xref: /openbmc/linux/kernel/resource.c (revision 93f5715e)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <linux/resource_ext.h>
26 #include <asm/io.h>
27 
28 
29 struct resource ioport_resource = {
30 	.name	= "PCI IO",
31 	.start	= 0,
32 	.end	= IO_SPACE_LIMIT,
33 	.flags	= IORESOURCE_IO,
34 };
35 EXPORT_SYMBOL(ioport_resource);
36 
37 struct resource iomem_resource = {
38 	.name	= "PCI mem",
39 	.start	= 0,
40 	.end	= -1,
41 	.flags	= IORESOURCE_MEM,
42 };
43 EXPORT_SYMBOL(iomem_resource);
44 
45 /* constraints to be met while allocating resources */
46 struct resource_constraint {
47 	resource_size_t min, max, align;
48 	resource_size_t (*alignf)(void *, const struct resource *,
49 			resource_size_t, resource_size_t);
50 	void *alignf_data;
51 };
52 
53 static DEFINE_RWLOCK(resource_lock);
54 
55 /*
56  * For memory hotplug, there is no way to free resource entries allocated
57  * by boot mem after the system is up. So for reusing the resource entry
58  * we need to remember the resource.
59  */
60 static struct resource *bootmem_resource_free;
61 static DEFINE_SPINLOCK(bootmem_resource_lock);
62 
63 static struct resource *next_resource(struct resource *p, bool sibling_only)
64 {
65 	/* Caller wants to traverse through siblings only */
66 	if (sibling_only)
67 		return p->sibling;
68 
69 	if (p->child)
70 		return p->child;
71 	while (!p->sibling && p->parent)
72 		p = p->parent;
73 	return p->sibling;
74 }
75 
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 	struct resource *p = v;
79 	(*pos)++;
80 	return (void *)next_resource(p, false);
81 }
82 
83 #ifdef CONFIG_PROC_FS
84 
85 enum { MAX_IORES_LEVEL = 5 };
86 
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 	__acquires(resource_lock)
89 {
90 	struct resource *p = PDE_DATA(file_inode(m->file));
91 	loff_t l = 0;
92 	read_lock(&resource_lock);
93 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 		;
95 	return p;
96 }
97 
98 static void r_stop(struct seq_file *m, void *v)
99 	__releases(resource_lock)
100 {
101 	read_unlock(&resource_lock);
102 }
103 
104 static int r_show(struct seq_file *m, void *v)
105 {
106 	struct resource *root = PDE_DATA(file_inode(m->file));
107 	struct resource *r = v, *p;
108 	unsigned long long start, end;
109 	int width = root->end < 0x10000 ? 4 : 8;
110 	int depth;
111 
112 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
113 		if (p->parent == root)
114 			break;
115 
116 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
117 		start = r->start;
118 		end = r->end;
119 	} else {
120 		start = end = 0;
121 	}
122 
123 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
124 			depth * 2, "",
125 			width, start,
126 			width, end,
127 			r->name ? r->name : "<BAD>");
128 	return 0;
129 }
130 
131 static const struct seq_operations resource_op = {
132 	.start	= r_start,
133 	.next	= r_next,
134 	.stop	= r_stop,
135 	.show	= r_show,
136 };
137 
138 static int __init ioresources_init(void)
139 {
140 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
141 			&ioport_resource);
142 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
143 	return 0;
144 }
145 __initcall(ioresources_init);
146 
147 #endif /* CONFIG_PROC_FS */
148 
149 static void free_resource(struct resource *res)
150 {
151 	if (!res)
152 		return;
153 
154 	if (!PageSlab(virt_to_head_page(res))) {
155 		spin_lock(&bootmem_resource_lock);
156 		res->sibling = bootmem_resource_free;
157 		bootmem_resource_free = res;
158 		spin_unlock(&bootmem_resource_lock);
159 	} else {
160 		kfree(res);
161 	}
162 }
163 
164 static struct resource *alloc_resource(gfp_t flags)
165 {
166 	struct resource *res = NULL;
167 
168 	spin_lock(&bootmem_resource_lock);
169 	if (bootmem_resource_free) {
170 		res = bootmem_resource_free;
171 		bootmem_resource_free = res->sibling;
172 	}
173 	spin_unlock(&bootmem_resource_lock);
174 
175 	if (res)
176 		memset(res, 0, sizeof(struct resource));
177 	else
178 		res = kzalloc(sizeof(struct resource), flags);
179 
180 	return res;
181 }
182 
183 /* Return the conflict entry if you can't request it */
184 static struct resource * __request_resource(struct resource *root, struct resource *new)
185 {
186 	resource_size_t start = new->start;
187 	resource_size_t end = new->end;
188 	struct resource *tmp, **p;
189 
190 	if (end < start)
191 		return root;
192 	if (start < root->start)
193 		return root;
194 	if (end > root->end)
195 		return root;
196 	p = &root->child;
197 	for (;;) {
198 		tmp = *p;
199 		if (!tmp || tmp->start > end) {
200 			new->sibling = tmp;
201 			*p = new;
202 			new->parent = root;
203 			return NULL;
204 		}
205 		p = &tmp->sibling;
206 		if (tmp->end < start)
207 			continue;
208 		return tmp;
209 	}
210 }
211 
212 static int __release_resource(struct resource *old, bool release_child)
213 {
214 	struct resource *tmp, **p, *chd;
215 
216 	p = &old->parent->child;
217 	for (;;) {
218 		tmp = *p;
219 		if (!tmp)
220 			break;
221 		if (tmp == old) {
222 			if (release_child || !(tmp->child)) {
223 				*p = tmp->sibling;
224 			} else {
225 				for (chd = tmp->child;; chd = chd->sibling) {
226 					chd->parent = tmp->parent;
227 					if (!(chd->sibling))
228 						break;
229 				}
230 				*p = tmp->child;
231 				chd->sibling = tmp->sibling;
232 			}
233 			old->parent = NULL;
234 			return 0;
235 		}
236 		p = &tmp->sibling;
237 	}
238 	return -EINVAL;
239 }
240 
241 static void __release_child_resources(struct resource *r)
242 {
243 	struct resource *tmp, *p;
244 	resource_size_t size;
245 
246 	p = r->child;
247 	r->child = NULL;
248 	while (p) {
249 		tmp = p;
250 		p = p->sibling;
251 
252 		tmp->parent = NULL;
253 		tmp->sibling = NULL;
254 		__release_child_resources(tmp);
255 
256 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
257 		/* need to restore size, and keep flags */
258 		size = resource_size(tmp);
259 		tmp->start = 0;
260 		tmp->end = size - 1;
261 	}
262 }
263 
264 void release_child_resources(struct resource *r)
265 {
266 	write_lock(&resource_lock);
267 	__release_child_resources(r);
268 	write_unlock(&resource_lock);
269 }
270 
271 /**
272  * request_resource_conflict - request and reserve an I/O or memory resource
273  * @root: root resource descriptor
274  * @new: resource descriptor desired by caller
275  *
276  * Returns 0 for success, conflict resource on error.
