xref: /openbmc/linux/kernel/resource.c (revision e917ba44)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <asm/io.h>
26 
27 
28 struct resource ioport_resource = {
29 	.name	= "PCI IO",
30 	.start	= 0,
31 	.end	= IO_SPACE_LIMIT,
32 	.flags	= IORESOURCE_IO,
33 };
34 EXPORT_SYMBOL(ioport_resource);
35 
36 struct resource iomem_resource = {
37 	.name	= "PCI mem",
38 	.start	= 0,
39 	.end	= -1,
40 	.flags	= IORESOURCE_MEM,
41 };
42 EXPORT_SYMBOL(iomem_resource);
43 
44 /* constraints to be met while allocating resources */
45 struct resource_constraint {
46 	resource_size_t min, max, align;
47 	resource_size_t (*alignf)(void *, const struct resource *,
48 			resource_size_t, resource_size_t);
49 	void *alignf_data;
50 };
51 
52 static DEFINE_RWLOCK(resource_lock);
53 
54 /*
55  * For memory hotplug, there is no way to free resource entries allocated
56  * by boot mem after the system is up. So for reusing the resource entry
57  * we need to remember the resource.
58  */
59 static struct resource *bootmem_resource_free;
60 static DEFINE_SPINLOCK(bootmem_resource_lock);
61 
62 static struct resource *next_resource(struct resource *p, bool sibling_only)
63 {
64 	/* Caller wants to traverse through siblings only */
65 	if (sibling_only)
66 		return p->sibling;
67 
68 	if (p->child)
69 		return p->child;
70 	while (!p->sibling && p->parent)
71 		p = p->parent;
72 	return p->sibling;
73 }
74 
75 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
76 {
77 	struct resource *p = v;
78 	(*pos)++;
79 	return (void *)next_resource(p, false);
80 }
81 
82 #ifdef CONFIG_PROC_FS
83 
84 enum { MAX_IORES_LEVEL = 5 };
85 
86 static void *r_start(struct seq_file *m, loff_t *pos)
87 	__acquires(resource_lock)
88 {
89 	struct resource *p = m->private;
90 	loff_t l = 0;
91 	read_lock(&resource_lock);
92 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
93 		;
94 	return p;
95 }
96 
97 static void r_stop(struct seq_file *m, void *v)
98 	__releases(resource_lock)
99 {
100 	read_unlock(&resource_lock);
101 }
102 
103 static int r_show(struct seq_file *m, void *v)
104 {
105 	struct resource *root = m->private;
106 	struct resource *r = v, *p;
107 	int width = root->end < 0x10000 ? 4 : 8;
108 	int depth;
109 
110 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
111 		if (p->parent == root)
112 			break;
113 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
114 			depth * 2, "",
115 			width, (unsigned long long) r->start,
116 			width, (unsigned long long) r->end,
117 			r->name ? r->name : "<BAD>");
118 	return 0;
119 }
120 
121 static const struct seq_operations resource_op = {
122 	.start	= r_start,
123 	.next	= r_next,
124 	.stop	= r_stop,
125 	.show	= r_show,
126 };
127 
128 static int ioports_open(struct inode *inode, struct file *file)
129 {
130 	int res = seq_open(file, &resource_op);
131 	if (!res) {
132 		struct seq_file *m = file->private_data;
133 		m->private = &ioport_resource;
134 	}
135 	return res;
136 }
137 
138 static int iomem_open(struct inode *inode, struct file *file)
139 {
140 	int res = seq_open(file, &resource_op);
141 	if (!res) {
142 		struct seq_file *m = file->private_data;
143 		m->private = &iomem_resource;
144 	}
145 	return res;
146 }
147 
148 static const struct file_operations proc_ioports_operations = {
149 	.open		= ioports_open,
150 	.read		= seq_read,
151 	.llseek		= seq_lseek,
152 	.release	= seq_release,
153 };
154 
155 static const struct file_operations proc_iomem_operations = {
156 	.open		= iomem_open,
157 	.read		= seq_read,
158 	.llseek		= seq_lseek,
159 	.release	= seq_release,
160 };
161 
162 static int __init ioresources_init(void)
163 {
164 	proc_create("ioports", 0, NULL, &proc_ioports_operations);
165 	proc_create("iomem", 0, NULL, &proc_iomem_operations);
166 	return 0;
167 }
168 __initcall(ioresources_init);
169 
170 #endif /* CONFIG_PROC_FS */
171 
172 static void free_resource(struct resource *res)
173 {
174 	if (!res)
175 		return;
176 
177 	if (!PageSlab(virt_to_head_page(res))) {
178 		spin_lock(&bootmem_resource_lock);
179 		res->sibling = bootmem_resource_free;
180 		bootmem_resource_free = res;
181 		spin_unlock(&bootmem_resource_lock);
182 	} else {
183 		kfree(res);
184 	}
185 }
186 
187 static struct resource *alloc_resource(gfp_t flags)
188 {
189 	struct resource *res = NULL;
190 
191 	spin_lock(&bootmem_resource_lock);
192 	if (bootmem_resource_free) {
193 		res = bootmem_resource_free;
194 		bootmem_resource_free = res->sibling;
195 	}
196 	spin_unlock(&bootmem_resource_lock);
197 
198 	if (res)
199 		memset(res, 0, sizeof(struct resource));
200 	else
201 		res = kzalloc(sizeof(struct resource), flags);
202 
203 	return res;
204 }
205 
