xref: /openbmc/linux/kernel/resource.c (revision 8f91116f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <asm/io.h>
31 
32 
33 struct resource ioport_resource = {
34 	.name	= "PCI IO",
35 	.start	= 0,
36 	.end	= IO_SPACE_LIMIT,
37 	.flags	= IORESOURCE_IO,
38 };
39 EXPORT_SYMBOL(ioport_resource);
40 
41 struct resource iomem_resource = {
42 	.name	= "PCI mem",
43 	.start	= 0,
44 	.end	= -1,
45 	.flags	= IORESOURCE_MEM,
46 };
47 EXPORT_SYMBOL(iomem_resource);
48 
49 /* constraints to be met while allocating resources */
50 struct resource_constraint {
51 	resource_size_t min, max, align;
52 	resource_size_t (*alignf)(void *, const struct resource *,
53 			resource_size_t, resource_size_t);
54 	void *alignf_data;
55 };
56 
57 static DEFINE_RWLOCK(resource_lock);
58 
59 static struct resource *next_resource(struct resource *p)
60 {
61 	if (p->child)
62 		return p->child;
63 	while (!p->sibling && p->parent)
64 		p = p->parent;
65 	return p->sibling;
66 }
67 
68 static struct resource *next_resource_skip_children(struct resource *p)
69 {
70 	while (!p->sibling && p->parent)
71 		p = p->parent;
72 	return p->sibling;
73 }
74 
75 #define for_each_resource(_root, _p, _skip_children) \
76 	for ((_p) = (_root)->child; (_p); \
77 	     (_p) = (_skip_children) ? next_resource_skip_children(_p) : \
78 				       next_resource(_p))
79 
80 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
81 {
82 	struct resource *p = v;
83 	(*pos)++;
84 	return (void *)next_resource(p);
85 }
86 
87 #ifdef CONFIG_PROC_FS
88 
89 enum { MAX_IORES_LEVEL = 5 };
90 
91 static void *r_start(struct seq_file *m, loff_t *pos)
92 	__acquires(resource_lock)
93 {
94 	struct resource *p = pde_data(file_inode(m->file));
95 	loff_t l = 0;
96 	read_lock(&resource_lock);
97 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
98 		;
99 	return p;
100 }
101 
102 static void r_stop(struct seq_file *m, void *v)
103 	__releases(resource_lock)
104 {
105 	read_unlock(&resource_lock);
106 }
107 
108 static int r_show(struct seq_file *m, void *v)
109 {
110 	struct resource *root = pde_data(file_inode(m->file));
111 	struct resource *r = v, *p;
112 	unsigned long long start, end;
113 	int width = root->end < 0x10000 ? 4 : 8;
114 	int depth;
115 
116 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
117 		if (p->parent == root)
118 			break;
119 
120 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
121 		start = r->start;
122 		end = r->end;
123 	} else {
124 		start = end = 0;
125 	}
126 
127 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
128 			depth * 2, "",
129 			width, start,
130 			width, end,
131 			r->name ? r->name : "<BAD>");
132 	return 0;
133 }
134 
135 static const struct seq_operations resource_op = {
136 	.start	= r_start,
137 	.next	= r_next,
138 	.stop	= r_stop,
139 	.show	= r_show,
140 };
141 
142 static int __init ioresources_init(void)
143 {
144 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
145 			&ioport_resource);
146 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
147 	return 0;
148 }
149 __initcall(ioresources_init);
150 
151 #endif /* CONFIG_PROC_FS */
152 
153 static void free_resource(struct resource *res)
154 {
155 	/**
156 	 * If the resource was allocated using memblock early during boot
157 	 * we'll leak it here: we can only return full pages back to the
158 	 * buddy and trying to be smart and reusing them eventually in
159 	 * alloc_resource() overcomplicates resource handling.
160 	 */
161 	if (res && PageSlab(virt_to_head_page(res)))
162 		kfree(res);
163 }
164 
165 static struct resource *alloc_resource(gfp_t flags)
166 {
167 	return kzalloc(sizeof(struct resource), flags);
168 }
169 
170 /* Return the conflict entry if you can't request it */
171 static struct resource * __request_resource(struct resource *root, struct resource *new)
172 {
173 	resource_size_t start = new->start;
174 	resource_size_t end = new->end;
175 	struct resource *tmp, **p;
176 
177 	if (end < start)
178 		return root;
179 	if (start < root->start)
180 		return root;
181 	if (end > root->end)
182 		return root;
183 	p = &root->child;
184 	for (;;) {
185 		tmp = *p;
186 		if (!tmp || tmp->start > end) {
187 			new->sibling = tmp;
188 			*p = new;
189 			new->parent = root;
190 			return NULL;
191 		}
192 		p = &tmp->sibling;
193 		if (tmp->end < start)
194 			continue;
195 		return tmp;
196 	}
197 }
198 
199 static int __release_resource(struct resource *old, bool release_child)
200 {
201 	struct resource *tmp, **p, *chd;
202 
203 	p = &old->parent->child;
204 	for (;;) {
205 		tmp = *p;
206 		if (!tmp)
207 			break;
208 		if (tmp == old) {
209 			if (release_child || !(tmp->child)) {
210 				*p = tmp->sibling;
211 			} else {
212 				for (chd = tmp->child;; chd = chd->sibling) {
213 					chd->parent = tmp->parent;
214 					if (!(chd->sibling))
215 						break;
216 				}
217 				*p = tmp->child;
218 				chd->sibling = tmp->sibling;
219 			}
220 			old->parent = NULL;
221 			return 0;
222 		}
223 		p = &tmp->sibling;
224 	}
225 	return -EINVAL;
226 }
227 
228 static void __release_child_resources(struct resource *r)
229 {
230 	struct resource *tmp, *p;
231 	resource_size_t size;
232 
233 	p = r->child;
234 	r->child = NULL;
235 	while (p) {
236 		tmp = p;
237 		p = p->sibling;
238 
239 		tmp->parent = NULL;
240 		tmp->sibling = NULL;
241 		__release_child_resources(tmp);
242 
243 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
244 		/* need to restore size, and keep flags */
245 		size = resource_size(tmp);
246 		tmp->start = 0;
247 		tmp->end = size - 1;
248 	}
249 }
250 
251 void release_child_resources(struct resource *r)
252 {
253 	write_lock(&resource_lock);
254 	__release_child_resources(r);
255 	write_unlock(&resource_lock);
256 }
257 
258 /**
259  * request_resource_conflict - request and reserve an I/O or memory resource
260  * @root: root resource descriptor
261  * @new: resource descriptor desired by caller
262  *
263  * Returns 0 for success, conflict resource on error.
264  */
265 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
266 {
267 	struct resource *conflict;
268 
269 	write_lock(&resource_lock);
270 	conflict = __request_resource(root, new);
271 	write_unlock(&resource_lock);
272 	return conflict;
273 }
274 
275 /**
276  * request_resource - request and reserve an I/O or memory resource
277  * @root: root resource descriptor
278  * @new: resource descriptor desired by caller
279  *
280  * Returns 0 for success, negative error code on error.
281  */
282 int request_resource(struct resource *root, struct resource *new)
283 {
284 	struct resource *conflict;
285 
286 	conflict = request_resource_conflict(root, new);
287 	return conflict ? -EBUSY : 0;
288 }
289 
290 EXPORT_SYMBOL(request_resource);
291 
292 /**
293  * release_resource - release a previously reserved resource
294  * @old: resource pointer
295  */
296 int release_resource(struct resource *old)
297 {
298 	int retval;
299 
300 	write_lock(&resource_lock);
301 	retval = __release_resource(old, true);
302 	write_unlock(&resource_lock);
303 	return retval;
304 }
305 
306 EXPORT_SYMBOL(release_resource);
307 
308 /**
309  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
310  *			 [@start..@end].
