu_stop() on the target CPU using 2184 * stop_one_cpu(). 2185 * 2) stopper starts to run (implicitly forcing the migrated thread 2186 * off the CPU) 2187 * 3) it checks whether the migrated task is still in the wrong runqueue. 2188 * 4) if it's in the wrong runqueue then the migration thread removes 2189 * it and puts it into the right queue. 2190 * 5) stopper completes and stop_one_cpu() returns and the migration 2191 * is done. 2192 */ 2193 2194 /* 2195 * move_queued_task - move a queued task to new rq. 2196 * 2197 * Returns (locked) new rq. Old rq's lock is released. 2198 */ 2199 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2200 struct task_struct *p, int new_cpu) 2201 { 2202 lockdep_assert_rq_held(rq); 2203 2204 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2205 set_task_cpu(p, new_cpu); 2206 rq_unlock(rq, rf); 2207 2208 rq = cpu_rq(new_cpu); 2209 2210 rq_lock(rq, rf); 2211 BUG_ON(task_cpu(p) != new_cpu); 2212 activate_task(rq, p, 0); 2213 check_preempt_curr(rq, p, 0); 2214 2215 return rq; 2216 } 2217 2218 struct migration_arg { 2219 struct task_struct *task; 2220 int dest_cpu; 2221 struct set_affinity_pending *pending; 2222 }; 2223 2224 /* 2225 * @refs: number of wait_for_completion() 2226 * @stop_pending: is @stop_work in use 2227 */ 2228 struct set_affinity_pending { 2229 refcount_t refs; 2230 unsigned int stop_pending; 2231 struct completion done; 2232 struct cpu_stop_work stop_work; 2233 struct migration_arg arg; 2234 }; 2235 2236 /* 2237 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2238 * this because either it can't run here any more (set_cpus_allowed() 2239 * away from this CPU, or CPU going down), or because we're 2240 * attempting to rebalance this task on exec (sched_exec). 2241 * 2242 * So we race with normal scheduler movements, but that's OK, as long 2243 * as the task is no longer on this CPU. 2244 */ 2245 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2246 struct task_struct *p, int dest_cpu) 2247 { 2248 /* Affinity changed (again). */ 2249 if (!is_cpu_allowed(p, dest_cpu)) 2250 return rq; 2251 2252 update_rq_clock(rq); 2253 rq = move_queued_task(rq, rf, p, dest_cpu); 2254 2255 return rq; 2256 } 2257 2258 /* 2259 * migration_cpu_stop - this will be executed by a highprio stopper thread 2260 * and performs thread migration by bumping thread off CPU then 2261 * 'pushing' onto another runqueue. 2262 */ 2263 static int migration_cpu_stop(void *data) 2264 { 2265 struct migration_arg *arg = data; 2266 struct set_affinity_pending *pending = arg->pending; 2267 struct task_struct *p = arg->task; 2268 struct rq *rq = this_rq(); 2269 bool complete = false; 2270 struct rq_flags rf; 2271 2272 /* 2273 * The original target CPU might have gone down and we might 2274 * be on another CPU but it doesn't matter. 2275 */ 2276 local_irq_save(rf.flags); 2277 /* 2278 * We need to explicitly wake pending tasks before running 2279 * __migrate_task() such that we will not miss enforcing cpus_ptr 2280 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2281 */ 2282 flush_smp_call_function_from_idle(); 2283 2284 raw_spin_lock(&p->pi_lock); 2285 rq_lock(rq, &rf); 2286 2287 /* 2288 * If we were passed a pending, then ->stop_pending was set, thus 2289 * p->migration_pending must have remained stable. 2290 */ 2291 WARN_ON_ONCE(pending && pending != p->migration_pending); 2292 2293 /* 2294 * If task_rq(p) != rq, it cannot be migrated here, because we're 2295 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2296 * we're holding p->pi_lock. 2297 */ 2298 if (task_rq(p) == rq) { 2299 if (is_migration_disabled(p)) 2300 goto out; 2301 2302 if (pending) { 2303 p->migration_pending = NULL; 2304 complete = true; 2305 2306 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2307 goto out; 2308 } 2309 2310 if (task_on_rq_queued(p)) 2311 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2312 else 2313 p->wake_cpu = arg->dest_cpu; 2314 2315 /* 2316 * XXX __migrate_task() can fail, at which point we might end 2317 * up running on a dodgy CPU, AFAICT this can only happen 2318 * during CPU hotplug, at which point we'll get pushed out 2319 * anyway, so it's probably not a big deal. 2320 */ 2321 2322 } else if (pending) { 2323 /* 2324 * This happens when we get migrated between migrate_enable()'s 2325 * preempt_enable() and scheduling the stopper task. At that 2326 * point we're a regular task again and not current anymore. 2327 * 2328 * A !PREEMPT kernel has a giant hole here, which makes it far 2329 * more likely. 2330 */ 2331 2332 /* 2333 * The task moved before the stopper got to run. We're holding 2334 * ->pi_lock, so the allowed mask is stable - if it got 2335 * somewhere allowed, we're done. 2336 */ 2337 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2338 p->migration_pending = NULL; 2339 complete = true; 2340 goto out; 2341 } 2342 2343 /* 2344 * When migrate_enable() hits a rq mis-match we can't reliably 2345 * determine is_migration_disabled() and so have to chase after 2346 * it. 2347 */ 2348 WARN_ON_ONCE(!pending->stop_pending); 2349 task_rq_unlock(rq, p, &rf); 2350 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2351 &pending->arg, &pending->stop_work); 2352 return 0; 2353 } 2354 out: 2355 if (pending) 2356 pending->stop_pending = false; 2357 task_rq_unlock(rq, p, &rf); 2358 2359 if (complete) 2360 complete_all(&pending->done); 2361 2362 return 0; 2363 } 2364 2365 int push_cpu_stop(void *arg) 2366 { 2367 struct rq *lowest_rq = NULL, *rq = this_rq(); 2368 struct task_struct *p = arg; 2369 2370 raw_spin_lock_irq(&p->pi_lock); 2371 raw_spin_rq_lock(rq); 2372 2373 if (task_rq(p) != rq) 2374 goto out_unlock; 2375 2376 if (is_migration_disabled(p)) { 2377 p->migration_flags |= MDF_PUSH; 2378 goto out_unlock; 2379 } 2380 2381 p->migration_flags &= ~MDF_PUSH; 2382 2383 if (p->sched_class->find_lock_rq) 2384 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2385 2386 if (!lowest_rq) 2387 goto out_unlock; 2388 2389 // XXX validate p is still the highest prio task 2390 if (task_rq(p) == rq) { 2391 deactivate_task(rq, p, 0); 2392 set_task_cpu(p, lowest_rq->cpu); 2393 activate_task(lowest_rq, p, 0); 2394 resched_curr(lowest_rq); 2395 } 2396 2397 double_unlock_balance(rq, lowest_rq); 2398 2399 out_unlock: 2400 rq->push_busy = false; 2401 raw_spin_rq_unlock(rq); 2402 raw_spin_unlock_irq(&p->pi_lock); 2403 2404 put_task_struct(p); 2405 return 0; 2406 } 2407 2408 /* 2409 * sched_class::set_cpus_allowed must do the below, but is not required to 2410 * actually call this function. 2411 */ 2412 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2413 { 2414 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2415 p->cpus_ptr = new_mask; 2416 return; 2417 } 2418 2419 cpumask_copy(&p->cpus_mask, new_mask); 2420 p->nr_cpus_allowed = cpumask_weight(new_mask); 2421 } 2422 2423 static void 2424 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2425 { 2426 struct rq *rq = task_rq(p); 2427 bool queued, running; 2428 2429 /* 2430 * This here violates the locking rules for affinity, since we're only 2431 * supposed to change these variables while holding both rq->lock and 2432 * p->pi_lock. 2433 * 2434 * HOWEVER, it magically works, because ttwu() is the only code that 2435 * accesses these variables under p->pi_lock and only does so after 2436 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2437 * before finish_task(). 2438 * 2439 * XXX do further audits, this smells like something putrid. 2440 */ 2441 if (flags & SCA_MIGRATE_DISABLE) 2442 SCHED_WARN_ON(!p->on_cpu); 2443 else 2444 lockdep_assert_held(&p->pi_lock); 2445 2446 queued = task_on_rq_queued(p); 2447 running = task_current(rq, p); 2448 2449 if (queued) { 2450 /* 2451 * Because __kthread_bind() calls this on blocked tasks without 2452 * holding rq->lock. 2453 */ 2454 lockdep_assert_rq_held(rq); 2455 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2456 } 2457 if (running) 2458 put_prev_task(rq, p); 2459 2460 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2461 2462 if (queued) 2463 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2464 if (running) 2465 set_next_task(rq, p); 2466 } 2467 2468 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2469 { 2470 __do_set_cpus_allowed(p, new_mask, 0); 2471 } 2472 2473 /* 2474 * This function is wildly self concurrent; here be dragons. 2475 * 2476 * 2477 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2478 * designated task is enqueued on an allowed CPU. If that task is currently 2479 * running, we have to kick it out using the CPU stopper. 2480 * 2481 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2482 * Consider: 2483 * 2484 * Initial conditions: P0->cpus_mask = [0, 1] 2485 * 2486 * P0@CPU0 P1 2487 * 2488 * migrate_disable(); 2489 * <preempted> 2490 * set_cpus_allowed_ptr(P0, [1]); 2491 * 2492 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2493 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2494 * This means we need the following scheme: 2495 * 2496 * P0@CPU0 P1 2497 * 2498 * migrate_disable(); 2499 * <preempted> 2500 * set_cpus_allowed_ptr(P0, [1]); 2501 * <blocks> 2502 * <resumes> 2503 * migrate_enable(); 2504 * __set_cpus_allowed_ptr(); 2505 * <wakes local stopper> 2506 * `--> <woken on migration completion> 2507 * 2508 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2509 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2510 * task p are serialized by p->pi_lock, which we can leverage: the one that 2511 * should come into effect at the end of the Migrate-Disable region is the last 2512 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2513 * but we still need to properly signal those waiting tasks at the appropriate 2514 * moment. 2515 * 2516 * This is implemented using struct set_affinity_pending. The first 2517 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2518 * setup an instance of that struct and install it on the targeted task_struct. 2519 * Any and all further callers will reuse that instance. Those then wait for 2520 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2521 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2522 * 2523 * 2524 * (1) In the cases covered above. There is one more where the completion is 2525 * signaled within affine_move_task() itself: when a subsequent affinity request 2526 * occurs after the stopper bailed out due to the targeted task still being 2527 * Migrate-Disable. Consider: 2528 * 2529 * Initial conditions: P0->cpus_mask = [0, 1] 2530 * 2531 * CPU0 P1 P2 2532 * <P0> 2533 * migrate_disable(); 2534 * <preempted> 2535 * set_cpus_allowed_ptr(P0, [1]); 2536 * <blocks> 2537 * <migration/0> 2538 * migration_cpu_stop() 2539 * is_migration_disabled() 2540 * <bails> 2541 * set_cpus_allowed_ptr(P0, [0, 1]); 2542 * <signal completion> 2543 * <awakes> 2544 * 2545 * Note that the above is safe vs a concurrent migrate_enable(), as any 2546 * pending affinity completion is preceded by an uninstallation of 2547 * p->migration_pending done with p->pi_lock held. 2548 */ 2549 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2550 int dest_cpu, unsigned int flags) 2551 { 2552 struct set_affinity_pending my_pending = { }, *pending = NULL; 2553 bool stop_pending, complete = false; 2554 2555 /* Can the task run on the task's current CPU? If so, we're done */ 2556 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2557 struct task_struct *push_task = NULL; 2558 2559 if ((flags & SCA_MIGRATE_ENABLE) && 2560 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2561 rq->push_busy = true; 2562 push_task = get_task_struct(p); 2563 } 2564 2565 /* 2566 * If there are pending waiters, but no pending stop_work, 2567 * then complete now. 2568 */ 2569 pending = p->migration_pending; 2570 if (pending && !pending->stop_pending) { 2571 p->migration_pending = NULL; 2572 complete = true; 2573 } 2574 2575 task_rq_unlock(rq, p, rf); 2576 2577 if (push_task) { 2578 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2579 p, &rq->push_work); 2580 } 2581 2582 if (complete) 2583 complete_all(&pending->done); 2584 2585 return 0; 2586 } 2587 2588 if (!(flags & SCA_MIGRATE_ENABLE)) { 2589 /* serialized by p->pi_lock */ 2590 if (!p->migration_pending) { 2591 /* Install the request */ 2592 refcount_set(&my_pending.refs, 1); 2593 init_completion(&my_pending.done); 2594 my_pending.arg = (struct migration_arg) { 2595 .task = p, 2596 .dest_cpu = dest_cpu, 2597 .pending = &my_pending, 2598 }; 2599 2600 p->migration_pending = &my_pending; 2601 } else { 2602 pending = p->migration_pending; 2603 refcount_inc(&pending->refs); 2604 /* 2605 * Affinity has changed, but we've already installed a 2606 * pending. migration_cpu_stop() *must* see this, else 2607 * we risk a completion of the pending despite having a 2608 * task on a disallowed CPU. 2609 * 2610 * Serialized by p->pi_lock, so this is safe. 2611 */ 2612 pending->arg.dest_cpu = dest_cpu; 2613 } 2614 } 2615 pending = p->migration_pending; 2616 /* 2617 * - !MIGRATE_ENABLE: 2618 * we'll have installed a pending if there wasn't one already. 2619 * 2620 * - MIGRATE_ENABLE: 2621 * we're here because the current CPU isn't matching anymore, 2622 * the only way that can happen is because of a concurrent 2623 * set_cpus_allowed_ptr() call, which should then still be 2624 * pending completion. 2625 * 2626 * Either way, we really should have a @pending here. 2627 */ 2628 if (WARN_ON_ONCE(!pending)) { 2629 task_rq_unlock(rq, p, rf); 2630 return -EINVAL; 2631 } 2632 2633 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2634 /* 2635 * MIGRATE_ENABLE gets here because 'p == current', but for 2636 * anything else we cannot do is_migration_disabled(), punt 2637 * and have the stopper function handle it all race-free. 2638 */ 2639 stop_pending = pending->stop_pending; 2640 if (!stop_pending) 2641 pending->stop_pending = true; 2642 2643 if (flags & SCA_MIGRATE_ENABLE) 2644 p->migration_flags &= ~MDF_PUSH; 2645 2646 task_rq_unlock(rq, p, rf); 2647 2648 if (!stop_pending) { 2649 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2650 &pending->arg, &pending->stop_work); 2651 } 2652 2653 if (flags & SCA_MIGRATE_ENABLE) 2654 return 0; 2655 } else { 2656 2657 if (!is_migration_disabled(p)) { 2658 if (task_on_rq_queued(p)) 2659 rq = move_queued_task(rq, rf, p, dest_cpu); 2660 2661 if (!pending->stop_pending) { 2662 p->migration_pending = NULL; 2663 complete = true; 2664 } 2665 } 2666 task_rq_unlock(rq, p, rf); 2667 2668 if (complete) 2669 complete_all(&pending->done); 2670 } 2671 2672 wait_for_completion(&pending->done); 2673 2674 if (refcount_dec_and_test(&pending->refs)) 2675 wake_up_var(&pending->refs); /* No UaF, just an address */ 2676 2677 /* 2678 * Block the original owner of &pending until all subsequent callers 2679 * have seen the completion and decremented the refcount 2680 */ 2681 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2682 2683 /* ARGH */ 2684 WARN_ON_ONCE(my_pending.stop_pending); 2685 2686 return 0; 2687 } 2688 2689 /* 2690 * Change a given task's CPU affinity. Migrate the thread to a 2691 * proper CPU and schedule it away if the CPU it's executing on 2692 * is removed from the allowed bitmask. 2693 * 2694 * NOTE: the caller must have a valid reference to the task, the 2695 * task must not exit() & deallocate itself prematurely. The 2696 * call is not atomic; no spinlocks may be held. 2697 */ 2698 static int __set_cpus_allowed_ptr(struct task_struct *p, 2699 const struct cpumask *new_mask, 2700 u32 flags) 2701 { 2702 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2703 unsigned int dest_cpu; 2704 struct rq_flags rf; 2705 struct rq *rq; 2706 int ret = 0; 2707 2708 rq = task_rq_lock(p, &rf); 2709 update_rq_clock(rq); 2710 2711 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) { 2712 /* 2713 * Kernel threads are allowed on online && !active CPUs, 2714 * however, during cpu-hot-unplug, even these might get pushed 2715 * away if not KTHREAD_IS_PER_CPU. 2716 * 2717 * Specifically, migration_disabled() tasks must not fail the 2718 * cpumask_any_and_distribute() pick below, esp. so on 2719 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2720 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2721 */ 2722 cpu_valid_mask = cpu_online_mask; 2723 } 2724 2725 /* 2726 * Must re-check here, to close a race against __kthread_bind(), 2727 * sched_setaffinity() is not guaranteed to observe the flag. 2728 */ 2729 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2730 ret = -EINVAL; 2731 goto out; 2732 } 2733 2734 if (!(flags & SCA_MIGRATE_ENABLE)) { 2735 if (cpumask_equal(&p->cpus_mask, new_mask)) 2736 goto out; 2737 2738 if (WARN_ON_ONCE(p == current && 2739 is_migration_disabled(p) && 2740 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2741 ret = -EBUSY; 2742 goto out; 2743 } 2744 } 2745 2746 /* 2747 * Picking a ~random cpu helps in cases where we are changing affinity 2748 * for groups of tasks (ie. cpuset), so that load balancing is not 2749 * immediately required to distribute the tasks within their new mask. 2750 */ 2751 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2752 if (dest_cpu >= nr_cpu_ids) { 2753 ret = -EINVAL; 2754 goto out; 2755 } 2756 2757 __do_set_cpus_allowed(p, new_mask, flags); 2758 2759 return affine_move_task(rq, p, &rf, dest_cpu, flags); 2760 2761 out: 2762 task_rq_unlock(rq, p, &rf); 2763 2764 return ret; 2765 } 2766 2767 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2768 { 2769 return __set_cpus_allowed_ptr(p, new_mask, 0); 2770 } 2771 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2772 2773 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 2774 { 2775 #ifdef CONFIG_SCHED_DEBUG 2776 unsigned int state = READ_ONCE(p->__state); 2777 2778 /* 2779 * We should never call set_task_cpu() on a blocked task, 2780 * ttwu() will sort out the placement. 2781 */ 2782 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 2783 2784 /* 2785 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 2786 * because schedstat_wait_{start,end} rebase migrating task's wait_start 2787 * time relying on p->on_rq. 2788 */ 2789 WARN_ON_ONCE(state == TASK_RUNNING && 2790 p->sched_class == &fair_sched_class && 2791 (p->on_rq && !task_on_rq_migrating(p))); 2792 2793 #ifdef CONFIG_LOCKDEP 2794 /* 2795 * The caller should hold either p->pi_lock or rq->lock, when changing 2796 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 2797 * 2798 * sched_move_task() holds both and thus holding either pins the cgroup, 2799 * see task_group(). 2800 * 2801 * Furthermore, all task_rq users should acquire both locks, see 2802 * task_rq_lock(). 2803 */ 2804 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 2805 lockdep_is_held(__rq_lockp(task_rq(p))))); 2806 #endif 2807 /* 2808 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 2809 */ 2810 WARN_ON_ONCE(!cpu_online(new_cpu)); 2811 2812 WARN_ON_ONCE(is_migration_disabled(p)); 2813 #endif 2814 2815 trace_sched_migrate_task(p, new_cpu); 2816 2817 if (task_cpu(p) != new_cpu) { 2818 if (p->sched_class->migrate_task_rq) 2819 p->sched_class->migrate_task_rq(p, new_cpu); 2820 p->se.nr_migrations++; 2821 rseq_migrate(p); 2822 perf_event_task_migrate(p); 2823 } 2824 2825 __set_task_cpu(p, new_cpu); 2826 } 2827 2828 #ifdef CONFIG_NUMA_BALANCING 2829 static void __migrate_swap_task(struct task_struct *p, int cpu) 2830 { 2831 if (task_on_rq_queued(p)) { 2832 struct rq *src_rq, *dst_rq; 2833 struct rq_flags srf, drf; 2834 2835 src_rq = task_rq(p); 2836 dst_rq = cpu_rq(cpu); 2837 2838 rq_pin_lock(src_rq, &srf); 2839 rq_pin_lock(dst_rq, &drf); 2840 2841 deactivate_task(src_rq, p, 0); 2842 set_task_cpu(p, cpu); 2843 activate_task(dst_rq, p, 0); 2844 check_preempt_curr(dst_rq, p, 0); 2845 2846 rq_unpin_lock(dst_rq, &drf); 2847 rq_unpin_lock(src_rq, &srf); 2848 2849 } else { 2850 /* 2851 * Task isn't running anymore; make it appear like we migrated 2852 * it before it went to sleep. This means on wakeup we make the 2853 * previous CPU our target instead of where it really is. 2854 */ 2855 p->wake_cpu = cpu; 2856 } 2857 } 2858 2859 struct migration_swap_arg { 2860 struct task_struct *src_task, *dst_task; 2861 int src_cpu, dst_cpu; 2862 }; 2863 2864 static int migrate_swap_stop(void *data) 2865 { 2866 struct migration_swap_arg *arg = data; 2867 struct rq *src_rq, *dst_rq; 2868 int ret = -EAGAIN; 2869 2870 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 2871 return -EAGAIN; 2872 2873 src_rq = cpu_rq(arg->src_cpu); 2874 dst_rq = cpu_rq(arg->dst_cpu); 2875 2876 double_raw_lock(&arg->src_task->pi_lock, 2877 &arg->dst_task->pi_lock); 2878 double_rq_lock(src_rq, dst_rq); 2879 2880 if (task_cpu(arg->dst_task) != arg->dst_cpu) 2881 goto unlock; 2882 2883 if (task_cpu(arg->src_task) != arg->src_cpu) 2884 goto unlock; 2885 2886 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 2887 goto unlock; 2888 2889 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 2890 goto unlock; 2891 2892 __migrate_swap_task(arg->src_task, arg->dst_cpu); 2893 __migrate_swap_task(arg->dst_task, arg->src_cpu); 2894 2895 ret = 0; 2896 2897 unlock: 2898 double_rq_unlock(src_rq, dst_rq); 2899 raw_spin_unlock(&arg->dst_task->pi_lock); 2900 raw_spin_unlock(&arg->src_task->pi_lock); 2901 2902 return ret; 2903 } 2904 2905 /* 2906 * Cross migrate two tasks 2907 */ 2908 int migrate_swap(struct task_struct *cur, struct task_struct *p, 2909 int target_cpu, int curr_cpu) 2910 { 2911 struct migration_swap_arg arg; 2912 int ret = -EINVAL; 2913 2914 arg = (struct migration_swap_arg){ 2915 .src_task = cur, 2916 .src_cpu = curr_cpu, 2917 .dst_task = p, 2918 .dst_cpu = target_cpu, 2919 }; 2920 2921 if (arg.src_cpu == arg.dst_cpu) 2922 goto out; 2923 2924 /* 2925 * These three tests are all lockless; this is OK since all of them 2926 * will be re-checked with proper locks held further down the line. 2927 */ 2928 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 2929 goto out; 2930 2931 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 2932 goto out; 2933 2934 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 2935 goto out; 2936 2937 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 2938 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 2939 2940 out: 2941 return ret; 2942 } 2943 #endif /* CONFIG_NUMA_BALANCING */ 2944 2945 /* 2946 * wait_task_inactive - wait for a thread to unschedule. 2947 * 2948 * If @match_state is nonzero, it's the @p->state value just checked and 2949 * not expected to change. If it changes, i.e. @p might have woken up, 2950 * then return zero. When we succeed in waiting for @p to be off its CPU, 2951 * we return a positive number (its total switch count). If a second call 2952 * a short while later returns the same number, the caller can be sure that 2953 * @p has remained unscheduled the whole time. 2954 * 2955 * The caller must ensure that the task *will* unschedule sometime soon, 2956 * else this function might spin for a *long* time. This function can't 2957 * be called with interrupts off, or it may introduce deadlock with 2958 * smp_call_function() if an IPI is sent by the same process we are 2959 * waiting to become inactive. 2960 */ 2961 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2962 { 2963 int running, queued; 2964 struct rq_flags rf; 2965 unsigned long ncsw; 2966 struct rq *rq; 2967 2968 for (;;) { 2969 /* 2970 * We do the initial early heuristics without holding 2971 * any task-queue locks at all. We'll only try to get 2972 * the runqueue lock when things look like they will 2973 * work out! 2974 */ 2975 rq = task_rq(p); 2976 2977 /* 2978 * If the task is actively running on another CPU 2979 * still, just relax and busy-wait without holding 2980 * any locks. 2981 * 2982 * NOTE! Since we don't hold any locks, it's not 2983 * even sure that "rq" stays as the right runqueue! 2984 * But we don't care, since "task_running()" will 2985 * return false if the runqueue has changed and p 2986 * is actually now running somewhere else! 2987 */ 2988 while (task_running(rq, p)) { 2989 if (match_state && unlikely(READ_ONCE(p->__state) != match_state)) 2990 return 0; 2991 cpu_relax(); 2992 } 2993 2994 /* 2995 * Ok, time to look more closely! We need the rq 2996 * lock now, to be *sure*. If we're wrong, we'll 2997 * just go back and repeat. 2998 */ 2999 rq = task_rq_lock(p, &rf); 3000 trace_sched_wait_task(p); 3001 running = task_running(rq, p); 3002 queued = task_on_rq_queued(p); 3003 ncsw = 0; 3004 if (!match_state || READ_ONCE(p->__state) == match_state) 3005 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3006 task_rq_unlock(rq, p, &rf); 3007 3008 /* 3009 * If it changed from the expected state, bail out now. 3010 */ 3011 if (unlikely(!ncsw)) 3012 break; 3013 3014 /* 3015 * Was it really running after all now that we 3016 * checked with the proper locks actually held? 3017 * 3018 * Oops. Go back and try again.. 3019 */ 3020 if (unlikely(running)) { 3021 cpu_relax(); 3022 continue; 3023 } 3024 3025 /* 3026 * It's not enough that it's not actively running, 3027 * it must be off the runqueue _entirely_, and not 3028 * preempted! 3029 * 3030 * So if it was still runnable (but just not actively 3031 * running right now), it's preempted, and we should 3032 * yield - it could be a while. 3033 */ 3034 if (unlikely(queued)) { 3035 ktime_t to = NSEC_PER_SEC / HZ; 3036 3037 set_current_state(TASK_UNINTERRUPTIBLE); 3038 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 3039 continue; 3040 } 3041 3042 /* 3043 * Ahh, all good. It wasn't running, and it wasn't 3044 * runnable, which means that it will never become 3045 * running in the future either. We're all done! 3046 */ 3047 break; 3048 } 3049 3050 return ncsw; 3051 } 3052 3053 /*** 3054 * kick_process - kick a running thread to enter/exit the kernel 3055 * @p: the to-be-kicked thread 3056 * 3057 * Cause a process which is running on another CPU to enter 3058 * kernel-mode, without any delay. (to get signals handled.) 3059 * 3060 * NOTE: this function doesn't have to take the runqueue lock, 3061 * because all it wants to ensure is that the remote task enters 3062 * the kernel. If the IPI races and the task has been migrated 3063 * to another CPU then no harm is done and the purpose has been 3064 * achieved as well. 3065 */ 3066 void kick_process(struct task_struct *p) 3067 { 3068 int cpu; 3069 3070 preempt_disable(); 3071 cpu = task_cpu(p); 3072 if ((cpu != smp_processor_id()) && task_curr(p)) 3073 smp_send_reschedule(cpu); 3074 preempt_enable(); 3075 } 3076 EXPORT_SYMBOL_GPL(kick_process); 3077 3078 /* 3079 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3080 * 3081 * A few notes on cpu_active vs cpu_online: 3082 * 3083 * - cpu_active must be a subset of cpu_online 3084 * 3085 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3086 * see __set_cpus_allowed_ptr(). At this point the newly online 3087 * CPU isn't yet part of the sched domains, and balancing will not 3088 * see it. 3089 * 3090 * - on CPU-down we clear cpu_active() to mask the sched domains and 3091 * avoid the load balancer to place new tasks on the to be removed 3092 * CPU. Existing tasks will remain running there and will be taken 3093 * off. 3094 * 3095 * This means that fallback selection must not select !active CPUs. 3096 * And can assume that any active CPU must be online. Conversely 3097 * select_task_rq() below may allow selection of !active CPUs in order 3098 * to satisfy the above rules. 3099 */ 3100 static int select_fallback_rq(int cpu, struct task_struct *p) 3101 { 3102 int nid = cpu_to_node(cpu); 3103 const struct cpumask *nodemask = NULL; 3104 enum { cpuset, possible, fail } state = cpuset; 3105 int dest_cpu; 3106 3107 /* 3108 * If the node that the CPU is on has been offlined, cpu_to_node() 3109 * will return -1. There is no CPU on the node, and we should 3110 * select the CPU on the other node. 3111 */ 3112 if (nid != -1) { 3113 nodemask = cpumask_of_node(nid); 3114 3115 /* Look for allowed, online CPU in same node. */ 3116 for_each_cpu(dest_cpu, nodemask) { 3117 if (!cpu_active(dest_cpu)) 3118 continue; 3119 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 3120 return dest_cpu; 3121 } 3122 } 3123 3124 for (;;) { 3125 /* Any allowed, online CPU? */ 3126 for_each_cpu(dest_cpu, p->cpus_ptr) { 3127 if (!is_cpu_allowed(p, dest_cpu)) 3128 continue; 3129 3130 goto out; 3131 } 3132 3133 /* No more Mr. Nice Guy. */ 3134 switch (state) { 3135 case cpuset: 3136 if (IS_ENABLED(CONFIG_CPUSETS)) { 3137 cpuset_cpus_allowed_fallback(p); 3138 state = possible; 3139 break; 3140 } 3141 fallthrough; 3142 case possible: 3143 /* 3144 * XXX When called from select_task_rq() we only 3145 * hold p->pi_lock and again violate locking order. 3146 * 3147 * More yuck to audit. 3148 */ 3149 do_set_cpus_allowed(p, cpu_possible_mask); 3150 state = fail; 3151 break; 3152 3153 case fail: 3154 BUG(); 3155 break; 3156 } 3157 } 3158 3159 out: 3160 if (state != cpuset) { 3161 /* 3162 * Don't tell them about moving exiting tasks or 3163 * kernel threads (both mm NULL), since they never 3164 * leave kernel. 