1 /* 2 * linux/kernel/resource.c 3 * 4 * Copyright (C) 1999 Linus Torvalds 5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 6 * 7 * Arbitrary resource management. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/export.h> 13 #include <linux/errno.h> 14 #include <linux/ioport.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/device.h> 23 #include <linux/pfn.h> 24 #include <linux/mm.h> 25 #include <linux/resource_ext.h> 26 #include <asm/io.h> 27 28 29 struct resource ioport_resource = { 30 .name = "PCI IO", 31 .start = 0, 32 .end = IO_SPACE_LIMIT, 33 .flags = IORESOURCE_IO, 34 }; 35 EXPORT_SYMBOL(ioport_resource); 36 37 struct resource iomem_resource = { 38 .name = "PCI mem", 39 .start = 0, 40 .end = -1, 41 .flags = IORESOURCE_MEM, 42 }; 43 EXPORT_SYMBOL(iomem_resource); 44 45 /* constraints to be met while allocating resources */ 46 struct resource_constraint { 47 resource_size_t min, max, align; 48 resource_size_t (*alignf)(void *, const struct resource *, 49 resource_size_t, resource_size_t); 50 void *alignf_data; 51 }; 52 53 static DEFINE_RWLOCK(resource_lock); 54 55 /* 56 * For memory hotplug, there is no way to free resource entries allocated 57 * by boot mem after the system is up. So for reusing the resource entry 58 * we need to remember the resource. 59 */ 60 static struct resource *bootmem_resource_free; 61 static DEFINE_SPINLOCK(bootmem_resource_lock); 62 63 static struct resource *next_resource(struct resource *p, bool sibling_only) 64 { 65 /* Caller wants to traverse through siblings only */ 66 if (sibling_only) 67 return p->sibling; 68 69 if (p->child) 70 return p->child; 71 while (!p->sibling && p->parent) 72 p = p->parent; 73 return p->sibling; 74 } 75 76 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 77 { 78 struct resource *p = v; 79 (*pos)++; 80 return (void *)next_resource(p, false); 81 } 82 83 #ifdef CONFIG_PROC_FS 84 85 enum { MAX_IORES_LEVEL = 5 }; 86 87 static void *r_start(struct seq_file *m, loff_t *pos) 88 __acquires(resource_lock) 89 { 90 struct resource *p = PDE_DATA(file_inode(m->file)); 91 loff_t l = 0; 92 read_lock(&resource_lock); 93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 94 ; 95 return p; 96 } 97 98 static void r_stop(struct seq_file *m, void *v) 99 __releases(resource_lock) 100 { 101 read_unlock(&resource_lock); 102 } 103 104 static int r_show(struct seq_file *m, void *v) 105 { 106 struct resource *root = PDE_DATA(file_inode(m->file)); 107 struct resource *r = v, *p; 108 unsigned long long start, end; 109 int width = root->end < 0x10000 ? 4 : 8; 110 int depth; 111 112 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 113 if (p->parent == root) 114 break; 115 116 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 117 start = r->start; 118 end = r->end; 119 } else { 120 start = end = 0; 121 } 122 123 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 124 depth * 2, "", 125 width, start, 126 width, end, 127 r->name ? r->name : "<BAD>"); 128 return 0; 129 } 130 131 static const struct seq_operations resource_op = { 132 .start = r_start, 133 .next = r_next, 134 .stop = r_stop, 135 .show = r_show, 136 }; 137 138 static int __init ioresources_init(void) 139 { 140 proc_create_seq_data("ioports", 0, NULL, &resource_op, 141 &ioport_resource); 142 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 143 return 0; 144 } 145 __initcall(ioresources_init); 146 147 #endif /* CONFIG_PROC_FS */ 148 149 static void free_resource(struct resource *res) 150 { 151 if (!res) 152 return; 153 154 if (!PageSlab(virt_to_head_page(res))) { 155 spin_lock(&bootmem_resource_lock); 156 res->sibling = bootmem_resource_free; 157 bootmem_resource_free = res; 158 spin_unlock(&bootmem_resource_lock); 159 } else { 160 kfree(res); 161 } 162 } 163 164 static struct resource *alloc_resource(gfp_t flags) 165 { 166 struct resource *res = NULL; 167 168 spin_lock(&bootmem_resource_lock); 169 if (bootmem_resource_free) { 170 res = bootmem_resource_free; 171 bootmem_resource_free = res->sibling; 172 } 173 spin_unlock(&bootmem_resource_lock); 174 175 if (res) 176 memset(res, 0, sizeof(struct resource)); 177 else 178 res = kzalloc(sizeof(struct resource), flags); 179 180 return res; 181 } 182 183 /* Return the conflict entry if you can't request it */ 184 static struct resource * __request_resource(struct resource *root, struct resource *new) 185 { 186 resource_size_t start = new->start; 187 resource_size_t end = new->end; 188 struct resource *tmp, **p; 189 190 if (end < start) 191 return root; 192 if (start < root->start) 193 return root; 194 if (end > root->end) 195 return root; 196 p = &root->child; 197 for (;;) { 198 tmp = *p; 199 if (!tmp || tmp->start > end) { 200 new->sibling = tmp; 201 *p = new; 202 new->parent = root; 203 return NULL; 204 } 205 p = &tmp->sibling; 206 if (tmp->end < start) 207 continue; 208 return tmp; 209 } 210 } 211 212 static int __release_resource(struct resource *old, bool release_child) 213 { 214 struct resource *tmp, **p, *chd; 215 216 p = &old->parent->child; 217 for (;;) { 218 tmp = *p; 219 if (!tmp) 220 break; 221 if (tmp == old) { 222 if (release_child || !(tmp->child)) { 223 *p = tmp->sibling; 224 } else { 225 for (chd = tmp->child;; chd = chd->sibling) { 226 chd->parent = tmp->parent; 227 if (!