1 /* 2 * sched_clock for unstable cpu clocks 3 * 4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 5 * 6 * Updates and enhancements: 7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> 8 * 9 * Based on code by: 10 * Ingo Molnar <mingo@redhat.com> 11 * Guillaume Chazarain <guichaz@gmail.com> 12 * 13 * 14 * What: 15 * 16 * cpu_clock(i) provides a fast (execution time) high resolution 17 * clock with bounded drift between CPUs. The value of cpu_clock(i) 18 * is monotonic for constant i. The timestamp returned is in nanoseconds. 19 * 20 * ######################### BIG FAT WARNING ########################## 21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 22 * # go backwards !! # 23 * #################################################################### 24 * 25 * There is no strict promise about the base, although it tends to start 26 * at 0 on boot (but people really shouldn't rely on that). 27 * 28 * cpu_clock(i) -- can be used from any context, including NMI. 29 * local_clock() -- is cpu_clock() on the current cpu. 30 * 31 * sched_clock_cpu(i) 32 * 33 * How: 34 * 35 * The implementation either uses sched_clock() when 36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the 37 * sched_clock() is assumed to provide these properties (mostly it means 38 * the architecture provides a globally synchronized highres time source). 39 * 40 * Otherwise it tries to create a semi stable clock from a mixture of other 41 * clocks, including: 42 * 43 * - GTOD (clock monotomic) 44 * - sched_clock() 45 * - explicit idle events 46 * 47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The 48 * deltas are filtered to provide monotonicity and keeping it within an 49 * expected window. 50 * 51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time 52 * that is otherwise invisible (TSC gets stopped). 53 * 54 */ 55 #include <linux/spinlock.h> 56 #include <linux/hardirq.h> 57 #include <linux/export.h> 58 #include <linux/percpu.h> 59 #include <linux/ktime.h> 60 #include <linux/sched.h> 61 #include <linux/static_key.h> 62 #include <linux/workqueue.h> 63 #include <linux/compiler.h> 64 65 /* 66 * Scheduler clock - returns current time in nanosec units. 67 * This is default implementation. 68 * Architectures and sub-architectures can override this. 69 */ 70 unsigned long long __weak sched_clock(void) 71 { 72 return (unsigned long long)(jiffies - INITIAL_JIFFIES) 73 * (NSEC_PER_SEC / HZ); 74 } 75 EXPORT_SYMBOL_GPL(sched_clock); 76 77 __read_mostly int sched_clock_running; 78 79 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 80 static struct static_key __sched_clock_stable = STATIC_KEY_INIT; 81 static int __sched_clock_stable_early; 82 83 int sched_clock_stable(void) 84 { 85 return static_key_false(&__sched_clock_stable); 86 } 87 88 static void __set_sched_clock_stable(void) 89 { 90 if (!sched_clock_stable()) 91 static_key_slow_inc(&__sched_clock_stable); 92 } 93 94 void set_sched_clock_stable(void) 95 { 96 __sched_clock_stable_early = 1; 97 98 smp_mb(); /* matches sched_clock_init() */ 99 100 if (!sched_clock_running) 101 return; 102 103 __set_sched_clock_stable(); 104 } 105 106 static void __clear_sched_clock_stable(struct work_struct *work) 107 { 108 /* XXX worry about clock continuity */ 109 if (sched_clock_stable()) 110 static_key_slow_dec(&__sched_clock_stable); 111 } 112 113 static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable); 114 115 void clear_sched_clock_stable(void) 116 { 117 __sched_clock_stable_early = 0; 118 119 smp_mb(); /* matches sched_clock_init() */ 120 121 if (!sched_clock_running) 122 return; 123 124 schedule_work(&sched_clock_work); 125 } 126 127 struct sched_clock_data { 128 u64 tick_raw; 129 u64 tick_gtod; 130 u64 clock; 131 }; 132 133 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); 