311  *
312  * If a resource is found, returns 0 and @*res is overwritten with the part
313  * of the resource that's within [@start..@end]; if none is found, returns
314  * -ENODEV.  Returns -EINVAL for invalid parameters.
315  *
316  * @start:	start address of the resource searched for
317  * @end:	end address of same resource
318  * @flags:	flags which the resource must have
319  * @desc:	descriptor the resource must have
320  * @res:	return ptr, if resource found
321  *
322  * The caller must specify @start, @end, @flags, and @desc
323  * (which may be IORES_DESC_NONE).
324  */
325 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
326 			       unsigned long flags, unsigned long desc,
327 			       struct resource *res)
328 {
329 	struct resource *p;
330 
331 	if (!res)
332 		return -EINVAL;
333 
334 	if (start >= end)
335 		return -EINVAL;
336 
337 	read_lock(&resource_lock);
338 
339 	for (p = iomem_resource.child; p; p = next_resource(p)) {
340 		/* If we passed the resource we are looking for, stop */
341 		if (p->start > end) {
342 			p = NULL;
343 			break;
344 		}
345 
346 		/* Skip until we find a range that matches what we look for */
347 		if (p->end < start)
348 			continue;
349 
350 		if ((p->flags & flags) != flags)
351 			continue;
352 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
353 			continue;
354 
355 		/* Found a match, break */
356 		break;
357 	}
358 
359 	if (p) {
360 		/* copy data */
361 		*res = (struct resource) {
362 			.start = max(start, p->start),
363 			.end = min(end, p->end),
364 			.flags = p->flags,
365 			.desc = p->desc,
366 			.parent = p->parent,
367 		};
368 	}
369 
370 	read_unlock(&resource_lock);
371 	return p ? 0 : -ENODEV;
372 }
373 
374 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
375 				 unsigned long flags, unsigned long desc,
376 				 void *arg,
377 				 int (*func)(struct resource *, void *))
378 {
379 	struct resource res;
380 	int ret = -EINVAL;
381 
382 	while (start < end &&
383 	       !find_next_iomem_res(start, end, flags, desc, &res)) {
384 		ret = (*func)(&res, arg);
385 		if (ret)
386 			break;
387 
388 		start = res.end + 1;
389 	}
390 
391 	return ret;
392 }
393 
394 /**
395  * walk_iomem_res_desc - Walks through iomem resources and calls func()
396  *			 with matching resource ranges.
397  * *
398  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
399  * @flags: I/O resource flags
400  * @start: start addr
401  * @end: end addr
402  * @arg: function argument for the callback @func
403  * @func: callback function that is called for each qualifying resource area
404  *
405  * All the memory ranges which overlap start,end and also match flags and
406  * desc are valid candidates.
407  *
408  * NOTE: For a new descriptor search, define a new IORES_DESC in
409  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
410  */
411 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
412 		u64 end, void *arg, int (*func)(struct resource *, void *))
413 {
414 	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
415 }
416 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
417 
418 /*
419  * This function calls the @func callback against all memory ranges of type
420  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
421  * Now, this function is only for System RAM, it deals with full ranges and
422  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
423  * ranges.
424  */
425 int walk_system_ram_res(u64 start, u64 end, void *arg,
426 			int (*func)(struct resource *, void *))
427 {
428 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
429 
430 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
431 				     func);
432 }
433 
434 /*
435  * This function calls the @func callback against all memory ranges, which
436  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
437  */
438 int walk_mem_res(u64 start, u64 end, void *arg,
439 		 int (*func)(struct resource *, void *))
440 {
441 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
442 
443 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
444 				     func);
445 }
446 
447 /*
448  * This function calls the @func callback against all memory ranges of type
449  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
450  * It is to be used only for System RAM.
451  */
452 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
453 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
454 {
455 	resource_size_t start, end;
456 	unsigned long flags;
457 	struct resource res;
458 	unsigned long pfn, end_pfn;
459 	int ret = -EINVAL;
460 
461 	start = (u64) start_pfn << PAGE_SHIFT;
462 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
463 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
464 	while (start < end &&
465 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
466 		pfn = PFN_UP(res.start);
467 		end_pfn = PFN_DOWN(res.end + 1);
468 		if (end_pfn > pfn)
469 			ret = (*func)(pfn, end_pfn - pfn, arg);
470 		if (ret)
471 			break;
472 		start = res.end + 1;
473 	}
474 	return ret;
475 }
476 
477 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
478 {
479 	return 1;
480 }
481 
482 /*
483  * This generic page_is_ram() returns true if specified address is
484  * registered as System RAM in iomem_resource list.
485  */
486 int __weak page_is_ram(unsigned long pfn)
487 {
488 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
489 }
490 EXPORT_SYMBOL_GPL(page_is_ram);
491 
492 static int __region_intersects(struct resource *parent, resource_size_t start,
493 			       size_t size, unsigned long flags,
494 			       unsigned long desc)
495 {
496 	resource_size_t ostart, oend;
497 	int type = 0; int other = 0;
498 	struct resource *p, *dp;
499 	bool is_type, covered;
500 	struct resource res;
501 
502 	res.start = start;
503 	res.end = start + size - 1;
504 
505 	for (p = parent->child; p ; p = p->sibling) {
506 		if (!resource_overlaps(p, &res))
507 			continue;
508 		is_type = (p->flags & flags) == flags &&
509 			(desc == IORES_DESC_NONE || desc == p->desc);
510 		if (is_type) {
511 			type++;
512 			continue;
513 		}
514 		/*
515 		 * Continue to search in descendant resources as if the
516 		 * matched descendant resources cover some ranges of 'p'.
517 		 *
518 		 * |------------- "CXL Window 0" ------------|
519 		 * |-- "System RAM" --|
520 		 *
521 		 * will behave similar as the following fake resource
522 		 * tree when searching "System RAM".
523 		 *
524 		 * |-- "System RAM" --||-- "CXL Window 0a" --|
525 		 */
526 		covered = false;
527 		ostart = max(res.start, p->start);
528 		oend = min(res.end, p->end);
529 		for_each_resource(p, dp, false) {
530 			if (!resource_overlaps(dp, &res))
531 				continue;
532 			is_type = (dp->flags & flags) == flags &&
533 				(desc == IORES_DESC_NONE || desc == dp->desc);
534 			if (is_type) {
535 				type++;
536 				/*
537 				 * Range from 'ostart' to 'dp->start'
538 				 * isn't covered by matched resource.
539 				 */
540 				if (dp->start > ostart)
541 					break;
542 				if (dp->end >= oend) {
543 					covered = true;
544 					break;
545 				}
546 				/* Remove covered range */
547 				ostart = max(ostart, dp->end + 1);
548 			}
549 		}
550 		if (!covered)
551 			other++;
552 	}
553 
554 	if (type == 0)
555 		return REGION_DISJOINT;
556 
557 	if (other == 0)
558 		return REGION_INTERSECTS;
559 
560 	return REGION_MIXED;
561 }
562 
563 /**
564  * region_intersects() - determine intersection of region with known resources
565  * @start: region start address
566  * @size: size of region
567  * @flags: flags of resource (in iomem_resource)
568  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
569  *
570  * Check if the specified region partially overlaps or fully eclipses a
571  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
572  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
573  * return REGION_MIXED if the region overlaps @flags/@desc and another
574  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
575  * and no other defined resource. Note that REGION_INTERSECTS is also
576  * returned in the case when the specified region overlaps RAM and undefined
577  * memory holes.