3165 */ 3166 if (p->mm && printk_ratelimit()) { 3167 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3168 task_pid_nr(p), p->comm, cpu); 3169 } 3170 } 3171 3172 return dest_cpu; 3173 } 3174 3175 /* 3176 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3177 */ 3178 static inline 3179 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3180 { 3181 lockdep_assert_held(&p->pi_lock); 3182 3183 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3184 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3185 else 3186 cpu = cpumask_any(p->cpus_ptr); 3187 3188 /* 3189 * In order not to call set_task_cpu() on a blocking task we need 3190 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3191 * CPU. 3192 * 3193 * Since this is common to all placement strategies, this lives here. 3194 * 3195 * [ this allows ->select_task() to simply return task_cpu(p) and 3196 * not worry about this generic constraint ] 3197 */ 3198 if (unlikely(!is_cpu_allowed(p, cpu))) 3199 cpu = select_fallback_rq(task_cpu(p), p); 3200 3201 return cpu; 3202 } 3203 3204 void sched_set_stop_task(int cpu, struct task_struct *stop) 3205 { 3206 static struct lock_class_key stop_pi_lock; 3207 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3208 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3209 3210 if (stop) { 3211 /* 3212 * Make it appear like a SCHED_FIFO task, its something 3213 * userspace knows about and won't get confused about. 3214 * 3215 * Also, it will make PI more or less work without too 3216 * much confusion -- but then, stop work should not 3217 * rely on PI working anyway. 3218 */ 3219 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3220 3221 stop->sched_class = &stop_sched_class; 3222 3223 /* 3224 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3225 * adjust the effective priority of a task. As a result, 3226 * rt_mutex_setprio() can trigger (RT) balancing operations, 3227 * which can then trigger wakeups of the stop thread to push 3228 * around the current task. 3229 * 3230 * The stop task itself will never be part of the PI-chain, it 3231 * never blocks, therefore that ->pi_lock recursion is safe. 3232 * Tell lockdep about this by placing the stop->pi_lock in its 3233 * own class. 3234 */ 3235 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3236 } 3237 3238 cpu_rq(cpu)->stop = stop; 3239 3240 if (old_stop) { 3241 /* 3242 * Reset it back to a normal scheduling class so that 3243 * it can die in pieces. 3244 */ 3245 old_stop->sched_class = &rt_sched_class; 3246 } 3247 } 3248 3249 #else /* CONFIG_SMP */ 3250 3251 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3252 const struct cpumask *new_mask, 3253 u32 flags) 3254 { 3255 return set_cpus_allowed_ptr(p, new_mask); 3256 } 3257 3258 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3259 3260 static inline bool rq_has_pinned_tasks(struct rq *rq) 3261 { 3262 return false; 3263 } 3264 3265 #endif /* !CONFIG_SMP */ 3266 3267 static void 3268 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3269 { 3270 struct rq *rq; 3271 3272 if (!schedstat_enabled()) 3273 return; 3274 3275 rq = this_rq(); 3276 3277 #ifdef CONFIG_SMP 3278 if (cpu == rq->cpu) { 3279 __schedstat_inc(rq->ttwu_local); 3280 __schedstat_inc(p->se.statistics.nr_wakeups_local); 3281 } else { 3282 struct sched_domain *sd; 3283 3284 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 3285 rcu_read_lock(); 3286 for_each_domain(rq->cpu, sd) { 3287 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3288 __schedstat_inc(sd->ttwu_wake_remote); 3289 break; 3290 } 3291 } 3292 rcu_read_unlock(); 3293 } 3294 3295 if (wake_flags & WF_MIGRATED) 3296 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 3297 #endif /* CONFIG_SMP */ 3298 3299 __schedstat_inc(rq->ttwu_count); 3300 __schedstat_inc(p->se.statistics.nr_wakeups); 3301 3302 if (wake_flags & WF_SYNC) 3303 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 3304 } 3305 3306 /* 3307 * Mark the task runnable and perform wakeup-preemption. 3308 */ 3309 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3310 struct rq_flags *rf) 3311 { 3312 check_preempt_curr(rq, p, wake_flags); 3313 WRITE_ONCE(p->__state, TASK_RUNNING); 3314 trace_sched_wakeup(p); 3315 3316 #ifdef CONFIG_SMP 3317 if (p->sched_class->task_woken) { 3318 /* 3319 * Our task @p is fully woken up and running; so it's safe to 3320 * drop the rq->lock, hereafter rq is only used for statistics. 3321 */ 3322 rq_unpin_lock(rq, rf); 3323 p->sched_class->task_woken(rq, p); 3324 rq_repin_lock(rq, rf); 3325 } 3326 3327 if (rq->idle_stamp) { 3328 u64 delta = rq_clock(rq) - rq->idle_stamp; 3329 u64 max = 2*rq->max_idle_balance_cost; 3330 3331 update_avg(&rq->avg_idle, delta); 3332 3333 if (rq->avg_idle > max) 3334 rq->avg_idle = max; 3335 3336 rq->wake_stamp = jiffies; 3337 rq->wake_avg_idle = rq->avg_idle / 2; 3338 3339 rq->idle_stamp = 0; 3340 } 3341 #endif 3342 } 3343 3344 static void 3345 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3346 struct rq_flags *rf) 3347 { 3348 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3349 3350 lockdep_assert_rq_held(rq); 3351 3352 if (p->sched_contributes_to_load) 3353 rq->nr_uninterruptible--; 3354 3355 #ifdef CONFIG_SMP 3356 if (wake_flags & WF_MIGRATED) 3357 en_flags |= ENQUEUE_MIGRATED; 3358 else 3359 #endif 3360 if (p->in_iowait) { 3361 delayacct_blkio_end(p); 3362 atomic_dec(&task_rq(p)->nr_iowait); 3363 } 3364 3365 activate_task(rq, p, en_flags); 3366 ttwu_do_wakeup(rq, p, wake_flags, rf); 3367 } 3368 3369 /* 3370 * Consider @p being inside a wait loop: 3371 * 3372 * for (;;) { 3373 * set_current_state(TASK_UNINTERRUPTIBLE); 3374 * 3375 * if (CONDITION) 3376 * break; 3377 * 3378 * schedule(); 3379 * } 3380 * __set_current_state(TASK_RUNNING); 3381 * 3382 * between set_current_state() and schedule(). In this case @p is still 3383 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3384 * an atomic manner. 3385 * 3386 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3387 * then schedule() must still happen and p->state can be changed to 3388 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3389 * need to do a full wakeup with enqueue. 3390 * 3391 * Returns: %true when the wakeup is done, 3392 * %false otherwise. 3393 */ 3394 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3395 { 3396 struct rq_flags rf; 3397 struct rq *rq; 3398 int ret = 0; 3399 3400 rq = __task_rq_lock(p, &rf); 3401 if (task_on_rq_queued(p)) { 3402 /* check_preempt_curr() may use rq clock */ 3403 update_rq_clock(rq); 3404 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3405 ret = 1; 3406 } 3407 __task_rq_unlock(rq, &rf); 3408 3409 return ret; 3410 } 3411 3412 #ifdef CONFIG_SMP 3413 void sched_ttwu_pending(void *arg) 3414 { 3415 struct llist_node *llist = arg; 3416 struct rq *rq = this_rq(); 3417 struct task_struct *p, *t; 3418 struct rq_flags rf; 3419 3420 if (!llist) 3421 return; 3422 3423 /* 3424 * rq::ttwu_pending racy indication of out-standing wakeups. 3425 * Races such that false-negatives are possible, since they 3426 * are shorter lived that false-positives would be. 3427 */ 3428 WRITE_ONCE(rq->ttwu_pending, 0); 3429 3430 rq_lock_irqsave(rq, &rf); 3431 update_rq_clock(rq); 3432 3433 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3434 if (WARN_ON_ONCE(p->on_cpu)) 3435 smp_cond_load_acquire(&p->on_cpu, !VAL); 3436 3437 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3438 set_task_cpu(p, cpu_of(rq)); 3439 3440 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3441 } 3442 3443 rq_unlock_irqrestore(rq, &rf); 3444 } 3445 3446 void send_call_function_single_ipi(int cpu) 3447 { 3448 struct rq *rq = cpu_rq(cpu); 3449 3450 if (!set_nr_if_polling(rq->idle)) 3451 arch_send_call_function_single_ipi(cpu); 3452 else 3453 trace_sched_wake_idle_without_ipi(cpu); 3454 } 3455 3456 /* 3457 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3458 * necessary. The wakee CPU on receipt of the IPI will queue the task 3459 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3460 * of the wakeup instead of the waker. 3461 */ 3462 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3463 { 3464 struct rq *rq = cpu_rq(cpu); 3465 3466 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3467 3468 WRITE_ONCE(rq->ttwu_pending, 1); 3469 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3470 } 3471 3472 void wake_up_if_idle(int cpu) 3473 { 3474 struct rq *rq = cpu_rq(cpu); 3475 struct rq_flags rf; 3476 3477 rcu_read_lock(); 3478 3479 if (!is_idle_task(rcu_dereference(rq->curr))) 3480 goto out; 3481 3482 if (set_nr_if_polling(rq->idle)) { 3483 trace_sched_wake_idle_without_ipi(cpu); 3484 } else { 3485 rq_lock_irqsave(rq, &rf); 3486 if (is_idle_task(rq->curr)) 3487 smp_send_reschedule(cpu); 3488 /* Else CPU is not idle, do nothing here: */ 3489 rq_unlock_irqrestore(rq, &rf); 3490 } 3491 3492 out: 3493 rcu_read_unlock(); 3494 } 3495 3496 bool cpus_share_cache(int this_cpu, int that_cpu) 3497 { 3498 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3499 } 3500 3501 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 3502 { 3503 /* 3504 * Do not complicate things with the async wake_list while the CPU is 3505 * in hotplug state. 3506 */ 3507 if (!cpu_active(cpu)) 3508 return false; 3509 3510 /* 3511 * If the CPU does not share cache, then queue the task on the 3512 * remote rqs wakelist to avoid accessing remote data. 3513 */ 3514 if (!cpus_share_cache(smp_processor_id(), cpu)) 3515 return true; 3516 3517 /* 3518 * If the task is descheduling and the only running task on the 3519 * CPU then use the wakelist to offload the task activation to 3520 * the soon-to-be-idle CPU as the current CPU is likely busy. 3521 * nr_running is checked to avoid unnecessary task stacking. 3522 */ 3523 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 3524 return true; 3525 3526 return false; 3527 } 3528 3529 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3530 { 3531 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 3532 if (WARN_ON_ONCE(cpu == smp_processor_id())) 3533 return false; 3534 3535 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3536 __ttwu_queue_wakelist(p, cpu, wake_flags); 3537 return true; 3538 } 3539 3540 return false; 3541 } 3542 3543 #else /* !CONFIG_SMP */ 3544 3545 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3546 { 3547 return false; 3548 } 3549 3550 #endif /* CONFIG_SMP */ 3551 3552 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3553 { 3554 struct rq *rq = cpu_rq(cpu); 3555 struct rq_flags rf; 3556 3557 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3558 return; 3559 3560 rq_lock(rq, &rf); 3561 update_rq_clock(rq); 3562 ttwu_do_activate(rq, p, wake_flags, &rf); 3563 rq_unlock(rq, &rf); 3564 } 3565 3566 /* 3567 * Notes on Program-Order guarantees on SMP systems. 3568 * 3569 * MIGRATION 3570 * 3571 * The basic program-order guarantee on SMP systems is that when a task [t] 3572 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3573 * execution on its new CPU [c1]. 3574 * 3575 * For migration (of runnable tasks) this is provided by the following means: 3576 * 3577 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3578 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3579 * rq(c1)->lock (if not at the same time, then in that order). 3580 * C) LOCK of the rq(c1)->lock scheduling in task 3581 * 3582 * Release/acquire chaining guarantees that B happens after A and C after B. 3583 * Note: the CPU doing B need not be c0 or c1 3584 * 3585 * Example: 3586 * 3587 * CPU0 CPU1 CPU2 3588 * 3589 * LOCK rq(0)->lock 3590 * sched-out X 3591 * sched-in Y 3592 * UNLOCK rq(0)->lock 3593 * 3594 * LOCK rq(0)->lock // orders against CPU0 3595 * dequeue X 3596 * UNLOCK rq(0)->lock 3597 * 3598 * LOCK rq(1)->lock 3599 * enqueue X 3600 * UNLOCK rq(1)->lock 3601 * 3602 * LOCK rq(1)->lock // orders against CPU2 3603 * sched-out Z 3604 * sched-in X 3605 * UNLOCK rq(1)->lock 3606 * 3607 * 3608 * BLOCKING -- aka. SLEEP + WAKEUP 3609 * 3610 * For blocking we (obviously) need to provide the same guarantee as for 3611 * migration. However the means are completely different as there is no lock 3612 * chain to provide order. Instead we do: 3613 * 3614 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3615 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3616 * 3617 * Example: 3618 * 3619 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3620 * 3621 * LOCK rq(0)->lock LOCK X->pi_lock 3622 * dequeue X 3623 * sched-out X 3624 * smp_store_release(X->on_cpu, 0); 3625 * 3626 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3627 * X->state = WAKING 3628 * set_task_cpu(X,2) 3629 * 3630 * LOCK rq(2)->lock 3631 * enqueue X 3632 * X->state = RUNNING 3633 * UNLOCK rq(2)->lock 3634 * 3635 * LOCK rq(2)->lock // orders against CPU1 3636 * sched-out Z 3637 * sched-in X 3638 * UNLOCK rq(2)->lock 3639 * 3640 * UNLOCK X->pi_lock 3641 * UNLOCK rq(0)->lock 3642 * 3643 * 3644 * However, for wakeups there is a second guarantee we must provide, namely we 3645 * must ensure that CONDITION=1 done by the caller can not be reordered with 3646 * accesses to the task state; see try_to_wake_up() and set_current_state(). 3647 */ 3648 3649 /** 3650 * try_to_wake_up - wake up a thread 3651 * @p: the thread to be awakened 3652 * @state: the mask of task states that can be woken 3653 * @wake_flags: wake modifier flags (WF_*) 3654 * 3655 * Conceptually does: 3656 * 3657 * If (@state & @p->state) @p->state = TASK_RUNNING. 3658 * 3659 * If the task was not queued/runnable, also place it back on a runqueue. 3660 * 3661 * This function is atomic against schedule() which would dequeue the task. 3662 * 3663 * It issues a full memory barrier before accessing @p->state, see the comment 3664 * with set_current_state(). 3665 * 3666 * Uses p->pi_lock to serialize against concurrent wake-ups. 3667 * 3668 * Relies on p->pi_lock stabilizing: 3669 * - p->sched_class 3670 * - p->cpus_ptr 3671 * - p->sched_task_group 3672 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 3673 * 3674 * Tries really hard to only take one task_rq(p)->lock for performance. 3675 * Takes rq->lock in: 3676 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 3677 * - ttwu_queue() -- new rq, for enqueue of the task; 3678 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 3679 * 3680 * As a consequence we race really badly with just about everything. See the 3681 * many memory barriers and their comments for details. 3682 * 3683 * Return: %true if @p->state changes (an actual wakeup was done), 3684 * %false otherwise. 3685 */ 3686 static int 3687 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 3688 { 3689 unsigned long flags; 3690 int cpu, success = 0; 3691 3692 preempt_disable(); 3693 if (p == current) { 3694 /* 3695 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 3696 * == smp_processor_id()'. Together this means we can special 3697 * case the whole 'p->on_rq && ttwu_runnable()' case below 3698 * without taking any locks. 3699 * 3700 * In particular: 3701 * - we rely on Program-Order guarantees for all the ordering, 3702 * - we're serialized against set_special_state() by virtue of 3703 * it disabling IRQs (this allows not taking ->pi_lock). 3704 */ 3705 if (!(READ_ONCE(p->__state) & state)) 3706 goto out; 3707 3708 success = 1; 3709 trace_sched_waking(p); 3710 WRITE_ONCE(p->__state, TASK_RUNNING); 3711 trace_sched_wakeup(p); 3712 goto out; 3713 } 3714 3715 /* 3716 * If we are going to wake up a thread waiting for CONDITION we 3717 * need to ensure that CONDITION=1 done by the caller can not be 3718 * reordered with p->state check below. This pairs with smp_store_mb() 3719 * in set_current_state() that the waiting thread does. 3720 */ 3721 raw_spin_lock_irqsave(&p->pi_lock, flags); 3722 smp_mb__after_spinlock(); 3723 if (!(READ_ONCE(p->__state) & state)) 3724 goto unlock; 3725 3726 trace_sched_waking(p); 3727 3728 /* We're going to change ->state: */ 3729 success = 1; 3730 3731 /* 3732 * Ensure we load p->on_rq _after_ p->state, otherwise it would 3733 * be possible to, falsely, observe p->on_rq == 0 and get stuck 3734 * in smp_cond_load_acquire() below. 3735 * 3736 * sched_ttwu_pending() try_to_wake_up() 3737 * STORE p->on_rq = 1 LOAD p->state 3738 * UNLOCK rq->lock 3739 * 3740 * __schedule() (switch to task 'p') 3741 * LOCK rq->lock smp_rmb(); 3742 * smp_mb__after_spinlock(); 3743 * UNLOCK rq->lock 3744 * 3745 * [task p] 3746 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 3747 * 3748 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3749 * __schedule(). See the comment for smp_mb__after_spinlock(). 3750 * 3751 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 3752 */ 3753 smp_rmb(); 3754 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 3755 goto unlock; 3756 3757 #ifdef CONFIG_SMP 3758 /* 3759 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 3760 * possible to, falsely, observe p->on_cpu == 0. 3761 * 3762 * One must be running (->on_cpu == 1) in order to remove oneself 3763 * from the runqueue. 3764 * 3765 * __schedule() (switch to task 'p') try_to_wake_up() 3766 * STORE p->on_cpu = 1 LOAD p->on_rq 3767 * UNLOCK rq->lock 3768 * 3769 * __schedule() (put 'p' to sleep) 3770 * LOCK rq->lock smp_rmb(); 3771 * smp_mb__after_spinlock(); 3772 * STORE p->on_rq = 0 LOAD p->on_cpu 3773 * 3774 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 3775 * __schedule(). See the comment for smp_mb__after_spinlock(). 3776 * 3777 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 3778 * schedule()'s deactivate_task() has 'happened' and p will no longer 3779 * care about it's own p->state. See the comment in __schedule(). 3780 */ 3781 smp_acquire__after_ctrl_dep(); 3782 3783 /* 3784 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 3785 * == 0), which means we need to do an enqueue, change p->state to 3786 * TASK_WAKING such that we can unlock p->pi_lock before doing the 3787 * enqueue, such as ttwu_queue_wakelist(). 3788 */ 3789 WRITE_ONCE(p->__state, TASK_WAKING); 3790 3791 /* 3792 * If the owning (remote) CPU is still in the middle of schedule() with 3793 * this task as prev, considering queueing p on the remote CPUs wake_list 3794 * which potentially sends an IPI instead of spinning on p->on_cpu to 3795 * let the waker make forward progress. This is safe because IRQs are 3796 * disabled and the IPI will deliver after on_cpu is cleared. 3797 * 3798 * Ensure we load task_cpu(p) after p->on_cpu: 3799 * 3800 * set_task_cpu(p, cpu); 3801 * STORE p->cpu = @cpu 3802 * __schedule() (switch to task 'p') 3803 * LOCK rq->lock 3804 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 3805 * STORE p->on_cpu = 1 LOAD p->cpu 3806 * 3807 * to ensure we observe the correct CPU on which the task is currently 3808 * scheduling. 3809 */ 3810 if (smp_load_acquire(&p->on_cpu) && 3811 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 3812 goto unlock; 3813 3814 /* 3815 * If the owning (remote) CPU is still in the middle of schedule() with 3816 * this task as prev, wait until it's done referencing the task. 3817 * 3818 * Pairs with the smp_store_release() in finish_task(). 3819 * 3820 * This ensures that tasks getting woken will be fully ordered against 3821 * their previous state and preserve Program Order. 3822 */ 3823 smp_cond_load_acquire(&p->on_cpu, !VAL); 3824 3825 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 3826 if (task_cpu(p) != cpu) { 3827 if (p->in_iowait) { 3828 delayacct_blkio_end(p); 3829 atomic_dec(&task_rq(p)->nr_iowait); 3830 } 3831 3832 wake_flags |= WF_MIGRATED; 3833 psi_ttwu_dequeue(p); 3834 set_task_cpu(p, cpu); 3835 } 3836 #else 3837 cpu = task_cpu(p); 3838 #endif /* CONFIG_SMP */ 3839 3840 ttwu_queue(p, cpu, wake_flags); 3841 unlock: 3842 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3843 out: 3844 if (success) 3845 ttwu_stat(p, task_cpu(p), wake_flags); 3846 preempt_enable(); 3847 3848 return success; 3849 } 3850 3851 /** 3852 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state 3853 * @p: Process for which the function is to be invoked, can be @current. 3854 * @func: Function to invoke. 3855 * @arg: Argument to function. 3856 * 3857 * If the specified task can be quickly locked into a definite state 3858 * (either sleeping or on a given runqueue), arrange to keep it in that 3859 * state while invoking @func(@arg). This function can use ->on_rq and 3860 * task_curr() to work out what the state is, if required. Given that 3861 * @func can be invoked with a runqueue lock held, it had better be quite 3862 * lightweight. 3863 * 3864 * Returns: 3865 * @false if the task slipped out from under the locks. 3866 * @true if the task was locked onto a runqueue or is sleeping. 3867 * However, @func can override this by returning @false. 3868 */ 3869 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg) 3870 { 3871 struct rq_flags rf; 3872 bool ret = false; 3873 struct rq *rq; 3874 3875 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 3876 if (p->on_rq) { 3877 rq = __task_rq_lock(p, &rf); 3878 if (task_rq(p) == rq) 3879 ret = func(p, arg); 3880 rq_unlock(rq, &rf); 3881 } else { 3882 switch (READ_ONCE(p->__state)) { 3883 case TASK_RUNNING: 3884 case TASK_WAKING: 3885 break; 3886 default: 3887 smp_rmb(); // See smp_rmb() comment in try_to_wake_up(). 3888 if (!p->on_rq) 3889 ret = func(p, arg); 3890 } 3891 } 3892 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 3893 return ret; 3894 } 3895 3896 /** 3897 * wake_up_process - Wake up a specific process 3898 * @p: The process to be woken up. 3899 * 3900 * Attempt to wake up the nominated process and move it to the set of runnable 3901 * processes. 3902 * 3903 * Return: 1 if the process was woken up, 0 if it was already running. 3904 * 3905 * This function executes a full memory barrier before accessing the task state. 3906 */ 3907 int wake_up_process(struct task_struct *p) 3908 { 3909 return try_to_wake_up(p, TASK_NORMAL, 0); 3910 } 3911 EXPORT_SYMBOL(wake_up_process); 3912 3913 int wake_up_state(struct task_struct *p, unsigned int state) 3914 { 3915 return try_to_wake_up(p, state, 0); 3916 } 3917 3918 /* 3919 * Perform scheduler related setup for a newly forked process p. 3920 * p is forked by current. 3921 * 3922 * __sched_fork() is basic setup used by init_idle() too: 3923 */ 3924 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 3925 { 3926 p->on_rq = 0; 3927 3928 p->se.on_rq = 0; 3929 p->se.exec_start = 0; 3930 p->se.sum_exec_runtime = 0; 3931 p->se.prev_sum_exec_runtime = 0; 3932 p->se.nr_migrations = 0; 3933 p->se.vruntime = 0; 3934 INIT_LIST_HEAD(&p->se.group_node); 3935 3936 #ifdef CONFIG_FAIR_GROUP_SCHED 3937 p->se.cfs_rq = NULL; 3938 #endif 3939 3940 #ifdef CONFIG_SCHEDSTATS 3941 /* Even if schedstat is disabled, there should not be garbage */ 3942 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 3943 #endif 3944 3945 RB_CLEAR_NODE(&p->dl.rb_node); 3946 init_dl_task_timer(&p->dl); 3947 init_dl_inactive_task_timer(&p->dl); 3948 __dl_clear_params(p); 3949 3950 INIT_LIST_HEAD(&p->rt.run_list); 3951 p->rt.timeout = 0; 3952 p->rt.time_slice = sched_rr_timeslice; 3953 p->rt.on_rq = 0; 3954 p->rt.on_list = 0; 3955 3956 #ifdef CONFIG_PREEMPT_NOTIFIERS 3957 INIT_HLIST_HEAD(&p->preempt_notifiers); 3958 #endif 3959 3960 #ifdef CONFIG_COMPACTION 3961 p->capture_control = NULL; 3962 #endif 3963 init_numa_balancing(clone_flags, p); 3964 #ifdef CONFIG_SMP 3965 p->wake_entry.u_flags = CSD_TYPE_TTWU; 3966 p->migration_pending = NULL; 3967 #endif 3968 } 3969 3970 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 3971 3972 #ifdef CONFIG_NUMA_BALANCING 3973 3974 void set_numabalancing_state(bool enabled) 3975 { 3976 if (enabled) 3977 static_branch_enable(&sched_numa_balancing); 3978 else 3979 static_branch_disable(&sched_numa_balancing); 3980 } 3981 3982 #ifdef CONFIG_PROC_SYSCTL 3983 int sysctl_numa_balancing(struct ctl_table *table, int write, 3984 void *buffer, size_t *lenp, loff_t *ppos) 3985 { 3986 struct ctl_table t; 3987 int err; 3988 int state = static_branch_likely(&sched_numa_balancing); 3989 3990 if (write && !capable(CAP_SYS_ADMIN)) 3991 return -EPERM; 3992 3993 t = *table; 3994 t.data = &state; 3995 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3996 if (err < 0) 3997 return err; 3998 if (write) 3999 set_numabalancing_state(state); 4000 return err; 4001 } 4002 #endif 4003 #endif 4004 4005 #ifdef CONFIG_SCHEDSTATS 4006 4007 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4008 4009 static void set_schedstats(bool enabled) 4010 { 4011 if (enabled) 4012 static_branch_enable(&sched_schedstats); 4013 else 4014 static_branch_disable(&sched_schedstats); 4015 } 4016 4017 void force_schedstat_enabled(void) 4018 { 4019 if (!schedstat_enabled()) { 4020 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4021 static_branch_enable(&sched_schedstats); 4022 } 4023 } 4024 4025 static int __init setup_schedstats(char *str) 4026 { 4027 int ret = 0; 4028 if (!str) 4029 goto out; 4030 4031 if (!strcmp(str, "enable")) { 4032 set_schedstats(true); 4033 ret = 1; 4034 } else if (!strcmp(str, "disable")) { 4035 set_schedstats(false); 4036 ret = 1; 4037 } 4038 out: 4039 if (!ret) 4040 pr_warn("Unable to parse schedstats=\n"); 4041 4042 return ret; 4043 } 4044 __setup("schedstats=", setup_schedstats); 4045 4046 #ifdef CONFIG_PROC_SYSCTL 4047 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4048 size_t *lenp, loff_t *ppos) 4049 { 4050 struct ctl_table t; 4051 int err; 4052 int state = static_branch_likely(&sched_schedstats); 4053 4054 if (write && !capable(CAP_SYS_ADMIN)) 4055 return -EPERM; 4056 4057 t = *table; 4058 t.data = &state; 4059 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4060 if (err < 0) 4061 return err; 4062 if (write) 4063 set_schedstats(state); 4064 return err; 4065 } 4066 #endif /* CONFIG_PROC_SYSCTL */ 4067 #endif /* CONFIG_SCHEDSTATS */ 4068 4069 /* 4070 * fork()/clone()-time setup: 4071 */ 4072 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4073 { 4074 unsigned long flags; 4075 4076 __sched_fork(clone_flags, p); 4077 /* 4078 * We mark the process as NEW here. This guarantees that 4079 * nobody will actually run it, and a signal or other external 4080 * event cannot wake it up and insert it on the runqueue either. 4081 */ 4082 p->__state = TASK_NEW; 4083 4084 /* 4085 * Make sure we do not leak PI boosting priority to the child. 4086 */ 4087 p->prio = current->normal_prio; 4088 4089 uclamp_fork(p); 4090 4091 /* 4092 * Revert to default priority/policy on fork if requested. 4093 */ 4094 if (unlikely(p->sched_reset_on_fork)) { 4095 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4096 p->policy = SCHED_NORMAL; 4097 p->static_prio = NICE_TO_PRIO(0); 4098 p->rt_priority = 0; 4099 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4100 p->static_prio = NICE_TO_PRIO(0); 4101 4102 p->prio = p->normal_prio = __normal_prio(p); 4103 set_load_weight(p, false); 4104 4105 /* 4106 * We don't need the reset flag anymore after the fork. It has 4107 * fulfilled its duty: 4108 */ 4109 p->sched_reset_on_fork = 0; 4110 } 4111 4112 if (dl_prio(p->prio)) 4113 return -EAGAIN; 4114 else if (rt_prio(p->prio)) 4115 p->sched_class = &rt_sched_class; 4116 else 4117 p->sched_class = &fair_sched_class; 4118 4119 init_entity_runnable_average(&p->se); 4120 4121 /* 4122 * The child is not yet in the pid-hash so no cgroup attach races, 4123 * and the cgroup is pinned to this child due to cgroup_fork() 4124 * is ran before sched_fork(). 4125 * 4126 * Silence PROVE_RCU. 4127 */ 4128 raw_spin_lock_irqsave(&p->pi_lock, flags); 4129 rseq_migrate(p); 4130 /* 4131 * We're setting the CPU for the first time, we don't migrate, 4132 * so use __set_task_cpu(). 4133 */ 4134 __set_task_cpu(p, smp_processor_id()); 4135 if (p->sched_class->task_fork) 4136 p->sched_class->task_fork(p); 4137 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4138 4139 #ifdef CONFIG_SCHED_INFO 4140 if (likely(sched_info_on())) 4141 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4142 #endif 4143 #if defined(CONFIG_SMP) 4144 p->on_cpu = 0; 4145 #endif 4146 init_task_preempt_count(p); 4147 #ifdef CONFIG_SMP 4148 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4149 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4150 #endif 4151 return 0; 4152 } 4153 4154 void sched_post_fork(struct task_struct *p) 4155 { 4156 uclamp_post_fork(p); 4157 } 4158 4159 unsigned long to_ratio(u64 period, u64 runtime) 4160 { 4161 if (runtime == RUNTIME_INF) 4162 return BW_UNIT; 4163 4164 /* 4165 * Doing this here saves a lot of checks in all 4166 * the calling paths, and returning zero seems 4167 * safe for them anyway. 4168 */ 4169 if (period == 0) 4170 return 0; 4171 4172 return div64_u64(runtime << BW_SHIFT, period); 4173 } 4174 4175 /* 4176 * wake_up_new_task - wake up a newly created task for the first time. 4177 * 4178 * This function will do some initial scheduler statistics housekeeping 4179 * that must be done for every newly created context, then puts the task 4180 * on the runqueue and wakes it. 4181 */ 4182 void wake_up_new_task(struct task_struct *p) 4183 { 4184 struct rq_flags rf; 4185 struct rq *rq; 4186 4187 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4188 WRITE_ONCE(p->__state, TASK_RUNNING); 4189 #ifdef CONFIG_SMP 4190 /* 4191 * Fork balancing, do it here and not earlier because: 4192 * - cpus_ptr can change in the fork path 4193 * - any previously selected CPU might disappear through hotplug 4194 * 4195 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4196 * as we're not fully set-up yet. 4197 */ 4198 p->recent_used_cpu = task_cpu(p); 4199 rseq_migrate(p); 4200 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4201 #endif 4202 rq = __task_rq_lock(p, &rf); 4203 update_rq_clock(rq); 4204 post_init_entity_util_avg(p); 4205 4206 activate_task(rq, p, ENQUEUE_NOCLOCK); 4207 trace_sched_wakeup_new(p); 4208 check_preempt_curr(rq, p, WF_FORK); 4209 #ifdef CONFIG_SMP 4210 if (p->sched_class->task_woken) { 4211 /* 4212 * Nothing relies on rq->lock after this, so it's fine to 4213 * drop it. 4214 */ 4215 rq_unpin_lock(rq, &rf); 4216 p->sched_class->task_woken(rq, p); 4217 rq_repin_lock(rq, &rf); 4218 } 4219 #endif 4220 task_rq_unlock(rq, p, &rf); 4221 } 4222 4223 #ifdef CONFIG_PREEMPT_NOTIFIERS 4224 4225 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4226 4227 void preempt_notifier_inc(void) 4228 { 4229 static_branch_inc(&preempt_notifier_key); 4230 } 4231 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4232 4233 void preempt_notifier_dec(void) 4234 { 4235 static_branch_dec(&preempt_notifier_key); 4236 } 4237 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4238 4239 /** 4240 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4241 * @notifier: notifier struct to register 4242 */ 4243 void preempt_notifier_register(struct preempt_notifier *notifier) 4244 { 4245 if (!static_branch_unlikely(&preempt_notifier_key)) 4246 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4247 4248 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4249 } 4250 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4251 4252 /** 4253 * preempt_notifier_unregister - no longer interested in preemption notifications 4254 * @notifier: notifier struct to unregister 4255 * 4256 * This is *not* safe to call from within a preemption notifier. 