xref: /openbmc/linux/kernel/sched/clock.c (revision e55dea8e)
1 /*
2  * sched_clock for unstable cpu clocks
3  *
4  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
5  *
6  *  Updates and enhancements:
7  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8  *
9  * Based on code by:
10  *   Ingo Molnar <mingo@redhat.com>
11  *   Guillaume Chazarain <guichaz@gmail.com>
12  *
13  *
14  * What:
15  *
16  * cpu_clock(i) provides a fast (execution time) high resolution
17  * clock with bounded drift between CPUs. The value of cpu_clock(i)
18  * is monotonic for constant i. The timestamp returned is in nanoseconds.
19  *
20  * ######################### BIG FAT WARNING ##########################
21  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22  * # go backwards !!                                                  #
23  * ####################################################################
24  *
25  * There is no strict promise about the base, although it tends to start
26  * at 0 on boot (but people really shouldn't rely on that).
27  *
28  * cpu_clock(i)       -- can be used from any context, including NMI.
29  * local_clock()      -- is cpu_clock() on the current cpu.
30  *
31  * sched_clock_cpu(i)
32  *
33  * How:
34  *
35  * The implementation either uses sched_clock() when
36  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37  * sched_clock() is assumed to provide these properties (mostly it means
38  * the architecture provides a globally synchronized highres time source).
39  *
40  * Otherwise it tries to create a semi stable clock from a mixture of other
41  * clocks, including:
42  *
43  *  - GTOD (clock monotomic)
44  *  - sched_clock()
45  *  - explicit idle events
46  *
47  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48  * deltas are filtered to provide monotonicity and keeping it within an
49  * expected window.
50  *
51  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52  * that is otherwise invisible (TSC gets stopped).
53  *
54  */
55 #include <linux/spinlock.h>
56 #include <linux/hardirq.h>
57 #include <linux/export.h>
58 #include <linux/percpu.h>
59 #include <linux/ktime.h>
60 #include <linux/sched.h>
61 #include <linux/nmi.h>
62 #include <linux/sched/clock.h>
63 #include <linux/static_key.h>
64 #include <linux/workqueue.h>
65 #include <linux/compiler.h>
66 #include <linux/tick.h>
67 
68 /*
69  * Scheduler clock - returns current time in nanosec units.
70  * This is default implementation.
71  * Architectures and sub-architectures can override this.
72  */
73 unsigned long long __weak sched_clock(void)
74 {
75 	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
76 					* (NSEC_PER_SEC / HZ);
77 }
78 EXPORT_SYMBOL_GPL(sched_clock);
79 
80 __read_mostly int sched_clock_running;
81 
82 void sched_clock_init(void)
83 {
84 	sched_clock_running = 1;
85 }
86 
87 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
88 /*
89  * We must start with !__sched_clock_stable because the unstable -> stable
90  * transition is accurate, while the stable -> unstable transition is not.
91  *
92  * Similarly we start with __sched_clock_stable_early, thereby assuming we
93  * will become stable, such that there's only a single 1 -> 0 transition.
94  */
95 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
96 static int __sched_clock_stable_early = 1;
97 
98 /*
99  * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
100  */
101 __read_mostly u64 __sched_clock_offset;
102 static __read_mostly u64 __gtod_offset;
103 
104 struct sched_clock_data {
105 	u64			tick_raw;
106 	u64			tick_gtod;
107 	u64			clock;
108 };
109 
110 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
111 
112 static inline struct sched_clock_data *this_scd(void)
113 {
114 	return this_cpu_ptr(&sched_clock_data);
115 }
116 
117 static inline struct sched_clock_data *cpu_sdc(int cpu)
118 {
119 	return &per_cpu(sched_clock_data, cpu);
120 }
121 
122 int sched_clock_stable(void)
123 {
124 	return static_branch_likely(&__sched_clock_stable);
125 }
126 
127 static void __set_sched_clock_stable(void)
128 {
129 	struct sched_clock_data *scd = this_scd();
130 
131 	/*
132 	 * Attempt to make the (initial) unstable->stable transition continuous.
