1 /* 2 * sched_clock() for unstable CPU clocks 3 * 4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra 5 * 6 * Updates and enhancements: 7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> 8 * 9 * Based on code by: 10 * Ingo Molnar <mingo@redhat.com> 11 * Guillaume Chazarain <guichaz@gmail.com> 12 * 13 * 14 * What this file implements: 15 * 16 * cpu_clock(i) provides a fast (execution time) high resolution 17 * clock with bounded drift between CPUs. The value of cpu_clock(i) 18 * is monotonic for constant i. The timestamp returned is in nanoseconds. 19 * 20 * ######################### BIG FAT WARNING ########################## 21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 22 * # go backwards !! # 23 * #################################################################### 24 * 25 * There is no strict promise about the base, although it tends to start 26 * at 0 on boot (but people really shouldn't rely on that). 27 * 28 * cpu_clock(i) -- can be used from any context, including NMI. 29 * local_clock() -- is cpu_clock() on the current CPU. 30 * 31 * sched_clock_cpu(i) 32 * 33 * How it is implemented: 34 * 35 * The implementation either uses sched_clock() when 36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the 37 * sched_clock() is assumed to provide these properties (mostly it means 38 * the architecture provides a globally synchronized highres time source). 39 * 40 * Otherwise it tries to create a semi stable clock from a mixture of other 41 * clocks, including: 42 * 43 * - GTOD (clock monotomic) 44 * - sched_clock() 45 * - explicit idle events 46 * 47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The 48 * deltas are filtered to provide monotonicity and keeping it within an 49 * expected window. 50 * 51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time 52 * that is otherwise invisible (TSC gets stopped). 53 * 54 */ 55 #include "sched.h" 56 57 /* 58 * Scheduler clock - returns current time in nanosec units. 59 * This is default implementation. 60 * Architectures and sub-architectures can override this. 61 */ 62 unsigned long long __weak sched_clock(void) 63 { 64 return (unsigned long long)(jiffies - INITIAL_JIFFIES) 65 * (NSEC_PER_SEC / HZ); 66 } 67 EXPORT_SYMBOL_GPL(sched_clock); 68 69 __read_mostly int sched_clock_running; 70 71 void sched_clock_init(void) 72 { 73 sched_clock_running = 1; 74 } 75 76 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 77 /* 78 * We must start with !__sched_clock_stable because the unstable -> stable 79 * transition is accurate, while the stable -> unstable transition is not. 80 * 81 * Similarly we start with __sched_clock_stable_early, thereby assuming we 82 * will become stable, such that there's only a single 1 -> 0 transition. 83 */ 84 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable); 85 static int __sched_clock_stable_early = 1; 86 87 /* 88 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset 89 */ 90 __read_mostly u64 __sched_clock_offset; 91 static __read_mostly u64 __gtod_offset; 92 93 struct sched_clock_data { 94 u64 tick_raw; 95 u64 tick_gtod; 96 u64 clock; 97 }; 98 99 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); 100 101 static inline struct sched_clock_data *this_scd(void) 102 { 103 return this_cpu_ptr(&sched_clock_data); 104 } 105 106 static inline struct sched_clock_data *cpu_sdc(int cpu) 107 { 108 return &per_cpu(sched_clock_data, cpu); 109 } 110 111 int sched_clock_stable(void) 112 { 113 return static_branch_likely(&__sched_clock_stable); 114 } 115 116 static void __scd_stamp(struct sched_clock_data *scd) 117 { 118 scd->tick_gtod = ktime_get_ns(); 119 scd->tick_raw = sched_clock(); 120 } 121 122 static void __set_sched_clock_stable(void) 123 { 124 struct sched_clock_data *scd; 125 126 /* 127 * Since we're still unstable and the tick is already running, we have 128 * to disable IRQs in order to get a consistent scd->tick* reading. 129 */ 130 local_irq_disable(); 131 scd = this_scd(); 132 /* 133 * Attempt to make the (initial) unstable->stable transition continuous. 