578  *
579  * region_intersect() is used by memory remapping functions to ensure
580  * the user is not remapping RAM and is a vast speed up over walking
581  * through the resource table page by page.
582  */
583 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
584 		      unsigned long desc)
585 {
586 	int ret;
587 
588 	read_lock(&resource_lock);
589 	ret = __region_intersects(&iomem_resource, start, size, flags, desc);
590 	read_unlock(&resource_lock);
591 
592 	return ret;
593 }
594 EXPORT_SYMBOL_GPL(region_intersects);
595 
596 void __weak arch_remove_reservations(struct resource *avail)
597 {
598 }
599 
600 static resource_size_t simple_align_resource(void *data,
601 					     const struct resource *avail,
602 					     resource_size_t size,
603 					     resource_size_t align)
604 {
605 	return avail->start;
606 }
607 
608 static void resource_clip(struct resource *res, resource_size_t min,
609 			  resource_size_t max)
610 {
611 	if (res->start < min)
612 		res->start = min;
613 	if (res->end > max)
614 		res->end = max;
615 }
616 
617 /*
618  * Find empty slot in the resource tree with the given range and
619  * alignment constraints
620  */
621 static int __find_resource(struct resource *root, struct resource *old,
622 			 struct resource *new,
623 			 resource_size_t  size,
624 			 struct resource_constraint *constraint)
625 {
626 	struct resource *this = root->child;
627 	struct resource tmp = *new, avail, alloc;
628 
629 	tmp.start = root->start;
630 	/*
631 	 * Skip past an allocated resource that starts at 0, since the assignment
632 	 * of this->start - 1 to tmp->end below would cause an underflow.
633 	 */
634 	if (this && this->start == root->start) {
635 		tmp.start = (this == old) ? old->start : this->end + 1;
636 		this = this->sibling;
637 	}
638 	for(;;) {
639 		if (this)
640 			tmp.end = (this == old) ?  this->end : this->start - 1;
641 		else
642 			tmp.end = root->end;
643 
644 		if (tmp.end < tmp.start)
645 			goto next;
646 
647 		resource_clip(&tmp, constraint->min, constraint->max);
648 		arch_remove_reservations(&tmp);
649 
650 		/* Check for overflow after ALIGN() */
651 		avail.start = ALIGN(tmp.start, constraint->align);
652 		avail.end = tmp.end;
653 		avail.flags = new->flags & ~IORESOURCE_UNSET;
654 		if (avail.start >= tmp.start) {
655 			alloc.flags = avail.flags;
656 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
657 					size, constraint->align);
658 			alloc.end = alloc.start + size - 1;
659 			if (alloc.start <= alloc.end &&
660 			    resource_contains(&avail, &alloc)) {
661 				new->start = alloc.start;
662 				new->end = alloc.end;
663 				return 0;
664 			}
665 		}
666 
667 next:		if (!this || this->end == root->end)
668 			break;
669 
670 		if (this != old)
671 			tmp.start = this->end + 1;
672 		this = this->sibling;
673 	}
674 	return -EBUSY;
675 }
676 
677 /*
678  * Find empty slot in the resource tree given range and alignment.
679  */
680 static int find_resource(struct resource *root, struct resource *new,
681 			resource_size_t size,
682 			struct resource_constraint  *constraint)
683 {
684 	return  __find_resource(root, NULL, new, size, constraint);
685 }
686 
687 /**
688  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
689  *	The resource will be relocated if the new size cannot be reallocated in the
690  *	current location.
691  *
692  * @root: root resource descriptor
693  * @old:  resource descriptor desired by caller
694  * @newsize: new size of the resource descriptor
695  * @constraint: the size and alignment constraints to be met.
696  */
697 static int reallocate_resource(struct resource *root, struct resource *old,
698 			       resource_size_t newsize,
699 			       struct resource_constraint *constraint)
700 {
701 	int err=0;
702 	struct resource new = *old;
703 	struct resource *conflict;
704 
705 	write_lock(&resource_lock);
706 
707 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
708 		goto out;
709 
710 	if (resource_contains(&new, old)) {
711 		old->start = new.start;
712 		old->end = new.end;
713 		goto out;
714 	}
715 
716 	if (old->child) {
717 		err = -EBUSY;
718 		goto out;
719 	}
720 
721 	if (resource_contains(old, &new)) {
722 		old->start = new.start;
723 		old->end = new.end;
724 	} else {
725 		__release_resource(old, true);
726 		*old = new;
727 		conflict = __request_resource(root, old);
728 		BUG_ON(conflict);
729 	}
730 out:
731 	write_unlock(&resource_lock);
732 	return err;
733 }
734 
735 
736 /**
737  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
738  * 	The resource will be reallocated with a new size if it was already allocated
739  * @root: root resource descriptor
740  * @new: resource descriptor desired by caller
741  * @size: requested resource region size
742  * @min: minimum boundary to allocate
743  * @max: maximum boundary to allocate
744  * @align: alignment requested, in bytes
745  * @alignf: alignment function, optional, called if not NULL
746  * @alignf_data: arbitrary data to pass to the @alignf function
747  */
748 int allocate_resource(struct resource *root, struct resource *new,
749 		      resource_size_t size, resource_size_t min,
750 		      resource_size_t max, resource_size_t align,
751 		      resource_size_t (*alignf)(void *,
752 						const struct resource *,
753 						resource_size_t,
754 						resource_size_t),
755 		      void *alignf_data)
756 {
757 	int err;
758 	struct resource_constraint constraint;
759 
760 	if (!alignf)
761 		alignf = simple_align_resource;
762 
763 	constraint.min = min;
764 	constraint.max = max;
765 	constraint.align = align;
766 	constraint.alignf = alignf;
767 	constraint.alignf_data = alignf_data;
768 
769 	if ( new->parent ) {
770 		/* resource is already allocated, try reallocating with
771 		   the new constraints */
772 		return reallocate_resource(root, new, size, &constraint);
773 	}
774 
775 	write_lock(&resource_lock);
776 	err = find_resource(root, new, size, &constraint);
777 	if (err >= 0 && __request_resource(root, new))
778 		err = -EBUSY;
779 	write_unlock(&resource_lock);
780 	return err;
781 }
782 
783 EXPORT_SYMBOL(allocate_resource);
784 
785 /**
786  * lookup_resource - find an existing resource by a resource start address
787  * @root: root resource descriptor
788  * @start: resource start address
789  *
790  * Returns a pointer to the resource if found, NULL otherwise
791  */
792 struct resource *lookup_resource(struct resource *root, resource_size_t start)
793 {
794 	struct resource *res;
795 
796 	read_lock(&resource_lock);
797 	for (res = root->child; res; res = res->sibling) {
798 		if (res->start == start)
799 			break;
800 	}
801 	read_unlock(&resource_lock);
802 
803 	return res;
804 }
805 
806 /*
807  * Insert a resource into the resource tree. If successful, return NULL,
808  * otherwise return the conflicting resource (compare to __request_resource())
809  */
810 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
811 {
812 	struct resource *first, *next;
813 
814 	for (;; parent = first) {
815 		first = __request_resource(parent, new);
816 		if (!first)
817 			return first;
818 
819 		if (first == parent)
820 			return first;
821 		if (WARN_ON(first == new))	/* duplicated insertion */
822 			return first;
823 
824 		if ((first->start > new->start) || (first->end < new->end))
825 			break;
826 		if ((first->start == new->start) && (first->end == new->end))
827 			break;
828 	}
829 
830 	for (next = first; ; next = next->sibling) {
831 		/* Partial overlap? Bad, and unfixable */
832 		if (next->start < new->start || next->end > new->end)
833 			return next;
834 		if (!next->sibling)
835 			break;
836 		if (next->sibling->start > new->end)
837 			break;
838 	}
839 
840 	new->parent = parent;
841 	new->sibling = next->sibling;
842 	new->child = first;
843 
844 	next->sibling = NULL;
845 	for (next = first; next; next = next->sibling)
846 		next->parent = new;
847 
848 	if (parent->child == first) {
849 		parent->child = new;
850 	} else {
851 		next = parent->child;
852 		while (next->sibling != first)
853 			next = next->sibling;
854 		next->sibling = new;
855 	}
856 	return NULL;
857 }
858 
859 /**
860  * insert_resource_conflict - Inserts resource in the resource tree
861  * @parent: parent of the new resource
862  * @new: new resource to insert
863  *
864  * Returns 0 on success, conflict resource if the resource can't be inserted.