206 /* Return the conflict entry if you can't request it */
207 static struct resource * __request_resource(struct resource *root, struct resource *new)
208 {
209 	resource_size_t start = new->start;
210 	resource_size_t end = new->end;
211 	struct resource *tmp, **p;
212 
213 	if (end < start)
214 		return root;
215 	if (start < root->start)
216 		return root;
217 	if (end > root->end)
218 		return root;
219 	p = &root->child;
220 	for (;;) {
221 		tmp = *p;
222 		if (!tmp || tmp->start > end) {
223 			new->sibling = tmp;
224 			*p = new;
225 			new->parent = root;
226 			return NULL;
227 		}
228 		p = &tmp->sibling;
229 		if (tmp->end < start)
230 			continue;
231 		return tmp;
232 	}
233 }
234 
235 static int __release_resource(struct resource *old)
236 {
237 	struct resource *tmp, **p;
238 
239 	p = &old->parent->child;
240 	for (;;) {
241 		tmp = *p;
242 		if (!tmp)
243 			break;
244 		if (tmp == old) {
245 			*p = tmp->sibling;
246 			old->parent = NULL;
247 			return 0;
248 		}
249 		p = &tmp->sibling;
250 	}
251 	return -EINVAL;
252 }
253 
254 static void __release_child_resources(struct resource *r)
255 {
256 	struct resource *tmp, *p;
257 	resource_size_t size;
258 
259 	p = r->child;
260 	r->child = NULL;
261 	while (p) {
262 		tmp = p;
263 		p = p->sibling;
264 
265 		tmp->parent = NULL;
266 		tmp->sibling = NULL;
267 		__release_child_resources(tmp);
268 
269 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
270 		/* need to restore size, and keep flags */
271 		size = resource_size(tmp);
272 		tmp->start = 0;
273 		tmp->end = size - 1;
274 	}
275 }
276 
277 void release_child_resources(struct resource *r)
278 {
279 	write_lock(&resource_lock);
280 	__release_child_resources(r);
281 	write_unlock(&resource_lock);
282 }
283 
284 /**
285  * request_resource_conflict - request and reserve an I/O or memory resource
286  * @root: root resource descriptor
287  * @new: resource descriptor desired by caller
288  *
289  * Returns 0 for success, conflict resource on error.
290  */
291 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
292 {
293 	struct resource *conflict;
294 
295 	write_lock(&resource_lock);
296 	conflict = __request_resource(root, new);
297 	write_unlock(&resource_lock);
298 	return conflict;
299 }
300 
301 /**
302  * request_resource - request and reserve an I/O or memory resource
303  * @root: root resource descriptor
304  * @new: resource descriptor desired by caller
305  *
306  * Returns 0 for success, negative error code on error.
307  */
308 int request_resource(struct resource *root, struct resource *new)
309 {
310 	struct resource *conflict;
311 
312 	conflict = request_resource_conflict(root, new);
313 	return conflict ? -EBUSY : 0;
314 }
315 
316 EXPORT_SYMBOL(request_resource);
317 
318 /**
319  * release_resource - release a previously reserved resource
320  * @old: resource pointer
321  */
322 int release_resource(struct resource *old)
323 {
324 	int retval;
325 
326 	write_lock(&resource_lock);
327 	retval = __release_resource(old);
328 	write_unlock(&resource_lock);
329 	return retval;
330 }
331 
332 EXPORT_SYMBOL(release_resource);
333 
334 /*
335  * Finds the lowest iomem reosurce exists with-in [res->start.res->end)
336  * the caller must specify res->start, res->end, res->flags and "name".
337  * If found, returns 0, res is overwritten, if not found, returns -1.
338  * This walks through whole tree and not just first level children
339  * until and unless first_level_children_only is true.
340  */
341 static int find_next_iomem_res(struct resource *res, char *name,
342 			       bool first_level_children_only)
343 {
344 	resource_size_t start, end;
345 	struct resource *p;
346 	bool sibling_only = false;
347 
348 	BUG_ON(!res);
349 
350 	start = res->start;
351 	end = res->end;
352 	BUG_ON(start >= end);
353 
354 	read_lock(&resource_lock);
355 
356 	if (first_level_children_only) {
357 		p = iomem_resource.child;
358 		sibling_only = true;
359 	} else
360 		p = &iomem_resource;
361 
362 	while ((p = next_resource(p, sibling_only))) {
363 		if (p->flags != res->flags)
364 			continue;
365 		if (name && strcmp(p->name, name))
366 			continue;
367 		if (p->start > end) {
368 			p = NULL;
369 			break;
370 		}
371 		if ((p->end >= start) && (p->start < end))
372 			break;
373 	}
374 
375 	read_unlock(&resource_lock);
376 	if (!p)
377 		return -1;
378 	/* copy data */
379 	if (res->start < p->start)
380 		res->start = p->start;
381 	if (res->end > p->end)
382 		res->end = p->end;
383 	return 0;
384 }
385 
386 /*
387  * Walks through iomem resources and calls func() with matching resource
388  * ranges. This walks through whole tree and not just first level children.
