1 /* 2 * linux/kernel/resource.c 3 * 4 * Copyright (C) 1999 Linus Torvalds 5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 6 * 7 * Arbitrary resource management. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/export.h> 13 #include <linux/errno.h> 14 #include <linux/ioport.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/device.h> 23 #include <linux/pfn.h> 24 #include <linux/mm.h> 25 #include <asm/io.h> 26 27 28 struct resource ioport_resource = { 29 .name = "PCI IO", 30 .start = 0, 31 .end = IO_SPACE_LIMIT, 32 .flags = IORESOURCE_IO, 33 }; 34 EXPORT_SYMBOL(ioport_resource); 35 36 struct resource iomem_resource = { 37 .name = "PCI mem", 38 .start = 0, 39 .end = -1, 40 .flags = IORESOURCE_MEM, 41 }; 42 EXPORT_SYMBOL(iomem_resource); 43 44 /* constraints to be met while allocating resources */ 45 struct resource_constraint { 46 resource_size_t min, max, align; 47 resource_size_t (*alignf)(void *, const struct resource *, 48 resource_size_t, resource_size_t); 49 void *alignf_data; 50 }; 51 52 static DEFINE_RWLOCK(resource_lock); 53 54 /* 55 * For memory hotplug, there is no way to free resource entries allocated 56 * by boot mem after the system is up. So for reusing the resource entry 57 * we need to remember the resource. 58 */ 59 static struct resource *bootmem_resource_free; 60 static DEFINE_SPINLOCK(bootmem_resource_lock); 61 62 static struct resource *next_resource(struct resource *p, bool sibling_only) 63 { 64 /* Caller wants to traverse through siblings only */ 65 if (sibling_only) 66 return p->sibling; 67 68 if (p->child) 69 return p->child; 70 while (!p->sibling && p->parent) 71 p = p->parent; 72 return p->sibling; 73 } 74 75 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 76 { 77 struct resource *p = v; 78 (*pos)++; 79 return (void *)next_resource(p, false); 80 } 81 82 #ifdef CONFIG_PROC_FS 83 84 enum { MAX_IORES_LEVEL = 5 }; 85 86 static void *r_start(struct seq_file *m, loff_t *pos) 87 __acquires(resource_lock) 88 { 89 struct resource *p = m->private; 90 loff_t l = 0; 91 read_lock(&resource_lock); 92 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 93 ; 94 return p; 95 } 96 97 static void r_stop(struct seq_file *m, void *v) 98 __releases(resource_lock) 99 { 100 read_unlock(&resource_lock); 101 } 102 103 static int r_show(struct seq_file *m, void *v) 104 { 105 struct resource *root = m->private; 106 struct resource *r = v, *p; 107 int width = root->end < 0x10000 ? 4 : 8; 108 int depth; 109 110 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 111 if (p->parent == root) 112 break; 113 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 114 depth * 2, "", 115 width, (unsigned long long) r->start, 116 width, (unsigned long long) r->end, 117 r->name ? r->name : "<BAD>"); 118 return 0; 119 } 120 121 static const struct seq_operations resource_op = { 122 .start = r_start, 123 .next = r_next, 124 .stop = r_stop, 125 .show = r_show, 126 }; 127 128 static int ioports_open(struct inode *inode, struct file *file) 129 { 130 int res = seq_open(file, &resource_op); 131 if (!res) { 132 struct seq_file *m = file->private_data; 133 m->private = &ioport_resource; 134 } 135 return res; 136 } 137 138 static int iomem_open(struct inode *inode, struct file *file) 139 { 140 int res = seq_open(file, &resource_op); 141 if (!res) { 142 struct seq_file *m = file->private_data; 143 m->private = &iomem_resource; 144 } 145 return res; 146 } 147 148 static const struct file_operations proc_ioports_operations = { 149 .open = ioports_open, 150 .read = seq_read, 151 .llseek = seq_lseek, 152 .release = seq_release, 153 }; 154 155 static const struct file_operations proc_iomem_operations = { 156 .open = iomem_open, 157 .read = seq_read, 158 .llseek = seq_lseek, 159 .release = seq_release, 160 }; 161 162 static int __init ioresources_init(void) 163 { 164 proc_create("ioports", 0, NULL, &proc_ioports_operations); 165 proc_create("iomem", 0, NULL, &proc_iomem_operations); 166 return 0; 167 } 168 __initcall(ioresources_init); 169 170 #endif /* CONFIG_PROC_FS */ 171 172 static void free_resource(struct resource *res) 173 { 174 if (!res) 175 return; 176 177 if (!PageSlab(virt_to_head_page(res))) { 178 spin_lock(&bootmem_resource_lock); 179 res->sibling = bootmem_resource_free; 180 bootmem_resource_free = res; 181 spin_unlock(&bootmem_resource_lock); 182 } else { 183 kfree(res); 184 } 185 } 186 187 static struct resource *alloc_resource(gfp_t flags) 188 { 189 struct resource *res = NULL; 190 191 spin_lock(&bootmem_resource_lock); 192 if (bootmem_resource_free) { 193 res = bootmem_resource_free; 194 bootmem_resource_free = res->sibling; 195 } 196 spin_unlock(&bootmem_resource_lock); 197 198 if (res) 199 memset(res, 0, sizeof(struct resource)); 200 else 