1 /* 2 * sched_clock for unstable cpu clocks 3 * 4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 5 * 6 * Updates and enhancements: 7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> 8 * 9 * Based on code by: 10 * Ingo Molnar <mingo@redhat.com> 11 * Guillaume Chazarain <guichaz@gmail.com> 12 * 13 * 14 * What: 15 * 16 * cpu_clock(i) provides a fast (execution time) high resolution 17 * clock with bounded drift between CPUs. The value of cpu_clock(i) 18 * is monotonic for constant i. The timestamp returned is in nanoseconds. 19 * 20 * ######################### BIG FAT WARNING ########################## 21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 22 * # go backwards !! # 23 * #################################################################### 24 * 25 * There is no strict promise about the base, although it tends to start 26 * at 0 on boot (but people really shouldn't rely on that). 27 * 28 * cpu_clock(i) -- can be used from any context, including NMI. 29 * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI) 30 * local_clock() -- is cpu_clock() on the current cpu. 31 * 32 * How: 33 * 34 * The implementation either uses sched_clock() when 35 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the 36 * sched_clock() is assumed to provide these properties (mostly it means 37 * the architecture provides a globally synchronized highres time source). 38 * 39 * Otherwise it tries to create a semi stable clock from a mixture of other 40 * clocks, including: 41 * 42 * - GTOD (clock monotomic) 43 * - sched_clock() 44 * - explicit idle events 45 * 46 * We use GTOD as base and use sched_clock() deltas to improve resolution. The 47 * deltas are filtered to provide monotonicity and keeping it within an 48 * expected window. 49 * 50 * Furthermore, explicit sleep and wakeup hooks allow us to account for time 51 * that is otherwise invisible (TSC gets stopped). 52 * 53 * 54 * Notes: 55 * 56 * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things 57 * like cpufreq interrupts that can change the base clock (TSC) multiplier 58 * and cause funny jumps in time -- although the filtering provided by 59 * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it 60 * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on 61 * sched_clock(). 62 */ 63 #include <linux/spinlock.h> 64 #include <linux/hardirq.h> 65 #include <linux/export.h> 66 #include <linux/percpu.h> 67 #include <linux/ktime.h> 68 #include <linux/sched.h> 69 70 /* 71 * Scheduler clock - returns current time in nanosec units. 72 * This is default implementation. 73 * Architectures and sub-architectures can override this. 74 */ 75 unsigned long long __attribute__((weak)) sched_clock(void) 76 { 77 return (unsigned long long)(jiffies - INITIAL_JIFFIES) 78 * (NSEC_PER_SEC / HZ); 79 } 80 EXPORT_SYMBOL_GPL(sched_clock); 81 82 __read_mostly int sched_clock_running; 83 84 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 85 __read_mostly int sched_clock_stable; 86 87 struct sched_clock_data { 88 u64 tick_raw; 89 u64 tick_gtod; 90 u64 clock; 91 }; 92 93 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); 94 95 static inline struct sched_clock_data *this_scd(void) 96 { 97 return &__get_cpu_var(sched_clock_data); 98 } 99 100 static inline struct sched_clock_data *cpu_sdc(int cpu) 101 { 102 return &per_cpu(sched_clock_data, cpu); 103 } 104 105 void sched_clock_init(void) 106 { 107 u64 ktime_now = ktime_to_ns(ktime_get()); 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct sched_clock_data *scd = cpu_sdc(cpu); 112 113 scd->tick_raw = 0; 114 scd->tick_gtod = ktime_now; 115 scd->clock = ktime_now; 116 } 117 118 sched_clock_running = 1; 119 } 120 121 /* 122 * min, max except they take wrapping into account 123 */ 124 125 static inline u64 wrap_min(u64 x, u64 y) 126 { 127 return (s64)(x - y) < 0 ? x : y; 128 } 129 130 static inline u64 wrap_max(u64 x, u64 y) 131 { 132 return (s64)(x - y) > 0 ? x : y; 133 } 134 135 /* 136 * update the percpu scd from the raw @now value 137 * 138 * - filter out backward motion 139 * - use the GTOD tick value to create a window to filter crazy TSC values 140 */ 141 static u64 sched_clock_local(struct sched_clock_data *scd) 142 { 143 u64 now, clock, old_clock, min_clock, max_clock; 144 s64 delta; 145 146 again: 147 now = sched_clock(); 148 delta = now - scd->tick_raw; 149 if (unlikely(delta < 0)) 150 delta = 0; 151 152 old_clock = scd->clock; 153 154 /* 155 * scd->clock = clamp(scd->tick_gtod + delta, 156 * max(scd->tick_gtod, scd->clock), 157 * scd->tick_gtod + TICK_NSEC); 158 */ 159 160 clock = scd->tick_gtod + delta; 161 min_clock = wrap_max(scd->tick_gtod, old_clock); 162 max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC); 163 164 clock = wrap_max(clock, min_clock); 165 clock = wrap_min(clock, max_clock); 166 167 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) 168 goto again; 169 170 return clock; 171 } 172 173 static u64 sched_clock_remote(struct sched_clock_data *scd) 174 { 175 struct sched_clock_data *my_scd = this_scd(); 176 u64 this_clock, remote_clock; 177 u64 *ptr, old_val, val; 178 179 #if BITS_PER_LONG != 64 180 again: 181 /* 182 * Careful here: The local and the remote clock values need to 183 * be read out atomic as we need to compare the values and 184 * then update either the local or the remote side. So the 185 * cmpxchg64 below only protects one readout. 