389  * All the memory ranges which overlap start,end and also match flags and
390  * name are valid candidates.
391  *
392  * @name: name of resource
393  * @flags: resource flags
394  * @start: start addr
395  * @end: end addr
396  */
397 int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end,
398 		void *arg, int (*func)(u64, u64, void *))
399 {
400 	struct resource res;
401 	u64 orig_end;
402 	int ret = -1;
403 
404 	res.start = start;
405 	res.end = end;
406 	res.flags = flags;
407 	orig_end = res.end;
408 	while ((res.start < res.end) &&
409 		(!find_next_iomem_res(&res, name, false))) {
410 		ret = (*func)(res.start, res.end, arg);
411 		if (ret)
412 			break;
413 		res.start = res.end + 1;
414 		res.end = orig_end;
415 	}
416 	return ret;
417 }
418 
419 /*
420  * This function calls callback against all memory range of "System RAM"
421  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
422  * Now, this function is only for "System RAM". This function deals with
423  * full ranges and not pfn. If resources are not pfn aligned, dealing
424  * with pfn can truncate ranges.
425  */
426 int walk_system_ram_res(u64 start, u64 end, void *arg,
427 				int (*func)(u64, u64, void *))
428 {
429 	struct resource res;
430 	u64 orig_end;
431 	int ret = -1;
432 
433 	res.start = start;
434 	res.end = end;
435 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
436 	orig_end = res.end;
437 	while ((res.start < res.end) &&
438 		(!find_next_iomem_res(&res, "System RAM", true))) {
439 		ret = (*func)(res.start, res.end, arg);
440 		if (ret)
441 			break;
442 		res.start = res.end + 1;
443 		res.end = orig_end;
444 	}
445 	return ret;
446 }
447 
448 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
449 
450 /*
451  * This function calls callback against all memory range of "System RAM"
452  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
453  * Now, this function is only for "System RAM".
454  */
455 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
456 		void *arg, int (*func)(unsigned long, unsigned long, void *))
457 {
458 	struct resource res;
459 	unsigned long pfn, end_pfn;
460 	u64 orig_end;
461 	int ret = -1;
462 
463 	res.start = (u64) start_pfn << PAGE_SHIFT;
464 	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
465 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
466 	orig_end = res.end;
467 	while ((res.start < res.end) &&
468 		(find_next_iomem_res(&res, "System RAM", true) >= 0)) {
469 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
470 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
471 		if (end_pfn > pfn)
472 			ret = (*func)(pfn, end_pfn - pfn, arg);
473 		if (ret)
474 			break;
475 		res.start = res.end + 1;
476 		res.end = orig_end;
477 	}
478 	return ret;
479 }
480 
481 #endif
482 
483 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
484 {
485 	return 1;
486 }
487 /*
488  * This generic page_is_ram() returns true if specified address is
489  * registered as "System RAM" in iomem_resource list.
490  */
491 int __weak page_is_ram(unsigned long pfn)
492 {
493 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
494 }
495 EXPORT_SYMBOL_GPL(page_is_ram);
496 
497 void __weak arch_remove_reservations(struct resource *avail)
498 {
499 }
500 
501 static resource_size_t simple_align_resource(void *data,
502 					     const struct resource *avail,
503 					     resource_size_t size,
504 					     resource_size_t align)
505 {
506 	return avail->start;
507 }
508 
509 static void resource_clip(struct resource *res, resource_size_t min,
510 			  resource_size_t max)
511 {
512 	if (res->start < min)
513 		res->start = min;
514 	if (res->end > max)
515 		res->end = max;
516 }
517 
518 /*
519  * Find empty slot in the resource tree with the given range and
520  * alignment constraints
521  */
522 static int __find_resource(struct resource *root, struct resource *old,
523 			 struct resource *new,
524 			 resource_size_t  size,
525 			 struct resource_constraint *constraint)
526 {
527 	struct resource *this = root->child;
528 	struct resource tmp = *new, avail, alloc;
529 
530 	tmp.start = root->start;
531 	/*
532 	 * Skip past an allocated resource that starts at 0, since the assignment
533 	 * of this->start - 1 to tmp->end below would cause an underflow.
534 	 */
535 	if (this && this->start == root->start) {
536 		tmp.start = (this == old) ? old->start : this->end + 1;
537 		this = this->sibling;
538 	}
539 	for(;;) {
540 		if (this)
541 			tmp.end = (this == old) ?  this->end : this->start - 1;
542 		else
543 			tmp.end = root->end;
544 
545 		if (tmp.end < tmp.start)
546 			goto next;
547 
548 		resource_clip(&tmp, constraint->min, constraint->max);
549 		arch_remove_reservations(&tmp);
550 
551 		/* Check for overflow after ALIGN() */
552 		avail.start = ALIGN(tmp.start, constraint->align);
553 		avail.end = tmp.end;
554 		avail.flags = new->flags & ~IORESOURCE_UNSET;
555 		if (avail.start >= tmp.start) {
556 			alloc.flags = avail.flags;
557 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
558 					size, constraint->align);
559 			alloc.end = alloc.start + size - 1;
560 			if (resource_contains(&avail, &alloc)) {
561 				new->start = alloc.start;
562 				new->end = alloc.end;
563 				return 0;
564 			}
565 		}
566 
567 next:		if (!this || this->end == root->end)
568 			break;
569 
570 		if (this != old)
571 			tmp.start = this->end + 1;
572 		this = this->sibling;
573 	}
574 	return -EBUSY;
575 }
576 
577 /*
578  * Find empty slot in the resource tree given range and alignment.