4257 */ 4258 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4259 { 4260 hlist_del(¬ifier->link); 4261 } 4262 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4263 4264 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4265 { 4266 struct preempt_notifier *notifier; 4267 4268 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4269 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4270 } 4271 4272 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4273 { 4274 if (static_branch_unlikely(&preempt_notifier_key)) 4275 __fire_sched_in_preempt_notifiers(curr); 4276 } 4277 4278 static void 4279 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4280 struct task_struct *next) 4281 { 4282 struct preempt_notifier *notifier; 4283 4284 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4285 notifier->ops->sched_out(notifier, next); 4286 } 4287 4288 static __always_inline void 4289 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4290 struct task_struct *next) 4291 { 4292 if (static_branch_unlikely(&preempt_notifier_key)) 4293 __fire_sched_out_preempt_notifiers(curr, next); 4294 } 4295 4296 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4297 4298 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4299 { 4300 } 4301 4302 static inline void 4303 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4304 struct task_struct *next) 4305 { 4306 } 4307 4308 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4309 4310 static inline void prepare_task(struct task_struct *next) 4311 { 4312 #ifdef CONFIG_SMP 4313 /* 4314 * Claim the task as running, we do this before switching to it 4315 * such that any running task will have this set. 4316 * 4317 * See the ttwu() WF_ON_CPU case and its ordering comment. 4318 */ 4319 WRITE_ONCE(next->on_cpu, 1); 4320 #endif 4321 } 4322 4323 static inline void finish_task(struct task_struct *prev) 4324 { 4325 #ifdef CONFIG_SMP 4326 /* 4327 * This must be the very last reference to @prev from this CPU. After 4328 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4329 * must ensure this doesn't happen until the switch is completely 4330 * finished. 4331 * 4332 * In particular, the load of prev->state in finish_task_switch() must 4333 * happen before this. 4334 * 4335 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4336 */ 4337 smp_store_release(&prev->on_cpu, 0); 4338 #endif 4339 } 4340 4341 #ifdef CONFIG_SMP 4342 4343 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 4344 { 4345 void (*func)(struct rq *rq); 4346 struct callback_head *next; 4347 4348 lockdep_assert_rq_held(rq); 4349 4350 while (head) { 4351 func = (void (*)(struct rq *))head->func; 4352 next = head->next; 4353 head->next = NULL; 4354 head = next; 4355 4356 func(rq); 4357 } 4358 } 4359 4360 static void balance_push(struct rq *rq); 4361 4362 struct callback_head balance_push_callback = { 4363 .next = NULL, 4364 .func = (void (*)(struct callback_head *))balance_push, 4365 }; 4366 4367 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4368 { 4369 struct callback_head *head = rq->balance_callback; 4370 4371 lockdep_assert_rq_held(rq); 4372 if (head) 4373 rq->balance_callback = NULL; 4374 4375 return head; 4376 } 4377 4378 static void __balance_callbacks(struct rq *rq) 4379 { 4380 do_balance_callbacks(rq, splice_balance_callbacks(rq)); 4381 } 4382 4383 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4384 { 4385 unsigned long flags; 4386 4387 if (unlikely(head)) { 4388 raw_spin_rq_lock_irqsave(rq, flags); 4389 do_balance_callbacks(rq, head); 4390 raw_spin_rq_unlock_irqrestore(rq, flags); 4391 } 4392 } 4393 4394 #else 4395 4396 static inline void __balance_callbacks(struct rq *rq) 4397 { 4398 } 4399 4400 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4401 { 4402 return NULL; 4403 } 4404 4405 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4406 { 4407 } 4408 4409 #endif 4410 4411 static inline void 4412 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4413 { 4414 /* 4415 * Since the runqueue lock will be released by the next 4416 * task (which is an invalid locking op but in the case 4417 * of the scheduler it's an obvious special-case), so we 4418 * do an early lockdep release here: 4419 */ 4420 rq_unpin_lock(rq, rf); 4421 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4422 #ifdef CONFIG_DEBUG_SPINLOCK 4423 /* this is a valid case when another task releases the spinlock */ 4424 rq_lockp(rq)->owner = next; 4425 #endif 4426 } 4427 4428 static inline void finish_lock_switch(struct rq *rq) 4429 { 4430 /* 4431 * If we are tracking spinlock dependencies then we have to 4432 * fix up the runqueue lock - which gets 'carried over' from 4433 * prev into current: 4434 */ 4435 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4436 __balance_callbacks(rq); 4437 raw_spin_rq_unlock_irq(rq); 4438 } 4439 4440 /* 4441 * NOP if the arch has not defined these: 4442 */ 4443 4444 #ifndef prepare_arch_switch 4445 # define prepare_arch_switch(next) do { } while (0) 4446 #endif 4447 4448 #ifndef finish_arch_post_lock_switch 4449 # define finish_arch_post_lock_switch() do { } while (0) 4450 #endif 4451 4452 static inline void kmap_local_sched_out(void) 4453 { 4454 #ifdef CONFIG_KMAP_LOCAL 4455 if (unlikely(current->kmap_ctrl.idx)) 4456 __kmap_local_sched_out(); 4457 #endif 4458 } 4459 4460 static inline void kmap_local_sched_in(void) 4461 { 4462 #ifdef CONFIG_KMAP_LOCAL 4463 if (unlikely(current->kmap_ctrl.idx)) 4464 __kmap_local_sched_in(); 4465 #endif 4466 } 4467 4468 /** 4469 * prepare_task_switch - prepare to switch tasks 4470 * @rq: the runqueue preparing to switch 4471 * @prev: the current task that is being switched out 4472 * @next: the task we are going to switch to. 4473 * 4474 * This is called with the rq lock held and interrupts off. It must 4475 * be paired with a subsequent finish_task_switch after the context 4476 * switch. 4477 * 4478 * prepare_task_switch sets up locking and calls architecture specific 4479 * hooks. 4480 */ 4481 static inline void 4482 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4483 struct task_struct *next) 4484 { 4485 kcov_prepare_switch(prev); 4486 sched_info_switch(rq, prev, next); 4487 perf_event_task_sched_out(prev, next); 4488 rseq_preempt(prev); 4489 fire_sched_out_preempt_notifiers(prev, next); 4490 kmap_local_sched_out(); 4491 prepare_task(next); 4492 prepare_arch_switch(next); 4493 } 4494 4495 /** 4496 * finish_task_switch - clean up after a task-switch 4497 * @prev: the thread we just switched away from. 4498 * 4499 * finish_task_switch must be called after the context switch, paired 4500 * with a prepare_task_switch call before the context switch. 4501 * finish_task_switch will reconcile locking set up by prepare_task_switch, 4502 * and do any other architecture-specific cleanup actions. 4503 * 4504 * Note that we may have delayed dropping an mm in context_switch(). If 4505 * so, we finish that here outside of the runqueue lock. (Doing it 4506 * with the lock held can cause deadlocks; see schedule() for 4507 * details.) 4508 * 4509 * The context switch have flipped the stack from under us and restored the 4510 * local variables which were saved when this task called schedule() in the 4511 * past. prev == current is still correct but we need to recalculate this_rq 4512 * because prev may have moved to another CPU. 4513 */ 4514 static struct rq *finish_task_switch(struct task_struct *prev) 4515 __releases(rq->lock) 4516 { 4517 struct rq *rq = this_rq(); 4518 struct mm_struct *mm = rq->prev_mm; 4519 long prev_state; 4520 4521 /* 4522 * The previous task will have left us with a preempt_count of 2 4523 * because it left us after: 4524 * 4525 * schedule() 4526 * preempt_disable(); // 1 4527 * __schedule() 4528 * raw_spin_lock_irq(&rq->lock) // 2 4529 * 4530 * Also, see FORK_PREEMPT_COUNT. 4531 */ 4532 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 4533 "corrupted preempt_count: %s/%d/0x%x\n", 4534 current->comm, current->pid, preempt_count())) 4535 preempt_count_set(FORK_PREEMPT_COUNT); 4536 4537 rq->prev_mm = NULL; 4538 4539 /* 4540 * A task struct has one reference for the use as "current". 4541 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 4542 * schedule one last time. The schedule call will never return, and 4543 * the scheduled task must drop that reference. 4544 * 4545 * We must observe prev->state before clearing prev->on_cpu (in 4546 * finish_task), otherwise a concurrent wakeup can get prev 4547 * running on another CPU and we could rave with its RUNNING -> DEAD 4548 * transition, resulting in a double drop. 4549 */ 4550 prev_state = READ_ONCE(prev->__state); 4551 vtime_task_switch(prev); 4552 perf_event_task_sched_in(prev, current); 4553 finish_task(prev); 4554 tick_nohz_task_switch(); 4555 finish_lock_switch(rq); 4556 finish_arch_post_lock_switch(); 4557 kcov_finish_switch(current); 4558 /* 4559 * kmap_local_sched_out() is invoked with rq::lock held and 4560 * interrupts disabled. There is no requirement for that, but the 4561 * sched out code does not have an interrupt enabled section. 4562 * Restoring the maps on sched in does not require interrupts being 4563 * disabled either. 4564 */ 4565 kmap_local_sched_in(); 4566 4567 fire_sched_in_preempt_notifiers(current); 4568 /* 4569 * When switching through a kernel thread, the loop in 4570 * membarrier_{private,global}_expedited() may have observed that 4571 * kernel thread and not issued an IPI. It is therefore possible to 4572 * schedule between user->kernel->user threads without passing though 4573 * switch_mm(). Membarrier requires a barrier after storing to 4574 * rq->curr, before returning to userspace, so provide them here: 4575 * 4576 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 4577 * provided by mmdrop(), 4578 * - a sync_core for SYNC_CORE. 4579 */ 4580 if (mm) { 4581 membarrier_mm_sync_core_before_usermode(mm); 4582 mmdrop(mm); 4583 } 4584 if (unlikely(prev_state == TASK_DEAD)) { 4585 if (prev->sched_class->task_dead) 4586 prev->sched_class->task_dead(prev); 4587 4588 /* 4589 * Remove function-return probe instances associated with this 4590 * task and put them back on the free list. 4591 */ 4592 kprobe_flush_task(prev); 4593 4594 /* Task is done with its stack. */ 4595 put_task_stack(prev); 4596 4597 put_task_struct_rcu_user(prev); 4598 } 4599 4600 return rq; 4601 } 4602 4603 /** 4604 * schedule_tail - first thing a freshly forked thread must call. 4605 * @prev: the thread we just switched away from. 4606 */ 4607 asmlinkage __visible void schedule_tail(struct task_struct *prev) 4608 __releases(rq->lock) 4609 { 4610 /* 4611 * New tasks start with FORK_PREEMPT_COUNT, see there and 4612 * finish_task_switch() for details. 4613 * 4614 * finish_task_switch() will drop rq->lock() and lower preempt_count 4615 * and the preempt_enable() will end up enabling preemption (on 4616 * PREEMPT_COUNT kernels). 4617 */ 4618 4619 finish_task_switch(prev); 4620 preempt_enable(); 4621 4622 if (current->set_child_tid) 4623 put_user(task_pid_vnr(current), current->set_child_tid); 4624 4625 calculate_sigpending(); 4626 } 4627 4628 /* 4629 * context_switch - switch to the new MM and the new thread's register state. 4630 */ 4631 static __always_inline struct rq * 4632 context_switch(struct rq *rq, struct task_struct *prev, 4633 struct task_struct *next, struct rq_flags *rf) 4634 { 4635 prepare_task_switch(rq, prev, next); 4636 4637 /* 4638 * For paravirt, this is coupled with an exit in switch_to to 4639 * combine the page table reload and the switch backend into 4640 * one hypercall. 4641 */ 4642 arch_start_context_switch(prev); 4643 4644 /* 4645 * kernel -> kernel lazy + transfer active 4646 * user -> kernel lazy + mmgrab() active 4647 * 4648 * kernel -> user switch + mmdrop() active 4649 * user -> user switch 4650 */ 4651 if (!next->mm) { // to kernel 4652 enter_lazy_tlb(prev->active_mm, next); 4653 4654 next->active_mm = prev->active_mm; 4655 if (prev->mm) // from user 4656 mmgrab(prev->active_mm); 4657 else 4658 prev->active_mm = NULL; 4659 } else { // to user 4660 membarrier_switch_mm(rq, prev->active_mm, next->mm); 4661 /* 4662 * sys_membarrier() requires an smp_mb() between setting 4663 * rq->curr / membarrier_switch_mm() and returning to userspace. 4664 * 4665 * The below provides this either through switch_mm(), or in 4666 * case 'prev->active_mm == next->mm' through 4667 * finish_task_switch()'s mmdrop(). 4668 */ 4669 switch_mm_irqs_off(prev->active_mm, next->mm, next); 4670 4671 if (!prev->mm) { // from kernel 4672 /* will mmdrop() in finish_task_switch(). */ 4673 rq->prev_mm = prev->active_mm; 4674 prev->active_mm = NULL; 4675 } 4676 } 4677 4678 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4679 4680 prepare_lock_switch(rq, next, rf); 4681 4682 /* Here we just switch the register state and the stack. */ 4683 switch_to(prev, next, prev); 4684 barrier(); 4685 4686 return finish_task_switch(prev); 4687 } 4688 4689 /* 4690 * nr_running and nr_context_switches: 4691 * 4692 * externally visible scheduler statistics: current number of runnable 4693 * threads, total number of context switches performed since bootup. 4694 */ 4695 unsigned int nr_running(void) 4696 { 4697 unsigned int i, sum = 0; 4698 4699 for_each_online_cpu(i) 4700 sum += cpu_rq(i)->nr_running; 4701 4702 return sum; 4703 } 4704 4705 /* 4706 * Check if only the current task is running on the CPU. 4707 * 4708 * Caution: this function does not check that the caller has disabled 4709 * preemption, thus the result might have a time-of-check-to-time-of-use 4710 * race. The caller is responsible to use it correctly, for example: 4711 * 4712 * - from a non-preemptible section (of course) 4713 * 4714 * - from a thread that is bound to a single CPU 4715 * 4716 * - in a loop with very short iterations (e.g. a polling loop) 4717 */ 4718 bool single_task_running(void) 4719 { 4720 return raw_rq()->nr_running == 1; 4721 } 4722 EXPORT_SYMBOL(single_task_running); 4723 4724 unsigned long long nr_context_switches(void) 4725 { 4726 int i; 4727 unsigned long long sum = 0; 4728 4729 for_each_possible_cpu(i) 4730 sum += cpu_rq(i)->nr_switches; 4731 4732 return sum; 4733 } 4734 4735 /* 4736 * Consumers of these two interfaces, like for example the cpuidle menu 4737 * governor, are using nonsensical data. Preferring shallow idle state selection 4738 * for a CPU that has IO-wait which might not even end up running the task when 4739 * it does become runnable. 4740 */ 4741 4742 unsigned int nr_iowait_cpu(int cpu) 4743 { 4744 return atomic_read(&cpu_rq(cpu)->nr_iowait); 4745 } 4746 4747 /* 4748 * IO-wait accounting, and how it's mostly bollocks (on SMP). 4749 * 4750 * The idea behind IO-wait account is to account the idle time that we could 4751 * have spend running if it were not for IO. That is, if we were to improve the 4752 * storage performance, we'd have a proportional reduction in IO-wait time. 4753 * 4754 * This all works nicely on UP, where, when a task blocks on IO, we account 4755 * idle time as IO-wait, because if the storage were faster, it could've been 4756 * running and we'd not be idle. 4757 * 4758 * This has been extended to SMP, by doing the same for each CPU. This however 4759 * is broken. 4760 * 4761 * Imagine for instance the case where two tasks block on one CPU, only the one 4762 * CPU will have IO-wait accounted, while the other has regular idle. Even 4763 * though, if the storage were faster, both could've ran at the same time, 4764 * utilising both CPUs. 4765 * 4766 * This means, that when looking globally, the current IO-wait accounting on 4767 * SMP is a lower bound, by reason of under accounting. 4768 * 4769 * Worse, since the numbers are provided per CPU, they are sometimes 4770 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 4771 * associated with any one particular CPU, it can wake to another CPU than it 4772 * blocked on. This means the per CPU IO-wait number is meaningless. 4773 * 4774 * Task CPU affinities can make all that even more 'interesting'. 4775 */ 4776 4777 unsigned int nr_iowait(void) 4778 { 4779 unsigned int i, sum = 0; 4780 4781 for_each_possible_cpu(i) 4782 sum += nr_iowait_cpu(i); 4783 4784 return sum; 4785 } 4786 4787 #ifdef CONFIG_SMP 4788 4789 /* 4790 * sched_exec - execve() is a valuable balancing opportunity, because at 4791 * this point the task has the smallest effective memory and cache footprint. 4792 */ 4793 void sched_exec(void) 4794 { 4795 struct task_struct *p = current; 4796 unsigned long flags; 4797 int dest_cpu; 4798 4799 raw_spin_lock_irqsave(&p->pi_lock, flags); 4800 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 4801 if (dest_cpu == smp_processor_id()) 4802 goto unlock; 4803 4804 if (likely(cpu_active(dest_cpu))) { 4805 struct migration_arg arg = { p, dest_cpu }; 4806 4807 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4808 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 4809 return; 4810 } 4811 unlock: 4812 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4813 } 4814 4815 #endif 4816 4817 DEFINE_PER_CPU(struct kernel_stat, kstat); 4818 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 4819 4820 EXPORT_PER_CPU_SYMBOL(kstat); 4821 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 4822 4823 /* 4824 * The function fair_sched_class.update_curr accesses the struct curr 4825 * and its field curr->exec_start; when called from task_sched_runtime(), 4826 * we observe a high rate of cache misses in practice. 4827 * Prefetching this data results in improved performance. 4828 */ 4829 static inline void prefetch_curr_exec_start(struct task_struct *p) 4830 { 4831 #ifdef CONFIG_FAIR_GROUP_SCHED 4832 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 4833 #else 4834 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 4835 #endif 4836 prefetch(curr); 4837 prefetch(&curr->exec_start); 4838 } 4839 4840 /* 4841 * Return accounted runtime for the task. 4842 * In case the task is currently running, return the runtime plus current's 4843 * pending runtime that have not been accounted yet. 4844 */ 4845 unsigned long long task_sched_runtime(struct task_struct *p) 4846 { 4847 struct rq_flags rf; 4848 struct rq *rq; 4849 u64 ns; 4850 4851 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 4852 /* 4853 * 64-bit doesn't need locks to atomically read a 64-bit value. 4854 * So we have a optimization chance when the task's delta_exec is 0. 4855 * Reading ->on_cpu is racy, but this is ok. 4856 * 4857 * If we race with it leaving CPU, we'll take a lock. So we're correct. 4858 * If we race with it entering CPU, unaccounted time is 0. This is 4859 * indistinguishable from the read occurring a few cycles earlier. 4860 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 4861 * been accounted, so we're correct here as well. 4862 */ 4863 if (!p->on_cpu || !task_on_rq_queued(p)) 4864 return p->se.sum_exec_runtime; 4865 #endif 4866 4867 rq = task_rq_lock(p, &rf); 4868 /* 4869 * Must be ->curr _and_ ->on_rq. If dequeued, we would 4870 * project cycles that may never be accounted to this 4871 * thread, breaking clock_gettime(). 4872 */ 4873 if (task_current(rq, p) && task_on_rq_queued(p)) { 4874 prefetch_curr_exec_start(p); 4875 update_rq_clock(rq); 4876 p->sched_class->update_curr(rq); 4877 } 4878 ns = p->se.sum_exec_runtime; 4879 task_rq_unlock(rq, p, &rf); 4880 4881 return ns; 4882 } 4883 4884 #ifdef CONFIG_SCHED_DEBUG 4885 static u64 cpu_resched_latency(struct rq *rq) 4886 { 4887 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 4888 u64 resched_latency, now = rq_clock(rq); 4889 static bool warned_once; 4890 4891 if (sysctl_resched_latency_warn_once && warned_once) 4892 return 0; 4893 4894 if (!need_resched() || !latency_warn_ms) 4895 return 0; 4896 4897 if (system_state == SYSTEM_BOOTING) 4898 return 0; 4899 4900 if (!rq->last_seen_need_resched_ns) { 4901 rq->last_seen_need_resched_ns = now; 4902 rq->ticks_without_resched = 0; 4903 return 0; 4904 } 4905 4906 rq->ticks_without_resched++; 4907 resched_latency = now - rq->last_seen_need_resched_ns; 4908 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 4909 return 0; 4910 4911 warned_once = true; 4912 4913 return resched_latency; 4914 } 4915 4916 static int __init setup_resched_latency_warn_ms(char *str) 4917 { 4918 long val; 4919 4920 if ((kstrtol(str, 0, &val))) { 4921 pr_warn("Unable to set resched_latency_warn_ms\n"); 4922 return 1; 4923 } 4924 4925 sysctl_resched_latency_warn_ms = val; 4926 return 1; 4927 } 4928 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 4929 #else 4930 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 4931 #endif /* CONFIG_SCHED_DEBUG */ 4932 4933 /* 4934 * This function gets called by the timer code, with HZ frequency. 4935 * We call it with interrupts disabled. 4936 */ 4937 void scheduler_tick(void) 4938 { 4939 int cpu = smp_processor_id(); 4940 struct rq *rq = cpu_rq(cpu); 4941 struct task_struct *curr = rq->curr; 4942 struct rq_flags rf; 4943 unsigned long thermal_pressure; 4944 u64 resched_latency; 4945 4946 arch_scale_freq_tick(); 4947 sched_clock_tick(); 4948 4949 rq_lock(rq, &rf); 4950 4951 update_rq_clock(rq); 4952 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 4953 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 4954 curr->sched_class->task_tick(rq, curr, 0); 4955 if (sched_feat(LATENCY_WARN)) 4956 resched_latency = cpu_resched_latency(rq); 4957 calc_global_load_tick(rq); 4958 4959 rq_unlock(rq, &rf); 4960 4961 if (sched_feat(LATENCY_WARN) && resched_latency) 4962 resched_latency_warn(cpu, resched_latency); 4963 4964 perf_event_task_tick(); 4965 4966 #ifdef CONFIG_SMP 4967 rq->idle_balance = idle_cpu(cpu); 4968 trigger_load_balance(rq); 4969 #endif 4970 } 4971 4972 #ifdef CONFIG_NO_HZ_FULL 4973 4974 struct tick_work { 4975 int cpu; 4976 atomic_t state; 4977 struct delayed_work work; 4978 }; 4979 /* Values for ->state, see diagram below. */ 4980 #define TICK_SCHED_REMOTE_OFFLINE 0 4981 #define TICK_SCHED_REMOTE_OFFLINING 1 4982 #define TICK_SCHED_REMOTE_RUNNING 2 4983 4984 /* 4985 * State diagram for ->state: 4986 * 4987 * 4988 * TICK_SCHED_REMOTE_OFFLINE 4989 * | ^ 4990 * | | 4991 * | | sched_tick_remote() 4992 * | | 4993 * | | 4994 * +--TICK_SCHED_REMOTE_OFFLINING 4995 * | ^ 4996 * | | 4997 * sched_tick_start() | | sched_tick_stop() 4998 * | | 4999 * V | 5000 * TICK_SCHED_REMOTE_RUNNING 5001 * 5002 * 5003 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5004 * and sched_tick_start() are happy to leave the state in RUNNING. 5005 */ 5006 5007 static struct tick_work __percpu *tick_work_cpu; 5008 5009 static void sched_tick_remote(struct work_struct *work) 5010 { 5011 struct delayed_work *dwork = to_delayed_work(work); 5012 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5013 int cpu = twork->cpu; 5014 struct rq *rq = cpu_rq(cpu); 5015 struct task_struct *curr; 5016 struct rq_flags rf; 5017 u64 delta; 5018 int os; 5019 5020 /* 5021 * Handle the tick only if it appears the remote CPU is running in full 5022 * dynticks mode. The check is racy by nature, but missing a tick or 5023 * having one too much is no big deal because the scheduler tick updates 5024 * statistics and checks timeslices in a time-independent way, regardless 5025 * of when exactly it is running. 5026 */ 5027 if (!tick_nohz_tick_stopped_cpu(cpu)) 5028 goto out_requeue; 5029 5030 rq_lock_irq(rq, &rf); 5031 curr = rq->curr; 5032 if (cpu_is_offline(cpu)) 5033 goto out_unlock; 5034 5035 update_rq_clock(rq); 5036 5037 if (!is_idle_task(curr)) { 5038 /* 5039 * Make sure the next tick runs within a reasonable 5040 * amount of time. 5041 */ 5042 delta = rq_clock_task(rq) - curr->se.exec_start; 5043 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5044 } 5045 curr->sched_class->task_tick(rq, curr, 0); 5046 5047 calc_load_nohz_remote(rq); 5048 out_unlock: 5049 rq_unlock_irq(rq, &rf); 5050 out_requeue: 5051 5052 /* 5053 * Run the remote tick once per second (1Hz). This arbitrary 5054 * frequency is large enough to avoid overload but short enough 5055 * to keep scheduler internal stats reasonably up to date. But 5056 * first update state to reflect hotplug activity if required. 5057 */ 5058 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5059 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5060 if (os == TICK_SCHED_REMOTE_RUNNING) 5061 queue_delayed_work(system_unbound_wq, dwork, HZ); 5062 } 5063 5064 static void sched_tick_start(int cpu) 5065 { 5066 int os; 5067 struct tick_work *twork; 5068 5069 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 5070 return; 5071 5072 WARN_ON_ONCE(!tick_work_cpu); 5073 5074 twork = per_cpu_ptr(tick_work_cpu, cpu); 5075 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5076 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5077 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5078 twork->cpu = cpu; 5079 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5080 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5081 } 5082 } 5083 5084 #ifdef CONFIG_HOTPLUG_CPU 5085 static void sched_tick_stop(int cpu) 5086 { 5087 struct tick_work *twork; 5088 int os; 5089 5090 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 5091 return; 5092 5093 WARN_ON_ONCE(!tick_work_cpu); 5094 5095 twork = per_cpu_ptr(tick_work_cpu, cpu); 5096 /* There cannot be competing actions, but don't rely on stop-machine. */ 5097 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5098 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5099 /* Don't cancel, as this would mess up the state machine. */ 5100 } 5101 #endif /* CONFIG_HOTPLUG_CPU */ 5102 5103 int __init sched_tick_offload_init(void) 5104 { 5105 tick_work_cpu = alloc_percpu(struct tick_work); 5106 BUG_ON(!tick_work_cpu); 5107 return 0; 5108 } 5109 5110 #else /* !CONFIG_NO_HZ_FULL */ 5111 static inline void sched_tick_start(int cpu) { } 5112 static inline void sched_tick_stop(int cpu) { } 5113 #endif 5114 5115 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5116 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5117 /* 5118 * If the value passed in is equal to the current preempt count 5119 * then we just disabled preemption. Start timing the latency. 5120 */ 5121 static inline void preempt_latency_start(int val) 5122 { 5123 if (preempt_count() == val) { 5124 unsigned long ip = get_lock_parent_ip(); 5125 #ifdef CONFIG_DEBUG_PREEMPT 5126 current->preempt_disable_ip = ip; 5127 #endif 5128 trace_preempt_off(CALLER_ADDR0, ip); 5129 } 5130 } 5131 5132 void preempt_count_add(int val) 5133 { 5134 #ifdef CONFIG_DEBUG_PREEMPT 5135 /* 5136 * Underflow? 5137 */ 5138 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5139 return; 5140 #endif 5141 __preempt_count_add(val); 5142 #ifdef CONFIG_DEBUG_PREEMPT 5143 /* 5144 * Spinlock count overflowing soon? 5145 */ 5146 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5147 PREEMPT_MASK - 10); 5148 #endif 5149 preempt_latency_start(val); 5150 } 5151 EXPORT_SYMBOL(preempt_count_add); 5152 NOKPROBE_SYMBOL(preempt_count_add); 5153 5154 /* 5155 * If the value passed in equals to the current preempt count 5156 * then we just enabled preemption. Stop timing the latency. 5157 */ 5158 static inline void preempt_latency_stop(int val) 5159 { 5160 if (preempt_count() == val) 5161 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5162 } 5163 5164 void preempt_count_sub(int val) 5165 { 5166 #ifdef CONFIG_DEBUG_PREEMPT 5167 /* 5168 * Underflow? 5169 */ 5170 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5171 return; 5172 /* 5173 * Is the spinlock portion underflowing? 5174 */ 5175 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5176 !