186 * 187 * We must reread via sched_clock_local() in the retry case on 188 * 32bit as an NMI could use sched_clock_local() via the 189 * tracer and hit between the readout of 190 * the low32bit and the high 32bit portion. 191 */ 192 this_clock = sched_clock_local(my_scd); 193 /* 194 * We must enforce atomic readout on 32bit, otherwise the 195 * update on the remote cpu can hit inbetween the readout of 196 * the low32bit and the high 32bit portion. 197 */ 198 remote_clock = cmpxchg64(&scd->clock, 0, 0); 199 #else 200 /* 201 * On 64bit the read of [my]scd->clock is atomic versus the 202 * update, so we can avoid the above 32bit dance. 203 */ 204 sched_clock_local(my_scd); 205 again: 206 this_clock = my_scd->clock; 207 remote_clock = scd->clock; 208 #endif 209 210 /* 211 * Use the opportunity that we have both locks 212 * taken to couple the two clocks: we take the 213 * larger time as the latest time for both 214 * runqueues. (this creates monotonic movement) 215 */ 216 if (likely((s64)(remote_clock - this_clock) < 0)) { 217 ptr = &scd->clock; 218 old_val = remote_clock; 219 val = this_clock; 220 } else { 221 /* 222 * Should be rare, but possible: 223 */ 224 ptr = &my_scd->clock; 225 old_val = this_clock; 226 val = remote_clock; 227 } 228 229 if (cmpxchg64(ptr, old_val, val) != old_val) 230 goto again; 231 232 return val; 233 } 234 235 /* 236 * Similar to cpu_clock(), but requires local IRQs to be disabled. 237 * 238 * See cpu_clock(). 239 */ 240 u64 sched_clock_cpu(int cpu) 241 { 242 struct sched_clock_data *scd; 243 u64 clock; 244 245 WARN_ON_ONCE(!irqs_disabled()); 246 247 if (sched_clock_stable) 248 return sched_clock(); 249 250 if (unlikely(!sched_clock_running)) 251 return 0ull; 252 253 scd = cpu_sdc(cpu); 254 255 if (cpu != smp_processor_id()) 256 clock = sched_clock_remote(scd); 257 else 258 clock = sched_clock_local(scd); 259 260 return clock; 261 } 262 263 void sched_clock_tick(void) 264 { 265 struct sched_clock_data *scd; 266 u64 now, now_gtod; 267 268 if (sched_clock_stable) 269 return; 270 271 if (unlikely(!sched_clock_running)) 272 return; 273 274 WARN_ON_ONCE(!irqs_disabled()); 275 276 scd = this_scd(); 277 now_gtod = ktime_to_ns(ktime_get()); 278 now = sched_clock(); 279 280 scd->tick_raw = now; 281 scd->tick_gtod = now_gtod; 282 sched_clock_local(scd); 283 } 284 285 /* 286 * We are going deep-idle (irqs are disabled): 287 */ 288 void sched_clock_idle_sleep_event(void) 289 { 290 sched_clock_cpu(smp_processor_id()); 291 } 292 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); 293 294 /* 295 * We just idled delta nanoseconds (called with irqs disabled): 296 */ 297 void sched_clock_idle_wakeup_event(u64 delta_ns) 298 { 299 if (timekeeping_suspended) 300 return; 301 302 sched_clock_tick(); 303 touch_softlockup_watchdog(); 304 } 305 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); 306 307 /* 308 * As outlined at the top, provides a fast, high resolution, nanosecond 309 * time source that is monotonic per cpu argument and has bounded drift 310 * between cpus. 311 * 312 * ######################### BIG FAT WARNING ########################## 313 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 314 * # go backwards !! # 315 * #################################################################### 316 */ 317 u64 cpu_clock(int cpu) 318 { 319 u64 clock; 320 unsigned long flags; 321 322 local_irq_save(flags); 323 clock = sched_clock_cpu(cpu); 324 local_irq_restore(flags); 325 326 return clock; 327 } 328 329 /* 330 * Similar to cpu_clock() for the current cpu. Time will only be observed 331 * to be monotonic if care is taken to only compare timestampt taken on the 332 * same CPU. 333 * 334 * See cpu_clock(). 335 */ 336 u64 local_clock(void) 337 { 338 u64 clock; 339 unsigned long flags; 340 341 local_irq_save(flags); 342 clock = sched_clock_cpu(smp_processor_id()); 343 local_irq_restore(flags); 344 345 return clock; 346 } 347 348 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 349 350 void sched_clock_init(void) 351 { 352 sched_clock_running = 1; 353 } 354 355 u64 sched_clock_cpu(int cpu) 356 { 357 if (unlikely(!sched_clock_running)) 358 return 0; 359 360 return sched_clock(); 361 } 362 363 u64 cpu_clock(int cpu) 364 { 365 return sched_clock_cpu(cpu); 366 } 367 368 u64 local_clock(void) 369 { 370 return sched_clock_cpu(0); 371 } 372 373 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ 374 375 EXPORT_SYMBOL_GPL(cpu_clock); 376 EXPORT_SYMBOL_GPL(local_clock); 377