xref: /openbmc/linux/kernel/sched/clock.c (revision 4e1a33b1)
1 /*
2  * sched_clock for unstable cpu clocks
3  *
4  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
5  *
6  *  Updates and enhancements:
7  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8  *
9  * Based on code by:
10  *   Ingo Molnar <mingo@redhat.com>
11  *   Guillaume Chazarain <guichaz@gmail.com>
12  *
13  *
14  * What:
15  *
16  * cpu_clock(i) provides a fast (execution time) high resolution
17  * clock with bounded drift between CPUs. The value of cpu_clock(i)
18  * is monotonic for constant i. The timestamp returned is in nanoseconds.
19  *
20  * ######################### BIG FAT WARNING ##########################
21  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22  * # go backwards !!                                                  #
23  * ####################################################################
24  *
25  * There is no strict promise about the base, although it tends to start
26  * at 0 on boot (but people really shouldn't rely on that).
27  *
28  * cpu_clock(i)       -- can be used from any context, including NMI.
29  * local_clock()      -- is cpu_clock() on the current cpu.
30  *
31  * sched_clock_cpu(i)
32  *
33  * How:
34  *
35  * The implementation either uses sched_clock() when
36  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37  * sched_clock() is assumed to provide these properties (mostly it means
38  * the architecture provides a globally synchronized highres time source).
39  *
40  * Otherwise it tries to create a semi stable clock from a mixture of other
41  * clocks, including:
42  *
43  *  - GTOD (clock monotomic)
44  *  - sched_clock()
45  *  - explicit idle events
46  *
47  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48  * deltas are filtered to provide monotonicity and keeping it within an
49  * expected window.
50  *
51  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52  * that is otherwise invisible (TSC gets stopped).
53  *
54  */
55 #include <linux/spinlock.h>
56 #include <linux/hardirq.h>
57 #include <linux/export.h>
58 #include <linux/percpu.h>
59 #include <linux/ktime.h>
60 #include <linux/sched.h>
61 #include <linux/static_key.h>
62 #include <linux/workqueue.h>
63 #include <linux/compiler.h>
64 #include <linux/tick.h>
65 
66 /*
67  * Scheduler clock - returns current time in nanosec units.
68  * This is default implementation.
69  * Architectures and sub-architectures can override this.
70  */
71 unsigned long long __weak sched_clock(void)
72 {
73 	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
74 					* (NSEC_PER_SEC / HZ);
75 }
76 EXPORT_SYMBOL_GPL(sched_clock);
77 
78 __read_mostly int sched_clock_running;
79 
80 void sched_clock_init(void)
81 {
82 	sched_clock_running = 1;
83 }
84 
85 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
86 /*
87  * We must start with !__sched_clock_stable because the unstable -> stable
88  * transition is accurate, while the stable -> unstable transition is not.
89  *
90  * Similarly we start with __sched_clock_stable_early, thereby assuming we
91  * will become stable, such that there's only a single 1 -> 0 transition.
92  */
93 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
94 static int __sched_clock_stable_early = 1;
95 
96 /*
97  * We want: ktime_get_ns() + gtod_offset == sched_clock() + raw_offset
98  */
99 static __read_mostly u64 raw_offset;
100 static __read_mostly u64 gtod_offset;
101 
102 struct sched_clock_data {
103 	u64			tick_raw;
104 	u64			tick_gtod;
105 	u64			clock;
106 };
107 
108 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
109 
110 static inline struct sched_clock_data *this_scd(void)
111 {
112 	return this_cpu_ptr(&sched_clock_data);
113 }
114 
115 static inline struct sched_clock_data *cpu_sdc(int cpu)
116 {
117 	return &per_cpu(sched_clock_data, cpu);
118 }
119 
120 int sched_clock_stable(void)
121 {
122 	return static_branch_likely(&__sched_clock_stable);
123 }
124 
125 static void __set_sched_clock_stable(void)
126 {
127 	struct sched_clock_data *scd = this_scd();
128 
129 	/*
130 	 * Attempt to make the (initial) unstable->stable transition continuous.