579  */
580 static int find_resource(struct resource *root, struct resource *new,
581 			resource_size_t size,
582 			struct resource_constraint  *constraint)
583 {
584 	return  __find_resource(root, NULL, new, size, constraint);
585 }
586 
587 /**
588  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
589  *	The resource will be relocated if the new size cannot be reallocated in the
590  *	current location.
591  *
592  * @root: root resource descriptor
593  * @old:  resource descriptor desired by caller
594  * @newsize: new size of the resource descriptor
595  * @constraint: the size and alignment constraints to be met.
596  */
597 static int reallocate_resource(struct resource *root, struct resource *old,
598 			resource_size_t newsize,
599 			struct resource_constraint  *constraint)
600 {
601 	int err=0;
602 	struct resource new = *old;
603 	struct resource *conflict;
604 
605 	write_lock(&resource_lock);
606 
607 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
608 		goto out;
609 
610 	if (resource_contains(&new, old)) {
611 		old->start = new.start;
612 		old->end = new.end;
613 		goto out;
614 	}
615 
616 	if (old->child) {
617 		err = -EBUSY;
618 		goto out;
619 	}
620 
621 	if (resource_contains(old, &new)) {
622 		old->start = new.start;
623 		old->end = new.end;
624 	} else {
625 		__release_resource(old);
626 		*old = new;
627 		conflict = __request_resource(root, old);
628 		BUG_ON(conflict);
629 	}
630 out:
631 	write_unlock(&resource_lock);
632 	return err;
633 }
634 
635 
636 /**
637  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
638  * 	The resource will be reallocated with a new size if it was already allocated
639  * @root: root resource descriptor
640  * @new: resource descriptor desired by caller
641  * @size: requested resource region size
642  * @min: minimum boundary to allocate
643  * @max: maximum boundary to allocate
644  * @align: alignment requested, in bytes
645  * @alignf: alignment function, optional, called if not NULL
646  * @alignf_data: arbitrary data to pass to the @alignf function
647  */
648 int allocate_resource(struct resource *root, struct resource *new,
649 		      resource_size_t size, resource_size_t min,
650 		      resource_size_t max, resource_size_t align,
651 		      resource_size_t (*alignf)(void *,
652 						const struct resource *,
653 						resource_size_t,
654 						resource_size_t),
655 		      void *alignf_data)
656 {
657 	int err;
658 	struct resource_constraint constraint;
659 
660 	if (!alignf)
661 		alignf = simple_align_resource;
662 
663 	constraint.min = min;
664 	constraint.max = max;
665 	constraint.align = align;
666 	constraint.alignf = alignf;
667 	constraint.alignf_data = alignf_data;
668 
669 	if ( new->parent ) {
670 		/* resource is already allocated, try reallocating with
671 		   the new constraints */
672 		return reallocate_resource(root, new, size, &constraint);
673 	}
674 
675 	write_lock(&resource_lock);
676 	err = find_resource(root, new, size, &constraint);
677 	if (err >= 0 && __request_resource(root, new))
678 		err = -EBUSY;
679 	write_unlock(&resource_lock);
680 	return err;
681 }
682 
683 EXPORT_SYMBOL(allocate_resource);
684 
685 /**
686  * lookup_resource - find an existing resource by a resource start address
687  * @root: root resource descriptor
688  * @start: resource start address
689  *
690  * Returns a pointer to the resource if found, NULL otherwise
691  */
692 struct resource *lookup_resource(struct resource *root, resource_size_t start)
693 {
694 	struct resource *res;
695 
696 	read_lock(&resource_lock);
697 	for (res = root->child; res; res = res->sibling) {
698 		if (res->start == start)
699 			break;
700 	}
701 	read_unlock(&resource_lock);
702 
703 	return res;
704 }
705 
706 /*
707  * Insert a resource into the resource tree. If successful, return NULL,
708  * otherwise return the conflicting resource (compare to __request_resource())
709  */
710 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
711 {
712 	struct resource *first, *next;
713 
714 	for (;; parent = first) {
715 		first = __request_resource(parent, new);
716 		if (!first)
717 			return first;
718 
719 		if (first == parent)
720 			return first;
721 		if (WARN_ON(first == new))	/* duplicated insertion */
722 			return first;
723 
724 		if ((first->start > new->start) || (first->end < new->end))
725 			break;
726 		if ((first->start == new->start) && (first->end == new->end))
727 			break;
728 	}
729 
730 	for (next = first; ; next = next->sibling) {
731 		/* Partial overlap? Bad, and unfixable */
732 		if (next->start < new->start || next->end > new->end)
733 			return next;
734 		if (!next->sibling)
735 			break;
736 		if (next->sibling->start > new->end)
737 			break;
738 	}
739 
740 	new->parent = parent;
741 	new->sibling = next->sibling;
742 	new->child = first;
743 
744 	next->sibling = NULL;
745 	for (next = first; next; next = next->sibling)
746 		next->parent = new;
747 
748 	if (parent->child == first) {
749 		parent->child = new;
750 	} else {
751 		next = parent->child;
752 		while (next->sibling != first)
753 			next = next->sibling;
754 		next->sibling = new;
755 	}
756 	return NULL;
757 }
758 
759 /**
760  * insert_resource_conflict - Inserts resource in the resource tree
761  * @parent: parent of the new resource
762  * @new: new resource to insert
763  *
764  * Returns 0 on success, conflict resource if the resource can't be inserted.
