1 /* 2 * linux/kernel/resource.c 3 * 4 * Copyright (C) 1999 Linus Torvalds 5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 6 * 7 * Arbitrary resource management. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/export.h> 13 #include <linux/errno.h> 14 #include <linux/ioport.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/device.h> 23 #include <linux/pfn.h> 24 #include <linux/mm.h> 25 #include <asm/io.h> 26 27 28 struct resource ioport_resource = { 29 .name = "PCI IO", 30 .start = 0, 31 .end = IO_SPACE_LIMIT, 32 .flags = IORESOURCE_IO, 33 }; 34 EXPORT_SYMBOL(ioport_resource); 35 36 struct resource iomem_resource = { 37 .name = "PCI mem", 38 .start = 0, 39 .end = -1, 40 .flags = IORESOURCE_MEM, 41 }; 42 EXPORT_SYMBOL(iomem_resource); 43 44 /* constraints to be met while allocating resources */ 45 struct resource_constraint { 46 resource_size_t min, max, align; 47 resource_size_t (*alignf)(void *, const struct resource *, 48 resource_size_t, resource_size_t); 49 void *alignf_data; 50 }; 51 52 static DEFINE_RWLOCK(resource_lock); 53 54 /* 55 * For memory hotplug, there is no way to free resource entries allocated 56 * by boot mem after the system is up. So for reusing the resource entry 57 * we need to remember the resource. 58 */ 59 static struct resource *bootmem_resource_free; 60 static DEFINE_SPINLOCK(bootmem_resource_lock); 61 62 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 63 { 64 struct resource *p = v; 65 (*pos)++; 66 if (p->child) 67 return p->child; 68 while (!p->sibling && p->parent) 69 p = p->parent; 70 return p->sibling; 71 } 72 73 #ifdef CONFIG_PROC_FS 74 75 enum { MAX_IORES_LEVEL = 5 }; 76 77 static void *r_start(struct seq_file *m, loff_t *pos) 78 __acquires(resource_lock) 79 { 80 struct resource *p = m->private; 81 loff_t l = 0; 82 read_lock(&resource_lock); 83 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 84 ; 85 return p; 86 } 87 88 static void r_stop(struct seq_file *m, void *v) 89 __releases(resource_lock) 90 { 91 read_unlock(&resource_lock); 92 } 93 94 static int r_show(struct seq_file *m, void *v) 95 { 96 struct resource *root = m->private; 97 struct resource *r = v, *p; 98 int width = root->end < 0x10000 ? 4 : 8; 99 int depth; 100 101 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 102 if (p->parent == root) 103 break; 104 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 105 depth * 2, "", 106 width, (unsigned long long) r->start, 107 width, (unsigned long long) r->end, 108 r->name ? r->name : "<BAD>"); 109 return 0; 110 } 111 112 static const struct seq_operations resource_op = { 113 .start = r_start, 114 .next = r_next, 115 .stop = r_stop, 116 .show = r_show, 117 }; 118 119 static int ioports_open(struct inode *inode, struct file *file) 120 { 121 int res = seq_open(file, &resource_op); 122 if (!res) { 123 struct seq_file *m = file->private_data; 124 m->private = &ioport_resource; 125 } 126 return res; 127 } 128 129 static int iomem_open(struct inode *inode, struct file *file) 130 { 131 int res = seq_open(file, &resource_op); 132 if (!res) { 133 struct seq_file *m = file->private_data; 134 m->private = &iomem_resource; 135 } 136 return res; 137 } 138 139 static const struct file_operations proc_ioports_operations = { 140 .open = ioports_open, 141 .read = seq_read, 142 .llseek = seq_lseek, 143 .release = seq_release, 144 }; 145 146 static const struct file_operations proc_iomem_operations = { 147 .open = iomem_open, 148 .read = seq_read, 149 .llseek = seq_lseek, 150 .release = seq_release, 151 }; 152 153 static int __init ioresources_init(void) 154 { 155 proc_create("ioports", 0, NULL, &proc_ioports_operations); 156 proc_create("iomem", 0, NULL, &proc_iomem_operations); 157 return 0; 158 } 159 __initcall(ioresources_init); 160 161 #endif /* CONFIG_PROC_FS */ 162 163 static void free_resource(struct resource *res) 164 { 165 if (!res) 166 return; 167 168 if (!PageSlab(virt_to_head_page(res))) { 169 spin_lock(&bootmem_resource_lock); 170 res->sibling = bootmem_resource_free; 171 bootmem_resource_free = res; 172 spin_unlock(&bootmem_resource_lock); 173 } else { 174 kfree(res); 175 } 176 } 177 178 static struct resource *alloc_resource(gfp_t flags) 179 { 180 struct resource *res = NULL; 181 182 spin_lock(&bootmem_resource_lock); 183 if (bootmem_resource_free) { 184 res = bootmem_resource_free; 185 bootmem_resource_free = res->sibling; 186 } 187 spin_unlock(&bootmem_resource_lock); 188 189 if (res) 190 memset(res, 