(chd->sibling)) 228 break; 229 } 230 *p = tmp->child; 231 chd->sibling = tmp->sibling; 232 } 233 old->parent = NULL; 234 return 0; 235 } 236 p = &tmp->sibling; 237 } 238 return -EINVAL; 239 } 240 241 static void __release_child_resources(struct resource *r) 242 { 243 struct resource *tmp, *p; 244 resource_size_t size; 245 246 p = r->child; 247 r->child = NULL; 248 while (p) { 249 tmp = p; 250 p = p->sibling; 251 252 tmp->parent = NULL; 253 tmp->sibling = NULL; 254 __release_child_resources(tmp); 255 256 printk(KERN_DEBUG "release child resource %pR\n", tmp); 257 /* need to restore size, and keep flags */ 258 size = resource_size(tmp); 259 tmp->start = 0; 260 tmp->end = size - 1; 261 } 262 } 263 264 void release_child_resources(struct resource *r) 265 { 266 write_lock(&resource_lock); 267 __release_child_resources(r); 268 write_unlock(&resource_lock); 269 } 270 271 /** 272 * request_resource_conflict - request and reserve an I/O or memory resource 273 * @root: root resource descriptor 274 * @new: resource descriptor desired by caller 275 * 276 * Returns 0 for success, conflict resource on error. 277 */ 278 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 279 { 280 struct resource *conflict; 281 282 write_lock(&resource_lock); 283 conflict = __request_resource(root, new); 284 write_unlock(&resource_lock); 285 return conflict; 286 } 287 288 /** 289 * request_resource - request and reserve an I/O or memory resource 290 * @root: root resource descriptor 291 * @new: resource descriptor desired by caller 292 * 293 * Returns 0 for success, negative error code on error. 294 */ 295 int request_resource(struct resource *root, struct resource *new) 296 { 297 struct resource *conflict; 298 299 conflict = request_resource_conflict(root, new); 300 return conflict ? -EBUSY : 0; 301 } 302 303 EXPORT_SYMBOL(request_resource); 304 305 /** 306 * release_resource - release a previously reserved resource 307 * @old: resource pointer 308 */ 309 int release_resource(struct resource *old) 310 { 311 int retval; 312 313 write_lock(&resource_lock); 314 retval = __release_resource(old, true); 315 write_unlock(&resource_lock); 316 return retval; 317 } 318 319 EXPORT_SYMBOL(release_resource); 320 321 /* 322 * Finds the lowest iomem resource existing within [res->start.res->end). 323 * The caller must specify res->start, res->end, res->flags, and optionally 324 * desc. If found, returns 0, res is overwritten, if not found, returns -1. 325 * This function walks the whole tree and not just first level children until 326 * and unless first_level_children_only is true. 327 */ 328 static int find_next_iomem_res(struct resource *res, unsigned long desc, 329 bool first_level_children_only) 330 { 331 resource_size_t start, end; 332 struct resource *p; 333 bool sibling_only = false; 334 335 BUG_ON(!res); 336 337 start = res->start; 338 end = res->end; 339 BUG_ON(start >= end); 340 341 if (first_level_children_only) 342 sibling_only = true; 343 344 read_lock(&resource_lock); 345 346 for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) { 347 if ((p->flags & res->flags) != res->flags) 348 continue; 349 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 350 continue; 351 if (p->start > end) { 352 p = NULL; 353 break; 354 } 355 if ((p->end >= start) && (p->start < end)) 356 break; 357 } 358 359 read_unlock(&resource_lock); 360 if (!p) 361 return -1; 362 /* copy data */ 363 if (res->start < p->start) 364 res->start = p->start; 365 if (res->end > p->end) 366 res->end = p->end; 367 res->flags = p->flags; 368 res->desc = p->desc; 369 return 0; 370 } 371 372 static int __walk_iomem_res_desc(struct resource *res, unsigned long desc, 373 bool first_level_children_only, 374 void *arg, 375 int (*func)(struct resource *, void *)) 376 { 377 u64 orig_end = res->end; 378 int ret = -1; 379 380 while ((res->start < res->end) && 381 !find_next_iomem_res(res, desc, first_level_children_only)) { 382 ret = (*func)(res, arg); 383 if (ret) 384 break; 385 386 res->start = res->end + 1; 387 res->end = orig_end; 388 } 389 390 return ret; 391 } 392 393 /* 394 * Walks through iomem resources and calls func() with matching resource 395 * ranges. This walks through whole tree and not just first level children. 396 * All the memory ranges which overlap start,end and also match flags and 397 * desc are valid candidates. 398 * 399 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 400 * @flags: I/O resource flags 401 * @start: start addr 402 * @end: end addr 403 * 404 * NOTE: For a new descriptor search, define a new IORES_DESC in 405 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 406 */ 407 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 408 u64 end, void *arg, int (*func)(struct resource *, void *)) 409 { 410 struct resource res; 411 412 res.start = start; 413 res.end = end; 414 res.flags = flags; 415 416 return __walk_iomem_res_desc(&res, desc, false, arg, func); 417 } 418 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 419 420 /* 421 * This function calls the @func callback against all memory ranges of type 422 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 423 * Now, this function is only for System RAM, it deals with full ranges and 424 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 425 * ranges. 