1 /* 2 * linux/kernel/resource.c 3 * 4 * Copyright (C) 1999 Linus Torvalds 5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 6 * 7 * Arbitrary resource management. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/export.h> 13 #include <linux/errno.h> 14 #include <linux/ioport.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/device.h> 23 #include <linux/pfn.h> 24 #include <linux/mm.h> 25 #include <linux/resource_ext.h> 26 #include <asm/io.h> 27 28 29 struct resource ioport_resource = { 30 .name = "PCI IO", 31 .start = 0, 32 .end = IO_SPACE_LIMIT, 33 .flags = IORESOURCE_IO, 34 }; 35 EXPORT_SYMBOL(ioport_resource); 36 37 struct resource iomem_resource = { 38 .name = "PCI mem", 39 .start = 0, 40 .end = -1, 41 .flags = IORESOURCE_MEM, 42 }; 43 EXPORT_SYMBOL(iomem_resource); 44 45 /* constraints to be met while allocating resources */ 46 struct resource_constraint { 47 resource_size_t min, max, align; 48 resource_size_t (*alignf)(void *, const struct resource *, 49 resource_size_t, resource_size_t); 50 void *alignf_data; 51 }; 52 53 static DEFINE_RWLOCK(resource_lock); 54 55 /* 56 * For memory hotplug, there is no way to free resource entries allocated 57 * by boot mem after the system is up. So for reusing the resource entry 58 * we need to remember the resource. 59 */ 60 static struct resource *bootmem_resource_free; 61 static DEFINE_SPINLOCK(bootmem_resource_lock); 62 63 static struct resource *next_resource(struct resource *p, bool sibling_only) 64 { 65 /* Caller wants to traverse through siblings only */ 66 if (sibling_only) 67 return p->sibling; 68 69 if (p->child) 70 return p->child; 71 while (!p->sibling && p->parent) 72 p = p->parent; 73 return p->sibling; 74 } 75 76 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 77 { 78 struct resource *p = v; 79 (*pos)++; 80 return (void *)next_resource(p, false); 81 } 82 83 #ifdef CONFIG_PROC_FS 84 85 enum { MAX_IORES_LEVEL = 5 }; 86 87 static void *r_start(struct seq_file *m, loff_t *pos) 88 __acquires(resource_lock) 89 { 90 struct resource *p = PDE_DATA(file_inode(m->file)); 91 loff_t l = 0; 92 read_lock(&resource_lock); 93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 94 ; 95 return p; 96 } 97 98 static void r_stop(struct seq_file *m, void *v) 99 __releases(resource_lock) 100 { 101 read_unlock(&resource_lock); 102 } 103 104 static int r_show(struct seq_file *m, void *v) 105 { 106 struct resource *root = PDE_DATA(file_inode(m->file)); 107 struct resource *r = v, *p; 108 unsigned long long start, end; 109 int width = root->end < 0x10000 ? 4 : 8; 110 int depth; 111 112 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 113 if (p->parent == root) 114 break; 115 116 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 117 start = r->start; 118 end = r->end; 119 } else { 120 start = end = 0; 121 } 122 123 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 124 depth * 2, "", 125 width, start, 126 width, end, 127 r->name ? r->name : "<BAD>"); 128 return 0; 129 } 130 131 static const struct seq_operations resource_op = { 132 .start = r_start, 133 .next = r_next, 134 .stop = r_stop, 135 .show = r_show, 136 }; 137 138 static int __init ioresources_init(void) 139 { 140 proc_create_seq_data("ioports", 0, NULL, &resource_op, 141 &ioport_resource); 142 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 143 return 0; 144 } 145 __initcall(ioresources_init); 146 147 #endif /* CONFIG_PROC_FS */ 148 149 static void free_resource(struct resource *res) 150 { 151 if (!res) 152 return; 153 154 if (!PageSlab(virt_to_head_page(res))) { 155 spin_lock(&bootmem_resource_lock); 156 res->sibling = bootmem_resource_free; 157 bootmem_resource_free = res; 158 spin_unlock(&bootmem_resource_lock); 159 } else { 160 kfree(res); 161 } 162 } 163 164 static struct resource *alloc_resource(gfp_t flags) 165 { 166 struct resource *res = NULL; 167 168 spin_lock(&bootmem_resource_lock); 169 if (bootmem_resource_free) { 170 res = bootmem_resource_free; 171 bootmem_resource_free = res->sibling; 172 } 173 spin_unlock(&bootmem_resource_lock); 174 175 if (res) 176 memset(res, 0, sizeof(struct resource)); 177 else 178 res = kzalloc(sizeof(struct resource), flags); 179 180 return res; 181 } 182 183 /* Return the conflict entry if you can't request it */ 184 static struct resource * __request_resource(struct resource *root, struct resource *new) 185 { 186 resource_size_t start = new->start; 187 resource_size_t end = new->end; 188 struct resource *tmp, **p; 189 190 if (end < start) 191 return root; 192 if (start < root->start) 193 return root; 194 if (end > root->end) 195 return root; 196 p = &root->child; 197 for (;;) { 198 tmp = *p; 199 if (!tmp || tmp->start > end) { 200 new->sibling = tmp; 201 *p = new; 202 new->parent = root; 203 return NULL; 204 } 205 p = &tmp->sibling; 206 if (tmp->end < start) 207 continue; 208 return tmp; 209 } 210 } 211 212 static int __release_resource(struct resource *old, bool release_child) 213 { 214 struct resource *tmp, **p, *chd; 215 216 p = &old->parent->child; 217 for (;;) { 218 tmp = *p; 219 if (!tmp) 220 break; 221 if (tmp == old) { 222 if (release_child || !(tmp->child)) { 223 *p = tmp->sibling; 224 } else { 225 for (chd = tmp->child;; chd = chd->sibling) { 226 chd->parent = tmp->parent; 227 if (!