xref: /openbmc/linux/kernel/resource.c (revision 9c1f8594)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #include <linux/module.h>
11 #include <linux/errno.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/proc_fs.h>
18 #include <linux/sched.h>
19 #include <linux/seq_file.h>
20 #include <linux/device.h>
21 #include <linux/pfn.h>
22 #include <asm/io.h>
23 
24 
25 struct resource ioport_resource = {
26 	.name	= "PCI IO",
27 	.start	= 0,
28 	.end	= IO_SPACE_LIMIT,
29 	.flags	= IORESOURCE_IO,
30 };
31 EXPORT_SYMBOL(ioport_resource);
32 
33 struct resource iomem_resource = {
34 	.name	= "PCI mem",
35 	.start	= 0,
36 	.end	= -1,
37 	.flags	= IORESOURCE_MEM,
38 };
39 EXPORT_SYMBOL(iomem_resource);
40 
41 /* constraints to be met while allocating resources */
42 struct resource_constraint {
43 	resource_size_t min, max, align;
44 	resource_size_t (*alignf)(void *, const struct resource *,
45 			resource_size_t, resource_size_t);
46 	void *alignf_data;
47 };
48 
49 static DEFINE_RWLOCK(resource_lock);
50 
51 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
52 {
53 	struct resource *p = v;
54 	(*pos)++;
55 	if (p->child)
56 		return p->child;
57 	while (!p->sibling && p->parent)
58 		p = p->parent;
59 	return p->sibling;
60 }
61 
62 #ifdef CONFIG_PROC_FS
63 
64 enum { MAX_IORES_LEVEL = 5 };
65 
66 static void *r_start(struct seq_file *m, loff_t *pos)
67 	__acquires(resource_lock)
68 {
69 	struct resource *p = m->private;
70 	loff_t l = 0;
71 	read_lock(&resource_lock);
72 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
73 		;
74 	return p;
75 }
76 
77 static void r_stop(struct seq_file *m, void *v)
78 	__releases(resource_lock)
79 {
80 	read_unlock(&resource_lock);
81 }
82 
83 static int r_show(struct seq_file *m, void *v)
84 {
85 	struct resource *root = m->private;
86 	struct resource *r = v, *p;
87 	int width = root->end < 0x10000 ? 4 : 8;
88 	int depth;
89 
90 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
91 		if (p->parent == root)
92 			break;
93 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
94 			depth * 2, "",
95 			width, (unsigned long long) r->start,
96 			width, (unsigned long long) r->end,
97 			r->name ? r->name : "<BAD>");
98 	return 0;
99 }
100 
101 static const struct seq_operations resource_op = {
102 	.start	= r_start,
103 	.next	= r_next,
104 	.stop	= r_stop,
105 	.show	= r_show,
106 };
107 
108 static int ioports_open(struct inode *inode, struct file *file)
109 {
110 	int res = seq_open(file, &resource_op);
111 	if (!res) {
112 		struct seq_file *m = file->private_data;
113 		m->private = &ioport_resource;
114 	}
115 	return res;
116 }
117 
118 static int iomem_open(struct inode *inode, struct file *file)
119 {
120 	int res = seq_open(file, &resource_op);
121 	if (!res) {
122 		struct seq_file *m = file->private_data;
123 		m->private = &iomem_resource;
124 	}
125 	return res;
126 }
127 
128 static const struct file_operations proc_ioports_operations = {
129 	.open		= ioports_open,
130 	.read		= seq_read,
131 	.llseek		= seq_lseek,
132 	.release	= seq_release,
133 };
134 
135 static const struct file_operations proc_iomem_operations = {
136 	.open		= iomem_open,
137 	.read		= seq_read,
138 	.llseek		= seq_lseek,
139 	.release	= seq_release,
140 };
141 
142 static int __init ioresources_init(void)
143 {
144 	proc_create("ioports", 0, NULL, &proc_ioports_operations);
145 	proc_create("iomem", 0, NULL, &proc_iomem_operations);
146 	return 0;
147 }
148 __initcall(ioresources_init);
149 
150 #endif /* CONFIG_PROC_FS */
151 
152 /* Return the conflict entry if you can't request it */
153 static struct resource * __request_resource(struct resource *root, struct resource *new)
154 {
155 	resource_size_t start = new->start;
156 	resource_size_t end = new->end;
157 	struct resource *tmp, **p;
158 
159 	if (end < start)
160 		return root;
161 	if (start < root->start)
162 		return root;
163 	if (end > root->end)
164 		return root;
165 	p = &root->child;
166 	for (;;) {
167 		tmp = *p;