426 */ 427 int walk_system_ram_res(u64 start, u64 end, void *arg, 428 int (*func)(struct resource *, void *)) 429 { 430 struct resource res; 431 432 res.start = start; 433 res.end = end; 434 res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 435 436 return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true, 437 arg, func); 438 } 439 440 /* 441 * This function calls the @func callback against all memory ranges, which 442 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 443 */ 444 int walk_mem_res(u64 start, u64 end, void *arg, 445 int (*func)(struct resource *, void *)) 446 { 447 struct resource res; 448 449 res.start = start; 450 res.end = end; 451 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; 452 453 return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true, 454 arg, func); 455 } 456 457 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) 458 459 /* 460 * This function calls the @func callback against all memory ranges of type 461 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 462 * It is to be used only for System RAM. 463 */ 464 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 465 void *arg, int (*func)(unsigned long, unsigned long, void *)) 466 { 467 struct resource res; 468 unsigned long pfn, end_pfn; 469 u64 orig_end; 470 int ret = -1; 471 472 res.start = (u64) start_pfn << PAGE_SHIFT; 473 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 474 res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 475 orig_end = res.end; 476 while ((res.start < res.end) && 477 (find_next_iomem_res(&res, IORES_DESC_NONE, true) >= 0)) { 478 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; 479 end_pfn = (res.end + 1) >> PAGE_SHIFT; 480 if (end_pfn > pfn) 481 ret = (*func)(pfn, end_pfn - pfn, arg); 482 if (ret) 483 break; 484 res.start = res.end + 1; 485 res.end = orig_end; 486 } 487 return ret; 488 } 489 490 #endif 491 492 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 493 { 494 return 1; 495 } 496 497 /* 498 * This generic page_is_ram() returns true if specified address is 499 * registered as System RAM in iomem_resource list. 500 */ 501 int __weak page_is_ram(unsigned long pfn) 502 { 503 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 504 } 505 EXPORT_SYMBOL_GPL(page_is_ram); 506 507 /** 508 * region_intersects() - determine intersection of region with known resources 509 * @start: region start address 510 * @size: size of region 511 * @flags: flags of resource (in iomem_resource) 512 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 513 * 514 * Check if the specified region partially overlaps or fully eclipses a 515 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 516 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 517 * return REGION_MIXED if the region overlaps @flags/@desc and another 518 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 519 * and no other defined resource. Note that REGION_INTERSECTS is also 520 * returned in the case when the specified region overlaps RAM and undefined 521 * memory holes. 522 * 523 * region_intersect() is used by memory remapping functions to ensure 524 * the user is not remapping RAM and is a vast speed up over walking 525 * through the resource table page by page. 526 */ 527 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 528 unsigned long desc) 529 { 530 resource_size_t end = start + size - 1; 531 int type = 0; int other = 0; 532 struct resource *p; 533 534 read_lock(&resource_lock); 535 for (p = iomem_resource.child; p ; p = p->sibling) { 536 bool is_type = (((p->flags & flags) == flags) && 537 ((desc == IORES_DESC_NONE) || 538 (desc == p->desc))); 539 540 if (start >= p->start && start <= p->end) 541 is_type ? type++ : other++; 542 if (end >= p->start && end <= p->end) 543 is_type ? type++ : other++; 544 if (p->start >= start && p->end <= end) 545 is_type ? type++ : other++; 546 } 547 read_unlock(&resource_lock); 548 549 if (other == 0) 550 return type ? REGION_INTERSECTS : REGION_DISJOINT; 551 552 if (type) 553 return REGION_MIXED; 554 555 return REGION_DISJOINT; 556 } 557 EXPORT_SYMBOL_GPL(region_intersects); 558 559 void __weak arch_remove_reservations(struct resource *avail) 560 { 561 } 562 563 static resource_size_t simple_align_resource(void *data, 564 const struct resource *avail, 565 resource_size_t size, 566 resource_size_t align) 567 { 568 return avail->start; 569 } 570 571 static void resource_clip(struct resource *res, resource_size_t min, 572 resource_size_t max) 573 { 574 if (res->start < min) 575 res->start = min; 576 if (res->end > max) 577 res->end = max; 578 } 579 580 /* 581 * Find empty slot in the resource tree with the given range and 582 * alignment constraints 583 */ 584 static int __find_resource(struct resource *root, struct resource *old, 585 struct resource *new, 586 resource_size_t size, 587 struct resource_constraint *constraint) 588 { 589 struct resource *this = root->child; 590 struct resource tmp = *new, avail, alloc; 591 592 tmp.start = root->start; 593 /* 594 * Skip past an allocated resource that starts at 0, since the assignment 595 * of this->start - 1 to tmp->end below would cause an underflow. 596 */ 597 if (this && this->start == root->start) { 598 tmp.start = (this == old) ? old->start : this->end + 1; 599 this = this->sibling; 600 } 601 for(;;) { 602 if (this) 603 tmp.end = (this == old) ? this->end : this->start - 1; 604 else 605 tmp.end = root->end; 606 607 if (tmp.end < tmp.start) 608 goto next; 609 610 resource_clip(&tmp, constraint->min, constraint->max); 611 arch_remove_reservations(&tmp); 612 613 /* Check for overflow after ALIGN() */ 614 avail.start = ALIGN(tmp.start, constraint->align); 615 avail.end = tmp.end; 616 avail.flags = new->flags & ~IORESOURCE_UNSET; 617 if (avail.start >= tmp.start) { 618 alloc.flags = avail.flags; 619 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 620 size, constraint->align); 621 alloc.end = alloc.start + size - 1; 622 if (alloc.start <= alloc.end && 623 resource_contains(&avail, &alloc)) { 624 new->start = alloc.start; 625 new->end = alloc.end; 626 return 0; 627 } 628 } 629 630 next: if (!this || this->end == root->end) 631 break; 632 633 if (this != old) 634 tmp.start = this->end + 1; 635 this = this->sibling; 636 } 637 return -EBUSY; 638 } 639 640 /* 641 * Find empty slot in the resource tree given range and alignment. 