xref: /openbmc/linux/kernel/sched/clock.c (revision dfd4f649)
1 /*
2  * sched_clock() for unstable CPU clocks
3  *
4  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
5  *
6  *  Updates and enhancements:
7  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8  *
9  * Based on code by:
10  *   Ingo Molnar <mingo@redhat.com>
11  *   Guillaume Chazarain <guichaz@gmail.com>
12  *
13  *
14  * What this file implements:
15  *
16  * cpu_clock(i) provides a fast (execution time) high resolution
17  * clock with bounded drift between CPUs. The value of cpu_clock(i)
18  * is monotonic for constant i. The timestamp returned is in nanoseconds.
19  *
20  * ######################### BIG FAT WARNING ##########################
21  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22  * # go backwards !!                                                  #
23  * ####################################################################
24  *
25  * There is no strict promise about the base, although it tends to start
26  * at 0 on boot (but people really shouldn't rely on that).
27  *
28  * cpu_clock(i)       -- can be used from any context, including NMI.
29  * local_clock()      -- is cpu_clock() on the current CPU.
30  *
31  * sched_clock_cpu(i)
32  *
33  * How it is implemented:
34  *
35  * The implementation either uses sched_clock() when
36  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37  * sched_clock() is assumed to provide these properties (mostly it means
38  * the architecture provides a globally synchronized highres time source).
39  *
40  * Otherwise it tries to create a semi stable clock from a mixture of other
41  * clocks, including:
42  *
43  *  - GTOD (clock monotomic)
44  *  - sched_clock()
45  *  - explicit idle events
46  *
47  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48  * deltas are filtered to provide monotonicity and keeping it within an
49  * expected window.
50  *
51  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52  * that is otherwise invisible (TSC gets stopped).
53  *
54  */
55 #include "sched.h"
56 #include <linux/sched_clock.h>
57 
58 /*
59  * Scheduler clock - returns current time in nanosec units.
60  * This is default implementation.
61  * Architectures and sub-architectures can override this.
62  */
63 unsigned long long __weak sched_clock(void)
64 {
65 	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
66 					* (NSEC_PER_SEC / HZ);
67 }
68 EXPORT_SYMBOL_GPL(sched_clock);
69 
70 static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
71 
72 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
73 /*
74  * We must start with !__sched_clock_stable because the unstable -> stable
75  * transition is accurate, while the stable -> unstable transition is not.
76  *
77  * Similarly we start with __sched_clock_stable_early, thereby assuming we
78  * will become stable, such that there's only a single 1 -> 0 transition.
79  */
80 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
81 static int __sched_clock_stable_early = 1;
82 
83 /*
84  * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
85  */
86 __read_mostly u64 __sched_clock_offset;
87 static __read_mostly u64 __gtod_offset;
88 
89 struct sched_clock_data {
90 	u64			tick_raw;
91 	u64			tick_gtod;
92 	u64			clock;
93 };
94 
95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
96 
97 static inline struct sched_clock_data *this_scd(void)
98 {
99 	return this_cpu_ptr(&sched_clock_data);
100 }
101 
102 static inline struct sched_clock_data *cpu_sdc(int cpu)
103 {
104 	return &per_cpu(sched_clock_data, cpu);
105 }
106 
107 int sched_clock_stable(void)
108 {
109 	return static_branch_likely(&__sched_clock_stable);
110 }
111 
112 static void __scd_stamp(struct sched_clock_data *scd)
113 {
114 	scd->tick_gtod = ktime_get_ns();
115 	scd->tick_raw = sched_clock();
116 }
117 
118 static void __set_sched_clock_stable(void)
119 {
120 	struct sched_clock_data *scd;
121 
122 	/*
123 	 * Since we're still unstable and the tick is already running, we have
124 	 * to disable IRQs in order to get a consistent scd->tick* reading.
125 	 */
126 	local_irq_disable();
127 	scd = this_scd();
128 	/*
129 	 * Attempt to make the (initial) unstable->stable transition continuous.
130 	 */
131 	__sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
132 	local_irq_enable();
133 
134 	printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
135 			scd->tick_gtod, __gtod_offset,
136 			scd->tick_raw,  __sched_clock_offset);
137 
138 	static_branch_enable(&__sched_clock_stable);
139 	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
140 }
141 
142 /*
143  * If we ever get here, we're screwed, because we found out -- typically after
144  * the fact -- that TSC wasn't good. This means all our clocksources (including
145  * ktime) could have reported wrong values.
146  *
147  * What we do here is an attempt to fix up and continue sort of where we left
148  * off in a coherent manner.
149  *
150  * The only way to fully avoid random clock jumps is to boot with:
151  * "tsc=unstable".
