xref: /openbmc/linux/kernel/sched/autogroup.c (revision 01a6e126)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/proc_fs.h>
3 #include <linux/seq_file.h>
4 #include <linux/utsname.h>
5 #include <linux/security.h>
6 #include <linux/export.h>
7 
8 #include "sched.h"
9 
10 unsigned int __read_mostly sysctl_sched_autogroup_enabled = 1;
11 static struct autogroup autogroup_default;
12 static atomic_t autogroup_seq_nr;
13 
14 void __init autogroup_init(struct task_struct *init_task)
15 {
16 	autogroup_default.tg = &root_task_group;
17 	kref_init(&autogroup_default.kref);
18 	init_rwsem(&autogroup_default.lock);
19 	init_task->signal->autogroup = &autogroup_default;
20 }
21 
22 void autogroup_free(struct task_group *tg)
23 {
24 	kfree(tg->autogroup);
25 }
26 
27 static inline void autogroup_destroy(struct kref *kref)
28 {
29 	struct autogroup *ag = container_of(kref, struct autogroup, kref);
30 
31 #ifdef CONFIG_RT_GROUP_SCHED
32 	/* We've redirected RT tasks to the root task group... */
33 	ag->tg->rt_se = NULL;
34 	ag->tg->rt_rq = NULL;
35 #endif
36 	sched_offline_group(ag->tg);
37 	sched_destroy_group(ag->tg);
38 }
39 
40 static inline void autogroup_kref_put(struct autogroup *ag)
41 {
42 	kref_put(&ag->kref, autogroup_destroy);
43 }
44 
45 static inline struct autogroup *autogroup_kref_get(struct autogroup *ag)
46 {
47 	kref_get(&ag->kref);
48 	return ag;
49 }
50 
51 static inline struct autogroup *autogroup_task_get(struct task_struct *p)
52 {
53 	struct autogroup *ag;
54 	unsigned long flags;
55 
56 	if (!lock_task_sighand(p, &flags))
57 		return autogroup_kref_get(&autogroup_default);
58 
59 	ag = autogroup_kref_get(p->signal->autogroup);
60 	unlock_task_sighand(p, &flags);
61 
62 	return ag;
63 }
64 
65 static inline struct autogroup *autogroup_create(void)
66 {
67 	struct autogroup *ag = kzalloc(sizeof(*ag), GFP_KERNEL);
68 	struct task_group *tg;
69 
70 	if (!ag)
71 		goto out_fail;
72 
73 	tg = sched_create_group(&root_task_group);
74 	if (IS_ERR(tg))
75 		goto out_free;
76 
77 	kref_init(&ag->kref);
78 	init_rwsem(&ag->lock);
79 	ag->id = atomic_inc_return(&autogroup_seq_nr);
80 	ag->tg = tg;
81 #ifdef CONFIG_RT_GROUP_SCHED
82 	/*
83 	 * Autogroup RT tasks are redirected to the root task group
84 	 * so we don't have to move tasks around upon policy change,
85 	 * or flail around trying to allocate bandwidth on the fly.
86 	 * A bandwidth exception in __sched_setscheduler() allows
87 	 * the policy change to proceed.
88 	 */
89 	free_rt_sched_group(tg);
90 	tg->rt_se = root_task_group.rt_se;
91 	tg->rt_rq = root_task_group.rt_rq;
92 #endif
93 	tg->autogroup = ag;
94 
95 	sched_online_group(tg, &root_task_group);
96 	return ag;
97 
98 out_free:
99 	kfree(ag);
100 out_fail:
101 	if (printk_ratelimit()) {
102 		printk(KERN_WARNING "autogroup_create: %s failure.\n",
103 			ag ? "sched_create_group()" : "kzalloc()");
104 	}
105 
106 	return autogroup_kref_get(&autogroup_default);
107 }
108 
109 bool task_wants_autogroup(struct task_struct *p, struct task_group *tg)
110 {
111 	if (tg != &root_task_group)
112 		return false;
113 	/*
114 	 * If we race with autogroup_move_group() the caller can use the old
115 	 * value of signal->autogroup but in this case sched_move_task() will
116 	 * be called again before autogroup_kref_put().
117 	 *
118 	 * However, there is no way sched_autogroup_exit_task() could tell us
119 	 * to avoid autogroup->tg, so we abuse PF_EXITING flag for this case.
120 	 */
121 	if (p->flags & PF_EXITING)
122 		return false;
123 
124 	return true;
125 }
126 
127 void sched_autogroup_exit_task(struct task_struct *p)
128 {
129 	/*
130 	 * We are going to call exit_notify() and autogroup_move_group() can't
131 	 * see this thread after that: we can no longer use signal->autogroup.
132 	 * See the PF_EXITING check in task_wants_autogroup().