865  *
866  * This function is equivalent to request_resource_conflict when no conflict
867  * happens. If a conflict happens, and the conflicting resources
868  * entirely fit within the range of the new resource, then the new
869  * resource is inserted and the conflicting resources become children of
870  * the new resource.
871  *
872  * This function is intended for producers of resources, such as FW modules
873  * and bus drivers.
874  */
875 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
876 {
877 	struct resource *conflict;
878 
879 	write_lock(&resource_lock);
880 	conflict = __insert_resource(parent, new);
881 	write_unlock(&resource_lock);
882 	return conflict;
883 }
884 
885 /**
886  * insert_resource - Inserts a resource in the resource tree
887  * @parent: parent of the new resource
888  * @new: new resource to insert
889  *
890  * Returns 0 on success, -EBUSY if the resource can't be inserted.
891  *
892  * This function is intended for producers of resources, such as FW modules
893  * and bus drivers.
894  */
895 int insert_resource(struct resource *parent, struct resource *new)
896 {
897 	struct resource *conflict;
898 
899 	conflict = insert_resource_conflict(parent, new);
900 	return conflict ? -EBUSY : 0;
901 }
902 EXPORT_SYMBOL_GPL(insert_resource);
903 
904 /**
905  * insert_resource_expand_to_fit - Insert a resource into the resource tree
906  * @root: root resource descriptor
907  * @new: new resource to insert
908  *
909  * Insert a resource into the resource tree, possibly expanding it in order
910  * to make it encompass any conflicting resources.
911  */
912 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
913 {
914 	if (new->parent)
915 		return;
916 
917 	write_lock(&resource_lock);
918 	for (;;) {
919 		struct resource *conflict;
920 
921 		conflict = __insert_resource(root, new);
922 		if (!conflict)
923 			break;
924 		if (conflict == root)
925 			break;
926 
927 		/* Ok, expand resource to cover the conflict, then try again .. */
928 		if (conflict->start < new->start)
929 			new->start = conflict->start;
930 		if (conflict->end > new->end)
931 			new->end = conflict->end;
932 
933 		pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
934 	}
935 	write_unlock(&resource_lock);
936 }
937 /*
938  * Not for general consumption, only early boot memory map parsing, PCI
939  * resource discovery, and late discovery of CXL resources are expected
940  * to use this interface. The former are built-in and only the latter,
941  * CXL, is a module.
942  */
943 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
944 
945 /**
946  * remove_resource - Remove a resource in the resource tree
947  * @old: resource to remove
948  *
949  * Returns 0 on success, -EINVAL if the resource is not valid.
950  *
951  * This function removes a resource previously inserted by insert_resource()
952  * or insert_resource_conflict(), and moves the children (if any) up to
953  * where they were before.  insert_resource() and insert_resource_conflict()
954  * insert a new resource, and move any conflicting resources down to the
955  * children of the new resource.
956  *
957  * insert_resource(), insert_resource_conflict() and remove_resource() are
958  * intended for producers of resources, such as FW modules and bus drivers.
959  */
960 int remove_resource(struct resource *old)
961 {
962 	int retval;
963 
964 	write_lock(&resource_lock);
965 	retval = __release_resource(old, false);
966 	write_unlock(&resource_lock);
967 	return retval;
968 }
969 EXPORT_SYMBOL_GPL(remove_resource);
970 
971 static int __adjust_resource(struct resource *res, resource_size_t start,
972 				resource_size_t size)
973 {
974 	struct resource *tmp, *parent = res->parent;
975 	resource_size_t end = start + size - 1;
976 	int result = -EBUSY;
977 
978 	if (!parent)
979 		goto skip;
980 
981 	if ((start < parent->start) || (end > parent->end))
982 		goto out;
983 
984 	if (res->sibling && (res->sibling->start <= end))
985 		goto out;
986 
987 	tmp = parent->child;
988 	if (tmp != res) {
989 		while (tmp->sibling != res)
990 			tmp = tmp->sibling;
991 		if (start <= tmp->end)
992 			goto out;
993 	}
994 
995 skip:
996 	for (tmp = res->child; tmp; tmp = tmp->sibling)
997 		if ((tmp->start < start) || (tmp->end > end))
998 			goto out;
999 
1000 	res->start = start;
1001 	res->end = end;
1002 	result = 0;
1003 
1004  out:
1005 	return result;
1006 }
1007 
1008 /**
1009  * adjust_resource - modify a resource's start and size
1010  * @res: resource to modify
1011  * @start: new start value
1012  * @size: new size
1013  *
1014  * Given an existing resource, change its start and size to match the
1015  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1016  * Existing children of the resource are assumed to be immutable.
1017  */
1018 int adjust_resource(struct resource *res, resource_size_t start,
1019 		    resource_size_t size)
1020 {
1021 	int result;
1022 
1023 	write_lock(&resource_lock);
1024 	result = __adjust_resource(res, start, size);
1025 	write_unlock(&resource_lock);
1026 	return result;
1027 }
1028 EXPORT_SYMBOL(adjust_resource);
1029 
1030 static void __init
1031 __reserve_region_with_split(struct resource *root, resource_size_t start,
1032 			    resource_size_t end, const char *name)
1033 {
1034 	struct resource *parent = root;
1035 	struct resource *conflict;
1036 	struct resource *res = alloc_resource(GFP_ATOMIC);
1037 	struct resource *next_res = NULL;
1038 	int type = resource_type(root);
1039 
1040 	if (!res)
1041 		return;
1042 
1043 	res->name = name;
1044 	res->start = start;
1045 	res->end = end;
1046 	res->flags = type | IORESOURCE_BUSY;
1047 	res->desc = IORES_DESC_NONE;
1048 
1049 	while (1) {
1050 
1051 		conflict = __request_resource(parent, res);
1052 		if (!conflict) {
1053 			if (!next_res)
1054 				break;
1055 			res = next_res;
1056 			next_res = NULL;
1057 			continue;
1058 		}
1059 
1060 		/* conflict covered whole area */
1061 		if (conflict->start <= res->start &&
1062 				conflict->end >= res->end) {
1063 			free_resource(res);
1064 			WARN_ON(next_res);
1065 			break;
1066 		}
1067 
1068 		/* failed, split and try again */
1069 		if (conflict->start > res->start) {
1070 			end = res->end;
1071 			res->end = conflict->start - 1;
1072 			if (conflict->end < end) {
1073 				next_res = alloc_resource(GFP_ATOMIC);
1074 				if (!next_res) {
1075 					free_resource(res);
1076 					break;
1077 				}
1078 				next_res->name = name;
1079 				next_res->start = conflict->end + 1;
1080 				next_res->end = end;
1081 				next_res->flags = type | IORESOURCE_BUSY;
1082 				next_res->desc = IORES_DESC_NONE;
1083 			}
1084 		} else {
1085 			res->start = conflict->end + 1;
1086 		}
1087 	}
1088 
1089 }
1090 
1091 void __init
1092 reserve_region_with_split(struct resource *root, resource_size_t start,
1093 			  resource_size_t end, const char *name)
1094 {
1095 	int abort = 0;
1096 
1097 	write_lock(&resource_lock);
1098 	if (root->start > start || root->end < end) {
1099 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1100 		       (unsigned long long)start, (unsigned long long)end,
1101 		       root);
1102 		if (start > root->end || end < root->start)
1103 			abort = 1;
1104 		else {
1105 			if (end > root->end)
1106 				end = root->end;
1107 			if (start < root->start)
1108 				start = root->start;
1109 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1110 			       (unsigned long long)start,
1111 			       (unsigned long long)end);
1112 		}
1113 		dump_stack();
1114 	}
1115 	if (!abort)
1116 		__reserve_region_with_split(root, start, end, name);
1117 	write_unlock(&resource_lock);
1118 }
1119 
1120 /**
1121  * resource_alignment - calculate resource's alignment
1122  * @res: resource pointer
1123  *
1124  * Returns alignment on success, 0 (invalid alignment) on failure.