131 	 */
132 	raw_offset = (scd->tick_gtod + gtod_offset) - (scd->tick_raw);
133 
134 	printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
135 			scd->tick_gtod, gtod_offset,
136 			scd->tick_raw,  raw_offset);
137 
138 	static_branch_enable(&__sched_clock_stable);
139 	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
140 }
141 
142 static void __clear_sched_clock_stable(struct work_struct *work)
143 {
144 	struct sched_clock_data *scd = this_scd();
145 
146 	/*
147 	 * Attempt to make the stable->unstable transition continuous.
148 	 *
149 	 * Trouble is, this is typically called from the TSC watchdog
150 	 * timer, which is late per definition. This means the tick
151 	 * values can already be screwy.
152 	 *
153 	 * Still do what we can.
154 	 */
155 	gtod_offset = (scd->tick_raw + raw_offset) - (scd->tick_gtod);
156 
157 	printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
158 			scd->tick_gtod, gtod_offset,
159 			scd->tick_raw,  raw_offset);
160 
161 	static_branch_disable(&__sched_clock_stable);
162 	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
163 }
164 
165 static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
166 
167 void clear_sched_clock_stable(void)
168 {
169 	__sched_clock_stable_early = 0;
170 
171 	smp_mb(); /* matches sched_clock_init_late() */
172 
173 	if (sched_clock_running == 2)
174 		schedule_work(&sched_clock_work);
175 }
176 
177 void sched_clock_init_late(void)
178 {
179 	sched_clock_running = 2;
180 	/*
181 	 * Ensure that it is impossible to not do a static_key update.
182 	 *
183 	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
184 	 * and do the update, or we must see their __sched_clock_stable_early
185 	 * and do the update, or both.
186 	 */
187 	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
188 
189 	if (__sched_clock_stable_early)
190 		__set_sched_clock_stable();
191 }
192 
193 /*
194  * min, max except they take wrapping into account
195  */
196 
197 static inline u64 wrap_min(u64 x, u64 y)
198 {
199 	return (s64)(x - y) < 0 ? x : y;
200 }
201 
202 static inline u64 wrap_max(u64 x, u64 y)
203 {
204 	return (s64)(x - y) > 0 ? x : y;
205 }
206 
207 /*
208  * update the percpu scd from the raw @now value
209  *
210  *  - filter out backward motion
211  *  - use the GTOD tick value to create a window to filter crazy TSC values
212  */
213 static u64 sched_clock_local(struct sched_clock_data *scd)
214 {
215 	u64 now, clock, old_clock, min_clock, max_clock;
216 	s64 delta;
217 
218 again:
219 	now = sched_clock();
220 	delta = now - scd->tick_raw;
221 	if (unlikely(delta < 0))
222 		delta = 0;
223 
224 	old_clock = scd->clock;
225 
226 	/*
227 	 * scd->clock = clamp(scd->tick_gtod + delta,
228 	 *		      max(scd->tick_gtod, scd->clock),
229 	 *		      scd->tick_gtod + TICK_NSEC);
230 	 */
231 
232 	clock = scd->tick_gtod + gtod_offset + delta;
233 	min_clock = wrap_max(scd->tick_gtod, old_clock);
234 	max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
235 
236 	clock = wrap_max(clock, min_clock);
237 	clock = wrap_min(clock, max_clock);
238 
239 	if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
240 		goto again;
241 
242 	return clock;
243 }
244 
245 static u64 sched_clock_remote(struct sched_clock_data *scd)
246 {
247 	struct sched_clock_data *my_scd = this_scd();
248 	u64 this_clock, remote_clock;
249 	u64 *ptr, old_val, val;
250 
251 #if BITS_PER_LONG != 64
252 again:
253 	/*
254 	 * Careful here: The local and the remote clock values need to
255 	 * be read out atomic as we need to compare the values and
256 	 * then update either the local or the remote side. So the
257 	 * cmpxchg64 below only protects one readout.
258 	 *
259 	 * We must reread via sched_clock_local() in the retry case on
260 	 * 32bit as an NMI could use sched_clock_local() via the
261 	 * tracer and hit between the readout of
262 	 * the low32bit and the high 32bit portion.