(chd->sibling)) 228 break; 229 } 230 *p = tmp->child; 231 chd->sibling = tmp->sibling; 232 } 233 old->parent = NULL; 234 return 0; 235 } 236 p = &tmp->sibling; 237 } 238 return -EINVAL; 239 } 240 241 static void __release_child_resources(struct resource *r) 242 { 243 struct resource *tmp, *p; 244 resource_size_t size; 245 246 p = r->child; 247 r->child = NULL; 248 while (p) { 249 tmp = p; 250 p = p->sibling; 251 252 tmp->parent = NULL; 253 tmp->sibling = NULL; 254 __release_child_resources(tmp); 255 256 printk(KERN_DEBUG "release child resource %pR\n", tmp); 257 /* need to restore size, and keep flags */ 258 size = resource_size(tmp); 259 tmp->start = 0; 260 tmp->end = size - 1; 261 } 262 } 263 264 void release_child_resources(struct resource *r) 265 { 266 write_lock(&resource_lock); 267 __release_child_resources(r); 268 write_unlock(&resource_lock); 269 } 270 271 /** 272 * request_resource_conflict - request and reserve an I/O or memory resource 273 * @root: root resource descriptor 274 * @new: resource descriptor desired by caller 275 * 276 * Returns 0 for success, conflict resource on error. 277 */ 278 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 279 { 280 struct resource *conflict; 281 282 write_lock(&resource_lock); 283 conflict = __request_resource(root, new); 284 write_unlock(&resource_lock); 285 return conflict; 286 } 287 288 /** 289 * request_resource - request and reserve an I/O or memory resource 290 * @root: root resource descriptor 291 * @new: resource descriptor desired by caller 292 * 293 * Returns 0 for success, negative error code on error. 294 */ 295 int request_resource(struct resource *root, struct resource *new) 296 { 297 struct resource *conflict; 298 299 conflict = request_resource_conflict(root, new); 300 return conflict ? -EBUSY : 0; 301 } 302 303 EXPORT_SYMBOL(request_resource); 304 305 /** 306 * release_resource - release a previously reserved resource 307 * @old: resource pointer 308 */ 309 int release_resource(struct resource *old) 310 { 311 int retval; 312 313 write_lock(&resource_lock); 314 retval = __release_resource(old, true); 315 write_unlock(&resource_lock); 316 return retval; 317 } 318 319 EXPORT_SYMBOL(release_resource); 320 321 /** 322 * Finds the lowest iomem resource that covers part of [start..end]. The 323 * caller must specify start, end, flags, and desc (which may be 324 * IORES_DESC_NONE). 325 * 326 * If a resource is found, returns 0 and *res is overwritten with the part 327 * of the resource that's within [start..end]; if none is found, returns 328 * -1. 329 * 330 * This function walks the whole tree and not just first level children 331 * unless @first_lvl is true. 332 */ 333 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 334 unsigned long flags, unsigned long desc, 335 bool first_lvl, struct resource *res) 336 { 337 struct resource *p; 338 339 if (!res) 340 return -EINVAL; 341 342 if (start >= end) 343 return -EINVAL; 344 345 read_lock(&resource_lock); 346 347 for (p = iomem_resource.child; p; p = next_resource(p, first_lvl)) { 348 if ((p->flags & flags) != flags) 349 continue; 350 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 351 continue; 352 if (p->start > end) { 353 p = NULL; 354 break; 355 } 356 if ((p->end >= start) && (p->start <= end)) 357 break; 358 } 359 360 read_unlock(&resource_lock); 361 if (!p) 362 return -1; 363 364 /* copy data */ 365 res->start = max(start, p->start); 366 res->end = min(end, p->end); 367 res->flags = p->flags; 368 res->desc = p->desc; 369 return 0; 370 } 371 372 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 373 unsigned long flags, unsigned long desc, 374 bool first_lvl, void *arg, 375 int (*func)(struct resource *, void *)) 376 { 377 struct resource res; 378 int ret = -1; 379 380 while (start < end && 381 !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) { 382 ret = (*func)(&res, arg); 383 if (ret) 384 break; 385 386 start = res.end + 1; 387 } 388 389 return ret; 390 } 391 392 /** 393 * Walks through iomem resources and calls func() with matching resource 394 * ranges. This walks through whole tree and not just first level children. 395 * All the memory ranges which overlap start,end and also match flags and 396 * desc are valid candidates. 397 * 398 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 399 * @flags: I/O resource flags 400 * @start: start addr 401 * @end: end addr 402 * 403 * NOTE: For a new descriptor search, define a new IORES_DESC in 404 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 405 */ 406 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 407 u64 end, void *arg, int (*func)(struct resource *, void *)) 408 { 409 return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func); 410 } 411 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 412 413 /* 414 * This function calls the @func callback against all memory ranges of type 415 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 416 * Now, this function is only for System RAM, it deals with full ranges and 417 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 418 * ranges. 