0, sizeof(struct resource)); 191 else 192 res = kzalloc(sizeof(struct resource), flags); 193 194 return res; 195 } 196 197 /* Return the conflict entry if you can't request it */ 198 static struct resource * __request_resource(struct resource *root, struct resource *new) 199 { 200 resource_size_t start = new->start; 201 resource_size_t end = new->end; 202 struct resource *tmp, **p; 203 204 if (end < start) 205 return root; 206 if (start < root->start) 207 return root; 208 if (end > root->end) 209 return root; 210 p = &root->child; 211 for (;;) { 212 tmp = *p; 213 if (!tmp || tmp->start > end) { 214 new->sibling = tmp; 215 *p = new; 216 new->parent = root; 217 return NULL; 218 } 219 p = &tmp->sibling; 220 if (tmp->end < start) 221 continue; 222 return tmp; 223 } 224 } 225 226 static int __release_resource(struct resource *old) 227 { 228 struct resource *tmp, **p; 229 230 p = &old->parent->child; 231 for (;;) { 232 tmp = *p; 233 if (!tmp) 234 break; 235 if (tmp == old) { 236 *p = tmp->sibling; 237 old->parent = NULL; 238 return 0; 239 } 240 p = &tmp->sibling; 241 } 242 return -EINVAL; 243 } 244 245 static void __release_child_resources(struct resource *r) 246 { 247 struct resource *tmp, *p; 248 resource_size_t size; 249 250 p = r->child; 251 r->child = NULL; 252 while (p) { 253 tmp = p; 254 p = p->sibling; 255 256 tmp->parent = NULL; 257 tmp->sibling = NULL; 258 __release_child_resources(tmp); 259 260 printk(KERN_DEBUG "release child resource %pR\n", tmp); 261 /* need to restore size, and keep flags */ 262 size = resource_size(tmp); 263 tmp->start = 0; 264 tmp->end = size - 1; 265 } 266 } 267 268 void release_child_resources(struct resource *r) 269 { 270 write_lock(&resource_lock); 271 __release_child_resources(r); 272 write_unlock(&resource_lock); 273 } 274 275 /** 276 * request_resource_conflict - request and reserve an I/O or memory resource 277 * @root: root resource descriptor 278 * @new: resource descriptor desired by caller 279 * 280 * Returns 0 for success, conflict resource on error. 281 */ 282 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 283 { 284 struct resource *conflict; 285 286 write_lock(&resource_lock); 287 conflict = __request_resource(root, new); 288 write_unlock(&resource_lock); 289 return conflict; 290 } 291 292 /** 293 * request_resource - request and reserve an I/O or memory resource 294 * @root: root resource descriptor 295 * @new: resource descriptor desired by caller 296 * 297 * Returns 0 for success, negative error code on error. 298 */ 299 int request_resource(struct resource *root, struct resource *new) 300 { 301 struct resource *conflict; 302 303 conflict = request_resource_conflict(root, new); 304 return conflict ? -EBUSY : 0; 305 } 306 307 EXPORT_SYMBOL(request_resource); 308 309 /** 310 * release_resource - release a previously reserved resource 311 * @old: resource pointer 312 */ 313 int release_resource(struct resource *old) 314 { 315 int retval; 316 317 write_lock(&resource_lock); 318 retval = __release_resource(old); 319 write_unlock(&resource_lock); 320 return retval; 321 } 322 323 EXPORT_SYMBOL(release_resource); 324 325 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) 326 /* 327 * Finds the lowest memory reosurce exists within [res->start.res->end) 328 * the caller must specify res->start, res->end, res->flags and "name". 329 * If found, returns 0, res is overwritten, if not found, returns -1. 330 */ 331 static int find_next_system_ram(struct resource *res, char *name) 332 { 333 resource_size_t start, end; 334 struct resource *p; 335 336 BUG_ON(!res); 337 338 start = res->start; 339 end = res->end; 340 BUG_ON(start >= end); 341 342 read_lock(&resource_lock); 343 for (p = iomem_resource.child; p ; p = p->sibling) { 344 /* system ram is just marked as IORESOURCE_MEM */ 345 if (p->flags != res->flags) 346 continue; 347 if (name && strcmp(p->name, name)) 348 continue; 349 if (p->start > end) { 350 p = NULL; 351 break; 352 } 353 if ((p->end >= start) && (p->start < end)) 354 break; 355 } 356 read_unlock(&resource_lock); 357 if (!p) 358 return -1; 359 /* copy data */ 360 if (res->start < p->start) 361 res->start = p->start; 362 if (res->end > p->end) 363 res->end = p->end; 364 return 0; 365 } 366 367 /* 368 * This function calls callback against all memory range of "System RAM" 369 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. 370 * Now, this function is only for "System RAM". 