xref: /openbmc/linux/kernel/resource.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <linux/resource_ext.h>
26 #include <asm/io.h>
27 
28 
29 struct resource ioport_resource = {
30 	.name	= "PCI IO",
31 	.start	= 0,
32 	.end	= IO_SPACE_LIMIT,
33 	.flags	= IORESOURCE_IO,
34 };
35 EXPORT_SYMBOL(ioport_resource);
36 
37 struct resource iomem_resource = {
38 	.name	= "PCI mem",
39 	.start	= 0,
40 	.end	= -1,
41 	.flags	= IORESOURCE_MEM,
42 };
43 EXPORT_SYMBOL(iomem_resource);
44 
45 /* constraints to be met while allocating resources */
46 struct resource_constraint {
47 	resource_size_t min, max, align;
48 	resource_size_t (*alignf)(void *, const struct resource *,
49 			resource_size_t, resource_size_t);
50 	void *alignf_data;
51 };
52 
53 static DEFINE_RWLOCK(resource_lock);
54 
55 /*
56  * For memory hotplug, there is no way to free resource entries allocated
57  * by boot mem after the system is up. So for reusing the resource entry
58  * we need to remember the resource.
59  */
60 static struct resource *bootmem_resource_free;
61 static DEFINE_SPINLOCK(bootmem_resource_lock);
62 
63 static struct resource *next_resource(struct resource *p, bool sibling_only)
64 {
65 	/* Caller wants to traverse through siblings only */
66 	if (sibling_only)
67 		return p->sibling;
68 
69 	if (p->child)
70 		return p->child;
71 	while (!p->sibling && p->parent)
72 		p = p->parent;
73 	return p->sibling;
74 }
75 
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 	struct resource *p = v;
79 	(*pos)++;
80 	return (void *)next_resource(p, false);
81 }
82 
83 #ifdef CONFIG_PROC_FS
84 
85 enum { MAX_IORES_LEVEL = 5 };
86 
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 	__acquires(resource_lock)
89 {
90 	struct resource *p = m->private;
91 	loff_t l = 0;
92 	read_lock(&resource_lock);
93 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 		;
95 	return p;
96 }
97 
98 static void r_stop(struct seq_file *m, void *v)
99 	__releases(resource_lock)
100 {
101 	read_unlock(&resource_lock);
102 }
103 
104 static int r_show(struct seq_file *m, void *v)
105 {
106 	struct resource *root = m->private;
107 	struct resource *r = v, *p;
108 	int width = root->end < 0x10000 ? 4 : 8;
109 	int depth;
110 
111 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
112 		if (p->parent == root)
113 			break;
114 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
115 			depth * 2, "",
116 			width, (unsigned long long) r->start,
117 			width, (unsigned long long) r->end,
118 			r->name ? r->name : "<BAD>");
119 	return 0;
120 }
121 
122 static const struct seq_operations resource_op = {
123 	.start	= r_start,
124 	.next	= r_next,
125 	.stop	= r_stop,
126 	.show	= r_show,
127 };
128 
129 static int ioports_open(struct inode *inode, struct file *file)
130 {
131 	int res = seq_open(file, &resource_op);
132 	if (!res) {
133 		struct seq_file *m = file->private_data;
134 		m->private = &ioport_resource;
135 	}
136 	return res;
137 }
138 
139 static int iomem_open(struct inode *inode, struct file *file)
140 {
141 	int res = seq_open(file, &resource_op);
142 	if (!res) {
143 		struct seq_file *m = file->private_data;
144 		m->private = &iomem_resource;
145 	}
146 	return res;
147 }
148 
149 static const struct file_operations proc_ioports_operations = {
150 	.open		= ioports_open,
151 	.read		= seq_read,
152 	.llseek		= seq_lseek,
153 	.release	= seq_release,
154 };
155 
156 static const struct file_operations proc_iomem_operations = {
157 	.open		= iomem_open,
158 	.read		= seq_read,
159 	.llseek		= seq_lseek,
160 	.release	= seq_release,
161 };
162 
163 static int __init ioresources_init(void)
164 {
165 	proc_create("ioports", 0, NULL, &proc_ioports_operations);
166 	proc_create("iomem", 0, NULL, &proc_iomem_operations);
167 	return 0;
168 }
169 __initcall(ioresources_init);
170 
171 #endif /* CONFIG_PROC_FS */
172 
173 static void free_resource(struct resource *res)
174 {
175 	if (!res)
176 		return;
177 
178 	if (!PageSlab(virt_to_head_page(res))) {
179 		spin_lock(&bootmem_resource_lock);
180 		res->sibling = bootmem_resource_free;
181 		bootmem_resource_free = res;
182 		spin_unlock(&bootmem_resource_lock);
183 	} else {
184 		kfree(res);
185 	}
186 }
187 
188 static struct resource *alloc_resource(gfp_t flags)
189 {
190 	struct resource *res = NULL;
191 
192 	spin_lock(&bootmem_resource_lock);
193 	if (bootmem_resource_free) {
194 		res = bootmem_resource_free;
195 		bootmem_resource_free = res->sibling;
196 	}
197 	spin_unlock(&bootmem_resource_lock);
198 
199 	if (res)
200 		memset(res, 0, sizeof(struct resource));
201 	else
202 		res = kzalloc(sizeof(struct resource), flags);
203 
204 	return res;
205 }
206 
207 /* Return the conflict entry if you can't request it */
208 static struct resource * __request_resource(struct resource *root, struct resource *new)
209 {
210 	resource_size_t start = new->start;
211 	resource_size_t end = new->end;
212 	struct resource *tmp, **p;
213 
214 	if (end < start)
215 		return root;
216 	if (start < root->start)
217 		return root;
218 	if (end > root->end)
219 		return root;
220 	p = &root->child;
221 	for (;;) {
222 		tmp = *p;
223 		if (!tmp || tmp->start > end) {
224 			new->sibling = tmp;