277  */
278 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
279 {
280 	struct resource *conflict;
281 
282 	write_lock(&resource_lock);
283 	conflict = __request_resource(root, new);
284 	write_unlock(&resource_lock);
285 	return conflict;
286 }
287 
288 /**
289  * request_resource - request and reserve an I/O or memory resource
290  * @root: root resource descriptor
291  * @new: resource descriptor desired by caller
292  *
293  * Returns 0 for success, negative error code on error.
294  */
295 int request_resource(struct resource *root, struct resource *new)
296 {
297 	struct resource *conflict;
298 
299 	conflict = request_resource_conflict(root, new);
300 	return conflict ? -EBUSY : 0;
301 }
302 
303 EXPORT_SYMBOL(request_resource);
304 
305 /**
306  * release_resource - release a previously reserved resource
307  * @old: resource pointer
308  */
309 int release_resource(struct resource *old)
310 {
311 	int retval;
312 
313 	write_lock(&resource_lock);
314 	retval = __release_resource(old, true);
315 	write_unlock(&resource_lock);
316 	return retval;
317 }
318 
319 EXPORT_SYMBOL(release_resource);
320 
321 /*
322  * Finds the lowest iomem resource existing within [res->start.res->end).
323  * The caller must specify res->start, res->end, res->flags, and optionally
324  * desc.  If found, returns 0, res is overwritten, if not found, returns -1.
325  * This function walks the whole tree and not just first level children until
326  * and unless first_level_children_only is true.
327  */
328 static int find_next_iomem_res(struct resource *res, unsigned long desc,
329 			       bool first_level_children_only)
330 {
331 	resource_size_t start, end;
332 	struct resource *p;
333 	bool sibling_only = false;
334 
335 	BUG_ON(!res);
336 
337 	start = res->start;
338 	end = res->end;
339 	BUG_ON(start >= end);
340 
341 	if (first_level_children_only)
342 		sibling_only = true;
343 
344 	read_lock(&resource_lock);
345 
346 	for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
347 		if ((p->flags & res->flags) != res->flags)
348 			continue;
349 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
350 			continue;
351 		if (p->start > end) {
352 			p = NULL;
353 			break;
354 		}
355 		if ((p->end >= start) && (p->start < end))
356 			break;
357 	}
358 
359 	read_unlock(&resource_lock);
360 	if (!p)
361 		return -1;
362 	/* copy data */
363 	if (res->start < p->start)
364 		res->start = p->start;
365 	if (res->end > p->end)
366 		res->end = p->end;
367 	res->flags = p->flags;
368 	res->desc = p->desc;
369 	return 0;
370 }
371 
372 static int __walk_iomem_res_desc(struct resource *res, unsigned long desc,
373 				 bool first_level_children_only,
374 				 void *arg,
375 				 int (*func)(struct resource *, void *))
376 {
377 	u64 orig_end = res->end;
378 	int ret = -1;
379 
380 	while ((res->start < res->end) &&
381 	       !find_next_iomem_res(res, desc, first_level_children_only)) {
382 		ret = (*func)(res, arg);
383 		if (ret)
384 			break;
385 
386 		res->start = res->end + 1;
387 		res->end = orig_end;
388 	}
389 
390 	return ret;
391 }
392 
393 /*
394  * Walks through iomem resources and calls func() with matching resource
395  * ranges. This walks through whole tree and not just first level children.
396  * All the memory ranges which overlap start,end and also match flags and
397  * desc are valid candidates.
398  *
399  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
400  * @flags: I/O resource flags
401  * @start: start addr
402  * @end: end addr
403  *
404  * NOTE: For a new descriptor search, define a new IORES_DESC in
405  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
406  */
407 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
408 		u64 end, void *arg, int (*func)(struct resource *, void *))
409 {
410 	struct resource res;
411 
412 	res.start = start;
413 	res.end = end;
414 	res.flags = flags;
415 
416 	return __walk_iomem_res_desc(&res, desc, false, arg, func);
417 }
418 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
419 
420 /*
421  * This function calls the @func callback against all memory ranges of type
422  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
423  * Now, this function is only for System RAM, it deals with full ranges and
424  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
425  * ranges.
426  */
427 int walk_system_ram_res(u64 start, u64 end, void *arg,
428 				int (*func)(struct resource *, void *))
429 {
430 	struct resource res;
431 
432 	res.start = start;
433 	res.end = end;
434 	res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
435 
436 	return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true,
437 				     arg, func);
438 }
439 
440 /*
441  * This function calls the @func callback against all memory ranges, which
442  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
443  */
444 int walk_mem_res(u64 start, u64 end, void *arg,
445 		 int (*func)(struct resource *, void *))
446 {
447 	struct resource res;
448 
449 	res.start = start;
450 	res.end = end;
451 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
452 
453 	return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true,
454 				     arg, func);
455 }
456 
457 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
458 
459 /*
460  * This function calls the @func callback against all memory ranges of type
461  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
462  * It is to be used only for System RAM.
