1 /* 2 * linux/kernel/resource.c 3 * 4 * Copyright (C) 1999 Linus Torvalds 5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 6 * 7 * Arbitrary resource management. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/export.h> 13 #include <linux/errno.h> 14 #include <linux/ioport.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/device.h> 23 #include <linux/pfn.h> 24 #include <linux/mm.h> 25 #include <linux/resource_ext.h> 26 #include <asm/io.h> 27 28 29 struct resource ioport_resource = { 30 .name = "PCI IO", 31 .start = 0, 32 .end = IO_SPACE_LIMIT, 33 .flags = IORESOURCE_IO, 34 }; 35 EXPORT_SYMBOL(ioport_resource); 36 37 struct resource iomem_resource = { 38 .name = "PCI mem", 39 .start = 0, 40 .end = -1, 41 .flags = IORESOURCE_MEM, 42 }; 43 EXPORT_SYMBOL(iomem_resource); 44 45 /* constraints to be met while allocating resources */ 46 struct resource_constraint { 47 resource_size_t min, max, align; 48 resource_size_t (*alignf)(void *, const struct resource *, 49 resource_size_t, resource_size_t); 50 void *alignf_data; 51 }; 52 53 static DEFINE_RWLOCK(resource_lock); 54 55 /* 56 * For memory hotplug, there is no way to free resource entries allocated 57 * by boot mem after the system is up. So for reusing the resource entry 58 * we need to remember the resource. 59 */ 60 static struct resource *bootmem_resource_free; 61 static DEFINE_SPINLOCK(bootmem_resource_lock); 62 63 static struct resource *next_resource(struct resource *p, bool sibling_only) 64 { 65 /* Caller wants to traverse through siblings only */ 66 if (sibling_only) 67 return p->sibling; 68 69 if (p->child) 70 return p->child; 71 while (!p->sibling && p->parent) 72 p = p->parent; 73 return p->sibling; 74 } 75 76 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 77 { 78 struct resource *p = v; 79 (*pos)++; 80 return (void *)next_resource(p, false); 81 } 82 83 #ifdef CONFIG_PROC_FS 84 85 enum { MAX_IORES_LEVEL = 5 }; 86 87 static void *r_start(struct seq_file *m, loff_t *pos) 88 __acquires(resource_lock) 89 { 90 struct resource *p = PDE_DATA(file_inode(m->file)); 91 loff_t l = 0; 92 read_lock(&resource_lock); 93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 94 ; 95 return p; 96 } 97 98 static void r_stop(struct seq_file *m, void *v) 99 __releases(resource_lock) 100 { 101 read_unlock(&resource_lock); 102 } 103 104 static int r_show(struct seq_file *m, void *v) 105 { 106 struct resource *root = PDE_DATA(file_inode(m->file)); 107 struct resource *r = v, *p; 108 unsigned long long start, end; 109 int width = root->end < 0x10000 ? 4 : 8; 110 int depth; 111 112 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 113 if (p->parent == root) 114 break; 115 116 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 117 start = r->start; 118 end = r->end; 119 } else { 120 start = end = 0; 121 } 122 123 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 124 depth * 2, "", 125 width, start, 126 width, end, 127 r->name ? r->name : "<BAD>"); 128 return 0; 129 } 130 131 static const struct seq_operations resource_op = { 132 .start = r_start, 133 .next = r_next, 134 .stop = r_stop, 135 .show = r_show, 136 }; 137 138 static int __init ioresources_init(void) 139 { 140 proc_create_seq_data("ioports", 0, NULL, &resource_op, 141 &ioport_resource); 142 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 143 return 0; 144 } 145 __initcall(ioresources_init); 146 147 #endif /* CONFIG_PROC_FS */ 148 149 static void free_resource(struct resource *res) 150 { 151 if (!res) 152 return; 153 154 if (!PageSlab(virt_to_head_page(res))) { 155 spin_lock(&bootmem_resource_lock); 156 res->sibling = bootmem_resource_free; 157 bootmem_resource_free = res; 158 spin_unlock(&bootmem_resource_lock); 159 } else { 160 kfree(res); 161 } 162 } 163 164 static struct resource *alloc_resource(gfp_t flags) 165 { 166 struct resource *res = NULL; 167 168 spin_lock(&bootmem_resource_lock); 169 if (bootmem_resource_free) { 170 res = bootmem_resource_free; 171 bootmem_resource_free = res->sibling; 172 } 173 spin_unlock(&bootmem_resource_lock); 174 175 if (res) 176 memset(res, 0, sizeof(struct resource)); 177 else 178 res = kzalloc(sizeof(struct resource), flags); 179 180 return res; 181 } 182 183 /* Return the conflict entry if you can't request it */ 184 static struct resource * __request_resource(struct resource *root, struct resource *new) 185 { 186 resource_size_t start = new->start; 187 resource_size_t end = new->end; 188 struct resource *tmp, **p; 189 190 if (end < start) 191 return root; 192 if (start < root->start) 193 return root; 194 if (end > root->end) 195 return root; 196 p = &root->child; 197 for (;;) { 198 tmp = *p; 199 if (!tmp || tmp->start > end) { 200 new->sibling = tmp; 201 *p = new; 202 new->parent = root; 203 return NULL; 204 } 205 p = &tmp->sibling; 206 if (tmp->end < start) 207 continue; 208 return tmp; 209 } 210 } 211 212 static int __release_resource(struct resource *old, bool release_child) 213 { 214 struct resource *tmp, **p, *chd; 215 216 p = &old->parent->child; 217 for (;;) { 218 tmp = *p; 219 if (!tmp) 220 break; 221 if (tmp == old) { 222 if (release_child || !(tmp->child)) { 223 *p = tmp->sibling; 224 } else { 225 for (chd = tmp->child;; chd = chd->sibling) { 226 chd->parent = tmp->parent; 227 if (!