1125  */
1126 resource_size_t resource_alignment(struct resource *res)
1127 {
1128 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1129 	case IORESOURCE_SIZEALIGN:
1130 		return resource_size(res);
1131 	case IORESOURCE_STARTALIGN:
1132 		return res->start;
1133 	default:
1134 		return 0;
1135 	}
1136 }
1137 
1138 /*
1139  * This is compatibility stuff for IO resources.
1140  *
1141  * Note how this, unlike the above, knows about
1142  * the IO flag meanings (busy etc).
1143  *
1144  * request_region creates a new busy region.
1145  *
1146  * release_region releases a matching busy region.
1147  */
1148 
1149 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1150 
1151 static struct inode *iomem_inode;
1152 
1153 #ifdef CONFIG_IO_STRICT_DEVMEM
1154 static void revoke_iomem(struct resource *res)
1155 {
1156 	/* pairs with smp_store_release() in iomem_init_inode() */
1157 	struct inode *inode = smp_load_acquire(&iomem_inode);
1158 
1159 	/*
1160 	 * Check that the initialization has completed. Losing the race
1161 	 * is ok because it means drivers are claiming resources before
1162 	 * the fs_initcall level of init and prevent iomem_get_mapping users
1163 	 * from establishing mappings.
1164 	 */
1165 	if (!inode)
1166 		return;
1167 
1168 	/*
1169 	 * The expectation is that the driver has successfully marked
1170 	 * the resource busy by this point, so devmem_is_allowed()
1171 	 * should start returning false, however for performance this
1172 	 * does not iterate the entire resource range.
1173 	 */
1174 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1175 	    devmem_is_allowed(PHYS_PFN(res->end))) {
1176 		/*
1177 		 * *cringe* iomem=relaxed says "go ahead, what's the
1178 		 * worst that can happen?"
1179 		 */
1180 		return;
1181 	}
1182 
1183 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1184 }
1185 #else
1186 static void revoke_iomem(struct resource *res) {}
1187 #endif
1188 
1189 struct address_space *iomem_get_mapping(void)
1190 {
1191 	/*
1192 	 * This function is only called from file open paths, hence guaranteed
1193 	 * that fs_initcalls have completed and no need to check for NULL. But
1194 	 * since revoke_iomem can be called before the initcall we still need
1195 	 * the barrier to appease checkers.
1196 	 */
1197 	return smp_load_acquire(&iomem_inode)->i_mapping;
1198 }
1199 
1200 static int __request_region_locked(struct resource *res, struct resource *parent,
1201 				   resource_size_t start, resource_size_t n,
1202 				   const char *name, int flags)
1203 {
1204 	DECLARE_WAITQUEUE(wait, current);
1205 
1206 	res->name = name;
1207 	res->start = start;
1208 	res->end = start + n - 1;
1209 
1210 	for (;;) {
1211 		struct resource *conflict;
1212 
1213 		res->flags = resource_type(parent) | resource_ext_type(parent);
1214 		res->flags |= IORESOURCE_BUSY | flags;
1215 		res->desc = parent->desc;
1216 
1217 		conflict = __request_resource(parent, res);
1218 		if (!conflict)
1219 			break;
1220 		/*
1221 		 * mm/hmm.c reserves physical addresses which then
1222 		 * become unavailable to other users.  Conflicts are
1223 		 * not expected.  Warn to aid debugging if encountered.
1224 		 */
1225 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1226 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1227 				conflict->name, conflict, res);
1228 		}
1229 		if (conflict != parent) {
1230 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1231 				parent = conflict;
1232 				continue;
1233 			}
1234 		}
1235 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1236 			add_wait_queue(&muxed_resource_wait, &wait);
1237 			write_unlock(&resource_lock);
1238 			set_current_state(TASK_UNINTERRUPTIBLE);
1239 			schedule();
1240 			remove_wait_queue(&muxed_resource_wait, &wait);
1241 			write_lock(&resource_lock);
1242 			continue;
1243 		}
1244 		/* Uhhuh, that didn't work out.. */
1245 		return -EBUSY;
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 /**
1252  * __request_region - create a new busy resource region
1253  * @parent: parent resource descriptor
1254  * @start: resource start address
1255  * @n: resource region size
1256  * @name: reserving caller's ID string
1257  * @flags: IO resource flags
1258  */
1259 struct resource *__request_region(struct resource *parent,
1260 				  resource_size_t start, resource_size_t n,
1261 				  const char *name, int flags)
1262 {
1263 	struct resource *res = alloc_resource(GFP_KERNEL);
1264 	int ret;
1265 
1266 	if (!res)
1267 		return NULL;
1268 
1269 	write_lock(&resource_lock);
1270 	ret = __request_region_locked(res, parent, start, n, name, flags);
1271 	write_unlock(&resource_lock);
1272 
1273 	if (ret) {
1274 		free_resource(res);
1275 		return NULL;
1276 	}
1277 
1278 	if (parent == &iomem_resource)
1279 		revoke_iomem(res);
1280 
1281 	return res;
1282 }
1283 EXPORT_SYMBOL(__request_region);
1284 
1285 /**
1286  * __release_region - release a previously reserved resource region
1287  * @parent: parent resource descriptor
1288  * @start: resource start address
1289  * @n: resource region size
1290  *
1291  * The described resource region must match a currently busy region.
1292  */
1293 void __release_region(struct resource *parent, resource_size_t start,
1294 		      resource_size_t n)
1295 {
1296 	struct resource **p;
1297 	resource_size_t end;
1298 
1299 	p = &parent->child;
1300 	end = start + n - 1;
1301 
1302 	write_lock(&resource_lock);
1303 
1304 	for (;;) {
1305 		struct resource *res = *p;
1306 
1307 		if (!res)
1308 			break;
1309 		if (res->start <= start && res->end >= end) {
1310 			if (!(res->flags & IORESOURCE_BUSY)) {
1311 				p = &res->child;
1312 				continue;
1313 			}
1314 			if (res->start != start || res->end != end)
1315 				break;
1316 			*p = res->sibling;
1317 			write_unlock(&resource_lock);
1318 			if (res->flags & IORESOURCE_MUXED)
1319 				wake_up(&muxed_resource_wait);
1320 			free_resource(res);
1321 			return;
1322 		}
1323 		p = &res->sibling;
1324 	}
1325 
1326 	write_unlock(&resource_lock);
1327 
1328 	pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1329 }
1330 EXPORT_SYMBOL(__release_region);
1331 
1332 #ifdef CONFIG_MEMORY_HOTREMOVE
1333 /**
1334  * release_mem_region_adjustable - release a previously reserved memory region
1335  * @start: resource start address
1336  * @size: resource region size
1337  *
1338  * This interface is intended for memory hot-delete.  The requested region
1339  * is released from a currently busy memory resource.  The requested region
1340  * must either match exactly or fit into a single busy resource entry.  In
1341  * the latter case, the remaining resource is adjusted accordingly.