463  */
464 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
465 		void *arg, int (*func)(unsigned long, unsigned long, void *))
466 {
467 	struct resource res;
468 	unsigned long pfn, end_pfn;
469 	u64 orig_end;
470 	int ret = -1;
471 
472 	res.start = (u64) start_pfn << PAGE_SHIFT;
473 	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
474 	res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
475 	orig_end = res.end;
476 	while ((res.start < res.end) &&
477 		(find_next_iomem_res(&res, IORES_DESC_NONE, true) >= 0)) {
478 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
479 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
480 		if (end_pfn > pfn)
481 			ret = (*func)(pfn, end_pfn - pfn, arg);
482 		if (ret)
483 			break;
484 		res.start = res.end + 1;
485 		res.end = orig_end;
486 	}
487 	return ret;
488 }
489 
490 #endif
491 
492 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
493 {
494 	return 1;
495 }
496 
497 /*
498  * This generic page_is_ram() returns true if specified address is
499  * registered as System RAM in iomem_resource list.
500  */
501 int __weak page_is_ram(unsigned long pfn)
502 {
503 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
504 }
505 EXPORT_SYMBOL_GPL(page_is_ram);
506 
507 /**
508  * region_intersects() - determine intersection of region with known resources
509  * @start: region start address
510  * @size: size of region
511  * @flags: flags of resource (in iomem_resource)
512  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
513  *
514  * Check if the specified region partially overlaps or fully eclipses a
515  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
516  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
517  * return REGION_MIXED if the region overlaps @flags/@desc and another
518  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
519  * and no other defined resource. Note that REGION_INTERSECTS is also
520  * returned in the case when the specified region overlaps RAM and undefined
521  * memory holes.
522  *
523  * region_intersect() is used by memory remapping functions to ensure
524  * the user is not remapping RAM and is a vast speed up over walking
525  * through the resource table page by page.
526  */
527 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
528 		      unsigned long desc)
529 {
530 	resource_size_t end = start + size - 1;
531 	int type = 0; int other = 0;
532 	struct resource *p;
533 
534 	read_lock(&resource_lock);
535 	for (p = iomem_resource.child; p ; p = p->sibling) {
536 		bool is_type = (((p->flags & flags) == flags) &&
537 				((desc == IORES_DESC_NONE) ||
538 				 (desc == p->desc)));
539 
540 		if (start >= p->start && start <= p->end)
541 			is_type ? type++ : other++;
542 		if (end >= p->start && end <= p->end)
543 			is_type ? type++ : other++;
544 		if (p->start >= start && p->end <= end)
545 			is_type ? type++ : other++;
546 	}
547 	read_unlock(&resource_lock);
548 
549 	if (other == 0)
550 		return type ? REGION_INTERSECTS : REGION_DISJOINT;
551 
552 	if (type)
553 		return REGION_MIXED;
554 
555 	return REGION_DISJOINT;
556 }
557 EXPORT_SYMBOL_GPL(region_intersects);
558 
559 void __weak arch_remove_reservations(struct resource *avail)
560 {
561 }
562 
563 static resource_size_t simple_align_resource(void *data,
564 					     const struct resource *avail,
565 					     resource_size_t size,
566 					     resource_size_t align)
567 {
568 	return avail->start;
569 }
570 
571 static void resource_clip(struct resource *res, resource_size_t min,
572 			  resource_size_t max)
573 {
574 	if (res->start < min)
575 		res->start = min;
576 	if (res->end > max)
577 		res->end = max;
578 }
579 
580 /*
581  * Find empty slot in the resource tree with the given range and
582  * alignment constraints
583  */
584 static int __find_resource(struct resource *root, struct resource *old,
585 			 struct resource *new,
586 			 resource_size_t  size,
587 			 struct resource_constraint *constraint)
588 {
589 	struct resource *this = root->child;
590 	struct resource tmp = *new, avail, alloc;
591 
592 	tmp.start = root->start;
593 	/*
594 	 * Skip past an allocated resource that starts at 0, since the assignment
595 	 * of this->start - 1 to tmp->end below would cause an underflow.
596 	 */
597 	if (this && this->start == root->start) {
598 		tmp.start = (this == old) ? old->start : this->end + 1;
599 		this = this->sibling;
600 	}
601 	for(;;) {
602 		if (this)
603 			tmp.end = (this == old) ?  this->end : this->start - 1;
604 		else
605 			tmp.end = root->end;
606 
607 		if (tmp.end < tmp.start)
608 			goto next;
609 
610 		resource_clip(&tmp, constraint->min, constraint->max);
611 		arch_remove_reservations(&tmp);
612 
613 		/* Check for overflow after ALIGN() */
614 		avail.start = ALIGN(tmp.start, constraint->align);
615 		avail.end = tmp.end;
616 		avail.flags = new->flags & ~IORESOURCE_UNSET;
617 		if (avail.start >= tmp.start) {
618 			alloc.flags = avail.flags;
619 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
620 					size, constraint->align);
621 			alloc.end = alloc.start + size - 1;
622 			if (alloc.start <= alloc.end &&
623 			    resource_contains(&avail, &alloc)) {
624 				new->start = alloc.start;
625 				new->end = alloc.end;
626 				return 0;
627 			}
628 		}
629 
630 next:		if (!this || this->end == root->end)
631 			break;
632 
633 		if (this != old)
634 			tmp.start = this->end + 1;
635 		this = this->sibling;
636 	}
637 	return -EBUSY;
638 }
639 
640 /*
641  * Find empty slot in the resource tree given range and alignment.
642  */
643 static int find_resource(struct resource *root, struct resource *new,
644 			resource_size_t size,
645 			struct resource_constraint  *constraint)
646 {
647 	return  __find_resource(root, NULL, new, size, constraint);
648 }
649 
650 /**
651  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
652  *	The resource will be relocated if the new size cannot be reallocated in the
653  *	current location.