168 		if (!tmp || tmp->start > end) {
169 			new->sibling = tmp;
170 			*p = new;
171 			new->parent = root;
172 			return NULL;
173 		}
174 		p = &tmp->sibling;
175 		if (tmp->end < start)
176 			continue;
177 		return tmp;
178 	}
179 }
180 
181 static int __release_resource(struct resource *old)
182 {
183 	struct resource *tmp, **p;
184 
185 	p = &old->parent->child;
186 	for (;;) {
187 		tmp = *p;
188 		if (!tmp)
189 			break;
190 		if (tmp == old) {
191 			*p = tmp->sibling;
192 			old->parent = NULL;
193 			return 0;
194 		}
195 		p = &tmp->sibling;
196 	}
197 	return -EINVAL;
198 }
199 
200 static void __release_child_resources(struct resource *r)
201 {
202 	struct resource *tmp, *p;
203 	resource_size_t size;
204 
205 	p = r->child;
206 	r->child = NULL;
207 	while (p) {
208 		tmp = p;
209 		p = p->sibling;
210 
211 		tmp->parent = NULL;
212 		tmp->sibling = NULL;
213 		__release_child_resources(tmp);
214 
215 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
216 		/* need to restore size, and keep flags */
217 		size = resource_size(tmp);
218 		tmp->start = 0;
219 		tmp->end = size - 1;
220 	}
221 }
222 
223 void release_child_resources(struct resource *r)
224 {
225 	write_lock(&resource_lock);
226 	__release_child_resources(r);
227 	write_unlock(&resource_lock);
228 }
229 
230 /**
231  * request_resource_conflict - request and reserve an I/O or memory resource
232  * @root: root resource descriptor
233  * @new: resource descriptor desired by caller
234  *
235  * Returns 0 for success, conflict resource on error.
236  */
237 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
238 {
239 	struct resource *conflict;
240 
241 	write_lock(&resource_lock);
242 	conflict = __request_resource(root, new);
243 	write_unlock(&resource_lock);
244 	return conflict;
245 }
246 
247 /**
248  * request_resource - request and reserve an I/O or memory resource
249  * @root: root resource descriptor
250  * @new: resource descriptor desired by caller
251  *
252  * Returns 0 for success, negative error code on error.
253  */
254 int request_resource(struct resource *root, struct resource *new)
255 {
256 	struct resource *conflict;
257 
258 	conflict = request_resource_conflict(root, new);
259 	return conflict ? -EBUSY : 0;
260 }
261 
262 EXPORT_SYMBOL(request_resource);
263 
264 /**
265  * release_resource - release a previously reserved resource
266  * @old: resource pointer
267  */
268 int release_resource(struct resource *old)
269 {
270 	int retval;
271 
272 	write_lock(&resource_lock);
273 	retval = __release_resource(old);
274 	write_unlock(&resource_lock);
275 	return retval;
276 }
277 
278 EXPORT_SYMBOL(release_resource);
279 
280 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
281 /*
282  * Finds the lowest memory reosurce exists within [res->start.res->end)
283  * the caller must specify res->start, res->end, res->flags and "name".
284  * If found, returns 0, res is overwritten, if not found, returns -1.
285  */
286 static int find_next_system_ram(struct resource *res, char *name)
287 {
288 	resource_size_t start, end;
289 	struct resource *p;
290 
291 	BUG_ON(!res);
292 
293 	start = res->start;
294 	end = res->end;
295 	BUG_ON(start >= end);
296 
297 	read_lock(&resource_lock);
298 	for (p = iomem_resource.child; p ; p = p->sibling) {
299 		/* system ram is just marked as IORESOURCE_MEM */
300 		if (p->flags != res->flags)
301 			continue;
302 		if (name && strcmp(p->name, name))
303 			continue;
304 		if (p->start > end) {
305 			p = NULL;
306 			break;
307 		}
308 		if ((p->end >= start) && (p->start < end))
309 			break;
310 	}
311 	read_unlock(&resource_lock);
312 	if (!p)
313 		return -1;
314 	/* copy data */
315 	if (res->start < p->start)
316 		res->start = p->start;
317 	if (res->end > p->end)
318 		res->end = p->end;
319 	return 0;
320 }
321 
322 /*
323  * This function calls callback against all memory range of "System RAM"
324  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
325  * Now, this function is only for "System RAM".