371 */ 372 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 373 void *arg, int (*func)(unsigned long, unsigned long, void *)) 374 { 375 struct resource res; 376 unsigned long pfn, end_pfn; 377 u64 orig_end; 378 int ret = -1; 379 380 res.start = (u64) start_pfn << PAGE_SHIFT; 381 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 382 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; 383 orig_end = res.end; 384 while ((res.start < res.end) && 385 (find_next_system_ram(&res, "System RAM") >= 0)) { 386 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; 387 end_pfn = (res.end + 1) >> PAGE_SHIFT; 388 if (end_pfn > pfn) 389 ret = (*func)(pfn, end_pfn - pfn, arg); 390 if (ret) 391 break; 392 res.start = res.end + 1; 393 res.end = orig_end; 394 } 395 return ret; 396 } 397 398 #endif 399 400 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 401 { 402 return 1; 403 } 404 /* 405 * This generic page_is_ram() returns true if specified address is 406 * registered as "System RAM" in iomem_resource list. 407 */ 408 int __weak page_is_ram(unsigned long pfn) 409 { 410 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 411 } 412 EXPORT_SYMBOL_GPL(page_is_ram); 413 414 void __weak arch_remove_reservations(struct resource *avail) 415 { 416 } 417 418 static resource_size_t simple_align_resource(void *data, 419 const struct resource *avail, 420 resource_size_t size, 421 resource_size_t align) 422 { 423 return avail->start; 424 } 425 426 static void resource_clip(struct resource *res, resource_size_t min, 427 resource_size_t max) 428 { 429 if (res->start < min) 430 res->start = min; 431 if (res->end > max) 432 res->end = max; 433 } 434 435 /* 436 * Find empty slot in the resource tree with the given range and 437 * alignment constraints 438 */ 439 static int __find_resource(struct resource *root, struct resource *old, 440 struct resource *new, 441 resource_size_t size, 442 struct resource_constraint *constraint) 443 { 444 struct resource *this = root->child; 445 struct resource tmp = *new, avail, alloc; 446 447 tmp.start = root->start; 448 /* 449 * Skip past an allocated resource that starts at 0, since the assignment 450 * of this->start - 1 to tmp->end below would cause an underflow. 451 */ 452 if (this && this->start == root->start) { 453 tmp.start = (this == old) ? old->start : this->end + 1; 454 this = this->sibling; 455 } 456 for(;;) { 457 if (this) 458 tmp.end = (this == old) ? this->end : this->start - 1; 459 else 460 tmp.end = root->end; 461 462 if (tmp.end < tmp.start) 463 goto next; 464 465 resource_clip(&tmp, constraint->min, constraint->max); 466 arch_remove_reservations(&tmp); 467 468 /* Check for overflow after ALIGN() */ 469 avail.start = ALIGN(tmp.start, constraint->align); 470 avail.end = tmp.end; 471 avail.flags = new->flags & ~IORESOURCE_UNSET; 472 if (avail.start >= tmp.start) { 473 alloc.flags = avail.flags; 474 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 475 size, constraint->align); 476 alloc.end = alloc.start + size - 1; 477 if (resource_contains(&avail, &alloc)) { 478 new->start = alloc.start; 479 new->end = alloc.end; 480 return 0; 481 } 482 } 483 484 next: if (!this || this->end == root->end) 485 break; 486 487 if (this != old) 488 tmp.start = this->end + 1; 489 this = this->sibling; 490 } 491 return -EBUSY; 492 } 493 494 /* 495 * Find empty slot in the resource tree given range and alignment. 496 */ 497 static int find_resource(struct resource *root, struct resource *new, 498 resource_size_t size, 499 struct resource_constraint *constraint) 500 { 501 return __find_resource(root, NULL, new, size, constraint); 502 } 503 504 /** 505 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 506 * The resource will be relocated if the new size cannot be reallocated in the 507 * current location. 508 * 509 * @root: root resource descriptor 510 * @old: resource descriptor desired by caller 511 * @newsize: new size of the resource descriptor 512 * @constraint: the size and alignment constraints to be met. 513 */ 514 static int reallocate_resource(struct resource *root, struct resource *old, 515 resource_size_t newsize, 516 struct resource_constraint *constraint) 517 { 518 int err=0; 519 struct resource new = *old; 520 struct resource *conflict; 521 522 write_lock(&resource_lock); 523 524 if ((err = __find_resource(root, old, &new, newsize, constraint))) 525 goto out; 526 527 if (resource_contains(&new, old)) { 528 old->start = new.start; 529 old->end = new.end; 530 goto out; 531 } 532 533 