xref: /openbmc/linux/kernel/rseq.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Restartable sequences system call
4  *
5  * Copyright (C) 2015, Google, Inc.,
6  * Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com>
7  * Copyright (C) 2015-2018, EfficiOS Inc.,
8  * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/uaccess.h>
13 #include <linux/syscalls.h>
14 #include <linux/rseq.h>
15 #include <linux/types.h>
16 #include <asm/ptrace.h>
17 
18 #define CREATE_TRACE_POINTS
19 #include <trace/events/rseq.h>
20 
21 #define RSEQ_CS_PREEMPT_MIGRATE_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE | \
22 				       RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT)
23 
24 /*
25  *
26  * Restartable sequences are a lightweight interface that allows
27  * user-level code to be executed atomically relative to scheduler
28  * preemption and signal delivery. Typically used for implementing
29  * per-cpu operations.
30  *
31  * It allows user-space to perform update operations on per-cpu data
32  * without requiring heavy-weight atomic operations.
33  *
34  * Detailed algorithm of rseq user-space assembly sequences:
35  *
36  *                     init(rseq_cs)
37  *                     cpu = TLS->rseq::cpu_id_start
38  *   [1]               TLS->rseq::rseq_cs = rseq_cs
39  *   [start_ip]        ----------------------------
40  *   [2]               if (cpu != TLS->rseq::cpu_id)
41  *                             goto abort_ip;
42  *   [3]               <last_instruction_in_cs>
43  *   [post_commit_ip]  ----------------------------
44  *
45  *   The address of jump target abort_ip must be outside the critical
46  *   region, i.e.:
47  *
48  *     [abort_ip] < [start_ip]  || [abort_ip] >= [post_commit_ip]
49  *
50  *   Steps [2]-[3] (inclusive) need to be a sequence of instructions in
51  *   userspace that can handle being interrupted between any of those
52  *   instructions, and then resumed to the abort_ip.
53  *
54  *   1.  Userspace stores the address of the struct rseq_cs assembly
55  *       block descriptor into the rseq_cs field of the registered
56  *       struct rseq TLS area. This update is performed through a single
57  *       store within the inline assembly instruction sequence.
58  *       [start_ip]
59  *
60  *   2.  Userspace tests to check whether the current cpu_id field match
61  *       the cpu number loaded before start_ip, branching to abort_ip
62  *       in case of a mismatch.
63  *
64  *       If the sequence is preempted or interrupted by a signal
65  *       at or after start_ip and before post_commit_ip, then the kernel
66  *       clears TLS->__rseq_abi::rseq_cs, and sets the user-space return
67  *       ip to abort_ip before returning to user-space, so the preempted
68  *       execution resumes at abort_ip.
69  *
70  *   3.  Userspace critical section final instruction before
71  *       post_commit_ip is the commit. The critical section is
72  *       self-terminating.
73  *       [post_commit_ip]
74  *
75  *   4.  <success>
76  *
77  *   On failure at [2], or if interrupted by preempt or signal delivery
78  *   between [1] and [3]:
79  *
80  *       [abort_ip]
81  *   F1. <failure>
82  */
83 
84 static int rseq_update_cpu_id(struct task_struct *t)
85 {
86 	u32 cpu_id = raw_smp_processor_id();
87 
88 	if (__put_user(cpu_id, &t->rseq->cpu_id_start))
89 		return -EFAULT;
90 	if (__put_user(cpu_id, &t->rseq->cpu_id))
91 		return -EFAULT;
92 	trace_rseq_update(t);
93 	return 0;
94 }
95 
96 static int rseq_reset_rseq_cpu_id(struct task_struct *t)
97 {
98 	u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED;
99 
100 	/*
101 	 * Reset cpu_id_start to its initial state (0).
102 	 */
103 	if (__put_user(cpu_id_start, &t->rseq->cpu_id_start))
104 		return -EFAULT;
105 	/*
106 	 * Reset cpu_id to RSEQ_CPU_ID_UNINITIALIZED, so any user coming
107 	 * in after unregistration can figure out that rseq needs to be
108 	 * registered again.