326  */
327 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
328 		void *arg, int (*func)(unsigned long, unsigned long, void *))
329 {
330 	struct resource res;
331 	unsigned long pfn, end_pfn;
332 	u64 orig_end;
333 	int ret = -1;
334 
335 	res.start = (u64) start_pfn << PAGE_SHIFT;
336 	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
337 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
338 	orig_end = res.end;
339 	while ((res.start < res.end) &&
340 		(find_next_system_ram(&res, "System RAM") >= 0)) {
341 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
342 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
343 		if (end_pfn > pfn)
344 			ret = (*func)(pfn, end_pfn - pfn, arg);
345 		if (ret)
346 			break;
347 		res.start = res.end + 1;
348 		res.end = orig_end;
349 	}
350 	return ret;
351 }
352 
353 #endif
354 
355 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
356 {
357 	return 1;
358 }
359 /*
360  * This generic page_is_ram() returns true if specified address is
361  * registered as "System RAM" in iomem_resource list.
362  */
363 int __weak page_is_ram(unsigned long pfn)
364 {
365 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
366 }
367 
368 void __weak arch_remove_reservations(struct resource *avail)
369 {
370 }
371 
372 static resource_size_t simple_align_resource(void *data,
373 					     const struct resource *avail,
374 					     resource_size_t size,
375 					     resource_size_t align)
376 {
377 	return avail->start;
378 }
379 
380 static void resource_clip(struct resource *res, resource_size_t min,
381 			  resource_size_t max)
382 {
383 	if (res->start < min)
384 		res->start = min;
385 	if (res->end > max)
386 		res->end = max;
387 }
388 
389 static bool resource_contains(struct resource *res1, struct resource *res2)
390 {
391 	return res1->start <= res2->start && res1->end >= res2->end;
392 }
393 
394 /*
395  * Find empty slot in the resource tree with the given range and
396  * alignment constraints
397  */
398 static int __find_resource(struct resource *root, struct resource *old,
399 			 struct resource *new,
400 			 resource_size_t  size,
401 			 struct resource_constraint *constraint)
402 {
403 	struct resource *this = root->child;
404 	struct resource tmp = *new, avail, alloc;
405 
406 	tmp.flags = new->flags;
407 	tmp.start = root->start;
408 	/*
409 	 * Skip past an allocated resource that starts at 0, since the assignment
410 	 * of this->start - 1 to tmp->end below would cause an underflow.
411 	 */
412 	if (this && this->start == root->start) {
413 		tmp.start = (this == old) ? old->start : this->end + 1;
414 		this = this->sibling;
415 	}
416 	for(;;) {
417 		if (this)
418 			tmp.end = (this == old) ?  this->end : this->start - 1;
419 		else
420 			tmp.end = root->end;
421 
422 		resource_clip(&tmp, constraint->min, constraint->max);
423 		arch_remove_reservations(&tmp);
424 
425 		/* Check for overflow after ALIGN() */
426 		avail = *new;
427 		avail.start = ALIGN(tmp.start, constraint->align);
428 		avail.end = tmp.end;
429 		if (avail.start >= tmp.start) {
430 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
431 					size, constraint->align);
432 			alloc.end = alloc.start + size - 1;
433 			if (resource_contains(&avail, &alloc)) {
434 				new->start = alloc.start;
435 				new->end = alloc.end;
436 				return 0;
437 			}
438 		}
439 		if (!this)
440 			break;
441 		if (this != old)
442 			tmp.start = this->end + 1;
443 		this = this->sibling;
444 	}
445 	return -EBUSY;
446 }
447 
448 /*
449  * Find empty slot in the resource tree given range and alignment.