201 res = kzalloc(sizeof(struct resource), flags); 202 203 return res; 204 } 205 206 /* Return the conflict entry if you can't request it */ 207 static struct resource * __request_resource(struct resource *root, struct resource *new) 208 { 209 resource_size_t start = new->start; 210 resource_size_t end = new->end; 211 struct resource *tmp, **p; 212 213 if (end < start) 214 return root; 215 if (start < root->start) 216 return root; 217 if (end > root->end) 218 return root; 219 p = &root->child; 220 for (;;) { 221 tmp = *p; 222 if (!tmp || tmp->start > end) { 223 new->sibling = tmp; 224 *p = new; 225 new->parent = root; 226 return NULL; 227 } 228 p = &tmp->sibling; 229 if (tmp->end < start) 230 continue; 231 return tmp; 232 } 233 } 234 235 static int __release_resource(struct resource *old) 236 { 237 struct resource *tmp, **p; 238 239 p = &old->parent->child; 240 for (;;) { 241 tmp = *p; 242 if (!tmp) 243 break; 244 if (tmp == old) { 245 *p = tmp->sibling; 246 old->parent = NULL; 247 return 0; 248 } 249 p = &tmp->sibling; 250 } 251 return -EINVAL; 252 } 253 254 static void __release_child_resources(struct resource *r) 255 { 256 struct resource *tmp, *p; 257 resource_size_t size; 258 259 p = r->child; 260 r->child = NULL; 261 while (p) { 262 tmp = p; 263 p = p->sibling; 264 265 tmp->parent = NULL; 266 tmp->sibling = NULL; 267 __release_child_resources(tmp); 268 269 printk(KERN_DEBUG "release child resource %pR\n", tmp); 270 /* need to restore size, and keep flags */ 271 size = resource_size(tmp); 272 tmp->start = 0; 273 tmp->end = size - 1; 274 } 275 } 276 277 void release_child_resources(struct resource *r) 278 { 279 write_lock(&resource_lock); 280 __release_child_resources(r); 281 write_unlock(&resource_lock); 282 } 283 284 /** 285 * request_resource_conflict - request and reserve an I/O or memory resource 286 * @root: root resource descriptor 287 * @new: resource descriptor desired by caller 288 * 289 * Returns 0 for success, conflict resource on error. 290 */ 291 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 292 { 293 struct resource *conflict; 294 295 write_lock(&resource_lock); 296 conflict = __request_resource(root, new); 297 write_unlock(&resource_lock); 298 return conflict; 299 } 300 301 /** 302 * request_resource - request and reserve an I/O or memory resource 303 * @root: root resource descriptor 304 * @new: resource descriptor desired by caller 305 * 306 * Returns 0 for success, negative error code on error. 307 */ 308 int request_resource(struct resource *root, struct resource *new) 309 { 310 struct resource *conflict; 311 312 conflict = request_resource_conflict(root, new); 313 return conflict ? -EBUSY : 0; 314 } 315 316 EXPORT_SYMBOL(request_resource); 317 318 /** 319 * release_resource - release a previously reserved resource 320 * @old: resource pointer 321 */ 322 int release_resource(struct resource *old) 323 { 324 int retval; 325 326 write_lock(&resource_lock); 327 retval = __release_resource(old); 328 write_unlock(&resource_lock); 329 return retval; 330 } 331 332 EXPORT_SYMBOL(release_resource); 333 334 /* 335 * Finds the lowest iomem reosurce exists with-in [res->start.res->end) 336 * the caller must specify res->start, res->end, res->flags and "name". 337 * If found, returns 0, res is overwritten, if not found, returns -1. 338 * This walks through whole tree and not just first level children 339 * until and unless first_level_children_only is true. 340 */ 341 static int find_next_iomem_res(struct resource *res, char *name, 342 bool first_level_children_only) 343 { 344 resource_size_t start, end; 345 struct resource *p; 346 bool sibling_only = false; 347 348 BUG_ON(!res); 349 350 start = res->start; 351 end = res->end; 352 BUG_ON(start >= end); 353 354 read_lock(&resource_lock); 355 356 if (first_level_children_only) { 357 p = iomem_resource.child; 358 sibling_only = true; 359 } else 360 p = &iomem_resource; 361 362 while ((p = next_resource(p, sibling_only))) { 363 if (p->flags != res->flags) 364 continue; 365 if (name && strcmp(p->name, name)) 366 continue; 367 if (p->start > end) { 368 p = NULL; 369 break; 370 } 371 if ((p->end >= start) && (p->start < end)) 372 break; 373 } 374 375 read_unlock(&resource_lock); 376 if (!p) 377 return -1; 378 /* copy data */ 379 if (res->start < p->start) 380 res->start = p->start; 381 if (res->end > p->end) 382 res->end = p->end; 383 return 0; 384 } 385 386 /* 387 * Walks through iomem resources and calls func() with matching resource 388 * ranges. This walks through whole tree and not just first level children. 389 * All the memory ranges which overlap start,end and also match flags and 390 * name are valid candidates. 