134 135 static inline struct sched_clock_data *this_scd(void) 136 { 137 return this_cpu_ptr(&sched_clock_data); 138 } 139 140 static inline struct sched_clock_data *cpu_sdc(int cpu) 141 { 142 return &per_cpu(sched_clock_data, cpu); 143 } 144 145 void sched_clock_init(void) 146 { 147 u64 ktime_now = ktime_to_ns(ktime_get()); 148 int cpu; 149 150 for_each_possible_cpu(cpu) { 151 struct sched_clock_data *scd = cpu_sdc(cpu); 152 153 scd->tick_raw = 0; 154 scd->tick_gtod = ktime_now; 155 scd->clock = ktime_now; 156 } 157 158 sched_clock_running = 1; 159 160 /* 161 * Ensure that it is impossible to not do a static_key update. 162 * 163 * Either {set,clear}_sched_clock_stable() must see sched_clock_running 164 * and do the update, or we must see their __sched_clock_stable_early 165 * and do the update, or both. 166 */ 167 smp_mb(); /* matches {set,clear}_sched_clock_stable() */ 168 169 if (__sched_clock_stable_early) 170 __set_sched_clock_stable(); 171 else 172 __clear_sched_clock_stable(NULL); 173 } 174 175 /* 176 * min, max except they take wrapping into account 177 */ 178 179 static inline u64 wrap_min(u64 x, u64 y) 180 { 181 return (s64)(x - y) < 0 ? x : y; 182 } 183 184 static inline u64 wrap_max(u64 x, u64 y) 185 { 186 return (s64)(x - y) > 0 ? x : y; 187 } 188 189 /* 190 * update the percpu scd from the raw @now value 191 * 192 * - filter out backward motion 193 * - use the GTOD tick value to create a window to filter crazy TSC values 194 */ 195 static u64 sched_clock_local(struct sched_clock_data *scd) 196 { 197 u64 now, clock, old_clock, min_clock, max_clock; 198 s64 delta; 199 200 again: 201 now = sched_clock(); 202 delta = now - scd->tick_raw; 203 if (unlikely(delta < 0)) 204 delta = 0; 205 206 old_clock = scd->clock; 207 208 /* 209 * scd->clock = clamp(scd->tick_gtod + delta, 210 * max(scd->tick_gtod, scd->clock), 211 * scd->tick_gtod + TICK_NSEC); 212 */ 213 214 clock = scd->tick_gtod + delta; 215 min_clock = wrap_max(scd->tick_gtod, old_clock); 216 max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC); 217 218 clock = wrap_max(clock, min_clock); 219 clock = wrap_min(clock, max_clock); 220 221 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) 222 goto again; 223 224 return clock; 225 } 226 227 static u64 sched_clock_remote(struct sched_clock_data *scd) 228 { 229 struct sched_clock_data *my_scd = this_scd(); 230 u64 this_clock, remote_clock; 231 u64 *ptr, old_val, val; 232 233 #if BITS_PER_LONG != 64 234 again: 235 /* 236 * Careful here: The local and the remote clock values need to 237 * be read out atomic as we need to compare the values and 238 * then update either the local or the remote side. So the 239 * cmpxchg64 below only protects one readout. 240 * 241 * We must reread via sched_clock_local() in the retry case on 242 * 32bit as an NMI could use sched_clock_local() via the 243 * tracer and hit between the readout of 244 * the low32bit and the high 32bit portion. 245 */ 246 this_clock = sched_clock_local(my_scd); 247 /* 248 * We must enforce atomic readout on 32bit, otherwise the 249 * update on the remote cpu can hit inbetween the readout of 250 * the low32bit and the high 32bit portion. 251 */ 252 remote_clock = cmpxchg64(&scd->clock, 0, 0); 253 #else 254 /* 255 * On 64bit the read of [my]scd->clock is atomic versus the 256 * update, so we can avoid the above 32bit dance. 257 */ 258 sched_clock_local(my_scd); 259 again: 260 this_clock = my_scd->clock; 261 remote_clock = scd->clock; 262 #endif 263 264 /* 265 * Use the opportunity that we have both locks 266 * taken to couple the two clocks: we take the 267 * larger time as the latest time for both 268 * runqueues. (this creates monotonic movement) 269 */ 270 if (likely((s64)(remote_clock - this_clock) < 0)) { 271 ptr = &scd->clock; 272 old_val = remote_clock; 273 val = this_clock; 274 } else { 275 /* 276 * Should be rare, but possible: 277 */ 278 ptr = &my_scd->clock; 279 old_val = this_clock; 280 val = remote_clock; 281 } 282 283 if (cmpxchg64(ptr, old_val, val) != old_val) 284 goto again; 285 286 return val; 287 } 288 289 /* 290 * Similar to cpu_clock(), but requires local IRQs to be disabled. 