450  */
451 static int find_resource(struct resource *root, struct resource *new,
452 			resource_size_t size,
453 			struct resource_constraint  *constraint)
454 {
455 	return  __find_resource(root, NULL, new, size, constraint);
456 }
457 
458 /**
459  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
460  *	The resource will be relocated if the new size cannot be reallocated in the
461  *	current location.
462  *
463  * @root: root resource descriptor
464  * @old:  resource descriptor desired by caller
465  * @newsize: new size of the resource descriptor
466  * @constraint: the size and alignment constraints to be met.
467  */
468 int reallocate_resource(struct resource *root, struct resource *old,
469 			resource_size_t newsize,
470 			struct resource_constraint  *constraint)
471 {
472 	int err=0;
473 	struct resource new = *old;
474 	struct resource *conflict;
475 
476 	write_lock(&resource_lock);
477 
478 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
479 		goto out;
480 
481 	if (resource_contains(&new, old)) {
482 		old->start = new.start;
483 		old->end = new.end;
484 		goto out;
485 	}
486 
487 	if (old->child) {
488 		err = -EBUSY;
489 		goto out;
490 	}
491 
492 	if (resource_contains(old, &new)) {
493 		old->start = new.start;
494 		old->end = new.end;
495 	} else {
496 		__release_resource(old);
497 		*old = new;
498 		conflict = __request_resource(root, old);
499 		BUG_ON(conflict);
500 	}
501 out:
502 	write_unlock(&resource_lock);
503 	return err;
504 }
505 
506 
507 /**
508  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
509  * 	The resource will be reallocated with a new size if it was already allocated
510  * @root: root resource descriptor
511  * @new: resource descriptor desired by caller
512  * @size: requested resource region size
513  * @min: minimum size to allocate
514  * @max: maximum size to allocate
515  * @align: alignment requested, in bytes
516  * @alignf: alignment function, optional, called if not NULL
517  * @alignf_data: arbitrary data to pass to the @alignf function
518  */
519 int allocate_resource(struct resource *root, struct resource *new,
520 		      resource_size_t size, resource_size_t min,
521 		      resource_size_t max, resource_size_t align,
522 		      resource_size_t (*alignf)(void *,
523 						const struct resource *,
524 						resource_size_t,
525 						resource_size_t),
526 		      void *alignf_data)
527 {
528 	int err;
529 	struct resource_constraint constraint;
530 
531 	if (!alignf)
532 		alignf = simple_align_resource;
533 
534 	constraint.min = min;
535 	constraint.max = max;
536 	constraint.align = align;
537 	constraint.alignf = alignf;
538 	constraint.alignf_data = alignf_data;
539 
540 	if ( new->parent ) {
541 		/* resource is already allocated, try reallocating with
542 		   the new constraints */
543 		return reallocate_resource(root, new, size, &constraint);
544 	}
545 
546 	write_lock(&resource_lock);
547 	err = find_resource(root, new, size, &constraint);
548 	if (err >= 0 && __request_resource(root, new))
549 		err = -EBUSY;
550 	write_unlock(&resource_lock);
551 	return err;
552 }
553 
554 EXPORT_SYMBOL(allocate_resource);
555 
556 /**
557  * lookup_resource - find an existing resource by a resource start address
558  * @root: root resource descriptor
559  * @start: resource start address
560  *
561  * Returns a pointer to the resource if found, NULL otherwise
562  */
563 struct resource *lookup_resource(struct resource *root, resource_size_t start)
564 {
565 	struct resource *res;
566 
567 	read_lock(&resource_lock);
568 	for (res = root->child; res; res = res->sibling) {
569 		if (res->start == start)
570 			break;
571 	}
572 	read_unlock(&resource_lock);
573 
574 	return res;
575 }
576 
577 /*
578  * Insert a resource into the resource tree. If successful, return NULL,
579  * otherwise return the conflicting resource (compare to __request_resource())
580  */
581 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
582 {
583 	struct resource *first, *next;
584 
585 	for (;; parent = first) {
586 		first = __request_resource(parent, new);
587 		if (!first)
588 			return first;
589 
590 		if (first == parent)
591 			return first;
592 		if (WARN_ON(first == new))	/* duplicated insertion */
593 			return first;
594 
595 		if ((first->start > new->start) || (first->end < new->end))
596 			break;
597 		if ((first->start == new->start) && (first->end == new->end))
598 			break;
599 	}
600 
601 	for (next = first; ; next = next->sibling) {
602 		/* Partial overlap? Bad, and unfixable */
603 		if (next->start < new->start || next->end > new->end)
604 			return next;
605 		if (!next->sibling)
606 			break;
607 		if (next->sibling->start > new->end)
608 			break;
609 	}
610 
611 	new->parent = parent;
612 	new->sibling = next->sibling;
613 	new->child = first;
614 
615 	next->sibling = NULL;
616 	for (next = first; next; next = next->sibling)
617 		next->parent = new;
618 
619 	if (parent->child == first) {
620 		parent->child = new;
621 	} else {
622 		next = parent->child;
623 		while (next->sibling != first)
624 			next = next->sibling;
625 		next->sibling = new;
626 	}
627 	return NULL;
628 }
629 
630 /**
631  * insert_resource_conflict - Inserts resource in the resource tree
632  * @parent: parent of the new resource
633  * @new: new resource to insert
634  *
635  * Returns 0 on success, conflict resource if the resource can't be inserted.
