xref: /openbmc/linux/kernel/sched/clock.c (revision 5f32c314)
1 /*
2  * sched_clock for unstable cpu clocks
3  *
4  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
5  *
6  *  Updates and enhancements:
7  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8  *
9  * Based on code by:
10  *   Ingo Molnar <mingo@redhat.com>
11  *   Guillaume Chazarain <guichaz@gmail.com>
12  *
13  *
14  * What:
15  *
16  * cpu_clock(i) provides a fast (execution time) high resolution
17  * clock with bounded drift between CPUs. The value of cpu_clock(i)
18  * is monotonic for constant i. The timestamp returned is in nanoseconds.
19  *
20  * ######################### BIG FAT WARNING ##########################
21  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22  * # go backwards !!                                                  #
23  * ####################################################################
24  *
25  * There is no strict promise about the base, although it tends to start
26  * at 0 on boot (but people really shouldn't rely on that).
27  *
28  * cpu_clock(i)       -- can be used from any context, including NMI.
29  * local_clock()      -- is cpu_clock() on the current cpu.
30  *
31  * sched_clock_cpu(i)
32  *
33  * How:
34  *
35  * The implementation either uses sched_clock() when
36  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37  * sched_clock() is assumed to provide these properties (mostly it means
38  * the architecture provides a globally synchronized highres time source).
39  *
40  * Otherwise it tries to create a semi stable clock from a mixture of other
41  * clocks, including:
42  *
43  *  - GTOD (clock monotomic)
44  *  - sched_clock()
45  *  - explicit idle events
46  *
47  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48  * deltas are filtered to provide monotonicity and keeping it within an
49  * expected window.
50  *
51  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52  * that is otherwise invisible (TSC gets stopped).
53  *
54  */
55 #include <linux/spinlock.h>
56 #include <linux/hardirq.h>
57 #include <linux/export.h>
58 #include <linux/percpu.h>
59 #include <linux/ktime.h>
60 #include <linux/sched.h>
61 #include <linux/static_key.h>
62 #include <linux/workqueue.h>
63 
64 /*
65  * Scheduler clock - returns current time in nanosec units.
66  * This is default implementation.
67  * Architectures and sub-architectures can override this.
68  */
69 unsigned long long __attribute__((weak)) sched_clock(void)
70 {
71 	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
72 					* (NSEC_PER_SEC / HZ);
73 }
74 EXPORT_SYMBOL_GPL(sched_clock);
75 
76 __read_mostly int sched_clock_running;
77 
78 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
79 static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
80 static int __sched_clock_stable_early;
81 
82 int sched_clock_stable(void)
83 {
84 	return static_key_false(&__sched_clock_stable);
85 }
86 
87 static void __set_sched_clock_stable(void)
88 {
89 	if (!sched_clock_stable())
90 		static_key_slow_inc(&__sched_clock_stable);
91 }
92 
93 void set_sched_clock_stable(void)
94 {
95 	__sched_clock_stable_early = 1;
96 
97 	smp_mb(); /* matches sched_clock_init() */
98 
99 	if (!sched_clock_running)
100 		return;
101 
102 	__set_sched_clock_stable();
103 }
104 
105 static void __clear_sched_clock_stable(struct work_struct *work)
106 {
107 	/* XXX worry about clock continuity */
108 	if (sched_clock_stable())
109 		static_key_slow_dec(&__sched_clock_stable);
110 }
111 
112 static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
113 
114 void clear_sched_clock_stable(void)
115 {
116 	__sched_clock_stable_early = 0;
117 
118 	smp_mb(); /* matches sched_clock_init() */
119 
120 	if (!sched_clock_running)
121 		return;
122 
123 	schedule_work(&sched_clock_work);
124 }
125 
126 struct sched_clock_data {
127 	u64			tick_raw;
128 	u64			tick_gtod;
129 	u64			clock;
130 };
131 
132 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
133 
134 static inline struct sched_clock_data *this_scd(void)
135 {
136 	return &__get_cpu_var(sched_clock_data);
137 }
138 
139 static inline struct sched_clock_data *cpu_sdc(int cpu)
140 {
141 	return &per_cpu(sched_clock_data, cpu);
142 }
143 
144 void sched_clock_init(void)
145 {
146 	u64 ktime_now = ktime_to_ns(ktime_get());
147 	int cpu;
148 
149 	for_each_possible_cpu(cpu) {
150 		struct sched_clock_data *scd = cpu_sdc(cpu);
151 
152 		scd->tick_raw = 0;
153 		scd->tick_gtod = ktime_now;
154 		scd->clock = ktime_now;
155 	}
156 
157 	sched_clock_running = 1;
158 
159 	/*
160 	 * Ensure that it is impossible to not do a static_key update.