291 * 292 * See cpu_clock(). 293 */ 294 u64 sched_clock_cpu(int cpu) 295 { 296 struct sched_clock_data *scd; 297 u64 clock; 298 299 if (sched_clock_stable()) 300 return sched_clock(); 301 302 if (unlikely(!sched_clock_running)) 303 return 0ull; 304 305 preempt_disable_notrace(); 306 scd = cpu_sdc(cpu); 307 308 if (cpu != smp_processor_id()) 309 clock = sched_clock_remote(scd); 310 else 311 clock = sched_clock_local(scd); 312 preempt_enable_notrace(); 313 314 return clock; 315 } 316 317 void sched_clock_tick(void) 318 { 319 struct sched_clock_data *scd; 320 u64 now, now_gtod; 321 322 if (sched_clock_stable()) 323 return; 324 325 if (unlikely(!sched_clock_running)) 326 return; 327 328 WARN_ON_ONCE(!irqs_disabled()); 329 330 scd = this_scd(); 331 now_gtod = ktime_to_ns(ktime_get()); 332 now = sched_clock(); 333 334 scd->tick_raw = now; 335 scd->tick_gtod = now_gtod; 336 sched_clock_local(scd); 337 } 338 339 /* 340 * We are going deep-idle (irqs are disabled): 341 */ 342 void sched_clock_idle_sleep_event(void) 343 { 344 sched_clock_cpu(smp_processor_id()); 345 } 346 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); 347 348 /* 349 * We just idled delta nanoseconds (called with irqs disabled): 350 */ 351 void sched_clock_idle_wakeup_event(u64 delta_ns) 352 { 353 if (timekeeping_suspended) 354 return; 355 356 sched_clock_tick(); 357 touch_softlockup_watchdog(); 358 } 359 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); 360 361 /* 362 * As outlined at the top, provides a fast, high resolution, nanosecond 363 * time source that is monotonic per cpu argument and has bounded drift 364 * between cpus. 365 * 366 * ######################### BIG FAT WARNING ########################## 367 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 368 * # go backwards !! # 369 * #################################################################### 370 */ 371 u64 cpu_clock(int cpu) 372 { 373 if (!sched_clock_stable()) 374 return sched_clock_cpu(cpu); 375 376 return sched_clock(); 377 } 378 379 /* 380 * Similar to cpu_clock() for the current cpu. Time will only be observed 381 * to be monotonic if care is taken to only compare timestampt taken on the 382 * same CPU. 383 * 384 * See cpu_clock(). 385 */ 386 u64 local_clock(void) 387 { 388 if (!sched_clock_stable()) 389 return sched_clock_cpu(raw_smp_processor_id()); 390 391 return sched_clock(); 392 } 393 394 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 395 396 void sched_clock_init(void) 397 { 398 sched_clock_running = 1; 399 } 400 401 u64 sched_clock_cpu(int cpu) 402 { 403 if (unlikely(!sched_clock_running)) 404 return 0; 405 406 return sched_clock(); 407 } 408 409 u64 cpu_clock(int cpu) 410 { 411 return sched_clock(); 412 } 413 414 u64 local_clock(void) 415 { 416 return sched_clock(); 417 } 418 419 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 420 421 EXPORT_SYMBOL_GPL(cpu_clock); 422 EXPORT_SYMBOL_GPL(local_clock); 423 424 /* 425 * Running clock - returns the time that has elapsed while a guest has been 426 * running. 427 * On a guest this value should be local_clock minus the time the guest was 428 * suspended by the hypervisor (for any reason). 429 * On bare metal this function should return the same as local_clock. 430 * Architectures and sub-architectures can override this. 431 */ 432 u64 __weak running_clock(void) 433 { 434 return local_clock(); 435 } 436