391 * 392 * @name: name of resource 393 * @flags: resource flags 394 * @start: start addr 395 * @end: end addr 396 */ 397 int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end, 398 void *arg, int (*func)(u64, u64, void *)) 399 { 400 struct resource res; 401 u64 orig_end; 402 int ret = -1; 403 404 res.start = start; 405 res.end = end; 406 res.flags = flags; 407 orig_end = res.end; 408 while ((res.start < res.end) && 409 (!find_next_iomem_res(&res, name, false))) { 410 ret = (*func)(res.start, res.end, arg); 411 if (ret) 412 break; 413 res.start = res.end + 1; 414 res.end = orig_end; 415 } 416 return ret; 417 } 418 419 /* 420 * This function calls callback against all memory range of "System RAM" 421 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. 422 * Now, this function is only for "System RAM". This function deals with 423 * full ranges and not pfn. If resources are not pfn aligned, dealing 424 * with pfn can truncate ranges. 425 */ 426 int walk_system_ram_res(u64 start, u64 end, void *arg, 427 int (*func)(u64, u64, void *)) 428 { 429 struct resource res; 430 u64 orig_end; 431 int ret = -1; 432 433 res.start = start; 434 res.end = end; 435 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; 436 orig_end = res.end; 437 while ((res.start < res.end) && 438 (!find_next_iomem_res(&res, "System RAM", true))) { 439 ret = (*func)(res.start, res.end, arg); 440 if (ret) 441 break; 442 res.start = res.end + 1; 443 res.end = orig_end; 444 } 445 return ret; 446 } 447 448 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) 449 450 /* 451 * This function calls callback against all memory range of "System RAM" 452 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. 453 * Now, this function is only for "System RAM". 454 */ 455 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 456 void *arg, int (*func)(unsigned long, unsigned long, void *)) 457 { 458 struct resource res; 459 unsigned long pfn, end_pfn; 460 u64 orig_end; 461 int ret = -1; 462 463 res.start = (u64) start_pfn << PAGE_SHIFT; 464 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 465 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; 466 orig_end = res.end; 467 while ((res.start < res.end) && 468 (find_next_iomem_res(&res, "System RAM", true) >= 0)) { 469 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; 470 end_pfn = (res.end + 1) >> PAGE_SHIFT; 471 if (end_pfn > pfn) 472 ret = (*func)(pfn, end_pfn - pfn, arg); 473 if (ret) 474 break; 475 res.start = res.end + 1; 476 res.end = orig_end; 477 } 478 return ret; 479 } 480 481 #endif 482 483 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 484 { 485 return 1; 486 } 487 /* 488 * This generic page_is_ram() returns true if specified address is 489 * registered as "System RAM" in iomem_resource list. 490 */ 491 int __weak page_is_ram(unsigned long pfn) 492 { 493 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 494 } 495 EXPORT_SYMBOL_GPL(page_is_ram); 496 497 void __weak arch_remove_reservations(struct resource *avail) 498 { 499 } 500 501 static resource_size_t simple_align_resource(void *data, 502 const struct resource *avail, 503 resource_size_t size, 504 resource_size_t align) 505 { 506 return avail->start; 507 } 508 509 static void resource_clip(struct resource *res, resource_size_t min, 510 resource_size_t max) 511 { 512 if (res->start < min) 513 res->start = min; 514 if (res->end > max) 515 res->end = max; 516 } 517 518 /* 519 * Find empty slot in the resource tree with the given range and 520 * alignment constraints 521 */ 522 static int __find_resource(struct resource *root, struct resource *old, 523 struct resource *new, 524 resource_size_t size, 525 struct resource_constraint *constraint) 526 { 527 struct resource *this = root->child; 528 struct resource tmp = *new, avail, alloc; 529 530 tmp.start = root->start; 531 /* 532 * Skip past an allocated resource that starts at 0, since the assignment 533 * of this->start - 1 to tmp->end below would cause an underflow. 534 */ 535 if (this && this->start == root->start) { 536 tmp.start = (this == old) ? old->start : this->end + 1; 537 this = this->sibling; 538 } 539 for(;;) { 540 if (this) 541 tmp.end = (this == old) ? this->end : this->start - 1; 542 else 543 tmp.end = root->end; 544 545 if (tmp.end < tmp.start) 546 goto next; 547 548 resource_clip(&tmp, constraint->min, constraint->max); 549 arch_remove_reservations(&tmp); 550 551 /* Check for overflow after ALIGN() */ 552 avail.start = ALIGN(tmp.start, constraint->align); 553 avail.end = tmp.end; 554 avail.flags = new->flags & ~IORESOURCE_UNSET; 555 if (avail.start >= tmp.start) { 556 alloc.flags = avail.flags; 557 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 558 size, constraint->align); 559 alloc.end = alloc.start + size - 1; 560 if (resource_contains(&avail, &alloc)) { 561 new->start = alloc.start; 562 new->end = alloc.end; 563 return 0; 564 } 565 } 566 567 next: if (!this || this->end == root->end) 568 break; 569 570 if (this != old) 571 tmp.start = this->end + 1; 572 this = this->sibling; 573 } 574 return -EBUSY; 575 } 576 577 /* 578 * Find empty slot in the resource tree given range and alignment. 