1 /* 2 * linux/kernel/resource.c 3 * 4 * Copyright (C) 1999 Linus Torvalds 5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 6 * 7 * Arbitrary resource management. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/export.h> 13 #include <linux/errno.h> 14 #include <linux/ioport.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/device.h> 23 #include <linux/pfn.h> 24 #include <linux/mm.h> 25 #include <asm/io.h> 26 27 28 struct resource ioport_resource = { 29 .name = "PCI IO", 30 .start = 0, 31 .end = IO_SPACE_LIMIT, 32 .flags = IORESOURCE_IO, 33 }; 34 EXPORT_SYMBOL(ioport_resource); 35 36 struct resource iomem_resource = { 37 .name = "PCI mem", 38 .start = 0, 39 .end = -1, 40 .flags = IORESOURCE_MEM, 41 }; 42 EXPORT_SYMBOL(iomem_resource); 43 44 /* constraints to be met while allocating resources */ 45 struct resource_constraint { 46 resource_size_t min, max, align; 47 resource_size_t (*alignf)(void *, const struct resource *, 48 resource_size_t, resource_size_t); 49 void *alignf_data; 50 }; 51 52 static DEFINE_RWLOCK(resource_lock); 53 54 /* 55 * For memory hotplug, there is no way to free resource entries allocated 56 * by boot mem after the system is up. So for reusing the resource entry 57 * we need to remember the resource. 58 */ 59 static struct resource *bootmem_resource_free; 60 static DEFINE_SPINLOCK(bootmem_resource_lock); 61 62 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 63 { 64 struct resource *p = v; 65 (*pos)++; 66 if (p->child) 67 return p->child; 68 while (!p->sibling && p->parent) 69 p = p->parent; 70 return p->sibling; 71 } 72 73 #ifdef CONFIG_PROC_FS 74 75 enum { MAX_IORES_LEVEL = 5 }; 76 77 static void *r_start(struct seq_file *m, loff_t *pos) 78 __acquires(resource_lock) 79 { 80 struct resource *p = m->private; 81 loff_t l = 0; 82 read_lock(&resource_lock); 83 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 84 ; 85 return p; 86 } 87 88 static void r_stop(struct seq_file *m, void *v) 89 __releases(resource_lock) 90 { 91 read_unlock(&resource_lock); 92 } 93 94 static int r_show(struct seq_file *m, void *v) 95 { 96 struct resource *root = m->private; 97 struct resource *r = v, *p; 98 int width = root->end < 0x10000 ? 4 : 8; 99 int depth; 100 101 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 102 if (p->parent == root) 103 break; 104 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 105 depth * 2, "", 106 width, (unsigned long long) r->start, 107 width, (unsigned long long) r->end, 108 r->name ? r->name : "<BAD>"); 109 return 0; 110 } 111 112 static const struct seq_operations resource_op = { 113 .start = r_start, 114 .next = r_next, 115 .stop = r_stop, 116 .show = r_show, 117 }; 118 119 static int ioports_open(struct inode *inode, struct file *file) 120 { 121 int res = seq_open(file, &resource_op); 122 if (!res) { 123 struct seq_file *m = file->private_data; 124 m->private = &ioport_resource; 125 } 126 return res; 127 } 128 129 static int iomem_open(struct inode *inode, struct file *file) 130 { 131 int res = seq_open(file, &resource_op); 132 if (!res) { 133 struct seq_file *m = file->private_data; 134 m->private = &iomem_resource; 135 } 136 return res; 137 } 138 139 static const struct file_operations proc_ioports_operations = { 140 .open = ioports_open, 141 .read = seq_read, 142 .llseek = seq_lseek, 143 .release = seq_release, 144 }; 145 146 static const struct file_operations proc_iomem_operations = { 147 .open = iomem_open, 148 .read = seq_read, 149 .llseek = seq_lseek, 150 .release = seq_release, 151 }; 152 153 static int __init ioresources_init(void) 154 { 155 proc_create("ioports", 0, NULL, &proc_ioports_operations); 156 proc_create("iomem", 0, NULL, &proc_iomem_operations); 157 return 0; 158 } 159 __initcall(ioresources_init); 160 161 #endif /* CONFIG_PROC_FS */ 162 163 static void free_resource(struct resource *res) 164 { 165 if (!res) 166 return; 167 168 if (!PageSlab(virt_to_head_page(res))) { 169 spin_lock(&bootmem_resource_lock); 170 res->sibling = bootmem_resource_free; 171 bootmem_resource_free = res; 172 spin_unlock(&bootmem_resource_lock); 173 } else { 174 kfree(res); 175 } 176 } 177 178 static struct resource *alloc_resource(gfp_t flags) 179 { 180 struct resource *res = NULL; 181 182 spin_lock(&bootmem_resource_lock); 183 if (bootmem_resource_free) { 184 res = bootmem_resource_free; 185 bootmem_resource_free = res->sibling; 186 } 187 spin_unlock(&bootmem_resource_lock); 188 189 if (res) 190 memset(res, 0, sizeof(struct resource)); 191 else 192 res = kzalloc(sizeof(struct resource), flags); 193 194 return res; 195 } 196 197 /* Return the conflict entry if you can't request it */ 198 static struct resource * __request_resource(struct resource *root, struct resource *new) 199 { 200 resource_size_t start = new->start; 201 resource_size_t end = new->end; 202 struct resource *tmp, **p; 203 204 if (end < start) 205 return root; 206 if (start < root->start) 207 return root; 208 if (end > root->end) 209 return root; 210 p = &root->child; 211 for (;;) { 212 tmp = *p; 213 if (!tmp || tmp->start > end) { 214 new->sibling = tmp; 