765  *
766  * This function is equivalent to request_resource_conflict when no conflict
767  * happens. If a conflict happens, and the conflicting resources
768  * entirely fit within the range of the new resource, then the new
769  * resource is inserted and the conflicting resources become children of
770  * the new resource.
771  */
772 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
773 {
774 	struct resource *conflict;
775 
776 	write_lock(&resource_lock);
777 	conflict = __insert_resource(parent, new);
778 	write_unlock(&resource_lock);
779 	return conflict;
780 }
781 
782 /**
783  * insert_resource - Inserts a resource in the resource tree
784  * @parent: parent of the new resource
785  * @new: new resource to insert
786  *
787  * Returns 0 on success, -EBUSY if the resource can't be inserted.
788  */
789 int insert_resource(struct resource *parent, struct resource *new)
790 {
791 	struct resource *conflict;
792 
793 	conflict = insert_resource_conflict(parent, new);
794 	return conflict ? -EBUSY : 0;
795 }
796 
797 /**
798  * insert_resource_expand_to_fit - Insert a resource into the resource tree
799  * @root: root resource descriptor
800  * @new: new resource to insert
801  *
802  * Insert a resource into the resource tree, possibly expanding it in order
803  * to make it encompass any conflicting resources.
804  */
805 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
806 {
807 	if (new->parent)
808 		return;
809 
810 	write_lock(&resource_lock);
811 	for (;;) {
812 		struct resource *conflict;
813 
814 		conflict = __insert_resource(root, new);
815 		if (!conflict)
816 			break;
817 		if (conflict == root)
818 			break;
819 
820 		/* Ok, expand resource to cover the conflict, then try again .. */
821 		if (conflict->start < new->start)
822 			new->start = conflict->start;
823 		if (conflict->end > new->end)
824 			new->end = conflict->end;
825 
826 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
827 	}
828 	write_unlock(&resource_lock);
829 }
830 
831 static int __adjust_resource(struct resource *res, resource_size_t start,
832 				resource_size_t size)
833 {
834 	struct resource *tmp, *parent = res->parent;
835 	resource_size_t end = start + size - 1;
836 	int result = -EBUSY;
837 
838 	if (!parent)
839 		goto skip;
840 
841 	if ((start < parent->start) || (end > parent->end))
842 		goto out;
843 
844 	if (res->sibling && (res->sibling->start <= end))
845 		goto out;
846 
847 	tmp = parent->child;
848 	if (tmp != res) {
849 		while (tmp->sibling != res)
850 			tmp = tmp->sibling;
851 		if (start <= tmp->end)
852 			goto out;
853 	}
854 
855 skip:
856 	for (tmp = res->child; tmp; tmp = tmp->sibling)
857 		if ((tmp->start < start) || (tmp->end > end))
858 			goto out;
859 
860 	res->start = start;
861 	res->end = end;
862 	result = 0;
863 
864  out:
865 	return result;
866 }
867 
868 /**
869  * adjust_resource - modify a resource's start and size
870  * @res: resource to modify
871  * @start: new start value
872  * @size: new size
873  *
874  * Given an existing resource, change its start and size to match the
875  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
876  * Existing children of the resource are assumed to be immutable.
877  */
878 int adjust_resource(struct resource *res, resource_size_t start,
879 			resource_size_t size)
880 {
881 	int result;
882 
883 	write_lock(&resource_lock);
884 	result = __adjust_resource(res, start, size);
885 	write_unlock(&resource_lock);
886 	return result;
887 }
888 EXPORT_SYMBOL(adjust_resource);
889 
890 static void __init __reserve_region_with_split(struct resource *root,
891 		resource_size_t start, resource_size_t end,
892 		const char *name)
893 {
894 	struct resource *parent = root;
895 	struct resource *conflict;
896 	struct resource *res = alloc_resource(GFP_ATOMIC);
897 	struct resource *next_res = NULL;
898 
899 	if (!res)
900 		return;
901 
902 	res->name = name;
903 	res->start = start;
904 	res->end = end;
905 	res->flags = IORESOURCE_BUSY;
906 
907 	while (1) {
908 
909 		conflict = __request_resource(parent, res);
910 		if (!conflict) {
911 			if (!next_res)
912 				break;
913 			res = next_res;
914 			next_res = NULL;
915 			continue;
916 		}
917 
918 		/* conflict covered whole area */
919 		if (conflict->start <= res->start &&
920 				conflict->end >= res->end) {
921 			free_resource(res);
922 			WARN_ON(next_res);
923 			break;
924 		}
925 
926 		/* failed, split and try again */
927 		if (conflict->start > res->start) {
928 			end = res->end;
929 			res->end = conflict->start - 1;
930 			if (conflict->end < end) {
931 				next_res = alloc_resource(GFP_ATOMIC);
932 				if (!next_res) {
933 					free_resource(res);
934 					break;
935 				}
936 				next_res->name = name;
937 				next_res->start = conflict->end + 1;
938 				next_res->end = end;
939 				next_res->flags = IORESOURCE_BUSY;
940 			}
941 		} else {
942 			res->start = conflict->end + 1;
943 		}
944 	}
945 
946 }
947 
948 void __init reserve_region_with_split(struct resource *root,
949 		resource_size_t start, resource_size_t end,
950 		const char *name)
951 {
952 	int abort = 0;
953 
954 	write_lock(&resource_lock);
955 	if (root->start > start || root->end < end) {
956 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
957 		       (unsigned long long)start, (unsigned long long)end,
958 		       root);
959 		if (start > root->end || end < root->start)
960 			abort = 1;
961 		else {
962 			if (end > root->end)
963 				end = root->end;
964 			if (start < root->start)
965 				start = root->start;
966 			pr_err("fixing request to [0x%llx-0x%llx]\n",
967 			       (unsigned long long)start,
968 			       (unsigned long long)end);
969 		}
970 		dump_stack();
971 	}
972 	if (!abort)
973 		__reserve_region_with_split(root, start, end, name);
974 	write_unlock(&resource_lock);
975 }
976 
977 /**
978  * resource_alignment - calculate resource's alignment
979  * @res: resource pointer
980  *
981  * Returns alignment on success, 0 (invalid alignment) on failure.