152  */
153 static void __sched_clock_work(struct work_struct *work)
154 {
155 	struct sched_clock_data *scd;
156 	int cpu;
157 
158 	/* take a current timestamp and set 'now' */
159 	preempt_disable();
160 	scd = this_scd();
161 	__scd_stamp(scd);
162 	scd->clock = scd->tick_gtod + __gtod_offset;
163 	preempt_enable();
164 
165 	/* clone to all CPUs */
166 	for_each_possible_cpu(cpu)
167 		per_cpu(sched_clock_data, cpu) = *scd;
168 
169 	printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
170 	printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
171 			scd->tick_gtod, __gtod_offset,
172 			scd->tick_raw,  __sched_clock_offset);
173 
174 	static_branch_disable(&__sched_clock_stable);
175 }
176 
177 static DECLARE_WORK(sched_clock_work, __sched_clock_work);
178 
179 static void __clear_sched_clock_stable(void)
180 {
181 	if (!sched_clock_stable())
182 		return;
183 
184 	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
185 	schedule_work(&sched_clock_work);
186 }
187 
188 void clear_sched_clock_stable(void)
189 {
190 	__sched_clock_stable_early = 0;
191 
192 	smp_mb(); /* matches sched_clock_init_late() */
193 
194 	if (static_key_count(&sched_clock_running.key) == 2)
195 		__clear_sched_clock_stable();
196 }
197 
198 static void __sched_clock_gtod_offset(void)
199 {
200 	struct sched_clock_data *scd = this_scd();
201 
202 	__scd_stamp(scd);
203 	__gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
204 }
205 
206 void __init sched_clock_init(void)
207 {
208 	/*
209 	 * Set __gtod_offset such that once we mark sched_clock_running,
210 	 * sched_clock_tick() continues where sched_clock() left off.
211 	 *
212 	 * Even if TSC is buggered, we're still UP at this point so it
213 	 * can't really be out of sync.
214 	 */
215 	local_irq_disable();
216 	__sched_clock_gtod_offset();
217 	local_irq_enable();
218 
219 	static_branch_inc(&sched_clock_running);
220 }
221 /*
222  * We run this as late_initcall() such that it runs after all built-in drivers,
223  * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
224  */
225 static int __init sched_clock_init_late(void)
226 {
227 	static_branch_inc(&sched_clock_running);
228 	/*
229 	 * Ensure that it is impossible to not do a static_key update.
230 	 *
231 	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
232 	 * and do the update, or we must see their __sched_clock_stable_early
233 	 * and do the update, or both.
234 	 */
235 	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
236 
237 	if (__sched_clock_stable_early)
238 		__set_sched_clock_stable();
239 
240 	return 0;
241 }
242 late_initcall(sched_clock_init_late);
243 
244 /*
245  * min, max except they take wrapping into account
246  */
247 
248 static inline u64 wrap_min(u64 x, u64 y)
249 {
250 	return (s64)(x - y) < 0 ? x : y;
251 }
252 
253 static inline u64 wrap_max(u64 x, u64 y)
254 {
255 	return (s64)(x - y) > 0 ? x : y;
256 }
257 
258 /*
259  * update the percpu scd from the raw @now value
260  *
261  *  - filter out backward motion
262  *  - use the GTOD tick value to create a window to filter crazy TSC values
263  */
264 static u64 sched_clock_local(struct sched_clock_data *scd)
265 {
266 	u64 now, clock, old_clock, min_clock, max_clock, gtod;
267 	s64 delta;
268 
269 again:
270 	now = sched_clock();
271 	delta = now - scd->tick_raw;
272 	if (unlikely(delta < 0))
273 		delta = 0;
274 
275 	old_clock = scd->clock;
276 
277 	/*
278 	 * scd->clock = clamp(scd->tick_gtod + delta,
279 	 *		      max(scd->tick_gtod, scd->clock),
280 	 *		      scd->tick_gtod + TICK_NSEC);
281 	 */
282 
283 	gtod = scd->tick_gtod + __gtod_offset;
284 	clock = gtod + delta;
285 	min_clock = wrap_max(gtod, old_clock);
286 	max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
287 
288 	clock = wrap_max(clock, min_clock);
289 	clock = wrap_min(clock, max_clock);
290 
291 	if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
292 		goto again;
293 
294 	return clock;
295 }
296 
297 static u64 sched_clock_remote(struct sched_clock_data *scd)
298 {
299 	struct sched_clock_data *my_scd = this_scd();
300 	u64 this_clock, remote_clock;
301 	u64 *ptr, old_val, val;
302 
303 #if BITS_PER_LONG != 64
304 again:
305 	/*
306 	 * Careful here: The local and the remote clock values need to
307 	 * be read out atomic as we need to compare the values and
308 	 * then update either the local or the remote side. So the
309 	 * cmpxchg64 below only protects one readout.
310 	 *
311 	 * We must reread via sched_clock_local() in the retry case on
312 	 * 32-bit kernels as an NMI could use sched_clock_local() via the
313 	 * tracer and hit between the readout of
314 	 * the low 32-bit and the high 32-bit portion.