(preempt_count() & PREEMPT_MASK))) 5177 return; 5178 #endif 5179 5180 preempt_latency_stop(val); 5181 __preempt_count_sub(val); 5182 } 5183 EXPORT_SYMBOL(preempt_count_sub); 5184 NOKPROBE_SYMBOL(preempt_count_sub); 5185 5186 #else 5187 static inline void preempt_latency_start(int val) { } 5188 static inline void preempt_latency_stop(int val) { } 5189 #endif 5190 5191 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5192 { 5193 #ifdef CONFIG_DEBUG_PREEMPT 5194 return p->preempt_disable_ip; 5195 #else 5196 return 0; 5197 #endif 5198 } 5199 5200 /* 5201 * Print scheduling while atomic bug: 5202 */ 5203 static noinline void __schedule_bug(struct task_struct *prev) 5204 { 5205 /* Save this before calling printk(), since that will clobber it */ 5206 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5207 5208 if (oops_in_progress) 5209 return; 5210 5211 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5212 prev->comm, prev->pid, preempt_count()); 5213 5214 debug_show_held_locks(prev); 5215 print_modules(); 5216 if (irqs_disabled()) 5217 print_irqtrace_events(prev); 5218 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5219 && in_atomic_preempt_off()) { 5220 pr_err("Preemption disabled at:"); 5221 print_ip_sym(KERN_ERR, preempt_disable_ip); 5222 } 5223 if (panic_on_warn) 5224 panic("scheduling while atomic\n"); 5225 5226 dump_stack(); 5227 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5228 } 5229 5230 /* 5231 * Various schedule()-time debugging checks and statistics: 5232 */ 5233 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5234 { 5235 #ifdef CONFIG_SCHED_STACK_END_CHECK 5236 if (task_stack_end_corrupted(prev)) 5237 panic("corrupted stack end detected inside scheduler\n"); 5238 5239 if (task_scs_end_corrupted(prev)) 5240 panic("corrupted shadow stack detected inside scheduler\n"); 5241 #endif 5242 5243 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5244 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5245 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5246 prev->comm, prev->pid, prev->non_block_count); 5247 dump_stack(); 5248 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5249 } 5250 #endif 5251 5252 if (unlikely(in_atomic_preempt_off())) { 5253 __schedule_bug(prev); 5254 preempt_count_set(PREEMPT_DISABLED); 5255 } 5256 rcu_sleep_check(); 5257 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5258 5259 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5260 5261 schedstat_inc(this_rq()->sched_count); 5262 } 5263 5264 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5265 struct rq_flags *rf) 5266 { 5267 #ifdef CONFIG_SMP 5268 const struct sched_class *class; 5269 /* 5270 * We must do the balancing pass before put_prev_task(), such 5271 * that when we release the rq->lock the task is in the same 5272 * state as before we took rq->lock. 5273 * 5274 * We can terminate the balance pass as soon as we know there is 5275 * a runnable task of @class priority or higher. 5276 */ 5277 for_class_range(class, prev->sched_class, &idle_sched_class) { 5278 if (class->balance(rq, prev, rf)) 5279 break; 5280 } 5281 #endif 5282 5283 put_prev_task(rq, prev); 5284 } 5285 5286 /* 5287 * Pick up the highest-prio task: 5288 */ 5289 static inline struct task_struct * 5290 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5291 { 5292 const struct sched_class *class; 5293 struct task_struct *p; 5294 5295 /* 5296 * Optimization: we know that if all tasks are in the fair class we can 5297 * call that function directly, but only if the @prev task wasn't of a 5298 * higher scheduling class, because otherwise those lose the 5299 * opportunity to pull in more work from other CPUs. 5300 */ 5301 if (likely(prev->sched_class <= &fair_sched_class && 5302 rq->nr_running == rq->cfs.h_nr_running)) { 5303 5304 p = pick_next_task_fair(rq, prev, rf); 5305 if (unlikely(p == RETRY_TASK)) 5306 goto restart; 5307 5308 /* Assume the next prioritized class is idle_sched_class */ 5309 if (!p) { 5310 put_prev_task(rq, prev); 5311 p = pick_next_task_idle(rq); 5312 } 5313 5314 return p; 5315 } 5316 5317 restart: 5318 put_prev_task_balance(rq, prev, rf); 5319 5320 for_each_class(class) { 5321 p = class->pick_next_task(rq); 5322 if (p) 5323 return p; 5324 } 5325 5326 /* The idle class should always have a runnable task: */ 5327 BUG(); 5328 } 5329 5330 #ifdef CONFIG_SCHED_CORE 5331 static inline bool is_task_rq_idle(struct task_struct *t) 5332 { 5333 return (task_rq(t)->idle == t); 5334 } 5335 5336 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5337 { 5338 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5339 } 5340 5341 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5342 { 5343 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5344 return true; 5345 5346 return a->core_cookie == b->core_cookie; 5347 } 5348 5349 // XXX fairness/fwd progress conditions 5350 /* 5351 * Returns 5352 * - NULL if there is no runnable task for this class. 5353 * - the highest priority task for this runqueue if it matches 5354 * rq->core->core_cookie or its priority is greater than max. 5355 * - Else returns idle_task. 5356 */ 5357 static struct task_struct * 5358 pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi) 5359 { 5360 struct task_struct *class_pick, *cookie_pick; 5361 unsigned long cookie = rq->core->core_cookie; 5362 5363 class_pick = class->pick_task(rq); 5364 if (!class_pick) 5365 return NULL; 5366 5367 if (!cookie) { 5368 /* 5369 * If class_pick is tagged, return it only if it has 5370 * higher priority than max. 5371 */ 5372 if (max && class_pick->core_cookie && 5373 prio_less(class_pick, max, in_fi)) 5374 return idle_sched_class.pick_task(rq); 5375 5376 return class_pick; 5377 } 5378 5379 /* 5380 * If class_pick is idle or matches cookie, return early. 5381 */ 5382 if (cookie_equals(class_pick, cookie)) 5383 return class_pick; 5384 5385 cookie_pick = sched_core_find(rq, cookie); 5386 5387 /* 5388 * If class > max && class > cookie, it is the highest priority task on 5389 * the core (so far) and it must be selected, otherwise we must go with 5390 * the cookie pick in order to satisfy the constraint. 5391 */ 5392 if (prio_less(cookie_pick, class_pick, in_fi) && 5393 (!max || prio_less(max, class_pick, in_fi))) 5394 return class_pick; 5395 5396 return cookie_pick; 5397 } 5398 5399 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5400 5401 static struct task_struct * 5402 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5403 { 5404 struct task_struct *next, *max = NULL; 5405 const struct sched_class *class; 5406 const struct cpumask *smt_mask; 5407 bool fi_before = false; 5408 int i, j, cpu, occ = 0; 5409 bool need_sync; 5410 5411 if (!sched_core_enabled(rq)) 5412 return __pick_next_task(rq, prev, rf); 5413 5414 cpu = cpu_of(rq); 5415 5416 /* Stopper task is switching into idle, no need core-wide selection. */ 5417 if (cpu_is_offline(cpu)) { 5418 /* 5419 * Reset core_pick so that we don't enter the fastpath when 5420 * coming online. core_pick would already be migrated to 5421 * another cpu during offline. 5422 */ 5423 rq->core_pick = NULL; 5424 return __pick_next_task(rq, prev, rf); 5425 } 5426 5427 /* 5428 * If there were no {en,de}queues since we picked (IOW, the task 5429 * pointers are all still valid), and we haven't scheduled the last 5430 * pick yet, do so now. 5431 * 5432 * rq->core_pick can be NULL if no selection was made for a CPU because 5433 * it was either offline or went offline during a sibling's core-wide 5434 * selection. In this case, do a core-wide selection. 5435 */ 5436 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5437 rq->core->core_pick_seq != rq->core_sched_seq && 5438 rq->core_pick) { 5439 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5440 5441 next = rq->core_pick; 5442 if (next != prev) { 5443 put_prev_task(rq, prev); 5444 set_next_task(rq, next); 5445 } 5446 5447 rq->core_pick = NULL; 5448 return next; 5449 } 5450 5451 put_prev_task_balance(rq, prev, rf); 5452 5453 smt_mask = cpu_smt_mask(cpu); 5454 need_sync = !!rq->core->core_cookie; 5455 5456 /* reset state */ 5457 rq->core->core_cookie = 0UL; 5458 if (rq->core->core_forceidle) { 5459 need_sync = true; 5460 fi_before = true; 5461 rq->core->core_forceidle = false; 5462 } 5463 5464 /* 5465 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 5466 * 5467 * @task_seq guards the task state ({en,de}queues) 5468 * @pick_seq is the @task_seq we did a selection on 5469 * @sched_seq is the @pick_seq we scheduled 5470 * 5471 * However, preemptions can cause multiple picks on the same task set. 5472 * 'Fix' this by also increasing @task_seq for every pick. 5473 */ 5474 rq->core->core_task_seq++; 5475 5476 /* 5477 * Optimize for common case where this CPU has no cookies 5478 * and there are no cookied tasks running on siblings. 5479 */ 5480 if (!need_sync) { 5481 for_each_class(class) { 5482 next = class->pick_task(rq); 5483 if (next) 5484 break; 5485 } 5486 5487 if (!next->core_cookie) { 5488 rq->core_pick = NULL; 5489 /* 5490 * For robustness, update the min_vruntime_fi for 5491 * unconstrained picks as well. 5492 */ 5493 WARN_ON_ONCE(fi_before); 5494 task_vruntime_update(rq, next, false); 5495 goto done; 5496 } 5497 } 5498 5499 for_each_cpu(i, smt_mask) { 5500 struct rq *rq_i = cpu_rq(i); 5501 5502 rq_i->core_pick = NULL; 5503 5504 if (i != cpu) 5505 update_rq_clock(rq_i); 5506 } 5507 5508 /* 5509 * Try and select tasks for each sibling in descending sched_class 5510 * order. 5511 */ 5512 for_each_class(class) { 5513 again: 5514 for_each_cpu_wrap(i, smt_mask, cpu) { 5515 struct rq *rq_i = cpu_rq(i); 5516 struct task_struct *p; 5517 5518 if (rq_i->core_pick) 5519 continue; 5520 5521 /* 5522 * If this sibling doesn't yet have a suitable task to 5523 * run; ask for the most eligible task, given the 5524 * highest priority task already selected for this 5525 * core. 5526 */ 5527 p = pick_task(rq_i, class, max, fi_before); 5528 if (!p) 5529 continue; 5530 5531 if (!is_task_rq_idle(p)) 5532 occ++; 5533 5534 rq_i->core_pick = p; 5535 if (rq_i->idle == p && rq_i->nr_running) { 5536 rq->core->core_forceidle = true; 5537 if (!fi_before) 5538 rq->core->core_forceidle_seq++; 5539 } 5540 5541 /* 5542 * If this new candidate is of higher priority than the 5543 * previous; and they're incompatible; we need to wipe 5544 * the slate and start over. pick_task makes sure that 5545 * p's priority is more than max if it doesn't match 5546 * max's cookie. 5547 * 5548 * NOTE: this is a linear max-filter and is thus bounded 5549 * in execution time. 5550 */ 5551 if (!max || !cookie_match(max, p)) { 5552 struct task_struct *old_max = max; 5553 5554 rq->core->core_cookie = p->core_cookie; 5555 max = p; 5556 5557 if (old_max) { 5558 rq->core->core_forceidle = false; 5559 for_each_cpu(j, smt_mask) { 5560 if (j == i) 5561 continue; 5562 5563 cpu_rq(j)->core_pick = NULL; 5564 } 5565 occ = 1; 5566 goto again; 5567 } 5568 } 5569 } 5570 } 5571 5572 rq->core->core_pick_seq = rq->core->core_task_seq; 5573 next = rq->core_pick; 5574 rq->core_sched_seq = rq->core->core_pick_seq; 5575 5576 /* Something should have been selected for current CPU */ 5577 WARN_ON_ONCE(!next); 5578 5579 /* 5580 * Reschedule siblings 5581 * 5582 * NOTE: L1TF -- at this point we're no longer running the old task and 5583 * sending an IPI (below) ensures the sibling will no longer be running 5584 * their task. This ensures there is no inter-sibling overlap between 5585 * non-matching user state. 5586 */ 5587 for_each_cpu(i, smt_mask) { 5588 struct rq *rq_i = cpu_rq(i); 5589 5590 /* 5591 * An online sibling might have gone offline before a task 5592 * could be picked for it, or it might be offline but later 5593 * happen to come online, but its too late and nothing was 5594 * picked for it. That's Ok - it will pick tasks for itself, 5595 * so ignore it. 5596 */ 5597 if (!rq_i->core_pick) 5598 continue; 5599 5600 /* 5601 * Update for new !FI->FI transitions, or if continuing to be in !FI: 5602 * fi_before fi update? 5603 * 0 0 1 5604 * 0 1 1 5605 * 1 0 1 5606 * 1 1 0 5607 */ 5608 if (!(fi_before && rq->core->core_forceidle)) 5609 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle); 5610 5611 rq_i->core_pick->core_occupation = occ; 5612 5613 if (i == cpu) { 5614 rq_i->core_pick = NULL; 5615 continue; 5616 } 5617 5618 /* Did we break L1TF mitigation requirements? */ 5619 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 5620 5621 if (rq_i->curr == rq_i->core_pick) { 5622 rq_i->core_pick = NULL; 5623 continue; 5624 } 5625 5626 resched_curr(rq_i); 5627 } 5628 5629 done: 5630 set_next_task(rq, next); 5631 return next; 5632 } 5633 5634 static bool try_steal_cookie(int this, int that) 5635 { 5636 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 5637 struct task_struct *p; 5638 unsigned long cookie; 5639 bool success = false; 5640 5641 local_irq_disable(); 5642 double_rq_lock(dst, src); 5643 5644 cookie = dst->core->core_cookie; 5645 if (!cookie) 5646 goto unlock; 5647 5648 if (dst->curr != dst->idle) 5649 goto unlock; 5650 5651 p = sched_core_find(src, cookie); 5652 if (p == src->idle) 5653 goto unlock; 5654 5655 do { 5656 if (p == src->core_pick || p == src->curr) 5657 goto next; 5658 5659 if (!cpumask_test_cpu(this, &p->cpus_mask)) 5660 goto next; 5661 5662 if (p->core_occupation > dst->idle->core_occupation) 5663 goto next; 5664 5665 p->on_rq = TASK_ON_RQ_MIGRATING; 5666 deactivate_task(src, p, 0); 5667 set_task_cpu(p, this); 5668 activate_task(dst, p, 0); 5669 p->on_rq = TASK_ON_RQ_QUEUED; 5670 5671 resched_curr(dst); 5672 5673 success = true; 5674 break; 5675 5676 next: 5677 p = sched_core_next(p, cookie); 5678 } while (p); 5679 5680 unlock: 5681 double_rq_unlock(dst, src); 5682 local_irq_enable(); 5683 5684 return success; 5685 } 5686 5687 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 5688 { 5689 int i; 5690 5691 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 5692 if (i == cpu) 5693 continue; 5694 5695 if (need_resched()) 5696 break; 5697 5698 if (try_steal_cookie(cpu, i)) 5699 return true; 5700 } 5701 5702 return false; 5703 } 5704 5705 static void sched_core_balance(struct rq *rq) 5706 { 5707 struct sched_domain *sd; 5708 int cpu = cpu_of(rq); 5709 5710 preempt_disable(); 5711 rcu_read_lock(); 5712 raw_spin_rq_unlock_irq(rq); 5713 for_each_domain(cpu, sd) { 5714 if (need_resched()) 5715 break; 5716 5717 if (steal_cookie_task(cpu, sd)) 5718 break; 5719 } 5720 raw_spin_rq_lock_irq(rq); 5721 rcu_read_unlock(); 5722 preempt_enable(); 5723 } 5724 5725 static DEFINE_PER_CPU(struct callback_head, core_balance_head); 5726 5727 void queue_core_balance(struct rq *rq) 5728 { 5729 if (!sched_core_enabled(rq)) 5730 return; 5731 5732 if (!rq->core->core_cookie) 5733 return; 5734 5735 if (!rq->nr_running) /* not forced idle */ 5736 return; 5737 5738 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 5739 } 5740 5741 static inline void sched_core_cpu_starting(unsigned int cpu) 5742 { 5743 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 5744 struct rq *rq, *core_rq = NULL; 5745 int i; 5746 5747 core_rq = cpu_rq(cpu)->core; 5748 5749 if (!core_rq) { 5750 for_each_cpu(i, smt_mask) { 5751 rq = cpu_rq(i); 5752 if (rq->core && rq->core == rq) 5753 core_rq = rq; 5754 } 5755 5756 if (!core_rq) 5757 core_rq = cpu_rq(cpu); 5758 5759 for_each_cpu(i, smt_mask) { 5760 rq = cpu_rq(i); 5761 5762 WARN_ON_ONCE(rq->core && rq->core != core_rq); 5763 rq->core = core_rq; 5764 } 5765 } 5766 } 5767 #else /* !CONFIG_SCHED_CORE */ 5768 5769 static inline void sched_core_cpu_starting(unsigned int cpu) {} 5770 5771 static struct task_struct * 5772 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5773 { 5774 return __pick_next_task(rq, prev, rf); 5775 } 5776 5777 #endif /* CONFIG_SCHED_CORE */ 5778 5779 /* 5780 * __schedule() is the main scheduler function. 5781 * 5782 * The main means of driving the scheduler and thus entering this function are: 5783 * 5784 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 5785 * 5786 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 5787 * paths. For example, see arch/x86/entry_64.S. 5788 * 5789 * To drive preemption between tasks, the scheduler sets the flag in timer 5790 * interrupt handler scheduler_tick(). 5791 * 5792 * 3. Wakeups don't really cause entry into schedule(). They add a 5793 * task to the run-queue and that's it. 5794 * 5795 * Now, if the new task added to the run-queue preempts the current 5796 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 5797 * called on the nearest possible occasion: 5798 * 5799 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 5800 * 5801 * - in syscall or exception context, at the next outmost 5802 * preempt_enable(). (this might be as soon as the wake_up()'s 5803 * spin_unlock()!) 5804 * 5805 * - in IRQ context, return from interrupt-handler to 5806 * preemptible context 5807 * 5808 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 5809 * then at the next: 5810 * 5811 * - cond_resched() call 5812 * - explicit schedule() call 5813 * - return from syscall or exception to user-space 5814 * - return from interrupt-handler to user-space 5815 * 5816 * WARNING: must be called with preemption disabled! 5817 */ 5818 static void __sched notrace __schedule(bool preempt) 5819 { 5820 struct task_struct *prev, *next; 5821 unsigned long *switch_count; 5822 unsigned long prev_state; 5823 struct rq_flags rf; 5824 struct rq *rq; 5825 int cpu; 5826 5827 cpu = smp_processor_id(); 5828 rq = cpu_rq(cpu); 5829 prev = rq->curr; 5830 5831 schedule_debug(prev, preempt); 5832 5833 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 5834 hrtick_clear(rq); 5835 5836 local_irq_disable(); 5837 rcu_note_context_switch(preempt); 5838 5839 /* 5840 * Make sure that signal_pending_state()->signal_pending() below 5841 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 5842 * done by the caller to avoid the race with signal_wake_up(): 5843 * 5844 * __set_current_state(@state) signal_wake_up() 5845 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 5846 * wake_up_state(p, state) 5847 * LOCK rq->lock LOCK p->pi_state 5848 * smp_mb__after_spinlock() smp_mb__after_spinlock() 5849 * if (signal_pending_state()) if (p->state & @state) 5850 * 5851 * Also, the membarrier system call requires a full memory barrier 5852 * after coming from user-space, before storing to rq->curr. 5853 */ 5854 rq_lock(rq, &rf); 5855 smp_mb__after_spinlock(); 5856 5857 /* Promote REQ to ACT */ 5858 rq->clock_update_flags <<= 1; 5859 update_rq_clock(rq); 5860 5861 switch_count = &prev->nivcsw; 5862 5863 /* 5864 * We must load prev->state once (task_struct::state is volatile), such 5865 * that: 5866 * 5867 * - we form a control dependency vs deactivate_task() below. 5868 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 5869 */ 5870 prev_state = READ_ONCE(prev->__state); 5871 if (!preempt && prev_state) { 5872 if (signal_pending_state(prev_state, prev)) { 5873 WRITE_ONCE(prev->__state, TASK_RUNNING); 5874 } else { 5875 prev->sched_contributes_to_load = 5876 (prev_state & TASK_UNINTERRUPTIBLE) && 5877 !(prev_state & TASK_NOLOAD) && 5878 !(prev->flags & PF_FROZEN); 5879 5880 if (prev->sched_contributes_to_load) 5881 rq->nr_uninterruptible++; 5882 5883 /* 5884 * __schedule() ttwu() 5885 * prev_state = prev->state; if (p->on_rq && ...) 5886 * if (prev_state) goto out; 5887 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 5888 * p->state = TASK_WAKING 5889 * 5890 * Where __schedule() and ttwu() have matching control dependencies. 5891 * 5892 * After this, schedule() must not care about p->state any more. 5893 */ 5894 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 5895 5896 if (prev->in_iowait) { 5897 atomic_inc(&rq->nr_iowait); 5898 delayacct_blkio_start(); 5899 } 5900 } 5901 switch_count = &prev->nvcsw; 5902 } 5903 5904 next = pick_next_task(rq, prev, &rf); 5905 clear_tsk_need_resched(prev); 5906 clear_preempt_need_resched(); 5907 #ifdef CONFIG_SCHED_DEBUG 5908 rq->last_seen_need_resched_ns = 0; 5909 #endif 5910 5911 if (likely(prev != next)) { 5912 rq->nr_switches++; 5913 /* 5914 * RCU users of rcu_dereference(rq->curr) may not see 5915 * changes to task_struct made by pick_next_task(). 5916 */ 5917 RCU_INIT_POINTER(rq->curr, next); 5918 /* 5919 * The membarrier system call requires each architecture 5920 * to have a full memory barrier after updating 5921 * rq->curr, before returning to user-space. 5922 * 5923 * Here are the schemes providing that barrier on the 5924 * various architectures: 5925 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 5926 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 5927 * - finish_lock_switch() for weakly-ordered 5928 * architectures where spin_unlock is a full barrier, 5929 * - switch_to() for arm64 (weakly-ordered, spin_unlock 5930 * is a RELEASE barrier), 5931 */ 5932 ++*switch_count; 5933 5934 migrate_disable_switch(rq, prev); 5935 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 5936 5937 trace_sched_switch(preempt, prev, next); 5938 5939 /* Also unlocks the rq: */ 5940 rq = context_switch(rq, prev, next, &rf); 5941 } else { 5942 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5943 5944 rq_unpin_lock(rq, &rf); 5945 __balance_callbacks(rq); 5946 raw_spin_rq_unlock_irq(rq); 5947 } 5948 } 5949 5950 void __noreturn do_task_dead(void) 5951 { 5952 /* Causes final put_task_struct in finish_task_switch(): */ 5953 set_special_state(TASK_DEAD); 5954 5955 /* Tell freezer to ignore us: */ 5956 current->flags |= PF_NOFREEZE; 5957 5958 __schedule(false); 5959 BUG(); 5960 5961 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 5962 for (;;) 5963 cpu_relax(); 5964 } 5965 5966 static inline void sched_submit_work(struct task_struct *tsk) 5967 { 5968 unsigned int task_flags; 5969 5970 if (task_is_running(tsk)) 5971 return; 5972 5973 task_flags = tsk->flags; 5974 /* 5975 * If a worker went to sleep, notify and ask workqueue whether 5976 * it wants to wake up a task to maintain concurrency. 5977 * As this function is called inside the schedule() context, 5978 * we disable preemption to avoid it calling schedule() again 5979 * in the possible wakeup of a kworker and because wq_worker_sleeping() 5980 * requires it. 5981 */ 5982 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 5983 preempt_disable(); 5984 if (task_flags & PF_WQ_WORKER) 5985 wq_worker_sleeping(tsk); 5986 else 5987 io_wq_worker_sleeping(tsk); 5988 preempt_enable_no_resched(); 5989 } 5990 5991 if (tsk_is_pi_blocked(tsk)) 5992 return; 5993 5994 /* 5995 * If we are going to sleep and we have plugged IO queued, 5996 * make sure to submit it to avoid deadlocks. 5997 */ 5998 if (blk_needs_flush_plug(tsk)) 5999 blk_schedule_flush_plug(tsk); 6000 } 6001 6002 static void sched_update_worker(struct task_struct *tsk) 6003 { 6004 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6005 if (tsk->flags & PF_WQ_WORKER) 6006 wq_worker_running(tsk); 6007 else 6008 io_wq_worker_running(tsk); 6009 } 6010 } 6011 6012 asmlinkage __visible void __sched schedule(void) 6013 { 6014 struct task_struct *tsk = current; 6015 6016 sched_submit_work(tsk); 6017 do { 6018 preempt_disable(); 6019 __schedule(false); 6020 sched_preempt_enable_no_resched(); 6021 } while (need_resched()); 6022 sched_update_worker(tsk); 6023 } 6024 EXPORT_SYMBOL(schedule); 6025 6026 /* 6027 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6028 * state (have scheduled out non-voluntarily) by making sure that all 6029 * tasks have either left the run queue or have gone into user space. 6030 * As idle tasks do not do either, they must not ever be preempted 6031 * (schedule out non-voluntarily). 6032 * 6033 * schedule_idle() is similar to schedule_preempt_disable() except that it 6034 * never enables preemption because it does not call sched_submit_work(). 6035 */ 6036 void __sched schedule_idle(void) 6037 { 6038 /* 6039 * As this skips calling sched_submit_work(), which the idle task does 6040 * regardless because that function is a nop when the task is in a 6041 * TASK_RUNNING state, make sure this isn't used someplace that the 6042 * current task can be in any other state. Note, idle is always in the 6043 * TASK_RUNNING state. 6044 */ 6045 WARN_ON_ONCE(current->__state); 6046 do { 6047 __schedule(false); 6048 } while (need_resched()); 6049 } 6050 6051 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK) 6052 asmlinkage __visible void __sched schedule_user(void) 6053 { 6054 /* 6055 * If we come here after a random call to set_need_resched(), 6056 * or we have been woken up remotely but the IPI has not yet arrived, 6057 * we haven't yet exited the RCU idle mode. Do it here manually until 6058 * we find a better solution. 6059 * 6060 * NB: There are buggy callers of this function. Ideally we 6061 * should warn if prev_state != CONTEXT_USER, but that will trigger 6062 * too frequently to make sense yet. 6063 */ 6064 enum ctx_state prev_state = exception_enter(); 6065 schedule(); 6066 exception_exit(prev_state); 6067 } 6068 #endif 6069 6070 /** 6071 * schedule_preempt_disabled - called with preemption disabled 6072 * 6073 * Returns with preemption disabled. Note: preempt_count must be 1 6074 */ 6075 void __sched schedule_preempt_disabled(void) 6076 { 6077 sched_preempt_enable_no_resched(); 6078 schedule(); 6079 preempt_disable(); 6080 } 6081 6082 static void __sched notrace preempt_schedule_common(void) 6083 { 6084 do { 6085 /* 6086 * Because the function tracer can trace preempt_count_sub() 6087 * and it also uses preempt_enable/disable_notrace(), if 6088 * NEED_RESCHED is set, the preempt_enable_notrace() called 6089 * by the function tracer will call this function again and 6090 * cause infinite recursion. 6091 * 6092 * Preemption must be disabled here before the function 6093 * tracer can trace. Break up preempt_disable() into two 6094 * calls. One to disable preemption without fear of being 6095 * traced. The other to still record the preemption latency, 6096 * which can also be traced by the function tracer. 6097 */ 6098 preempt_disable_notrace(); 6099 preempt_latency_start(1); 6100 __schedule(true); 6101 preempt_latency_stop(1); 6102 preempt_enable_no_resched_notrace(); 6103 6104 /* 6105 * Check again in case we missed a preemption opportunity 6106 * between schedule and now. 6107 */ 6108 } while (need_resched()); 6109 } 6110 6111 #ifdef CONFIG_PREEMPTION 6112 /* 6113 * This is the entry point to schedule() from in-kernel preemption 6114 * off of preempt_enable. 6115 */ 6116 asmlinkage __visible void __sched notrace preempt_schedule(void) 6117 { 6118 /* 6119 * If there is a non-zero preempt_count or interrupts are disabled, 6120 * we do not want to preempt the current task. Just return.. 6121 */ 6122 if (likely(!preemptible())) 6123 return; 6124 6125 preempt_schedule_common(); 6126 } 6127 NOKPROBE_SYMBOL(preempt_schedule); 6128 EXPORT_SYMBOL(preempt_schedule); 6129 6130 #ifdef CONFIG_PREEMPT_DYNAMIC 6131 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func); 6132 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6133 #endif 6134 6135 6136 /** 6137 * preempt_schedule_notrace - preempt_schedule called by tracing 6138 * 6139 * The tracing infrastructure uses preempt_enable_notrace to prevent 6140 * recursion and tracing preempt enabling caused by the tracing 6141 * infrastructure itself. But as tracing can happen in areas coming 6142 * from userspace or just about to enter userspace, a preempt enable 6143 * can occur before user_exit() is called. This will cause the scheduler 6144 * to be called when the system is still in usermode. 6145 * 6146 * To prevent this, the preempt_enable_notrace will use this function 6147 * instead of preempt_schedule() to exit user context if needed before 6148 * calling the scheduler. 6149 */ 6150 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6151 { 6152 enum ctx_state prev_ctx; 6153 6154 if (likely(!preemptible())) 6155 return; 6156 6157 do { 6158 /* 6159 * Because the function tracer can trace preempt_count_sub() 6160 * and it also uses preempt_enable/disable_notrace(), if 6161 * NEED_RESCHED is set, the preempt_enable_notrace() called 6162 * by the function tracer will call this function again and 6163 * cause infinite recursion. 6164 * 6165 * Preemption must be disabled here before the function 6166 * tracer can trace. Break up preempt_disable() into two 6167 * calls. One to disable preemption without fear of being 6168 * traced. The other to still record the preemption latency, 6169 * which can also be traced by the function tracer. 6170 */ 6171 preempt_disable_notrace(); 6172 preempt_latency_start(1); 6173 /* 6174 * Needs preempt disabled in case user_exit() is traced 6175 * and the tracer calls preempt_enable_notrace() causing 6176 * an infinite recursion. 6177 */ 6178 prev_ctx = exception_enter(); 6179 __schedule(true); 6180 exception_exit(prev_ctx); 6181 6182 preempt_latency_stop(1); 6183 preempt_enable_no_resched_notrace(); 6184 } while (need_resched()); 6185 } 6186 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6187 6188 #ifdef CONFIG_PREEMPT_DYNAMIC 6189 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6190 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6191 #endif 6192 6193 #endif /* CONFIG_PREEMPTION */ 6194 6195 #ifdef CONFIG_PREEMPT_DYNAMIC 6196 6197 #include <linux/entry-common.h> 6198 6199 /* 6200 * SC:cond_resched 6201 * SC:might_resched 6202 * SC:preempt_schedule 6203 * SC:preempt_schedule_notrace 6204 * SC:irqentry_exit_cond_resched 6205 * 6206 * 6207 * NONE: 6208 * cond_resched <- __cond_resched 6209 * might_resched <- RET0 6210 * preempt_schedule <- NOP 6211 * preempt_schedule_notrace <- NOP 6212 * irqentry_exit_cond_resched <- NOP 6213 * 6214 * VOLUNTARY: 6215 * cond_resched <- __cond_resched 6216 * might_resched <- __cond_resched 6217 * preempt_schedule <- NOP 6218 * preempt_schedule_notrace <- NOP 6219 * irqentry_exit_cond_resched <- NOP 6220 * 6221 * FULL: 6222 * cond_resched <- RET0 6223 * might_resched <- RET0 6224 * preempt_schedule <- preempt_schedule 6225 * preempt_schedule_notrace <- preempt_schedule_notrace 6226 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 6227 */ 6228 6229 enum { 6230 preempt_dynamic_none = 0, 6231 preempt_dynamic_voluntary, 6232 preempt_dynamic_full, 6233 }; 6234 6235 int preempt_dynamic_mode = preempt_dynamic_full; 6236 6237 int sched_dynamic_mode(const char *str) 6238 { 6239 if (!strcmp(str, "none")) 6240 return preempt_dynamic_none; 6241 6242 if (!strcmp(str, "voluntary")) 6243 return preempt_dynamic_voluntary; 6244 6245 if (!strcmp(str, "full")) 6246 return preempt_dynamic_full; 6247 6248 return -EINVAL; 6249 } 6250 6251 void sched_dynamic_update(int mode) 6252 { 6253 /* 6254 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 6255 * the ZERO state, which is invalid. 