982  */
983 resource_size_t resource_alignment(struct resource *res)
984 {
985 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
986 	case IORESOURCE_SIZEALIGN:
987 		return resource_size(res);
988 	case IORESOURCE_STARTALIGN:
989 		return res->start;
990 	default:
991 		return 0;
992 	}
993 }
994 
995 /*
996  * This is compatibility stuff for IO resources.
997  *
998  * Note how this, unlike the above, knows about
999  * the IO flag meanings (busy etc).
1000  *
1001  * request_region creates a new busy region.
1002  *
1003  * check_region returns non-zero if the area is already busy.
1004  *
1005  * release_region releases a matching busy region.
1006  */
1007 
1008 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1009 
1010 /**
1011  * __request_region - create a new busy resource region
1012  * @parent: parent resource descriptor
1013  * @start: resource start address
1014  * @n: resource region size
1015  * @name: reserving caller's ID string
1016  * @flags: IO resource flags
1017  */
1018 struct resource * __request_region(struct resource *parent,
1019 				   resource_size_t start, resource_size_t n,
1020 				   const char *name, int flags)
1021 {
1022 	DECLARE_WAITQUEUE(wait, current);
1023 	struct resource *res = alloc_resource(GFP_KERNEL);
1024 
1025 	if (!res)
1026 		return NULL;
1027 
1028 	res->name = name;
1029 	res->start = start;
1030 	res->end = start + n - 1;
1031 	res->flags = resource_type(parent);
1032 	res->flags |= IORESOURCE_BUSY | flags;
1033 
1034 	write_lock(&resource_lock);
1035 
1036 	for (;;) {
1037 		struct resource *conflict;
1038 
1039 		conflict = __request_resource(parent, res);
1040 		if (!conflict)
1041 			break;
1042 		if (conflict != parent) {
1043 			parent = conflict;
1044 			if (!(conflict->flags & IORESOURCE_BUSY))
1045 				continue;
1046 		}
1047 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1048 			add_wait_queue(&muxed_resource_wait, &wait);
1049 			write_unlock(&resource_lock);
1050 			set_current_state(TASK_UNINTERRUPTIBLE);
1051 			schedule();
1052 			remove_wait_queue(&muxed_resource_wait, &wait);
1053 			write_lock(&resource_lock);
1054 			continue;
1055 		}
1056 		/* Uhhuh, that didn't work out.. */
1057 		free_resource(res);
1058 		res = NULL;
1059 		break;
1060 	}
1061 	write_unlock(&resource_lock);
1062 	return res;
1063 }
1064 EXPORT_SYMBOL(__request_region);
1065 
1066 /**
1067  * __check_region - check if a resource region is busy or free
1068  * @parent: parent resource descriptor
1069  * @start: resource start address
1070  * @n: resource region size
1071  *
1072  * Returns 0 if the region is free at the moment it is checked,
1073  * returns %-EBUSY if the region is busy.
1074  *
1075  * NOTE:
1076  * This function is deprecated because its use is racy.
1077  * Even if it returns 0, a subsequent call to request_region()
1078  * may fail because another driver etc. just allocated the region.
1079  * Do NOT use it.  It will be removed from the kernel.
1080  */
1081 int __check_region(struct resource *parent, resource_size_t start,
1082 			resource_size_t n)
1083 {
1084 	struct resource * res;
1085 
1086 	res = __request_region(parent, start, n, "check-region", 0);
1087 	if (!res)
1088 		return -EBUSY;
1089 
1090 	release_resource(res);
1091 	free_resource(res);
1092 	return 0;
1093 }
1094 EXPORT_SYMBOL(__check_region);
1095 
1096 /**
1097  * __release_region - release a previously reserved resource region
1098  * @parent: parent resource descriptor
1099  * @start: resource start address
1100  * @n: resource region size
1101  *
1102  * The described resource region must match a currently busy region.