654  *
655  * @root: root resource descriptor
656  * @old:  resource descriptor desired by caller
657  * @newsize: new size of the resource descriptor
658  * @constraint: the size and alignment constraints to be met.
659  */
660 static int reallocate_resource(struct resource *root, struct resource *old,
661 			resource_size_t newsize,
662 			struct resource_constraint  *constraint)
663 {
664 	int err=0;
665 	struct resource new = *old;
666 	struct resource *conflict;
667 
668 	write_lock(&resource_lock);
669 
670 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
671 		goto out;
672 
673 	if (resource_contains(&new, old)) {
674 		old->start = new.start;
675 		old->end = new.end;
676 		goto out;
677 	}
678 
679 	if (old->child) {
680 		err = -EBUSY;
681 		goto out;
682 	}
683 
684 	if (resource_contains(old, &new)) {
685 		old->start = new.start;
686 		old->end = new.end;
687 	} else {
688 		__release_resource(old, true);
689 		*old = new;
690 		conflict = __request_resource(root, old);
691 		BUG_ON(conflict);
692 	}
693 out:
694 	write_unlock(&resource_lock);
695 	return err;
696 }
697 
698 
699 /**
700  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
701  * 	The resource will be reallocated with a new size if it was already allocated
702  * @root: root resource descriptor
703  * @new: resource descriptor desired by caller
704  * @size: requested resource region size
705  * @min: minimum boundary to allocate
706  * @max: maximum boundary to allocate
707  * @align: alignment requested, in bytes
708  * @alignf: alignment function, optional, called if not NULL
709  * @alignf_data: arbitrary data to pass to the @alignf function
710  */
711 int allocate_resource(struct resource *root, struct resource *new,
712 		      resource_size_t size, resource_size_t min,
713 		      resource_size_t max, resource_size_t align,
714 		      resource_size_t (*alignf)(void *,
715 						const struct resource *,
716 						resource_size_t,
717 						resource_size_t),
718 		      void *alignf_data)
719 {
720 	int err;
721 	struct resource_constraint constraint;
722 
723 	if (!alignf)
724 		alignf = simple_align_resource;
725 
726 	constraint.min = min;
727 	constraint.max = max;
728 	constraint.align = align;
729 	constraint.alignf = alignf;
730 	constraint.alignf_data = alignf_data;
731 
732 	if ( new->parent ) {
733 		/* resource is already allocated, try reallocating with
734 		   the new constraints */
735 		return reallocate_resource(root, new, size, &constraint);
736 	}
737 
738 	write_lock(&resource_lock);
739 	err = find_resource(root, new, size, &constraint);
740 	if (err >= 0 && __request_resource(root, new))
741 		err = -EBUSY;
742 	write_unlock(&resource_lock);
743 	return err;
744 }
745 
746 EXPORT_SYMBOL(allocate_resource);
747 
748 /**
749  * lookup_resource - find an existing resource by a resource start address
750  * @root: root resource descriptor
751  * @start: resource start address
752  *
753  * Returns a pointer to the resource if found, NULL otherwise
754  */
755 struct resource *lookup_resource(struct resource *root, resource_size_t start)
756 {
757 	struct resource *res;
758 
759 	read_lock(&resource_lock);
760 	for (res = root->child; res; res = res->sibling) {
761 		if (res->start == start)
762 			break;
763 	}
764 	read_unlock(&resource_lock);
765 
766 	return res;
767 }
768 
769 /*
770  * Insert a resource into the resource tree. If successful, return NULL,
771  * otherwise return the conflicting resource (compare to __request_resource())
772  */
773 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
774 {
775 	struct resource *first, *next;
776 
777 	for (;; parent = first) {
778 		first = __request_resource(parent, new);
779 		if (!first)
780 			return first;
781 
782 		if (first == parent)
783 			return first;
784 		if (WARN_ON(first == new))	/* duplicated insertion */
785 			return first;
786 
787 		if ((first->start > new->start) || (first->end < new->end))
788 			break;
789 		if ((first->start == new->start) && (first->end == new->end))
790 			break;
791 	}
792 
793 	for (next = first; ; next = next->sibling) {
794 		/* Partial overlap? Bad, and unfixable */
795 		if (next->start < new->start || next->end > new->end)
796 			return next;
797 		if (!next->sibling)
798 			break;
799 		if (next->sibling->start > new->end)
800 			break;
801 	}
802 
803 	new->parent = parent;
804 	new->sibling = next->sibling;
805 	new->child = first;
806 
807 	next->sibling = NULL;
808 	for (next = first; next; next = next->sibling)
809 		next->parent = new;
810 
811 	if (parent->child == first) {
812 		parent->child = new;
813 	} else {
814 		next = parent->child;
815 		while (next->sibling != first)
816 			next = next->sibling;
817 		next->sibling = new;
818 	}
819 	return NULL;
820 }
821 
822 /**
823  * insert_resource_conflict - Inserts resource in the resource tree
824  * @parent: parent of the new resource
825  * @new: new resource to insert
826  *
827  * Returns 0 on success, conflict resource if the resource can't be inserted.
828  *
829  * This function is equivalent to request_resource_conflict when no conflict
830  * happens. If a conflict happens, and the conflicting resources
831  * entirely fit within the range of the new resource, then the new
832  * resource is inserted and the conflicting resources become children of
833  * the new resource.
834  *
835  * This function is intended for producers of resources, such as FW modules
836  * and bus drivers.
837  */
838 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
839 {
840 	struct resource *conflict;
841 
842 	write_lock(&resource_lock);
843 	conflict = __insert_resource(parent, new);
844 	write_unlock(&resource_lock);
845 	return conflict;
846 }
847 
848 /**
849  * insert_resource - Inserts a resource in the resource tree
850  * @parent: parent of the new resource
851  * @new: new resource to insert
852  *
853  * Returns 0 on success, -EBUSY if the resource can't be inserted.
854  *
855  * This function is intended for producers of resources, such as FW modules
856  * and bus drivers.