109 	 */
110 	if (__put_user(cpu_id, &t->rseq->cpu_id))
111 		return -EFAULT;
112 	return 0;
113 }
114 
115 static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs)
116 {
117 	struct rseq_cs __user *urseq_cs;
118 	unsigned long ptr;
119 	u32 __user *usig;
120 	u32 sig;
121 	int ret;
122 
123 	ret = __get_user(ptr, &t->rseq->rseq_cs);
124 	if (ret)
125 		return ret;
126 	if (!ptr) {
127 		memset(rseq_cs, 0, sizeof(*rseq_cs));
128 		return 0;
129 	}
130 	urseq_cs = (struct rseq_cs __user *)ptr;
131 	if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs)))
132 		return -EFAULT;
133 	if (rseq_cs->version > 0)
134 		return -EINVAL;
135 
136 	/* Ensure that abort_ip is not in the critical section. */
137 	if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset)
138 		return -EINVAL;
139 
140 	usig = (u32 __user *)(rseq_cs->abort_ip - sizeof(u32));
141 	ret = get_user(sig, usig);
142 	if (ret)
143 		return ret;
144 
145 	if (current->rseq_sig != sig) {
146 		printk_ratelimited(KERN_WARNING
147 			"Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n",
148 			sig, current->rseq_sig, current->pid, usig);
149 		return -EPERM;
150 	}
151 	return 0;
152 }
153 
154 static int rseq_need_restart(struct task_struct *t, u32 cs_flags)
155 {
156 	u32 flags, event_mask;
157 	int ret;
158 
159 	/* Get thread flags. */
160 	ret = __get_user(flags, &t->rseq->flags);
161 	if (ret)
162 		return ret;
163 
164 	/* Take critical section flags into account. */
165 	flags |= cs_flags;
166 
167 	/*
168 	 * Restart on signal can only be inhibited when restart on
169 	 * preempt and restart on migrate are inhibited too. Otherwise,
170 	 * a preempted signal handler could fail to restart the prior
171 	 * execution context on sigreturn.
172 	 */
173 	if (unlikely((flags & RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL) &&
174 		     (flags & RSEQ_CS_PREEMPT_MIGRATE_FLAGS) !=
175 		     RSEQ_CS_PREEMPT_MIGRATE_FLAGS))
176 		return -EINVAL;
177 
178 	/*
179 	 * Load and clear event mask atomically with respect to
180 	 * scheduler preemption.
181 	 */
182 	preempt_disable();
183 	event_mask = t->rseq_event_mask;
184 	t->rseq_event_mask = 0;
185 	preempt_enable();
186 
187 	return !!(event_mask & ~flags);
188 }
189 
190 static int clear_rseq_cs(struct task_struct *t)
191 {
192 	/*
193 	 * The rseq_cs field is set to NULL on preemption or signal
194 	 * delivery on top of rseq assembly block, as well as on top
195 	 * of code outside of the rseq assembly block. This performs
196 	 * a lazy clear of the rseq_cs field.
197 	 *
198 	 * Set rseq_cs to NULL with single-copy atomicity.
199 	 */
200 	return __put_user(0UL, &t->rseq->rseq_cs);
201 }
202 
203 /*
204  * Unsigned comparison will be true when ip >= start_ip, and when
205  * ip < start_ip + post_commit_offset.
206  */
207 static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs)
208 {
209 	return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset;
210 }
211 
212 static int rseq_ip_fixup(struct pt_regs *regs)
213 {
214 	unsigned long ip = instruction_pointer(regs);
215 	struct task_struct *t = current;
216 	struct rseq_cs rseq_cs;
217 	int ret;
218 
219 	ret = rseq_get_rseq_cs(t, &rseq_cs);
220 	if (ret)
221 		return ret;
222 
223 	/*
224 	 * Handle potentially not being within a critical section.
225 	 * If not nested over a rseq critical section, restart is useless.
226 	 * Clear the rseq_cs pointer and return.