225 			*p = new;
226 			new->parent = root;
227 			return NULL;
228 		}
229 		p = &tmp->sibling;
230 		if (tmp->end < start)
231 			continue;
232 		return tmp;
233 	}
234 }
235 
236 static int __release_resource(struct resource *old)
237 {
238 	struct resource *tmp, **p;
239 
240 	p = &old->parent->child;
241 	for (;;) {
242 		tmp = *p;
243 		if (!tmp)
244 			break;
245 		if (tmp == old) {
246 			*p = tmp->sibling;
247 			old->parent = NULL;
248 			return 0;
249 		}
250 		p = &tmp->sibling;
251 	}
252 	return -EINVAL;
253 }
254 
255 static void __release_child_resources(struct resource *r)
256 {
257 	struct resource *tmp, *p;
258 	resource_size_t size;
259 
260 	p = r->child;
261 	r->child = NULL;
262 	while (p) {
263 		tmp = p;
264 		p = p->sibling;
265 
266 		tmp->parent = NULL;
267 		tmp->sibling = NULL;
268 		__release_child_resources(tmp);
269 
270 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
271 		/* need to restore size, and keep flags */
272 		size = resource_size(tmp);
273 		tmp->start = 0;
274 		tmp->end = size - 1;
275 	}
276 }
277 
278 void release_child_resources(struct resource *r)
279 {
280 	write_lock(&resource_lock);
281 	__release_child_resources(r);
282 	write_unlock(&resource_lock);
283 }
284 
285 /**
286  * request_resource_conflict - request and reserve an I/O or memory resource
287  * @root: root resource descriptor
288  * @new: resource descriptor desired by caller
289  *
290  * Returns 0 for success, conflict resource on error.
291  */
292 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
293 {
294 	struct resource *conflict;
295 
296 	write_lock(&resource_lock);
297 	conflict = __request_resource(root, new);
298 	write_unlock(&resource_lock);
299 	return conflict;
300 }
301 
302 /**
303  * request_resource - request and reserve an I/O or memory resource
304  * @root: root resource descriptor
305  * @new: resource descriptor desired by caller
306  *
307  * Returns 0 for success, negative error code on error.
308  */
309 int request_resource(struct resource *root, struct resource *new)
310 {
311 	struct resource *conflict;
312 
313 	conflict = request_resource_conflict(root, new);
314 	return conflict ? -EBUSY : 0;
315 }
316 
317 EXPORT_SYMBOL(request_resource);
318 
319 /**
320  * release_resource - release a previously reserved resource
321  * @old: resource pointer
322  */
323 int release_resource(struct resource *old)
324 {
325 	int retval;
326 
327 	write_lock(&resource_lock);
328 	retval = __release_resource(old);
329 	write_unlock(&resource_lock);
330 	return retval;
331 }
332 
333 EXPORT_SYMBOL(release_resource);
334 
335 /*
336  * Finds the lowest iomem reosurce exists with-in [res->start.res->end)
337  * the caller must specify res->start, res->end, res->flags and "name".
338  * If found, returns 0, res is overwritten, if not found, returns -1.
339  * This walks through whole tree and not just first level children
340  * until and unless first_level_children_only is true.
341  */
342 static int find_next_iomem_res(struct resource *res, char *name,
343 			       bool first_level_children_only)
344 {
345 	resource_size_t start, end;
346 	struct resource *p;
347 	bool sibling_only = false;
348 
349 	BUG_ON(!res);
350 
351 	start = res->start;
352 	end = res->end;
353 	BUG_ON(start >= end);
354 
355 	if (first_level_children_only)
356 		sibling_only = true;
357 
358 	read_lock(&resource_lock);
359 
360 	for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
361 		if (p->flags != res->flags)
362 			continue;
363 		if (name && strcmp(p->name, name))
364 			continue;
365 		if (p->start > end) {
366 			p = NULL;
367 			break;
368 		}
369 		if ((p->end >= start) && (p->start < end))
370 			break;
371 	}
372 
373 	read_unlock(&resource_lock);
374 	if (!p)
375 		return -1;
376 	/* copy data */
377 	if (res->start < p->start)
378 		res->start = p->start;
379 	if (res->end > p->end)
380 		res->end = p->end;
381 	return 0;
382 }
383 
384 /*
385  * Walks through iomem resources and calls func() with matching resource
386  * ranges. This walks through whole tree and not just first level children.
387  * All the memory ranges which overlap start,end and also match flags and
388  * name are valid candidates.
389  *
390  * @name: name of resource
391  * @flags: resource flags
392  * @start: start addr
393  * @end: end addr
394  */
395 int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end,
396 		void *arg, int (*func)(u64, u64, void *))
397 {
398 	struct resource res;
399 	u64 orig_end;
400 	int ret = -1;
401 
402 	res.start = start;
403 	res.end = end;
404 	res.flags = flags;
405 	orig_end = res.end;
406 	while ((res.start < res.end) &&
407 		(!find_next_iomem_res(&res, name, false))) {
408 		ret = (*func)(res.start, res.end, arg);
409 		if (ret)
410 			break;
411 		res.start = res.end + 1;
412 		res.end = orig_end;
413 	}
414 	return ret;
415 }
416 
417 /*
418  * This function calls callback against all memory range of "System RAM"
419  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
420  * Now, this function is only for "System RAM". This function deals with
421  * full ranges and not pfn. If resources are not pfn aligned, dealing
422  * with pfn can truncate ranges.