(chd->sibling)) 228 break; 229 } 230 *p = tmp->child; 231 chd->sibling = tmp->sibling; 232 } 233 old->parent = NULL; 234 return 0; 235 } 236 p = &tmp->sibling; 237 } 238 return -EINVAL; 239 } 240 241 static void __release_child_resources(struct resource *r) 242 { 243 struct resource *tmp, *p; 244 resource_size_t size; 245 246 p = r->child; 247 r->child = NULL; 248 while (p) { 249 tmp = p; 250 p = p->sibling; 251 252 tmp->parent = NULL; 253 tmp->sibling = NULL; 254 __release_child_resources(tmp); 255 256 printk(KERN_DEBUG "release child resource %pR\n", tmp); 257 /* need to restore size, and keep flags */ 258 size = resource_size(tmp); 259 tmp->start = 0; 260 tmp->end = size - 1; 261 } 262 } 263 264 void release_child_resources(struct resource *r) 265 { 266 write_lock(&resource_lock); 267 __release_child_resources(r); 268 write_unlock(&resource_lock); 269 } 270 271 /** 272 * request_resource_conflict - request and reserve an I/O or memory resource 273 * @root: root resource descriptor 274 * @new: resource descriptor desired by caller 275 * 276 * Returns 0 for success, conflict resource on error. 277 */ 278 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 279 { 280 struct resource *conflict; 281 282 write_lock(&resource_lock); 283 conflict = __request_resource(root, new); 284 write_unlock(&resource_lock); 285 return conflict; 286 } 287 288 /** 289 * request_resource - request and reserve an I/O or memory resource 290 * @root: root resource descriptor 291 * @new: resource descriptor desired by caller 292 * 293 * Returns 0 for success, negative error code on error. 294 */ 295 int request_resource(struct resource *root, struct resource *new) 296 { 297 struct resource *conflict; 298 299 conflict = request_resource_conflict(root, new); 300 return conflict ? -EBUSY : 0; 301 } 302 303 EXPORT_SYMBOL(request_resource); 304 305 /** 306 * release_resource - release a previously reserved resource 307 * @old: resource pointer 308 */ 309 int release_resource(struct resource *old) 310 { 311 int retval; 312 313 write_lock(&resource_lock); 314 retval = __release_resource(old, true); 315 write_unlock(&resource_lock); 316 return retval; 317 } 318 319 EXPORT_SYMBOL(release_resource); 320 321 /** 322 * Finds the lowest iomem resource that covers part of [@start..@end]. The 323 * caller must specify @start, @end, @flags, and @desc (which may be 324 * IORES_DESC_NONE). 325 * 326 * If a resource is found, returns 0 and @*res is overwritten with the part 327 * of the resource that's within [@start..@end]; if none is found, returns 328 * -1 or -EINVAL for other invalid parameters. 329 * 330 * This function walks the whole tree and not just first level children 331 * unless @first_lvl is true. 332 * 333 * @start: start address of the resource searched for 334 * @end: end address of same resource 335 * @flags: flags which the resource must have 336 * @desc: descriptor the resource must have 337 * @first_lvl: walk only the first level children, if set 338 * @res: return ptr, if resource found 339 */ 340 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 341 unsigned long flags, unsigned long desc, 342 bool first_lvl, struct resource *res) 343 { 344 struct resource *p; 345 346 if (!res) 347 return -EINVAL; 348 349 if (start >= end) 350 return -EINVAL; 351 352 read_lock(&resource_lock); 353 354 for (p = iomem_resource.child; p; p = next_resource(p, first_lvl)) { 355 if ((p->flags & flags) != flags) 356 continue; 357 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 358 continue; 359 if (p->start > end) { 360 p = NULL; 361 break; 362 } 363 if ((p->end >= start) && (p->start <= end)) 364 break; 365 } 366 367 read_unlock(&resource_lock); 368 if (!p) 369 return -1; 370 371 /* copy data */ 372 res->start = max(start, p->start); 373 res->end = min(end, p->end); 374 res->flags = p->flags; 375 res->desc = p->desc; 376 return 0; 377 } 378 379 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 380 unsigned long flags, unsigned long desc, 381 bool first_lvl, void *arg, 382 int (*func)(struct resource *, void *)) 383 { 384 struct resource res; 385 int ret = -EINVAL; 386 387 while (start < end && 388 !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) { 389 ret = (*func)(&res, arg); 390 if (ret) 391 break; 392 393 start = res.end + 1; 394 } 395 396 return ret; 397 } 398 399 /** 400 * Walks through iomem resources and calls func() with matching resource 401 * ranges. This walks through whole tree and not just first level children. 402 * All the memory ranges which overlap start,end and also match flags and 403 * desc are valid candidates. 404 * 405 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 406 * @flags: I/O resource flags 407 * @start: start addr 408 * @end: end addr 409 * @arg: function argument for the callback @func 410 * @func: callback function that is called for each qualifying resource area 411 * 412 * NOTE: For a new descriptor search, define a new IORES_DESC in 413 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 414 */ 415 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 416 u64 end, void *arg, int (*func)(struct resource *, void *)) 417 { 418 return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func); 419 } 420 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 421 422 /* 423 * This function calls the @func callback against all memory ranges of type 424 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 425 * Now, this function is only for System RAM, it deals with full ranges and 426 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 427 * ranges. 428 */ 429 int walk_system_ram_res(u64 start, u64 end, void *arg, 430 int (*func)(struct resource *, void *)) 431 { 432 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 433 434 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 435 arg, func); 436 } 437 438 /* 439 * This function calls the @func callback against all memory ranges, which 440 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 441 */ 442 int walk_mem_res(u64 start, u64 end, void *arg, 443 int (*func)(struct resource *, void *)) 444 { 445 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 446 447 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 448 arg, func); 449 } 450 451 /* 452 * This function calls the @func callback against all memory ranges of type 453 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 454 * It is to be used only for System RAM. 455 * 456 * This will find System RAM ranges that are children of top-level resources 457 * in addition to top-level System RAM resources. 