263 	 */
264 	this_clock = sched_clock_local(my_scd);
265 	/*
266 	 * We must enforce atomic readout on 32bit, otherwise the
267 	 * update on the remote cpu can hit inbetween the readout of
268 	 * the low32bit and the high 32bit portion.
269 	 */
270 	remote_clock = cmpxchg64(&scd->clock, 0, 0);
271 #else
272 	/*
273 	 * On 64bit the read of [my]scd->clock is atomic versus the
274 	 * update, so we can avoid the above 32bit dance.
275 	 */
276 	sched_clock_local(my_scd);
277 again:
278 	this_clock = my_scd->clock;
279 	remote_clock = scd->clock;
280 #endif
281 
282 	/*
283 	 * Use the opportunity that we have both locks
284 	 * taken to couple the two clocks: we take the
285 	 * larger time as the latest time for both
286 	 * runqueues. (this creates monotonic movement)
287 	 */
288 	if (likely((s64)(remote_clock - this_clock) < 0)) {
289 		ptr = &scd->clock;
290 		old_val = remote_clock;
291 		val = this_clock;
292 	} else {
293 		/*
294 		 * Should be rare, but possible:
295 		 */
296 		ptr = &my_scd->clock;
297 		old_val = this_clock;
298 		val = remote_clock;
299 	}
300 
301 	if (cmpxchg64(ptr, old_val, val) != old_val)
302 		goto again;
303 
304 	return val;
305 }
306 
307 /*
308  * Similar to cpu_clock(), but requires local IRQs to be disabled.
309  *
310  * See cpu_clock().
311  */
312 u64 sched_clock_cpu(int cpu)
313 {
314 	struct sched_clock_data *scd;
315 	u64 clock;
316 
317 	if (sched_clock_stable())
318 		return sched_clock() + raw_offset;
319 
320 	if (unlikely(!sched_clock_running))
321 		return 0ull;
322 
323 	preempt_disable_notrace();
324 	scd = cpu_sdc(cpu);
325 
326 	if (cpu != smp_processor_id())
327 		clock = sched_clock_remote(scd);
328 	else
329 		clock = sched_clock_local(scd);
330 	preempt_enable_notrace();
331 
332 	return clock;
333 }
334 EXPORT_SYMBOL_GPL(sched_clock_cpu);
335 
336 void sched_clock_tick(void)
337 {
338 	struct sched_clock_data *scd;
339 
340 	WARN_ON_ONCE(!irqs_disabled());
341 
342 	/*
343 	 * Update these values even if sched_clock_stable(), because it can
344 	 * become unstable at any point in time at which point we need some
345 	 * values to fall back on.
346 	 *
347 	 * XXX arguably we can skip this if we expose tsc_clocksource_reliable
348 	 */
349 	scd = this_scd();
350 	scd->tick_raw  = sched_clock();
351 	scd->tick_gtod = ktime_get_ns();
352 
353 	if (!sched_clock_stable() && likely(sched_clock_running))
354 		sched_clock_local(scd);
355 }
356 
357 /*
358  * We are going deep-idle (irqs are disabled):
359  */
360 void sched_clock_idle_sleep_event(void)
361 {
362 	sched_clock_cpu(smp_processor_id());
363 }
364 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
365 
366 /*
367  * We just idled delta nanoseconds (called with irqs disabled):
368  */
369 void sched_clock_idle_wakeup_event(u64 delta_ns)
370 {
371 	if (timekeeping_suspended)
372 		return;
373 
374 	sched_clock_tick();
375 	touch_softlockup_watchdog_sched();
376 }
377 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
378 
379 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
380 
381 u64 sched_clock_cpu(int cpu)
382 {
383 	if (unlikely(!sched_clock_running))
384 		return 0;
385 
386 	return sched_clock();
387 }
388 
389 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
390 
391 /*
392  * Running clock - returns the time that has elapsed while a guest has been
393  * running.
394  * On a guest this value should be local_clock minus the time the guest was
395  * suspended by the hypervisor (for any reason).
396  * On bare metal this function should return the same as local_clock.
397  * Architectures and sub-architectures can override this.
398  */
399 u64 __weak running_clock(void)
400 {
401 	return local_clock();
402 }
403