423  */
424 int walk_system_ram_res(u64 start, u64 end, void *arg,
425 				int (*func)(u64, u64, void *))
426 {
427 	struct resource res;
428 	u64 orig_end;
429 	int ret = -1;
430 
431 	res.start = start;
432 	res.end = end;
433 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
434 	orig_end = res.end;
435 	while ((res.start < res.end) &&
436 		(!find_next_iomem_res(&res, "System RAM", true))) {
437 		ret = (*func)(res.start, res.end, arg);
438 		if (ret)
439 			break;
440 		res.start = res.end + 1;
441 		res.end = orig_end;
442 	}
443 	return ret;
444 }
445 
446 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
447 
448 /*
449  * This function calls callback against all memory range of "System RAM"
450  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
451  * Now, this function is only for "System RAM".
452  */
453 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
454 		void *arg, int (*func)(unsigned long, unsigned long, void *))
455 {
456 	struct resource res;
457 	unsigned long pfn, end_pfn;
458 	u64 orig_end;
459 	int ret = -1;
460 
461 	res.start = (u64) start_pfn << PAGE_SHIFT;
462 	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
463 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
464 	orig_end = res.end;
465 	while ((res.start < res.end) &&
466 		(find_next_iomem_res(&res, "System RAM", true) >= 0)) {
467 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
468 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
469 		if (end_pfn > pfn)
470 			ret = (*func)(pfn, end_pfn - pfn, arg);
471 		if (ret)
472 			break;
473 		res.start = res.end + 1;
474 		res.end = orig_end;
475 	}
476 	return ret;
477 }
478 
479 #endif
480 
481 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
482 {
483 	return 1;
484 }
485 /*
486  * This generic page_is_ram() returns true if specified address is
487  * registered as "System RAM" in iomem_resource list.
488  */
489 int __weak page_is_ram(unsigned long pfn)
490 {
491 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
492 }
493 EXPORT_SYMBOL_GPL(page_is_ram);
494 
495 /*
496  * Search for a resouce entry that fully contains the specified region.
497  * If found, return 1 if it is RAM, 0 if not.
498  * If not found, or region is not fully contained, return -1
499  *
500  * Used by the ioremap functions to ensure the user is not remapping RAM and is
501  * a vast speed up over walking through the resource table page by page.
502  */
503 int region_is_ram(resource_size_t start, unsigned long size)
504 {
505 	struct resource *p;
506 	resource_size_t end = start + size - 1;
507 	int flags = IORESOURCE_MEM | IORESOURCE_BUSY;
508 	const char *name = "System RAM";
509 	int ret = -1;
510 
511 	read_lock(&resource_lock);
512 	for (p = iomem_resource.child; p ; p = p->sibling) {
513 		if (end < p->start)
514 			continue;
515 
516 		if (p->start <= start && end <= p->end) {
517 			/* resource fully contains region */
518 			if ((p->flags != flags) || strcmp(p->name, name))
519 				ret = 0;
520 			else
521 				ret = 1;
522 			break;
523 		}
524 		if (p->end < start)
525 			break;	/* not found */
526 	}
527 	read_unlock(&resource_lock);
528 	return ret;
529 }
530 
531 void __weak arch_remove_reservations(struct resource *avail)
532 {
533 }
534 
535 static resource_size_t simple_align_resource(void *data,
536 					     const struct resource *avail,
537 					     resource_size_t size,
538 					     resource_size_t align)
539 {
540 	return avail->start;
541 }
542 
543 static void resource_clip(struct resource *res, resource_size_t min,
544 			  resource_size_t max)
545 {
546 	if (res->start < min)
547 		res->start = min;
548 	if (res->end > max)
549 		res->end = max;
550 }
551 
552 /*
553  * Find empty slot in the resource tree with the given range and
554  * alignment constraints
555  */
556 static int __find_resource(struct resource *root, struct resource *old,
557 			 struct resource *new,
558 			 resource_size_t  size,
559 			 struct resource_constraint *constraint)
560 {
561 	struct resource *this = root->child;
562 	struct resource tmp = *new, avail, alloc;
563 
564 	tmp.start = root->start;
565 	/*
566 	 * Skip past an allocated resource that starts at 0, since the assignment
567 	 * of this->start - 1 to tmp->end below would cause an underflow.
568 	 */
569 	if (this && this->start == root->start) {
570 		tmp.start = (this == old) ? old->start : this->end + 1;
571 		this = this->sibling;
572 	}
573 	for(;;) {
574 		if (this)
575 			tmp.end = (this == old) ?  this->end : this->start - 1;
576 		else
577 			tmp.end = root->end;
578 
579 		if (tmp.end < tmp.start)
580 			goto next;
581 
582 		resource_clip(&tmp, constraint->min, constraint->max);
583 		arch_remove_reservations(&tmp);
584 
585 		/* Check for overflow after ALIGN() */
586 		avail.start = ALIGN(tmp.start, constraint->align);
587 		avail.end = tmp.end;
588 		avail.flags = new->flags & ~IORESOURCE_UNSET;
589 		if (avail.start >= tmp.start) {
590 			alloc.flags = avail.flags;
591 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
592 					size, constraint->align);
593 			alloc.end = alloc.start + size - 1;
594 			if (resource_contains(&avail, &alloc)) {
595 				new->start = alloc.start;
596 				new->end = alloc.end;
597 				return 0;
598 			}
599 		}
600 
601 next:		if (!this || this->end == root->end)
602 			break;
603 
604 		if (this != old)
605 			tmp.start = this->end + 1;
606 		this = this->sibling;
607 	}
608 	return -EBUSY;
609 }
610 
611 /*
612  * Find empty slot in the resource tree given range and alignment.
613  */
614 static int find_resource(struct resource *root, struct resource *new,
615 			resource_size_t size,
616 			struct resource_constraint  *constraint)
617 {
618 	return  __find_resource(root, NULL, new, size, constraint);
619 }
620 
621 /**
622  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
623  *	The resource will be relocated if the new size cannot be reallocated in the
624  *	current location.