419 */ 420 int walk_system_ram_res(u64 start, u64 end, void *arg, 421 int (*func)(struct resource *, void *)) 422 { 423 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 424 425 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 426 arg, func); 427 } 428 429 /* 430 * This function calls the @func callback against all memory ranges, which 431 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 432 */ 433 int walk_mem_res(u64 start, u64 end, void *arg, 434 int (*func)(struct resource *, void *)) 435 { 436 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 437 438 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 439 arg, func); 440 } 441 442 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) 443 444 /* 445 * This function calls the @func callback against all memory ranges of type 446 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 447 * It is to be used only for System RAM. 448 */ 449 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 450 void *arg, int (*func)(unsigned long, unsigned long, void *)) 451 { 452 resource_size_t start, end; 453 unsigned long flags; 454 struct resource res; 455 unsigned long pfn, end_pfn; 456 int ret = -1; 457 458 start = (u64) start_pfn << PAGE_SHIFT; 459 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 460 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 461 while (start < end && 462 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, 463 true, &res)) { 464 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; 465 end_pfn = (res.end + 1) >> PAGE_SHIFT; 466 if (end_pfn > pfn) 467 ret = (*func)(pfn, end_pfn - pfn, arg); 468 if (ret) 469 break; 470 start = res.end + 1; 471 } 472 return ret; 473 } 474 475 #endif 476 477 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 478 { 479 return 1; 480 } 481 482 /* 483 * This generic page_is_ram() returns true if specified address is 484 * registered as System RAM in iomem_resource list. 485 */ 486 int __weak page_is_ram(unsigned long pfn) 487 { 488 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 489 } 490 EXPORT_SYMBOL_GPL(page_is_ram); 491 492 /** 493 * region_intersects() - determine intersection of region with known resources 494 * @start: region start address 495 * @size: size of region 496 * @flags: flags of resource (in iomem_resource) 497 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 498 * 499 * Check if the specified region partially overlaps or fully eclipses a 500 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 501 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 502 * return REGION_MIXED if the region overlaps @flags/@desc and another 503 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 504 * and no other defined resource. Note that REGION_INTERSECTS is also 505 * returned in the case when the specified region overlaps RAM and undefined 506 * memory holes. 507 * 508 * region_intersect() is used by memory remapping functions to ensure 509 * the user is not remapping RAM and is a vast speed up over walking 510 * through the resource table page by page. 511 */ 512 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 513 unsigned long desc) 514 { 515 resource_size_t end = start + size - 1; 516 int type = 0; int other = 0; 517 struct resource *p; 518 519 read_lock(&resource_lock); 520 for (p = iomem_resource.child; p ; p = p->sibling) { 521 bool is_type = (((p->flags & flags) == flags) && 522 ((desc == IORES_DESC_NONE) || 523 (desc == p->desc))); 524 525 if (start >= p->start && start <= p->end) 526 is_type ? type++ : other++; 527 if (end >= p->start && end <= p->end) 528 is_type ? type++ : other++; 529 if (p->start >= start && p->end <= end) 530 is_type ? type++ : other++; 531 } 532 read_unlock(&resource_lock); 533 534 if (other == 0) 535 return type ? REGION_INTERSECTS : REGION_DISJOINT; 536 537 if (type) 538 return REGION_MIXED; 539 540 return REGION_DISJOINT; 541 } 542 EXPORT_SYMBOL_GPL(region_intersects); 543 544 void __weak arch_remove_reservations(struct resource *avail) 545 { 546 } 547 548 static resource_size_t simple_align_resource(void *data, 549 const struct resource *avail, 550 resource_size_t size, 551 resource_size_t align) 552 { 553 return avail->start; 554 } 555 556 static void resource_clip(struct resource *res, resource_size_t min, 557 resource_size_t max) 558 { 559 if (res->start < min) 560 res->start = min; 561 if (res->end > max) 562 res->end = max; 563 } 564 565 /* 566 * Find empty slot in the resource tree with the given range and 567 * alignment constraints 568 */ 569 static int __find_resource(struct resource *root, struct resource *old, 570 struct resource *new, 571 resource_size_t size, 572 struct resource_constraint *constraint) 573 { 574 struct resource *this = root->child; 575 struct resource tmp = *new, avail, alloc; 576 577 tmp.start = root->start; 578 /* 579 * Skip past an allocated resource that starts at 0, since the assignment 580 * of this->start - 1 to tmp->end below would cause an underflow. 581 */ 582 if (this && this->start == root->start) { 583 tmp.start = (this == old) ? old->start : this->end + 1; 584 this = this->sibling; 585 } 586 for(;;) { 587 if (this) 588 tmp.end = (this == old) ? this->end : this->start - 1; 589 else 590 tmp.end = root->end; 591 592 if (tmp.end < tmp.start) 593 goto next; 594 595 resource_clip(&tmp, constraint->min, constraint->max); 596 arch_remove_reservations(&tmp); 597 598 /* Check for overflow after ALIGN() */ 599 avail.start = ALIGN(tmp.start, constraint->align); 600 avail.end = tmp.end; 601 avail.flags = new->flags & ~IORESOURCE_UNSET; 602 if (avail.start >= tmp.start) { 603 alloc.flags = avail.flags; 604 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 605 size, constraint->align); 606 alloc.end = alloc.start + size - 1; 607 if (alloc.start <= alloc.end && 608 resource_contains(&avail, &alloc)) { 609 new->start = alloc.start; 610 new->end = alloc.end; 611 return 0; 612 } 613 } 614 615 next: if (!this || this->end == root->end) 616 break; 617 618 if (this != old) 619 tmp.start = this->end + 1; 620 this = this->sibling; 621 } 622 return -EBUSY; 623 } 624 625 /* 626 * Find empty slot in the resource tree given range and alignment. 