1 /* 2 * sched_clock for unstable cpu clocks 3 * 4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra 5 * 6 * Updates and enhancements: 7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> 8 * 9 * Based on code by: 10 * Ingo Molnar <mingo@redhat.com> 11 * Guillaume Chazarain <guichaz@gmail.com> 12 * 13 * 14 * What: 15 * 16 * cpu_clock(i) provides a fast (execution time) high resolution 17 * clock with bounded drift between CPUs. The value of cpu_clock(i) 18 * is monotonic for constant i. The timestamp returned is in nanoseconds. 19 * 20 * ######################### BIG FAT WARNING ########################## 21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 22 * # go backwards !! # 23 * #################################################################### 24 * 25 * There is no strict promise about the base, although it tends to start 26 * at 0 on boot (but people really shouldn't rely on that). 27 * 28 * cpu_clock(i) -- can be used from any context, including NMI. 29 * local_clock() -- is cpu_clock() on the current cpu. 30 * 31 * sched_clock_cpu(i) 32 * 33 * How: 34 * 35 * The implementation either uses sched_clock() when 36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the 37 * sched_clock() is assumed to provide these properties (mostly it means 38 * the architecture provides a globally synchronized highres time source). 39 * 40 * Otherwise it tries to create a semi stable clock from a mixture of other 41 * clocks, including: 42 * 43 * - GTOD (clock monotomic) 44 * - sched_clock() 45 * - explicit idle events 46 * 47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The 48 * deltas are filtered to provide monotonicity and keeping it within an 49 * expected window. 50 * 51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time 52 * that is otherwise invisible (TSC gets stopped). 53 * 54 */ 55 #include <linux/spinlock.h> 56 #include <linux/hardirq.h> 57 #include <linux/export.h> 58 #include <linux/percpu.h> 59 #include <linux/ktime.h> 60 #include <linux/sched.h> 61 #include <linux/static_key.h> 62 #include <linux/workqueue.h> 63 #include <linux/compiler.h> 64 #include <linux/tick.h> 65 66 /* 67 * Scheduler clock - returns current time in nanosec units. 68 * This is default implementation. 69 * Architectures and sub-architectures can override this. 70 */ 71 unsigned long long __weak sched_clock(void) 72 { 73 return (unsigned long long)(jiffies - INITIAL_JIFFIES) 74 * (NSEC_PER_SEC / HZ); 75 } 76 EXPORT_SYMBOL_GPL(sched_clock); 77 78 __read_mostly int sched_clock_running; 79 80 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 81 static struct static_key __sched_clock_stable = STATIC_KEY_INIT; 82 static int __sched_clock_stable_early; 83 84 int sched_clock_stable(void) 85 { 86 return static_key_false(&__sched_clock_stable); 87 } 88 89 static void __set_sched_clock_stable(void) 90 { 91 if (!sched_clock_stable()) 92 static_key_slow_inc(&__sched_clock_stable); 93 94 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE); 95 } 96 97 void set_sched_clock_stable(void) 98 { 99 __sched_clock_stable_early = 1; 100 101 smp_mb(); /* matches sched_clock_init() */ 102 103 if (!sched_clock_running) 104 return; 105 106 __set_sched_clock_stable(); 107 } 108 109 static void __clear_sched_clock_stable(struct work_struct *work) 110 { 111 /* XXX worry about clock continuity */ 112 if (sched_clock_stable()) 113 static_key_slow_dec(&__sched_clock_stable); 114 115 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE); 116 } 117 118 static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable); 119 120 void clear_sched_clock_stable(void) 121 { 122 __sched_clock_stable_early = 0; 123 124 smp_mb(); /* matches sched_clock_init() */ 125 126 if (!sched_clock_running) 127 return; 128 129 schedule_work(&sched_clock_work); 130 } 131 132 struct sched_clock_data { 133 u64 tick_raw; 134 u64 tick_gtod; 135 u64 clock; 136 }; 137 138 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); 139 140 static inline struct sched_clock_data *this_scd(void) 141 { 142 return this_cpu_ptr(&sched_clock_data); 143 } 144 145 static inline struct sched_clock_data *cpu_sdc(int cpu) 146 { 147 return &per_cpu(sched_clock_data, cpu); 148 } 149 150 void sched_clock_init(void) 151 { 152 u64 ktime_now = ktime_to_ns(ktime_get()); 153 int cpu; 154 155 for_each_possible_cpu(cpu) { 156 struct sched_clock_data *scd = cpu_sdc(cpu); 157 158 scd->tick_raw = 0; 159 scd->tick_gtod = ktime_now; 160 scd->clock = ktime_now; 161 } 162 163 sched_clock_running = 1; 164 165 /* 166 * Ensure that it is impossible to not do a static_key update. 