315 	 */
316 	this_clock = sched_clock_local(my_scd);
317 	/*
318 	 * We must enforce atomic readout on 32-bit, otherwise the
319 	 * update on the remote CPU can hit inbetween the readout of
320 	 * the low 32-bit and the high 32-bit portion.
321 	 */
322 	remote_clock = cmpxchg64(&scd->clock, 0, 0);
323 #else
324 	/*
325 	 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
326 	 * update, so we can avoid the above 32-bit dance.
327 	 */
328 	sched_clock_local(my_scd);
329 again:
330 	this_clock = my_scd->clock;
331 	remote_clock = scd->clock;
332 #endif
333 
334 	/*
335 	 * Use the opportunity that we have both locks
336 	 * taken to couple the two clocks: we take the
337 	 * larger time as the latest time for both
338 	 * runqueues. (this creates monotonic movement)
339 	 */
340 	if (likely((s64)(remote_clock - this_clock) < 0)) {
341 		ptr = &scd->clock;
342 		old_val = remote_clock;
343 		val = this_clock;
344 	} else {
345 		/*
346 		 * Should be rare, but possible:
347 		 */
348 		ptr = &my_scd->clock;
349 		old_val = this_clock;
350 		val = remote_clock;
351 	}
352 
353 	if (cmpxchg64(ptr, old_val, val) != old_val)
354 		goto again;
355 
356 	return val;
357 }
358 
359 /*
360  * Similar to cpu_clock(), but requires local IRQs to be disabled.
361  *
362  * See cpu_clock().
363  */
364 u64 sched_clock_cpu(int cpu)
365 {
366 	struct sched_clock_data *scd;
367 	u64 clock;
368 
369 	if (sched_clock_stable())
370 		return sched_clock() + __sched_clock_offset;
371 
372 	if (!static_branch_unlikely(&sched_clock_running))
373 		return sched_clock();
374 
375 	preempt_disable_notrace();
376 	scd = cpu_sdc(cpu);
377 
378 	if (cpu != smp_processor_id())
379 		clock = sched_clock_remote(scd);
380 	else
381 		clock = sched_clock_local(scd);
382 	preempt_enable_notrace();
383 
384 	return clock;
385 }
386 EXPORT_SYMBOL_GPL(sched_clock_cpu);
387 
388 void sched_clock_tick(void)
389 {
390 	struct sched_clock_data *scd;
391 
392 	if (sched_clock_stable())
393 		return;
394 
395 	if (!static_branch_unlikely(&sched_clock_running))
396 		return;
397 
398 	lockdep_assert_irqs_disabled();
399 
400 	scd = this_scd();
401 	__scd_stamp(scd);
402 	sched_clock_local(scd);
403 }
404 
405 void sched_clock_tick_stable(void)
406 {
407 	if (!sched_clock_stable())
408 		return;
409 
410 	/*
411 	 * Called under watchdog_lock.
412 	 *
413 	 * The watchdog just found this TSC to (still) be stable, so now is a
414 	 * good moment to update our __gtod_offset. Because once we find the
415 	 * TSC to be unstable, any computation will be computing crap.
416 	 */
417 	local_irq_disable();
418 	__sched_clock_gtod_offset();
419 	local_irq_enable();
420 }
421 
422 /*
423  * We are going deep-idle (irqs are disabled):
424  */
425 void sched_clock_idle_sleep_event(void)
426 {
427 	sched_clock_cpu(smp_processor_id());
428 }
429 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
430 
431 /*
432  * We just idled; resync with ktime.
433  */
434 void sched_clock_idle_wakeup_event(void)
435 {
436 	unsigned long flags;
437 
438 	if (sched_clock_stable())
439 		return;
440 
441 	if (unlikely(timekeeping_suspended))
442 		return;
443 
444 	local_irq_save(flags);
445 	sched_clock_tick();
446 	local_irq_restore(flags);
447 }
448 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
449 
450 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
451 
452 void __init sched_clock_init(void)
453 {
454 	static_branch_inc(&sched_clock_running);
455 	local_irq_disable();
456 	generic_sched_clock_init();
457 	local_irq_enable();
458 }
459 
460 u64 sched_clock_cpu(int cpu)
461 {
462 	if (!static_branch_unlikely(&sched_clock_running))
463 		return 0;
464 
465 	return sched_clock();
466 }
467 
468 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
469 
470 /*
471  * Running clock - returns the time that has elapsed while a guest has been
472  * running.
473  * On a guest this value should be local_clock minus the time the guest was
474  * suspended by the hypervisor (for any reason).
475  * On bare metal this function should return the same as local_clock.
476  * Architectures and sub-architectures can override this.
477  */
478 u64 __weak running_clock(void)
479 {
480 	return local_clock();
481 }
482