458 */ 459 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 460 void *arg, int (*func)(unsigned long, unsigned long, void *)) 461 { 462 resource_size_t start, end; 463 unsigned long flags; 464 struct resource res; 465 unsigned long pfn, end_pfn; 466 int ret = -EINVAL; 467 468 start = (u64) start_pfn << PAGE_SHIFT; 469 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 470 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 471 while (start < end && 472 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, 473 false, &res)) { 474 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; 475 end_pfn = (res.end + 1) >> PAGE_SHIFT; 476 if (end_pfn > pfn) 477 ret = (*func)(pfn, end_pfn - pfn, arg); 478 if (ret) 479 break; 480 start = res.end + 1; 481 } 482 return ret; 483 } 484 485 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 486 { 487 return 1; 488 } 489 490 /* 491 * This generic page_is_ram() returns true if specified address is 492 * registered as System RAM in iomem_resource list. 493 */ 494 int __weak page_is_ram(unsigned long pfn) 495 { 496 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 497 } 498 EXPORT_SYMBOL_GPL(page_is_ram); 499 500 /** 501 * region_intersects() - determine intersection of region with known resources 502 * @start: region start address 503 * @size: size of region 504 * @flags: flags of resource (in iomem_resource) 505 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 506 * 507 * Check if the specified region partially overlaps or fully eclipses a 508 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 509 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 510 * return REGION_MIXED if the region overlaps @flags/@desc and another 511 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 512 * and no other defined resource. Note that REGION_INTERSECTS is also 513 * returned in the case when the specified region overlaps RAM and undefined 514 * memory holes. 515 * 516 * region_intersect() is used by memory remapping functions to ensure 517 * the user is not remapping RAM and is a vast speed up over walking 518 * through the resource table page by page. 519 */ 520 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 521 unsigned long desc) 522 { 523 struct resource res; 524 int type = 0; int other = 0; 525 struct resource *p; 526 527 res.start = start; 528 res.end = start + size - 1; 529 530 read_lock(&resource_lock); 531 for (p = iomem_resource.child; p ; p = p->sibling) { 532 bool is_type = (((p->flags & flags) == flags) && 533 ((desc == IORES_DESC_NONE) || 534 (desc == p->desc))); 535 536 if (resource_overlaps(p, &res)) 537 is_type ? type++ : other++; 538 } 539 read_unlock(&resource_lock); 540 541 if (other == 0) 542 return type ? REGION_INTERSECTS : REGION_DISJOINT; 543 544 if (type) 545 return REGION_MIXED; 546 547 return REGION_DISJOINT; 548 } 549 EXPORT_SYMBOL_GPL(region_intersects); 550 551 void __weak arch_remove_reservations(struct resource *avail) 552 { 553 } 554 555 static resource_size_t simple_align_resource(void *data, 556 const struct resource *avail, 557 resource_size_t size, 558 resource_size_t align) 559 { 560 return avail->start; 561 } 562 563 static void resource_clip(struct resource *res, resource_size_t min, 564 resource_size_t max) 565 { 566 if (res->start < min) 567 res->start = min; 568 if (res->end > max) 569 res->end = max; 570 } 571 572 /* 573 * Find empty slot in the resource tree with the given range and 574 * alignment constraints 575 */ 576 static int __find_resource(struct resource *root, struct resource *old, 577 struct resource *new, 578 resource_size_t size, 579 struct resource_constraint *constraint) 580 { 581 struct resource *this = root->child; 582 struct resource tmp = *new, avail, alloc; 583 584 tmp.start = root->start; 585 /* 586 * Skip past an allocated resource that starts at 0, since the assignment 587 * of this->start - 1 to tmp->end below would cause an underflow. 588 */ 589 if (this && this->start == root->start) { 590 tmp.start = (this == old) ? old->start : this->end + 1; 591 this = this->sibling; 592 } 593 for(;;) { 594 if (this) 595 tmp.end = (this == old) ? this->end : this->start - 1; 596 else 597 tmp.end = root->end; 598 599 if (tmp.end < tmp.start) 600 goto next; 601 602 resource_clip(&tmp, constraint->min, constraint->max); 603 arch_remove_reservations(&tmp); 604 605 /* Check for overflow after ALIGN() */ 606 avail.start = ALIGN(tmp.start, constraint->align); 607 avail.end = tmp.end; 608 avail.flags = new->flags & ~IORESOURCE_UNSET; 609 if (avail.start >= tmp.start) { 610 alloc.flags = avail.flags; 611 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 612 size, constraint->align); 613 alloc.end = alloc.start + size - 1; 614 if (alloc.start <= alloc.end && 615 resource_contains(&avail, &alloc)) { 616 new->start = alloc.start; 617 new->end = alloc.end; 618 return 0; 619 } 620 } 621 622 next: if (!this || this->end == root->end) 623 break; 624 625 if (this != old) 626 tmp.start = this->end + 1; 627 this = this->sibling; 628 } 629 return -EBUSY; 630 } 631 632 /* 633 * Find empty slot in the resource tree given range and alignment. 