6256 */ 6257 static_call_update(cond_resched, __cond_resched); 6258 static_call_update(might_resched, __cond_resched); 6259 static_call_update(preempt_schedule, __preempt_schedule_func); 6260 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6261 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 6262 6263 switch (mode) { 6264 case preempt_dynamic_none: 6265 static_call_update(cond_resched, __cond_resched); 6266 static_call_update(might_resched, (void *)&__static_call_return0); 6267 static_call_update(preempt_schedule, NULL); 6268 static_call_update(preempt_schedule_notrace, NULL); 6269 static_call_update(irqentry_exit_cond_resched, NULL); 6270 pr_info("Dynamic Preempt: none\n"); 6271 break; 6272 6273 case preempt_dynamic_voluntary: 6274 static_call_update(cond_resched, __cond_resched); 6275 static_call_update(might_resched, __cond_resched); 6276 static_call_update(preempt_schedule, NULL); 6277 static_call_update(preempt_schedule_notrace, NULL); 6278 static_call_update(irqentry_exit_cond_resched, NULL); 6279 pr_info("Dynamic Preempt: voluntary\n"); 6280 break; 6281 6282 case preempt_dynamic_full: 6283 static_call_update(cond_resched, (void *)&__static_call_return0); 6284 static_call_update(might_resched, (void *)&__static_call_return0); 6285 static_call_update(preempt_schedule, __preempt_schedule_func); 6286 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func); 6287 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched); 6288 pr_info("Dynamic Preempt: full\n"); 6289 break; 6290 } 6291 6292 preempt_dynamic_mode = mode; 6293 } 6294 6295 static int __init setup_preempt_mode(char *str) 6296 { 6297 int mode = sched_dynamic_mode(str); 6298 if (mode < 0) { 6299 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 6300 return 1; 6301 } 6302 6303 sched_dynamic_update(mode); 6304 return 0; 6305 } 6306 __setup("preempt=", setup_preempt_mode); 6307 6308 #endif /* CONFIG_PREEMPT_DYNAMIC */ 6309 6310 /* 6311 * This is the entry point to schedule() from kernel preemption 6312 * off of irq context. 6313 * Note, that this is called and return with irqs disabled. This will 6314 * protect us against recursive calling from irq. 6315 */ 6316 asmlinkage __visible void __sched preempt_schedule_irq(void) 6317 { 6318 enum ctx_state prev_state; 6319 6320 /* Catch callers which need to be fixed */ 6321 BUG_ON(preempt_count() || !irqs_disabled()); 6322 6323 prev_state = exception_enter(); 6324 6325 do { 6326 preempt_disable(); 6327 local_irq_enable(); 6328 __schedule(true); 6329 local_irq_disable(); 6330 sched_preempt_enable_no_resched(); 6331 } while (need_resched()); 6332 6333 exception_exit(prev_state); 6334 } 6335 6336 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6337 void *key) 6338 { 6339 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6340 return try_to_wake_up(curr->private, mode, wake_flags); 6341 } 6342 EXPORT_SYMBOL(default_wake_function); 6343 6344 #ifdef CONFIG_RT_MUTEXES 6345 6346 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6347 { 6348 if (pi_task) 6349 prio = min(prio, pi_task->prio); 6350 6351 return prio; 6352 } 6353 6354 static inline int rt_effective_prio(struct task_struct *p, int prio) 6355 { 6356 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6357 6358 return __rt_effective_prio(pi_task, prio); 6359 } 6360 6361 /* 6362 * rt_mutex_setprio - set the current priority of a task 6363 * @p: task to boost 6364 * @pi_task: donor task 6365 * 6366 * This function changes the 'effective' priority of a task. It does 6367 * not touch ->normal_prio like __setscheduler(). 6368 * 6369 * Used by the rt_mutex code to implement priority inheritance 6370 * logic. Call site only calls if the priority of the task changed. 6371 */ 6372 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6373 { 6374 int prio, oldprio, queued, running, queue_flag = 6375 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6376 const struct sched_class *prev_class; 6377 struct rq_flags rf; 6378 struct rq *rq; 6379 6380 /* XXX used to be waiter->prio, not waiter->task->prio */ 6381 prio = __rt_effective_prio(pi_task, p->normal_prio); 6382 6383 /* 6384 * If nothing changed; bail early. 6385 */ 6386 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6387 return; 6388 6389 rq = __task_rq_lock(p, &rf); 6390 update_rq_clock(rq); 6391 /* 6392 * Set under pi_lock && rq->lock, such that the value can be used under 6393 * either lock. 6394 * 6395 * Note that there is loads of tricky to make this pointer cache work 6396 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6397 * ensure a task is de-boosted (pi_task is set to NULL) before the 6398 * task is allowed to run again (and can exit). This ensures the pointer 6399 * points to a blocked task -- which guarantees the task is present. 6400 */ 6401 p->pi_top_task = pi_task; 6402 6403 /* 6404 * For FIFO/RR we only need to set prio, if that matches we're done. 6405 */ 6406 if (prio == p->prio && !dl_prio(prio)) 6407 goto out_unlock; 6408 6409 /* 6410 * Idle task boosting is a nono in general. There is one 6411 * exception, when PREEMPT_RT and NOHZ is active: 6412 * 6413 * The idle task calls get_next_timer_interrupt() and holds 6414 * the timer wheel base->lock on the CPU and another CPU wants 6415 * to access the timer (probably to cancel it). We can safely 6416 * ignore the boosting request, as the idle CPU runs this code 6417 * with interrupts disabled and will complete the lock 6418 * protected section without being interrupted. So there is no 6419 * real need to boost. 6420 */ 6421 if (unlikely(p == rq->idle)) { 6422 WARN_ON(p != rq->curr); 6423 WARN_ON(p->pi_blocked_on); 6424 goto out_unlock; 6425 } 6426 6427 trace_sched_pi_setprio(p, pi_task); 6428 oldprio = p->prio; 6429 6430 if (oldprio == prio) 6431 queue_flag &= ~DEQUEUE_MOVE; 6432 6433 prev_class = p->sched_class; 6434 queued = task_on_rq_queued(p); 6435 running = task_current(rq, p); 6436 if (queued) 6437 dequeue_task(rq, p, queue_flag); 6438 if (running) 6439 put_prev_task(rq, p); 6440 6441 /* 6442 * Boosting condition are: 6443 * 1. -rt task is running and holds mutex A 6444 * --> -dl task blocks on mutex A 6445 * 6446 * 2. -dl task is running and holds mutex A 6447 * --> -dl task blocks on mutex A and could preempt the 6448 * running task 6449 */ 6450 if (dl_prio(prio)) { 6451 if (!dl_prio(p->normal_prio) || 6452 (pi_task && dl_prio(pi_task->prio) && 6453 dl_entity_preempt(&pi_task->dl, &p->dl))) { 6454 p->dl.pi_se = pi_task->dl.pi_se; 6455 queue_flag |= ENQUEUE_REPLENISH; 6456 } else { 6457 p->dl.pi_se = &p->dl; 6458 } 6459 p->sched_class = &dl_sched_class; 6460 } else if (rt_prio(prio)) { 6461 if (dl_prio(oldprio)) 6462 p->dl.pi_se = &p->dl; 6463 if (oldprio < prio) 6464 queue_flag |= ENQUEUE_HEAD; 6465 p->sched_class = &rt_sched_class; 6466 } else { 6467 if (dl_prio(oldprio)) 6468 p->dl.pi_se = &p->dl; 6469 if (rt_prio(oldprio)) 6470 p->rt.timeout = 0; 6471 p->sched_class = &fair_sched_class; 6472 } 6473 6474 p->prio = prio; 6475 6476 if (queued) 6477 enqueue_task(rq, p, queue_flag); 6478 if (running) 6479 set_next_task(rq, p); 6480 6481 check_class_changed(rq, p, prev_class, oldprio); 6482 out_unlock: 6483 /* Avoid rq from going away on us: */ 6484 preempt_disable(); 6485 6486 rq_unpin_lock(rq, &rf); 6487 __balance_callbacks(rq); 6488 raw_spin_rq_unlock(rq); 6489 6490 preempt_enable(); 6491 } 6492 #else 6493 static inline int rt_effective_prio(struct task_struct *p, int prio) 6494 { 6495 return prio; 6496 } 6497 #endif 6498 6499 void set_user_nice(struct task_struct *p, long nice) 6500 { 6501 bool queued, running; 6502 int old_prio; 6503 struct rq_flags rf; 6504 struct rq *rq; 6505 6506 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 6507 return; 6508 /* 6509 * We have to be careful, if called from sys_setpriority(), 6510 * the task might be in the middle of scheduling on another CPU. 6511 */ 6512 rq = task_rq_lock(p, &rf); 6513 update_rq_clock(rq); 6514 6515 /* 6516 * The RT priorities are set via sched_setscheduler(), but we still 6517 * allow the 'normal' nice value to be set - but as expected 6518 * it won't have any effect on scheduling until the task is 6519 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 6520 */ 6521 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 6522 p->static_prio = NICE_TO_PRIO(nice); 6523 goto out_unlock; 6524 } 6525 queued = task_on_rq_queued(p); 6526 running = task_current(rq, p); 6527 if (queued) 6528 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 6529 if (running) 6530 put_prev_task(rq, p); 6531 6532 p->static_prio = NICE_TO_PRIO(nice); 6533 set_load_weight(p, true); 6534 old_prio = p->prio; 6535 p->prio = effective_prio(p); 6536 6537 if (queued) 6538 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6539 if (running) 6540 set_next_task(rq, p); 6541 6542 /* 6543 * If the task increased its priority or is running and 6544 * lowered its priority, then reschedule its CPU: 6545 */ 6546 p->sched_class->prio_changed(rq, p, old_prio); 6547 6548 out_unlock: 6549 task_rq_unlock(rq, p, &rf); 6550 } 6551 EXPORT_SYMBOL(set_user_nice); 6552 6553 /* 6554 * can_nice - check if a task can reduce its nice value 6555 * @p: task 6556 * @nice: nice value 6557 */ 6558 int can_nice(const struct task_struct *p, const int nice) 6559 { 6560 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 6561 int nice_rlim = nice_to_rlimit(nice); 6562 6563 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 6564 capable(CAP_SYS_NICE)); 6565 } 6566 6567 #ifdef __ARCH_WANT_SYS_NICE 6568 6569 /* 6570 * sys_nice - change the priority of the current process. 6571 * @increment: priority increment 6572 * 6573 * sys_setpriority is a more generic, but much slower function that 6574 * does similar things. 6575 */ 6576 SYSCALL_DEFINE1(nice, int, increment) 6577 { 6578 long nice, retval; 6579 6580 /* 6581 * Setpriority might change our priority at the same moment. 6582 * We don't have to worry. Conceptually one call occurs first 6583 * and we have a single winner. 6584 */ 6585 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 6586 nice = task_nice(current) + increment; 6587 6588 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 6589 if (increment < 0 && !can_nice(current, nice)) 6590 return -EPERM; 6591 6592 retval = security_task_setnice(current, nice); 6593 if (retval) 6594 return retval; 6595 6596 set_user_nice(current, nice); 6597 return 0; 6598 } 6599 6600 #endif 6601 6602 /** 6603 * task_prio - return the priority value of a given task. 6604 * @p: the task in question. 6605 * 6606 * Return: The priority value as seen by users in /proc. 6607 * 6608 * sched policy return value kernel prio user prio/nice 6609 * 6610 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 6611 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 6612 * deadline -101 -1 0 6613 */ 6614 int task_prio(const struct task_struct *p) 6615 { 6616 return p->prio - MAX_RT_PRIO; 6617 } 6618 6619 /** 6620 * idle_cpu - is a given CPU idle currently? 6621 * @cpu: the processor in question. 6622 * 6623 * Return: 1 if the CPU is currently idle. 0 otherwise. 6624 */ 6625 int idle_cpu(int cpu) 6626 { 6627 struct rq *rq = cpu_rq(cpu); 6628 6629 if (rq->curr != rq->idle) 6630 return 0; 6631 6632 if (rq->nr_running) 6633 return 0; 6634 6635 #ifdef CONFIG_SMP 6636 if (rq->ttwu_pending) 6637 return 0; 6638 #endif 6639 6640 return 1; 6641 } 6642 6643 /** 6644 * available_idle_cpu - is a given CPU idle for enqueuing work. 6645 * @cpu: the CPU in question. 6646 * 6647 * Return: 1 if the CPU is currently idle. 0 otherwise. 6648 */ 6649 int available_idle_cpu(int cpu) 6650 { 6651 if (!idle_cpu(cpu)) 6652 return 0; 6653 6654 if (vcpu_is_preempted(cpu)) 6655 return 0; 6656 6657 return 1; 6658 } 6659 6660 /** 6661 * idle_task - return the idle task for a given CPU. 6662 * @cpu: the processor in question. 6663 * 6664 * Return: The idle task for the CPU @cpu. 6665 */ 6666 struct task_struct *idle_task(int cpu) 6667 { 6668 return cpu_rq(cpu)->idle; 6669 } 6670 6671 #ifdef CONFIG_SMP 6672 /* 6673 * This function computes an effective utilization for the given CPU, to be 6674 * used for frequency selection given the linear relation: f = u * f_max. 6675 * 6676 * The scheduler tracks the following metrics: 6677 * 6678 * cpu_util_{cfs,rt,dl,irq}() 6679 * cpu_bw_dl() 6680 * 6681 * Where the cfs,rt and dl util numbers are tracked with the same metric and 6682 * synchronized windows and are thus directly comparable. 6683 * 6684 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 6685 * which excludes things like IRQ and steal-time. These latter are then accrued 6686 * in the irq utilization. 6687 * 6688 * The DL bandwidth number otoh is not a measured metric but a value computed 6689 * based on the task model parameters and gives the minimal utilization 6690 * required to meet deadlines. 6691 */ 6692 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 6693 unsigned long max, enum cpu_util_type type, 6694 struct task_struct *p) 6695 { 6696 unsigned long dl_util, util, irq; 6697 struct rq *rq = cpu_rq(cpu); 6698 6699 if (!uclamp_is_used() && 6700 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 6701 return max; 6702 } 6703 6704 /* 6705 * Early check to see if IRQ/steal time saturates the CPU, can be 6706 * because of inaccuracies in how we track these -- see 6707 * update_irq_load_avg(). 6708 */ 6709 irq = cpu_util_irq(rq); 6710 if (unlikely(irq >= max)) 6711 return max; 6712 6713 /* 6714 * Because the time spend on RT/DL tasks is visible as 'lost' time to 6715 * CFS tasks and we use the same metric to track the effective 6716 * utilization (PELT windows are synchronized) we can directly add them 6717 * to obtain the CPU's actual utilization. 6718 * 6719 * CFS and RT utilization can be boosted or capped, depending on 6720 * utilization clamp constraints requested by currently RUNNABLE 6721 * tasks. 6722 * When there are no CFS RUNNABLE tasks, clamps are released and 6723 * frequency will be gracefully reduced with the utilization decay. 6724 */ 6725 util = util_cfs + cpu_util_rt(rq); 6726 if (type == FREQUENCY_UTIL) 6727 util = uclamp_rq_util_with(rq, util, p); 6728 6729 dl_util = cpu_util_dl(rq); 6730 6731 /* 6732 * For frequency selection we do not make cpu_util_dl() a permanent part 6733 * of this sum because we want to use cpu_bw_dl() later on, but we need 6734 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 6735 * that we select f_max when there is no idle time. 6736 * 6737 * NOTE: numerical errors or stop class might cause us to not quite hit 6738 * saturation when we should -- something for later. 6739 */ 6740 if (util + dl_util >= max) 6741 return max; 6742 6743 /* 6744 * OTOH, for energy computation we need the estimated running time, so 6745 * include util_dl and ignore dl_bw. 6746 */ 6747 if (type == ENERGY_UTIL) 6748 util += dl_util; 6749 6750 /* 6751 * There is still idle time; further improve the number by using the 6752 * irq metric. Because IRQ/steal time is hidden from the task clock we 6753 * need to scale the task numbers: 6754 * 6755 * max - irq 6756 * U' = irq + --------- * U 6757 * max 6758 */ 6759 util = scale_irq_capacity(util, irq, max); 6760 util += irq; 6761 6762 /* 6763 * Bandwidth required by DEADLINE must always be granted while, for 6764 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 6765 * to gracefully reduce the frequency when no tasks show up for longer 6766 * periods of time. 6767 * 6768 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 6769 * bw_dl as requested freq. However, cpufreq is not yet ready for such 6770 * an interface. So, we only do the latter for now. 6771 */ 6772 if (type == FREQUENCY_UTIL) 6773 util += cpu_bw_dl(rq); 6774 6775 return min(max, util); 6776 } 6777 6778 unsigned long sched_cpu_util(int cpu, unsigned long max) 6779 { 6780 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max, 6781 ENERGY_UTIL, NULL); 6782 } 6783 #endif /* CONFIG_SMP */ 6784 6785 /** 6786 * find_process_by_pid - find a process with a matching PID value. 6787 * @pid: the pid in question. 6788 * 6789 * The task of @pid, if found. %NULL otherwise. 6790 */ 6791 static struct task_struct *find_process_by_pid(pid_t pid) 6792 { 6793 return pid ? find_task_by_vpid(pid) : current; 6794 } 6795 6796 /* 6797 * sched_setparam() passes in -1 for its policy, to let the functions 6798 * it calls know not to change it. 6799 */ 6800 #define SETPARAM_POLICY -1 6801 6802 static void __setscheduler_params(struct task_struct *p, 6803 const struct sched_attr *attr) 6804 { 6805 int policy = attr->sched_policy; 6806 6807 if (policy == SETPARAM_POLICY) 6808 policy = p->policy; 6809 6810 p->policy = policy; 6811 6812 if (dl_policy(policy)) 6813 __setparam_dl(p, attr); 6814 else if (fair_policy(policy)) 6815 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 6816 6817 /* 6818 * __sched_setscheduler() ensures attr->sched_priority == 0 when 6819 * !rt_policy. Always setting this ensures that things like 6820 * getparam()/getattr() don't report silly values for !rt tasks. 6821 */ 6822 p->rt_priority = attr->sched_priority; 6823 p->normal_prio = normal_prio(p); 6824 set_load_weight(p, true); 6825 } 6826 6827 /* Actually do priority change: must hold pi & rq lock. */ 6828 static void __setscheduler(struct rq *rq, struct task_struct *p, 6829 const struct sched_attr *attr, bool keep_boost) 6830 { 6831 /* 6832 * If params can't change scheduling class changes aren't allowed 6833 * either. 6834 */ 6835 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 6836 return; 6837 6838 __setscheduler_params(p, attr); 6839 6840 /* 6841 * Keep a potential priority boosting if called from 6842 * sched_setscheduler(). 6843 */ 6844 p->prio = normal_prio(p); 6845 if (keep_boost) 6846 p->prio = rt_effective_prio(p, p->prio); 6847 6848 if (dl_prio(p->prio)) 6849 p->sched_class = &dl_sched_class; 6850 else if (rt_prio(p->prio)) 6851 p->sched_class = &rt_sched_class; 6852 else 6853 p->sched_class = &fair_sched_class; 6854 } 6855 6856 /* 6857 * Check the target process has a UID that matches the current process's: 6858 */ 6859 static bool check_same_owner(struct task_struct *p) 6860 { 6861 const struct cred *cred = current_cred(), *pcred; 6862 bool match; 6863 6864 rcu_read_lock(); 6865 pcred = __task_cred(p); 6866 match = (uid_eq(cred->euid, pcred->euid) || 6867 uid_eq(cred->euid, pcred->uid)); 6868 rcu_read_unlock(); 6869 return match; 6870 } 6871 6872 static int __sched_setscheduler(struct task_struct *p, 6873 const struct sched_attr *attr, 6874 bool user, bool pi) 6875 { 6876 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 6877 MAX_RT_PRIO - 1 - attr->sched_priority; 6878 int retval, oldprio, oldpolicy = -1, queued, running; 6879 int new_effective_prio, policy = attr->sched_policy; 6880 const struct sched_class *prev_class; 6881 struct callback_head *head; 6882 struct rq_flags rf; 6883 int reset_on_fork; 6884 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6885 struct rq *rq; 6886 6887 /* The pi code expects interrupts enabled */ 6888 BUG_ON(pi && in_interrupt()); 6889 recheck: 6890 /* Double check policy once rq lock held: */ 6891 if (policy < 0) { 6892 reset_on_fork = p->sched_reset_on_fork; 6893 policy = oldpolicy = p->policy; 6894 } else { 6895 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 6896 6897 if (!valid_policy(policy)) 6898 return -EINVAL; 6899 } 6900 6901 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 6902 return -EINVAL; 6903 6904 /* 6905 * Valid priorities for SCHED_FIFO and SCHED_RR are 6906 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 6907 * SCHED_BATCH and SCHED_IDLE is 0. 6908 */ 6909 if (attr->sched_priority > MAX_RT_PRIO-1) 6910 return -EINVAL; 6911 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 6912 (rt_policy(policy) != (attr->sched_priority != 0))) 6913 return -EINVAL; 6914 6915 /* 6916 * Allow unprivileged RT tasks to decrease priority: 6917 */ 6918 if (user && !capable(CAP_SYS_NICE)) { 6919 if (fair_policy(policy)) { 6920 if (attr->sched_nice < task_nice(p) && 6921 !can_nice(p, attr->sched_nice)) 6922 return -EPERM; 6923 } 6924 6925 if (rt_policy(policy)) { 6926 unsigned long rlim_rtprio = 6927 task_rlimit(p, RLIMIT_RTPRIO); 6928 6929 /* Can't set/change the rt policy: */ 6930 if (policy != p->policy && !rlim_rtprio) 6931 return -EPERM; 6932 6933 /* Can't increase priority: */ 6934 if (attr->sched_priority > p->rt_priority && 6935 attr->sched_priority > rlim_rtprio) 6936 return -EPERM; 6937 } 6938 6939 /* 6940 * Can't set/change SCHED_DEADLINE policy at all for now 6941 * (safest behavior); in the future we would like to allow 6942 * unprivileged DL tasks to increase their relative deadline 6943 * or reduce their runtime (both ways reducing utilization) 6944 */ 6945 if (dl_policy(policy)) 6946 return -EPERM; 6947 6948 /* 6949 * Treat SCHED_IDLE as nice 20. Only allow a switch to 6950 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 6951 */ 6952 if (task_has_idle_policy(p) && !idle_policy(policy)) { 6953 if (!can_nice(p, task_nice(p))) 6954 return -EPERM; 6955 } 6956 6957 /* Can't change other user's priorities: */ 6958 if (!check_same_owner(p)) 6959 return -EPERM; 6960 6961 /* Normal users shall not reset the sched_reset_on_fork flag: */ 6962 if (p->sched_reset_on_fork && !reset_on_fork) 6963 return -EPERM; 6964 } 6965 6966 if (user) { 6967 if (attr->sched_flags & SCHED_FLAG_SUGOV) 6968 return -EINVAL; 6969 6970 retval = security_task_setscheduler(p); 6971 if (retval) 6972 return retval; 6973 } 6974 6975 /* Update task specific "requested" clamps */ 6976 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 6977 retval = uclamp_validate(p, attr); 6978 if (retval) 6979 return retval; 6980 } 6981 6982 if (pi) 6983 cpuset_read_lock(); 6984 6985 /* 6986 * Make sure no PI-waiters arrive (or leave) while we are 6987 * changing the priority of the task: 6988 * 6989 * To be able to change p->policy safely, the appropriate 6990 * runqueue lock must be held. 6991 */ 6992 rq = task_rq_lock(p, &rf); 6993 update_rq_clock(rq); 6994 6995 /* 6996 * Changing the policy of the stop threads its a very bad idea: 6997 */ 6998 if (p == rq->stop) { 6999 retval = -EINVAL; 7000 goto unlock; 7001 } 7002 7003 /* 7004 * If not changing anything there's no need to proceed further, 7005 * but store a possible modification of reset_on_fork. 7006 */ 7007 if (unlikely(policy == p->policy)) { 7008 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7009 goto change; 7010 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7011 goto change; 7012 if (dl_policy(policy) && dl_param_changed(p, attr)) 7013 goto change; 7014 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7015 goto change; 7016 7017 p->sched_reset_on_fork = reset_on_fork; 7018 retval = 0; 7019 goto unlock; 7020 } 7021 change: 7022 7023 if (user) { 7024 #ifdef CONFIG_RT_GROUP_SCHED 7025 /* 7026 * Do not allow realtime tasks into groups that have no runtime 7027 * assigned. 7028 */ 7029 if (rt_bandwidth_enabled() && rt_policy(policy) && 7030 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7031 !task_group_is_autogroup(task_group(p))) { 7032 retval = -EPERM; 7033 goto unlock; 7034 } 7035 #endif 7036 #ifdef CONFIG_SMP 7037 if (dl_bandwidth_enabled() && dl_policy(policy) && 7038 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7039 cpumask_t *span = rq->rd->span; 7040 7041 /* 7042 * Don't allow tasks with an affinity mask smaller than 7043 * the entire root_domain to become SCHED_DEADLINE. We 7044 * will also fail if there's no bandwidth available. 7045 */ 7046 if (!cpumask_subset(span, p->cpus_ptr) || 7047 rq->rd->dl_bw.bw == 0) { 7048 retval = -EPERM; 7049 goto unlock; 7050 } 7051 } 7052 #endif 7053 } 7054 7055 /* Re-check policy now with rq lock held: */ 7056 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7057 policy = oldpolicy = -1; 7058 task_rq_unlock(rq, p, &rf); 7059 if (pi) 7060 cpuset_read_unlock(); 7061 goto recheck; 7062 } 7063 7064 /* 7065 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7066 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7067 * is available. 7068 */ 7069 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7070 retval = -EBUSY; 7071 goto unlock; 7072 } 7073 7074 p->sched_reset_on_fork = reset_on_fork; 7075 oldprio = p->prio; 7076 7077 if (pi) { 7078 /* 7079 * Take priority boosted tasks into account. If the new 7080 * effective priority is unchanged, we just store the new 7081 * normal parameters and do not touch the scheduler class and 7082 * the runqueue. This will be done when the task deboost 7083 * itself. 7084 */ 7085 new_effective_prio = rt_effective_prio(p, newprio); 7086 if (new_effective_prio == oldprio) 7087 queue_flags &= ~DEQUEUE_MOVE; 7088 } 7089 7090 queued = task_on_rq_queued(p); 7091 running = task_current(rq, p); 7092 if (queued) 7093 dequeue_task(rq, p, queue_flags); 7094 if (running) 7095 put_prev_task(rq, p); 7096 7097 prev_class = p->sched_class; 7098 7099 __setscheduler(rq, p, attr, pi); 7100 __setscheduler_uclamp(p, attr); 7101 7102 if (queued) { 7103 /* 7104 * We enqueue to tail when the priority of a task is 7105 * increased (user space view). 7106 */ 7107 if (oldprio < p->prio) 7108 queue_flags |= ENQUEUE_HEAD; 7109 7110 enqueue_task(rq, p, queue_flags); 7111 } 7112 if (running) 7113 set_next_task(rq, p); 7114 7115 check_class_changed(rq, p, prev_class, oldprio); 7116 7117 /* Avoid rq from going away on us: */ 7118 preempt_disable(); 7119 head = splice_balance_callbacks(rq); 7120 task_rq_unlock(rq, p, &rf); 7121 7122 if (pi) { 7123 cpuset_read_unlock(); 7124 rt_mutex_adjust_pi(p); 7125 } 7126 7127 /* Run balance callbacks after we've adjusted the PI chain: */ 7128 balance_callbacks(rq, head); 7129 preempt_enable(); 7130 7131 return 0; 7132 7133 unlock: 7134 task_rq_unlock(rq, p, &rf); 7135 if (pi) 7136 cpuset_read_unlock(); 7137 return retval; 7138 } 7139 7140 static int _sched_setscheduler(struct task_struct *p, int policy, 7141 const struct sched_param *param, bool check) 7142 { 7143 struct sched_attr attr = { 7144 .sched_policy = policy, 7145 .sched_priority = param->sched_priority, 7146 .sched_nice = PRIO_TO_NICE(p->static_prio), 7147 }; 7148 7149 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7150 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7151 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7152 policy &= ~SCHED_RESET_ON_FORK; 7153 attr.sched_policy = policy; 7154 } 7155 7156 return __sched_setscheduler(p, &attr, check, true); 7157 } 7158 /** 7159 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7160 * @p: the task in question. 7161 * @policy: new policy. 7162 * @param: structure containing the new RT priority. 7163 * 7164 * Use sched_set_fifo(), read its comment. 7165 * 7166 * Return: 0 on success. An error code otherwise. 7167 * 7168 * NOTE that the task may be already dead. 7169 */ 7170 int sched_setscheduler(struct task_struct *p, int policy, 7171 const struct sched_param *param) 7172 { 7173 return _sched_setscheduler(p, policy, param, true); 7174 } 7175 7176 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7177 { 7178 return __sched_setscheduler(p, attr, true, true); 7179 } 7180 7181 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7182 { 7183 return __sched_setscheduler(p, attr, false, true); 7184 } 7185 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7186 7187 /** 7188 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7189 * @p: the task in question. 7190 * @policy: new policy. 7191 * @param: structure containing the new RT priority. 7192 * 7193 * Just like sched_setscheduler, only don't bother checking if the 7194 * current context has permission. For example, this is needed in 7195 * stop_machine(): we create temporary high priority worker threads, 7196 * but our caller might not have that capability. 7197 * 7198 * Return: 0 on success. An error code otherwise. 7199 */ 7200 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7201 const struct sched_param *param) 7202 { 7203 return _sched_setscheduler(p, policy, param, false); 7204 } 7205 7206 /* 7207 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7208 * incapable of resource management, which is the one thing an OS really should 7209 * be doing. 7210 * 7211 * This is of course the reason it is limited to privileged users only. 7212 * 7213 * Worse still; it is fundamentally impossible to compose static priority 7214 * workloads. You cannot take two correctly working static prio workloads 7215 * and smash them together and still expect them to work. 7216 * 7217 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7218 * 7219 * MAX_RT_PRIO / 2 7220 * 7221 * The administrator _MUST_ configure the system, the kernel simply doesn't 7222 * know enough information to make a sensible choice. 7223 */ 7224 void sched_set_fifo(struct task_struct *p) 7225 { 7226 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7227 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7228 } 7229 EXPORT_SYMBOL_GPL(sched_set_fifo); 7230 7231 /* 7232 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7233 */ 7234 void sched_set_fifo_low(struct task_struct *p) 7235 { 7236 struct sched_param sp = { .sched_priority = 1 }; 7237 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7238 } 7239 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7240 7241 void sched_set_normal(struct task_struct *p, int nice) 7242 { 7243 struct sched_attr attr = { 7244 .sched_policy = SCHED_NORMAL, 7245 .sched_nice = nice, 7246 }; 7247 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7248 } 7249 EXPORT_SYMBOL_GPL(sched_set_normal); 7250 7251 static int 7252 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7253 { 7254 struct sched_param lparam; 7255 struct task_struct *p; 7256 int retval; 7257 7258 if (!param || pid < 0) 7259 return -EINVAL; 7260 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7261 return -EFAULT; 7262 7263 rcu_read_lock(); 7264 retval = -ESRCH; 7265 p = find_process_by_pid(pid); 7266 if (likely(p)) 7267 get_task_struct(p); 7268 rcu_read_unlock(); 7269 7270 if (likely(p)) { 7271 retval = sched_setscheduler(p, policy, &lparam); 7272 put_task_struct(p); 7273 } 7274 7275 return retval; 7276 } 7277 7278 /* 7279 * Mimics kernel/events/core.c perf_copy_attr(). 