627 */ 628 static int find_resource(struct resource *root, struct resource *new, 629 resource_size_t size, 630 struct resource_constraint *constraint) 631 { 632 return __find_resource(root, NULL, new, size, constraint); 633 } 634 635 /** 636 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 637 * The resource will be relocated if the new size cannot be reallocated in the 638 * current location. 639 * 640 * @root: root resource descriptor 641 * @old: resource descriptor desired by caller 642 * @newsize: new size of the resource descriptor 643 * @constraint: the size and alignment constraints to be met. 644 */ 645 static int reallocate_resource(struct resource *root, struct resource *old, 646 resource_size_t newsize, 647 struct resource_constraint *constraint) 648 { 649 int err=0; 650 struct resource new = *old; 651 struct resource *conflict; 652 653 write_lock(&resource_lock); 654 655 if ((err = __find_resource(root, old, &new, newsize, constraint))) 656 goto out; 657 658 if (resource_contains(&new, old)) { 659 old->start = new.start; 660 old->end = new.end; 661 goto out; 662 } 663 664 if (old->child) { 665 err = -EBUSY; 666 goto out; 667 } 668 669 if (resource_contains(old, &new)) { 670 old->start = new.start; 671 old->end = new.end; 672 } else { 673 __release_resource(old, true); 674 *old = new; 675 conflict = __request_resource(root, old); 676 BUG_ON(conflict); 677 } 678 out: 679 write_unlock(&resource_lock); 680 return err; 681 } 682 683 684 /** 685 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 686 * The resource will be reallocated with a new size if it was already allocated 687 * @root: root resource descriptor 688 * @new: resource descriptor desired by caller 689 * @size: requested resource region size 690 * @min: minimum boundary to allocate 691 * @max: maximum boundary to allocate 692 * @align: alignment requested, in bytes 693 * @alignf: alignment function, optional, called if not NULL 694 * @alignf_data: arbitrary data to pass to the @alignf function 695 */ 696 int allocate_resource(struct resource *root, struct resource *new, 697 resource_size_t size, resource_size_t min, 698 resource_size_t max, resource_size_t align, 699 resource_size_t (*alignf)(void *, 700 const struct resource *, 701 resource_size_t, 702 resource_size_t), 703 void *alignf_data) 704 { 705 int err; 706 struct resource_constraint constraint; 707 708 if (!alignf) 709 alignf = simple_align_resource; 710 711 constraint.min = min; 712 constraint.max = max; 713 constraint.align = align; 714 constraint.alignf = alignf; 715 constraint.alignf_data = alignf_data; 716 717 if ( new->parent ) { 718 /* resource is already allocated, try reallocating with 719 the new constraints */ 720 return reallocate_resource(root, new, size, &constraint); 721 } 722 723 write_lock(&resource_lock); 724 err = find_resource(root, new, size, &constraint); 725 if (err >= 0 && __request_resource(root, new)) 726 err = -EBUSY; 727 write_unlock(&resource_lock); 728 return err; 729 } 730 731 EXPORT_SYMBOL(allocate_resource); 732 733 /** 734 * lookup_resource - find an existing resource by a resource start address 735 * @root: root resource descriptor 736 * @start: resource start address 737 * 738 * Returns a pointer to the resource if found, NULL otherwise 739 */ 740 struct resource *lookup_resource(struct resource *root, resource_size_t start) 741 { 742 struct resource *res; 743 744 read_lock(&resource_lock); 745 for (res = root->child; res; res = res->sibling) { 746 if (res->start == start) 747 break; 748 } 749 read_unlock(&resource_lock); 750 751 return res; 752 } 753 754 /* 755 * Insert a resource into the resource tree. If successful, return NULL, 756 * otherwise return the conflicting resource (compare to __request_resource()) 757 */ 758 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 759 { 760 struct resource *first, *next; 761 762 for (;; parent = first) { 763 first = __request_resource(parent, new); 764 if (!first) 765 return first; 766 767 if (first == parent) 768 return first; 769 if (WARN_ON(first == new)) /* duplicated insertion */ 770 return first; 771 772 if ((first->start > new->start) || (first->end < new->end)) 773 break; 774 if ((first->start == new->start) && (first->end == new->end)) 775 break; 776 } 777 778 for (next = first; ; next = next->sibling) { 779 /* Partial overlap? Bad, and unfixable */ 780 if (next->start < new->start || next->end > new->end) 781 return next; 782 if (!next->sibling) 783 break; 784 if (next->sibling->start > new->end) 785 break; 786 } 787 788 new->parent = parent; 789 new->sibling = next->sibling; 790 new->child = first; 791 792 next->sibling = NULL; 793 for (next = first; next; next = next->sibling) 794 next->parent = new; 795 796 if (parent->child == first) { 797 parent->child = new; 798 } else { 799 next = parent->child; 800 while (next->sibling != first) 801 next = next->sibling; 802 next->sibling = new; 803 } 804 return NULL; 805 } 806 807 /** 808 * insert_resource_conflict - Inserts resource in the resource tree 809 * @parent: parent of the new resource 810 * @new: new resource to insert 811 * 812 * Returns 0 on success, conflict resource if the resource can't be inserted. 813 * 814 * This function is equivalent to request_resource_conflict when no conflict 815 * happens. If a conflict happens, and the conflicting resources 816 * entirely fit within the range of the new resource, then the new 817 * resource is inserted and the conflicting resources become children of 818 * the new resource. 