625  *
626  * @root: root resource descriptor
627  * @old:  resource descriptor desired by caller
628  * @newsize: new size of the resource descriptor
629  * @constraint: the size and alignment constraints to be met.
630  */
631 static int reallocate_resource(struct resource *root, struct resource *old,
632 			resource_size_t newsize,
633 			struct resource_constraint  *constraint)
634 {
635 	int err=0;
636 	struct resource new = *old;
637 	struct resource *conflict;
638 
639 	write_lock(&resource_lock);
640 
641 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
642 		goto out;
643 
644 	if (resource_contains(&new, old)) {
645 		old->start = new.start;
646 		old->end = new.end;
647 		goto out;
648 	}
649 
650 	if (old->child) {
651 		err = -EBUSY;
652 		goto out;
653 	}
654 
655 	if (resource_contains(old, &new)) {
656 		old->start = new.start;
657 		old->end = new.end;
658 	} else {
659 		__release_resource(old);
660 		*old = new;
661 		conflict = __request_resource(root, old);
662 		BUG_ON(conflict);
663 	}
664 out:
665 	write_unlock(&resource_lock);
666 	return err;
667 }
668 
669 
670 /**
671  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
672  * 	The resource will be reallocated with a new size if it was already allocated
673  * @root: root resource descriptor
674  * @new: resource descriptor desired by caller
675  * @size: requested resource region size
676  * @min: minimum boundary to allocate
677  * @max: maximum boundary to allocate
678  * @align: alignment requested, in bytes
679  * @alignf: alignment function, optional, called if not NULL
680  * @alignf_data: arbitrary data to pass to the @alignf function
681  */
682 int allocate_resource(struct resource *root, struct resource *new,
683 		      resource_size_t size, resource_size_t min,
684 		      resource_size_t max, resource_size_t align,
685 		      resource_size_t (*alignf)(void *,
686 						const struct resource *,
687 						resource_size_t,
688 						resource_size_t),
689 		      void *alignf_data)
690 {
691 	int err;
692 	struct resource_constraint constraint;
693 
694 	if (!alignf)
695 		alignf = simple_align_resource;
696 
697 	constraint.min = min;
698 	constraint.max = max;
699 	constraint.align = align;
700 	constraint.alignf = alignf;
701 	constraint.alignf_data = alignf_data;
702 
703 	if ( new->parent ) {
704 		/* resource is already allocated, try reallocating with
705 		   the new constraints */
706 		return reallocate_resource(root, new, size, &constraint);
707 	}
708 
709 	write_lock(&resource_lock);
710 	err = find_resource(root, new, size, &constraint);
711 	if (err >= 0 && __request_resource(root, new))
712 		err = -EBUSY;
713 	write_unlock(&resource_lock);
714 	return err;
715 }
716 
717 EXPORT_SYMBOL(allocate_resource);
718 
719 /**
720  * lookup_resource - find an existing resource by a resource start address
721  * @root: root resource descriptor
722  * @start: resource start address
723  *
724  * Returns a pointer to the resource if found, NULL otherwise
725  */
726 struct resource *lookup_resource(struct resource *root, resource_size_t start)
727 {
728 	struct resource *res;
729 
730 	read_lock(&resource_lock);
731 	for (res = root->child; res; res = res->sibling) {
732 		if (res->start == start)
733 			break;
734 	}
735 	read_unlock(&resource_lock);
736 
737 	return res;
738 }
739 
740 /*
741  * Insert a resource into the resource tree. If successful, return NULL,
742  * otherwise return the conflicting resource (compare to __request_resource())
743  */
744 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
745 {
746 	struct resource *first, *next;
747 
748 	for (;; parent = first) {
749 		first = __request_resource(parent, new);
750 		if (!first)
751 			return first;
752 
753 		if (first == parent)
754 			return first;
755 		if (WARN_ON(first == new))	/* duplicated insertion */
756 			return first;
757 
758 		if ((first->start > new->start) || (first->end < new->end))
759 			break;
760 		if ((first->start == new->start) && (first->end == new->end))
761 			break;
762 	}
763 
764 	for (next = first; ; next = next->sibling) {
765 		/* Partial overlap? Bad, and unfixable */
766 		if (next->start < new->start || next->end > new->end)
767 			return next;
768 		if (!next->sibling)
769 			break;
770 		if (next->sibling->start > new->end)
771 			break;
772 	}
773 
774 	new->parent = parent;
775 	new->sibling = next->sibling;
776 	new->child = first;
777 
778 	next->sibling = NULL;
779 	for (next = first; next; next = next->sibling)
780 		next->parent = new;
781 
782 	if (parent->child == first) {
783 		parent->child = new;
784 	} else {
785 		next = parent->child;
786 		while (next->sibling != first)
787 			next = next->sibling;
788 		next->sibling = new;
789 	}
790 	return NULL;
791 }
792 
793 /**
794  * insert_resource_conflict - Inserts resource in the resource tree
795  * @parent: parent of the new resource
796  * @new: new resource to insert
797  *
798  * Returns 0 on success, conflict resource if the resource can't be inserted.
799  *
800  * This function is equivalent to request_resource_conflict when no conflict
801  * happens. If a conflict happens, and the conflicting resources
802  * entirely fit within the range of the new resource, then the new
803  * resource is inserted and the conflicting resources become children of
804  * the new resource.
805  */
806 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
807 {
808 	struct resource *conflict;
809 
810 	write_lock(&resource_lock);
811 	conflict = __insert_resource(parent, new);
812 	write_unlock(&resource_lock);
813 	return conflict;
814 }
815 
816 /**
817  * insert_resource - Inserts a resource in the resource tree
818  * @parent: parent of the new resource
819  * @new: new resource to insert
820  *
821  * Returns 0 on success, -EBUSY if the resource can't be inserted.