642 */ 643 static int find_resource(struct resource *root, struct resource *new, 644 resource_size_t size, 645 struct resource_constraint *constraint) 646 { 647 return __find_resource(root, NULL, new, size, constraint); 648 } 649 650 /** 651 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 652 * The resource will be relocated if the new size cannot be reallocated in the 653 * current location. 654 * 655 * @root: root resource descriptor 656 * @old: resource descriptor desired by caller 657 * @newsize: new size of the resource descriptor 658 * @constraint: the size and alignment constraints to be met. 659 */ 660 static int reallocate_resource(struct resource *root, struct resource *old, 661 resource_size_t newsize, 662 struct resource_constraint *constraint) 663 { 664 int err=0; 665 struct resource new = *old; 666 struct resource *conflict; 667 668 write_lock(&resource_lock); 669 670 if ((err = __find_resource(root, old, &new, newsize, constraint))) 671 goto out; 672 673 if (resource_contains(&new, old)) { 674 old->start = new.start; 675 old->end = new.end; 676 goto out; 677 } 678 679 if (old->child) { 680 err = -EBUSY; 681 goto out; 682 } 683 684 if (resource_contains(old, &new)) { 685 old->start = new.start; 686 old->end = new.end; 687 } else { 688 __release_resource(old, true); 689 *old = new; 690 conflict = __request_resource(root, old); 691 BUG_ON(conflict); 692 } 693 out: 694 write_unlock(&resource_lock); 695 return err; 696 } 697 698 699 /** 700 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 701 * The resource will be reallocated with a new size if it was already allocated 702 * @root: root resource descriptor 703 * @new: resource descriptor desired by caller 704 * @size: requested resource region size 705 * @min: minimum boundary to allocate 706 * @max: maximum boundary to allocate 707 * @align: alignment requested, in bytes 708 * @alignf: alignment function, optional, called if not NULL 709 * @alignf_data: arbitrary data to pass to the @alignf function 710 */ 711 int allocate_resource(struct resource *root, struct resource *new, 712 resource_size_t size, resource_size_t min, 713 resource_size_t max, resource_size_t align, 714 resource_size_t (*alignf)(void *, 715 const struct resource *, 716 resource_size_t, 717 resource_size_t), 718 void *alignf_data) 719 { 720 int err; 721 struct resource_constraint constraint; 722 723 if (!alignf) 724 alignf = simple_align_resource; 725 726 constraint.min = min; 727 constraint.max = max; 728 constraint.align = align; 729 constraint.alignf = alignf; 730 constraint.alignf_data = alignf_data; 731 732 if ( new->parent ) { 733 /* resource is already allocated, try reallocating with 734 the new constraints */ 735 return reallocate_resource(root, new, size, &constraint); 736 } 737 738 write_lock(&resource_lock); 739 err = find_resource(root, new, size, &constraint); 740 if (err >= 0 && __request_resource(root, new)) 741 err = -EBUSY; 742 write_unlock(&resource_lock); 743 return err; 744 } 745 746 EXPORT_SYMBOL(allocate_resource); 747 748 /** 749 * lookup_resource - find an existing resource by a resource start address 750 * @root: root resource descriptor 751 * @start: resource start address 752 * 753 * Returns a pointer to the resource if found, NULL otherwise 754 */ 755 struct resource *lookup_resource(struct resource *root, resource_size_t start) 756 { 757 struct resource *res; 758 759 read_lock(&resource_lock); 760 for (res = root->child; res; res = res->sibling) { 761 if (res->start == start) 762 break; 763 } 764 read_unlock(&resource_lock); 765 766 return res; 767 } 768 769 /* 770 * Insert a resource into the resource tree. If successful, return NULL, 771 * otherwise return the conflicting resource (compare to __request_resource()) 772 */ 773 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 774 { 775 struct resource *first, *next; 776 777 for (;; parent = first) { 778 first = __request_resource(parent, new); 779 if (!first) 780 return first; 781 782 if (first == parent) 783 return first; 784 if (WARN_ON(first == new)) /* duplicated insertion */ 785 return first; 786 787 if ((first->start > new->start) || (first->end < new->end)) 788 break; 789 if ((first->start == new->start) && (first->end == new->end)) 790 break; 791 } 792 793 for (next = first; ; next = next->sibling) { 794 /* Partial overlap? Bad, and unfixable */ 795 if (next->start < new->start || next->end > new->end) 796 return next; 797 if (!next->sibling) 798 break; 799 if (next->sibling->start > new->end) 800 break; 801 } 802 803 new->parent = parent; 804 new->sibling = next->sibling; 805 new->child = first; 806 807 next->sibling = NULL; 808 for (next = first; next; next = next->sibling) 809 next->parent = new; 810 811 if (parent->child == first) { 812 parent->child = new; 813 } else { 814 next = parent->child; 815 while (next->sibling != first) 816 next = next->sibling; 817 next->sibling = new; 818 } 819 return NULL; 820 } 821 822 /** 823 * insert_resource_conflict - Inserts resource in the resource tree 824 * @parent: parent of the new resource 825 * @new: new resource to insert 826 * 827 * Returns 0 on success, conflict resource if the resource can't be inserted. 