161 	 *
162 	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
163 	 * and do the update, or we must see their __sched_clock_stable_early
164 	 * and do the update, or both.
165 	 */
166 	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
167 
168 	if (__sched_clock_stable_early)
169 		__set_sched_clock_stable();
170 	else
171 		__clear_sched_clock_stable(NULL);
172 }
173 
174 /*
175  * min, max except they take wrapping into account
176  */
177 
178 static inline u64 wrap_min(u64 x, u64 y)
179 {
180 	return (s64)(x - y) < 0 ? x : y;
181 }
182 
183 static inline u64 wrap_max(u64 x, u64 y)
184 {
185 	return (s64)(x - y) > 0 ? x : y;
186 }
187 
188 /*
189  * update the percpu scd from the raw @now value
190  *
191  *  - filter out backward motion
192  *  - use the GTOD tick value to create a window to filter crazy TSC values
193  */
194 static u64 sched_clock_local(struct sched_clock_data *scd)
195 {
196 	u64 now, clock, old_clock, min_clock, max_clock;
197 	s64 delta;
198 
199 again:
200 	now = sched_clock();
201 	delta = now - scd->tick_raw;
202 	if (unlikely(delta < 0))
203 		delta = 0;
204 
205 	old_clock = scd->clock;
206 
207 	/*
208 	 * scd->clock = clamp(scd->tick_gtod + delta,
209 	 *		      max(scd->tick_gtod, scd->clock),
210 	 *		      scd->tick_gtod + TICK_NSEC);
211 	 */
212 
213 	clock = scd->tick_gtod + delta;
214 	min_clock = wrap_max(scd->tick_gtod, old_clock);
215 	max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
216 
217 	clock = wrap_max(clock, min_clock);
218 	clock = wrap_min(clock, max_clock);
219 
220 	if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
221 		goto again;
222 
223 	return clock;
224 }
225 
226 static u64 sched_clock_remote(struct sched_clock_data *scd)
227 {
228 	struct sched_clock_data *my_scd = this_scd();
229 	u64 this_clock, remote_clock;
230 	u64 *ptr, old_val, val;
231 
232 #if BITS_PER_LONG != 64
233 again:
234 	/*
235 	 * Careful here: The local and the remote clock values need to
236 	 * be read out atomic as we need to compare the values and
237 	 * then update either the local or the remote side. So the
238 	 * cmpxchg64 below only protects one readout.
239 	 *
240 	 * We must reread via sched_clock_local() in the retry case on
241 	 * 32bit as an NMI could use sched_clock_local() via the
242 	 * tracer and hit between the readout of
243 	 * the low32bit and the high 32bit portion.
244 	 */
245 	this_clock = sched_clock_local(my_scd);
246 	/*
247 	 * We must enforce atomic readout on 32bit, otherwise the
248 	 * update on the remote cpu can hit inbetween the readout of
249 	 * the low32bit and the high 32bit portion.
250 	 */
251 	remote_clock = cmpxchg64(&scd->clock, 0, 0);
252 #else
253 	/*
254 	 * On 64bit the read of [my]scd->clock is atomic versus the
255 	 * update, so we can avoid the above 32bit dance.