822  */
823 int insert_resource(struct resource *parent, struct resource *new)
824 {
825 	struct resource *conflict;
826 
827 	conflict = insert_resource_conflict(parent, new);
828 	return conflict ? -EBUSY : 0;
829 }
830 
831 /**
832  * insert_resource_expand_to_fit - Insert a resource into the resource tree
833  * @root: root resource descriptor
834  * @new: new resource to insert
835  *
836  * Insert a resource into the resource tree, possibly expanding it in order
837  * to make it encompass any conflicting resources.
838  */
839 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
840 {
841 	if (new->parent)
842 		return;
843 
844 	write_lock(&resource_lock);
845 	for (;;) {
846 		struct resource *conflict;
847 
848 		conflict = __insert_resource(root, new);
849 		if (!conflict)
850 			break;
851 		if (conflict == root)
852 			break;
853 
854 		/* Ok, expand resource to cover the conflict, then try again .. */
855 		if (conflict->start < new->start)
856 			new->start = conflict->start;
857 		if (conflict->end > new->end)
858 			new->end = conflict->end;
859 
860 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
861 	}
862 	write_unlock(&resource_lock);
863 }
864 
865 static int __adjust_resource(struct resource *res, resource_size_t start,
866 				resource_size_t size)
867 {
868 	struct resource *tmp, *parent = res->parent;
869 	resource_size_t end = start + size - 1;
870 	int result = -EBUSY;
871 
872 	if (!parent)
873 		goto skip;
874 
875 	if ((start < parent->start) || (end > parent->end))
876 		goto out;
877 
878 	if (res->sibling && (res->sibling->start <= end))
879 		goto out;
880 
881 	tmp = parent->child;
882 	if (tmp != res) {
883 		while (tmp->sibling != res)
884 			tmp = tmp->sibling;
885 		if (start <= tmp->end)
886 			goto out;
887 	}
888 
889 skip:
890 	for (tmp = res->child; tmp; tmp = tmp->sibling)
891 		if ((tmp->start < start) || (tmp->end > end))
892 			goto out;
893 
894 	res->start = start;
895 	res->end = end;
896 	result = 0;
897 
898  out:
899 	return result;
900 }
901 
902 /**
903  * adjust_resource - modify a resource's start and size
904  * @res: resource to modify
905  * @start: new start value
906  * @size: new size
907  *
908  * Given an existing resource, change its start and size to match the
909  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
910  * Existing children of the resource are assumed to be immutable.
911  */
912 int adjust_resource(struct resource *res, resource_size_t start,
913 			resource_size_t size)
914 {
915 	int result;
916 
917 	write_lock(&resource_lock);
918 	result = __adjust_resource(res, start, size);
919 	write_unlock(&resource_lock);
920 	return result;
921 }
922 EXPORT_SYMBOL(adjust_resource);
923 
924 static void __init __reserve_region_with_split(struct resource *root,
925 		resource_size_t start, resource_size_t end,
926 		const char *name)
927 {
928 	struct resource *parent = root;
929 	struct resource *conflict;
930 	struct resource *res = alloc_resource(GFP_ATOMIC);
931 	struct resource *next_res = NULL;
932 
933 	if (!res)
934 		return;
935 
936 	res->name = name;
937 	res->start = start;
938 	res->end = end;
939 	res->flags = IORESOURCE_BUSY;
940 
941 	while (1) {
942 
943 		conflict = __request_resource(parent, res);
944 		if (!conflict) {
945 			if (!next_res)
946 				break;
947 			res = next_res;
948 			next_res = NULL;
949 			continue;
950 		}
951 
952 		/* conflict covered whole area */
953 		if (conflict->start <= res->start &&
954 				conflict->end >= res->end) {
955 			free_resource(res);
956 			WARN_ON(next_res);
957 			break;
958 		}
959 
960 		/* failed, split and try again */
961 		if (conflict->start > res->start) {
962 			end = res->end;
963 			res->end = conflict->start - 1;
964 			if (conflict->end < end) {
965 				next_res = alloc_resource(GFP_ATOMIC);
966 				if (!next_res) {
967 					free_resource(res);
968 					break;
969 				}
970 				next_res->name = name;
971 				next_res->start = conflict->end + 1;
972 				next_res->end = end;
973 				next_res->flags = IORESOURCE_BUSY;
974 			}
975 		} else {
976 			res->start = conflict->end + 1;
977 		}
978 	}
979 
980 }
981 
982 void __init reserve_region_with_split(struct resource *root,
983 		resource_size_t start, resource_size_t end,
984 		const char *name)
985 {
986 	int abort = 0;
987 
988 	write_lock(&resource_lock);
989 	if (root->start > start || root->end < end) {
990 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
991 		       (unsigned long long)start, (unsigned long long)end,
992 		       root);
993 		if (start > root->end || end < root->start)
994 			abort = 1;
995 		else {
996 			if (end > root->end)
997 				end = root->end;
998 			if (start < root->start)
999 				start = root->start;
1000 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1001 			       (unsigned long long)start,
1002 			       (unsigned long long)end);
1003 		}
1004 		dump_stack();
1005 	}
1006 	if (!abort)
1007 		__reserve_region_with_split(root, start, end, name);
1008 	write_unlock(&resource_lock);
1009 }
1010 
1011 /**
1012  * resource_alignment - calculate resource's alignment
1013  * @res: resource pointer
1014  *
1015  * Returns alignment on success, 0 (invalid alignment) on failure.
1016  */
1017 resource_size_t resource_alignment(struct resource *res)
1018 {
1019 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1020 	case IORESOURCE_SIZEALIGN:
1021 		return resource_size(res);
1022 	case IORESOURCE_STARTALIGN:
1023 		return res->start;
1024 	default:
1025 		return 0;
1026 	}
1027 }
1028 
1029 /*
1030  * This is compatibility stuff for IO resources.