636  *
637  * This function is equivalent to request_resource_conflict when no conflict
638  * happens. If a conflict happens, and the conflicting resources
639  * entirely fit within the range of the new resource, then the new
640  * resource is inserted and the conflicting resources become children of
641  * the new resource.
642  */
643 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
644 {
645 	struct resource *conflict;
646 
647 	write_lock(&resource_lock);
648 	conflict = __insert_resource(parent, new);
649 	write_unlock(&resource_lock);
650 	return conflict;
651 }
652 
653 /**
654  * insert_resource - Inserts a resource in the resource tree
655  * @parent: parent of the new resource
656  * @new: new resource to insert
657  *
658  * Returns 0 on success, -EBUSY if the resource can't be inserted.
659  */
660 int insert_resource(struct resource *parent, struct resource *new)
661 {
662 	struct resource *conflict;
663 
664 	conflict = insert_resource_conflict(parent, new);
665 	return conflict ? -EBUSY : 0;
666 }
667 
668 /**
669  * insert_resource_expand_to_fit - Insert a resource into the resource tree
670  * @root: root resource descriptor
671  * @new: new resource to insert
672  *
673  * Insert a resource into the resource tree, possibly expanding it in order
674  * to make it encompass any conflicting resources.
675  */
676 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
677 {
678 	if (new->parent)
679 		return;
680 
681 	write_lock(&resource_lock);
682 	for (;;) {
683 		struct resource *conflict;
684 
685 		conflict = __insert_resource(root, new);
686 		if (!conflict)
687 			break;
688 		if (conflict == root)
689 			break;
690 
691 		/* Ok, expand resource to cover the conflict, then try again .. */
692 		if (conflict->start < new->start)
693 			new->start = conflict->start;
694 		if (conflict->end > new->end)
695 			new->end = conflict->end;
696 
697 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
698 	}
699 	write_unlock(&resource_lock);
700 }
701 
702 /**
703  * adjust_resource - modify a resource's start and size
704  * @res: resource to modify
705  * @start: new start value
706  * @size: new size
707  *
708  * Given an existing resource, change its start and size to match the
709  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
710  * Existing children of the resource are assumed to be immutable.