819 * 820 * This function is intended for producers of resources, such as FW modules 821 * and bus drivers. 822 */ 823 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 824 { 825 struct resource *conflict; 826 827 write_lock(&resource_lock); 828 conflict = __insert_resource(parent, new); 829 write_unlock(&resource_lock); 830 return conflict; 831 } 832 833 /** 834 * insert_resource - Inserts a resource in the resource tree 835 * @parent: parent of the new resource 836 * @new: new resource to insert 837 * 838 * Returns 0 on success, -EBUSY if the resource can't be inserted. 839 * 840 * This function is intended for producers of resources, such as FW modules 841 * and bus drivers. 842 */ 843 int insert_resource(struct resource *parent, struct resource *new) 844 { 845 struct resource *conflict; 846 847 conflict = insert_resource_conflict(parent, new); 848 return conflict ? -EBUSY : 0; 849 } 850 EXPORT_SYMBOL_GPL(insert_resource); 851 852 /** 853 * insert_resource_expand_to_fit - Insert a resource into the resource tree 854 * @root: root resource descriptor 855 * @new: new resource to insert 856 * 857 * Insert a resource into the resource tree, possibly expanding it in order 858 * to make it encompass any conflicting resources. 859 */ 860 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 861 { 862 if (new->parent) 863 return; 864 865 write_lock(&resource_lock); 866 for (;;) { 867 struct resource *conflict; 868 869 conflict = __insert_resource(root, new); 870 if (!conflict) 871 break; 872 if (conflict == root) 873 break; 874 875 /* Ok, expand resource to cover the conflict, then try again .. */ 876 if (conflict->start < new->start) 877 new->start = conflict->start; 878 if (conflict->end > new->end) 879 new->end = conflict->end; 880 881 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 882 } 883 write_unlock(&resource_lock); 884 } 885 886 /** 887 * remove_resource - Remove a resource in the resource tree 888 * @old: resource to remove 889 * 890 * Returns 0 on success, -EINVAL if the resource is not valid. 891 * 892 * This function removes a resource previously inserted by insert_resource() 893 * or insert_resource_conflict(), and moves the children (if any) up to 894 * where they were before. insert_resource() and insert_resource_conflict() 895 * insert a new resource, and move any conflicting resources down to the 896 * children of the new resource. 897 * 898 * insert_resource(), insert_resource_conflict() and remove_resource() are 899 * intended for producers of resources, such as FW modules and bus drivers. 900 */ 901 int remove_resource(struct resource *old) 902 { 903 int retval; 904 905 write_lock(&resource_lock); 906 retval = __release_resource(old, false); 907 write_unlock(&resource_lock); 908 return retval; 909 } 910 EXPORT_SYMBOL_GPL(remove_resource); 911 912 static int __adjust_resource(struct resource *res, resource_size_t start, 913 resource_size_t size) 914 { 915 struct resource *tmp, *parent = res->parent; 916 resource_size_t end = start + size - 1; 917 int result = -EBUSY; 918 919 if (!parent) 920 goto skip; 921 922 if ((start < parent->start) || (end > parent->end)) 923 goto out; 924 925 if (res->sibling && (res->sibling->start <= end)) 926 goto out; 927 928 tmp = parent->child; 929 if (tmp != res) { 930 while (tmp->sibling != res) 931 tmp = tmp->sibling; 932 if (start <= tmp->end) 933 goto out; 934 } 935 936 skip: 937 for (tmp = res->child; tmp; tmp = tmp->sibling) 938 if ((tmp->start < start) || (tmp->end > end)) 939 goto out; 940 941 res->start = start; 942 res->end = end; 943 result = 0; 944 945 out: 946 return result; 947 } 948 949 /** 950 * adjust_resource - modify a resource's start and size 951 * @res: resource to modify 952 * @start: new start value 953 * @size: new size 954 * 955 * Given an existing resource, change its start and size to match the 956 * arguments. Returns 0 on success, -EBUSY if it can't fit. 957 * Existing children of the resource are assumed to be immutable. 958 */ 959 int adjust_resource(struct resource *res, resource_size_t start, 960 resource_size_t size) 961 { 962 int result; 963 964 write_lock(&resource_lock); 965 result = __adjust_resource(res, start, size); 966 write_unlock(&resource_lock); 967 return result; 968 } 969 EXPORT_SYMBOL(adjust_resource); 970 971 static void __init 972 __reserve_region_with_split(struct resource *root, resource_size_t start, 973 resource_size_t end, const char *name) 974 { 975 struct resource *parent = root; 976 struct resource *conflict; 977 struct resource *res = alloc_resource(GFP_ATOMIC); 978 struct resource *next_res = NULL; 979 int type = resource_type(root); 980 981 if (!res) 982 return; 983 984 res->name = name; 985 res->start = start; 986 res->end = end; 987 res->flags = type | IORESOURCE_BUSY; 988 res->desc = IORES_DESC_NONE; 989 990 while (1) { 991 992 conflict = __request_resource(parent, res); 993 if (!conflict) { 994 if (!next_res) 995 break; 996 res = next_res; 997 next_res = NULL; 998 continue; 999 } 1000 1001 /* conflict covered whole area */ 1002 if (conflict->start <= res->start && 1003 conflict->end >= res->end) { 1004 free_resource(res); 1005 WARN_ON(next_res); 1006 break; 1007 } 1008 1009 /* failed, split and try again */ 1010 if (conflict->start > res->start) { 1011 end = res->end; 1012 res->end = conflict->start - 1; 1013 if (conflict->end < end) { 1014 next_res = alloc_resource(GFP_ATOMIC); 1015 if (!next_res) { 1016 free_resource(res); 1017 break; 1018 } 1019 next_res->name = name; 1020 next_res->start = conflict->end + 1; 1021 next_res->end = end; 1022 next_res->flags = type | IORESOURCE_BUSY; 1023 next_res->desc = IORES_DESC_NONE; 1024 } 1025 } else { 1026 res->start = conflict->end + 1; 1027 } 1028 } 1029 1030 } 1031 1032 void __init 1033 reserve_region_with_split(struct resource *root, resource_size_t start, 1034 resource_size_t end, const char *name) 1035 { 1036 int abort = 0; 1037 1038 write_lock(&resource_lock); 1039 if (root->start > start || root->end < end) { 1040 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1041 (unsigned long long)start, (unsigned long long)end, 1042 root); 1043 if (start > root->end || end < root->start) 1044 abort = 1; 1045 else { 1046 if (end > root->end) 1047 end = root->end; 1048 if (start < root->start) 1049 start = root->start; 1050 pr_err("fixing request to [0x%llx-0x%llx]\n", 1051 (unsigned long long)start, 1052 (unsigned long long)end); 1053 } 1054 dump_stack(); 1055 } 1056 if (!abort) 1057 __reserve_region_with_split(root, start, end, name); 1058 write_unlock(&resource_lock); 1059 } 1060 1061 /** 1062 * resource_alignment - calculate resource's alignment 1063 * @res: resource pointer 1064 * 1065 * Returns alignment on success, 0 (invalid alignment) on failure. 1066 */ 1067 resource_size_t resource_alignment(struct resource *res) 1068 { 1069 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1070 case IORESOURCE_SIZEALIGN: 1071 return resource_size(res); 1072 case IORESOURCE_STARTALIGN: 1073 return res->start; 1074 default: 1075 return 0; 1076 } 1077 } 1078 1079 /* 1080 * This is compatibility stuff for IO resources. 1081 * 1082 * Note how this, unlike the above, knows about 1083 * the IO flag meanings (busy etc). 1084 * 1085 * request_region creates a new busy region. 1086 * 1087 * release_region releases a matching busy region. 1088 */ 1089 1090 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1091 1092 /** 1093 * __request_region - create a new busy resource region 1094 * @parent: parent resource descriptor 1095 * @start: resource start address 1096 * @n: resource region size 1097 * @name: reserving caller's ID string 1098 * @flags: IO resource flags 1099 */ 1100 struct resource * __request_region(struct resource *parent, 1101 resource_size_t start, resource_size_t n, 1102 const char *name, int flags) 1103 { 1104 DECLARE_WAITQUEUE(wait, current); 1105 struct resource *res = alloc_resource(GFP_KERNEL); 1106 1107 if (!res) 1108 return NULL; 1109 1110 res->name = name; 1111 res->start = start; 1112 res->end = start + n - 1; 1113 1114 write_lock(&resource_lock); 1115 1116 for (;;) { 1117 struct resource *conflict; 1118 1119 res->flags = resource_type(parent) | resource_ext_type(parent); 1120 res->flags |= IORESOURCE_BUSY | flags; 1121 res->desc = parent->desc; 1122 1123 conflict = __request_resource(parent, res); 1124 if (!conflict) 1125 break; 1126 if (conflict != parent) { 1127 if (!(conflict->flags & IORESOURCE_BUSY)) { 1128 parent = conflict; 1129 continue; 1130 } 1131 } 1132 if (conflict->flags & flags & IORESOURCE_MUXED) { 1133 add_wait_queue(&muxed_resource_wait, &wait); 1134 write_unlock(&resource_lock); 1135 set_current_state(TASK_UNINTERRUPTIBLE); 1136 schedule(); 1137 remove_wait_queue(&muxed_resource_wait, &wait); 1138 write_lock(&resource_lock); 1139 continue; 1140 } 1141 /* Uhhuh, that didn't work out.. */ 1142 free_resource(res); 1143 res = NULL; 1144 break; 1145 } 1146 write_unlock(&resource_lock); 1147 return res; 1148 } 1149 EXPORT_SYMBOL(__request_region); 1150 1151 /** 1152 * __release_region - release a previously reserved resource region 1153 * @parent: parent resource descriptor 1154 * @start: resource start address 1155 * @n: resource region size 1156 * 1157 * The described resource region must match a currently busy region. 1158 */ 1159 void __release_region(struct resource *parent, resource_size_t start, 1160 resource_size_t n) 1161 { 1162 struct resource **p; 1163 resource_size_t end; 1164 1165 p = &parent->child; 1166 end = start + n - 1; 1167 1168 write_lock(&resource_lock); 1169 1170 for (;;) { 1171 struct resource *res = *p; 1172 1173 if (!res) 1174 break; 1175 if (res->start <= start && res->end >= end) { 1176 if (!(res->flags & IORESOURCE_BUSY)) { 1177 p = &res->child; 1178 continue; 1179 } 1180 if (res->start != start || res->end != end) 1181 break; 1182 *p = res->sibling; 1183 write_unlock(&resource_lock); 1184 if (res->flags & IORESOURCE_MUXED) 1185 wake_up(&muxed_resource_wait); 1186 free_resource(res); 1187 return; 1188 } 1189 p = &res->sibling; 1190 } 1191 1192 write_unlock(&resource_lock); 1193 1194 printk(KERN_WARNING "Trying to free nonexistent resource " 1195 "<%016llx-%016llx>\n", (unsigned long long)start, 1196 (unsigned long long)end); 1197 } 1198 EXPORT_SYMBOL(__release_region); 1199 1200 #ifdef CONFIG_MEMORY_HOTREMOVE 1201 /** 1202 * release_mem_region_adjustable - release a previously reserved memory region 1203 * @parent: parent resource descriptor 1204 * @start: resource start address 1205 * @size: resource region size 1206 * 1207 * This interface is intended for memory hot-delete. The requested region 1208 * is released from a currently busy memory resource. The requested region 1209 * must either match exactly or fit into a single busy resource entry. In 1210 * the latter case, the remaining resource is adjusted accordingly. 1211 * Existing children of the busy memory resource must be immutable in the 1212 * request. 