579 */ 580 static int find_resource(struct resource *root, struct resource *new, 581 resource_size_t size, 582 struct resource_constraint *constraint) 583 { 584 return __find_resource(root, NULL, new, size, constraint); 585 } 586 587 /** 588 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 589 * The resource will be relocated if the new size cannot be reallocated in the 590 * current location. 591 * 592 * @root: root resource descriptor 593 * @old: resource descriptor desired by caller 594 * @newsize: new size of the resource descriptor 595 * @constraint: the size and alignment constraints to be met. 596 */ 597 static int reallocate_resource(struct resource *root, struct resource *old, 598 resource_size_t newsize, 599 struct resource_constraint *constraint) 600 { 601 int err=0; 602 struct resource new = *old; 603 struct resource *conflict; 604 605 write_lock(&resource_lock); 606 607 if ((err = __find_resource(root, old, &new, newsize, constraint))) 608 goto out; 609 610 if (resource_contains(&new, old)) { 611 old->start = new.start; 612 old->end = new.end; 613 goto out; 614 } 615 616 if (old->child) { 617 err = -EBUSY; 618 goto out; 619 } 620 621 if (resource_contains(old, &new)) { 622 old->start = new.start; 623 old->end = new.end; 624 } else { 625 __release_resource(old); 626 *old = new; 627 conflict = __request_resource(root, old); 628 BUG_ON(conflict); 629 } 630 out: 631 write_unlock(&resource_lock); 632 return err; 633 } 634 635 636 /** 637 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 638 * The resource will be reallocated with a new size if it was already allocated 639 * @root: root resource descriptor 640 * @new: resource descriptor desired by caller 641 * @size: requested resource region size 642 * @min: minimum boundary to allocate 643 * @max: maximum boundary to allocate 644 * @align: alignment requested, in bytes 645 * @alignf: alignment function, optional, called if not NULL 646 * @alignf_data: arbitrary data to pass to the @alignf function 647 */ 648 int allocate_resource(struct resource *root, struct resource *new, 649 resource_size_t size, resource_size_t min, 650 resource_size_t max, resource_size_t align, 651 resource_size_t (*alignf)(void *, 652 const struct resource *, 653 resource_size_t, 654 resource_size_t), 655 void *alignf_data) 656 { 657 int err; 658 struct resource_constraint constraint; 659 660 if (!alignf) 661 alignf = simple_align_resource; 662 663 constraint.min = min; 664 constraint.max = max; 665 constraint.align = align; 666 constraint.alignf = alignf; 667 constraint.alignf_data = alignf_data; 668 669 if ( new->parent ) { 670 /* resource is already allocated, try reallocating with 671 the new constraints */ 672 return reallocate_resource(root, new, size, &constraint); 673 } 674 675 write_lock(&resource_lock); 676 err = find_resource(root, new, size, &constraint); 677 if (err >= 0 && __request_resource(root, new)) 678 err = -EBUSY; 679 write_unlock(&resource_lock); 680 return err; 681 } 682 683 EXPORT_SYMBOL(allocate_resource); 684 685 /** 686 * lookup_resource - find an existing resource by a resource start address 687 * @root: root resource descriptor 688 * @start: resource start address 689 * 690 * Returns a pointer to the resource if found, NULL otherwise 691 */ 692 struct resource *lookup_resource(struct resource *root, resource_size_t start) 693 { 694 struct resource *res; 695 696 read_lock(&resource_lock); 697 for (res = root->child; res; res = res->sibling) { 698 if (res->start == start) 699 break; 700 } 701 read_unlock(&resource_lock); 702 703 return res; 704 } 705 706 /* 707 * Insert a resource into the resource tree. If successful, return NULL, 708 * otherwise return the conflicting resource (compare to __request_resource()) 709 */ 710 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 711 { 712 struct resource *first, *next; 713 714 for (;; parent = first) { 715 first = __request_resource(parent, new); 716 if (!first) 717 return first; 718 719 if (first == parent) 720 return first; 721 if (WARN_ON(first == new)) /* duplicated insertion */ 722 return first; 723 724 if ((first->start > new->start) || (first->end < new->end)) 725 break; 726 if ((first->start == new->start) && (first->end == new->end)) 727 break; 728 } 729 730 for (next = first; ; next = next->sibling) { 731 /* Partial overlap? Bad, and unfixable */ 732 if (next->start < new->start || next->end > new->end) 733 return next; 734 if (!next->sibling) 735 break; 736 if (next->sibling->start > new->end) 737 break; 738 } 739 740 new->parent = parent; 741 new->sibling = next->sibling; 742 new->child = first; 743 744 next->sibling = NULL; 745 for (next = first; next; next = next->sibling) 746 next->parent = new; 747 748 if (parent->child == first) { 749 parent->child = new; 750 } else { 751 next = parent->child; 752 while (next->sibling != first) 753 next = next->sibling; 754 next->sibling = new; 755 } 756 return NULL; 757 } 758 759 /** 760 * insert_resource_conflict - Inserts resource in the resource tree 761 * @parent: parent of the new resource 762 * @new: new resource to insert 763 * 764 * Returns 0 on success, conflict resource if the resource can't be inserted. 765 * 766 * This function is equivalent to request_resource_conflict when no conflict 767 * happens. If a conflict happens, and the conflicting resources 768 * entirely fit within the range of the new resource, then the new 769 * resource is inserted and the conflicting resources become children of 770 * the new resource. 771 */ 772 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 773 { 774 struct resource *conflict; 775 776 write_lock(&resource_lock); 777 conflict = __insert_resource(parent, new); 778 write_unlock(&resource_lock); 779 return conflict; 780 } 781 782 /** 783 * insert_resource - Inserts a resource in the resource tree 784 * @parent: parent of the new resource 785 * @new: new resource to insert 786 * 787 * Returns 0 on success, -EBUSY if the resource can't be inserted. 788 */ 789 int insert_resource(struct resource *parent, struct resource *new) 790 { 791 struct resource *conflict; 792 793 conflict = insert_resource_conflict(parent, new); 794 return conflict ? -EBUSY : 0; 795 } 796 797 /** 798 * insert_resource_expand_to_fit - Insert a resource into the resource tree 799 * @root: root resource descriptor 800 * @new: new resource to insert 801 * 802 * Insert a resource into the resource tree, possibly expanding it in order 803 * to make it encompass any conflicting resources. 804 */ 805 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 806 { 807 if (new->parent) 808 return; 809 810 write_lock(&resource_lock); 811 for (;;) { 812 struct resource *conflict; 813 814 conflict = __insert_resource(root, new); 815 if (!conflict) 816 break; 817 if (conflict == root) 818 break; 819 820 /* Ok, expand resource to cover the conflict, then try again .. */ 821 if (conflict->start < new->start) 822 new->start = conflict->start; 823 if (conflict->end > new->end) 824 new->end = conflict->end; 825 826 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 827 } 828 write_unlock(&resource_lock); 829 } 830 831 static int __adjust_resource(struct resource *res, resource_size_t start, 832 resource_size_t size) 833 { 834 struct resource *tmp, *parent = res->parent; 835 resource_size_t end = start + size - 1; 836 int result = -EBUSY; 837 838 if (!parent) 839 goto skip; 840 841 if ((start < parent->start) || (end > parent->end)) 842 goto out; 843 844 if (res->sibling && (res->sibling->start <= end)) 845 goto out; 846 847 tmp = parent->child; 848 if (tmp != res) { 849 while (tmp->sibling != res) 850 tmp = tmp->sibling; 851 if (start <= tmp->end) 852 goto out; 853 } 854 855 skip: 856 for (tmp = res->child; tmp; tmp = tmp->sibling) 857 if ((tmp->start < start) || (tmp->end > end)) 858 goto out; 859 860 res->start = start; 861 res->end = end; 862 result = 0; 863 864 out: 865 return result; 866 } 867 868 /** 869 * adjust_resource - modify a resource's start and size 870 * @res: resource to modify 871 * @start: new start value 872 * @size: new size 873 * 874 * Given an existing resource, change its start and size to match the 875 * arguments. Returns 0 on success, -EBUSY if it can't fit. 876 * Existing children of the resource are assumed to be immutable. 877 */ 878 int adjust_resource(struct resource *res, resource_size_t start, 879 resource_size_t size) 880 { 881 int result; 882 883 write_lock(&resource_lock); 884 result = __adjust_resource(res, start, size); 885 write_unlock(&resource_lock); 886 return result; 887 } 888 EXPORT_SYMBOL(adjust_resource); 889 890 static void __init __reserve_region_with_split(struct resource *root, 891 resource_size_t start, resource_size_t end, 892 const char *name) 893 { 894 struct resource *parent = root; 895 struct resource *conflict; 896 struct resource *res = alloc_resource(GFP_ATOMIC); 897 struct resource *next_res = NULL; 898 899 if (!res) 900 return; 901 902 res->name = name; 903 res->start = start; 904 res->end = end; 905 res->flags = IORESOURCE_BUSY; 906 907 while (1) { 908 909 conflict = __request_resource(parent, res); 910 if (!conflict) { 911 if (!next_res) 912 break; 913 res = next_res; 914 next_res = NULL; 915 continue; 916 } 917 918 /* conflict covered whole area */ 919 if (conflict->start <= res->start && 920 conflict->end >= res->end) { 921 free_resource(res); 922 WARN_ON(next_res); 923 break; 924 } 925 926 /* failed, split and try again */ 927 if (conflict->start > res->start) { 928 end = res->end; 929 res->end = conflict->start - 1; 930 if (conflict->end < end) { 931 next_res = alloc_resource(GFP_ATOMIC); 932 if (!next_res) { 933 free_resource(res); 934 break; 935 } 936 next_res->name = name; 937 next_res->start = conflict->end + 1; 938 next_res->end = end; 939 next_res->flags = IORESOURCE_BUSY; 940 } 941 } else { 942 res->start = conflict->end + 1; 943 } 944 } 945 946 } 947 948 void __init reserve_region_with_split(struct resource *root, 949 resource_size_t start, resource_size_t end, 950 const char *name) 951 { 952 int abort = 0; 953 954 write_lock(&resource_lock); 955 if (root->start > start || root->end < end) { 956 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 957 (unsigned long long)start, (unsigned long long)end, 958 root); 959 if (start > root->end || end < root->start) 960 abort = 1; 961 else { 962 if (end > root->end) 963 end = root->end; 964 if (start < root->start) 965 start = root->start; 966 pr_err("fixing request to [0x%llx-0x%llx]\n", 967 (unsigned long long)start, 968 (unsigned long long)end); 969 } 970 dump_stack(); 971 } 972 if (!abort) 973 __reserve_region_with_split(root, start, end, name); 974 write_unlock(&resource_lock); 975 } 976 977 /** 978 * resource_alignment - calculate resource's alignment 979 * @res: resource pointer 980 * 981 * Returns alignment on success, 0 (invalid alignment) on failure. 982 */ 983 resource_size_t resource_alignment(struct resource *res) 984 { 985 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 986 case IORESOURCE_SIZEALIGN: 987 return resource_size(res); 988 case IORESOURCE_STARTALIGN: 989 return res->start; 990 default: 991 return 0; 992 } 993 } 994 995 /* 996 * This is compatibility stuff for IO resources. 997 * 998 * Note how this, unlike the above, knows about 999 * the IO flag meanings (busy etc). 1000 * 1001 * request_region creates a new busy region. 1002 * 1003 * check_region returns non-zero if the area is already busy. 1004 * 1005 * release_region releases a matching busy region. 1006 */ 1007 1008 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1009 1010 /** 1011 * __request_region - create a new busy resource region 1012 * @parent: parent resource descriptor 1013 * @start: resource start address 1014 * @n: resource region size 1015 * @name: reserving caller's ID string 1016 * @flags: IO resource flags 1017 */ 1018 struct resource * __request_region(struct resource *parent, 1019 resource_size_t start, resource_size_t n, 1020 const char *name, int flags) 1021 { 1022 DECLARE_WAITQUEUE(wait, current); 1023 struct resource *res = alloc_resource(GFP_KERNEL); 1024 1025 if (!res) 1026 return NULL; 1027 1028 res->name = name; 1029 res->start = start; 1030 res->end = start + n - 1; 1031 res->flags = resource_type(parent); 1032 res->flags |= IORESOURCE_BUSY | flags; 1033 1034 write_lock(&resource_lock); 1035 1036 for (;;) { 1037 struct resource *conflict; 1038 1039 conflict = __request_resource(parent, res); 1040 if (!conflict) 1041 break; 1042 if (conflict != parent) { 1043 parent = conflict; 1044 if (!(conflict->flags & IORESOURCE_BUSY)) 1045 continue; 1046 } 1047 if (conflict->flags & flags & IORESOURCE_MUXED) { 1048 add_wait_queue(&muxed_resource_wait, &wait); 1049 write_unlock(&resource_lock); 1050 set_current_state(TASK_UNINTERRUPTIBLE); 1051 schedule(); 1052 remove_wait_queue(&muxed_resource_wait, &wait); 1053 write_lock(&resource_lock); 1054 continue; 1055 } 1056 /* Uhhuh, that didn't work out.. */ 1057 free_resource(res); 1058 res = NULL; 1059 break; 1060 } 1061 write_unlock(&resource_lock); 1062 return res; 1063 } 1064 EXPORT_SYMBOL(__request_region); 1065 1066 /** 1067 * __check_region - check if a resource region is busy or free 1068 * @parent: parent resource descriptor 1069 * @start: resource start address 1070 * @n: resource region size 1071 * 1072 * Returns 0 if the region is free at the moment it is checked, 1073 * returns %-EBUSY if the region is busy. 1074 * 1075 * NOTE: 1076 * This function is deprecated because its use is racy. 1077 * Even if it returns 0, a subsequent call to request_region() 1078 * may fail because another driver etc. just allocated the region. 1079 * Do NOT use it. It will be removed from the kernel. 