1031  *
1032  * Note how this, unlike the above, knows about
1033  * the IO flag meanings (busy etc).
1034  *
1035  * request_region creates a new busy region.
1036  *
1037  * check_region returns non-zero if the area is already busy.
1038  *
1039  * release_region releases a matching busy region.
1040  */
1041 
1042 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1043 
1044 /**
1045  * __request_region - create a new busy resource region
1046  * @parent: parent resource descriptor
1047  * @start: resource start address
1048  * @n: resource region size
1049  * @name: reserving caller's ID string
1050  * @flags: IO resource flags
1051  */
1052 struct resource * __request_region(struct resource *parent,
1053 				   resource_size_t start, resource_size_t n,
1054 				   const char *name, int flags)
1055 {
1056 	DECLARE_WAITQUEUE(wait, current);
1057 	struct resource *res = alloc_resource(GFP_KERNEL);
1058 
1059 	if (!res)
1060 		return NULL;
1061 
1062 	res->name = name;
1063 	res->start = start;
1064 	res->end = start + n - 1;
1065 	res->flags = resource_type(parent);
1066 	res->flags |= IORESOURCE_BUSY | flags;
1067 
1068 	write_lock(&resource_lock);
1069 
1070 	for (;;) {
1071 		struct resource *conflict;
1072 
1073 		conflict = __request_resource(parent, res);
1074 		if (!conflict)
1075 			break;
1076 		if (conflict != parent) {
1077 			parent = conflict;
1078 			if (!(conflict->flags & IORESOURCE_BUSY))
1079 				continue;
1080 		}
1081 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1082 			add_wait_queue(&muxed_resource_wait, &wait);
1083 			write_unlock(&resource_lock);
1084 			set_current_state(TASK_UNINTERRUPTIBLE);
1085 			schedule();
1086 			remove_wait_queue(&muxed_resource_wait, &wait);
1087 			write_lock(&resource_lock);
1088 			continue;
1089 		}
1090 		/* Uhhuh, that didn't work out.. */
1091 		free_resource(res);
1092 		res = NULL;
1093 		break;
1094 	}
1095 	write_unlock(&resource_lock);
1096 	return res;
1097 }
1098 EXPORT_SYMBOL(__request_region);
1099 
1100 /**
1101  * __check_region - check if a resource region is busy or free
1102  * @parent: parent resource descriptor
1103  * @start: resource start address
1104  * @n: resource region size
1105  *
1106  * Returns 0 if the region is free at the moment it is checked,
1107  * returns %-EBUSY if the region is busy.
1108  *
1109  * NOTE:
1110  * This function is deprecated because its use is racy.
1111  * Even if it returns 0, a subsequent call to request_region()
1112  * may fail because another driver etc. just allocated the region.
1113  * Do NOT use it.  It will be removed from the kernel.
1114  */
1115 int __check_region(struct resource *parent, resource_size_t start,
1116 			resource_size_t n)
1117 {
1118 	struct resource * res;
1119 
1120 	res = __request_region(parent, start, n, "check-region", 0);
1121 	if (!res)
1122 		return -EBUSY;
1123 
1124 	release_resource(res);
1125 	free_resource(res);
1126 	return 0;
1127 }
1128 EXPORT_SYMBOL(__check_region);
1129 
1130 /**
1131  * __release_region - release a previously reserved resource region
1132  * @parent: parent resource descriptor
1133  * @start: resource start address
1134  * @n: resource region size
1135  *
1136  * The described resource region must match a currently busy region.
1137  */
1138 void __release_region(struct resource *parent, resource_size_t start,
1139 			resource_size_t n)
1140 {
1141 	struct resource **p;
1142 	resource_size_t end;
1143 
1144 	p = &parent->child;
1145 	end = start + n - 1;
1146 
1147 	write_lock(&resource_lock);
1148 
1149 	for (;;) {
1150 		struct resource *res = *p;
1151 
1152 		if (!res)
1153 			break;
1154 		if (res->start <= start && res->end >= end) {
1155 			if (!(res->flags & IORESOURCE_BUSY)) {
1156 				p = &res->child;
1157 				continue;
1158 			}
1159 			if (res->start != start || res->end != end)
1160 				break;
1161 			*p = res->sibling;
1162 			write_unlock(&resource_lock);
1163 			if (res->flags & IORESOURCE_MUXED)
1164 				wake_up(&muxed_resource_wait);
1165 			free_resource(res);
1166 			return;
1167 		}
1168 		p = &res->sibling;
1169 	}
1170 
1171 	write_unlock(&resource_lock);
1172 
1173 	printk(KERN_WARNING "Trying to free nonexistent resource "
1174 		"<%016llx-%016llx>\n", (unsigned long long)start,
1175 		(unsigned long long)end);
1176 }
1177 EXPORT_SYMBOL(__release_region);
1178 
1179 #ifdef CONFIG_MEMORY_HOTREMOVE
1180 /**
1181  * release_mem_region_adjustable - release a previously reserved memory region
1182  * @parent: parent resource descriptor
1183  * @start: resource start address
1184  * @size: resource region size
1185  *
1186  * This interface is intended for memory hot-delete.  The requested region
1187  * is released from a currently busy memory resource.  The requested region
1188  * must either match exactly or fit into a single busy resource entry.  In
1189  * the latter case, the remaining resource is adjusted accordingly.
1190  * Existing children of the busy memory resource must be immutable in the
1191  * request.
1192  *
1193  * Note:
1194  * - Additional release conditions, such as overlapping region, can be
1195  *   supported after they are confirmed as valid cases.