1103  */
1104 void __release_region(struct resource *parent, resource_size_t start,
1105 			resource_size_t n)
1106 {
1107 	struct resource **p;
1108 	resource_size_t end;
1109 
1110 	p = &parent->child;
1111 	end = start + n - 1;
1112 
1113 	write_lock(&resource_lock);
1114 
1115 	for (;;) {
1116 		struct resource *res = *p;
1117 
1118 		if (!res)
1119 			break;
1120 		if (res->start <= start && res->end >= end) {
1121 			if (!(res->flags & IORESOURCE_BUSY)) {
1122 				p = &res->child;
1123 				continue;
1124 			}
1125 			if (res->start != start || res->end != end)
1126 				break;
1127 			*p = res->sibling;
1128 			write_unlock(&resource_lock);
1129 			if (res->flags & IORESOURCE_MUXED)
1130 				wake_up(&muxed_resource_wait);
1131 			free_resource(res);
1132 			return;
1133 		}
1134 		p = &res->sibling;
1135 	}
1136 
1137 	write_unlock(&resource_lock);
1138 
1139 	printk(KERN_WARNING "Trying to free nonexistent resource "
1140 		"<%016llx-%016llx>\n", (unsigned long long)start,
1141 		(unsigned long long)end);
1142 }
1143 EXPORT_SYMBOL(__release_region);
1144 
1145 #ifdef CONFIG_MEMORY_HOTREMOVE
1146 /**
1147  * release_mem_region_adjustable - release a previously reserved memory region
1148  * @parent: parent resource descriptor
1149  * @start: resource start address
1150  * @size: resource region size
1151  *
1152  * This interface is intended for memory hot-delete.  The requested region
1153  * is released from a currently busy memory resource.  The requested region
1154  * must either match exactly or fit into a single busy resource entry.  In
1155  * the latter case, the remaining resource is adjusted accordingly.
1156  * Existing children of the busy memory resource must be immutable in the
1157  * request.
1158  *
1159  * Note:
1160  * - Additional release conditions, such as overlapping region, can be
1161  *   supported after they are confirmed as valid cases.
1162  * - When a busy memory resource gets split into two entries, the code
1163  *   assumes that all children remain in the lower address entry for
1164  *   simplicity.  Enhance this logic when necessary.
1165  */
1166 int release_mem_region_adjustable(struct resource *parent,
1167 			resource_size_t start, resource_size_t size)
1168 {
1169 	struct resource **p;
1170 	struct resource *res;
1171 	struct resource *new_res;
1172 	resource_size_t end;
1173 	int ret = -EINVAL;
1174 
1175 	end = start + size - 1;
1176 	if ((start < parent->start) || (end > parent->end))
1177 		return ret;
1178 
1179 	/* The alloc_resource() result gets checked later */
1180 	new_res = alloc_resource(GFP_KERNEL);
1181 
1182 	p = &parent->child;
1183 	write_lock(&resource_lock);
1184 
1185 	while ((res = *p)) {
1186 		if (res->start >= end)
1187 			break;
1188 
1189 		/* look for the next resource if it does not fit into */
1190 		if (res->start > start || res->end < end) {
1191 			p = &res->sibling;
1192 			continue;
1193 		}
1194 
1195 		if (!(res->flags & IORESOURCE_MEM))
1196 			break;
1197 
1198 		if (!(res->flags & IORESOURCE_BUSY)) {
1199 			p = &res->child;
1200 			continue;
1201 		}
1202 
1203 		/* found the target resource; let's adjust accordingly */
1204 		if (res->start == start && res->end == end) {
1205 			/* free the whole entry */
1206 			*p = res->sibling;
1207 			free_resource(res);
1208 			ret = 0;
1209 		} else if (res->start == start && res->end != end) {
1210 			/* adjust the start */
1211 			ret = __adjust_resource(res, end + 1,
1212 						res->end - end);
1213 		} else if (res->start != start && res->end == end) {
1214 			/* adjust the end */
1215 			ret = __adjust_resource(res, res->start,
1216 						start - res->start);
1217 		} else {
1218 			/* split into two entries */
1219 			if (!new_res) {
1220 				ret = -ENOMEM;
1221 				break;
1222 			}
1223 			new_res->name = res->name;
1224 			new_res->start = end + 1;
1225 			new_res->end = res->end;
1226 			new_res->flags = res->flags;
1227 			new_res->parent = res->parent;
1228 			new_res->sibling = res->sibling;
1229 			new_res->child = NULL;
1230 
1231 			ret = __adjust_resource(res, res->start,
1232 						start - res->start);
1233 			if (ret)
1234 				break;
1235 			res->sibling = new_res;
1236 			new_res = NULL;
1237 		}
1238 
1239 		break;
1240 	}
1241 
1242 	write_unlock(&resource_lock);
1243 	free_resource(new_res);
1244 	return ret;
1245 }
1246 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1247 
1248 /*
1249  * Managed region resource
1250  */
1251 struct region_devres {
1252 	struct resource *parent;
1253 	resource_size_t start;
1254 	resource_size_t n;
1255 };
1256 
1257 static void devm_region_release(struct device *dev, void *res)
1258 {
1259 	struct region_devres *this = res;
1260 
1261 	__release_region(this->parent, this->start, this->n);
1262 }
1263 
1264 static int devm_region_match(struct device *dev, void *res, void *match_data)
1265 {
1266 	struct region_devres *this = res, *match = match_data;
1267 
1268 	return this->parent == match->parent &&
1269 		this->start == match->start && this->n == match->n;
1270 }
1271 
1272 struct resource * __devm_request_region(struct device *dev,
1273 				struct resource *parent, resource_size_t start,
1274 				resource_size_t n, const char *name)
1275 {
1276 	struct region_devres *dr = NULL;
1277 	struct resource *res;
1278 
1279 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1280 			  GFP_KERNEL);
1281 	if (!dr)
1282 		return NULL;
1283 
1284 	dr->parent = parent;
1285 	dr->start = start;
1286 	dr->n = n;
1287 
1288 	res = __request_region(parent, start, n, name, 0);
1289 	if (res)
1290 		devres_add(dev, dr);
1291 	else
1292 		devres_free(dr);
1293 
1294 	return res;
1295 }
1296 EXPORT_SYMBOL(__devm_request_region);
1297 
1298 void __devm_release_region(struct device *dev, struct resource *parent,
1299 			   resource_size_t start, resource_size_t n)
1300 {
1301 	struct region_devres match_data = { parent, start, n };
1302 
1303 	__release_region(parent, start, n);
1304 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1305 			       &match_data));
1306 }
1307 EXPORT_SYMBOL(__devm_release_region);
1308 
1309 /*
1310  * Called from init/main.c to reserve IO ports.