1080 */ 1081 int __check_region(struct resource *parent, resource_size_t start, 1082 resource_size_t n) 1083 { 1084 struct resource * res; 1085 1086 res = __request_region(parent, start, n, "check-region", 0); 1087 if (!res) 1088 return -EBUSY; 1089 1090 release_resource(res); 1091 free_resource(res); 1092 return 0; 1093 } 1094 EXPORT_SYMBOL(__check_region); 1095 1096 /** 1097 * __release_region - release a previously reserved resource region 1098 * @parent: parent resource descriptor 1099 * @start: resource start address 1100 * @n: resource region size 1101 * 1102 * The described resource region must match a currently busy region. 1103 */ 1104 void __release_region(struct resource *parent, resource_size_t start, 1105 resource_size_t n) 1106 { 1107 struct resource **p; 1108 resource_size_t end; 1109 1110 p = &parent->child; 1111 end = start + n - 1; 1112 1113 write_lock(&resource_lock); 1114 1115 for (;;) { 1116 struct resource *res = *p; 1117 1118 if (!res) 1119 break; 1120 if (res->start <= start && res->end >= end) { 1121 if (!(res->flags & IORESOURCE_BUSY)) { 1122 p = &res->child; 1123 continue; 1124 } 1125 if (res->start != start || res->end != end) 1126 break; 1127 *p = res->sibling; 1128 write_unlock(&resource_lock); 1129 if (res->flags & IORESOURCE_MUXED) 1130 wake_up(&muxed_resource_wait); 1131 free_resource(res); 1132 return; 1133 } 1134 p = &res->sibling; 1135 } 1136 1137 write_unlock(&resource_lock); 1138 1139 printk(KERN_WARNING "Trying to free nonexistent resource " 1140 "<%016llx-%016llx>\n", (unsigned long long)start, 1141 (unsigned long long)end); 1142 } 1143 EXPORT_SYMBOL(__release_region); 1144 1145 #ifdef CONFIG_MEMORY_HOTREMOVE 1146 /** 1147 * release_mem_region_adjustable - release a previously reserved memory region 1148 * @parent: parent resource descriptor 1149 * @start: resource start address 1150 * @size: resource region size 1151 * 1152 * This interface is intended for memory hot-delete. The requested region 1153 * is released from a currently busy memory resource. The requested region 1154 * must either match exactly or fit into a single busy resource entry. In 1155 * the latter case, the remaining resource is adjusted accordingly. 1156 * Existing children of the busy memory resource must be immutable in the 1157 * request. 1158 * 1159 * Note: 1160 * - Additional release conditions, such as overlapping region, can be 1161 * supported after they are confirmed as valid cases. 1162 * - When a busy memory resource gets split into two entries, the code 1163 * assumes that all children remain in the lower address entry for 1164 * simplicity. Enhance this logic when necessary. 1165 */ 1166 int release_mem_region_adjustable(struct resource *parent, 1167 resource_size_t start, resource_size_t size) 1168 { 1169 struct resource **p; 1170 struct resource *res; 1171 struct resource *new_res; 1172 resource_size_t end; 1173 int ret = -EINVAL; 1174 1175 end = start + size - 1; 1176 if ((start < parent->start) || (end > parent->end)) 1177 return ret; 1178 1179 /* The alloc_resource() result gets checked later */ 1180 new_res = alloc_resource(GFP_KERNEL); 1181 1182 p = &parent->child; 1183 write_lock(&resource_lock); 1184 1185 while ((res = *p)) { 1186 if (res->start >= end) 1187 break; 1188 1189 /* look for the next resource if it does not fit into */ 1190 if (res->start > start || res->end < end) { 1191 p = &res->sibling; 1192 continue; 1193 } 1194 1195 if (!(res->flags & IORESOURCE_MEM)) 1196 break; 1197 1198 if (!(res->flags & IORESOURCE_BUSY)) { 1199 p = &res->child; 1200 continue; 1201 } 1202 1203 /* found the target resource; let's adjust accordingly */ 1204 if (res->start == start && res->end == end) { 1205 /* free the whole entry */ 1206 *p = res->sibling; 1207 free_resource(res); 1208 ret = 0; 1209 } else if (res->start == start && res->end != end) { 1210 /* adjust the start */ 1211 ret = __adjust_resource(res, end + 1, 1212 res->end - end); 1213 } else if (res->start != start && res->end == end) { 1214 /* adjust the end */ 1215 ret = __adjust_resource(res, res->start, 1216 start - res->start); 1217 } else { 1218 /* split into two entries */ 1219 if (!new_res) { 1220 ret = -ENOMEM; 1221 break; 1222 } 1223 new_res->name = res->name; 1224 new_res->start = end + 1; 1225 new_res->end = res->end; 1226 new_res->flags = res->flags; 1227 new_res->parent = res->parent; 1228 new_res->sibling = res->sibling; 1229 new_res->child = NULL; 1230 1231 ret = __adjust_resource(res, res->start, 1232 start - res->start); 1233 if (ret) 1234 break; 1235 res->sibling = new_res; 1236 new_res = NULL; 1237 } 1238 1239 break; 1240 } 1241 1242 write_unlock(&resource_lock); 1243 free_resource(new_res); 1244 return ret; 1245 } 1246 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1247 1248 /* 1249 * Managed region resource 1250 */ 1251 struct region_devres { 1252 struct resource *parent; 1253 resource_size_t start; 1254 resource_size_t