634 */ 635 static int find_resource(struct resource *root, struct resource *new, 636 resource_size_t size, 637 struct resource_constraint *constraint) 638 { 639 return __find_resource(root, NULL, new, size, constraint); 640 } 641 642 /** 643 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 644 * The resource will be relocated if the new size cannot be reallocated in the 645 * current location. 646 * 647 * @root: root resource descriptor 648 * @old: resource descriptor desired by caller 649 * @newsize: new size of the resource descriptor 650 * @constraint: the size and alignment constraints to be met. 651 */ 652 static int reallocate_resource(struct resource *root, struct resource *old, 653 resource_size_t newsize, 654 struct resource_constraint *constraint) 655 { 656 int err=0; 657 struct resource new = *old; 658 struct resource *conflict; 659 660 write_lock(&resource_lock); 661 662 if ((err = __find_resource(root, old, &new, newsize, constraint))) 663 goto out; 664 665 if (resource_contains(&new, old)) { 666 old->start = new.start; 667 old->end = new.end; 668 goto out; 669 } 670 671 if (old->child) { 672 err = -EBUSY; 673 goto out; 674 } 675 676 if (resource_contains(old, &new)) { 677 old->start = new.start; 678 old->end = new.end; 679 } else { 680 __release_resource(old, true); 681 *old = new; 682 conflict = __request_resource(root, old); 683 BUG_ON(conflict); 684 } 685 out: 686 write_unlock(&resource_lock); 687 return err; 688 } 689 690 691 /** 692 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 693 * The resource will be reallocated with a new size if it was already allocated 694 * @root: root resource descriptor 695 * @new: resource descriptor desired by caller 696 * @size: requested resource region size 697 * @min: minimum boundary to allocate 698 * @max: maximum boundary to allocate 699 * @align: alignment requested, in bytes 700 * @alignf: alignment function, optional, called if not NULL 701 * @alignf_data: arbitrary data to pass to the @alignf function 702 */ 703 int allocate_resource(struct resource *root, struct resource *new, 704 resource_size_t size, resource_size_t min, 705 resource_size_t max, resource_size_t align, 706 resource_size_t (*alignf)(void *, 707 const struct resource *, 708 resource_size_t, 709 resource_size_t), 710 void *alignf_data) 711 { 712 int err; 713 struct resource_constraint constraint; 714 715 if (!alignf) 716 alignf = simple_align_resource; 717 718 constraint.min = min; 719 constraint.max = max; 720 constraint.align = align; 721 constraint.alignf = alignf; 722 constraint.alignf_data = alignf_data; 723 724 if ( new->parent ) { 725 /* resource is already allocated, try reallocating with 726 the new constraints */ 727 return reallocate_resource(root, new, size, &constraint); 728 } 729 730 write_lock(&resource_lock); 731 err = find_resource(root, new, size, &constraint); 732 if (err >= 0 && __request_resource(root, new)) 733 err = -EBUSY; 734 write_unlock(&resource_lock); 735 return err; 736 } 737 738 EXPORT_SYMBOL(allocate_resource); 739 740 /** 741 * lookup_resource - find an existing resource by a resource start address 742 * @root: root resource descriptor 743 * @start: resource start address 744 * 745 * Returns a pointer to the resource if found, NULL otherwise 746 */ 747 struct resource *lookup_resource(struct resource *root, resource_size_t start) 748 { 749 struct resource *res; 750 751 read_lock(&resource_lock); 752 for (res = root->child; res; res = res->sibling) { 753 if (res->start == start) 754 break; 755 } 756 read_unlock(&resource_lock); 757 758 return res; 759 } 760 761 /* 762 * Insert a resource into the resource tree. If successful, return NULL, 763 * otherwise return the conflicting resource (compare to __request_resource()) 764 */ 765 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 766 { 767 struct resource *first, *next; 768 769 for (;; parent = first) { 770 first = __request_resource(parent, new); 771 if (!first) 772 return first; 773 774 if (first == parent) 775 return first; 776 if (WARN_ON(first == new)) /* duplicated insertion */ 777 return first; 778 779 if ((first->start > new->start) || (first->end < new->end)) 780 break; 781 if ((first->start == new->start) && (first->end == new->end)) 782 break; 783 } 784 785 for (next = first; ; next = next->sibling) { 786 /* Partial overlap? Bad, and unfixable */ 787 if (next->start < new->start || next->end > new->end) 788 return next; 789 if (!next->sibling) 790 break; 791 if (next->sibling->start > new->end) 792 break; 793 } 794 795 new->parent = parent; 796 new->sibling = next->sibling; 797 new->child = first; 798 799 next->sibling = NULL; 800 for (next = first; next; next = next->sibling) 801 next->parent = new; 802 803 if (parent->child == first) { 804 parent->child = new; 805 } else { 806 next = parent->child; 807 while (next->sibling != first) 808 next = next->sibling; 809 next->sibling = new; 810 } 811 return NULL; 812 } 813 814 /** 815 * insert_resource_conflict - Inserts resource in the resource tree 816 * @parent: parent of the new resource 817 * @new: new resource to insert 818 * 819 * Returns 0 on success, conflict resource if the resource can't be inserted. 820 * 821 * This function is equivalent to request_resource_conflict when no conflict 822 * happens. If a conflict happens, and the conflicting resources 823 * entirely fit within the range of the new resource, then the new 824 * resource is inserted and the conflicting resources become children of 825 * the new resource. 826 * 827 * This function is intended for producers of resources, such as FW modules 828 * and bus drivers. 