857  */
858 int insert_resource(struct resource *parent, struct resource *new)
859 {
860 	struct resource *conflict;
861 
862 	conflict = insert_resource_conflict(parent, new);
863 	return conflict ? -EBUSY : 0;
864 }
865 EXPORT_SYMBOL_GPL(insert_resource);
866 
867 /**
868  * insert_resource_expand_to_fit - Insert a resource into the resource tree
869  * @root: root resource descriptor
870  * @new: new resource to insert
871  *
872  * Insert a resource into the resource tree, possibly expanding it in order
873  * to make it encompass any conflicting resources.
874  */
875 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
876 {
877 	if (new->parent)
878 		return;
879 
880 	write_lock(&resource_lock);
881 	for (;;) {
882 		struct resource *conflict;
883 
884 		conflict = __insert_resource(root, new);
885 		if (!conflict)
886 			break;
887 		if (conflict == root)
888 			break;
889 
890 		/* Ok, expand resource to cover the conflict, then try again .. */
891 		if (conflict->start < new->start)
892 			new->start = conflict->start;
893 		if (conflict->end > new->end)
894 			new->end = conflict->end;
895 
896 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
897 	}
898 	write_unlock(&resource_lock);
899 }
900 
901 /**
902  * remove_resource - Remove a resource in the resource tree
903  * @old: resource to remove
904  *
905  * Returns 0 on success, -EINVAL if the resource is not valid.
906  *
907  * This function removes a resource previously inserted by insert_resource()
908  * or insert_resource_conflict(), and moves the children (if any) up to
909  * where they were before.  insert_resource() and insert_resource_conflict()
910  * insert a new resource, and move any conflicting resources down to the
911  * children of the new resource.
912  *
913  * insert_resource(), insert_resource_conflict() and remove_resource() are
914  * intended for producers of resources, such as FW modules and bus drivers.
915  */
916 int remove_resource(struct resource *old)
917 {
918 	int retval;
919 
920 	write_lock(&resource_lock);
921 	retval = __release_resource(old, false);
922 	write_unlock(&resource_lock);
923 	return retval;
924 }
925 EXPORT_SYMBOL_GPL(remove_resource);
926 
927 static int __adjust_resource(struct resource *res, resource_size_t start,
928 				resource_size_t size)
929 {
930 	struct resource *tmp, *parent = res->parent;
931 	resource_size_t end = start + size - 1;
932 	int result = -EBUSY;
933 
934 	if (!parent)
935 		goto skip;
936 
937 	if ((start < parent->start) || (end > parent->end))
938 		goto out;
939 
940 	if (res->sibling && (res->sibling->start <= end))
941 		goto out;
942 
943 	tmp = parent->child;
944 	if (tmp != res) {
945 		while (tmp->sibling != res)
946 			tmp = tmp->sibling;
947 		if (start <= tmp->end)
948 			goto out;
949 	}
950 
951 skip:
952 	for (tmp = res->child; tmp; tmp = tmp->sibling)
953 		if ((tmp->start < start) || (tmp->end > end))
954 			goto out;
955 
956 	res->start = start;
957 	res->end = end;
958 	result = 0;
959 
960  out:
961 	return result;
962 }
963 
964 /**
965  * adjust_resource - modify a resource's start and size
966  * @res: resource to modify
967  * @start: new start value
968  * @size: new size
969  *
970  * Given an existing resource, change its start and size to match the
971  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
972  * Existing children of the resource are assumed to be immutable.
973  */
974 int adjust_resource(struct resource *res, resource_size_t start,
975 			resource_size_t size)
976 {
977 	int result;
978 
979 	write_lock(&resource_lock);
980 	result = __adjust_resource(res, start, size);
981 	write_unlock(&resource_lock);
982 	return result;
983 }
984 EXPORT_SYMBOL(adjust_resource);
985 
986 static void __init __reserve_region_with_split(struct resource *root,
987 		resource_size_t start, resource_size_t end,
988 		const char *name)
989 {
990 	struct resource *parent = root;
991 	struct resource *conflict;
992 	struct resource *res = alloc_resource(GFP_ATOMIC);
993 	struct resource *next_res = NULL;
994 	int type = resource_type(root);
995 
996 	if (!res)
997 		return;
998 
999 	res->name = name;
1000 	res->start = start;
1001 	res->end = end;
1002 	res->flags = type | IORESOURCE_BUSY;
1003 	res->desc = IORES_DESC_NONE;
1004 
1005 	while (1) {
1006 
1007 		conflict = __request_resource(parent, res);
1008 		if (!conflict) {
1009 			if (!next_res)
1010 				break;
1011 			res = next_res;
1012 			next_res = NULL;
1013 			continue;
1014 		}
1015 
1016 		/* conflict covered whole area */
1017 		if (conflict->start <= res->start &&
1018 				conflict->end >= res->end) {
1019 			free_resource(res);
1020 			WARN_ON(next_res);
1021 			break;
1022 		}
1023 
1024 		/* failed, split and try again */
1025 		if (conflict->start > res->start) {
1026 			end = res->end;
1027 			res->end = conflict->start - 1;
1028 			if (conflict->end < end) {
1029 				next_res = alloc_resource(GFP_ATOMIC);
1030 				if (!next_res) {
1031 					free_resource(res);
1032 					break;
1033 				}
1034 				next_res->name = name;
1035 				next_res->start = conflict->end + 1;
1036 				next_res->end = end;
1037 				next_res->flags = type | IORESOURCE_BUSY;
1038 				next_res->desc = IORES_DESC_NONE;
1039 			}
1040 		} else {
1041 			res->start = conflict->end + 1;
1042 		}
1043 	}
1044 
1045 }
1046 
1047 void __init reserve_region_with_split(struct resource *root,
1048 		resource_size_t start, resource_size_t end,
1049 		const char *name)
1050 {
1051 	int abort = 0;
1052 
1053 	write_lock(&resource_lock);
1054 	if (root->start > start || root->end < end) {
1055 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1056 		       (unsigned long long)start, (unsigned long long)end,
1057 		       root);
1058 		if (start > root->end || end < root->start)
1059 			abort = 1;
1060 		else {
1061 			if (end > root->end)
1062 				end = root->end;
1063 			if (start < root->start)
1064 				start = root->start;
1065 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1066 			       (unsigned long long)start,
1067 			       (unsigned long long)end);
1068 		}
1069 		dump_stack();
1070 	}
1071 	if (!abort)
1072 		__reserve_region_with_split(root, start, end, name);
1073 	write_unlock(&resource_lock);
1074 }
1075 
1076 /**
1077  * resource_alignment - calculate resource's alignment
1078  * @res: resource pointer
1079  *
1080  * Returns alignment on success, 0 (invalid alignment) on failure.