133 	 */
134 	__sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
135 
136 	printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
137 			scd->tick_gtod, __gtod_offset,
138 			scd->tick_raw,  __sched_clock_offset);
139 
140 	static_branch_enable(&__sched_clock_stable);
141 	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
142 }
143 
144 static void __sched_clock_work(struct work_struct *work)
145 {
146 	static_branch_disable(&__sched_clock_stable);
147 }
148 
149 static DECLARE_WORK(sched_clock_work, __sched_clock_work);
150 
151 static void __clear_sched_clock_stable(void)
152 {
153 	struct sched_clock_data *scd = this_scd();
154 
155 	/*
156 	 * Attempt to make the stable->unstable transition continuous.
157 	 *
158 	 * Trouble is, this is typically called from the TSC watchdog
159 	 * timer, which is late per definition. This means the tick
160 	 * values can already be screwy.
161 	 *
162 	 * Still do what we can.
163 	 */
164 	__gtod_offset = (scd->tick_raw + __sched_clock_offset) - (scd->tick_gtod);
165 
166 	printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
167 			scd->tick_gtod, __gtod_offset,
168 			scd->tick_raw,  __sched_clock_offset);
169 
170 	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
171 
172 	if (sched_clock_stable())
173 		schedule_work(&sched_clock_work);
174 }
175 
176 void clear_sched_clock_stable(void)
177 {
178 	__sched_clock_stable_early = 0;
179 
180 	smp_mb(); /* matches sched_clock_init_late() */
181 
182 	if (sched_clock_running == 2)
183 		__clear_sched_clock_stable();
184 }
185 
186 void sched_clock_init_late(void)
187 {
188 	sched_clock_running = 2;
189 	/*
190 	 * Ensure that it is impossible to not do a static_key update.
191 	 *
192 	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
193 	 * and do the update, or we must see their __sched_clock_stable_early
194 	 * and do the update, or both.
195 	 */
196 	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
197 
198 	if (__sched_clock_stable_early)
199 		__set_sched_clock_stable();
200 }
201 
202 /*
203  * min, max except they take wrapping into account
204  */
205 
206 static inline u64 wrap_min(u64 x, u64 y)
207 {
208 	return (s64)(x - y) < 0 ? x : y;
209 }
210 
211 static inline u64 wrap_max(u64 x, u64 y)
212 {
213 	return (s64)(x - y) > 0 ? x : y;
214 }
215 
216 /*
217  * update the percpu scd from the raw @now value
218  *
219  *  - filter out backward motion
220  *  - use the GTOD tick value to create a window to filter crazy TSC values
221  */
222 static u64 sched_clock_local(struct sched_clock_data *scd)
223 {
224 	u64 now, clock, old_clock, min_clock, max_clock, gtod;
225 	s64 delta;
226 
227 again:
228 	now = sched_clock();
229 	delta = now - scd->tick_raw;
230 	if (unlikely(delta < 0))
231 		delta = 0;
232 
233 	old_clock = scd->clock;
234 
235 	/*
236 	 * scd->clock = clamp(scd->tick_gtod + delta,
237 	 *		      max(scd->tick_gtod, scd->clock),
238 	 *		      scd->tick_gtod + TICK_NSEC);
239 	 */
240 
241 	gtod = scd->tick_gtod + __gtod_offset;
242 	clock = gtod + delta;
243 	min_clock = wrap_max(gtod, old_clock);
244 	max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
245 
246 	clock = wrap_max(clock, min_clock);
247 	clock = wrap_min(clock, max_clock);
248 
249 	if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
250 		goto again;
251 
252 	return clock;
253 }
254 
255 static u64 sched_clock_remote(struct sched_clock_data *scd)
256 {
257 	struct sched_clock_data *my_scd = this_scd();
258 	u64 this_clock, remote_clock;
259 	u64 *ptr, old_val, val;
260 
261 #if BITS_PER_LONG != 64
262 again:
263 	/*
264 	 * Careful here: The local and the remote clock values need to
265 	 * be read out atomic as we need to compare the values and
266 	 * then update either the local or the remote side. So the
267 	 * cmpxchg64 below only protects one readout.
268 	 *
269 	 * We must reread via sched_clock_local() in the retry case on
270 	 * 32bit as an NMI could use sched_clock_local() via the
271 	 * tracer and hit between the readout of
272 	 * the low32bit and the high 32bit portion.