1196  * - When a busy memory resource gets split into two entries, the code
1197  *   assumes that all children remain in the lower address entry for
1198  *   simplicity.  Enhance this logic when necessary.
1199  */
1200 int release_mem_region_adjustable(struct resource *parent,
1201 			resource_size_t start, resource_size_t size)
1202 {
1203 	struct resource **p;
1204 	struct resource *res;
1205 	struct resource *new_res;
1206 	resource_size_t end;
1207 	int ret = -EINVAL;
1208 
1209 	end = start + size - 1;
1210 	if ((start < parent->start) || (end > parent->end))
1211 		return ret;
1212 
1213 	/* The alloc_resource() result gets checked later */
1214 	new_res = alloc_resource(GFP_KERNEL);
1215 
1216 	p = &parent->child;
1217 	write_lock(&resource_lock);
1218 
1219 	while ((res = *p)) {
1220 		if (res->start >= end)
1221 			break;
1222 
1223 		/* look for the next resource if it does not fit into */
1224 		if (res->start > start || res->end < end) {
1225 			p = &res->sibling;
1226 			continue;
1227 		}
1228 
1229 		if (!(res->flags & IORESOURCE_MEM))
1230 			break;
1231 
1232 		if (!(res->flags & IORESOURCE_BUSY)) {
1233 			p = &res->child;
1234 			continue;
1235 		}
1236 
1237 		/* found the target resource; let's adjust accordingly */
1238 		if (res->start == start && res->end == end) {
1239 			/* free the whole entry */
1240 			*p = res->sibling;
1241 			free_resource(res);
1242 			ret = 0;
1243 		} else if (res->start == start && res->end != end) {
1244 			/* adjust the start */
1245 			ret = __adjust_resource(res, end + 1,
1246 						res->end - end);
1247 		} else if (res->start != start && res->end == end) {
1248 			/* adjust the end */
1249 			ret = __adjust_resource(res, res->start,
1250 						start - res->start);
1251 		} else {
1252 			/* split into two entries */
1253 			if (!new_res) {
1254 				ret = -ENOMEM;
1255 				break;
1256 			}
1257 			new_res->name = res->name;
1258 			new_res->start = end + 1;
1259 			new_res->end = res->end;
1260 			new_res->flags = res->flags;
1261 			new_res->parent = res->parent;
1262 			new_res->sibling = res->sibling;
1263 			new_res->child = NULL;
1264 
1265 			ret = __adjust_resource(res, res->start,
1266 						start - res->start);
1267 			if (ret)
1268 				break;
1269 			res->sibling = new_res;
1270 			new_res = NULL;
1271 		}
1272 
1273 		break;
1274 	}
1275 
1276 	write_unlock(&resource_lock);
1277 	free_resource(new_res);
1278 	return ret;
1279 }
1280 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1281 
1282 /*
1283  * Managed region resource
1284  */
1285 static void devm_resource_release(struct device *dev, void *ptr)
1286 {
1287 	struct resource **r = ptr;
1288 
1289 	release_resource(*r);
1290 }
1291 
1292 /**
1293  * devm_request_resource() - request and reserve an I/O or memory resource
1294  * @dev: device for which to request the resource
1295  * @root: root of the resource tree from which to request the resource
1296  * @new: descriptor of the resource to request
1297  *
1298  * This is a device-managed version of request_resource(). There is usually
1299  * no need to release resources requested by this function explicitly since
1300  * that will be taken care of when the device is unbound from its driver.
1301  * If for some reason the resource needs to be released explicitly, because
1302  * of ordering issues for example, drivers must call devm_release_resource()
1303  * rather than the regular release_resource().
1304  *
1305  * When a conflict is detected between any existing resources and the newly
1306  * requested resource, an error message will be printed.
1307  *
1308  * Returns 0 on success or a negative error code on failure.
1309  */
1310 int devm_request_resource(struct device *dev, struct resource *root,
1311 			  struct resource *new)
1312 {
1313 	struct resource *conflict, **ptr;
1314 
1315 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1316 	if (!ptr)
1317 		return -ENOMEM;
1318 
1319 	*ptr = new;
1320 
1321 	conflict = request_resource_conflict(root, new);
1322 	if (conflict) {
1323 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1324 			new, conflict->name, conflict);
1325 		devres_free(ptr);
1326 		return -EBUSY;
1327 	}
1328 
1329 	devres_add(dev, ptr);
1330 	return 0;
1331 }
1332 EXPORT_SYMBOL(devm_request_resource);
1333 
1334 static int devm_resource_match(struct device *dev, void *res, void *data)
1335 {
1336 	struct resource **ptr = res;
1337 
1338 	return *ptr == data;
1339 }
1340 
1341 /**
1342  * devm_release_resource() - release a previously requested resource
1343  * @dev: device for which to release the resource
1344  * @new: descriptor of the resource to release
1345  *
1346  * Releases a resource previously requested using devm_request_resource().