711  */
712 int adjust_resource(struct resource *res, resource_size_t start, resource_size_t size)
713 {
714 	struct resource *tmp, *parent = res->parent;
715 	resource_size_t end = start + size - 1;
716 	int result = -EBUSY;
717 
718 	write_lock(&resource_lock);
719 
720 	if ((start < parent->start) || (end > parent->end))
721 		goto out;
722 
723 	for (tmp = res->child; tmp; tmp = tmp->sibling) {
724 		if ((tmp->start < start) || (tmp->end > end))
725 			goto out;
726 	}
727 
728 	if (res->sibling && (res->sibling->start <= end))
729 		goto out;
730 
731 	tmp = parent->child;
732 	if (tmp != res) {
733 		while (tmp->sibling != res)
734 			tmp = tmp->sibling;
735 		if (start <= tmp->end)
736 			goto out;
737 	}
738 
739 	res->start = start;
740 	res->end = end;
741 	result = 0;
742 
743  out:
744 	write_unlock(&resource_lock);
745 	return result;
746 }
747 
748 static void __init __reserve_region_with_split(struct resource *root,
749 		resource_size_t start, resource_size_t end,
750 		const char *name)
751 {
752 	struct resource *parent = root;
753 	struct resource *conflict;
754 	struct resource *res = kzalloc(sizeof(*res), GFP_ATOMIC);
755 
756 	if (!res)
757 		return;
758 
759 	res->name = name;
760 	res->start = start;
761 	res->end = end;
762 	res->flags = IORESOURCE_BUSY;
763 
764 	conflict = __request_resource(parent, res);
765 	if (!conflict)
766 		return;
767 
768 	/* failed, split and try again */
769 	kfree(res);
770 
771 	/* conflict covered whole area */
772 	if (conflict->start <= start && conflict->end >= end)
773 		return;
774 
775 	if (conflict->start > start)
776 		__reserve_region_with_split(root, start, conflict->start-1, name);
777 	if (conflict->end < end)
778 		__reserve_region_with_split(root, conflict->end+1, end, name);
779 }
780 
781 void __init reserve_region_with_split(struct resource *root,
782 		resource_size_t start, resource_size_t end,
783 		const char *name)
784 {
785 	write_lock(&resource_lock);
786 	__reserve_region_with_split(root, start, end, name);
787 	write_unlock(&resource_lock);
788 }
789 
790 EXPORT_SYMBOL(adjust_resource);
791 
792 /**
793  * resource_alignment - calculate resource's alignment
794  * @res: resource pointer
795  *
796  * Returns alignment on success, 0 (invalid alignment) on failure.
797  */
798 resource_size_t resource_alignment(struct resource *res)
799 {
800 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
801 	case IORESOURCE_SIZEALIGN:
802 		return resource_size(res);
803 	case IORESOURCE_STARTALIGN:
804 		return res->start;
805 	default:
806 		return 0;
807 	}
808 }
809 
810 /*
811  * This is compatibility stuff for IO resources.
812  *
813  * Note how this, unlike the above, knows about
814  * the IO flag meanings (busy etc).
815  *
816  * request_region creates a new busy region.
817  *
818  * check_region returns non-zero if the area is already busy.
819  *
820  * release_region releases a matching busy region.
821  */
822 
823 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
824 
825 /**
826  * __request_region - create a new busy resource region
827  * @parent: parent resource descriptor
828  * @start: resource start address
829  * @n: resource region size
830  * @name: reserving caller's ID string
831  * @flags: IO resource flags
832  */
833 struct resource * __request_region(struct resource *parent,
834 				   resource_size_t start, resource_size_t n,
835 				   const char *name, int flags)
836 {
837 	DECLARE_WAITQUEUE(wait, current);
838 	struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
839 
840 	if (!res)
841 		return NULL;
842 
843 	res->name = name;
844 	res->start = start;
845 	res->end = start + n - 1;
846 	res->flags = IORESOURCE_BUSY;
847 	res->flags |= flags;
848 
849 	write_lock(&resource_lock);
850 
851 	for (;;) {
852 		struct resource *conflict;
853 
854 		conflict = __request_resource(parent, res);
855 		if (!conflict)
856 			break;
857 		if (conflict != parent) {
858 			parent = conflict;
859 			if (!(conflict->flags & IORESOURCE_BUSY))
860 				continue;
861 		}
862 		if (conflict->flags & flags & IORESOURCE_MUXED) {
863 			add_wait_queue(&muxed_resource_wait, &wait);
864 			write_unlock(&resource_lock);
865 			set_current_state(TASK_UNINTERRUPTIBLE);
866 			schedule();
867 			remove_wait_queue(&muxed_resource_wait, &wait);
868 			write_lock(&resource_lock);
869 			continue;
870 		}
871 		/* Uhhuh, that didn't work out.. */
872 		kfree(res);
873 		res = NULL;
874 		break;
875 	}
876 	write_unlock(&resource_lock);
877 	return res;
878 }
879 EXPORT_SYMBOL(__request_region);
880 
881 /**
882  * __check_region - check if a resource region is busy or free
883  * @parent: parent resource descriptor
884  * @start: resource start address
885  * @n: resource region size
886  *
887  * Returns 0 if the region is free at the moment it is checked,
888  * returns %-EBUSY if the region is busy.