828 * 829 * This function is equivalent to request_resource_conflict when no conflict 830 * happens. If a conflict happens, and the conflicting resources 831 * entirely fit within the range of the new resource, then the new 832 * resource is inserted and the conflicting resources become children of 833 * the new resource. 834 * 835 * This function is intended for producers of resources, such as FW modules 836 * and bus drivers. 837 */ 838 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 839 { 840 struct resource *conflict; 841 842 write_lock(&resource_lock); 843 conflict = __insert_resource(parent, new); 844 write_unlock(&resource_lock); 845 return conflict; 846 } 847 848 /** 849 * insert_resource - Inserts a resource in the resource tree 850 * @parent: parent of the new resource 851 * @new: new resource to insert 852 * 853 * Returns 0 on success, -EBUSY if the resource can't be inserted. 854 * 855 * This function is intended for producers of resources, such as FW modules 856 * and bus drivers. 857 */ 858 int insert_resource(struct resource *parent, struct resource *new) 859 { 860 struct resource *conflict; 861 862 conflict = insert_resource_conflict(parent, new); 863 return conflict ? -EBUSY : 0; 864 } 865 EXPORT_SYMBOL_GPL(insert_resource); 866 867 /** 868 * insert_resource_expand_to_fit - Insert a resource into the resource tree 869 * @root: root resource descriptor 870 * @new: new resource to insert 871 * 872 * Insert a resource into the resource tree, possibly expanding it in order 873 * to make it encompass any conflicting resources. 874 */ 875 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 876 { 877 if (new->parent) 878 return; 879 880 write_lock(&resource_lock); 881 for (;;) { 882 struct resource *conflict; 883 884 conflict = __insert_resource(root, new); 885 if (!conflict) 886 break; 887 if (conflict == root) 888 break; 889 890 /* Ok, expand resource to cover the conflict, then try again .. */ 891 if (conflict->start < new->start) 892 new->start = conflict->start; 893 if (conflict->end > new->end) 894 new->end = conflict->end; 895 896 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 897 } 898 write_unlock(&resource_lock); 899 } 900 901 /** 902 * remove_resource - Remove a resource in the resource tree 903 * @old: resource to remove 904 * 905 * Returns 0 on success, -EINVAL if the resource is not valid. 906 * 907 * This function removes a resource previously inserted by insert_resource() 908 * or insert_resource_conflict(), and moves the children (if any) up to 909 * where they were before. insert_resource() and insert_resource_conflict() 910 * insert a new resource, and move any conflicting resources down to the 911 * children of the new resource. 912 * 913 * insert_resource(), insert_resource_conflict() and remove_resource() are 914 * intended for producers of resources, such as FW modules and bus drivers. 915 */ 916 int remove_resource(struct resource *old) 917 { 918 int retval; 919 920 write_lock(&resource_lock); 921 retval = __release_resource(old, false); 922 write_unlock(&resource_lock); 923 return retval; 924 } 925 EXPORT_SYMBOL_GPL(remove_resource); 926 927 static int __adjust_resource(struct resource *res, resource_size_t start, 928 resource_size_t size) 929 { 930 struct resource *tmp, *parent = res->parent; 931 resource_size_t end = start + size - 1; 932 int result = -EBUSY; 933 934 if (!parent) 935 goto skip; 936 937 if ((start < parent->start) || (end > parent->end)) 938 goto out; 939 940 if (res->sibling && (res->sibling->start <= end)) 941 goto out; 942 943 tmp = parent->child; 944 if (tmp != res) { 945 while (tmp->sibling != res) 946 tmp = tmp->sibling; 947 if (start <= tmp->end) 948 goto out; 949 } 950 951 skip: 952 for (tmp = res->child; tmp; tmp = tmp->sibling) 953 if ((tmp->start < start) || (tmp->end > end)) 954 goto out; 955 956 res->start = start; 957 res->end = end; 958 result = 0; 959 960 out: 961 return result; 962 } 963 964 /** 965 * adjust_resource - modify a resource's start and size 966 * @res: resource to modify 967 * @start: new start value 968 * @size: new size 969 * 970 * Given an existing resource, change its start and size to match the 971 * arguments. Returns 0 on success, -EBUSY if it can't fit. 972 * Existing children of the resource are assumed to be immutable. 973 */ 974 int adjust_resource(struct resource *res, resource_size_t start, 975 resource_size_t size) 976 { 977 int result; 978 979 write_lock(&resource_lock); 980 result = __adjust_resource(res, start, size); 981 write_unlock(&resource_lock); 982 return result; 983 } 984 EXPORT_SYMBOL(adjust_resource); 985 986 static void __init __reserve_region_with_split(struct resource *root, 987 resource_size_t start, resource_size_t end, 988 const char *name) 989 { 990 struct resource *parent = root; 991 struct resource *conflict; 992 struct resource *res = alloc_resource(GFP_ATOMIC); 993 struct resource *next_res = NULL; 994 int type = resource_type(root); 995 996 if (!res) 997 return; 998 999 res->name = name; 1000 res->start = start; 1001 res->end = end; 1002 res->flags = type | IORESOURCE_BUSY; 1003 res->desc = IORES_DESC_NONE; 1004 1005 while (1) { 1006 1007 conflict = __request_resource(parent, res); 1008 if (!conflict) { 1009 if (!next_res) 1010 break; 1011 res = next_res; 1012 next_res = NULL; 1013 continue; 1014 } 1015 1016 /* conflict covered whole area */ 1017 if (conflict->start <= res->start && 1018 conflict->end >= res->end) { 1019 free_resource(res); 1020 WARN_ON(next_res); 1021 break; 1022 } 1023 1024 /* failed, split and try again */ 1025 if (conflict->start > res->start) { 1026 end = res->end; 1027 res->end = conflict->start - 1; 1028 if (conflict->end < end) { 1029 next_res = alloc_resource(GFP_ATOMIC); 1030 if (!next_res) { 1031 free_resource(res); 1032 break; 1033 } 1034 next_res->name = name; 1035 next_res->start = conflict->end + 1; 1036 next_res->end = end; 1037 next_res->flags = type | IORESOURCE_BUSY; 1038 next_res->desc = IORES_DESC_NONE; 1039 } 1040 } else { 1041 res->start = conflict->end + 1; 1042 } 1043 } 1044 1045 } 1046 1047 void __init reserve_region_with_split(struct resource *root, 1048 resource_size_t start, resource_size_t end, 1049 const char *name) 1050 { 1051 int abort = 0; 1052 1053 write_lock(&resource_lock); 1054 if (root->start > start || root->end < end) { 1055 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1056 (unsigned long long)start, (unsigned long long)end, 1057 root); 1058 if (start > root->end || end < root->start) 1059 abort = 1; 1060 else { 1061 if (end > root->end) 1062 end = root->end; 1063 if (start < root->start) 1064 start = root->start; 1065 pr_err("fixing request to [0x%llx-0x%llx]\n", 1066 (unsigned long long)start, 1067 (unsigned long long)end); 1068 } 1069 dump_stack(); 1070 } 1071 if (!abort) 1072 __reserve_region_with_split(root, start, end, name); 1073 write_unlock(&resource_lock); 1074 } 1075 1076 /** 1077 * resource_alignment - calculate resource's alignment 1078 * @res: resource pointer 1079 * 1080 * Returns alignment on success, 0 (invalid alignment) on failure. 1081 */ 1082 resource_size_t resource_alignment(struct resource *res) 1083 { 1084 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1085 case IORESOURCE_SIZEALIGN: 1086 return resource_size(res); 1087 case IORESOURCE_STARTALIGN: 1088 return res->start; 1089 default: 1090 return 0; 1091 } 1092 } 1093 1094 /* 1095 * This is compatibility stuff for IO resources. 1096 * 1097 * Note how this, unlike the above, knows about 1098 * the IO flag meanings (busy etc). 1099 * 1100 * request_region creates a new busy region. 1101 * 1102 * release_region releases a matching busy region. 1103 */ 1104 1105 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1106 1107 /** 1108 * __request_region - create a new busy resource region 1109 * @parent: parent resource descriptor 1110 * @start: resource start address 1111 * @n: resource region size 1112 * @name: reserving caller's ID string 1113 * @flags: IO resource flags 1114 */ 1115 struct resource * __request_region(struct resource *parent, 1116 resource_size_t start, resource_size_t n, 1117 const char *name, int flags) 1118 { 1119 DECLARE_WAITQUEUE(wait, current); 1120 struct resource *res = alloc_resource(GFP_KERNEL); 1121 1122 if (!res) 1123 return NULL; 1124 1125 res->name = name; 1126 res->start = start; 1127 res->end = start + n - 1; 1128 1129 write_lock(&resource_lock); 1130 1131 for (;;) { 1132 struct resource *conflict; 1133 1134 res->flags = resource_type(parent) | resource_ext_type(parent); 1135 res->flags |= IORESOURCE_BUSY | flags; 1136 res->desc = parent->desc; 1137 1138 conflict = __request_resource(parent, res); 1139 if (!conflict) 1140 break; 1141 if (conflict != parent) { 1142 if (!(conflict->flags & IORESOURCE_BUSY)) { 1143 parent = conflict; 1144 continue; 1145 } 1146 } 1147 if (conflict->flags & flags & IORESOURCE_MUXED) { 1148 add_wait_queue(&muxed_resource_wait, &wait); 1149 write_unlock(&resource_lock); 1150 set_current_state(TASK_UNINTERRUPTIBLE); 1151 schedule(); 1152 remove_wait_queue(&muxed_resource_wait, &wait); 1153 write_lock(&resource_lock); 1154 continue; 1155 } 1156 /* Uhhuh, that didn't work out.. */ 1157 free_resource(res); 1158 res = NULL; 1159 break; 1160 } 1161 write_unlock(&resource_lock); 1162 return res; 1163 } 1164 EXPORT_SYMBOL(__request_region); 1165 1166 /** 1167 * __release_region - release a previously reserved resource region 1168 * @parent: parent resource descriptor 1169 * @start: resource start address 1170 * @n: resource region size 1171 * 1172 * The described resource region must match a currently busy region. 1173 */ 1174 void __release_region(struct resource *parent, resource_size_t start, 1175 resource_size_t n) 1176 { 1177 struct resource **p; 1178 resource_size_t end; 1179 1180 p = &parent->child; 1181 end = start + n - 1; 1182 1183 write_lock(&resource_lock); 1184 1185 for (;;) { 1186 struct resource *res = *p; 1187 1188 if (!res) 1189 break; 1190 if (res->start <= start && res->end >= end) { 1191 if (!(res->flags & IORESOURCE_BUSY)) { 1192 p = &res->child; 1193 continue; 1194 } 1195 if (res->start != start || res->end != end) 1196 break; 1197 *p = res->sibling; 1198 write_unlock(&resource_lock); 1199 if (res->flags & IORESOURCE_MUXED) 1200 wake_up(&muxed_resource_wait); 1201 free_resource(res); 1202 return; 1203 } 1204 p = &res->sibling; 1205 } 1206 1207 write_unlock(&resource_lock); 1208 1209 printk(KERN_WARNING "Trying to free nonexistent resource " 1210 "<%016llx-%016llx>\n", (unsigned long long)start, 1211 (unsigned long long)end); 1212 } 1213 EXPORT_SYMBOL(__release_region); 1214 1215 #ifdef CONFIG_MEMORY_HOTREMOVE 1216 /** 1217 * release_mem_region_adjustable - release a previously reserved memory region 1218 * @parent: parent resource descriptor 1219 * @start: resource start address 1220 * @size: resource region size 1221 * 1222 * This interface is intended for memory hot-delete. The requested region 1223 * is released from a currently busy memory resource. The requested region 1224 * must either match exactly or fit into a single busy resource entry. In 1225 * the latter case, the remaining resource is adjusted accordingly. 