1347  */
1348 void devm_release_resource(struct device *dev, struct resource *new)
1349 {
1350 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1351 			       new));
1352 }
1353 EXPORT_SYMBOL(devm_release_resource);
1354 
1355 struct region_devres {
1356 	struct resource *parent;
1357 	resource_size_t start;
1358 	resource_size_t n;
1359 };
1360 
1361 static void devm_region_release(struct device *dev, void *res)
1362 {
1363 	struct region_devres *this = res;
1364 
1365 	__release_region(this->parent, this->start, this->n);
1366 }
1367 
1368 static int devm_region_match(struct device *dev, void *res, void *match_data)
1369 {
1370 	struct region_devres *this = res, *match = match_data;
1371 
1372 	return this->parent == match->parent &&
1373 		this->start == match->start && this->n == match->n;
1374 }
1375 
1376 struct resource * __devm_request_region(struct device *dev,
1377 				struct resource *parent, resource_size_t start,
1378 				resource_size_t n, const char *name)
1379 {
1380 	struct region_devres *dr = NULL;
1381 	struct resource *res;
1382 
1383 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1384 			  GFP_KERNEL);
1385 	if (!dr)
1386 		return NULL;
1387 
1388 	dr->parent = parent;
1389 	dr->start = start;
1390 	dr->n = n;
1391 
1392 	res = __request_region(parent, start, n, name, 0);
1393 	if (res)
1394 		devres_add(dev, dr);
1395 	else
1396 		devres_free(dr);
1397 
1398 	return res;
1399 }
1400 EXPORT_SYMBOL(__devm_request_region);
1401 
1402 void __devm_release_region(struct device *dev, struct resource *parent,
1403 			   resource_size_t start, resource_size_t n)
1404 {
1405 	struct region_devres match_data = { parent, start, n };
1406 
1407 	__release_region(parent, start, n);
1408 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1409 			       &match_data));
1410 }
1411 EXPORT_SYMBOL(__devm_release_region);
1412 
1413 /*
1414  * Called from init/main.c to reserve IO ports.
1415  */
1416 #define MAXRESERVE 4
1417 static int __init reserve_setup(char *str)
1418 {
1419 	static int reserved;
1420 	static struct resource reserve[MAXRESERVE];
1421 
1422 	for (;;) {
1423 		unsigned int io_start, io_num;
1424 		int x = reserved;
1425 
1426 		if (get_option (&str, &io_start) != 2)
1427 			break;
1428 		if (get_option (&str, &io_num)   == 0)
1429 			break;
1430 		if (x < MAXRESERVE) {
1431 			struct resource *res = reserve + x;
1432 			res->name = "reserved";
1433 			res->start = io_start;
1434 			res->end = io_start + io_num - 1;
1435 			res->flags = IORESOURCE_BUSY;
1436 			res->child = NULL;
1437 			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1438 				reserved = x+1;
1439 		}
1440 	}
1441 	return 1;
1442 }
1443 
1444 __setup("reserve=", reserve_setup);
1445 
1446 /*
1447  * Check if the requested addr and size spans more than any slot in the
1448  * iomem resource tree.
1449  */
1450 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1451 {
1452 	struct resource *p = &iomem_resource;
1453 	int err = 0;
1454 	loff_t l;
1455 
1456 	read_lock(&resource_lock);
1457 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1458 		/*
1459 		 * We can probably skip the resources without
1460 		 * IORESOURCE_IO attribute?
1461 		 */
1462 		if (p->start >= addr + size)
1463 			continue;
1464 		if (p->end < addr)
1465 			continue;
1466 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1467 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1468 			continue;
1469 		/*
1470 		 * if a resource is "BUSY", it's not a hardware resource
1471 		 * but a driver mapping of such a resource; we don't want
1472 		 * to warn for those; some drivers legitimately map only
1473 		 * partial hardware resources. (example: vesafb)
1474 		 */
1475 		if (p->flags & IORESOURCE_BUSY)
1476 			continue;
1477 
1478 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1479 		       (unsigned long long)addr,
1480 		       (unsigned long long)(addr + size - 1),
1481 		       p->name, p);
1482 		err = -1;
1483 		break;
1484 	}
1485 	read_unlock(&resource_lock);
1486 
1487 	return err;
1488 }
1489 
1490 #ifdef CONFIG_STRICT_DEVMEM
1491 static int strict_iomem_checks = 1;
1492 #else
1493 static int strict_iomem_checks;
1494 #endif
1495 
1496 /*
1497  * check if an address is reserved in the iomem resource tree
1498  * returns 1 if reserved, 0 if not reserved.
1499  */
1500 int iomem_is_exclusive(u64 addr)
1501 {
1502 	struct resource *p = &iomem_resource;
1503 	int err = 0;
1504 	loff_t l;
1505 	int size = PAGE_SIZE;
1506 
1507 	if (!strict_iomem_checks)
1508 		return 0;
1509 
1510 	addr = addr & PAGE_MASK;
1511 
1512 	read_lock(&resource_lock);
1513 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1514 		/*
1515 		 * We can probably skip the resources without
1516 		 * IORESOURCE_IO attribute?
1517 		 */
1518 		if (p->start >= addr + size)
1519 			break;
1520 		if (p->end < addr)
1521 			continue;
1522 		if (p->flags & IORESOURCE_BUSY &&
1523 		     p->flags & IORESOURCE_EXCLUSIVE) {
1524 			err = 1;
1525 			break;
1526 		}
1527 	}
1528 	read_unlock(&resource_lock);
1529 
1530 	return err;
1531 }
1532 
1533 struct resource_entry *resource_list_create_entry(struct resource *res,
1534 						  size_t extra_size)
1535 {
1536 	struct resource_entry *entry;
1537 
1538 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1539 	if (entry) {
1540 		INIT_LIST_HEAD(&entry->node);
1541 		entry->res = res ? res : &entry->__res;
1542 	}
1543 
1544 	return entry;
1545 }
1546 EXPORT_SYMBOL(resource_list_create_entry);
1547 
1548 void resource_list_free(struct list_head *head)
1549 {
1550 	struct resource_entry *entry, *tmp;
1551 
1552 	list_for_each_entry_safe(entry, tmp, head, node)
1553 		resource_list_destroy_entry(entry);
1554 }
1555 EXPORT_SYMBOL(resource_list_free);
1556 
1557 static int __init strict_iomem(char *str)
1558 {
1559 	if (strstr(str, "relaxed"))
1560 		strict_iomem_checks = 0;
1561 	if (strstr(str, "strict"))
1562 		strict_iomem_checks = 1;
1563 	return 1;
1564 }
1565 
1566 __setup("iomem=", strict_iomem);
1567