829 */ 830 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 831 { 832 struct resource *conflict; 833 834 write_lock(&resource_lock); 835 conflict = __insert_resource(parent, new); 836 write_unlock(&resource_lock); 837 return conflict; 838 } 839 840 /** 841 * insert_resource - Inserts a resource in the resource tree 842 * @parent: parent of the new resource 843 * @new: new resource to insert 844 * 845 * Returns 0 on success, -EBUSY if the resource can't be inserted. 846 * 847 * This function is intended for producers of resources, such as FW modules 848 * and bus drivers. 849 */ 850 int insert_resource(struct resource *parent, struct resource *new) 851 { 852 struct resource *conflict; 853 854 conflict = insert_resource_conflict(parent, new); 855 return conflict ? -EBUSY : 0; 856 } 857 EXPORT_SYMBOL_GPL(insert_resource); 858 859 /** 860 * insert_resource_expand_to_fit - Insert a resource into the resource tree 861 * @root: root resource descriptor 862 * @new: new resource to insert 863 * 864 * Insert a resource into the resource tree, possibly expanding it in order 865 * to make it encompass any conflicting resources. 866 */ 867 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 868 { 869 if (new->parent) 870 return; 871 872 write_lock(&resource_lock); 873 for (;;) { 874 struct resource *conflict; 875 876 conflict = __insert_resource(root, new); 877 if (!conflict) 878 break; 879 if (conflict == root) 880 break; 881 882 /* Ok, expand resource to cover the conflict, then try again .. */ 883 if (conflict->start < new->start) 884 new->start = conflict->start; 885 if (conflict->end > new->end) 886 new->end = conflict->end; 887 888 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 889 } 890 write_unlock(&resource_lock); 891 } 892 893 /** 894 * remove_resource - Remove a resource in the resource tree 895 * @old: resource to remove 896 * 897 * Returns 0 on success, -EINVAL if the resource is not valid. 898 * 899 * This function removes a resource previously inserted by insert_resource() 900 * or insert_resource_conflict(), and moves the children (if any) up to 901 * where they were before. insert_resource() and insert_resource_conflict() 902 * insert a new resource, and move any conflicting resources down to the 903 * children of the new resource. 904 * 905 * insert_resource(), insert_resource_conflict() and remove_resource() are 906 * intended for producers of resources, such as FW modules and bus drivers. 907 */ 908 int remove_resource(struct resource *old) 909 { 910 int retval; 911 912 write_lock(&resource_lock); 913 retval = __release_resource(old, false); 914 write_unlock(&resource_lock); 915 return retval; 916 } 917 EXPORT_SYMBOL_GPL(remove_resource); 918 919 static int __adjust_resource(struct resource *res, resource_size_t start, 920 resource_size_t size) 921 { 922 struct resource *tmp, *parent = res->parent; 923 resource_size_t end = start + size - 1; 924 int result = -EBUSY; 925 926 if (!parent) 927 goto skip; 928 929 if ((start < parent->start) || (end > parent->end)) 930 goto out; 931 932 if (res->sibling && (res->sibling->start <= end)) 933 goto out; 934 935 tmp = parent->child; 936 if (tmp != res) { 937 while (tmp->sibling != res) 938 tmp = tmp->sibling; 939 if (start <= tmp->end) 940 goto out; 941 } 942 943 skip: 944 for (tmp = res->child; tmp; tmp = tmp->sibling) 945 if ((tmp->start < start) || (tmp->end > end)) 946 goto out; 947 948 res->start = start; 949 res->end = end; 950 result = 0; 951 952 out: 953 return result; 954 } 955 956 /** 957 * adjust_resource - modify a resource's start and size 958 * @res: resource to modify 959 * @start: new start value 960 * @size: new size 961 * 962 * Given an existing resource, change its start and size to match the 963 * arguments. Returns 0 on success, -EBUSY if it can't fit. 964 * Existing children of the resource are assumed to be immutable. 965 */ 966 int adjust_resource(struct resource *res, resource_size_t start, 967 resource_size_t size) 968 { 969 int result; 970 971 write_lock(&resource_lock); 972 result = __adjust_resource(res, start, size); 973 write_unlock(&resource_lock); 974 return result; 975 } 976 EXPORT_SYMBOL(adjust_resource); 977 978 static void __init 979 __reserve_region_with_split(struct resource *root, resource_size_t start, 980 resource_size_t end, const char *name) 981 { 982 struct resource *parent = root; 983 struct resource *conflict; 984 struct resource *res = alloc_resource(GFP_ATOMIC); 985 struct resource *next_res = NULL; 986 int type = resource_type(root); 987 988 if (!res) 989 return; 990 991 res->name = name; 992 res->start = start; 993 res->end = end; 994 res->flags = type | IORESOURCE_BUSY; 995 res->desc = IORES_DESC_NONE; 996 997 while (1) { 998 999 conflict = __request_resource(parent, res); 1000 if (!conflict) { 1001 if (!next_res) 1002 break; 1003 res = next_res; 1004 next_res = NULL; 1005 continue; 1006 } 1007 1008 /* conflict covered whole area */ 1009 if (conflict->start <= res->start && 1010 conflict->end >= res->end) { 1011 free_resource(res); 1012 WARN_ON(next_res); 1013 break; 1014 } 1015 1016 /* failed, split and try again */ 1017 if (conflict->start > res->start) { 1018 end = res->end; 1019 res->end = conflict->start - 1; 1020 if (conflict->end < end) { 1021 next_res = alloc_resource(GFP_ATOMIC); 1022 if (!next_res) { 1023 free_resource(res); 1024 break; 1025 } 1026 next_res->name = name; 1027 next_res->start = conflict->end + 1; 1028 next_res->end = end; 1029 next_res->flags = type | IORESOURCE_BUSY; 1030 next_res->desc = IORES_DESC_NONE; 1031 } 1032 } else { 1033 res->start = conflict->end + 1; 1034 } 1035 } 1036 1037 } 1038 1039 void __init 1040 reserve_region_with_split(struct resource *root, resource_size_t start, 1041 resource_size_t end, const char *name) 1042 { 1043 