1226 * Existing children of the busy memory resource must be immutable in the 1227 * request. 1228 * 1229 * Note: 1230 * - Additional release conditions, such as overlapping region, can be 1231 * supported after they are confirmed as valid cases. 1232 * - When a busy memory resource gets split into two entries, the code 1233 * assumes that all children remain in the lower address entry for 1234 * simplicity. Enhance this logic when necessary. 1235 */ 1236 int release_mem_region_adjustable(struct resource *parent, 1237 resource_size_t start, resource_size_t size) 1238 { 1239 struct resource **p; 1240 struct resource *res; 1241 struct resource *new_res; 1242 resource_size_t end; 1243 int ret = -EINVAL; 1244 1245 end = start + size - 1; 1246 if ((start < parent->start) || (end > parent->end)) 1247 return ret; 1248 1249 /* The alloc_resource() result gets checked later */ 1250 new_res = alloc_resource(GFP_KERNEL); 1251 1252 p = &parent->child; 1253 write_lock(&resource_lock); 1254 1255 while ((res = *p)) { 1256 if (res->start >= end) 1257 break; 1258 1259 /* look for the next resource if it does not fit into */ 1260 if (res->start > start || res->end < end) { 1261 p = &res->sibling; 1262 continue; 1263 } 1264 1265 if (!(res->flags & IORESOURCE_MEM)) 1266 break; 1267 1268 if (!(res->flags & IORESOURCE_BUSY)) { 1269 p = &res->child; 1270 continue; 1271 } 1272 1273 /* found the target resource; let's adjust accordingly */ 1274 if (res->start == start && res->end == end) { 1275 /* free the whole entry */ 1276 *p = res->sibling; 1277 free_resource(res); 1278 ret = 0; 1279 } else if (res->start == start && res->end != end) { 1280 /* adjust the start */ 1281 ret = __adjust_resource(res, end + 1, 1282 res->end - end); 1283 } else if (res->start != start && res->end == end) { 1284 /* adjust the end */ 1285 ret = __adjust_resource(res, res->start, 1286 start - res->start); 1287 } else { 1288 /* split into two entries */ 1289 if (!new_res) { 1290 ret = -ENOMEM; 1291 break; 1292 } 1293 new_res->name = res->name; 1294 new_res->start = end + 1; 1295 new_res->end = res->end; 1296 new_res->flags = res->flags; 1297 new_res->desc = res->desc; 1298 new_res->parent = res->parent; 1299 new_res->sibling = res->sibling; 1300 new_res->child = NULL; 1301 1302 ret = __adjust_resource(res, res->start, 1303 start - res->start); 1304 if (ret) 1305 break; 1306 res->sibling = new_res; 1307 new_res = NULL; 1308 } 1309 1310 break; 1311 } 1312 1313 write_unlock(&resource_lock); 1314 free_resource(new_res); 1315 return ret; 1316 } 1317 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1318 1319 /* 1320 * Managed region resource 1321 */ 1322 static void devm_resource_release(struct device *dev, void *ptr) 1323 { 1324 struct resource **r = ptr; 1325 1326 release_resource(*r); 1327 } 1328 1329 /** 1330 * devm_request_resource() - request and reserve an I/O or memory resource 1331 * @dev: device for which to request the resource 1332 * @root: root of the resource tree from which to request the resource 1333 * @new: descriptor of the resource to request 1334 * 1335 * This is a device-managed version of request_resource(). There is usually 1336 * no need to release resources requested by this function explicitly since 1337 * that will be taken care of when the device is unbound from its driver. 1338 * If for some reason the resource needs to be released explicitly, because 1339 * of ordering issues for example, drivers must call devm_release_resource() 1340 * rather than the regular release_resource(). 1341 * 1342 * When a conflict is detected between any existing resources and the newly 1343 * requested resource, an error message will be printed. 1344 * 1345 * Returns 0 on success or a negative error code on failure. 1346 */ 1347 int devm_request_resource(struct device *dev, struct resource *root, 1348 struct resource *new) 1349 { 1350 struct resource *conflict, **ptr; 1351 1352 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1353 if (!ptr) 1354 return -ENOMEM; 1355 1356 *ptr = new; 1357 1358 conflict = request_resource_conflict(root, new); 1359 if (conflict) { 1360 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1361 new, conflict->name, conflict); 1362 devres_free(ptr); 1363 return -EBUSY; 1364 } 1365 1366 devres_add(dev, ptr); 1367 return 0; 1368 } 1369 EXPORT_SYMBOL(devm_request_resource); 1370 1371 static int devm_resource_match(struct device *dev, void *res, void *data) 1372 { 1373 struct resource **ptr = res; 1374 1375 return *ptr == data; 1376 } 1377 1378 /** 1379 * devm_release_resource() - release a previously requested resource 1380 * @dev: device for which to release the resource 1381 * @new: descriptor of the resource to release 1382 * 1383 * Releases a resource previously requested using devm_request_resource(). 