if (old->child) { 534 err = -EBUSY; 535 goto out; 536 } 537 538 if (resource_contains(old, &new)) { 539 old->start = new.start; 540 old->end = new.end; 541 } else { 542 __release_resource(old); 543 *old = new; 544 conflict = __request_resource(root, old); 545 BUG_ON(conflict); 546 } 547 out: 548 write_unlock(&resource_lock); 549 return err; 550 } 551 552 553 /** 554 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 555 * The resource will be reallocated with a new size if it was already allocated 556 * @root: root resource descriptor 557 * @new: resource descriptor desired by caller 558 * @size: requested resource region size 559 * @min: minimum boundary to allocate 560 * @max: maximum boundary to allocate 561 * @align: alignment requested, in bytes 562 * @alignf: alignment function, optional, called if not NULL 563 * @alignf_data: arbitrary data to pass to the @alignf function 564 */ 565 int allocate_resource(struct resource *root, struct resource *new, 566 resource_size_t size, resource_size_t min, 567 resource_size_t max, resource_size_t align, 568 resource_size_t (*alignf)(void *, 569 const struct resource *, 570 resource_size_t, 571 resource_size_t), 572 void *alignf_data) 573 { 574 int err; 575 struct resource_constraint constraint; 576 577 if (!alignf) 578 alignf = simple_align_resource; 579 580 constraint.min = min; 581 constraint.max = max; 582 constraint.align = align; 583 constraint.alignf = alignf; 584 constraint.alignf_data = alignf_data; 585 586 if ( new->parent ) { 587 /* resource is already allocated, try reallocating with 588 the new constraints */ 589 return reallocate_resource(root, new, size, &constraint); 590 } 591 592 write_lock(&resource_lock); 593 err = find_resource(root, new, size, &constraint); 594 if (err >= 0 && __request_resource(root, new)) 595 err = -EBUSY; 596 write_unlock(&resource_lock); 597 return err; 598 } 599 600 EXPORT_SYMBOL(allocate_resource); 601 602 /** 603 * lookup_resource - find an existing resource by a resource start address 604 * @root: root resource descriptor 605 * @start: resource start address 606 * 607 * Returns a pointer to the resource if found, NULL otherwise 608 */ 609 struct resource *lookup_resource(struct resource *root, resource_size_t start) 610 { 611 struct resource *res; 612 613 read_lock(&resource_lock); 614 for (res = root->child; res; res = res->sibling) { 615 if (res->start == start) 616 break; 617 } 618 read_unlock(&resource_lock); 619 620 return res; 621 } 622 623 /* 624 * Insert a resource into the resource tree. If successful, return NULL, 625 * otherwise return the conflicting resource (compare to __request_resource()) 626 */ 627 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 628 { 629 struct resource *first, *next; 630 631 for (;; parent = first) { 632 first = __request_resource(parent, new); 633 if (!first) 634 return first; 635 636 if (first == parent) 637 return first; 638 if (WARN_ON(first == new)) /* duplicated insertion */ 639 return first; 640 641 if ((first->start > new->start) || (first->end < new->end)) 642 break; 643 if ((first->start == new->start) && (first->end == new->end)) 644 break; 645 } 646 647 for (next = first; ; next = next->sibling) { 648 /* Partial overlap? Bad, and unfixable */ 649 if (next->start < new->start || next->end > new->end) 650 return next; 651 if (!next->sibling) 652 break; 653 if (next->sibling->start > new->end) 654 break; 655 } 656 657 new->parent = parent; 658 new->sibling = next->sibling; 659 new->child = first; 660 661 next->sibling = NULL; 662 for (next = first; next; next = next->sibling) 663 next->parent = new; 664 665 if (parent->child == first) { 666 parent->child = new; 667 } else { 668 next = parent->child; 669 while (next->sibling != first) 670 next = next->sibling; 671 next->sibling = new; 672 } 673 return NULL; 674 } 675 676 /** 677 * insert_resource_conflict - Inserts resource in the resource tree 678 * @parent: parent of the new resource 679 * @new: new resource to insert 680 * 681 * Returns 0 on success, conflict resource if the resource can't be inserted. 682 * 683 * This function is equivalent to request_resource_conflict when no conflict 684 * happens. If a conflict happens, and the conflicting resources 685 * entirely fit within the range of the new resource, then the new 686 * resource is inserted and the conflicting resources become children of 687 * the new resource. 