1342  * Existing children of the busy memory resource must be immutable in the
1343  * request.
1344  *
1345  * Note:
1346  * - Additional release conditions, such as overlapping region, can be
1347  *   supported after they are confirmed as valid cases.
1348  * - When a busy memory resource gets split into two entries, the code
1349  *   assumes that all children remain in the lower address entry for
1350  *   simplicity.  Enhance this logic when necessary.
1351  */
1352 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1353 {
1354 	struct resource *parent = &iomem_resource;
1355 	struct resource *new_res = NULL;
1356 	bool alloc_nofail = false;
1357 	struct resource **p;
1358 	struct resource *res;
1359 	resource_size_t end;
1360 
1361 	end = start + size - 1;
1362 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1363 		return;
1364 
1365 	/*
1366 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1367 	 * just before releasing the region. This is highly unlikely to
1368 	 * fail - let's play save and make it never fail as the caller cannot
1369 	 * perform any error handling (e.g., trying to re-add memory will fail
1370 	 * similarly).
1371 	 */
1372 retry:
1373 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1374 
1375 	p = &parent->child;
1376 	write_lock(&resource_lock);
1377 
1378 	while ((res = *p)) {
1379 		if (res->start >= end)
1380 			break;
1381 
1382 		/* look for the next resource if it does not fit into */
1383 		if (res->start > start || res->end < end) {
1384 			p = &res->sibling;
1385 			continue;
1386 		}
1387 
1388 		if (!(res->flags & IORESOURCE_MEM))
1389 			break;
1390 
1391 		if (!(res->flags & IORESOURCE_BUSY)) {
1392 			p = &res->child;
1393 			continue;
1394 		}
1395 
1396 		/* found the target resource; let's adjust accordingly */
1397 		if (res->start == start && res->end == end) {
1398 			/* free the whole entry */
1399 			*p = res->sibling;
1400 			free_resource(res);
1401 		} else if (res->start == start && res->end != end) {
1402 			/* adjust the start */
1403 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1404 						       res->end - end));
1405 		} else if (res->start != start && res->end == end) {
1406 			/* adjust the end */
1407 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1408 						       start - res->start));
1409 		} else {
1410 			/* split into two entries - we need a new resource */
1411 			if (!new_res) {
1412 				new_res = alloc_resource(GFP_ATOMIC);
1413 				if (!new_res) {
1414 					alloc_nofail = true;
1415 					write_unlock(&resource_lock);
1416 					goto retry;
1417 				}
1418 			}
1419 			new_res->name = res->name;
1420 			new_res->start = end + 1;
1421 			new_res->end = res->end;
1422 			new_res->flags = res->flags;
1423 			new_res->desc = res->desc;
1424 			new_res->parent = res->parent;
1425 			new_res->sibling = res->sibling;
1426 			new_res->child = NULL;
1427 
1428 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1429 							   start - res->start)))
1430 				break;
1431 			res->sibling = new_res;
1432 			new_res = NULL;
1433 		}
1434 
1435 		break;
1436 	}
1437 
1438 	write_unlock(&resource_lock);
1439 	free_resource(new_res);
1440 }
1441 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1442 
1443 #ifdef CONFIG_MEMORY_HOTPLUG
1444 static bool system_ram_resources_mergeable(struct resource *r1,
1445 					   struct resource *r2)
1446 {
1447 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1448 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1449 	       r1->name == r2->name && r1->desc == r2->desc &&
1450 	       !r1->child && !r2->child;
1451 }
1452 
1453 /**
1454  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1455  *	merge it with adjacent, mergeable resources
1456  * @res: resource descriptor
1457  *
1458  * This interface is intended for memory hotplug, whereby lots of contiguous
1459  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1460  * the actual resource boundaries are not of interest (e.g., it might be
1461  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1462  * same parent, and that don't have any children are considered. All mergeable
1463  * resources must be immutable during the request.
1464  *
1465  * Note:
1466  * - The caller has to make sure that no pointers to resources that are
1467  *   marked mergeable are used anymore after this call - the resource might
1468  *   be freed and the pointer might be stale!
1469  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1470  */
1471 void merge_system_ram_resource(struct resource *res)
1472 {
1473 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1474 	struct resource *cur;
1475 
1476 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1477 		return;
1478 
1479 	write_lock(&resource_lock);
1480 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1481 
1482 	/* Try to merge with next item in the list. */
1483 	cur = res->sibling;
1484 	if (cur && system_ram_resources_mergeable(res, cur)) {
1485 		res->end = cur->end;
1486 		res->sibling = cur->sibling;
1487 		free_resource(cur);
1488 	}
1489 
1490 	/* Try to merge with previous item in the list. */
1491 	cur = res->parent->child;
1492 	while (cur && cur->sibling != res)
1493 		cur = cur->sibling;
1494 	if (cur && system_ram_resources_mergeable(cur, res)) {
1495 		cur->end = res->end;
1496 		cur->sibling = res->sibling;
1497 		free_resource(res);
1498 	}
1499 	write_unlock(&resource_lock);
1500 }
1501 #endif	/* CONFIG_MEMORY_HOTPLUG */
1502 
1503 /*
1504  * Managed region resource
1505  */
1506 static void devm_resource_release(struct device *dev, void *ptr)
1507 {
1508 	struct resource **r = ptr;
1509 
1510 	release_resource(*r);
1511 }
1512 
1513 /**
1514  * devm_request_resource() - request and reserve an I/O or memory resource
1515  * @dev: device for which to request the resource
1516  * @root: root of the resource tree from which to request the resource
1517  * @new: descriptor of the resource to request
1518  *
1519  * This is a device-managed version of request_resource(). There is usually
1520  * no need to release resources requested by this function explicitly since
1521  * that will be taken care of when the device is unbound from its driver.
1522  * If for some reason the resource needs to be released explicitly, because
1523  * of ordering issues for example, drivers must call devm_release_resource()
1524  * rather than the regular release_resource().
1525  *
1526  * When a conflict is detected between any existing resources and the newly
1527  * requested resource, an error message will be printed.
1528  *
1529  * Returns 0 on success or a negative error code on failure.
1530  */
1531 int devm_request_resource(struct device *dev, struct resource *root,
1532 			  struct resource *new)
1533 {
1534 	struct resource *conflict, **ptr;
1535 
1536 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1537 	if (!ptr)
1538 		return -ENOMEM;
1539 
1540 	*ptr = new;
1541 
1542 	conflict = request_resource_conflict(root, new);
1543 	if (conflict) {
1544 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1545 			new, conflict->name, conflict);
1546 		devres_free(ptr);
1547 		return -EBUSY;
1548 	}
1549 
1550 	devres_add(dev, ptr);
1551 	return 0;
1552 }
1553 EXPORT_SYMBOL(devm_request_resource);
1554 
1555 static int devm_resource_match(struct device *dev, void *res, void *data)
1556 {
1557 	struct resource **ptr = res;
1558 
1559 	return *ptr == data;
1560 }
1561 
1562 /**
1563  * devm_release_resource() - release a previously requested resource
1564  * @dev: device for which to release the resource
1565  * @new: descriptor of the resource to release
1566  *
1567  * Releases a resource previously requested using devm_request_resource().