1384 */ 1385 void devm_release_resource(struct device *dev, struct resource *new) 1386 { 1387 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1388 new)); 1389 } 1390 EXPORT_SYMBOL(devm_release_resource); 1391 1392 struct region_devres { 1393 struct resource *parent; 1394 resource_size_t start; 1395 resource_size_t n; 1396 }; 1397 1398 static void devm_region_release(struct device *dev, void *res) 1399 { 1400 struct region_devres *this = res; 1401 1402 __release_region(this->parent, this->start, this->n); 1403 } 1404 1405 static int devm_region_match(struct device *dev, void *res, void *match_data) 1406 { 1407 struct region_devres *this = res, *match = match_data; 1408 1409 return this->parent == match->parent && 1410 this->start == match->start && this->n == match->n; 1411 } 1412 1413 struct resource * __devm_request_region(struct device *dev, 1414 struct resource *parent, resource_size_t start, 1415 resource_size_t n, const char *name) 1416 { 1417 struct region_devres *dr = NULL; 1418 struct resource *res; 1419 1420 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1421 GFP_KERNEL); 1422 if (!dr) 1423 return NULL; 1424 1425 dr->parent = parent; 1426 dr->start = start; 1427 dr->n = n; 1428 1429 res = __request_region(parent, start, n, name, 0); 1430 if (res) 1431 devres_add(dev, dr); 1432 else 1433 devres_free(dr); 1434 1435 return res; 1436 } 1437 EXPORT_SYMBOL(__devm_request_region); 1438 1439 void __devm_release_region(struct device *dev, struct resource *parent, 1440 resource_size_t start, resource_size_t n) 1441 { 1442 struct region_devres match_data = { parent, start, n }; 1443 1444 __release_region(parent, start, n); 1445 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1446 &match_data)); 1447 } 1448 EXPORT_SYMBOL(__devm_release_region); 1449 1450 /* 1451 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1452 */ 1453 #define MAXRESERVE 4 1454 static int __init reserve_setup(char *str) 1455 { 1456 static int reserved; 1457 static struct resource reserve[MAXRESERVE]; 1458 1459 for (;;) { 1460 unsigned int io_start, io_num; 1461 int x = reserved; 1462 struct resource *parent; 1463 1464 if (get_option(&str, &io_start) != 2) 1465 break; 1466 if (get_option(&str, &io_num) == 0) 1467 break; 1468 if (x < MAXRESERVE) { 1469 struct resource *res = reserve + x; 1470 1471 /* 1472 * If the region starts below 0x10000, we assume it's 1473 * I/O port space; otherwise assume it's memory. 1474 */ 1475 if (io_start < 0x10000) { 1476 res->flags = IORESOURCE_IO; 1477 parent = &ioport_resource; 1478 } else { 1479 res->flags = IORESOURCE_MEM; 1480 parent = &iomem_resource; 1481 } 1482 res->name = "reserved"; 1483 res->start = io_start; 1484 res->end = io_start + io_num - 1; 1485 res->flags |= IORESOURCE_BUSY; 1486 res->desc = IORES_DESC_NONE; 1487 res->child = NULL; 1488 if (request_resource(parent, res) == 0) 1489 reserved = x+1; 1490 } 1491 } 1492 return 1; 1493 } 1494 __setup("reserve=", reserve_setup); 1495 1496 /* 1497 * Check if the requested addr and size spans more than any slot in the 1498 * iomem resource tree. 1499 */ 1500 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1501 { 1502 struct resource *p = &iomem_resource; 1503 int err = 0; 1504 loff_t l; 1505 1506 read_lock(&resource_lock); 1507 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1508 /* 1509 * We can probably skip the resources without 1510 * IORESOURCE_IO attribute? 1511 */ 1512 if (p->start >= addr + size) 1513 continue; 1514 if (p->end < addr) 1515 continue; 1516 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1517 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1518 continue; 1519 /* 1520 * if a resource is "BUSY", it's not a hardware resource 1521 * but a driver mapping of such a resource; we don't want 1522 * to warn for those; some drivers legitimately map only 1523 * partial hardware resources. (example: vesafb) 1524 */ 1525 if (p->flags & IORESOURCE_BUSY) 1526 continue; 1527 1528 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1529 (unsigned long long)addr, 1530 (unsigned long long)(addr + size - 1), 1531 p->name, p); 1532 err = -1; 1533 break; 1534 } 1535 read_unlock(&resource_lock); 1536 1537 return err; 1538 } 1539 1540 #ifdef CONFIG_STRICT_DEVMEM 1541 static int strict_iomem_checks = 1; 1542 #else 1543 static int strict_iomem_checks; 1544 #endif 1545 1546 /* 1547 * check if an address is reserved in the iomem resource tree 1548 * returns true if reserved, false if not reserved. 1549 */ 1550 bool iomem_is_exclusive(u64 addr) 1551 { 1552 struct resource *p = &iomem_resource; 1553 bool err = false; 1554 loff_t l; 1555 int size = PAGE_SIZE; 1556 1557 if (!strict_iomem_checks) 1558 return false; 1559 1560 addr = addr & PAGE_MASK; 1561 1562 read_lock(&resource_lock); 1563 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1564 /* 1565 * We can probably skip the resources without 1566 * IORESOURCE_IO attribute? 1567 */ 1568 if (p->start >= addr + size) 1569 break; 1570 if (p->end < addr) 1571 continue; 1572 /* 1573 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1574 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1575 * resource is busy. 1576 */ 1577 if ((p->flags & IORESOURCE_BUSY) == 0) 1578 continue; 1579 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1580 || p->flags & IORESOURCE_EXCLUSIVE) { 1581 err = true; 1582 break; 1583 } 1584 } 1585 read_unlock(&resource_lock); 1586 1587 return err; 1588 } 1589 1590 struct resource_entry *resource_list_create_entry(struct resource *res, 1591 size_t extra_size) 1592 { 1593 struct resource_entry *entry; 1594 1595 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1596 if (entry) { 1597 INIT_LIST_HEAD(&entry->node); 1598 entry->res = res ? res : &entry->__res; 1599 } 1600 1601 return entry; 1602 } 1603 EXPORT_SYMBOL(resource_list_create_entry); 1604 1605 void resource_list_free(struct list_head *head) 1606 { 1607 struct resource_entry *entry, *tmp; 1608 1609 list_for_each_entry_safe(entry, tmp, head, node) 1610 resource_list_destroy_entry(entry); 1611 } 1612 EXPORT_SYMBOL(resource_list_free); 1613 1614 static int __init strict_iomem(char *str) 1615 { 1616 if (strstr(str, "relaxed")) 1617 strict_iomem_checks = 0; 1618 if (strstr(str, "strict")) 1619 strict_iomem_checks = 1; 1620 return 1; 1621 } 1622 1623 __setup("iomem=", strict_iomem); 1624