273 	 */
274 	this_clock = sched_clock_local(my_scd);
275 	/*
276 	 * We must enforce atomic readout on 32bit, otherwise the
277 	 * update on the remote cpu can hit inbetween the readout of
278 	 * the low32bit and the high 32bit portion.
279 	 */
280 	remote_clock = cmpxchg64(&scd->clock, 0, 0);
281 #else
282 	/*
283 	 * On 64bit the read of [my]scd->clock is atomic versus the
284 	 * update, so we can avoid the above 32bit dance.
285 	 */
286 	sched_clock_local(my_scd);
287 again:
288 	this_clock = my_scd->clock;
289 	remote_clock = scd->clock;
290 #endif
291 
292 	/*
293 	 * Use the opportunity that we have both locks
294 	 * taken to couple the two clocks: we take the
295 	 * larger time as the latest time for both
296 	 * runqueues. (this creates monotonic movement)
297 	 */
298 	if (likely((s64)(remote_clock - this_clock) < 0)) {
299 		ptr = &scd->clock;
300 		old_val = remote_clock;
301 		val = this_clock;
302 	} else {
303 		/*
304 		 * Should be rare, but possible:
305 		 */
306 		ptr = &my_scd->clock;
307 		old_val = this_clock;
308 		val = remote_clock;
309 	}
310 
311 	if (cmpxchg64(ptr, old_val, val) != old_val)
312 		goto again;
313 
314 	return val;
315 }
316 
317 /*
318  * Similar to cpu_clock(), but requires local IRQs to be disabled.
319  *
320  * See cpu_clock().
321  */
322 u64 sched_clock_cpu(int cpu)
323 {
324 	struct sched_clock_data *scd;
325 	u64 clock;
326 
327 	if (sched_clock_stable())
328 		return sched_clock() + __sched_clock_offset;
329 
330 	if (unlikely(!sched_clock_running))
331 		return 0ull;
332 
333 	preempt_disable_notrace();
334 	scd = cpu_sdc(cpu);
335 
336 	if (cpu != smp_processor_id())
337 		clock = sched_clock_remote(scd);
338 	else
339 		clock = sched_clock_local(scd);
340 	preempt_enable_notrace();
341 
342 	return clock;
343 }
344 EXPORT_SYMBOL_GPL(sched_clock_cpu);
345 
346 void sched_clock_tick(void)
347 {
348 	struct sched_clock_data *scd;
349 
350 	WARN_ON_ONCE(!irqs_disabled());
351 
352 	/*
353 	 * Update these values even if sched_clock_stable(), because it can
354 	 * become unstable at any point in time at which point we need some
355 	 * values to fall back on.
356 	 *
357 	 * XXX arguably we can skip this if we expose tsc_clocksource_reliable
358 	 */
359 	scd = this_scd();
360 	scd->tick_raw  = sched_clock();
361 	scd->tick_gtod = ktime_get_ns();
362 
363 	if (!sched_clock_stable() && likely(sched_clock_running))
364 		sched_clock_local(scd);
365 }
366 
367 /*
368  * We are going deep-idle (irqs are disabled):
369  */
370 void sched_clock_idle_sleep_event(void)
371 {
372 	sched_clock_cpu(smp_processor_id());
373 }
374 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
375 
376 /*
377  * We just idled delta nanoseconds (called with irqs disabled):
378  */
379 void sched_clock_idle_wakeup_event(u64 delta_ns)
380 {
381 	if (timekeeping_suspended)
382 		return;
383 
384 	sched_clock_tick();
385 	touch_softlockup_watchdog_sched();
386 }
387 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
388 
389 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
390 
391 u64 sched_clock_cpu(int cpu)
392 {
393 	if (unlikely(!sched_clock_running))
394 		return 0;
395 
396 	return sched_clock();
397 }
398 
399 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
400 
401 /*
402  * Running clock - returns the time that has elapsed while a guest has been
403  * running.
404  * On a guest this value should be local_clock minus the time the guest was
405  * suspended by the hypervisor (for any reason).
406  * On bare metal this function should return the same as local_clock.
407  * Architectures and sub-architectures can override this.
408  */
409 u64 __weak running_clock(void)
410 {
411 	return local_clock();
412 }
413