1081  */
1082 resource_size_t resource_alignment(struct resource *res)
1083 {
1084 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1085 	case IORESOURCE_SIZEALIGN:
1086 		return resource_size(res);
1087 	case IORESOURCE_STARTALIGN:
1088 		return res->start;
1089 	default:
1090 		return 0;
1091 	}
1092 }
1093 
1094 /*
1095  * This is compatibility stuff for IO resources.
1096  *
1097  * Note how this, unlike the above, knows about
1098  * the IO flag meanings (busy etc).
1099  *
1100  * request_region creates a new busy region.
1101  *
1102  * release_region releases a matching busy region.
1103  */
1104 
1105 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1106 
1107 /**
1108  * __request_region - create a new busy resource region
1109  * @parent: parent resource descriptor
1110  * @start: resource start address
1111  * @n: resource region size
1112  * @name: reserving caller's ID string
1113  * @flags: IO resource flags
1114  */
1115 struct resource * __request_region(struct resource *parent,
1116 				   resource_size_t start, resource_size_t n,
1117 				   const char *name, int flags)
1118 {
1119 	DECLARE_WAITQUEUE(wait, current);
1120 	struct resource *res = alloc_resource(GFP_KERNEL);
1121 
1122 	if (!res)
1123 		return NULL;
1124 
1125 	res->name = name;
1126 	res->start = start;
1127 	res->end = start + n - 1;
1128 
1129 	write_lock(&resource_lock);
1130 
1131 	for (;;) {
1132 		struct resource *conflict;
1133 
1134 		res->flags = resource_type(parent) | resource_ext_type(parent);
1135 		res->flags |= IORESOURCE_BUSY | flags;
1136 		res->desc = parent->desc;
1137 
1138 		conflict = __request_resource(parent, res);
1139 		if (!conflict)
1140 			break;
1141 		if (conflict != parent) {
1142 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1143 				parent = conflict;
1144 				continue;
1145 			}
1146 		}
1147 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1148 			add_wait_queue(&muxed_resource_wait, &wait);
1149 			write_unlock(&resource_lock);
1150 			set_current_state(TASK_UNINTERRUPTIBLE);
1151 			schedule();
1152 			remove_wait_queue(&muxed_resource_wait, &wait);
1153 			write_lock(&resource_lock);
1154 			continue;
1155 		}
1156 		/* Uhhuh, that didn't work out.. */
1157 		free_resource(res);
1158 		res = NULL;
1159 		break;
1160 	}
1161 	write_unlock(&resource_lock);
1162 	return res;
1163 }
1164 EXPORT_SYMBOL(__request_region);
1165 
1166 /**
1167  * __release_region - release a previously reserved resource region
1168  * @parent: parent resource descriptor
1169  * @start: resource start address
1170  * @n: resource region size
1171  *
1172  * The described resource region must match a currently busy region.
1173  */
1174 void __release_region(struct resource *parent, resource_size_t start,
1175 			resource_size_t n)
1176 {
1177 	struct resource **p;
1178 	resource_size_t end;
1179 
1180 	p = &parent->child;
1181 	end = start + n - 1;
1182 
1183 	write_lock(&resource_lock);
1184 
1185 	for (;;) {
1186 		struct resource *res = *p;
1187 
1188 		if (!res)
1189 			break;
1190 		if (res->start <= start && res->end >= end) {
1191 			if (!(res->flags & IORESOURCE_BUSY)) {
1192 				p = &res->child;
1193 				continue;
1194 			}
1195 			if (res->start != start || res->end != end)
1196 				break;
1197 			*p = res->sibling;
1198 			write_unlock(&resource_lock);
1199 			if (res->flags & IORESOURCE_MUXED)
1200 				wake_up(&muxed_resource_wait);
1201 			free_resource(res);
1202 			return;
1203 		}
1204 		p = &res->sibling;
1205 	}
1206 
1207 	write_unlock(&resource_lock);
1208 
1209 	printk(KERN_WARNING "Trying to free nonexistent resource "
1210 		"<%016llx-%016llx>\n", (unsigned long long)start,
1211 		(unsigned long long)end);
1212 }
1213 EXPORT_SYMBOL(__release_region);
1214 
1215 #ifdef CONFIG_MEMORY_HOTREMOVE
1216 /**
1217  * release_mem_region_adjustable - release a previously reserved memory region
1218  * @parent: parent resource descriptor
1219  * @start: resource start address
1220  * @size: resource region size
1221  *
1222  * This interface is intended for memory hot-delete.  The requested region
1223  * is released from a currently busy memory resource.  The requested region
1224  * must either match exactly or fit into a single busy resource entry.  In
1225  * the latter case, the remaining resource is adjusted accordingly.
1226  * Existing children of the busy memory resource must be immutable in the
1227  * request.
1228  *
1229  * Note:
1230  * - Additional release conditions, such as overlapping region, can be
1231  *   supported after they are confirmed as valid cases.
1232  * - When a busy memory resource gets split into two entries, the code
1233  *   assumes that all children remain in the lower address entry for
1234  *   simplicity.  Enhance this logic when necessary.