688 */ 689 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 690 { 691 struct resource *conflict; 692 693 write_lock(&resource_lock); 694 conflict = __insert_resource(parent, new); 695 write_unlock(&resource_lock); 696 return conflict; 697 } 698 699 /** 700 * insert_resource - Inserts a resource in the resource tree 701 * @parent: parent of the new resource 702 * @new: new resource to insert 703 * 704 * Returns 0 on success, -EBUSY if the resource can't be inserted. 705 */ 706 int insert_resource(struct resource *parent, struct resource *new) 707 { 708 struct resource *conflict; 709 710 conflict = insert_resource_conflict(parent, new); 711 return conflict ? -EBUSY : 0; 712 } 713 714 /** 715 * insert_resource_expand_to_fit - Insert a resource into the resource tree 716 * @root: root resource descriptor 717 * @new: new resource to insert 718 * 719 * Insert a resource into the resource tree, possibly expanding it in order 720 * to make it encompass any conflicting resources. 721 */ 722 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 723 { 724 if (new->parent) 725 return; 726 727 write_lock(&resource_lock); 728 for (;;) { 729 struct resource *conflict; 730 731 conflict = __insert_resource(root, new); 732 if (!conflict) 733 break; 734 if (conflict == root) 735 break; 736 737 /* Ok, expand resource to cover the conflict, then try again .. */ 738 if (conflict->start < new->start) 739 new->start = conflict->start; 740 if (conflict->end > new->end) 741 new->end = conflict->end; 742 743 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 744 } 745 write_unlock(&resource_lock); 746 } 747 748 static int __adjust_resource(struct resource *res, resource_size_t start, 749 resource_size_t size) 750 { 751 struct resource *tmp, *parent = res->parent; 752 resource_size_t end = start + size - 1; 753 int result = -EBUSY; 754 755 if (!parent) 756 goto skip; 757 758 if ((start < parent->start) || (end > parent->end)) 759 goto out; 760 761 if (res->sibling && (res->sibling->start <= end)) 762 goto out; 763 764 tmp = parent->child; 765 if (tmp != res) { 766 while (tmp->sibling != res) 767 tmp = tmp->sibling; 768 if (start <= tmp->end) 769 goto out; 770 } 771 772 skip: 773 for (tmp = res->child; tmp; tmp = tmp->sibling) 774 if ((tmp->start < start) || (tmp->end > end)) 775 goto out; 776 777 res->start = start; 778 res->end = end; 779 result = 0; 780 781 out: 782 return result; 783 } 784 785 /** 786 * adjust_resource - modify a resource's start and size 787 * @res: resource to modify 788 * @start: new start value 789 * @size: new size 790 * 791 * Given an existing resource, change its start and size to match the 792 * arguments. Returns 0 on success, -EBUSY if it can't fit. 793 * Existing children of the resource are assumed to be immutable. 794 */ 795 int adjust_resource(struct resource *res, resource_size_t start, 796 resource_size_t size) 797 { 798 int result; 799 800 write_lock(&resource_lock); 801 result = __adjust_resource(res, start, size); 802 write_unlock(&resource_lock); 803 return result; 804 } 805 EXPORT_SYMBOL(adjust_resource); 806 807 static void __init __reserve_region_with_split(struct resource *root, 808 resource_size_t start, resource_size_t end, 809 const char *name) 810 { 811 struct resource *parent = root; 812 struct resource *conflict; 813 struct resource *res = alloc_resource(GFP_ATOMIC); 814 struct resource *next_res = NULL; 815 816 if (!res) 817 return; 818 819 res->name = name; 820 res->start = start; 821 res->end = end; 822 res->flags = IORESOURCE_BUSY; 823 824 while (1) { 825 826 conflict = __request_resource(parent, res); 827 if (!conflict) { 828 if (!next_res) 829 break; 830 res = next_res; 831 next_res = NULL; 832 continue; 833 } 834 835 /* conflict covered whole area */ 836 if (conflict->start <= res->start && 837 conflict->end >= res->end) { 838 free_resource(res); 839 WARN_ON(next_res); 840 break; 841 } 842 843 /* failed, split and try again */ 844 if (conflict->start > res->start) { 845 end = res->end; 846 res->end = conflict->start - 1; 847 if (conflict->end < end) { 848 next_res = alloc_resource(GFP_ATOMIC); 849 if (!next_res) { 850 free_resource(res); 851 break; 852 } 853 next_res->name = name; 854 next_res->start = conflict->end + 1; 855 next_res->end = end; 856 next_res->flags = IORESOURCE_BUSY; 857 } 858 } else { 859 res->start = conflict->end + 1; 860 } 861 } 862 863 } 864 865 void __init reserve_region_with_split(struct resource *root, 866 resource_size_t start, resource_size_t end, 867 const char *name) 