1213 * 1214 * Note: 1215 * - Additional release conditions, such as overlapping region, can be 1216 * supported after they are confirmed as valid cases. 1217 * - When a busy memory resource gets split into two entries, the code 1218 * assumes that all children remain in the lower address entry for 1219 * simplicity. Enhance this logic when necessary. 1220 */ 1221 int release_mem_region_adjustable(struct resource *parent, 1222 resource_size_t start, resource_size_t size) 1223 { 1224 struct resource **p; 1225 struct resource *res; 1226 struct resource *new_res; 1227 resource_size_t end; 1228 int ret = -EINVAL; 1229 1230 end = start + size - 1; 1231 if ((start < parent->start) || (end > parent->end)) 1232 return ret; 1233 1234 /* The alloc_resource() result gets checked later */ 1235 new_res = alloc_resource(GFP_KERNEL); 1236 1237 p = &parent->child; 1238 write_lock(&resource_lock); 1239 1240 while ((res = *p)) { 1241 if (res->start >= end) 1242 break; 1243 1244 /* look for the next resource if it does not fit into */ 1245 if (res->start > start || res->end < end) { 1246 p = &res->sibling; 1247 continue; 1248 } 1249 1250 if (!(res->flags & IORESOURCE_MEM)) 1251 break; 1252 1253 if (!(res->flags & IORESOURCE_BUSY)) { 1254 p = &res->child; 1255 continue; 1256 } 1257 1258 /* found the target resource; let's adjust accordingly */ 1259 if (res->start == start && res->end == end) { 1260 /* free the whole entry */ 1261 *p = res->sibling; 1262 free_resource(res); 1263 ret = 0; 1264 } else if (res->start == start && res->end != end) { 1265 /* adjust the start */ 1266 ret = __adjust_resource(res, end + 1, 1267 res->end - end); 1268 } else if (res->start != start && res->end == end) { 1269 /* adjust the end */ 1270 ret = __adjust_resource(res, res->start, 1271 start - res->start); 1272 } else { 1273 /* split into two entries */ 1274 if (!new_res) { 1275 ret = -ENOMEM; 1276 break; 1277 } 1278 new_res->name = res->name; 1279 new_res->start = end + 1; 1280 new_res->end = res->end; 1281 new_res->flags = res->flags; 1282 new_res->desc = res->desc; 1283 new_res->parent = res->parent; 1284 new_res->sibling = res->sibling; 1285 new_res->child = NULL; 1286 1287 ret = __adjust_resource(res, res->start, 1288 start - res->start); 1289 if (ret) 1290 break; 1291 res->sibling = new_res; 1292 new_res = NULL; 1293 } 1294 1295 break; 1296 } 1297 1298 write_unlock(&resource_lock); 1299 free_resource(new_res); 1300 return ret; 1301 } 1302 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1303 1304 /* 1305 * Managed region resource 1306 */ 1307 static void devm_resource_release(struct device *dev, void *ptr) 1308 { 1309 struct resource **r = ptr; 1310 1311 release_resource(*r); 1312 } 1313 1314 /** 1315 * devm_request_resource() - request and reserve an I/O or memory resource 1316 * @dev: device for which to request the resource 1317 * @root: root of the resource tree from which to request the resource 1318 * @new: descriptor of the resource to request 1319 * 1320 * This is a device-managed version of request_resource(). There is usually 1321 * no need to release resources requested by this function explicitly since 1322 * that will be taken care of when the device is unbound from its driver. 1323 * If for some reason the resource needs to be released explicitly, because 1324 * of ordering issues for example, drivers must call devm_release_resource() 1325 * rather than the regular release_resource(). 1326 * 1327 * When a conflict is detected between any existing resources and the newly 1328 * requested resource, an error message will be printed. 1329 * 1330 * Returns 0 on success or a negative error code on failure. 1331 */ 1332 int devm_request_resource(struct device *dev, struct resource *root, 1333 struct resource *new) 1334 { 1335 struct resource *conflict, **ptr; 1336 1337 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1338 if (!ptr) 1339 return -ENOMEM; 1340 1341 *ptr = new; 1342 1343 conflict = request_resource_conflict(root, new); 1344 if (conflict) { 1345 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1346 new, conflict->name, conflict); 1347 devres_free(ptr); 1348 return -EBUSY; 1349 } 1350 1351 devres_add(dev, ptr); 1352 return 0; 1353 } 1354 EXPORT_SYMBOL(devm_request_resource); 1355 1356 static int devm_resource_match(struct device *dev, void *res, void *data) 1357 { 1358 struct resource **ptr = res; 1359 1360 return *ptr == data; 1361 } 1362 1363 /** 1364 * devm_release_resource() - release a previously requested resource 1365 * @dev: device for which to release the resource 1366 * @new: descriptor of the resource to release 1367 * 1368 * Releases a resource previously requested using devm_request_resource(). 1369 */ 1370 void devm_release_resource(struct device *dev, struct resource *new) 1371 { 1372 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1373 new)); 1374 } 1375 EXPORT_SYMBOL(devm_release_resource); 1376 1377 struct region_devres { 1378 struct resource *parent; 1379 resource_size_t start; 1380 resource_size_t n; 1381 }; 1382 1383 static void devm_region_release(struct device *dev, void *res) 1384 { 1385 struct region_devres *this = res; 1386 1387 __release_region(this->parent, this->start, this->n); 1388 } 1389 1390 static int devm_region_match(struct device *dev, void *res, void *match_data) 1391 { 1392 struct region_devres *this = res, *match = match_data; 1393 1394 return this->parent == match->parent && 1395 this->start == match->start && this->n == match->n; 1396 } 1397 1398 struct resource * 1399 __devm_request_region(struct device *dev, struct resource *parent, 1400 resource_size_t start, resource_size_t n, const char *name) 1401 { 1402 struct region_devres *dr = NULL; 1403 struct resource *res; 1404 1405 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1406 GFP_KERNEL); 1407 if (!dr) 1408 return NULL; 1409 1410 dr->parent = parent; 1411 dr->start = start; 1412 dr->n = n; 1413 1414 res = __request_region(parent, start, n, name, 0); 1415 if (res) 1416 devres_add(dev, dr); 1417 else 1418 devres_free(dr); 1419 1420 return res; 1421 } 1422 EXPORT_SYMBOL(__devm_request_region); 1423 1424 void __devm_release_region(struct device *dev, struct resource *parent, 1425 resource_size_t start, resource_size_t n) 1426 { 1427 struct region_devres match_data = { parent, start, n }; 1428 1429 __release_region(parent, start, n); 1430 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1431 &match_data)); 1432 } 1433 EXPORT_SYMBOL(__devm_release_region); 1434 1435 /* 1436 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1437 */ 1438 #define MAXRESERVE 4 1439 static int __init reserve_setup(char *str) 1440 { 1441 static int reserved; 1442 static struct resource reserve[MAXRESERVE]; 1443 1444 for (;;) { 1445 unsigned int io_start, io_num; 1446 int x = reserved; 1447 struct resource *parent; 1448 1449 if (get_option(&str, &io_start) != 2) 1450 break; 1451 if (get_option(&str, &io_num) == 0) 1452 break; 1453 if (x < MAXRESERVE) { 1454 struct resource *res = reserve + x; 1455 1456 /* 1457 * If the region starts below 0x10000, we assume it's 1458 * I/O port space; otherwise assume it's memory. 1459 */ 1460 if (io_start < 0x10000) { 1461 res->flags = IORESOURCE_IO; 1462 parent = &ioport_resource; 1463 } else { 1464 res->flags = IORESOURCE_MEM; 1465 parent = &iomem_resource; 1466 } 1467 res->name = "reserved"; 1468 res->start = io_start; 1469 res->end = io_start + io_num - 1; 1470 res->flags |= IORESOURCE_BUSY; 1471 res->desc = IORES_DESC_NONE; 1472 res->child = NULL; 1473 if (request_resource(parent, res) == 0) 1474 reserved = x+1; 1475 } 1476 } 1477 return 1; 1478 } 1479 __setup("reserve=", reserve_setup); 1480 1481 /* 1482 * Check if the requested addr and size spans more than any slot in the 1483 * iomem resource tree. 1484 */ 1485 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1486 { 1487 struct resource *p = &iomem_resource; 1488 int err = 0; 1489 loff_t l; 1490 1491 read_lock(&resource_lock); 1492 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1493 /* 1494 * We can probably skip the resources without 1495 * IORESOURCE_IO attribute? 1496 */ 1497 if (p->start >= addr + size) 1498 continue; 1499 if (p->end < addr) 1500 continue; 1501 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1502 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1503 continue; 1504 /* 1505 * if a resource is "BUSY", it's not a hardware resource 1506 * but a driver mapping of such a resource; we don't want 1507 * to warn for those; some drivers legitimately map only 1508 * partial hardware resources. (example: vesafb) 1509 */ 1510 if (p->flags & IORESOURCE_BUSY) 1511 continue; 1512 1513 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1514 (unsigned long long)addr, 1515 (unsigned long long)(addr + size - 1), 1516 p->name, p); 1517 err = -1; 1518 break; 1519 } 1520 read_unlock(&resource_lock); 1521 1522 return err; 1523 } 1524 1525 #ifdef CONFIG_STRICT_DEVMEM 1526 static int strict_iomem_checks = 1; 1527 #else 1528 static int strict_iomem_checks; 1529 #endif 1530 1531 /* 1532 * check if an address is reserved in the iomem resource tree 1533 * returns true if reserved, false if not reserved. 1534 */ 1535 bool iomem_is_exclusive(u64 addr) 1536 { 1537 struct resource *p = &iomem_resource; 1538 bool err = false; 1539 loff_t l; 1540 int size = PAGE_SIZE; 1541 1542 if (!strict_iomem_checks) 1543 return false; 1544 1545 addr = addr & PAGE_MASK; 1546 1547 read_lock(&resource_lock); 1548 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1549 /* 1550 * We can probably skip the resources without 1551 * IORESOURCE_IO attribute? 1552 */ 1553 if (p->start >= addr + size) 1554 break; 1555 if (p->end < addr) 1556 continue; 1557 /* 1558 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1559 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1560 * resource is busy. 1561 */ 1562 if ((p->flags & IORESOURCE_BUSY) == 0) 1563 continue; 1564 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1565 || p->flags & IORESOURCE_EXCLUSIVE) { 1566 err = true; 1567 break; 1568 } 1569 } 1570 read_unlock(&resource_lock); 1571 1572 return err; 1573 } 1574 1575 struct resource_entry *resource_list_create_entry(struct resource *res, 1576 size_t extra_size) 1577 { 1578 struct resource_entry *entry; 1579 1580 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1581 if (entry) { 1582 INIT_LIST_HEAD(&entry->node); 1583 entry->res = res ? res : &entry->__res; 1584 } 1585 1586 return entry; 1587 } 1588 EXPORT_SYMBOL(resource_list_create_entry); 1589 1590 void resource_list_free(struct list_head *head) 1591 { 1592 struct resource_entry *entry, *tmp; 1593 1594 list_for_each_entry_safe(entry, tmp, head, node) 1595 resource_list_destroy_entry(entry); 1596 } 1597 EXPORT_SYMBOL(resource_list_free); 1598 1599 static int __init strict_iomem(char *str) 1600 { 1601 if (strstr(str, "relaxed")) 1602 strict_iomem_checks = 0; 1603 if (strstr(str, "strict")) 1604 strict_iomem_checks = 1; 1605 return 1; 1606 } 1607 1608 __setup("iomem=", strict_iomem); 1609