889  *
890  * NOTE:
891  * This function is deprecated because its use is racy.
892  * Even if it returns 0, a subsequent call to request_region()
893  * may fail because another driver etc. just allocated the region.
894  * Do NOT use it.  It will be removed from the kernel.
895  */
896 int __check_region(struct resource *parent, resource_size_t start,
897 			resource_size_t n)
898 {
899 	struct resource * res;
900 
901 	res = __request_region(parent, start, n, "check-region", 0);
902 	if (!res)
903 		return -EBUSY;
904 
905 	release_resource(res);
906 	kfree(res);
907 	return 0;
908 }
909 EXPORT_SYMBOL(__check_region);
910 
911 /**
912  * __release_region - release a previously reserved resource region
913  * @parent: parent resource descriptor
914  * @start: resource start address
915  * @n: resource region size
916  *
917  * The described resource region must match a currently busy region.
918  */
919 void __release_region(struct resource *parent, resource_size_t start,
920 			resource_size_t n)
921 {
922 	struct resource **p;
923 	resource_size_t end;
924 
925 	p = &parent->child;
926 	end = start + n - 1;
927 
928 	write_lock(&resource_lock);
929 
930 	for (;;) {
931 		struct resource *res = *p;
932 
933 		if (!res)
934 			break;
935 		if (res->start <= start && res->end >= end) {
936 			if (!(res->flags & IORESOURCE_BUSY)) {
937 				p = &res->child;
938 				continue;
939 			}
940 			if (res->start != start || res->end != end)
941 				break;
942 			*p = res->sibling;
943 			write_unlock(&resource_lock);
944 			if (res->flags & IORESOURCE_MUXED)
945 				wake_up(&muxed_resource_wait);
946 			kfree(res);
947 			return;
948 		}
949 		p = &res->sibling;
950 	}
951 
952 	write_unlock(&resource_lock);
953 
954 	printk(KERN_WARNING "Trying to free nonexistent resource "
955 		"<%016llx-%016llx>\n", (unsigned long long)start,
956 		(unsigned long long)end);
957 }
958 EXPORT_SYMBOL(__release_region);
959 
960 /*
961  * Managed region resource
962  */
963 struct region_devres {
964 	struct resource *parent;
965 	resource_size_t start;
966 	resource_size_t n;
967 };
968 
969 static void devm_region_release(struct device *dev, void *res)
970 {
971 	struct region_devres *this = res;
972 
973 	__release_region(this->parent, this->start, this->n);
974 }
975 
976 static int devm_region_match(struct device *dev, void *res, void *match_data)
977 {
978 	struct region_devres *this = res, *match = match_data;
979 
980 	return this->parent == match->parent &&
981 		this->start == match->start && this->n == match->n;
982 }
983 
984 struct resource * __devm_request_region(struct device *dev,
985 				struct resource *parent, resource_size_t start,
986 				resource_size_t n, const char *name)
987 {
988 	struct region_devres *dr = NULL;
989 	struct resource *res;
990 
991 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
992 			  GFP_KERNEL);
993 	if (!dr)
994 		return NULL;
995 
996 	dr->parent = parent;
997 	dr->start = start;
998 	dr->n = n;
999 
1000 	res = __request_region(parent, start, n, name, 0);
1001 	if (res)
1002 		devres_add(dev, dr);
1003 	else
1004 		devres_free(dr);
1005 
1006 	return res;
1007 }
1008 EXPORT_SYMBOL(__devm_request_region);
1009 
1010 void __devm_release_region(struct device *dev, struct resource *parent,
1011 			   resource_size_t start, resource_size_t n)
1012 {
1013 	struct region_devres match_data = { parent, start, n };
1014 
1015 	__release_region(parent, start, n);
1016 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1017 			       &match_data));
1018 }
1019 EXPORT_SYMBOL(__devm_release_region);
1020 
1021 /*
1022  * Called from init/main.c to reserve IO ports.