n; 1255 }; 1256 1257 static void devm_region_release(struct device *dev, void *res) 1258 { 1259 struct region_devres *this = res; 1260 1261 __release_region(this->parent, this->start, this->n); 1262 } 1263 1264 static int devm_region_match(struct device *dev, void *res, void *match_data) 1265 { 1266 struct region_devres *this = res, *match = match_data; 1267 1268 return this->parent == match->parent && 1269 this->start == match->start && this->n == match->n; 1270 } 1271 1272 struct resource * __devm_request_region(struct device *dev, 1273 struct resource *parent, resource_size_t start, 1274 resource_size_t n, const char *name) 1275 { 1276 struct region_devres *dr = NULL; 1277 struct resource *res; 1278 1279 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1280 GFP_KERNEL); 1281 if (!dr) 1282 return NULL; 1283 1284 dr->parent = parent; 1285 dr->start = start; 1286 dr->n = n; 1287 1288 res = __request_region(parent, start, n, name, 0); 1289 if (res) 1290 devres_add(dev, dr); 1291 else 1292 devres_free(dr); 1293 1294 return res; 1295 } 1296 EXPORT_SYMBOL(__devm_request_region); 1297 1298 void __devm_release_region(struct device *dev, struct resource *parent, 1299 resource_size_t start, resource_size_t n) 1300 { 1301 struct region_devres match_data = { parent, start, n }; 1302 1303 __release_region(parent, start, n); 1304 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1305 &match_data)); 1306 } 1307 EXPORT_SYMBOL(__devm_release_region); 1308 1309 /* 1310 * Called from init/main.c to reserve IO ports. 1311 */ 1312 #define MAXRESERVE 4 1313 static int __init reserve_setup(char *str) 1314 { 1315 static int reserved; 1316 static struct resource reserve[MAXRESERVE]; 1317 1318 for (;;) { 1319 unsigned int io_start, io_num; 1320 int x = reserved; 1321 1322 if (get_option (&str, &io_start) != 2) 1323 break; 1324 if (get_option (&str, &io_num) == 0) 1325 break; 1326 if (x < MAXRESERVE) { 1327 struct resource *res = reserve + x; 1328 res->name = "reserved"; 1329 res->start = io_start; 1330 res->end = io_start + io_num - 1; 1331 res->flags = IORESOURCE_BUSY; 1332 res->child = NULL; 1333 if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0) 1334 reserved = x+1; 1335 } 1336 } 1337 return 1; 1338 } 1339 1340 __setup("reserve=", reserve_setup); 1341 1342 /* 1343 * Check if the requested addr and size spans more than any slot in the 1344 * iomem resource tree. 1345 */ 1346 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1347 { 1348 struct resource *p = &iomem_resource; 1349 int err = 0; 1350 loff_t l; 1351 1352 read_lock(&resource_lock); 1353 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1354 /* 1355 * We can probably skip the resources without 1356 * IORESOURCE_IO attribute? 1357 */ 1358 if (p->start >= addr + size) 1359 continue; 1360 if (p->end < addr) 1361 continue; 1362 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1363 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1364 continue; 1365 /* 1366 * if a resource is "BUSY", it's not a hardware resource 1367 * but a driver mapping of such a resource; we don't want 1368 * to warn for those; some drivers legitimately map only 1369 * partial hardware resources. (example: vesafb) 1370 */ 1371 if (p->flags & IORESOURCE_BUSY) 1372 continue; 1373 1374 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1375 (unsigned long long)addr, 1376 (unsigned long long)(addr + size - 1), 1377 p->name, p); 1378 err = -1; 1379 break; 1380 } 1381 read_unlock(&resource_lock); 1382 1383 return err; 1384 } 1385 1386 #ifdef CONFIG_STRICT_DEVMEM 1387 static int strict_iomem_checks = 1; 1388 #else 1389 static int strict_iomem_checks; 1390 #endif 1391 1392 /* 1393 * check if an address is reserved in the iomem resource tree 1394 * returns 1 if reserved, 0 if not reserved. 1395 */ 1396 int iomem_is_exclusive(u64 addr) 1397 { 1398 struct resource *p = &iomem_resource; 1399 int err = 0; 1400 loff_t l; 1401 int size = PAGE_SIZE; 1402 1403 if (!strict_iomem_checks) 1404 return 0; 1405 1406 addr = addr & PAGE_MASK; 1407 1408 read_lock(&resource_lock); 1409 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1410 /* 1411 * We can probably skip the resources without 1412 * IORESOURCE_IO attribute? 1413 */ 1414 if (p->start >= addr + size) 1415 break; 1416 if (p->end < addr) 1417 continue; 1418 if (p->flags & IORESOURCE_BUSY && 1419 p->flags & IORESOURCE_EXCLUSIVE) { 1420 err = 1; 1421 break; 1422 } 1423 } 1424 read_unlock(&resource_lock); 1425 1426 return err; 1427 } 1428 1429 static int __init strict_iomem(char *str) 1430 { 1431 if (strstr(str, "relaxed")) 1432 strict_iomem_checks = 0; 1433 if (strstr(str, "strict")) 1434 strict_iomem_checks = 1; 1435 return 1; 1436 } 1437 1438 __setup("iomem=", strict_iomem); 1439