7280 */ 7281 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7282 { 7283 u32 size; 7284 int ret; 7285 7286 /* Zero the full structure, so that a short copy will be nice: */ 7287 memset(attr, 0, sizeof(*attr)); 7288 7289 ret = get_user(size, &uattr->size); 7290 if (ret) 7291 return ret; 7292 7293 /* ABI compatibility quirk: */ 7294 if (!size) 7295 size = SCHED_ATTR_SIZE_VER0; 7296 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7297 goto err_size; 7298 7299 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7300 if (ret) { 7301 if (ret == -E2BIG) 7302 goto err_size; 7303 return ret; 7304 } 7305 7306 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7307 size < SCHED_ATTR_SIZE_VER1) 7308 return -EINVAL; 7309 7310 /* 7311 * XXX: Do we want to be lenient like existing syscalls; or do we want 7312 * to be strict and return an error on out-of-bounds values? 7313 */ 7314 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7315 7316 return 0; 7317 7318 err_size: 7319 put_user(sizeof(*attr), &uattr->size); 7320 return -E2BIG; 7321 } 7322 7323 /** 7324 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7325 * @pid: the pid in question. 7326 * @policy: new policy. 7327 * @param: structure containing the new RT priority. 7328 * 7329 * Return: 0 on success. An error code otherwise. 7330 */ 7331 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7332 { 7333 if (policy < 0) 7334 return -EINVAL; 7335 7336 return do_sched_setscheduler(pid, policy, param); 7337 } 7338 7339 /** 7340 * sys_sched_setparam - set/change the RT priority of a thread 7341 * @pid: the pid in question. 7342 * @param: structure containing the new RT priority. 7343 * 7344 * Return: 0 on success. An error code otherwise. 7345 */ 7346 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7347 { 7348 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7349 } 7350 7351 /** 7352 * sys_sched_setattr - same as above, but with extended sched_attr 7353 * @pid: the pid in question. 7354 * @uattr: structure containing the extended parameters. 7355 * @flags: for future extension. 7356 */ 7357 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7358 unsigned int, flags) 7359 { 7360 struct sched_attr attr; 7361 struct task_struct *p; 7362 int retval; 7363 7364 if (!uattr || pid < 0 || flags) 7365 return -EINVAL; 7366 7367 retval = sched_copy_attr(uattr, &attr); 7368 if (retval) 7369 return retval; 7370 7371 if ((int)attr.sched_policy < 0) 7372 return -EINVAL; 7373 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7374 attr.sched_policy = SETPARAM_POLICY; 7375 7376 rcu_read_lock(); 7377 retval = -ESRCH; 7378 p = find_process_by_pid(pid); 7379 if (likely(p)) 7380 get_task_struct(p); 7381 rcu_read_unlock(); 7382 7383 if (likely(p)) { 7384 retval = sched_setattr(p, &attr); 7385 put_task_struct(p); 7386 } 7387 7388 return retval; 7389 } 7390 7391 /** 7392 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7393 * @pid: the pid in question. 7394 * 7395 * Return: On success, the policy of the thread. Otherwise, a negative error 7396 * code. 7397 */ 7398 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7399 { 7400 struct task_struct *p; 7401 int retval; 7402 7403 if (pid < 0) 7404 return -EINVAL; 7405 7406 retval = -ESRCH; 7407 rcu_read_lock(); 7408 p = find_process_by_pid(pid); 7409 if (p) { 7410 retval = security_task_getscheduler(p); 7411 if (!retval) 7412 retval = p->policy 7413 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7414 } 7415 rcu_read_unlock(); 7416 return retval; 7417 } 7418 7419 /** 7420 * sys_sched_getparam - get the RT priority of a thread 7421 * @pid: the pid in question. 7422 * @param: structure containing the RT priority. 7423 * 7424 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7425 * code. 7426 */ 7427 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7428 { 7429 struct sched_param lp = { .sched_priority = 0 }; 7430 struct task_struct *p; 7431 int retval; 7432 7433 if (!param || pid < 0) 7434 return -EINVAL; 7435 7436 rcu_read_lock(); 7437 p = find_process_by_pid(pid); 7438 retval = -ESRCH; 7439 if (!p) 7440 goto out_unlock; 7441 7442 retval = security_task_getscheduler(p); 7443 if (retval) 7444 goto out_unlock; 7445 7446 if (task_has_rt_policy(p)) 7447 lp.sched_priority = p->rt_priority; 7448 rcu_read_unlock(); 7449 7450 /* 7451 * This one might sleep, we cannot do it with a spinlock held ... 7452 */ 7453 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 7454 7455 return retval; 7456 7457 out_unlock: 7458 rcu_read_unlock(); 7459 return retval; 7460 } 7461 7462 /* 7463 * Copy the kernel size attribute structure (which might be larger 7464 * than what user-space knows about) to user-space. 7465 * 7466 * Note that all cases are valid: user-space buffer can be larger or 7467 * smaller than the kernel-space buffer. The usual case is that both 7468 * have the same size. 7469 */ 7470 static int 7471 sched_attr_copy_to_user(struct sched_attr __user *uattr, 7472 struct sched_attr *kattr, 7473 unsigned int usize) 7474 { 7475 unsigned int ksize = sizeof(*kattr); 7476 7477 if (!access_ok(uattr, usize)) 7478 return -EFAULT; 7479 7480 /* 7481 * sched_getattr() ABI forwards and backwards compatibility: 7482 * 7483 * If usize == ksize then we just copy everything to user-space and all is good. 7484 * 7485 * If usize < ksize then we only copy as much as user-space has space for, 7486 * this keeps ABI compatibility as well. We skip the rest. 7487 * 7488 * If usize > ksize then user-space is using a newer version of the ABI, 7489 * which part the kernel doesn't know about. Just ignore it - tooling can 7490 * detect the kernel's knowledge of attributes from the attr->size value 7491 * which is set to ksize in this case. 7492 */ 7493 kattr->size = min(usize, ksize); 7494 7495 if (copy_to_user(uattr, kattr, kattr->size)) 7496 return -EFAULT; 7497 7498 return 0; 7499 } 7500 7501 /** 7502 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 7503 * @pid: the pid in question. 7504 * @uattr: structure containing the extended parameters. 7505 * @usize: sizeof(attr) for fwd/bwd comp. 7506 * @flags: for future extension. 7507 */ 7508 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 7509 unsigned int, usize, unsigned int, flags) 7510 { 7511 struct sched_attr kattr = { }; 7512 struct task_struct *p; 7513 int retval; 7514 7515 if (!uattr || pid < 0 || usize > PAGE_SIZE || 7516 usize < SCHED_ATTR_SIZE_VER0 || flags) 7517 return -EINVAL; 7518 7519 rcu_read_lock(); 7520 p = find_process_by_pid(pid); 7521 retval = -ESRCH; 7522 if (!p) 7523 goto out_unlock; 7524 7525 retval = security_task_getscheduler(p); 7526 if (retval) 7527 goto out_unlock; 7528 7529 kattr.sched_policy = p->policy; 7530 if (p->sched_reset_on_fork) 7531 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7532 if (task_has_dl_policy(p)) 7533 __getparam_dl(p, &kattr); 7534 else if (task_has_rt_policy(p)) 7535 kattr.sched_priority = p->rt_priority; 7536 else 7537 kattr.sched_nice = task_nice(p); 7538 7539 #ifdef CONFIG_UCLAMP_TASK 7540 /* 7541 * This could race with another potential updater, but this is fine 7542 * because it'll correctly read the old or the new value. We don't need 7543 * to guarantee who wins the race as long as it doesn't return garbage. 7544 */ 7545 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 7546 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 7547 #endif 7548 7549 rcu_read_unlock(); 7550 7551 return sched_attr_copy_to_user(uattr, &kattr, usize); 7552 7553 out_unlock: 7554 rcu_read_unlock(); 7555 return retval; 7556 } 7557 7558 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 7559 { 7560 cpumask_var_t cpus_allowed, new_mask; 7561 struct task_struct *p; 7562 int retval; 7563 7564 rcu_read_lock(); 7565 7566 p = find_process_by_pid(pid); 7567 if (!p) { 7568 rcu_read_unlock(); 7569 return -ESRCH; 7570 } 7571 7572 /* Prevent p going away */ 7573 get_task_struct(p); 7574 rcu_read_unlock(); 7575 7576 if (p->flags & PF_NO_SETAFFINITY) { 7577 retval = -EINVAL; 7578 goto out_put_task; 7579 } 7580 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 7581 retval = -ENOMEM; 7582 goto out_put_task; 7583 } 7584 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 7585 retval = -ENOMEM; 7586 goto out_free_cpus_allowed; 7587 } 7588 retval = -EPERM; 7589 if (!check_same_owner(p)) { 7590 rcu_read_lock(); 7591 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 7592 rcu_read_unlock(); 7593 goto out_free_new_mask; 7594 } 7595 rcu_read_unlock(); 7596 } 7597 7598 retval = security_task_setscheduler(p); 7599 if (retval) 7600 goto out_free_new_mask; 7601 7602 7603 cpuset_cpus_allowed(p, cpus_allowed); 7604 cpumask_and(new_mask, in_mask, cpus_allowed); 7605 7606 /* 7607 * Since bandwidth control happens on root_domain basis, 7608 * if admission test is enabled, we only admit -deadline 7609 * tasks allowed to run on all the CPUs in the task's 7610 * root_domain. 7611 */ 7612 #ifdef CONFIG_SMP 7613 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 7614 rcu_read_lock(); 7615 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 7616 retval = -EBUSY; 7617 rcu_read_unlock(); 7618 goto out_free_new_mask; 7619 } 7620 rcu_read_unlock(); 7621 } 7622 #endif 7623 again: 7624 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK); 7625 7626 if (!retval) { 7627 cpuset_cpus_allowed(p, cpus_allowed); 7628 if (!cpumask_subset(new_mask, cpus_allowed)) { 7629 /* 7630 * We must have raced with a concurrent cpuset 7631 * update. Just reset the cpus_allowed to the 7632 * cpuset's cpus_allowed 7633 */ 7634 cpumask_copy(new_mask, cpus_allowed); 7635 goto again; 7636 } 7637 } 7638 out_free_new_mask: 7639 free_cpumask_var(new_mask); 7640 out_free_cpus_allowed: 7641 free_cpumask_var(cpus_allowed); 7642 out_put_task: 7643 put_task_struct(p); 7644 return retval; 7645 } 7646 7647 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 7648 struct cpumask *new_mask) 7649 { 7650 if (len < cpumask_size()) 7651 cpumask_clear(new_mask); 7652 else if (len > cpumask_size()) 7653 len = cpumask_size(); 7654 7655 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 7656 } 7657 7658 /** 7659 * sys_sched_setaffinity - set the CPU affinity of a process 7660 * @pid: pid of the process 7661 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 7662 * @user_mask_ptr: user-space pointer to the new CPU mask 7663 * 7664 * Return: 0 on success. An error code otherwise. 7665 */ 7666 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 7667 unsigned long __user *, user_mask_ptr) 7668 { 7669 cpumask_var_t new_mask; 7670 int retval; 7671 7672 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 7673 return -ENOMEM; 7674 7675 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 7676 if (retval == 0) 7677 retval = sched_setaffinity(pid, new_mask); 7678 free_cpumask_var(new_mask); 7679 return retval; 7680 } 7681 7682 long sched_getaffinity(pid_t pid, struct cpumask *mask) 7683 { 7684 struct task_struct *p; 7685 unsigned long flags; 7686 int retval; 7687 7688 rcu_read_lock(); 7689 7690 retval = -ESRCH; 7691 p = find_process_by_pid(pid); 7692 if (!p) 7693 goto out_unlock; 7694 7695 retval = security_task_getscheduler(p); 7696 if (retval) 7697 goto out_unlock; 7698 7699 raw_spin_lock_irqsave(&p->pi_lock, flags); 7700 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 7701 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 7702 7703 out_unlock: 7704 rcu_read_unlock(); 7705 7706 return retval; 7707 } 7708 7709 /** 7710 * sys_sched_getaffinity - get the CPU affinity of a process 7711 * @pid: pid of the process 7712 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 7713 * @user_mask_ptr: user-space pointer to hold the current CPU mask 7714 * 7715 * Return: size of CPU mask copied to user_mask_ptr on success. An 7716 * error code otherwise. 7717 */ 7718 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 7719 unsigned long __user *, user_mask_ptr) 7720 { 7721 int ret; 7722 cpumask_var_t mask; 7723 7724 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 7725 return -EINVAL; 7726 if (len & (sizeof(unsigned long)-1)) 7727 return -EINVAL; 7728 7729 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 7730 return -ENOMEM; 7731 7732 ret = sched_getaffinity(pid, mask); 7733 if (ret == 0) { 7734 unsigned int retlen = min(len, cpumask_size()); 7735 7736 if (copy_to_user(user_mask_ptr, mask, retlen)) 7737 ret = -EFAULT; 7738 else 7739 ret = retlen; 7740 } 7741 free_cpumask_var(mask); 7742 7743 return ret; 7744 } 7745 7746 static void do_sched_yield(void) 7747 { 7748 struct rq_flags rf; 7749 struct rq *rq; 7750 7751 rq = this_rq_lock_irq(&rf); 7752 7753 schedstat_inc(rq->yld_count); 7754 current->sched_class->yield_task(rq); 7755 7756 preempt_disable(); 7757 rq_unlock_irq(rq, &rf); 7758 sched_preempt_enable_no_resched(); 7759 7760 schedule(); 7761 } 7762 7763 /** 7764 * sys_sched_yield - yield the current processor to other threads. 7765 * 7766 * This function yields the current CPU to other tasks. If there are no 7767 * other threads running on this CPU then this function will return. 7768 * 7769 * Return: 0. 7770 */ 7771 SYSCALL_DEFINE0(sched_yield) 7772 { 7773 do_sched_yield(); 7774 return 0; 7775 } 7776 7777 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7778 int __sched __cond_resched(void) 7779 { 7780 if (should_resched(0)) { 7781 preempt_schedule_common(); 7782 return 1; 7783 } 7784 #ifndef CONFIG_PREEMPT_RCU 7785 rcu_all_qs(); 7786 #endif 7787 return 0; 7788 } 7789 EXPORT_SYMBOL(__cond_resched); 7790 #endif 7791 7792 #ifdef CONFIG_PREEMPT_DYNAMIC 7793 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7794 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7795 7796 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7797 EXPORT_STATIC_CALL_TRAMP(might_resched); 7798 #endif 7799 7800 /* 7801 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7802 * call schedule, and on return reacquire the lock. 7803 * 7804 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7805 * operations here to prevent schedule() from being called twice (once via 7806 * spin_unlock(), once by hand). 7807 */ 7808 int __cond_resched_lock(spinlock_t *lock) 7809 { 7810 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7811 int ret = 0; 7812 7813 lockdep_assert_held(lock); 7814 7815 if (spin_needbreak(lock) || resched) { 7816 spin_unlock(lock); 7817 if (resched) 7818 preempt_schedule_common(); 7819 else 7820 cpu_relax(); 7821 ret = 1; 7822 spin_lock(lock); 7823 } 7824 return ret; 7825 } 7826 EXPORT_SYMBOL(__cond_resched_lock); 7827 7828 int __cond_resched_rwlock_read(rwlock_t *lock) 7829 { 7830 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7831 int ret = 0; 7832 7833 lockdep_assert_held_read(lock); 7834 7835 if (rwlock_needbreak(lock) || resched) { 7836 read_unlock(lock); 7837 if (resched) 7838 preempt_schedule_common(); 7839 else 7840 cpu_relax(); 7841 ret = 1; 7842 read_lock(lock); 7843 } 7844 return ret; 7845 } 7846 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7847 7848 int __cond_resched_rwlock_write(rwlock_t *lock) 7849 { 7850 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7851 int ret = 0; 7852 7853 lockdep_assert_held_write(lock); 7854 7855 if (rwlock_needbreak(lock) || resched) { 7856 write_unlock(lock); 7857 if (resched) 7858 preempt_schedule_common(); 7859 else 7860 cpu_relax(); 7861 ret = 1; 7862 write_lock(lock); 7863 } 7864 return ret; 7865 } 7866 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7867 7868 /** 7869 * yield - yield the current processor to other threads. 7870 * 7871 * Do not ever use this function, there's a 99% chance you're doing it wrong. 7872 * 7873 * The scheduler is at all times free to pick the calling task as the most 7874 * eligible task to run, if removing the yield() call from your code breaks 7875 * it, it's already broken. 7876 * 7877 * Typical broken usage is: 7878 * 7879 * while (!event) 7880 * yield(); 7881 * 7882 * where one assumes that yield() will let 'the other' process run that will 7883 * make event true. If the current task is a SCHED_FIFO task that will never 7884 * happen. Never use yield() as a progress guarantee!! 7885 * 7886 * If you want to use yield() to wait for something, use wait_event(). 7887 * If you want to use yield() to be 'nice' for others, use cond_resched(). 7888 * If you still want to use yield(), do not! 7889 */ 7890 void __sched yield(void) 7891 { 7892 set_current_state(TASK_RUNNING); 7893 do_sched_yield(); 7894 } 7895 EXPORT_SYMBOL(yield); 7896 7897 /** 7898 * yield_to - yield the current processor to another thread in 7899 * your thread group, or accelerate that thread toward the 7900 * processor it's on. 7901 * @p: target task 7902 * @preempt: whether task preemption is allowed or not 7903 * 7904 * It's the caller's job to ensure that the target task struct 7905 * can't go away on us before we can do any checks. 7906 * 7907 * Return: 7908 * true (>0) if we indeed boosted the target task. 7909 * false (0) if we failed to boost the target. 7910 * -ESRCH if there's no task to yield to. 7911 */ 7912 int __sched yield_to(struct task_struct *p, bool preempt) 7913 { 7914 struct task_struct *curr = current; 7915 struct rq *rq, *p_rq; 7916 unsigned long flags; 7917 int yielded = 0; 7918 7919 local_irq_save(flags); 7920 rq = this_rq(); 7921 7922 again: 7923 p_rq = task_rq(p); 7924 /* 7925 * If we're the only runnable task on the rq and target rq also 7926 * has only one task, there's absolutely no point in yielding. 7927 */ 7928 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 7929 yielded = -ESRCH; 7930 goto out_irq; 7931 } 7932 7933 double_rq_lock(rq, p_rq); 7934 if (task_rq(p) != p_rq) { 7935 double_rq_unlock(rq, p_rq); 7936 goto again; 7937 } 7938 7939 if (!curr->sched_class->yield_to_task) 7940 goto out_unlock; 7941 7942 if (curr->sched_class != p->sched_class) 7943 goto out_unlock; 7944 7945 if (task_running(p_rq, p) || !task_is_running(p)) 7946 goto out_unlock; 7947 7948 yielded = curr->sched_class->yield_to_task(rq, p); 7949 if (yielded) { 7950 schedstat_inc(rq->yld_count); 7951 /* 7952 * Make p's CPU reschedule; pick_next_entity takes care of 7953 * fairness. 7954 */ 7955 if (preempt && rq != p_rq) 7956 resched_curr(p_rq); 7957 } 7958 7959 out_unlock: 7960 double_rq_unlock(rq, p_rq); 7961 out_irq: 7962 local_irq_restore(flags); 7963 7964 if (yielded > 0) 7965 schedule(); 7966 7967 return yielded; 7968 } 7969 EXPORT_SYMBOL_GPL(yield_to); 7970 7971 int io_schedule_prepare(void) 7972 { 7973 int old_iowait = current->in_iowait; 7974 7975 current->in_iowait = 1; 7976 blk_schedule_flush_plug(current); 7977 7978 return old_iowait; 7979 } 7980 7981 void io_schedule_finish(int token) 7982 { 7983 current->in_iowait = token; 7984 } 7985 7986 /* 7987 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7988 * that process accounting knows that this is a task in IO wait state. 7989 */ 7990 long __sched io_schedule_timeout(long timeout) 7991 { 7992 int token; 7993 long ret; 7994 7995 token = io_schedule_prepare(); 7996 ret = schedule_timeout(timeout); 7997 io_schedule_finish(token); 7998 7999 return ret; 8000 } 8001 EXPORT_SYMBOL(io_schedule_timeout); 8002 8003 void __sched io_schedule(void) 8004 { 8005 int token; 8006 8007 token = io_schedule_prepare(); 8008 schedule(); 8009 io_schedule_finish(token); 8010 } 8011 EXPORT_SYMBOL(io_schedule); 8012 8013 /** 8014 * sys_sched_get_priority_max - return maximum RT priority. 8015 * @policy: scheduling class. 8016 * 8017 * Return: On success, this syscall returns the maximum 8018 * rt_priority that can be used by a given scheduling class. 8019 * On failure, a negative error code is returned. 8020 */ 8021 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8022 { 8023 int ret = -EINVAL; 8024 8025 switch (policy) { 8026 case SCHED_FIFO: 8027 case SCHED_RR: 8028 ret = MAX_RT_PRIO-1; 8029 break; 8030 case SCHED_DEADLINE: 8031 case SCHED_NORMAL: 8032 case SCHED_BATCH: 8033 case SCHED_IDLE: 8034 ret = 0; 8035 break; 8036 } 8037 return ret; 8038 } 8039 8040 /** 8041 * sys_sched_get_priority_min - return minimum RT priority. 8042 * @policy: scheduling class. 8043 * 8044 * Return: On success, this syscall returns the minimum 8045 * rt_priority that can be used by a given scheduling class. 8046 * On failure, a negative error code is returned. 8047 */ 8048 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8049 { 8050 int ret = -EINVAL; 8051 8052 switch (policy) { 8053 case SCHED_FIFO: 8054 case SCHED_RR: 8055 ret = 1; 8056 break; 8057 case SCHED_DEADLINE: 8058 case SCHED_NORMAL: 8059 case SCHED_BATCH: 8060 case SCHED_IDLE: 8061 ret = 0; 8062 } 8063 return ret; 8064 } 8065 8066 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8067 { 8068 struct task_struct *p; 8069 unsigned int time_slice; 8070 struct rq_flags rf; 8071 struct rq *rq; 8072 int retval; 8073 8074 if (pid < 0) 8075 return -EINVAL; 8076 8077 retval = -ESRCH; 8078 rcu_read_lock(); 8079 p = find_process_by_pid(pid); 8080 if (!p) 8081 goto out_unlock; 8082 8083 retval = security_task_getscheduler(p); 8084 if (retval) 8085 goto out_unlock; 8086 8087 rq = task_rq_lock(p, &rf); 8088 time_slice = 0; 8089 if (p->sched_class->get_rr_interval) 8090 time_slice = p->sched_class->get_rr_interval(rq, p); 8091 task_rq_unlock(rq, p, &rf); 8092 8093 rcu_read_unlock(); 8094 jiffies_to_timespec64(time_slice, t); 8095 return 0; 8096 8097 out_unlock: 8098 rcu_read_unlock(); 8099 return retval; 8100 } 8101 8102 /** 8103 * sys_sched_rr_get_interval - return the default timeslice of a process. 8104 * @pid: pid of the process. 8105 * @interval: userspace pointer to the timeslice value. 8106 * 8107 * this syscall writes the default timeslice value of a given process 8108 * into the user-space timespec buffer. A value of '0' means infinity. 8109 * 8110 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8111 * an error code. 8112 */ 8113 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8114 struct __kernel_timespec __user *, interval) 8115 { 8116 struct timespec64 t; 8117 int retval = sched_rr_get_interval(pid, &t); 8118 8119 if (retval == 0) 8120 retval = put_timespec64(&t, interval); 8121 8122 return retval; 8123 } 8124 8125 #ifdef CONFIG_COMPAT_32BIT_TIME 8126 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8127 struct old_timespec32 __user *, interval) 8128 { 8129 struct timespec64 t; 8130 int retval = sched_rr_get_interval(pid, &t); 8131 8132 if (retval == 0) 8133 retval = put_old_timespec32(&t, interval); 8134 return retval; 8135 } 8136 #endif 8137 8138 void sched_show_task(struct task_struct *p) 8139 { 8140 unsigned long free = 0; 8141 int ppid; 8142 8143 if (!try_get_task_stack(p)) 8144 return; 8145 8146 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8147 8148 if (task_is_running(p)) 8149 pr_cont(" running task "); 8150 #ifdef CONFIG_DEBUG_STACK_USAGE 8151 free = stack_not_used(p); 8152 #endif 8153 ppid = 0; 8154 rcu_read_lock(); 8155 if (pid_alive(p)) 8156 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8157 rcu_read_unlock(); 8158 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 8159 free, task_pid_nr(p), ppid, 8160 (unsigned long)task_thread_info(p)->flags); 8161 8162 print_worker_info(KERN_INFO, p); 8163 print_stop_info(KERN_INFO, p); 8164 show_stack(p, NULL, KERN_INFO); 8165 put_task_stack(p); 8166 } 8167 EXPORT_SYMBOL_GPL(sched_show_task); 8168 8169 static inline bool 8170 state_filter_match(unsigned long state_filter, struct task_struct *p) 8171 { 8172 unsigned int state = READ_ONCE(p->__state); 8173 8174 /* no filter, everything matches */ 8175 if (!state_filter) 8176 return true; 8177 8178 /* filter, but doesn't match */ 8179 if (!(state & state_filter)) 8180 return false; 8181 8182 /* 8183 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8184 * TASK_KILLABLE). 8185 */ 8186 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE) 8187 return false; 8188 8189 return true; 8190 } 8191 8192 8193 void show_state_filter(unsigned int state_filter) 8194 { 8195 struct task_struct *g, *p; 8196 8197 rcu_read_lock(); 8198 for_each_process_thread(g, p) { 8199 /* 8200 * reset the NMI-timeout, listing all files on a slow 8201 * console might take a lot of time: 8202 * Also, reset softlockup watchdogs on all CPUs, because 8203 * another CPU might be blocked waiting for us to process 8204 * an IPI. 8205 */ 8206 touch_nmi_watchdog(); 8207 touch_all_softlockup_watchdogs(); 8208 if (state_filter_match(state_filter, p)) 8209 sched_show_task(p); 8210 } 8211 8212 #ifdef CONFIG_SCHED_DEBUG 8213 if (!state_filter) 8214 sysrq_sched_debug_show(); 8215 #endif 8216 rcu_read_unlock(); 8217 /* 8218 * Only show locks if all tasks are dumped: 8219 */ 8220 if (!state_filter) 8221 debug_show_all_locks(); 8222 } 8223 8224 /** 8225 * init_idle - set up an idle thread for a given CPU 8226 * @idle: task in question 8227 * @cpu: CPU the idle task belongs to 8228 * 8229 * NOTE: this function does not set the idle thread's NEED_RESCHED 8230 * flag, to make booting more robust. 8231 */ 8232 void __init init_idle(struct task_struct *idle, int cpu) 8233 { 8234 struct rq *rq = cpu_rq(cpu); 8235 unsigned long flags; 8236 8237 __sched_fork(0, idle); 8238 8239 /* 8240 * The idle task doesn't need the kthread struct to function, but it 8241 * is dressed up as a per-CPU kthread and thus needs to play the part 8242 * if we want to avoid special-casing it in code that deals with per-CPU 8243 * kthreads. 8244 */ 8245 set_kthread_struct(idle); 8246 8247 raw_spin_lock_irqsave(&idle->pi_lock, flags); 8248 raw_spin_rq_lock(rq); 8249 8250 idle->__state = TASK_RUNNING; 8251 idle->se.exec_start = sched_clock(); 8252 /* 8253 * PF_KTHREAD should already be set at this point; regardless, make it 8254 * look like a proper per-CPU kthread. 8255 */ 8256 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 8257 kthread_set_per_cpu(idle, cpu); 8258 8259 scs_task_reset(idle); 8260 kasan_unpoison_task_stack(idle); 8261 8262 #ifdef CONFIG_SMP 8263 /* 8264 * It's possible that init_idle() gets called multiple times on a task, 8265 * in that case do_set_cpus_allowed() will not do the right thing. 8266 * 8267 * And since this is boot we can forgo the serialization. 8268 */ 8269 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 8270 #endif 8271 /* 8272 * We're having a chicken and egg problem, even though we are 8273 * holding rq->lock, the CPU isn't yet set to this CPU so the 8274 * lockdep check in task_group() will fail. 8275 * 8276 * Similar case to sched_fork(). / Alternatively we could 8277 * use task_rq_lock() here and obtain the other rq->lock. 8278 * 8279 * Silence PROVE_RCU 8280 */ 8281 rcu_read_lock(); 8282 __set_task_cpu(idle, cpu); 8283 rcu_read_unlock(); 8284 8285 rq->idle = idle; 8286 rcu_assign_pointer(rq->curr, idle); 8287 idle->on_rq = TASK_ON_RQ_QUEUED; 8288 #ifdef CONFIG_SMP 8289 idle->on_cpu = 1; 8290 #endif 8291 raw_spin_rq_unlock(rq); 8292 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 8293 8294 /* Set the preempt count _outside_ the spinlocks! */ 8295 init_idle_preempt_count(idle, cpu); 8296 8297 /* 8298 * The idle tasks have their own, simple scheduling class: 8299 */ 8300 idle->sched_class = &idle_sched_class; 8301 ftrace_graph_init_idle_task(idle, cpu); 8302 vtime_init_idle(idle, cpu); 8303 #ifdef CONFIG_SMP 8304 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 8305 #endif 8306 } 8307 8308 #ifdef CONFIG_SMP 8309 8310 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 8311 const struct cpumask *trial) 8312 { 8313 int ret = 1; 8314 8315 if (!cpumask_weight(cur)) 8316 return ret; 8317 8318 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 8319 8320 return ret; 8321 } 8322 8323 int task_can_attach(struct task_struct *p, 8324 const struct cpumask *cs_cpus_allowed) 8325 { 8326 int ret = 0; 8327 8328 /* 8329 * Kthreads which disallow setaffinity shouldn't be moved 8330 * to a new cpuset; we don't want to change their CPU 8331 * affinity and isolating such threads by their set of 8332 * allowed nodes is unnecessary. Thus, cpusets are not 8333 * applicable for such threads. This prevents checking for 8334 * success of set_cpus_allowed_ptr() on all attached tasks 8335 * before cpus_mask may be changed. 