1023  */
1024 #define MAXRESERVE 4
1025 static int __init reserve_setup(char *str)
1026 {
1027 	static int reserved;
1028 	static struct resource reserve[MAXRESERVE];
1029 
1030 	for (;;) {
1031 		unsigned int io_start, io_num;
1032 		int x = reserved;
1033 
1034 		if (get_option (&str, &io_start) != 2)
1035 			break;
1036 		if (get_option (&str, &io_num)   == 0)
1037 			break;
1038 		if (x < MAXRESERVE) {
1039 			struct resource *res = reserve + x;
1040 			res->name = "reserved";
1041 			res->start = io_start;
1042 			res->end = io_start + io_num - 1;
1043 			res->flags = IORESOURCE_BUSY;
1044 			res->child = NULL;
1045 			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1046 				reserved = x+1;
1047 		}
1048 	}
1049 	return 1;
1050 }
1051 
1052 __setup("reserve=", reserve_setup);
1053 
1054 /*
1055  * Check if the requested addr and size spans more than any slot in the
1056  * iomem resource tree.
1057  */
1058 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1059 {
1060 	struct resource *p = &iomem_resource;
1061 	int err = 0;
1062 	loff_t l;
1063 
1064 	read_lock(&resource_lock);
1065 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1066 		/*
1067 		 * We can probably skip the resources without
1068 		 * IORESOURCE_IO attribute?
1069 		 */
1070 		if (p->start >= addr + size)
1071 			continue;
1072 		if (p->end < addr)
1073 			continue;
1074 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1075 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1076 			continue;
1077 		/*
1078 		 * if a resource is "BUSY", it's not a hardware resource
1079 		 * but a driver mapping of such a resource; we don't want
1080 		 * to warn for those; some drivers legitimately map only
1081 		 * partial hardware resources. (example: vesafb)
1082 		 */
1083 		if (p->flags & IORESOURCE_BUSY)
1084 			continue;
1085 
1086 		printk(KERN_WARNING "resource map sanity check conflict: "
1087 		       "0x%llx 0x%llx 0x%llx 0x%llx %s\n",
1088 		       (unsigned long long)addr,
1089 		       (unsigned long long)(addr + size - 1),
1090 		       (unsigned long long)p->start,
1091 		       (unsigned long long)p->end,
1092 		       p->name);
1093 		err = -1;
1094 		break;
1095 	}
1096 	read_unlock(&resource_lock);
1097 
1098 	return err;
1099 }
1100 
1101 #ifdef CONFIG_STRICT_DEVMEM
1102 static int strict_iomem_checks = 1;
1103 #else
1104 static int strict_iomem_checks;
1105 #endif
1106 
1107 /*
1108  * check if an address is reserved in the iomem resource tree
1109  * returns 1 if reserved, 0 if not reserved.
1110  */
1111 int iomem_is_exclusive(u64 addr)
1112 {
1113 	struct resource *p = &iomem_resource;
1114 	int err = 0;
1115 	loff_t l;
1116 	int size = PAGE_SIZE;
1117 
1118 	if (!strict_iomem_checks)
1119 		return 0;
1120 
1121 	addr = addr & PAGE_MASK;
1122 
1123 	read_lock(&resource_lock);
1124 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1125 		/*
1126 		 * We can probably skip the resources without
1127 		 * IORESOURCE_IO attribute?
1128 		 */
1129 		if (p->start >= addr + size)
1130 			break;
1131 		if (p->end < addr)
1132 			continue;
1133 		if (p->flags & IORESOURCE_BUSY &&
1134 		     p->flags & IORESOURCE_EXCLUSIVE) {
1135 			err = 1;
1136 			break;
1137 		}
1138 	}
1139 	read_unlock(&resource_lock);
1140 
1141 	return err;
1142 }
1143 
1144 static int __init strict_iomem(char *str)
1145 {
1146 	if (strstr(str, "relaxed"))
1147 		strict_iomem_checks = 0;
1148 	if (strstr(str, "strict"))
1149 		strict_iomem_checks = 1;
1150 	return 1;
1151 }
1152 
1153 __setup("iomem=", strict_iomem);
1154