1311  */
1312 #define MAXRESERVE 4
1313 static int __init reserve_setup(char *str)
1314 {
1315 	static int reserved;
1316 	static struct resource reserve[MAXRESERVE];
1317 
1318 	for (;;) {
1319 		unsigned int io_start, io_num;
1320 		int x = reserved;
1321 
1322 		if (get_option (&str, &io_start) != 2)
1323 			break;
1324 		if (get_option (&str, &io_num)   == 0)
1325 			break;
1326 		if (x < MAXRESERVE) {
1327 			struct resource *res = reserve + x;
1328 			res->name = "reserved";
1329 			res->start = io_start;
1330 			res->end = io_start + io_num - 1;
1331 			res->flags = IORESOURCE_BUSY;
1332 			res->child = NULL;
1333 			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1334 				reserved = x+1;
1335 		}
1336 	}
1337 	return 1;
1338 }
1339 
1340 __setup("reserve=", reserve_setup);
1341 
1342 /*
1343  * Check if the requested addr and size spans more than any slot in the
1344  * iomem resource tree.
1345  */
1346 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1347 {
1348 	struct resource *p = &iomem_resource;
1349 	int err = 0;
1350 	loff_t l;
1351 
1352 	read_lock(&resource_lock);
1353 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1354 		/*
1355 		 * We can probably skip the resources without
1356 		 * IORESOURCE_IO attribute?
1357 		 */
1358 		if (p->start >= addr + size)
1359 			continue;
1360 		if (p->end < addr)
1361 			continue;
1362 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1363 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1364 			continue;
1365 		/*
1366 		 * if a resource is "BUSY", it's not a hardware resource
1367 		 * but a driver mapping of such a resource; we don't want
1368 		 * to warn for those; some drivers legitimately map only
1369 		 * partial hardware resources. (example: vesafb)
1370 		 */
1371 		if (p->flags & IORESOURCE_BUSY)
1372 			continue;
1373 
1374 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1375 		       (unsigned long long)addr,
1376 		       (unsigned long long)(addr + size - 1),
1377 		       p->name, p);
1378 		err = -1;
1379 		break;
1380 	}
1381 	read_unlock(&resource_lock);
1382 
1383 	return err;
1384 }
1385 
1386 #ifdef CONFIG_STRICT_DEVMEM
1387 static int strict_iomem_checks = 1;
1388 #else
1389 static int strict_iomem_checks;
1390 #endif
1391 
1392 /*
1393  * check if an address is reserved in the iomem resource tree
1394  * returns 1 if reserved, 0 if not reserved.
1395  */
1396 int iomem_is_exclusive(u64 addr)
1397 {
1398 	struct resource *p = &iomem_resource;
1399 	int err = 0;
1400 	loff_t l;
1401 	int size = PAGE_SIZE;
1402 
1403 	if (!strict_iomem_checks)
1404 		return 0;
1405 
1406 	addr = addr & PAGE_MASK;
1407 
1408 	read_lock(&resource_lock);
1409 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1410 		/*
1411 		 * We can probably skip the resources without
1412 		 * IORESOURCE_IO attribute?
1413 		 */
1414 		if (p->start >= addr + size)
1415 			break;
1416 		if (p->end < addr)
1417 			continue;
1418 		if (p->flags & IORESOURCE_BUSY &&
1419 		     p->flags & IORESOURCE_EXCLUSIVE) {
1420 			err = 1;
1421 			break;
1422 		}
1423 	}
1424 	read_unlock(&resource_lock);
1425 
1426 	return err;
1427 }
1428 
1429 static int __init strict_iomem(char *str)
1430 {
1431 	if (strstr(str, "relaxed"))
1432 		strict_iomem_checks = 0;
1433 	if (strstr(str, "strict"))
1434 		strict_iomem_checks = 1;
1435 	return 1;
1436 }
1437 
1438 __setup("iomem=", strict_iomem);
1439