1568  */
1569 void devm_release_resource(struct device *dev, struct resource *new)
1570 {
1571 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1572 			       new));
1573 }
1574 EXPORT_SYMBOL(devm_release_resource);
1575 
1576 struct region_devres {
1577 	struct resource *parent;
1578 	resource_size_t start;
1579 	resource_size_t n;
1580 };
1581 
1582 static void devm_region_release(struct device *dev, void *res)
1583 {
1584 	struct region_devres *this = res;
1585 
1586 	__release_region(this->parent, this->start, this->n);
1587 }
1588 
1589 static int devm_region_match(struct device *dev, void *res, void *match_data)
1590 {
1591 	struct region_devres *this = res, *match = match_data;
1592 
1593 	return this->parent == match->parent &&
1594 		this->start == match->start && this->n == match->n;
1595 }
1596 
1597 struct resource *
1598 __devm_request_region(struct device *dev, struct resource *parent,
1599 		      resource_size_t start, resource_size_t n, const char *name)
1600 {
1601 	struct region_devres *dr = NULL;
1602 	struct resource *res;
1603 
1604 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1605 			  GFP_KERNEL);
1606 	if (!dr)
1607 		return NULL;
1608 
1609 	dr->parent = parent;
1610 	dr->start = start;
1611 	dr->n = n;
1612 
1613 	res = __request_region(parent, start, n, name, 0);
1614 	if (res)
1615 		devres_add(dev, dr);
1616 	else
1617 		devres_free(dr);
1618 
1619 	return res;
1620 }
1621 EXPORT_SYMBOL(__devm_request_region);
1622 
1623 void __devm_release_region(struct device *dev, struct resource *parent,
1624 			   resource_size_t start, resource_size_t n)
1625 {
1626 	struct region_devres match_data = { parent, start, n };
1627 
1628 	__release_region(parent, start, n);
1629 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1630 			       &match_data));
1631 }
1632 EXPORT_SYMBOL(__devm_release_region);
1633 
1634 /*
1635  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1636  */
1637 #define MAXRESERVE 4
1638 static int __init reserve_setup(char *str)
1639 {
1640 	static int reserved;
1641 	static struct resource reserve[MAXRESERVE];
1642 
1643 	for (;;) {
1644 		unsigned int io_start, io_num;
1645 		int x = reserved;
1646 		struct resource *parent;
1647 
1648 		if (get_option(&str, &io_start) != 2)
1649 			break;
1650 		if (get_option(&str, &io_num) == 0)
1651 			break;
1652 		if (x < MAXRESERVE) {
1653 			struct resource *res = reserve + x;
1654 
1655 			/*
1656 			 * If the region starts below 0x10000, we assume it's
1657 			 * I/O port space; otherwise assume it's memory.
1658 			 */
1659 			if (io_start < 0x10000) {
1660 				res->flags = IORESOURCE_IO;
1661 				parent = &ioport_resource;
1662 			} else {
1663 				res->flags = IORESOURCE_MEM;
1664 				parent = &iomem_resource;
1665 			}
1666 			res->name = "reserved";
1667 			res->start = io_start;
1668 			res->end = io_start + io_num - 1;
1669 			res->flags |= IORESOURCE_BUSY;
1670 			res->desc = IORES_DESC_NONE;
1671 			res->child = NULL;
1672 			if (request_resource(parent, res) == 0)
1673 				reserved = x+1;
1674 		}
1675 	}
1676 	return 1;
1677 }
1678 __setup("reserve=", reserve_setup);
1679 
1680 /*
1681  * Check if the requested addr and size spans more than any slot in the
1682  * iomem resource tree.
1683  */
1684 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1685 {
1686 	struct resource *p = &iomem_resource;
1687 	resource_size_t end = addr + size - 1;
1688 	int err = 0;
1689 	loff_t l;
1690 
1691 	read_lock(&resource_lock);
1692 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1693 		/*
1694 		 * We can probably skip the resources without
1695 		 * IORESOURCE_IO attribute?
1696 		 */
1697 		if (p->start > end)
1698 			continue;
1699 		if (p->end < addr)
1700 			continue;
1701 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1702 		    PFN_DOWN(p->end) >= PFN_DOWN(end))
1703 			continue;
1704 		/*
1705 		 * if a resource is "BUSY", it's not a hardware resource
1706 		 * but a driver mapping of such a resource; we don't want
1707 		 * to warn for those; some drivers legitimately map only
1708 		 * partial hardware resources. (example: vesafb)
1709 		 */
1710 		if (p->flags & IORESOURCE_BUSY)
1711 			continue;
1712 
1713 		pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1714 			&addr, &end, p->name, p);
1715 		err = -1;
1716 		break;
1717 	}
1718 	read_unlock(&resource_lock);
1719 
1720 	return err;
1721 }
1722 
1723 #ifdef CONFIG_STRICT_DEVMEM
1724 static int strict_iomem_checks = 1;
1725 #else
1726 static int strict_iomem_checks;
1727 #endif
1728 
1729 /*
1730  * Check if an address is exclusive to the kernel and must not be mapped to
1731  * user space, for example, via /dev/mem.
1732  *
1733  * Returns true if exclusive to the kernel, otherwise returns false.
1734  */
1735 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1736 {
1737 	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1738 						  IORESOURCE_EXCLUSIVE;
1739 	bool skip_children = false, err = false;
1740 	struct resource *p;
1741 
1742 	read_lock(&resource_lock);
1743 	for_each_resource(root, p, skip_children) {
1744 		if (p->start >= addr + size)
1745 			break;
1746 		if (p->end < addr) {
1747 			skip_children = true;
1748 			continue;
1749 		}
1750 		skip_children = false;
1751 
1752 		/*
1753 		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1754 		 * IORESOURCE_EXCLUSIVE is set, even if they
1755 		 * are not busy and even if "iomem=relaxed" is set. The
1756 		 * responsible driver dynamically adds/removes system RAM within
1757 		 * such an area and uncontrolled access is dangerous.
1758 		 */
1759 		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1760 			err = true;
1761 			break;
1762 		}
1763 
1764 		/*
1765 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1766 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1767 		 * resource is busy.
1768 		 */
1769 		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1770 			continue;
1771 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1772 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1773 			err = true;
1774 			break;
1775 		}
1776 	}
1777 	read_unlock(&resource_lock);
1778 
1779 	return err;
1780 }
1781 
1782 bool iomem_is_exclusive(u64 addr)
1783 {
1784 	return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1785 				     PAGE_SIZE);
1786 }
1787 
1788 struct resource_entry *resource_list_create_entry(struct resource *res,
1789 						  size_t extra_size)
1790 {
1791 	struct resource_entry *entry;
1792 
1793 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1794 	if (entry) {
1795 		INIT_LIST_HEAD(&entry->node);
1796 		entry->res = res ? res : &entry->__res;
1797 	}
1798 
1799 	return entry;
1800 }
1801 EXPORT_SYMBOL(resource_list_create_entry);
1802 
1803 void resource_list_free(struct list_head *head)
1804 {
1805 	struct resource_entry *entry, *tmp;
1806 
1807 	list_for_each_entry_safe(entry, tmp, head, node)
1808 		resource_list_destroy_entry(entry);
1809 }
1810 EXPORT_SYMBOL(resource_list_free);
1811 
1812 #ifdef CONFIG_GET_FREE_REGION
1813 #define GFR_DESCENDING		(1UL << 0)
1814 #define GFR_REQUEST_REGION	(1UL << 1)
1815 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1816 
1817 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1818 				 resource_size_t align, unsigned long flags)
1819 {
1820 	if (flags & GFR_DESCENDING) {
1821 		resource_size_t end;
1822 
1823 		end = min_t(resource_size_t, base->end, PHYSMEM_END);
1824 		return end - size + 1;
1825 	}
1826 
1827 	return ALIGN(base->start, align);
1828 }
1829 
1830 static bool gfr_continue(struct resource *base, resource_size_t addr,
1831 			 resource_size_t size, unsigned long flags)
1832 {
1833 	if (flags & GFR_DESCENDING)
1834 		return addr > size && addr >= base->start;
1835 	/*
1836 	 * In the ascend case be careful that the last increment by
1837 	 * @size did not wrap 0.