1235  */
1236 int release_mem_region_adjustable(struct resource *parent,
1237 			resource_size_t start, resource_size_t size)
1238 {
1239 	struct resource **p;
1240 	struct resource *res;
1241 	struct resource *new_res;
1242 	resource_size_t end;
1243 	int ret = -EINVAL;
1244 
1245 	end = start + size - 1;
1246 	if ((start < parent->start) || (end > parent->end))
1247 		return ret;
1248 
1249 	/* The alloc_resource() result gets checked later */
1250 	new_res = alloc_resource(GFP_KERNEL);
1251 
1252 	p = &parent->child;
1253 	write_lock(&resource_lock);
1254 
1255 	while ((res = *p)) {
1256 		if (res->start >= end)
1257 			break;
1258 
1259 		/* look for the next resource if it does not fit into */
1260 		if (res->start > start || res->end < end) {
1261 			p = &res->sibling;
1262 			continue;
1263 		}
1264 
1265 		if (!(res->flags & IORESOURCE_MEM))
1266 			break;
1267 
1268 		if (!(res->flags & IORESOURCE_BUSY)) {
1269 			p = &res->child;
1270 			continue;
1271 		}
1272 
1273 		/* found the target resource; let's adjust accordingly */
1274 		if (res->start == start && res->end == end) {
1275 			/* free the whole entry */
1276 			*p = res->sibling;
1277 			free_resource(res);
1278 			ret = 0;
1279 		} else if (res->start == start && res->end != end) {
1280 			/* adjust the start */
1281 			ret = __adjust_resource(res, end + 1,
1282 						res->end - end);
1283 		} else if (res->start != start && res->end == end) {
1284 			/* adjust the end */
1285 			ret = __adjust_resource(res, res->start,
1286 						start - res->start);
1287 		} else {
1288 			/* split into two entries */
1289 			if (!new_res) {
1290 				ret = -ENOMEM;
1291 				break;
1292 			}
1293 			new_res->name = res->name;
1294 			new_res->start = end + 1;
1295 			new_res->end = res->end;
1296 			new_res->flags = res->flags;
1297 			new_res->desc = res->desc;
1298 			new_res->parent = res->parent;
1299 			new_res->sibling = res->sibling;
1300 			new_res->child = NULL;
1301 
1302 			ret = __adjust_resource(res, res->start,
1303 						start - res->start);
1304 			if (ret)
1305 				break;
1306 			res->sibling = new_res;
1307 			new_res = NULL;
1308 		}
1309 
1310 		break;
1311 	}
1312 
1313 	write_unlock(&resource_lock);
1314 	free_resource(new_res);
1315 	return ret;
1316 }
1317 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1318 
1319 /*
1320  * Managed region resource
1321  */
1322 static void devm_resource_release(struct device *dev, void *ptr)
1323 {
1324 	struct resource **r = ptr;
1325 
1326 	release_resource(*r);
1327 }
1328 
1329 /**
1330  * devm_request_resource() - request and reserve an I/O or memory resource
1331  * @dev: device for which to request the resource
1332  * @root: root of the resource tree from which to request the resource
1333  * @new: descriptor of the resource to request
1334  *
1335  * This is a device-managed version of request_resource(). There is usually
1336  * no need to release resources requested by this function explicitly since
1337  * that will be taken care of when the device is unbound from its driver.
1338  * If for some reason the resource needs to be released explicitly, because
1339  * of ordering issues for example, drivers must call devm_release_resource()
1340  * rather than the regular release_resource().
1341  *
1342  * When a conflict is detected between any existing resources and the newly
1343  * requested resource, an error message will be printed.
1344  *
1345  * Returns 0 on success or a negative error code on failure.
1346  */
1347 int devm_request_resource(struct device *dev, struct resource *root,
1348 			  struct resource *new)
1349 {
1350 	struct resource *conflict, **ptr;
1351 
1352 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1353 	if (!ptr)
1354 		return -ENOMEM;
1355 
1356 	*ptr = new;
1357 
1358 	conflict = request_resource_conflict(root, new);
1359 	if (conflict) {
1360 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1361 			new, conflict->name, conflict);
1362 		devres_free(ptr);
1363 		return -EBUSY;
1364 	}
1365 
1366 	devres_add(dev, ptr);
1367 	return 0;
1368 }
1369 EXPORT_SYMBOL(devm_request_resource);
1370 
1371 static int devm_resource_match(struct device *dev, void *res, void *data)
1372 {
1373 	struct resource **ptr = res;
1374 
1375 	return *ptr == data;
1376 }
1377 
1378 /**
1379  * devm_release_resource() - release a previously requested resource
1380  * @dev: device for which to release the resource
1381  * @new: descriptor of the resource to release
1382  *
1383  * Releases a resource previously requested using devm_request_resource().