256 	 */
257 	sched_clock_local(my_scd);
258 again:
259 	this_clock = my_scd->clock;
260 	remote_clock = scd->clock;
261 #endif
262 
263 	/*
264 	 * Use the opportunity that we have both locks
265 	 * taken to couple the two clocks: we take the
266 	 * larger time as the latest time for both
267 	 * runqueues. (this creates monotonic movement)
268 	 */
269 	if (likely((s64)(remote_clock - this_clock) < 0)) {
270 		ptr = &scd->clock;
271 		old_val = remote_clock;
272 		val = this_clock;
273 	} else {
274 		/*
275 		 * Should be rare, but possible:
276 		 */
277 		ptr = &my_scd->clock;
278 		old_val = this_clock;
279 		val = remote_clock;
280 	}
281 
282 	if (cmpxchg64(ptr, old_val, val) != old_val)
283 		goto again;
284 
285 	return val;
286 }
287 
288 /*
289  * Similar to cpu_clock(), but requires local IRQs to be disabled.
290  *
291  * See cpu_clock().
292  */
293 u64 sched_clock_cpu(int cpu)
294 {
295 	struct sched_clock_data *scd;
296 	u64 clock;
297 
298 	if (sched_clock_stable())
299 		return sched_clock();
300 
301 	if (unlikely(!sched_clock_running))
302 		return 0ull;
303 
304 	preempt_disable();
305 	scd = cpu_sdc(cpu);
306 
307 	if (cpu != smp_processor_id())
308 		clock = sched_clock_remote(scd);
309 	else
310 		clock = sched_clock_local(scd);
311 	preempt_enable();
312 
313 	return clock;
314 }
315 
316 void sched_clock_tick(void)
317 {
318 	struct sched_clock_data *scd;
319 	u64 now, now_gtod;
320 
321 	if (sched_clock_stable())
322 		return;
323 
324 	if (unlikely(!sched_clock_running))
325 		return;
326 
327 	WARN_ON_ONCE(!irqs_disabled());
328 
329 	scd = this_scd();
330 	now_gtod = ktime_to_ns(ktime_get());
331 	now = sched_clock();
332 
333 	scd->tick_raw = now;
334 	scd->tick_gtod = now_gtod;
335 	sched_clock_local(scd);
336 }
337 
338 /*
339  * We are going deep-idle (irqs are disabled):
340  */
341 void sched_clock_idle_sleep_event(void)
342 {
343 	sched_clock_cpu(smp_processor_id());
344 }
345 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
346 
347 /*
348  * We just idled delta nanoseconds (called with irqs disabled):
349  */
350 void sched_clock_idle_wakeup_event(u64 delta_ns)
351 {
352 	if (timekeeping_suspended)
353 		return;
354 
355 	sched_clock_tick();
356 	touch_softlockup_watchdog();
357 }
358 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
359 
360 /*
361  * As outlined at the top, provides a fast, high resolution, nanosecond
362  * time source that is monotonic per cpu argument and has bounded drift
363  * between cpus.
364  *
365  * ######################### BIG FAT WARNING ##########################
366  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
367  * # go backwards !!                                                  #
368  * ####################################################################
369  */
370 u64 cpu_clock(int cpu)
371 {
372 	if (!sched_clock_stable())
373 		return sched_clock_cpu(cpu);
374 
375 	return sched_clock();
376 }
377 
378 /*
379  * Similar to cpu_clock() for the current cpu. Time will only be observed
380  * to be monotonic if care is taken to only compare timestampt taken on the
381  * same CPU.
382  *
383  * See cpu_clock().
384  */
385 u64 local_clock(void)
386 {
387 	if (!sched_clock_stable())
388 		return sched_clock_cpu(raw_smp_processor_id());
389 
390 	return sched_clock();
391 }
392 
393 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
394 
395 void sched_clock_init(void)
396 {
397 	sched_clock_running = 1;
398 }
399 
400 u64 sched_clock_cpu(int cpu)
401 {
402 	if (unlikely(!sched_clock_running))
403 		return 0;
404 
405 	return sched_clock();
406 }
407 
408 u64 cpu_clock(int cpu)
409 {
410 	return sched_clock();
411 }
412 
413 u64 local_clock(void)
414 {
415 	return sched_clock();
416 }
417 
418 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
419 
420 EXPORT_SYMBOL_GPL(cpu_clock);
421 EXPORT_SYMBOL_GPL(local_clock);
422