int abort = 0; 1044 1045 write_lock(&resource_lock); 1046 if (root->start > start || root->end < end) { 1047 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1048 (unsigned long long)start, (unsigned long long)end, 1049 root); 1050 if (start > root->end || end < root->start) 1051 abort = 1; 1052 else { 1053 if (end > root->end) 1054 end = root->end; 1055 if (start < root->start) 1056 start = root->start; 1057 pr_err("fixing request to [0x%llx-0x%llx]\n", 1058 (unsigned long long)start, 1059 (unsigned long long)end); 1060 } 1061 dump_stack(); 1062 } 1063 if (!abort) 1064 __reserve_region_with_split(root, start, end, name); 1065 write_unlock(&resource_lock); 1066 } 1067 1068 /** 1069 * resource_alignment - calculate resource's alignment 1070 * @res: resource pointer 1071 * 1072 * Returns alignment on success, 0 (invalid alignment) on failure. 1073 */ 1074 resource_size_t resource_alignment(struct resource *res) 1075 { 1076 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1077 case IORESOURCE_SIZEALIGN: 1078 return resource_size(res); 1079 case IORESOURCE_STARTALIGN: 1080 return res->start; 1081 default: 1082 return 0; 1083 } 1084 } 1085 1086 /* 1087 * This is compatibility stuff for IO resources. 1088 * 1089 * Note how this, unlike the above, knows about 1090 * the IO flag meanings (busy etc). 1091 * 1092 * request_region creates a new busy region. 1093 * 1094 * release_region releases a matching busy region. 1095 */ 1096 1097 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1098 1099 /** 1100 * __request_region - create a new busy resource region 1101 * @parent: parent resource descriptor 1102 * @start: resource start address 1103 * @n: resource region size 1104 * @name: reserving caller's ID string 1105 * @flags: IO resource flags 1106 */ 1107 struct resource * __request_region(struct resource *parent, 1108 resource_size_t start, resource_size_t n, 1109 const char *name, int flags) 1110 { 1111 DECLARE_WAITQUEUE(wait, current); 1112 struct resource *res = alloc_resource(GFP_KERNEL); 1113 1114 if (!res) 1115 return NULL; 1116 1117 res->name = name; 1118 res->start = start; 1119 res->end = start + n - 1; 1120 1121 write_lock(&resource_lock); 1122 1123 for (;;) { 1124 struct resource *conflict; 1125 1126 res->flags = resource_type(parent) | resource_ext_type(parent); 1127 res->flags |= IORESOURCE_BUSY | flags; 1128 res->desc = parent->desc; 1129 1130 conflict = __request_resource(parent, res); 1131 if (!conflict) 1132 break; 1133 /* 1134 * mm/hmm.c reserves physical addresses which then 1135 * become unavailable to other users. Conflicts are 1136 * not expected. Warn to aid debugging if encountered. 1137 */ 1138 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 1139 pr_warn("Unaddressable device %s %pR conflicts with %pR", 1140 conflict->name, conflict, res); 1141 } 1142 if (conflict != parent) { 1143 if (!(conflict->flags & IORESOURCE_BUSY)) { 1144 parent = conflict; 1145 continue; 1146 } 1147 } 1148 if (conflict->flags & flags & IORESOURCE_MUXED) { 1149 add_wait_queue(&muxed_resource_wait, &wait); 1150 write_unlock(&resource_lock); 1151 set_current_state(TASK_UNINTERRUPTIBLE); 1152 schedule(); 1153 remove_wait_queue(&muxed_resource_wait, &wait); 1154 write_lock(&resource_lock); 1155 continue; 1156 } 1157 /* Uhhuh, that didn't work out.. */ 1158 free_resource(res); 1159 res = NULL; 1160 break; 1161 } 1162 write_unlock(&resource_lock); 1163 return res; 1164 } 1165 EXPORT_SYMBOL(__request_region); 1166 1167 /** 1168 * __release_region - release a previously reserved resource region 1169 * @parent: parent resource descriptor 1170 * @start: resource start address 1171 * @n: resource region size 1172 * 1173 * The described resource region must match a currently busy region. 1174 */ 1175 void __release_region(struct resource *parent, resource_size_t start, 1176 resource_size_t n) 1177 { 1178 struct resource **p; 1179 resource_size_t end; 1180 1181 p = &parent->child; 1182 end = start + n - 1; 1183 1184 write_lock(&resource_lock); 1185 1186 for (;;) { 1187 struct resource *res = *p; 1188 1189 if (!res) 1190 break; 1191 if (res->start <= start && res->end >= end) { 1192 if (!(res->flags & IORESOURCE_BUSY)) { 1193 p = &res->child; 1194 continue; 1195 } 1196 if (res->start != start || res->end != end) 1197 break; 1198 *p = res->sibling; 1199 write_unlock(&resource_lock); 1200 if (res->flags & IORESOURCE_MUXED) 1201 wake_up(&muxed_resource_wait); 1202 free_resource(res); 1203 return; 1204 } 1205 p = &res->sibling; 1206 } 1207 1208 write_unlock(&resource_lock); 1209 1210 printk(KERN_WARNING "Trying to free nonexistent resource " 1211 "<%016llx-%016llx>\n", (unsigned long long)start, 1212 (unsigned long long)end); 1213 } 1214 EXPORT_SYMBOL(__release_region); 1215 1216 #ifdef CONFIG_MEMORY_HOTREMOVE 1217 /** 1218 * release_mem_region_adjustable - release a previously reserved memory region 1219 * @parent: parent resource descriptor 1220 * @start: resource start address 1221 * @size: resource region size 1222 * 1223 * This interface is intended for memory hot-delete. The requested region 1224 * is released from a currently busy memory resource. The requested region 1225 * must either match exactly or fit into a single busy resource entry. In 1226 * the latter case, the remaining resource is adjusted accordingly. 1227 * Existing children of the busy memory resource must be immutable in the 1228 * request. 1229 * 1230 * Note: 1231 * - Additional release conditions, such as overlapping region, can be 1232 * supported after they are confirmed as valid cases. 1233 * - When a busy memory resource gets split into two entries, the code 1234 * assumes that all children remain in the lower address entry for 1235 * simplicity. Enhance this logic when necessary. 