134 */ 135 __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw); 136 local_irq_enable(); 137 138 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n", 139 scd->tick_gtod, __gtod_offset, 140 scd->tick_raw, __sched_clock_offset); 141 142 static_branch_enable(&__sched_clock_stable); 143 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE); 144 } 145 146 /* 147 * If we ever get here, we're screwed, because we found out -- typically after 148 * the fact -- that TSC wasn't good. This means all our clocksources (including 149 * ktime) could have reported wrong values. 150 * 151 * What we do here is an attempt to fix up and continue sort of where we left 152 * off in a coherent manner. 153 * 154 * The only way to fully avoid random clock jumps is to boot with: 155 * "tsc=unstable". 156 */ 157 static void __sched_clock_work(struct work_struct *work) 158 { 159 struct sched_clock_data *scd; 160 int cpu; 161 162 /* take a current timestamp and set 'now' */ 163 preempt_disable(); 164 scd = this_scd(); 165 __scd_stamp(scd); 166 scd->clock = scd->tick_gtod + __gtod_offset; 167 preempt_enable(); 168 169 /* clone to all CPUs */ 170 for_each_possible_cpu(cpu) 171 per_cpu(sched_clock_data, cpu) = *scd; 172 173 printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n"); 174 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n", 175 scd->tick_gtod, __gtod_offset, 176 scd->tick_raw, __sched_clock_offset); 177 178 static_branch_disable(&__sched_clock_stable); 179 } 180 181 static DECLARE_WORK(sched_clock_work, __sched_clock_work); 182 183 static void __clear_sched_clock_stable(void) 184 { 185 if (!sched_clock_stable()) 186 return; 187 188 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE); 189 schedule_work(&sched_clock_work); 190 } 191 192 void clear_sched_clock_stable(void) 193 { 194 __sched_clock_stable_early = 0; 195 196 smp_mb(); /* matches sched_clock_init_late() */ 197 198 if (sched_clock_running == 2) 199 __clear_sched_clock_stable(); 200 } 201 202 /* 203 * We run this as late_initcall() such that it runs after all built-in drivers, 204 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable. 205 */ 206 static int __init sched_clock_init_late(void) 207 { 208 sched_clock_running = 2; 209 /* 210 * Ensure that it is impossible to not do a static_key update. 211 * 212 * Either {set,clear}_sched_clock_stable() must see sched_clock_running 213 * and do the update, or we must see their __sched_clock_stable_early 214 * and do the update, or both. 215 */ 216 smp_mb(); /* matches {set,clear}_sched_clock_stable() */ 217 218 if (__sched_clock_stable_early) 219 __set_sched_clock_stable(); 220 221 return 0; 222 } 223 late_initcall(sched_clock_init_late); 224 225 /* 226 * min, max except they take wrapping into account 227 */ 228 229 static inline u64 wrap_min(u64 x, u64 y) 230 { 231 return (s64)(x - y) < 0 ? x : y; 232 } 233 234 static inline u64 wrap_max(u64 x, u64 y) 235 { 236 return (s64)(x - y) > 0 ? x : y; 237 } 238 239 /* 240 * update the percpu scd from the raw @now value 241 * 242 * - filter out backward motion 243 * - use the GTOD tick value to create a window to filter crazy TSC values 244 */ 245 static u64 sched_clock_local(struct sched_clock_data *scd) 246 { 247 u64 now, clock, old_clock, min_clock, max_clock, gtod; 248 s64 delta; 249 250 again: 251 now = sched_clock(); 252 delta = now - scd->tick_raw; 253 if (unlikely(delta < 0)) 254 delta = 0; 255 256 old_clock = scd->clock; 257 258 /* 259 * scd->clock = clamp(scd->tick_gtod + delta, 260 * max(scd->tick_gtod, scd->clock), 261 * scd->tick_gtod + TICK_NSEC); 262 */ 263 264 gtod = scd->tick_gtod + __gtod_offset; 265 clock = gtod + delta; 266 min_clock = wrap_max(gtod, old_clock); 267 max_clock = wrap_max(old_clock, gtod + TICK_NSEC); 268 269 clock = wrap_max(clock, min_clock); 270 clock = wrap_min(clock, max_clock); 271 272 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) 273 goto again; 274 275 return clock; 276 } 277 278 static u64 sched_clock_remote(struct sched_clock_data *scd) 279 { 280 struct sched_clock_data *my_scd = this_scd(); 281 u64 this_clock, remote_clock; 282 u64 *ptr, old_val, val; 283 284 #if BITS_PER_LONG != 64 285 again: 286 /* 287 * Careful here: The local and the remote clock values need to 288 * be read out atomic as we need to compare the values and 289 * then update either the local or the remote side. So the 290 * cmpxchg64 below only protects one readout. 