8336 */ 8337 if (p->flags & PF_NO_SETAFFINITY) { 8338 ret = -EINVAL; 8339 goto out; 8340 } 8341 8342 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 8343 cs_cpus_allowed)) 8344 ret = dl_task_can_attach(p, cs_cpus_allowed); 8345 8346 out: 8347 return ret; 8348 } 8349 8350 bool sched_smp_initialized __read_mostly; 8351 8352 #ifdef CONFIG_NUMA_BALANCING 8353 /* Migrate current task p to target_cpu */ 8354 int migrate_task_to(struct task_struct *p, int target_cpu) 8355 { 8356 struct migration_arg arg = { p, target_cpu }; 8357 int curr_cpu = task_cpu(p); 8358 8359 if (curr_cpu == target_cpu) 8360 return 0; 8361 8362 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 8363 return -EINVAL; 8364 8365 /* TODO: This is not properly updating schedstats */ 8366 8367 trace_sched_move_numa(p, curr_cpu, target_cpu); 8368 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 8369 } 8370 8371 /* 8372 * Requeue a task on a given node and accurately track the number of NUMA 8373 * tasks on the runqueues 8374 */ 8375 void sched_setnuma(struct task_struct *p, int nid) 8376 { 8377 bool queued, running; 8378 struct rq_flags rf; 8379 struct rq *rq; 8380 8381 rq = task_rq_lock(p, &rf); 8382 queued = task_on_rq_queued(p); 8383 running = task_current(rq, p); 8384 8385 if (queued) 8386 dequeue_task(rq, p, DEQUEUE_SAVE); 8387 if (running) 8388 put_prev_task(rq, p); 8389 8390 p->numa_preferred_nid = nid; 8391 8392 if (queued) 8393 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 8394 if (running) 8395 set_next_task(rq, p); 8396 task_rq_unlock(rq, p, &rf); 8397 } 8398 #endif /* CONFIG_NUMA_BALANCING */ 8399 8400 #ifdef CONFIG_HOTPLUG_CPU 8401 /* 8402 * Ensure that the idle task is using init_mm right before its CPU goes 8403 * offline. 8404 */ 8405 void idle_task_exit(void) 8406 { 8407 struct mm_struct *mm = current->active_mm; 8408 8409 BUG_ON(cpu_online(smp_processor_id())); 8410 BUG_ON(current != this_rq()->idle); 8411 8412 if (mm != &init_mm) { 8413 switch_mm(mm, &init_mm, current); 8414 finish_arch_post_lock_switch(); 8415 } 8416 8417 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 8418 } 8419 8420 static int __balance_push_cpu_stop(void *arg) 8421 { 8422 struct task_struct *p = arg; 8423 struct rq *rq = this_rq(); 8424 struct rq_flags rf; 8425 int cpu; 8426 8427 raw_spin_lock_irq(&p->pi_lock); 8428 rq_lock(rq, &rf); 8429 8430 update_rq_clock(rq); 8431 8432 if (task_rq(p) == rq && task_on_rq_queued(p)) { 8433 cpu = select_fallback_rq(rq->cpu, p); 8434 rq = __migrate_task(rq, &rf, p, cpu); 8435 } 8436 8437 rq_unlock(rq, &rf); 8438 raw_spin_unlock_irq(&p->pi_lock); 8439 8440 put_task_struct(p); 8441 8442 return 0; 8443 } 8444 8445 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8446 8447 /* 8448 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8449 * 8450 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8451 * effective when the hotplug motion is down. 8452 */ 8453 static void balance_push(struct rq *rq) 8454 { 8455 struct task_struct *push_task = rq->curr; 8456 8457 lockdep_assert_rq_held(rq); 8458 SCHED_WARN_ON(rq->cpu != smp_processor_id()); 8459 8460 /* 8461 * Ensure the thing is persistent until balance_push_set(.on = false); 8462 */ 8463 rq->balance_callback = &balance_push_callback; 8464 8465 /* 8466 * Only active while going offline. 8467 */ 8468 if (!cpu_dying(rq->cpu)) 8469 return; 8470 8471 /* 8472 * Both the cpu-hotplug and stop task are in this case and are 8473 * required to complete the hotplug process. 8474 */ 8475 if (kthread_is_per_cpu(push_task) || 8476 is_migration_disabled(push_task)) { 8477 8478 /* 8479 * If this is the idle task on the outgoing CPU try to wake 8480 * up the hotplug control thread which might wait for the 8481 * last task to vanish. The rcuwait_active() check is 8482 * accurate here because the waiter is pinned on this CPU 8483 * and can't obviously be running in parallel. 8484 * 8485 * On RT kernels this also has to check whether there are 8486 * pinned and scheduled out tasks on the runqueue. They 8487 * need to leave the migrate disabled section first. 8488 */ 8489 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8490 rcuwait_active(&rq->hotplug_wait)) { 8491 raw_spin_rq_unlock(rq); 8492 rcuwait_wake_up(&rq->hotplug_wait); 8493 raw_spin_rq_lock(rq); 8494 } 8495 return; 8496 } 8497 8498 get_task_struct(push_task); 8499 /* 8500 * Temporarily drop rq->lock such that we can wake-up the stop task. 8501 * Both preemption and IRQs are still disabled. 8502 */ 8503 raw_spin_rq_unlock(rq); 8504 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8505 this_cpu_ptr(&push_work)); 8506 /* 8507 * At this point need_resched() is true and we'll take the loop in 8508 * schedule(). The next pick is obviously going to be the stop task 8509 * which kthread_is_per_cpu() and will push this task away. 8510 */ 8511 raw_spin_rq_lock(rq); 8512 } 8513 8514 static void balance_push_set(int cpu, bool on) 8515 { 8516 struct rq *rq = cpu_rq(cpu); 8517 struct rq_flags rf; 8518 8519 rq_lock_irqsave(rq, &rf); 8520 if (on) { 8521 WARN_ON_ONCE(rq->balance_callback); 8522 rq->balance_callback = &balance_push_callback; 8523 } else if (rq->balance_callback == &balance_push_callback) { 8524 rq->balance_callback = NULL; 8525 } 8526 rq_unlock_irqrestore(rq, &rf); 8527 } 8528 8529 /* 8530 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8531 * inactive. All tasks which are not per CPU kernel threads are either 8532 * pushed off this CPU now via balance_push() or placed on a different CPU 8533 * during wakeup. Wait until the CPU is quiescent. 8534 */ 8535 static void balance_hotplug_wait(void) 8536 { 8537 struct rq *rq = this_rq(); 8538 8539 rcuwait_wait_event(&rq->hotplug_wait, 8540 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8541 TASK_UNINTERRUPTIBLE); 8542 } 8543 8544 #else 8545 8546 static inline void balance_push(struct rq *rq) 8547 { 8548 } 8549 8550 static inline void balance_push_set(int cpu, bool on) 8551 { 8552 } 8553 8554 static inline void balance_hotplug_wait(void) 8555 { 8556 } 8557 8558 #endif /* CONFIG_HOTPLUG_CPU */ 8559 8560 void set_rq_online(struct rq *rq) 8561 { 8562 if (!rq->online) { 8563 const struct sched_class *class; 8564 8565 cpumask_set_cpu(rq->cpu, rq->rd->online); 8566 rq->online = 1; 8567 8568 for_each_class(class) { 8569 if (class->rq_online) 8570 class->rq_online(rq); 8571 } 8572 } 8573 } 8574 8575 void set_rq_offline(struct rq *rq) 8576 { 8577 if (rq->online) { 8578 const struct sched_class *class; 8579 8580 for_each_class(class) { 8581 if (class->rq_offline) 8582 class->rq_offline(rq); 8583 } 8584 8585 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8586 rq->online = 0; 8587 } 8588 } 8589 8590 /* 8591 * used to mark begin/end of suspend/resume: 8592 */ 8593 static int num_cpus_frozen; 8594 8595 /* 8596 * Update cpusets according to cpu_active mask. If cpusets are 8597 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8598 * around partition_sched_domains(). 8599 * 8600 * If we come here as part of a suspend/resume, don't touch cpusets because we 8601 * want to restore it back to its original state upon resume anyway. 8602 */ 8603 static void cpuset_cpu_active(void) 8604 { 8605 if (cpuhp_tasks_frozen) { 8606 /* 8607 * num_cpus_frozen tracks how many CPUs are involved in suspend 8608 * resume sequence. As long as this is not the last online 8609 * operation in the resume sequence, just build a single sched 8610 * domain, ignoring cpusets. 8611 */ 8612 partition_sched_domains(1, NULL, NULL); 8613 if (--num_cpus_frozen) 8614 return; 8615 /* 8616 * This is the last CPU online operation. So fall through and 8617 * restore the original sched domains by considering the 8618 * cpuset configurations. 8619 */ 8620 cpuset_force_rebuild(); 8621 } 8622 cpuset_update_active_cpus(); 8623 } 8624 8625 static int cpuset_cpu_inactive(unsigned int cpu) 8626 { 8627 if (!cpuhp_tasks_frozen) { 8628 if (dl_cpu_busy(cpu)) 8629 return -EBUSY; 8630 cpuset_update_active_cpus(); 8631 } else { 8632 num_cpus_frozen++; 8633 partition_sched_domains(1, NULL, NULL); 8634 } 8635 return 0; 8636 } 8637 8638 int sched_cpu_activate(unsigned int cpu) 8639 { 8640 struct rq *rq = cpu_rq(cpu); 8641 struct rq_flags rf; 8642 8643 /* 8644 * Clear the balance_push callback and prepare to schedule 8645 * regular tasks. 8646 */ 8647 balance_push_set(cpu, false); 8648 8649 #ifdef CONFIG_SCHED_SMT 8650 /* 8651 * When going up, increment the number of cores with SMT present. 8652 */ 8653 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8654 static_branch_inc_cpuslocked(&sched_smt_present); 8655 #endif 8656 set_cpu_active(cpu, true); 8657 8658 if (sched_smp_initialized) { 8659 sched_domains_numa_masks_set(cpu); 8660 cpuset_cpu_active(); 8661 } 8662 8663 /* 8664 * Put the rq online, if not already. This happens: 8665 * 8666 * 1) In the early boot process, because we build the real domains 8667 * after all CPUs have been brought up. 8668 * 8669 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8670 * domains. 8671 */ 8672 rq_lock_irqsave(rq, &rf); 8673 if (rq->rd) { 8674 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8675 set_rq_online(rq); 8676 } 8677 rq_unlock_irqrestore(rq, &rf); 8678 8679 return 0; 8680 } 8681 8682 int sched_cpu_deactivate(unsigned int cpu) 8683 { 8684 struct rq *rq = cpu_rq(cpu); 8685 struct rq_flags rf; 8686 int ret; 8687 8688 /* 8689 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8690 * load balancing when not active 8691 */ 8692 nohz_balance_exit_idle(rq); 8693 8694 set_cpu_active(cpu, false); 8695 8696 /* 8697 * From this point forward, this CPU will refuse to run any task that 8698 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8699 * push those tasks away until this gets cleared, see 8700 * sched_cpu_dying(). 8701 */ 8702 balance_push_set(cpu, true); 8703 8704 /* 8705 * We've cleared cpu_active_mask / set balance_push, wait for all 8706 * preempt-disabled and RCU users of this state to go away such that 8707 * all new such users will observe it. 8708 * 8709 * Specifically, we rely on ttwu to no longer target this CPU, see 8710 * ttwu_queue_cond() and is_cpu_allowed(). 8711 * 8712 * Do sync before park smpboot threads to take care the rcu boost case. 8713 */ 8714 synchronize_rcu(); 8715 8716 rq_lock_irqsave(rq, &rf); 8717 if (rq->rd) { 8718 update_rq_clock(rq); 8719 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8720 set_rq_offline(rq); 8721 } 8722 rq_unlock_irqrestore(rq, &rf); 8723 8724 #ifdef CONFIG_SCHED_SMT 8725 /* 8726 * When going down, decrement the number of cores with SMT present. 8727 */ 8728 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8729 static_branch_dec_cpuslocked(&sched_smt_present); 8730 #endif 8731 8732 if (!sched_smp_initialized) 8733 return 0; 8734 8735 ret = cpuset_cpu_inactive(cpu); 8736 if (ret) { 8737 balance_push_set(cpu, false); 8738 set_cpu_active(cpu, true); 8739 return ret; 8740 } 8741 sched_domains_numa_masks_clear(cpu); 8742 return 0; 8743 } 8744 8745 static void sched_rq_cpu_starting(unsigned int cpu) 8746 { 8747 struct rq *rq = cpu_rq(cpu); 8748 8749 rq->calc_load_update = calc_load_update; 8750 update_max_interval(); 8751 } 8752 8753 int sched_cpu_starting(unsigned int cpu) 8754 { 8755 sched_core_cpu_starting(cpu); 8756 sched_rq_cpu_starting(cpu); 8757 sched_tick_start(cpu); 8758 return 0; 8759 } 8760 8761 #ifdef CONFIG_HOTPLUG_CPU 8762 8763 /* 8764 * Invoked immediately before the stopper thread is invoked to bring the 8765 * CPU down completely. At this point all per CPU kthreads except the 8766 * hotplug thread (current) and the stopper thread (inactive) have been 8767 * either parked or have been unbound from the outgoing CPU. Ensure that 8768 * any of those which might be on the way out are gone. 8769 * 8770 * If after this point a bound task is being woken on this CPU then the 8771 * responsible hotplug callback has failed to do it's job. 8772 * sched_cpu_dying() will catch it with the appropriate fireworks. 8773 */ 8774 int sched_cpu_wait_empty(unsigned int cpu) 8775 { 8776 balance_hotplug_wait(); 8777 return 0; 8778 } 8779 8780 /* 8781 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8782 * might have. Called from the CPU stopper task after ensuring that the 8783 * stopper is the last running task on the CPU, so nr_active count is 8784 * stable. We need to take the teardown thread which is calling this into 8785 * account, so we hand in adjust = 1 to the load calculation. 8786 * 8787 * Also see the comment "Global load-average calculations". 8788 */ 8789 static void calc_load_migrate(struct rq *rq) 8790 { 8791 long delta = calc_load_fold_active(rq, 1); 8792 8793 if (delta) 8794 atomic_long_add(delta, &calc_load_tasks); 8795 } 8796 8797 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8798 { 8799 struct task_struct *g, *p; 8800 int cpu = cpu_of(rq); 8801 8802 lockdep_assert_rq_held(rq); 8803 8804 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8805 for_each_process_thread(g, p) { 8806 if (task_cpu(p) != cpu) 8807 continue; 8808 8809 if (!task_on_rq_queued(p)) 8810 continue; 8811 8812 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8813 } 8814 } 8815 8816 int sched_cpu_dying(unsigned int cpu) 8817 { 8818 struct rq *rq = cpu_rq(cpu); 8819 struct rq_flags rf; 8820 8821 /* Handle pending wakeups and then migrate everything off */ 8822 sched_tick_stop(cpu); 8823 8824 rq_lock_irqsave(rq, &rf); 8825 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8826 WARN(true, "Dying CPU not properly vacated!"); 8827 dump_rq_tasks(rq, KERN_WARNING); 8828 } 8829 rq_unlock_irqrestore(rq, &rf); 8830 8831 calc_load_migrate(rq); 8832 update_max_interval(); 8833 hrtick_clear(rq); 8834 return 0; 8835 } 8836 #endif 8837 8838 void __init sched_init_smp(void) 8839 { 8840 sched_init_numa(); 8841 8842 /* 8843 * There's no userspace yet to cause hotplug operations; hence all the 8844 * CPU masks are stable and all blatant races in the below code cannot 8845 * happen. 8846 */ 8847 mutex_lock(&sched_domains_mutex); 8848 sched_init_domains(cpu_active_mask); 8849 mutex_unlock(&sched_domains_mutex); 8850 8851 /* Move init over to a non-isolated CPU */ 8852 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 8853 BUG(); 8854 current->flags &= ~PF_NO_SETAFFINITY; 8855 sched_init_granularity(); 8856 8857 init_sched_rt_class(); 8858 init_sched_dl_class(); 8859 8860 sched_smp_initialized = true; 8861 } 8862 8863 static int __init migration_init(void) 8864 { 8865 sched_cpu_starting(smp_processor_id()); 8866 return 0; 8867 } 8868 early_initcall(migration_init); 8869 8870 #else 8871 void __init sched_init_smp(void) 8872 { 8873 sched_init_granularity(); 8874 } 8875 #endif /* CONFIG_SMP */ 8876 8877 int in_sched_functions(unsigned long addr) 8878 { 8879 return in_lock_functions(addr) || 8880 (addr >= (unsigned long)__sched_text_start 8881 && addr < (unsigned long)__sched_text_end); 8882 } 8883 8884 #ifdef CONFIG_CGROUP_SCHED 8885 /* 8886 * Default task group. 8887 * Every task in system belongs to this group at bootup. 8888 */ 8889 struct task_group root_task_group; 8890 LIST_HEAD(task_groups); 8891 8892 /* Cacheline aligned slab cache for task_group */ 8893 static struct kmem_cache *task_group_cache __read_mostly; 8894 #endif 8895 8896 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 8897 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 8898 8899 void __init sched_init(void) 8900 { 8901 unsigned long ptr = 0; 8902 int i; 8903 8904 /* Make sure the linker didn't screw up */ 8905 BUG_ON(&idle_sched_class + 1 != &fair_sched_class || 8906 &fair_sched_class + 1 != &rt_sched_class || 8907 &rt_sched_class + 1 != &dl_sched_class); 8908 #ifdef CONFIG_SMP 8909 BUG_ON(&dl_sched_class + 1 != &stop_sched_class); 8910 #endif 8911 8912 wait_bit_init(); 8913 8914 #ifdef CONFIG_FAIR_GROUP_SCHED 8915 ptr += 2 * nr_cpu_ids * sizeof(void **); 8916 #endif 8917 #ifdef CONFIG_RT_GROUP_SCHED 8918 ptr += 2 * nr_cpu_ids * sizeof(void **); 8919 #endif 8920 if (ptr) { 8921 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8922 8923 #ifdef CONFIG_FAIR_GROUP_SCHED 8924 root_task_group.se = (struct sched_entity **)ptr; 8925 ptr += nr_cpu_ids * sizeof(void **); 8926 8927 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8928 ptr += nr_cpu_ids * sizeof(void **); 8929 8930 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8931 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 8932 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8933 #ifdef CONFIG_RT_GROUP_SCHED 8934 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8935 ptr += nr_cpu_ids * sizeof(void **); 8936 8937 root_task_group.rt_rq = (struct rt_rq **)ptr; 8938 ptr += nr_cpu_ids * sizeof(void **); 8939 8940 #endif /* CONFIG_RT_GROUP_SCHED */ 8941 } 8942 #ifdef CONFIG_CPUMASK_OFFSTACK 8943 for_each_possible_cpu(i) { 8944 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 8945 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 8946 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 8947 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 8948 } 8949 #endif /* CONFIG_CPUMASK_OFFSTACK */ 8950 8951 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 8952 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 8953 8954 #ifdef CONFIG_SMP 8955 init_defrootdomain(); 8956 #endif 8957 8958 #ifdef CONFIG_RT_GROUP_SCHED 8959 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8960 global_rt_period(), global_rt_runtime()); 8961 #endif /* CONFIG_RT_GROUP_SCHED */ 8962 8963 #ifdef CONFIG_CGROUP_SCHED 8964 task_group_cache = KMEM_CACHE(task_group, 0); 8965 8966 list_add(&root_task_group.list, &task_groups); 8967 INIT_LIST_HEAD(&root_task_group.children); 8968 INIT_LIST_HEAD(&root_task_group.siblings); 8969 autogroup_init(&init_task); 8970 #endif /* CONFIG_CGROUP_SCHED */ 8971 8972 for_each_possible_cpu(i) { 8973 struct rq *rq; 8974 8975 rq = cpu_rq(i); 8976 raw_spin_lock_init(&rq->__lock); 8977 rq->nr_running = 0; 8978 rq->calc_load_active = 0; 8979 rq->calc_load_update = jiffies + LOAD_FREQ; 8980 init_cfs_rq(&rq->cfs); 8981 init_rt_rq(&rq->rt); 8982 init_dl_rq(&rq->dl); 8983 #ifdef CONFIG_FAIR_GROUP_SCHED 8984 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8985 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8986 /* 8987 * How much CPU bandwidth does root_task_group get? 8988 * 8989 * In case of task-groups formed thr' the cgroup filesystem, it 8990 * gets 100% of the CPU resources in the system. This overall 8991 * system CPU resource is divided among the tasks of 8992 * root_task_group and its child task-groups in a fair manner, 8993 * based on each entity's (task or task-group's) weight 8994 * (se->load.weight). 8995 * 8996 * In other words, if root_task_group has 10 tasks of weight 8997 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8998 * then A0's share of the CPU resource is: 8999 * 9000 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9001 * 9002 * We achieve this by letting root_task_group's tasks sit 9003 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9004 */ 9005 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9006 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9007 9008 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9009 #ifdef CONFIG_RT_GROUP_SCHED 9010 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9011 #endif 9012 #ifdef CONFIG_SMP 9013 rq->sd = NULL; 9014 rq->rd = NULL; 9015 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9016 rq->balance_callback = &balance_push_callback; 9017 rq->active_balance = 0; 9018 rq->next_balance = jiffies; 9019 rq->push_cpu = 0; 9020 rq->cpu = i; 9021 rq->online = 0; 9022 rq->idle_stamp = 0; 9023 rq->avg_idle = 2*sysctl_sched_migration_cost; 9024 rq->wake_stamp = jiffies; 9025 rq->wake_avg_idle = rq->avg_idle; 9026 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9027 9028 INIT_LIST_HEAD(&rq->cfs_tasks); 9029 9030 rq_attach_root(rq, &def_root_domain); 9031 #ifdef CONFIG_NO_HZ_COMMON 9032 rq->last_blocked_load_update_tick = jiffies; 9033 atomic_set(&rq->nohz_flags, 0); 9034 9035 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9036 #endif 9037 #ifdef CONFIG_HOTPLUG_CPU 9038 rcuwait_init(&rq->hotplug_wait); 9039 #endif 9040 #endif /* CONFIG_SMP */ 9041 hrtick_rq_init(rq); 9042 atomic_set(&rq->nr_iowait, 0); 9043 9044 #ifdef CONFIG_SCHED_CORE 9045 rq->core = NULL; 9046 rq->core_pick = NULL; 9047 rq->core_enabled = 0; 9048 rq->core_tree = RB_ROOT; 9049 rq->core_forceidle = false; 9050 9051 rq->core_cookie = 0UL; 9052 #endif 9053 } 9054 9055 set_load_weight(&init_task, false); 9056 9057 /* 9058 * The boot idle thread does lazy MMU switching as well: 9059 */ 9060 mmgrab(&init_mm); 9061 enter_lazy_tlb(&init_mm, current); 9062 9063 /* 9064 * Make us the idle thread. Technically, schedule() should not be 9065 * called from this thread, however somewhere below it might be, 9066 * but because we are the idle thread, we just pick up running again 9067 * when this runqueue becomes "idle". 9068 */ 9069 init_idle(current, smp_processor_id()); 9070 9071 calc_load_update = jiffies + LOAD_FREQ; 9072 9073 #ifdef CONFIG_SMP 9074 idle_thread_set_boot_cpu(); 9075 balance_push_set(smp_processor_id(), false); 9076 #endif 9077 init_sched_fair_class(); 9078 9079 psi_init(); 9080 9081 init_uclamp(); 9082 9083 scheduler_running = 1; 9084 } 9085 9086 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9087 static inline int preempt_count_equals(int preempt_offset) 9088 { 9089 int nested = preempt_count() + rcu_preempt_depth(); 9090 9091 return (nested == preempt_offset); 9092 } 9093 9094 void __might_sleep(const char *file, int line, int preempt_offset) 9095 { 9096 unsigned int state = get_current_state(); 9097 /* 9098 * Blocking primitives will set (and therefore destroy) current->state, 9099 * since we will exit with TASK_RUNNING make sure we enter with it, 9100 * otherwise we will destroy state. 9101 */ 9102 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9103 "do not call blocking ops when !TASK_RUNNING; " 9104 "state=%x set at [<%p>] %pS\n", state, 9105 (void *)current->task_state_change, 9106 (void *)current->task_state_change); 9107 9108 ___might_sleep(file, line, preempt_offset); 9109 } 9110 EXPORT_SYMBOL(__might_sleep); 9111 9112 void ___might_sleep(const char *file, int line, int preempt_offset) 9113 { 9114 /* Ratelimiting timestamp: */ 9115 static unsigned long prev_jiffy; 9116 9117 unsigned long preempt_disable_ip; 9118 9119 /* WARN_ON_ONCE() by default, no rate limit required: */ 9120 rcu_sleep_check(); 9121 9122 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 9123 !is_idle_task(current) && !current->non_block_count) || 9124 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9125 oops_in_progress) 9126 return; 9127 9128 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9129 return; 9130 prev_jiffy = jiffies; 9131 9132 /* Save this before calling printk(), since that will clobber it: */ 9133 preempt_disable_ip = get_preempt_disable_ip(current); 9134 9135 printk(KERN_ERR 9136 "BUG: sleeping function called from invalid context at %s:%d\n", 9137 file, line); 9138 printk(KERN_ERR 9139 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9140 in_atomic(), irqs_disabled(), current->non_block_count, 9141 current->pid, current->comm); 9142 9143 if (task_stack_end_corrupted(current)) 9144 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 9145 9146 debug_show_held_locks(current); 9147 if (irqs_disabled()) 9148 print_irqtrace_events(current); 9149 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 9150 && !preempt_count_equals(preempt_offset)) { 9151 pr_err("Preemption disabled at:"); 9152 print_ip_sym(KERN_ERR, preempt_disable_ip); 9153 } 9154 dump_stack(); 9155 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9156 } 9157 EXPORT_SYMBOL(___might_sleep); 9158 9159 void __cant_sleep(const char *file, int line, int preempt_offset) 9160 { 9161 static unsigned long prev_jiffy; 9162 9163 if (irqs_disabled()) 9164 return; 9165 9166 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9167 return; 9168 9169 if (preempt_count() > preempt_offset) 9170 return; 9171 9172 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9173 return; 9174 prev_jiffy = jiffies; 9175 9176 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 9177 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 9178 in_atomic(), irqs_disabled(), 9179 current->pid, current->comm); 9180 9181 debug_show_held_locks(current); 9182 dump_stack(); 9183 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9184 } 9185 EXPORT_SYMBOL_GPL(__cant_sleep); 9186 9187 #ifdef CONFIG_SMP 9188 void __cant_migrate(const char *file, int line) 9189 { 9190 static unsigned long prev_jiffy; 9191 9192 if (irqs_disabled()) 9193 return; 9194 9195 if (is_migration_disabled(current)) 9196 return; 9197 9198 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9199 return; 9200 9201 if (preempt_count() > 0) 9202 return; 9203 9204 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9205 return; 9206 prev_jiffy = jiffies; 9207 9208 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 9209 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 9210 in_atomic(), irqs_disabled(), is_migration_disabled(current), 9211 current->pid, current->comm); 9212 9213 debug_show_held_locks(current); 9214 dump_stack(); 9215 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9216 } 9217 EXPORT_SYMBOL_GPL(__cant_migrate); 9218 #endif 9219 #endif 9220 9221 #ifdef CONFIG_MAGIC_SYSRQ 9222 void normalize_rt_tasks(void) 9223 { 9224 struct task_struct *g, *p; 9225 struct sched_attr attr = { 9226 .sched_policy = SCHED_NORMAL, 9227 }; 9228 9229 read_lock(&tasklist_lock); 9230 for_each_process_thread(g, p) { 9231 /* 9232 * Only normalize user tasks: 9233 */ 9234 if (p->flags & PF_KTHREAD) 9235 continue; 9236 9237 p->se.exec_start = 0; 9238 schedstat_set(p->se.statistics.wait_start, 0); 9239 schedstat_set(p->se.statistics.sleep_start, 0); 9240 schedstat_set(p->se.statistics.block_start, 0); 9241 9242 if (!dl_task(p) && !rt_task(p)) { 9243 /* 9244 * Renice negative nice level userspace 9245 * tasks back to 0: 9246 */ 9247 if (task_nice(p) < 0) 9248 set_user_nice(p, 0); 9249 continue; 9250 } 9251 9252 __sched_setscheduler(p, &attr, false, false); 9253 } 9254 read_unlock(&tasklist_lock); 9255 } 9256 9257 #endif /* CONFIG_MAGIC_SYSRQ */ 9258 9259 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 9260 /* 9261 * These functions are only useful for the IA64 MCA handling, or kdb. 9262 * 9263 * They can only be called when the whole system has been 9264 * stopped - every CPU needs to be quiescent, and no scheduling 9265 * activity can take place. Using them for anything else would 9266 * be a serious bug, and as a result, they aren't even visible 9267 * under any other configuration. 9268 */ 9269 9270 /** 9271 * curr_task - return the current task for a given CPU. 9272 * @cpu: the processor in question. 9273 * 9274 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9275 * 9276 * Return: The current task for @cpu. 9277 */ 9278 struct task_struct *curr_task(int cpu) 9279 { 9280 return cpu_curr(cpu); 9281 } 9282 9283 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 9284 9285 #ifdef CONFIG_IA64 9286 /** 9287 * ia64_set_curr_task - set the current task for a given CPU. 9288 * @cpu: the processor in question. 9289 * @p: the task pointer to set. 9290 * 9291 * Description: This function must only be used when non-maskable interrupts 9292 * are serviced on a separate stack. It allows the architecture to switch the 9293 * notion of the current task on a CPU in a non-blocking manner. This function 9294 * must be called with all CPU's synchronized, and interrupts disabled, the 9295 * and caller must save the original value of the current task (see 9296 * curr_task() above) and restore that value before reenabling interrupts and 9297 * re-starting the system. 9298 * 9299 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9300 */ 9301 void ia64_set_curr_task(int cpu, struct task_struct *p) 9302 { 9303 cpu_curr(cpu) = p; 9304 } 9305 9306 #endif 9307 9308 #ifdef CONFIG_CGROUP_SCHED 9309 /* task_group_lock serializes the addition/removal of task groups */ 9310 static DEFINE_SPINLOCK(task_group_lock); 9311 9312 static inline void alloc_uclamp_sched_group(struct task_group *tg, 9313 struct task_group *parent) 9314 { 9315 #ifdef CONFIG_UCLAMP_TASK_GROUP 9316 enum uclamp_id clamp_id; 9317 9318 for_each_clamp_id(clamp_id) { 9319 uclamp_se_set(&tg->uclamp_req[clamp_id], 9320 uclamp_none(clamp_id), false); 9321 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 9322 } 9323 #endif 9324 } 9325 9326 static void sched_free_group(struct task_group *tg) 9327 { 9328 free_fair_sched_group(tg); 9329 free_rt_sched_group(tg); 9330 autogroup_free(tg); 9331 kmem_cache_free(task_group_cache, tg); 9332 } 9333 9334 /* allocate runqueue etc for a new task group */ 9335 struct task_group *sched_create_group(struct task_group *parent) 9336 { 9337 struct task_group *tg; 9338 9339 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 9340 if (!tg) 9341 return ERR_PTR(-ENOMEM); 9342 9343 if (!alloc_fair_sched_group(tg, parent)) 9344 goto err; 9345 9346 if (!alloc_rt_sched_group(tg, parent)) 9347 goto err; 9348 9349 alloc_uclamp_sched_group(tg, parent); 9350 9351 return tg; 9352 9353 err: 9354 sched_free_group(tg); 9355 return ERR_PTR(-ENOMEM); 9356 } 9357 9358 void sched_online_group(struct task_group *tg, struct task_group *parent) 9359 { 9360 unsigned long flags; 9361 9362 spin_lock_irqsave(&task_group_lock, flags); 9363 list_add_rcu(&tg->list, &task_groups); 9364 9365 /* Root should already exist: */ 9366 WARN_ON(!parent); 9367 9368 tg->parent = parent; 9369 INIT_LIST_HEAD(&tg->children); 9370 list_add_rcu(&tg->siblings, &parent->children); 9371 spin_unlock_irqrestore(&task_group_lock, flags); 9372 9373 online_fair_sched_group(tg); 9374 } 9375 9376 /* rcu callback to free various structures associated with a task group */ 9377 static void sched_free_group_rcu(struct rcu_head *rhp) 9378 { 9379 /* Now it should be safe to free those cfs_rqs: */ 9380 sched_free_group(container_of(rhp, struct task_group, rcu)); 9381 } 9382 9383 void sched_destroy_group(struct task_group *tg) 9384 { 9385 /* Wait for possible concurrent references to cfs_rqs complete: */ 9386 call_rcu(&tg->rcu, sched_free_group_rcu); 9387 } 9388 9389 void sched_offline_group(struct task_group *tg) 9390 { 9391 unsigned long flags; 9392 9393 /* End participation in shares distribution: */ 9394 unregister_fair_sched_group(tg); 9395 9396 spin_lock_irqsave(&task_group_lock, flags); 9397 list_del_rcu(&tg->list); 9398 list_del_rcu(&tg->siblings); 9399 spin_unlock_irqrestore(&task_group_lock, flags); 9400 } 9401 9402 static void sched_change_group(struct task_struct *tsk, int type) 9403 { 9404 struct task_group *tg; 9405 9406 /* 9407 * All callers are synchronized by task_rq_lock(); we do not use RCU 9408 * which is pointless here. Thus, we pass "true" to task_css_check() 9409 * to prevent lockdep warnings. 