1236 */ 1237 int release_mem_region_adjustable(struct resource *parent, 1238 resource_size_t start, resource_size_t size) 1239 { 1240 struct resource **p; 1241 struct resource *res; 1242 struct resource *new_res; 1243 resource_size_t end; 1244 int ret = -EINVAL; 1245 1246 end = start + size - 1; 1247 if ((start < parent->start) || (end > parent->end)) 1248 return ret; 1249 1250 /* The alloc_resource() result gets checked later */ 1251 new_res = alloc_resource(GFP_KERNEL); 1252 1253 p = &parent->child; 1254 write_lock(&resource_lock); 1255 1256 while ((res = *p)) { 1257 if (res->start >= end) 1258 break; 1259 1260 /* look for the next resource if it does not fit into */ 1261 if (res->start > start || res->end < end) { 1262 p = &res->sibling; 1263 continue; 1264 } 1265 1266 /* 1267 * All memory regions added from memory-hotplug path have the 1268 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have 1269 * this flag, we know that we are dealing with a resource coming 1270 * from HMM/devm. HMM/devm use another mechanism to add/release 1271 * a resource. This goes via devm_request_mem_region and 1272 * devm_release_mem_region. 1273 * HMM/devm take care to release their resources when they want, 1274 * so if we are dealing with them, let us just back off here. 1275 */ 1276 if (!(res->flags & IORESOURCE_SYSRAM)) { 1277 ret = 0; 1278 break; 1279 } 1280 1281 if (!(res->flags & IORESOURCE_MEM)) 1282 break; 1283 1284 if (!(res->flags & IORESOURCE_BUSY)) { 1285 p = &res->child; 1286 continue; 1287 } 1288 1289 /* found the target resource; let's adjust accordingly */ 1290 if (res->start == start && res->end == end) { 1291 /* free the whole entry */ 1292 *p = res->sibling; 1293 free_resource(res); 1294 ret = 0; 1295 } else if (res->start == start && res->end != end) { 1296 /* adjust the start */ 1297 ret = __adjust_resource(res, end + 1, 1298 res->end - end); 1299 } else if (res->start != start && res->end == end) { 1300 /* adjust the end */ 1301 ret = __adjust_resource(res, res->start, 1302 start - res->start); 1303 } else { 1304 /* split into two entries */ 1305 if (!new_res) { 1306 ret = -ENOMEM; 1307 break; 1308 } 1309 new_res->name = res->name; 1310 new_res->start = end + 1; 1311 new_res->end = res->end; 1312 new_res->flags = res->flags; 1313 new_res->desc = res->desc; 1314 new_res->parent = res->parent; 1315 new_res->sibling = res->sibling; 1316 new_res->child = NULL; 1317 1318 ret = __adjust_resource(res, res->start, 1319 start - res->start); 1320 if (ret) 1321 break; 1322 res->sibling = new_res; 1323 new_res = NULL; 1324 } 1325 1326 break; 1327 } 1328 1329 write_unlock(&resource_lock); 1330 free_resource(new_res); 1331 return ret; 1332 } 1333 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1334 1335 /* 1336 * Managed region resource 1337 */ 1338 static void devm_resource_release(struct device *dev, void *ptr) 1339 { 1340 struct resource **r = ptr; 1341 1342 release_resource(*r); 1343 } 1344 1345 /** 1346 * devm_request_resource() - request and reserve an I/O or memory resource 1347 * @dev: device for which to request the resource 1348 * @root: root of the resource tree from which to request the resource 1349 * @new: descriptor of the resource to request 1350 * 1351 * This is a device-managed version of request_resource(). There is usually 1352 * no need to release resources requested by this function explicitly since 1353 * that will be taken care of when the device is unbound from its driver. 1354 * If for some reason the resource needs to be released explicitly, because 1355 * of ordering issues for example, drivers must call devm_release_resource() 1356 * rather than the regular release_resource(). 1357 * 1358 * When a conflict is detected between any existing resources and the newly 1359 * requested resource, an error message will be printed. 1360 * 1361 * Returns 0 on success or a negative error code on failure. 1362 */ 1363 int devm_request_resource(struct device *dev, struct resource *root, 1364 struct resource *new) 1365 { 1366 struct resource *conflict, **ptr; 1367 1368 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1369 if (!ptr) 1370 return -ENOMEM; 1371 1372 *ptr = new; 1373 1374 conflict = request_resource_conflict(root, new); 1375 if (conflict) { 1376 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1377 new, conflict->name, conflict); 1378 devres_free(ptr); 1379 return -EBUSY; 1380 } 1381 1382 devres_add(dev, ptr); 1383 return 0; 1384 } 1385 EXPORT_SYMBOL(devm_request_resource); 1386 1387 static int devm_resource_match(struct device *dev, void *res, void *data) 1388 { 1389 struct resource **ptr = res; 1390 1391 return *ptr == data; 1392 } 1393 1394 /** 1395 * devm_release_resource() - release a previously requested resource 1396 * @dev: device for which to release the resource 1397 * @new: descriptor of the resource to release 1398 * 1399 * Releases a resource previously requested using devm_request_resource(). 