291 * 292 * We must reread via sched_clock_local() in the retry case on 293 * 32-bit kernels as an NMI could use sched_clock_local() via the 294 * tracer and hit between the readout of 295 * the low 32-bit and the high 32-bit portion. 296 */ 297 this_clock = sched_clock_local(my_scd); 298 /* 299 * We must enforce atomic readout on 32-bit, otherwise the 300 * update on the remote CPU can hit inbetween the readout of 301 * the low 32-bit and the high 32-bit portion. 302 */ 303 remote_clock = cmpxchg64(&scd->clock, 0, 0); 304 #else 305 /* 306 * On 64-bit kernels the read of [my]scd->clock is atomic versus the 307 * update, so we can avoid the above 32-bit dance. 308 */ 309 sched_clock_local(my_scd); 310 again: 311 this_clock = my_scd->clock; 312 remote_clock = scd->clock; 313 #endif 314 315 /* 316 * Use the opportunity that we have both locks 317 * taken to couple the two clocks: we take the 318 * larger time as the latest time for both 319 * runqueues. (this creates monotonic movement) 320 */ 321 if (likely((s64)(remote_clock - this_clock) < 0)) { 322 ptr = &scd->clock; 323 old_val = remote_clock; 324 val = this_clock; 325 } else { 326 /* 327 * Should be rare, but possible: 328 */ 329 ptr = &my_scd->clock; 330 old_val = this_clock; 331 val = remote_clock; 332 } 333 334 if (cmpxchg64(ptr, old_val, val) != old_val) 335 goto again; 336 337 return val; 338 } 339 340 /* 341 * Similar to cpu_clock(), but requires local IRQs to be disabled. 342 * 343 * See cpu_clock(). 344 */ 345 u64 sched_clock_cpu(int cpu) 346 { 347 struct sched_clock_data *scd; 348 u64 clock; 349 350 if (sched_clock_stable()) 351 return sched_clock() + __sched_clock_offset; 352 353 if (unlikely(!sched_clock_running)) 354 return 0ull; 355 356 preempt_disable_notrace(); 357 scd = cpu_sdc(cpu); 358 359 if (cpu != smp_processor_id()) 360 clock = sched_clock_remote(scd); 361 else 362 clock = sched_clock_local(scd); 363 preempt_enable_notrace(); 364 365 return clock; 366 } 367 EXPORT_SYMBOL_GPL(sched_clock_cpu); 368 369 void sched_clock_tick(void) 370 { 371 struct sched_clock_data *scd; 372 373 if (sched_clock_stable()) 374 return; 375 376 if (unlikely(!sched_clock_running)) 377 return; 378 379 lockdep_assert_irqs_disabled(); 380 381 scd = this_scd(); 382 __scd_stamp(scd); 383 sched_clock_local(scd); 384 } 385 386 void sched_clock_tick_stable(void) 387 { 388 u64 gtod, clock; 389 390 if (!sched_clock_stable()) 391 return; 392 393 /* 394 * Called under watchdog_lock. 395 * 396 * The watchdog just found this TSC to (still) be stable, so now is a 397 * good moment to update our __gtod_offset. Because once we find the 398 * TSC to be unstable, any computation will be computing crap. 399 */ 400 local_irq_disable(); 401 gtod = ktime_get_ns(); 402 clock = sched_clock(); 403 __gtod_offset = (clock + __sched_clock_offset) - gtod; 404 local_irq_enable(); 405 } 406 407 /* 408 * We are going deep-idle (irqs are disabled): 409 */ 410 void sched_clock_idle_sleep_event(void) 411 { 412 sched_clock_cpu(smp_processor_id()); 413 } 414 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); 415 416 /* 417 * We just idled; resync with ktime. 418 */ 419 void sched_clock_idle_wakeup_event(void) 420 { 421 unsigned long flags; 422 423 if (sched_clock_stable()) 424 return; 425 426 if (unlikely(timekeeping_suspended)) 427 return; 428 429 local_irq_save(flags); 430 sched_clock_tick(); 431 local_irq_restore(flags); 432 } 433 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); 434 435 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 436 437 u64 sched_clock_cpu(int cpu) 438 { 439 if (unlikely(!sched_clock_running)) 440 return 0; 441 442 return sched_clock(); 443 } 444 445 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 446 447 /* 448 * Running clock - returns the time that has elapsed while a guest has been 449 * running. 450 * On a guest this value should be local_clock minus the time the guest was 451 * suspended by the hypervisor (for any reason). 452 * On bare metal this function should return the same as local_clock. 453 * Architectures and sub-architectures can override this. 454 */ 455 u64 __weak running_clock(void) 456 { 457 return local_clock(); 458 } 459