9410 */ 9411 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9412 struct task_group, css); 9413 tg = autogroup_task_group(tsk, tg); 9414 tsk->sched_task_group = tg; 9415 9416 #ifdef CONFIG_FAIR_GROUP_SCHED 9417 if (tsk->sched_class->task_change_group) 9418 tsk->sched_class->task_change_group(tsk, type); 9419 else 9420 #endif 9421 set_task_rq(tsk, task_cpu(tsk)); 9422 } 9423 9424 /* 9425 * Change task's runqueue when it moves between groups. 9426 * 9427 * The caller of this function should have put the task in its new group by 9428 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9429 * its new group. 9430 */ 9431 void sched_move_task(struct task_struct *tsk) 9432 { 9433 int queued, running, queue_flags = 9434 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9435 struct rq_flags rf; 9436 struct rq *rq; 9437 9438 rq = task_rq_lock(tsk, &rf); 9439 update_rq_clock(rq); 9440 9441 running = task_current(rq, tsk); 9442 queued = task_on_rq_queued(tsk); 9443 9444 if (queued) 9445 dequeue_task(rq, tsk, queue_flags); 9446 if (running) 9447 put_prev_task(rq, tsk); 9448 9449 sched_change_group(tsk, TASK_MOVE_GROUP); 9450 9451 if (queued) 9452 enqueue_task(rq, tsk, queue_flags); 9453 if (running) { 9454 set_next_task(rq, tsk); 9455 /* 9456 * After changing group, the running task may have joined a 9457 * throttled one but it's still the running task. Trigger a 9458 * resched to make sure that task can still run. 9459 */ 9460 resched_curr(rq); 9461 } 9462 9463 task_rq_unlock(rq, tsk, &rf); 9464 } 9465 9466 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 9467 { 9468 return css ? container_of(css, struct task_group, css) : NULL; 9469 } 9470 9471 static struct cgroup_subsys_state * 9472 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9473 { 9474 struct task_group *parent = css_tg(parent_css); 9475 struct task_group *tg; 9476 9477 if (!parent) { 9478 /* This is early initialization for the top cgroup */ 9479 return &root_task_group.css; 9480 } 9481 9482 tg = sched_create_group(parent); 9483 if (IS_ERR(tg)) 9484 return ERR_PTR(-ENOMEM); 9485 9486 return &tg->css; 9487 } 9488 9489 /* Expose task group only after completing cgroup initialization */ 9490 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9491 { 9492 struct task_group *tg = css_tg(css); 9493 struct task_group *parent = css_tg(css->parent); 9494 9495 if (parent) 9496 sched_online_group(tg, parent); 9497 9498 #ifdef CONFIG_UCLAMP_TASK_GROUP 9499 /* Propagate the effective uclamp value for the new group */ 9500 mutex_lock(&uclamp_mutex); 9501 rcu_read_lock(); 9502 cpu_util_update_eff(css); 9503 rcu_read_unlock(); 9504 mutex_unlock(&uclamp_mutex); 9505 #endif 9506 9507 return 0; 9508 } 9509 9510 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9511 { 9512 struct task_group *tg = css_tg(css); 9513 9514 sched_offline_group(tg); 9515 } 9516 9517 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9518 { 9519 struct task_group *tg = css_tg(css); 9520 9521 /* 9522 * Relies on the RCU grace period between css_released() and this. 9523 */ 9524 sched_free_group(tg); 9525 } 9526 9527 /* 9528 * This is called before wake_up_new_task(), therefore we really only 9529 * have to set its group bits, all the other stuff does not apply. 9530 */ 9531 static void cpu_cgroup_fork(struct task_struct *task) 9532 { 9533 struct rq_flags rf; 9534 struct rq *rq; 9535 9536 rq = task_rq_lock(task, &rf); 9537 9538 update_rq_clock(rq); 9539 sched_change_group(task, TASK_SET_GROUP); 9540 9541 task_rq_unlock(rq, task, &rf); 9542 } 9543 9544 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9545 { 9546 struct task_struct *task; 9547 struct cgroup_subsys_state *css; 9548 int ret = 0; 9549 9550 cgroup_taskset_for_each(task, css, tset) { 9551 #ifdef CONFIG_RT_GROUP_SCHED 9552 if (!sched_rt_can_attach(css_tg(css), task)) 9553 return -EINVAL; 9554 #endif 9555 /* 9556 * Serialize against wake_up_new_task() such that if it's 9557 * running, we're sure to observe its full state. 9558 */ 9559 raw_spin_lock_irq(&task->pi_lock); 9560 /* 9561 * Avoid calling sched_move_task() before wake_up_new_task() 9562 * has happened. This would lead to problems with PELT, due to 9563 * move wanting to detach+attach while we're not attached yet. 9564 */ 9565 if (READ_ONCE(task->__state) == TASK_NEW) 9566 ret = -EINVAL; 9567 raw_spin_unlock_irq(&task->pi_lock); 9568 9569 if (ret) 9570 break; 9571 } 9572 return ret; 9573 } 9574 9575 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9576 { 9577 struct task_struct *task; 9578 struct cgroup_subsys_state *css; 9579 9580 cgroup_taskset_for_each(task, css, tset) 9581 sched_move_task(task); 9582 } 9583 9584 #ifdef CONFIG_UCLAMP_TASK_GROUP 9585 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9586 { 9587 struct cgroup_subsys_state *top_css = css; 9588 struct uclamp_se *uc_parent = NULL; 9589 struct uclamp_se *uc_se = NULL; 9590 unsigned int eff[UCLAMP_CNT]; 9591 enum uclamp_id clamp_id; 9592 unsigned int clamps; 9593 9594 lockdep_assert_held(&uclamp_mutex); 9595 SCHED_WARN_ON(!rcu_read_lock_held()); 9596 9597 css_for_each_descendant_pre(css, top_css) { 9598 uc_parent = css_tg(css)->parent 9599 ? css_tg(css)->parent->uclamp : NULL; 9600 9601 for_each_clamp_id(clamp_id) { 9602 /* Assume effective clamps matches requested clamps */ 9603 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9604 /* Cap effective clamps with parent's effective clamps */ 9605 if (uc_parent && 9606 eff[clamp_id] > uc_parent[clamp_id].value) { 9607 eff[clamp_id] = uc_parent[clamp_id].value; 9608 } 9609 } 9610 /* Ensure protection is always capped by limit */ 9611 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9612 9613 /* Propagate most restrictive effective clamps */ 9614 clamps = 0x0; 9615 uc_se = css_tg(css)->uclamp; 9616 for_each_clamp_id(clamp_id) { 9617 if (eff[clamp_id] == uc_se[clamp_id].value) 9618 continue; 9619 uc_se[clamp_id].value = eff[clamp_id]; 9620 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9621 clamps |= (0x1 << clamp_id); 9622 } 9623 if (!clamps) { 9624 css = css_rightmost_descendant(css); 9625 continue; 9626 } 9627 9628 /* Immediately update descendants RUNNABLE tasks */ 9629 uclamp_update_active_tasks(css); 9630 } 9631 } 9632 9633 /* 9634 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9635 * C expression. Since there is no way to convert a macro argument (N) into a 9636 * character constant, use two levels of macros. 9637 */ 9638 #define _POW10(exp) ((unsigned int)1e##exp) 9639 #define POW10(exp) _POW10(exp) 9640 9641 struct uclamp_request { 9642 #define UCLAMP_PERCENT_SHIFT 2 9643 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9644 s64 percent; 9645 u64 util; 9646 int ret; 9647 }; 9648 9649 static inline struct uclamp_request 9650 capacity_from_percent(char *buf) 9651 { 9652 struct uclamp_request req = { 9653 .percent = UCLAMP_PERCENT_SCALE, 9654 .util = SCHED_CAPACITY_SCALE, 9655 .ret = 0, 9656 }; 9657 9658 buf = strim(buf); 9659 if (strcmp(buf, "max")) { 9660 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9661 &req.percent); 9662 if (req.ret) 9663 return req; 9664 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9665 req.ret = -ERANGE; 9666 return req; 9667 } 9668 9669 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9670 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9671 } 9672 9673 return req; 9674 } 9675 9676 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9677 size_t nbytes, loff_t off, 9678 enum uclamp_id clamp_id) 9679 { 9680 struct uclamp_request req; 9681 struct task_group *tg; 9682 9683 req = capacity_from_percent(buf); 9684 if (req.ret) 9685 return req.ret; 9686 9687 static_branch_enable(&sched_uclamp_used); 9688 9689 mutex_lock(&uclamp_mutex); 9690 rcu_read_lock(); 9691 9692 tg = css_tg(of_css(of)); 9693 if (tg->uclamp_req[clamp_id].value != req.util) 9694 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9695 9696 /* 9697 * Because of not recoverable conversion rounding we keep track of the 9698 * exact requested value 9699 */ 9700 tg->uclamp_pct[clamp_id] = req.percent; 9701 9702 /* Update effective clamps to track the most restrictive value */ 9703 cpu_util_update_eff(of_css(of)); 9704 9705 rcu_read_unlock(); 9706 mutex_unlock(&uclamp_mutex); 9707 9708 return nbytes; 9709 } 9710 9711 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9712 char *buf, size_t nbytes, 9713 loff_t off) 9714 { 9715 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9716 } 9717 9718 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9719 char *buf, size_t nbytes, 9720 loff_t off) 9721 { 9722 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9723 } 9724 9725 static inline void cpu_uclamp_print(struct seq_file *sf, 9726 enum uclamp_id clamp_id) 9727 { 9728 struct task_group *tg; 9729 u64 util_clamp; 9730 u64 percent; 9731 u32 rem; 9732 9733 rcu_read_lock(); 9734 tg = css_tg(seq_css(sf)); 9735 util_clamp = tg->uclamp_req[clamp_id].value; 9736 rcu_read_unlock(); 9737 9738 if (util_clamp == SCHED_CAPACITY_SCALE) { 9739 seq_puts(sf, "max\n"); 9740 return; 9741 } 9742 9743 percent = tg->uclamp_pct[clamp_id]; 9744 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9745 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9746 } 9747 9748 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9749 { 9750 cpu_uclamp_print(sf, UCLAMP_MIN); 9751 return 0; 9752 } 9753 9754 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9755 { 9756 cpu_uclamp_print(sf, UCLAMP_MAX); 9757 return 0; 9758 } 9759 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9760 9761 #ifdef CONFIG_FAIR_GROUP_SCHED 9762 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9763 struct cftype *cftype, u64 shareval) 9764 { 9765 if (shareval > scale_load_down(ULONG_MAX)) 9766 shareval = MAX_SHARES; 9767 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 9768 } 9769 9770 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9771 struct cftype *cft) 9772 { 9773 struct task_group *tg = css_tg(css); 9774 9775 return (u64) scale_load_down(tg->shares); 9776 } 9777 9778 #ifdef CONFIG_CFS_BANDWIDTH 9779 static DEFINE_MUTEX(cfs_constraints_mutex); 9780 9781 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9782 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9783 /* More than 203 days if BW_SHIFT equals 20. */ 9784 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9785 9786 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9787 9788 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9789 u64 burst) 9790 { 9791 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9792 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9793 9794 if (tg == &root_task_group) 9795 return -EINVAL; 9796 9797 /* 9798 * Ensure we have at some amount of bandwidth every period. This is 9799 * to prevent reaching a state of large arrears when throttled via 9800 * entity_tick() resulting in prolonged exit starvation. 9801 */ 9802 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9803 return -EINVAL; 9804 9805 /* 9806 * Likewise, bound things on the other side by preventing insane quota 9807 * periods. This also allows us to normalize in computing quota 9808 * feasibility. 9809 */ 9810 if (period > max_cfs_quota_period) 9811 return -EINVAL; 9812 9813 /* 9814 * Bound quota to defend quota against overflow during bandwidth shift. 9815 */ 9816 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9817 return -EINVAL; 9818 9819 if (quota != RUNTIME_INF && (burst > quota || 9820 burst + quota > max_cfs_runtime)) 9821 return -EINVAL; 9822 9823 /* 9824 * Prevent race between setting of cfs_rq->runtime_enabled and 9825 * unthrottle_offline_cfs_rqs(). 9826 */ 9827 get_online_cpus(); 9828 mutex_lock(&cfs_constraints_mutex); 9829 ret = __cfs_schedulable(tg, period, quota); 9830 if (ret) 9831 goto out_unlock; 9832 9833 runtime_enabled = quota != RUNTIME_INF; 9834 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9835 /* 9836 * If we need to toggle cfs_bandwidth_used, off->on must occur 9837 * before making related changes, and on->off must occur afterwards 9838 */ 9839 if (runtime_enabled && !runtime_was_enabled) 9840 cfs_bandwidth_usage_inc(); 9841 raw_spin_lock_irq(&cfs_b->lock); 9842 cfs_b->period = ns_to_ktime(period); 9843 cfs_b->quota = quota; 9844 cfs_b->burst = burst; 9845 9846 __refill_cfs_bandwidth_runtime(cfs_b); 9847 9848 /* Restart the period timer (if active) to handle new period expiry: */ 9849 if (runtime_enabled) 9850 start_cfs_bandwidth(cfs_b); 9851 9852 raw_spin_unlock_irq(&cfs_b->lock); 9853 9854 for_each_online_cpu(i) { 9855 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9856 struct rq *rq = cfs_rq->rq; 9857 struct rq_flags rf; 9858 9859 rq_lock_irq(rq, &rf); 9860 cfs_rq->runtime_enabled = runtime_enabled; 9861 cfs_rq->runtime_remaining = 0; 9862 9863 if (cfs_rq->throttled) 9864 unthrottle_cfs_rq(cfs_rq); 9865 rq_unlock_irq(rq, &rf); 9866 } 9867 if (runtime_was_enabled && !runtime_enabled) 9868 cfs_bandwidth_usage_dec(); 9869 out_unlock: 9870 mutex_unlock(&cfs_constraints_mutex); 9871 put_online_cpus(); 9872 9873 return ret; 9874 } 9875 9876 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9877 { 9878 u64 quota, period, burst; 9879 9880 period = ktime_to_ns(tg->cfs_bandwidth.period); 9881 burst = tg->cfs_bandwidth.burst; 9882 if (cfs_quota_us < 0) 9883 quota = RUNTIME_INF; 9884 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9885 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9886 else 9887 return -EINVAL; 9888 9889 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9890 } 9891 9892 static long tg_get_cfs_quota(struct task_group *tg) 9893 { 9894 u64 quota_us; 9895 9896 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9897 return -1; 9898 9899 quota_us = tg->cfs_bandwidth.quota; 9900 do_div(quota_us, NSEC_PER_USEC); 9901 9902 return quota_us; 9903 } 9904 9905 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9906 { 9907 u64 quota, period, burst; 9908 9909 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9910 return -EINVAL; 9911 9912 period = (u64)cfs_period_us * NSEC_PER_USEC; 9913 quota = tg->cfs_bandwidth.quota; 9914 burst = tg->cfs_bandwidth.burst; 9915 9916 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9917 } 9918 9919 static long tg_get_cfs_period(struct task_group *tg) 9920 { 9921 u64 cfs_period_us; 9922 9923 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9924 do_div(cfs_period_us, NSEC_PER_USEC); 9925 9926 return cfs_period_us; 9927 } 9928 9929 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9930 { 9931 u64 quota, period, burst; 9932 9933 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9934 return -EINVAL; 9935 9936 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9937 period = ktime_to_ns(tg->cfs_bandwidth.period); 9938 quota = tg->cfs_bandwidth.quota; 9939 9940 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9941 } 9942 9943 static long tg_get_cfs_burst(struct task_group *tg) 9944 { 9945 u64 burst_us; 9946 9947 burst_us = tg->cfs_bandwidth.burst; 9948 do_div(burst_us, NSEC_PER_USEC); 9949 9950 return burst_us; 9951 } 9952 9953 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9954 struct cftype *cft) 9955 { 9956 return tg_get_cfs_quota(css_tg(css)); 9957 } 9958 9959 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9960 struct cftype *cftype, s64 cfs_quota_us) 9961 { 9962 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9963 } 9964 9965 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9966 struct cftype *cft) 9967 { 9968 return tg_get_cfs_period(css_tg(css)); 9969 } 9970 9971 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9972 struct cftype *cftype, u64 cfs_period_us) 9973 { 9974 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9975 } 9976 9977 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9978 struct cftype *cft) 9979 { 9980 return tg_get_cfs_burst(css_tg(css)); 9981 } 9982 9983 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9984 struct cftype *cftype, u64 cfs_burst_us) 9985 { 9986 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9987 } 9988 9989 struct cfs_schedulable_data { 9990 struct task_group *tg; 9991 u64 period, quota; 9992 }; 9993 9994 /* 9995 * normalize group quota/period to be quota/max_period 9996 * note: units are usecs 9997 */ 9998 static u64 normalize_cfs_quota(struct task_group *tg, 9999 struct cfs_schedulable_data *d) 10000 { 10001 u64 quota, period; 10002 10003 if (tg == d->tg) { 10004 period = d->period; 10005 quota = d->quota; 10006 } else { 10007 period = tg_get_cfs_period(tg); 10008 quota = tg_get_cfs_quota(tg); 10009 } 10010 10011 /* note: these should typically be equivalent */ 10012 if (quota == RUNTIME_INF || quota == -1) 10013 return RUNTIME_INF; 10014 10015 return to_ratio(period, quota); 10016 } 10017 10018 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10019 { 10020 struct cfs_schedulable_data *d = data; 10021 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10022 s64 quota = 0, parent_quota = -1; 10023 10024 if (!tg->parent) { 10025 quota = RUNTIME_INF; 10026 } else { 10027 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10028 10029 quota = normalize_cfs_quota(tg, d); 10030 parent_quota = parent_b->hierarchical_quota; 10031 10032 /* 10033 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10034 * always take the min. On cgroup1, only inherit when no 10035 * limit is set: 10036 */ 10037 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10038 quota = min(quota, parent_quota); 10039 } else { 10040 if (quota == RUNTIME_INF) 10041 quota = parent_quota; 10042 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10043 return -EINVAL; 10044 } 10045 } 10046 cfs_b->hierarchical_quota = quota; 10047 10048 return 0; 10049 } 10050 10051 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10052 { 10053 int ret; 10054 struct cfs_schedulable_data data = { 10055 .tg = tg, 10056 .period = period, 10057 .quota = quota, 10058 }; 10059 10060 if (quota != RUNTIME_INF) { 10061 do_div(data.period, NSEC_PER_USEC); 10062 do_div(data.quota, NSEC_PER_USEC); 10063 } 10064 10065 rcu_read_lock(); 10066 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10067 rcu_read_unlock(); 10068 10069 return ret; 10070 } 10071 10072 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10073 { 10074 struct task_group *tg = css_tg(seq_css(sf)); 10075 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10076 10077 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10078 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10079 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10080 10081 if (schedstat_enabled() && tg != &root_task_group) { 10082 u64 ws = 0; 10083 int i; 10084 10085 for_each_possible_cpu(i) 10086 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 10087 10088 seq_printf(sf, "wait_sum %llu\n", ws); 10089 } 10090 10091 return 0; 10092 } 10093 #endif /* CONFIG_CFS_BANDWIDTH */ 10094 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10095 10096 #ifdef CONFIG_RT_GROUP_SCHED 10097 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10098 struct cftype *cft, s64 val) 10099 { 10100 return sched_group_set_rt_runtime(css_tg(css), val); 10101 } 10102 10103 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10104 struct cftype *cft) 10105 { 10106 return sched_group_rt_runtime(css_tg(css)); 10107 } 10108 10109 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10110 struct cftype *cftype, u64 rt_period_us) 10111 { 10112 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10113 } 10114 10115 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10116 struct cftype *cft) 10117 { 10118 return sched_group_rt_period(css_tg(css)); 10119 } 10120 #endif /* CONFIG_RT_GROUP_SCHED */ 10121 10122 static struct cftype cpu_legacy_files[] = { 10123 #ifdef CONFIG_FAIR_GROUP_SCHED 10124 { 10125 .name = "shares", 10126 .read_u64 = cpu_shares_read_u64, 10127 .write_u64 = cpu_shares_write_u64, 10128 }, 10129 #endif 10130 #ifdef CONFIG_CFS_BANDWIDTH 10131 { 10132 .name = "cfs_quota_us", 10133 .read_s64 = cpu_cfs_quota_read_s64, 10134 .write_s64 = cpu_cfs_quota_write_s64, 10135 }, 10136 { 10137 .name = "cfs_period_us", 10138 .read_u64 = cpu_cfs_period_read_u64, 10139 .write_u64 = cpu_cfs_period_write_u64, 10140 }, 10141 { 10142 .name = "cfs_burst_us", 10143 .read_u64 = cpu_cfs_burst_read_u64, 10144 .write_u64 = cpu_cfs_burst_write_u64, 10145 }, 10146 { 10147 .name = "stat", 10148 .seq_show = cpu_cfs_stat_show, 10149 }, 10150 #endif 10151 #ifdef CONFIG_RT_GROUP_SCHED 10152 { 10153 .name = "rt_runtime_us", 10154 .read_s64 = cpu_rt_runtime_read, 10155 .write_s64 = cpu_rt_runtime_write, 10156 }, 10157 { 10158 .name = "rt_period_us", 10159 .read_u64 = cpu_rt_period_read_uint, 10160 .write_u64 = cpu_rt_period_write_uint, 10161 }, 10162 #endif 10163 #ifdef CONFIG_UCLAMP_TASK_GROUP 10164 { 10165 .name = "uclamp.min", 10166 .flags = CFTYPE_NOT_ON_ROOT, 10167 .seq_show = cpu_uclamp_min_show, 10168 .write = cpu_uclamp_min_write, 10169 }, 10170 { 10171 .name = "uclamp.max", 10172 .flags = CFTYPE_NOT_ON_ROOT, 10173 .seq_show = cpu_uclamp_max_show, 10174 .write = cpu_uclamp_max_write, 10175 }, 10176 #endif 10177 { } /* Terminate */ 10178 }; 10179 10180 static int cpu_extra_stat_show(struct seq_file *sf, 10181 struct cgroup_subsys_state *css) 10182 { 10183 #ifdef CONFIG_CFS_BANDWIDTH 10184 { 10185 struct task_group *tg = css_tg(css); 10186 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10187 u64 throttled_usec; 10188 10189 throttled_usec = cfs_b->throttled_time; 10190 do_div(throttled_usec, NSEC_PER_USEC); 10191 10192 seq_printf(sf, "nr_periods %d\n" 10193 "nr_throttled %d\n" 10194 "throttled_usec %llu\n", 10195 cfs_b->nr_periods, cfs_b->nr_throttled, 10196 throttled_usec); 10197 } 10198 #endif 10199 return 0; 10200 } 10201 10202 #ifdef CONFIG_FAIR_GROUP_SCHED 10203 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10204 struct cftype *cft) 10205 { 10206 struct task_group *tg = css_tg(css); 10207 u64 weight = scale_load_down(tg->shares); 10208 10209 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 10210 } 10211 10212 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10213 struct cftype *cft, u64 weight) 10214 { 10215 /* 10216 * cgroup weight knobs should use the common MIN, DFL and MAX 10217 * values which are 1, 100 and 10000 respectively. While it loses 10218 * a bit of range on both ends, it maps pretty well onto the shares 10219 * value used by scheduler and the round-trip conversions preserve 10220 * the original value over the entire range. 10221 */ 10222 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 10223 return -ERANGE; 10224 10225 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 10226 10227 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10228 } 10229 10230 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10231 struct cftype *cft) 10232 { 10233 unsigned long weight = scale_load_down(css_tg(css)->shares); 10234 int last_delta = INT_MAX; 10235 int prio, delta; 10236 10237 /* find the closest nice value to the current weight */ 10238 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10239 delta = abs(sched_prio_to_weight[prio] - weight); 10240 if (delta >= last_delta) 10241 break; 10242 last_delta = delta; 10243 } 10244 10245 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10246 } 10247 10248 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10249 struct cftype *cft, s64 nice) 10250 { 10251 unsigned long weight; 10252 int idx; 10253 10254 if (nice < MIN_NICE || nice > MAX_NICE) 10255 return -ERANGE; 10256 10257 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10258 idx = array_index_nospec(idx, 40); 10259 weight = sched_prio_to_weight[idx]; 10260 10261 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10262 } 10263 #endif 10264 10265 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10266 long period, long quota) 10267 { 10268 if (quota < 0) 10269 seq_puts(sf, "max"); 10270 else 10271 seq_printf(sf, "%ld", quota); 10272 10273 seq_printf(sf, " %ld\n", period); 10274 } 10275 10276 /* caller should put the current value in *@periodp before calling */ 10277 static int __maybe_unused cpu_period_quota_parse(char *buf, 10278 u64 *periodp, u64 *quotap) 10279 { 10280 char tok[21]; /* U64_MAX */ 10281 10282 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 10283 return -EINVAL; 10284 10285 *periodp *= NSEC_PER_USEC; 10286 10287 if (sscanf(tok, "%llu", quotap)) 10288 *quotap *= NSEC_PER_USEC; 10289 else if (!strcmp(tok, "max")) 10290 *quotap = RUNTIME_INF; 10291 else 10292 return -EINVAL; 10293 10294 return 0; 10295 } 10296 10297 #ifdef CONFIG_CFS_BANDWIDTH 10298 static int cpu_max_show(struct seq_file *sf, void *v) 10299 { 10300 struct task_group *tg = css_tg(seq_css(sf)); 10301 10302 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 10303 return 0; 10304 } 10305 10306 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10307 char *buf, size_t nbytes, loff_t off) 10308 { 10309 struct task_group *tg = css_tg(of_css(of)); 10310 u64 period = tg_get_cfs_period(tg); 10311 u64 burst = tg_get_cfs_burst(tg); 10312 u64 quota; 10313 int ret; 10314 10315 ret = cpu_period_quota_parse(buf, &period, "a); 10316 if (!ret) 10317 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10318 return ret ?: nbytes; 10319 } 10320 #endif 10321 10322 static struct cftype cpu_files[] = { 10323 #ifdef CONFIG_FAIR_GROUP_SCHED 10324 { 10325 .name = "weight", 10326 .flags = CFTYPE_NOT_ON_ROOT, 10327 .read_u64 = cpu_weight_read_u64, 10328 .write_u64 = cpu_weight_write_u64, 10329 }, 10330 { 10331 .name = "weight.nice", 10332 .flags = CFTYPE_NOT_ON_ROOT, 10333 .read_s64 = cpu_weight_nice_read_s64, 10334 .write_s64 = cpu_weight_nice_write_s64, 10335 }, 10336 #endif 10337 #ifdef CONFIG_CFS_BANDWIDTH 10338 { 10339 .name = "max", 10340 .flags = CFTYPE_NOT_ON_ROOT, 10341 .seq_show = cpu_max_show, 10342 .write = cpu_max_write, 10343 }, 10344 { 10345 .name = "max.burst", 10346 .flags = CFTYPE_NOT_ON_ROOT, 10347 .read_u64 = cpu_cfs_burst_read_u64, 10348 .write_u64 = cpu_cfs_burst_write_u64, 10349 }, 10350 #endif 10351 #ifdef CONFIG_UCLAMP_TASK_GROUP 10352 { 10353 .name = "uclamp.min", 10354 .flags = CFTYPE_NOT_ON_ROOT, 10355 .seq_show = cpu_uclamp_min_show, 10356 .write = cpu_uclamp_min_write, 10357 }, 10358 { 10359 .name = "uclamp.max", 10360 .flags = CFTYPE_NOT_ON_ROOT, 10361 .seq_show = cpu_uclamp_max_show, 10362 .write = cpu_uclamp_max_write, 10363 }, 10364 #endif 10365 { } /* terminate */ 10366 }; 10367 10368 struct cgroup_subsys cpu_cgrp_subsys = { 10369 .css_alloc = cpu_cgroup_css_alloc, 10370 .css_online = cpu_cgroup_css_online, 10371 .css_released = cpu_cgroup_css_released, 10372 .css_free = cpu_cgroup_css_free, 10373 .css_extra_stat_show = cpu_extra_stat_show, 10374 .fork = cpu_cgroup_fork, 10375 .can_attach = cpu_cgroup_can_attach, 10376 .attach = cpu_cgroup_attach, 10377 .legacy_cftypes = cpu_legacy_files, 10378 .dfl_cftypes = cpu_files, 10379 .early_init = true, 10380 .threaded = true, 10381 }; 10382 10383 #endif /* CONFIG_CGROUP_SCHED */ 10384 10385 void dump_cpu_task(int cpu) 10386 { 10387 pr_info("Task dump for CPU %d:\n", cpu); 10388 sched_show_task(cpu_curr(cpu)); 10389 } 10390 10391 /* 10392 * Nice levels are multiplicative, with a gentle 10% change for every 10393 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10394 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10395 * that remained on nice 0. 10396 * 10397 * The "10% effect" is relative and cumulative: from _any_ nice level, 10398 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10399 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10400 * If a task goes up by ~10% and another task goes down by ~10% then 10401 * the relative distance between them is ~25%.) 10402 */ 10403 const int sched_prio_to_weight[40] = { 10404 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10405 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10406 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10407 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10408 /* 0 */ 1024, 820, 655, 526, 423, 10409 /* 5 */ 335, 272, 215, 172, 137, 10410 /* 10 */ 110, 87, 70, 56, 45, 10411 /* 15 */ 36, 29, 23, 18, 15, 10412 }; 10413 10414 /* 10415 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 10416 * 10417 * In cases where the weight does not change often, we can use the 10418 * precalculated inverse to speed up arithmetics by turning divisions 10419 * into multiplications: 10420 */ 10421 const u32 sched_prio_to_wmult[40] = { 10422 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10423 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10424 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10425 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10426 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10427 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10428 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10429 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10430 }; 10431 10432 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10433 { 10434 trace_sched_update_nr_running_tp(rq, count); 10435 } 10436