167 * 168 * Either {set,clear}_sched_clock_stable() must see sched_clock_running 169 * and do the update, or we must see their __sched_clock_stable_early 170 * and do the update, or both. 171 */ 172 smp_mb(); /* matches {set,clear}_sched_clock_stable() */ 173 174 if (__sched_clock_stable_early) 175 __set_sched_clock_stable(); 176 else 177 __clear_sched_clock_stable(NULL); 178 } 179 180 /* 181 * min, max except they take wrapping into account 182 */ 183 184 static inline u64 wrap_min(u64 x, u64 y) 185 { 186 return (s64)(x - y) < 0 ? x : y; 187 } 188 189 static inline u64 wrap_max(u64 x, u64 y) 190 { 191 return (s64)(x - y) > 0 ? x : y; 192 } 193 194 /* 195 * update the percpu scd from the raw @now value 196 * 197 * - filter out backward motion 198 * - use the GTOD tick value to create a window to filter crazy TSC values 199 */ 200 static u64 sched_clock_local(struct sched_clock_data *scd) 201 { 202 u64 now, clock, old_clock, min_clock, max_clock; 203 s64 delta; 204 205 again: 206 now = sched_clock(); 207 delta = now - scd->tick_raw; 208 if (unlikely(delta < 0)) 209 delta = 0; 210 211 old_clock = scd->clock; 212 213 /* 214 * scd->clock = clamp(scd->tick_gtod + delta, 215 * max(scd->tick_gtod, scd->clock), 216 * scd->tick_gtod + TICK_NSEC); 217 */ 218 219 clock = scd->tick_gtod + delta; 220 min_clock = wrap_max(scd->tick_gtod, old_clock); 221 max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC); 222 223 clock = wrap_max(clock, min_clock); 224 clock = wrap_min(clock, max_clock); 225 226 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) 227 goto again; 228 229 return clock; 230 } 231 232 static u64 sched_clock_remote(struct sched_clock_data *scd) 233 { 234 struct sched_clock_data *my_scd = this_scd(); 235 u64 this_clock, remote_clock; 236 u64 *ptr, old_val, val; 237 238 #if BITS_PER_LONG != 64 239 again: 240 /* 241 * Careful here: The local and the remote clock values need to 242 * be read out atomic as we need to compare the values and 243 * then update either the local or the remote side. So the 244 * cmpxchg64 below only protects one readout. 245 * 246 * We must reread via sched_clock_local() in the retry case on 247 * 32bit as an NMI could use sched_clock_local() via the 248 * tracer and hit between the readout of 249 * the low32bit and the high 32bit portion. 250 */ 251 this_clock = sched_clock_local(my_scd); 252 /* 253 * We must enforce atomic readout on 32bit, otherwise the 254 * update on the remote cpu can hit inbetween the readout of 255 * the low32bit and the high 32bit portion. 256 */ 257 remote_clock = cmpxchg64(&scd->clock, 0, 0); 258 #else 259 /* 260 * On 64bit the read of [my]scd->clock is atomic versus the 261 * update, so we can avoid the above 32bit dance. 262 */ 263 sched_clock_local(my_scd); 264 again: 265 this_clock = my_scd->clock; 266 remote_clock = scd->clock; 267 #endif 268 269 /* 270 * Use the opportunity that we have both locks 271 * taken to couple the two clocks: we take the 272 * larger time as the latest time for both 273 * runqueues. (this creates monotonic movement) 274 */ 275 if (likely((s64)(remote_clock - this_clock) < 0)) { 276 ptr = &scd->clock; 277 old_val = remote_clock; 278 val = this_clock; 279 } else { 280 /* 281 * Should be rare, but possible: 282 */ 283 ptr = &my_scd->clock; 284 old_val = this_clock; 285 val = remote_clock; 286 } 287 288 if (cmpxchg64(ptr, old_val, val) != old_val) 289 goto again; 290 291 return val; 292 } 293 294 /* 295 * Similar to cpu_clock(), but requires local IRQs to be disabled. 296 * 297 * See cpu_clock(). 298 */ 299 u64 sched_clock_cpu(int cpu) 300 { 301 struct sched_clock_data *scd; 302 u64 clock; 303 304 if (sched_clock_stable()) 305 return sched_clock(); 306 307 if (unlikely(!sched_clock_running)) 308 return 0ull; 309 310 preempt_disable_notrace(); 311 scd = cpu_sdc(cpu); 312 313 if (cpu != smp_processor_id()) 314 clock = sched_clock_remote(scd); 315 else 316 clock = sched_clock_local(scd); 317 preempt_enable_notrace(); 318 319 return clock; 320 } 321 EXPORT_SYMBOL_GPL(sched_clock_cpu); 322 323 void sched_clock_tick(void) 324 { 325 struct sched_clock_data *scd; 326 u64 now, now_gtod; 327 328 if (sched_clock_stable()) 329 return; 330 331 if (unlikely(!sched_clock_running)) 332 return; 333 334 WARN_ON_ONCE(!irqs_disabled()); 335 336 scd = this_scd(); 337 now_gtod = ktime_to_ns(ktime_get()); 338 now = sched_clock(); 339 340 scd->tick_raw = now; 341 scd->tick_gtod = now_gtod; 342 sched_clock_local(scd); 343 } 344 345 /* 346 * We are going deep-idle (irqs are disabled): 347 */ 348 void sched_clock_idle_sleep_event(void) 349 { 350 sched_clock_cpu(smp_processor_id()); 351 } 352 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); 353 354 /* 355 * We just idled delta nanoseconds (called with irqs disabled): 356 */ 357 void sched_clock_idle_wakeup_event(u64 delta_ns) 358 { 359 if (timekeeping_suspended) 360 return; 361 362 sched_clock_tick(); 363 touch_softlockup_watchdog_sched(); 364 } 365 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); 366 367 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 368 369 void sched_clock_init(void) 370 { 371 sched_clock_running = 1; 372 } 373 374 u64 sched_clock_cpu(int cpu) 375 { 376 if (unlikely(!sched_clock_running)) 377 return 0; 378 379 return sched_clock(); 380 } 381 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 382 383 /* 384 * Running clock - returns the time that has elapsed while a guest has been 385 * running. 386 * On a guest this value should be local_clock minus the time the guest was 387 * suspended by the hypervisor (for any reason). 388 * On bare metal this function should return the same as local_clock. 389 * Architectures and sub-architectures can override this. 390 */ 391 u64 __weak running_clock(void) 392 { 393 return local_clock(); 394 } 395