868 { 869 int abort = 0; 870 871 write_lock(&resource_lock); 872 if (root->start > start || root->end < end) { 873 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 874 (unsigned long long)start, (unsigned long long)end, 875 root); 876 if (start > root->end || end < root->start) 877 abort = 1; 878 else { 879 if (end > root->end) 880 end = root->end; 881 if (start < root->start) 882 start = root->start; 883 pr_err("fixing request to [0x%llx-0x%llx]\n", 884 (unsigned long long)start, 885 (unsigned long long)end); 886 } 887 dump_stack(); 888 } 889 if (!abort) 890 __reserve_region_with_split(root, start, end, name); 891 write_unlock(&resource_lock); 892 } 893 894 /** 895 * resource_alignment - calculate resource's alignment 896 * @res: resource pointer 897 * 898 * Returns alignment on success, 0 (invalid alignment) on failure. 899 */ 900 resource_size_t resource_alignment(struct resource *res) 901 { 902 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 903 case IORESOURCE_SIZEALIGN: 904 return resource_size(res); 905 case IORESOURCE_STARTALIGN: 906 return res->start; 907 default: 908 return 0; 909 } 910 } 911 912 /* 913 * This is compatibility stuff for IO resources. 914 * 915 * Note how this, unlike the above, knows about 916 * the IO flag meanings (busy etc). 917 * 918 * request_region creates a new busy region. 919 * 920 * check_region returns non-zero if the area is already busy. 921 * 922 * release_region releases a matching busy region. 923 */ 924 925 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 926 927 /** 928 * __request_region - create a new busy resource region 929 * @parent: parent resource descriptor 930 * @start: resource start address 931 * @n: resource region size 932 * @name: reserving caller's ID string 933 * @flags: IO resource flags 934 */ 935 struct resource * __request_region(struct resource *parent, 936 resource_size_t start, resource_size_t n, 937 const char *name, int flags) 938 { 939 DECLARE_WAITQUEUE(wait, current); 940 struct resource *res = alloc_resource(GFP_KERNEL); 941 942 if (!res) 943 return NULL; 944 945 res->name = name; 946 res->start = start; 947 res->end = start + n - 1; 948 res->flags = resource_type(parent); 949 res->flags |= IORESOURCE_BUSY | flags; 950 951 write_lock(&resource_lock); 952 953 for (;;) { 954 struct resource *conflict; 955 956 conflict = __request_resource(parent, res); 957 if (!conflict) 958 break; 959 if (conflict != parent) { 960 parent = conflict; 961 if (!(conflict->flags & IORESOURCE_BUSY)) 962 continue; 963 } 964 if (conflict->flags & flags & IORESOURCE_MUXED) { 965 add_wait_queue(&muxed_resource_wait, &wait); 966 write_unlock(&resource_lock); 967 set_current_state(TASK_UNINTERRUPTIBLE); 968 schedule(); 969 remove_wait_queue(&muxed_resource_wait, &wait); 970 write_lock(&resource_lock); 971 continue; 972 } 973 /* Uhhuh, that didn't work out.. */ 974 free_resource(res); 975 res = NULL; 976 break; 977 } 978 write_unlock(&resource_lock); 979 return res; 980 } 981 EXPORT_SYMBOL(__request_region); 982 983 /** 984 * __check_region - check if a resource region is busy or free 985 * @parent: parent resource descriptor 986 * @start: resource start address 987 * @n: resource region size 988 * 989 * Returns 0 if the region is free at the moment it is checked, 990 * returns %-EBUSY if the region is busy. 991 * 992 * NOTE: 993 * This function is deprecated because its use is racy. 994 * Even if it returns 0, a subsequent call to request_region() 995 * may fail because another driver etc. just allocated the region. 996 * Do NOT use it. It will be removed from the kernel. 997 */ 998 int __check_region(struct resource *parent, resource_size_t start, 999 resource_size_t n) 1000 { 1001 struct resource * res; 1002 1003 res = __request_region(parent, start, n, "check-region", 0); 1004 if (!res) 1005 return -EBUSY; 1006 1007 release_resource(res); 1008 free_resource(res); 1009 return 0; 1010 } 1011 EXPORT_SYMBOL(__check_region); 1012 1013 /** 1014 * __release_region - release a previously reserved resource region 1015 * @parent: parent resource descriptor 1016 * @start: resource start address 1017 * @n: resource region size 1018 * 1019 * The described resource region must match a currently busy region. 1020 */ 1021 void __release_region(struct resource *parent, resource_size_t start, 1022 resource_size_t n) 1023 { 1024 struct resource **p; 1025 resource_size_t end; 1026 1027 p = &parent->child; 1028 end = start + n - 1; 1029 1030 write_lock(&resource_lock); 1031 1032 for (;;) { 1033 struct resource *res = *p; 1034 1035 if (!res) 1036 break; 1037 if (res->start <= start && res->end >= end) { 1038 if (!