1400 */ 1401 void devm_release_resource(struct device *dev, struct resource *new) 1402 { 1403 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1404 new)); 1405 } 1406 EXPORT_SYMBOL(devm_release_resource); 1407 1408 struct region_devres { 1409 struct resource *parent; 1410 resource_size_t start; 1411 resource_size_t n; 1412 }; 1413 1414 static void devm_region_release(struct device *dev, void *res) 1415 { 1416 struct region_devres *this = res; 1417 1418 __release_region(this->parent, this->start, this->n); 1419 } 1420 1421 static int devm_region_match(struct device *dev, void *res, void *match_data) 1422 { 1423 struct region_devres *this = res, *match = match_data; 1424 1425 return this->parent == match->parent && 1426 this->start == match->start && this->n == match->n; 1427 } 1428 1429 struct resource * 1430 __devm_request_region(struct device *dev, struct resource *parent, 1431 resource_size_t start, resource_size_t n, const char *name) 1432 { 1433 struct region_devres *dr = NULL; 1434 struct resource *res; 1435 1436 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1437 GFP_KERNEL); 1438 if (!dr) 1439 return NULL; 1440 1441 dr->parent = parent; 1442 dr->start = start; 1443 dr->n = n; 1444 1445 res = __request_region(parent, start, n, name, 0); 1446 if (res) 1447 devres_add(dev, dr); 1448 else 1449 devres_free(dr); 1450 1451 return res; 1452 } 1453 EXPORT_SYMBOL(__devm_request_region); 1454 1455 void __devm_release_region(struct device *dev, struct resource *parent, 1456 resource_size_t start, resource_size_t n) 1457 { 1458 struct region_devres match_data = { parent, start, n }; 1459 1460 __release_region(parent, start, n); 1461 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1462 &match_data)); 1463 } 1464 EXPORT_SYMBOL(__devm_release_region); 1465 1466 /* 1467 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1468 */ 1469 #define MAXRESERVE 4 1470 static int __init reserve_setup(char *str) 1471 { 1472 static int reserved; 1473 static struct resource reserve[MAXRESERVE]; 1474 1475 for (;;) { 1476 unsigned int io_start, io_num; 1477 int x = reserved; 1478 struct resource *parent; 1479 1480 if (get_option(&str, &io_start) != 2) 1481 break; 1482 if (get_option(&str, &io_num) == 0) 1483 break; 1484 if (x < MAXRESERVE) { 1485 struct resource *res = reserve + x; 1486 1487 /* 1488 * If the region starts below 0x10000, we assume it's 1489 * I/O port space; otherwise assume it's memory. 1490 */ 1491 if (io_start < 0x10000) { 1492 res->flags = IORESOURCE_IO; 1493 parent = &ioport_resource; 1494 } else { 1495 res->flags = IORESOURCE_MEM; 1496 parent = &iomem_resource; 1497 } 1498 res->name = "reserved"; 1499 res->start = io_start; 1500 res->end = io_start + io_num - 1; 1501 res->flags |= IORESOURCE_BUSY; 1502 res->desc = IORES_DESC_NONE; 1503 res->child = NULL; 1504 if (request_resource(parent, res) == 0) 1505 reserved = x+1; 1506 } 1507 } 1508 return 1; 1509 } 1510 __setup("reserve=", reserve_setup); 1511 1512 /* 1513 * Check if the requested addr and size spans more than any slot in the 1514 * iomem resource tree. 1515 */ 1516 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1517 { 1518 struct resource *p = &iomem_resource; 1519 int err = 0; 1520 loff_t l; 1521 1522 read_lock(&resource_lock); 1523 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1524 /* 1525 * We can probably skip the resources without 1526 * IORESOURCE_IO attribute? 1527 */ 1528 if (p->start >= addr + size) 1529 continue; 1530 if (p->end < addr) 1531 continue; 1532 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1533 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1534 continue; 1535 /* 1536 * if a resource is "BUSY", it's not a hardware resource 1537 * but a driver mapping of such a resource; we don't want 1538 * to warn for those; some drivers legitimately map only 1539 * partial hardware resources. (example: vesafb) 1540 */ 1541 if (p->flags & IORESOURCE_BUSY) 1542 continue; 1543 1544 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1545 (unsigned long long)addr, 1546 (unsigned long long)(addr + size - 1), 1547 p->name, p); 1548 err = -1; 1549 break; 1550 } 1551 read_unlock(&resource_lock); 1552 1553 return err; 1554 } 1555 1556 #ifdef CONFIG_STRICT_DEVMEM 1557 static int strict_iomem_checks = 1; 1558 #else 1559 static int strict_iomem_checks; 1560 #endif 1561 1562 /* 1563 * check if an address is reserved in the iomem resource tree 1564 * returns true if reserved, false if not reserved. 1565 */ 1566 bool iomem_is_exclusive(u64 addr) 1567 { 1568 struct resource *p = &iomem_resource; 1569 bool err = false; 1570 loff_t l; 1571 int size = PAGE_SIZE; 1572 1573 if (!strict_iomem_checks) 1574 return false; 1575 1576 addr = addr & PAGE_MASK; 1577 1578 read_lock(&resource_lock); 1579 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1580 /* 1581 * We can probably skip the resources without 1582 * IORESOURCE_IO attribute? 1583 */ 1584 if (p->start >= addr + size) 1585 break; 1586 if (p->end < addr) 1587 continue; 1588 /* 1589 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1590 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1591 * resource is busy. 1592 */ 1593 if ((p->flags & IORESOURCE_BUSY) == 0) 1594 continue; 1595 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1596 || p->flags & IORESOURCE_EXCLUSIVE) { 1597 err = true; 1598 break; 1599 } 1600 } 1601 read_unlock(&resource_lock); 1602 1603 return err; 1604 } 1605 1606 struct resource_entry *resource_list_create_entry(struct resource *res, 1607 size_t extra_size) 1608 { 1609 struct resource_entry *entry; 1610 1611 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1612 if (entry) { 1613 INIT_LIST_HEAD(&entry->node); 1614 entry->res = res ? res : &entry->__res; 1615 } 1616 1617 return entry; 1618 } 1619 EXPORT_SYMBOL(resource_list_create_entry); 1620 1621 void resource_list_free(struct list_head *head) 1622 { 1623 struct resource_entry *entry, *tmp; 1624 1625 list_for_each_entry_safe(entry, tmp, head, node) 1626 resource_list_destroy_entry(entry); 1627 } 1628 EXPORT_SYMBOL(resource_list_free); 1629 1630 static int __init strict_iomem(char *str) 1631 { 1632 if (strstr(str, "relaxed")) 1633 strict_iomem_checks = 0; 1634 if (strstr(str, "strict")) 1635 strict_iomem_checks = 1; 1636 return 1; 1637 } 1638 1639 __setup("iomem=", strict_iomem); 1640