227 	 */
228 	if (!in_rseq_cs(ip, &rseq_cs))
229 		return clear_rseq_cs(t);
230 	ret = rseq_need_restart(t, rseq_cs.flags);
231 	if (ret <= 0)
232 		return ret;
233 	ret = clear_rseq_cs(t);
234 	if (ret)
235 		return ret;
236 	trace_rseq_ip_fixup(ip, rseq_cs.start_ip, rseq_cs.post_commit_offset,
237 			    rseq_cs.abort_ip);
238 	instruction_pointer_set(regs, (unsigned long)rseq_cs.abort_ip);
239 	return 0;
240 }
241 
242 /*
243  * This resume handler must always be executed between any of:
244  * - preemption,
245  * - signal delivery,
246  * and return to user-space.
247  *
248  * This is how we can ensure that the entire rseq critical section,
249  * consisting of both the C part and the assembly instruction sequence,
250  * will issue the commit instruction only if executed atomically with
251  * respect to other threads scheduled on the same CPU, and with respect
252  * to signal handlers.
253  */
254 void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs)
255 {
256 	struct task_struct *t = current;
257 	int ret, sig;
258 
259 	if (unlikely(t->flags & PF_EXITING))
260 		return;
261 	if (unlikely(!access_ok(VERIFY_WRITE, t->rseq, sizeof(*t->rseq))))
262 		goto error;
263 	ret = rseq_ip_fixup(regs);
264 	if (unlikely(ret < 0))
265 		goto error;
266 	if (unlikely(rseq_update_cpu_id(t)))
267 		goto error;
268 	return;
269 
270 error:
271 	sig = ksig ? ksig->sig : 0;
272 	force_sigsegv(sig, t);
273 }
274 
275 #ifdef CONFIG_DEBUG_RSEQ
276 
277 /*
278  * Terminate the process if a syscall is issued within a restartable
279  * sequence.
280  */
281 void rseq_syscall(struct pt_regs *regs)
282 {
283 	unsigned long ip = instruction_pointer(regs);
284 	struct task_struct *t = current;
285 	struct rseq_cs rseq_cs;
286 
287 	if (!t->rseq)
288 		return;
289 	if (!access_ok(VERIFY_READ, t->rseq, sizeof(*t->rseq)) ||
290 	    rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs))
291 		force_sig(SIGSEGV, t);
292 }
293 
294 #endif
295 
296 /*
297  * sys_rseq - setup restartable sequences for caller thread.
298  */
299 SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len,
300 		int, flags, u32, sig)
301 {
302 	int ret;
303 
304 	if (flags & RSEQ_FLAG_UNREGISTER) {
305 		/* Unregister rseq for current thread. */
306 		if (current->rseq != rseq || !current->rseq)
307 			return -EINVAL;
308 		if (current->rseq_len != rseq_len)
309 			return -EINVAL;
310 		if (current->rseq_sig != sig)
311 			return -EPERM;
312 		ret = rseq_reset_rseq_cpu_id(current);
313 		if (ret)
314 			return ret;
315 		current->rseq = NULL;
316 		current->rseq_len = 0;
317 		current->rseq_sig = 0;
318 		return 0;
319 	}
320 
321 	if (unlikely(flags))
322 		return -EINVAL;
323 
324 	if (current->rseq) {
325 		/*
326 		 * If rseq is already registered, check whether
327 		 * the provided address differs from the prior
328 		 * one.
329 		 */
330 		if (current->rseq != rseq || current->rseq_len != rseq_len)
331 			return -EINVAL;
332 		if (current->rseq_sig != sig)
333 			return -EPERM;
334 		/* Already registered. */
335 		return -EBUSY;
336 	}
337 
338 	/*
339 	 * If there was no rseq previously registered,
340 	 * ensure the provided rseq is properly aligned and valid.
341 	 */
342 	if (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) ||
343 	    rseq_len != sizeof(*rseq))
344 		return -EINVAL;
345 	if (!access_ok(VERIFY_WRITE, rseq, rseq_len))
346 		return -EFAULT;
347 	current->rseq = rseq;
348 	current->rseq_len = rseq_len;
349 	current->rseq_sig = sig;
350 	/*
351 	 * If rseq was previously inactive, and has just been
352 	 * registered, ensure the cpu_id_start and cpu_id fields
353 	 * are updated before returning to user-space.
354 	 */
355 	rseq_set_notify_resume(current);
356 
357 	return 0;
358 }
359