(res->flags & IORESOURCE_BUSY)) { 1039 p = &res->child; 1040 continue; 1041 } 1042 if (res->start != start || res->end != end) 1043 break; 1044 *p = res->sibling; 1045 write_unlock(&resource_lock); 1046 if (res->flags & IORESOURCE_MUXED) 1047 wake_up(&muxed_resource_wait); 1048 free_resource(res); 1049 return; 1050 } 1051 p = &res->sibling; 1052 } 1053 1054 write_unlock(&resource_lock); 1055 1056 printk(KERN_WARNING "Trying to free nonexistent resource " 1057 "<%016llx-%016llx>\n", (unsigned long long)start, 1058 (unsigned long long)end); 1059 } 1060 EXPORT_SYMBOL(__release_region); 1061 1062 #ifdef CONFIG_MEMORY_HOTREMOVE 1063 /** 1064 * release_mem_region_adjustable - release a previously reserved memory region 1065 * @parent: parent resource descriptor 1066 * @start: resource start address 1067 * @size: resource region size 1068 * 1069 * This interface is intended for memory hot-delete. The requested region 1070 * is released from a currently busy memory resource. The requested region 1071 * must either match exactly or fit into a single busy resource entry. In 1072 * the latter case, the remaining resource is adjusted accordingly. 1073 * Existing children of the busy memory resource must be immutable in the 1074 * request. 1075 * 1076 * Note: 1077 * - Additional release conditions, such as overlapping region, can be 1078 * supported after they are confirmed as valid cases. 1079 * - When a busy memory resource gets split into two entries, the code 1080 * assumes that all children remain in the lower address entry for 1081 * simplicity. Enhance this logic when necessary. 1082 */ 1083 int release_mem_region_adjustable(struct resource *parent, 1084 resource_size_t start, resource_size_t size) 1085 { 1086 struct resource **p; 1087 struct resource *res; 1088 struct resource *new_res; 1089 resource_size_t end; 1090 int ret = -EINVAL; 1091 1092 end = start + size - 1; 1093 if ((start < parent->start) || (end > parent->end)) 1094 return ret; 1095 1096 /* The alloc_resource() result gets checked later */ 1097 new_res = alloc_resource(GFP_KERNEL); 1098 1099 p = &parent->child; 1100 write_lock(&resource_lock); 1101 1102 while ((res = *p)) { 1103 if (res->start >= end) 1104 break; 1105 1106 /* look for the next resource if it does not fit into */ 1107 if (res->start > start || res->end < end) { 1108 p = &res->sibling; 1109 continue; 1110 } 1111 1112 if (!(res->flags & IORESOURCE_MEM)) 1113 break; 1114 1115 if (!(res->flags & IORESOURCE_BUSY)) { 1116 p = &res->child; 1117 continue; 1118 } 1119 1120 /* found the target resource; let's adjust accordingly */ 1121 if (res->start == start && res->end == end) { 1122 /* free the whole entry */ 1123 *p = res->sibling; 1124 free_resource(res); 1125 ret = 0; 1126 } else if (res->start == start && res->end != end) { 1127 /* adjust the start */ 1128 ret = __adjust_resource(res, end + 1, 1129 res->end - end); 1130 } else if (res->start != start && res->end == end) { 1131 /* adjust the end */ 1132 ret = __adjust_resource(res, res->start, 1133 start - res->start); 1134 } else { 1135 /* split into two entries */ 1136 if (!new_res) { 1137 ret = -ENOMEM; 1138 break; 1139 } 1140 new_res->name = res->name; 1141 new_res->start = end + 1; 1142 new_res->end = res->end; 1143 new_res->flags = res->flags; 1144 new_res->parent = res->parent; 1145 new_res->sibling = res->sibling; 1146 new_res->child = NULL; 1147 1148 ret = __adjust_resource(res, res->start, 1149 start - res->start); 1150 if (ret) 1151 break; 1152 res->sibling = new_res; 1153 new_res = NULL; 1154 } 1155 1156 break; 1157 } 1158 1159 write_unlock(&resource_lock); 1160 free_resource(new_res); 1161 return ret; 1162 } 1163 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1164 1165 /* 1166 * Managed region resource 1167 */ 1168 struct region_devres { 1169 struct resource *parent; 1170 resource_size_t start; 1171 resource_size_t n; 1172 }; 1173 1174 static void devm_region_release(struct device *dev, void *res) 1175 { 1176 struct region_devres *this = res; 1177 1178 __release_region(this->parent, this->start, this->n); 1179 } 1180 1181 static int devm_region_match(struct device *dev, void *res, void *match_data) 1182 { 1183 struct region_devres *this = res, *match = match_data; 1184 1185 return this->parent == match->parent && 1186 this->start == match->start && this->n == match->n; 1187 } 1188 1189 struct resource * __devm_request_region(struct device *dev, 1190 struct resource *parent, resource_size_t start, 1191 resource_size_t n, const char *name) 1192 { 1193 struct region_devres *dr = NULL; 1194 struct resource *res; 1195 1196 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1197 GFP_KERNEL); 1198 if (!dr) 1199 return NULL; 1200 1201 dr->parent = parent; 1202 dr->start = start; 1203 dr->n = n; 1204 1205 res = __request_region(parent, start, n, name, 0); 1206 if (res) 1207 devres_add(dev, dr); 1208 else 1209 devres_free(dr); 1210 1211 return res; 1212 } 1213 EXPORT_SYMBOL(__devm_request_region); 1214 1215 void __devm_release_region(struct device *dev, struct resource *parent, 1216 resource_size_t start, resource_size_t n) 1217 { 1218 struct region_devres match_data = { parent, start, n }; 1219 1220 __release_region(parent, start, n); 1221 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1222 &match_data)); 1223 } 1224 EXPORT_SYMBOL(__devm_release_region); 1225 1226 /* 1227 * Called from init/main.c to reserve IO ports. 1228 */ 1229 #define MAXRESERVE 4 1230 static int __init reserve_setup(char *str) 1231 { 1232 static int reserved; 1233 static struct resource reserve[MAXRESERVE]; 1234 1235 for (;;) { 1236 unsigned int io_start, io_num; 1237 int x = reserved; 1238 1239 if (get_option (&str, &io_start) != 2) 1240 break; 1241 if (get_option (&str, &io_num) == 0) 1242 break; 1243 if (x < MAXRESERVE) { 1244 struct resource *res = reserve + x; 1245 res->name = "reserved"; 1246 res->start = io_start; 1247 res->end = io_start + io_num - 1; 1248 res->flags = IORESOURCE_BUSY; 1249 res->child = NULL; 1250 if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0) 1251 reserved = x+1; 1252 } 1253 } 1254 return 1; 1255 } 1256 1257 __setup("reserve=", reserve_setup); 1258 1259 /* 1260 * Check if the requested addr and size spans more than any slot in the 1261 * iomem resource tree. 1262 */ 1263 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1264 { 1265 struct resource *p = &iomem_resource; 1266 int err = 0; 1267 loff_t l; 1268 1269 read_lock(&resource_lock); 1270 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1271 /* 1272 * We can probably skip the resources without 1273 * IORESOURCE_IO attribute? 1274 */ 1275 if (p->start >= addr + size) 1276 continue; 1277 if (p->end < addr) 1278 continue; 1279 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1280 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1281 continue; 1282 /* 1283 * if a resource is "BUSY", it's not a hardware resource 1284 * but a driver mapping of such a resource; we don't want 1285 * to warn for those; some drivers legitimately map only 1286 * partial hardware resources. (example: vesafb) 1287 */ 1288 if (p->flags & IORESOURCE_BUSY) 1289 continue; 1290 1291 printk(KERN_WARNING "resource map sanity check conflict: " 1292 "0x%llx 0x%llx 0x%llx 0x%llx %s\n", 1293 (unsigned long long)addr, 1294 (unsigned long long)(addr + size - 1), 1295 (unsigned long long)p->start, 1296 (unsigned long long)p->end, 1297 p->name); 1298 err = -1; 1299 break; 1300 } 1301 read_unlock(&resource_lock); 1302 1303 return err; 1304 } 1305 1306 #ifdef CONFIG_STRICT_DEVMEM 1307 static int strict_iomem_checks = 1; 1308 #else 1309 static int strict_iomem_checks; 1310 #endif 1311 1312 /* 1313 * check if an address is reserved in the iomem resource tree 1314 * returns 1 if reserved, 0 if not reserved. 1315 */ 1316 int iomem_is_exclusive(u64 addr) 1317 { 1318 struct resource *p = &iomem_resource; 1319 int err = 0; 1320 loff_t l; 1321 int size = PAGE_SIZE; 1322 1323 if (!strict_iomem_checks) 1324 return 0; 1325 1326 addr = addr & PAGE_MASK; 1327 1328 read_lock(&resource_lock); 1329 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1330 /* 1331 * We can probably skip the resources without 1332 * IORESOURCE_IO attribute? 1333 */ 1334 if (p->start >= addr + size) 1335 break; 1336 if (p->end < addr) 1337 continue; 1338 if (p->flags & IORESOURCE_BUSY && 1339 p->flags & IORESOURCE_EXCLUSIVE) { 1340 err = 1; 1341 break; 1342 } 1343 } 1344 read_unlock(&resource_lock); 1345 1346 return err; 1347 } 1348 1349 static int __init strict_iomem(char *str) 1350 { 1351 if (strstr(str, "relaxed")) 1352 strict_iomem_checks = 0; 1353 if (strstr(str, "strict")) 1354 strict_iomem_checks = 1; 1355 return 1; 1356 } 1357 1358 __setup("iomem=", strict_iomem); 1359