1838 	 */
1839 	return addr > addr - size &&
1840 	       addr <= min_t(resource_size_t, base->end, PHYSMEM_END);
1841 }
1842 
1843 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1844 				unsigned long flags)
1845 {
1846 	if (flags & GFR_DESCENDING)
1847 		return addr - size;
1848 	return addr + size;
1849 }
1850 
1851 static void remove_free_mem_region(void *_res)
1852 {
1853 	struct resource *res = _res;
1854 
1855 	if (res->parent)
1856 		remove_resource(res);
1857 	free_resource(res);
1858 }
1859 
1860 static struct resource *
1861 get_free_mem_region(struct device *dev, struct resource *base,
1862 		    resource_size_t size, const unsigned long align,
1863 		    const char *name, const unsigned long desc,
1864 		    const unsigned long flags)
1865 {
1866 	resource_size_t addr;
1867 	struct resource *res;
1868 	struct region_devres *dr = NULL;
1869 
1870 	size = ALIGN(size, align);
1871 
1872 	res = alloc_resource(GFP_KERNEL);
1873 	if (!res)
1874 		return ERR_PTR(-ENOMEM);
1875 
1876 	if (dev && (flags & GFR_REQUEST_REGION)) {
1877 		dr = devres_alloc(devm_region_release,
1878 				sizeof(struct region_devres), GFP_KERNEL);
1879 		if (!dr) {
1880 			free_resource(res);
1881 			return ERR_PTR(-ENOMEM);
1882 		}
1883 	} else if (dev) {
1884 		if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1885 			return ERR_PTR(-ENOMEM);
1886 	}
1887 
1888 	write_lock(&resource_lock);
1889 	for (addr = gfr_start(base, size, align, flags);
1890 	     gfr_continue(base, addr, align, flags);
1891 	     addr = gfr_next(addr, align, flags)) {
1892 		if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1893 		    REGION_DISJOINT)
1894 			continue;
1895 
1896 		if (flags & GFR_REQUEST_REGION) {
1897 			if (__request_region_locked(res, &iomem_resource, addr,
1898 						    size, name, 0))
1899 				break;
1900 
1901 			if (dev) {
1902 				dr->parent = &iomem_resource;
1903 				dr->start = addr;
1904 				dr->n = size;
1905 				devres_add(dev, dr);
1906 			}
1907 
1908 			res->desc = desc;
1909 			write_unlock(&resource_lock);
1910 
1911 
1912 			/*
1913 			 * A driver is claiming this region so revoke any
1914 			 * mappings.
1915 			 */
1916 			revoke_iomem(res);
1917 		} else {
1918 			res->start = addr;
1919 			res->end = addr + size - 1;
1920 			res->name = name;
1921 			res->desc = desc;
1922 			res->flags = IORESOURCE_MEM;
1923 
1924 			/*
1925 			 * Only succeed if the resource hosts an exclusive
1926 			 * range after the insert
1927 			 */
1928 			if (__insert_resource(base, res) || res->child)
1929 				break;
1930 
1931 			write_unlock(&resource_lock);
1932 		}
1933 
1934 		return res;
1935 	}
1936 	write_unlock(&resource_lock);
1937 
1938 	if (flags & GFR_REQUEST_REGION) {
1939 		free_resource(res);
1940 		devres_free(dr);
1941 	} else if (dev)
1942 		devm_release_action(dev, remove_free_mem_region, res);
1943 
1944 	return ERR_PTR(-ERANGE);
1945 }
1946 
1947 /**
1948  * devm_request_free_mem_region - find free region for device private memory
1949  *
1950  * @dev: device struct to bind the resource to
1951  * @size: size in bytes of the device memory to add
1952  * @base: resource tree to look in
1953  *
1954  * This function tries to find an empty range of physical address big enough to
1955  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1956  * memory, which in turn allocates struct pages.
1957  */
1958 struct resource *devm_request_free_mem_region(struct device *dev,
1959 		struct resource *base, unsigned long size)
1960 {
1961 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1962 
1963 	return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
1964 				   dev_name(dev),
1965 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1966 }
1967 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1968 
1969 struct resource *request_free_mem_region(struct resource *base,
1970 		unsigned long size, const char *name)
1971 {
1972 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1973 
1974 	return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
1975 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1976 }
1977 EXPORT_SYMBOL_GPL(request_free_mem_region);
1978 
1979 /**
1980  * alloc_free_mem_region - find a free region relative to @base
1981  * @base: resource that will parent the new resource
1982  * @size: size in bytes of memory to allocate from @base
1983  * @align: alignment requirements for the allocation
1984  * @name: resource name
1985  *
1986  * Buses like CXL, that can dynamically instantiate new memory regions,
1987  * need a method to allocate physical address space for those regions.
1988  * Allocate and insert a new resource to cover a free, unclaimed by a
1989  * descendant of @base, range in the span of @base.
1990  */
1991 struct resource *alloc_free_mem_region(struct resource *base,
1992 				       unsigned long size, unsigned long align,
1993 				       const char *name)
1994 {
1995 	/* Default of ascending direction and insert resource */
1996 	unsigned long flags = 0;
1997 
1998 	return get_free_mem_region(NULL, base, size, align, name,
1999 				   IORES_DESC_NONE, flags);
2000 }
2001 EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL);
2002 #endif /* CONFIG_GET_FREE_REGION */
2003 
2004 static int __init strict_iomem(char *str)
2005 {
2006 	if (strstr(str, "relaxed"))
2007 		strict_iomem_checks = 0;
2008 	if (strstr(str, "strict"))
2009 		strict_iomem_checks = 1;
2010 	return 1;
2011 }
2012 
2013 static int iomem_fs_init_fs_context(struct fs_context *fc)
2014 {
2015 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2016 }
2017 
2018 static struct file_system_type iomem_fs_type = {
2019 	.name		= "iomem",
2020 	.owner		= THIS_MODULE,
2021 	.init_fs_context = iomem_fs_init_fs_context,
2022 	.kill_sb	= kill_anon_super,
2023 };
2024 
2025 static int __init iomem_init_inode(void)
2026 {
2027 	static struct vfsmount *iomem_vfs_mount;
2028 	static int iomem_fs_cnt;
2029 	struct inode *inode;
2030 	int rc;
2031 
2032 	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2033 	if (rc < 0) {
2034 		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2035 		return rc;
2036 	}
2037 
2038 	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2039 	if (IS_ERR(inode)) {
2040 		rc = PTR_ERR(inode);
2041 		pr_err("Cannot allocate inode for iomem: %d\n", rc);
2042 		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2043 		return rc;
2044 	}
2045 
2046 	/*
2047 	 * Publish iomem revocation inode initialized.
2048 	 * Pairs with smp_load_acquire() in revoke_iomem().
2049 	 */
2050 	smp_store_release(&iomem_inode, inode);
2051 
2052 	return 0;
2053 }
2054 
2055 fs_initcall(iomem_init_inode);
2056 
2057 __setup("iomem=", strict_iomem);
2058