1384  */
1385 void devm_release_resource(struct device *dev, struct resource *new)
1386 {
1387 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1388 			       new));
1389 }
1390 EXPORT_SYMBOL(devm_release_resource);
1391 
1392 struct region_devres {
1393 	struct resource *parent;
1394 	resource_size_t start;
1395 	resource_size_t n;
1396 };
1397 
1398 static void devm_region_release(struct device *dev, void *res)
1399 {
1400 	struct region_devres *this = res;
1401 
1402 	__release_region(this->parent, this->start, this->n);
1403 }
1404 
1405 static int devm_region_match(struct device *dev, void *res, void *match_data)
1406 {
1407 	struct region_devres *this = res, *match = match_data;
1408 
1409 	return this->parent == match->parent &&
1410 		this->start == match->start && this->n == match->n;
1411 }
1412 
1413 struct resource * __devm_request_region(struct device *dev,
1414 				struct resource *parent, resource_size_t start,
1415 				resource_size_t n, const char *name)
1416 {
1417 	struct region_devres *dr = NULL;
1418 	struct resource *res;
1419 
1420 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1421 			  GFP_KERNEL);
1422 	if (!dr)
1423 		return NULL;
1424 
1425 	dr->parent = parent;
1426 	dr->start = start;
1427 	dr->n = n;
1428 
1429 	res = __request_region(parent, start, n, name, 0);
1430 	if (res)
1431 		devres_add(dev, dr);
1432 	else
1433 		devres_free(dr);
1434 
1435 	return res;
1436 }
1437 EXPORT_SYMBOL(__devm_request_region);
1438 
1439 void __devm_release_region(struct device *dev, struct resource *parent,
1440 			   resource_size_t start, resource_size_t n)
1441 {
1442 	struct region_devres match_data = { parent, start, n };
1443 
1444 	__release_region(parent, start, n);
1445 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1446 			       &match_data));
1447 }
1448 EXPORT_SYMBOL(__devm_release_region);
1449 
1450 /*
1451  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1452  */
1453 #define MAXRESERVE 4
1454 static int __init reserve_setup(char *str)
1455 {
1456 	static int reserved;
1457 	static struct resource reserve[MAXRESERVE];
1458 
1459 	for (;;) {
1460 		unsigned int io_start, io_num;
1461 		int x = reserved;
1462 		struct resource *parent;
1463 
1464 		if (get_option(&str, &io_start) != 2)
1465 			break;
1466 		if (get_option(&str, &io_num) == 0)
1467 			break;
1468 		if (x < MAXRESERVE) {
1469 			struct resource *res = reserve + x;
1470 
1471 			/*
1472 			 * If the region starts below 0x10000, we assume it's
1473 			 * I/O port space; otherwise assume it's memory.
1474 			 */
1475 			if (io_start < 0x10000) {
1476 				res->flags = IORESOURCE_IO;
1477 				parent = &ioport_resource;
1478 			} else {
1479 				res->flags = IORESOURCE_MEM;
1480 				parent = &iomem_resource;
1481 			}
1482 			res->name = "reserved";
1483 			res->start = io_start;
1484 			res->end = io_start + io_num - 1;
1485 			res->flags |= IORESOURCE_BUSY;
1486 			res->desc = IORES_DESC_NONE;
1487 			res->child = NULL;
1488 			if (request_resource(parent, res) == 0)
1489 				reserved = x+1;
1490 		}
1491 	}
1492 	return 1;
1493 }
1494 __setup("reserve=", reserve_setup);
1495 
1496 /*
1497  * Check if the requested addr and size spans more than any slot in the
1498  * iomem resource tree.
1499  */
1500 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1501 {
1502 	struct resource *p = &iomem_resource;
1503 	int err = 0;
1504 	loff_t l;
1505 
1506 	read_lock(&resource_lock);
1507 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1508 		/*
1509 		 * We can probably skip the resources without
1510 		 * IORESOURCE_IO attribute?
1511 		 */
1512 		if (p->start >= addr + size)
1513 			continue;
1514 		if (p->end < addr)
1515 			continue;
1516 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1517 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1518 			continue;
1519 		/*
1520 		 * if a resource is "BUSY", it's not a hardware resource
1521 		 * but a driver mapping of such a resource; we don't want
1522 		 * to warn for those; some drivers legitimately map only
1523 		 * partial hardware resources. (example: vesafb)
1524 		 */
1525 		if (p->flags & IORESOURCE_BUSY)
1526 			continue;
1527 
1528 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1529 		       (unsigned long long)addr,
1530 		       (unsigned long long)(addr + size - 1),
1531 		       p->name, p);
1532 		err = -1;
1533 		break;
1534 	}
1535 	read_unlock(&resource_lock);
1536 
1537 	return err;
1538 }
1539 
1540 #ifdef CONFIG_STRICT_DEVMEM
1541 static int strict_iomem_checks = 1;
1542 #else
1543 static int strict_iomem_checks;
1544 #endif
1545 
1546 /*
1547  * check if an address is reserved in the iomem resource tree
1548  * returns true if reserved, false if not reserved.
1549  */
1550 bool iomem_is_exclusive(u64 addr)
1551 {
1552 	struct resource *p = &iomem_resource;
1553 	bool err = false;
1554 	loff_t l;
1555 	int size = PAGE_SIZE;
1556 
1557 	if (!strict_iomem_checks)
1558 		return false;
1559 
1560 	addr = addr & PAGE_MASK;
1561 
1562 	read_lock(&resource_lock);
1563 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1564 		/*
1565 		 * We can probably skip the resources without
1566 		 * IORESOURCE_IO attribute?
1567 		 */
1568 		if (p->start >= addr + size)
1569 			break;
1570 		if (p->end < addr)
1571 			continue;
1572 		/*
1573 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1574 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1575 		 * resource is busy.
1576 		 */
1577 		if ((p->flags & IORESOURCE_BUSY) == 0)
1578 			continue;
1579 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1580 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1581 			err = true;
1582 			break;
1583 		}
1584 	}
1585 	read_unlock(&resource_lock);
1586 
1587 	return err;
1588 }
1589 
1590 struct resource_entry *resource_list_create_entry(struct resource *res,
1591 						  size_t extra_size)
1592 {
1593 	struct resource_entry *entry;
1594 
1595 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1596 	if (entry) {
1597 		INIT_LIST_HEAD(&entry->node);
1598 		entry->res = res ? res : &entry->__res;
1599 	}
1600 
1601 	return entry;
1602 }
1603 EXPORT_SYMBOL(resource_list_create_entry);
1604 
1605 void resource_list_free(struct list_head *head)
1606 {
1607 	struct resource_entry *entry, *tmp;
1608 
1609 	list_for_each_entry_safe(entry, tmp, head, node)
1610 		resource_list_destroy_entry(entry);
1611 }
1612 EXPORT_SYMBOL(resource_list_free);
1613 
1614 static int __init strict_iomem(char *str)
1615 {
1616 	if (strstr(str, "relaxed"))
1617 		strict_iomem_checks = 0;
1618 	if (strstr(str, "strict"))
1619 		strict_iomem_checks = 1;
1620 	return 1;
1621 }
1622 
1623 __setup("iomem=", strict_iomem);
1624