133 	 */
134 	sched_move_task(p);
135 }
136 
137 static void
138 autogroup_move_group(struct task_struct *p, struct autogroup *ag)
139 {
140 	struct autogroup *prev;
141 	struct task_struct *t;
142 	unsigned long flags;
143 
144 	BUG_ON(!lock_task_sighand(p, &flags));
145 
146 	prev = p->signal->autogroup;
147 	if (prev == ag) {
148 		unlock_task_sighand(p, &flags);
149 		return;
150 	}
151 
152 	p->signal->autogroup = autogroup_kref_get(ag);
153 	/*
154 	 * We can't avoid sched_move_task() after we changed signal->autogroup,
155 	 * this process can already run with task_group() == prev->tg or we can
156 	 * race with cgroup code which can read autogroup = prev under rq->lock.
157 	 * In the latter case for_each_thread() can not miss a migrating thread,
158 	 * cpu_cgroup_attach() must not be possible after cgroup_exit() and it
159 	 * can't be removed from thread list, we hold ->siglock.
160 	 *
161 	 * If an exiting thread was already removed from thread list we rely on
162 	 * sched_autogroup_exit_task().
163 	 */
164 	for_each_thread(p, t)
165 		sched_move_task(t);
166 
167 	unlock_task_sighand(p, &flags);
168 	autogroup_kref_put(prev);
169 }
170 
171 /* Allocates GFP_KERNEL, cannot be called under any spinlock */
172 void sched_autogroup_create_attach(struct task_struct *p)
173 {
174 	struct autogroup *ag = autogroup_create();
175 
176 	autogroup_move_group(p, ag);
177 	/* drop extra reference added by autogroup_create() */
178 	autogroup_kref_put(ag);
179 }
180 EXPORT_SYMBOL(sched_autogroup_create_attach);
181 
182 /* Cannot be called under siglock.  Currently has no users */
183 void sched_autogroup_detach(struct task_struct *p)
184 {
185 	autogroup_move_group(p, &autogroup_default);
186 }
187 EXPORT_SYMBOL(sched_autogroup_detach);
188 
189 void sched_autogroup_fork(struct signal_struct *sig)
190 {
191 	sig->autogroup = autogroup_task_get(current);
192 }
193 
194 void sched_autogroup_exit(struct signal_struct *sig)
195 {
196 	autogroup_kref_put(sig->autogroup);
197 }
198 
199 static int __init setup_autogroup(char *str)
200 {
201 	sysctl_sched_autogroup_enabled = 0;
202 
203 	return 1;
204 }
205 
206 __setup("noautogroup", setup_autogroup);
207 
208 #ifdef CONFIG_PROC_FS
209 
210 int proc_sched_autogroup_set_nice(struct task_struct *p, int nice)
211 {
212 	static unsigned long next = INITIAL_JIFFIES;
213 	struct autogroup *ag;
214 	unsigned long shares;
215 	int err;
216 
217 	if (nice < MIN_NICE || nice > MAX_NICE)
218 		return -EINVAL;
219 
220 	err = security_task_setnice(current, nice);
221 	if (err)
222 		return err;
223 
224 	if (nice < 0 && !can_nice(current, nice))
225 		return -EPERM;
226 
227 	/* this is a heavy operation taking global locks.. */
228 	if (!capable(CAP_SYS_ADMIN) && time_before(jiffies, next))
229 		return -EAGAIN;
230 
231 	next = HZ / 10 + jiffies;
232 	ag = autogroup_task_get(p);
233 	shares = scale_load(sched_prio_to_weight[nice + 20]);
234 
235 	down_write(&ag->lock);
236 	err = sched_group_set_shares(ag->tg, shares);
237 	if (!err)
238 		ag->nice = nice;
239 	up_write(&ag->lock);
240 
241 	autogroup_kref_put(ag);
242 
243 	return err;
244 }
245 
246 void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m)
247 {
248 	struct autogroup *ag = autogroup_task_get(p);
249 
250 	if (!task_group_is_autogroup(ag->tg))
251 		goto out;
252 
253 	down_read(&ag->lock);
254 	seq_printf(m, "/autogroup-%ld nice %d\n", ag->id, ag->nice);
255 	up_read(&ag->lock);
256 
257 out:
258 	autogroup_kref_put(ag);
259 }
260 #endif /* CONFIG_PROC_FS */
261 
262 #ifdef CONFIG_SCHED_DEBUG
263 int autogroup_path(struct task_group *tg, char *buf, int buflen)
264 {
265 	if (!task_group_is_autogroup(tg))
266 		return 0;
267 
268 	return snprintf(buf, buflen, "%s-%ld", "/autogroup", tg->autogroup->id);
269 }
270 #endif /* CONFIG_SCHED_DEBUG */
271