215 *p = new; 216 new->parent = root; 217 return NULL; 218 } 219 p = &tmp->sibling; 220 if (tmp->end < start) 221 continue; 222 return tmp; 223 } 224 } 225 226 static int __release_resource(struct resource *old) 227 { 228 struct resource *tmp, **p; 229 230 p = &old->parent->child; 231 for (;;) { 232 tmp = *p; 233 if (!tmp) 234 break; 235 if (tmp == old) { 236 *p = tmp->sibling; 237 old->parent = NULL; 238 return 0; 239 } 240 p = &tmp->sibling; 241 } 242 return -EINVAL; 243 } 244 245 static void __release_child_resources(struct resource *r) 246 { 247 struct resource *tmp, *p; 248 resource_size_t size; 249 250 p = r->child; 251 r->child = NULL; 252 while (p) { 253 tmp = p; 254 p = p->sibling; 255 256 tmp->parent = NULL; 257 tmp->sibling = NULL; 258 __release_child_resources(tmp); 259 260 printk(KERN_DEBUG "release child resource %pR\n", tmp); 261 /* need to restore size, and keep flags */ 262 size = resource_size(tmp); 263 tmp->start = 0; 264 tmp->end = size - 1; 265 } 266 } 267 268 void release_child_resources(struct resource *r) 269 { 270 write_lock(&resource_lock); 271 __release_child_resources(r); 272 write_unlock(&resource_lock); 273 } 274 275 /** 276 * request_resource_conflict - request and reserve an I/O or memory resource 277 * @root: root resource descriptor 278 * @new: resource descriptor desired by caller 279 * 280 * Returns 0 for success, conflict resource on error. 281 */ 282 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 283 { 284 struct resource *conflict; 285 286 write_lock(&resource_lock); 287 conflict = __request_resource(root, new); 288 write_unlock(&resource_lock); 289 return conflict; 290 } 291 292 /** 293 * request_resource - request and reserve an I/O or memory resource 294 * @root: root resource descriptor 295 * @new: resource descriptor desired by caller 296 * 297 * Returns 0 for success, negative error code on error. 298 */ 299 int request_resource(struct resource *root, struct resource *new) 300 { 301 struct resource *conflict; 302 303 conflict = request_resource_conflict(root, new); 304 return conflict ? -EBUSY : 0; 305 } 306 307 EXPORT_SYMBOL(request_resource); 308 309 /** 310 * release_resource - release a previously reserved resource 311 * @old: resource pointer 312 */ 313 int release_resource(struct resource *old) 314 { 315 int retval; 316 317 write_lock(&resource_lock); 318 retval = __release_resource(old); 319 write_unlock(&resource_lock); 320 return retval; 321 } 322 323 EXPORT_SYMBOL(release_resource); 324 325 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) 326 /* 327 * Finds the lowest memory reosurce exists within [res->start.res->end) 328 * the caller must specify res->start, res->end, res->flags and "name". 329 * If found, returns 0, res is overwritten, if not found, returns -1. 330 */ 331 static int find_next_system_ram(struct resource *res, char *name) 332 { 333 resource_size_t start, end; 334 struct resource *p; 335 336 BUG_ON(!res); 337 338 start = res->start; 339 end = res->end; 340 BUG_ON(start >= end); 341 342 read_lock(&resource_lock); 343 for (p = iomem_resource.child; p ; p = p->sibling) { 344 /* system ram is just marked as IORESOURCE_MEM */ 345 if (p->flags != res->flags) 346 continue; 347 if (name && strcmp(p->name, name)) 348 continue; 349 if (p->start > end) { 350 p = NULL; 351 break; 352 } 353 if ((p->end >= start) && (p->start < end)) 354 break; 355 } 356 read_unlock(&resource_lock); 357 if (!p) 358 return -1; 359 /* copy data */ 360 if (res->start < p->start) 361 res->start = p->start; 362 if (res->end > p->end) 363 res->end = p->end; 364 return 0; 365 } 366 367 /* 368 * This function calls callback against all memory range of "System RAM" 369 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. 370 * Now, this function is only for "System RAM". 371 */ 372 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 373 void *arg, int (*func)(unsigned long, unsigned long, void *)) 374 { 375 struct resource res; 376 unsigned long pfn, end_pfn; 377 u64 orig_end; 378 int ret = -1; 379 380 res.start = (u64) start_pfn << PAGE_SHIFT; 381 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 382 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; 383 orig_end = res.end; 384 while ((res.start < res.end) && 385 (find_next_system_ram(&res, "System RAM") >= 0)) { 386 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; 387 end_pfn = (res.end + 1) >> PAGE_SHIFT; 388 if (end_pfn > pfn) 389 ret = (*func)(pfn, end_pfn - pfn, arg); 390 if (ret) 391 break; 392 res.start = res.end + 1; 393 res.end = orig_end; 394 } 395 return ret; 396 } 397 398 #endif 399 400 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 401 { 402 return 1; 403 } 404 /* 405 * This generic page_is_ram() returns true if specified address is 406 * registered as "System RAM" in iomem_resource list. 407 */ 408 int __weak page_is_ram(unsigned long pfn) 409 { 410 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 411 } 412 EXPORT_SYMBOL_GPL(page_is_ram); 413 414 void __weak arch_remove_reservations(struct resource *avail) 415 { 416 } 417 418 static resource_size_t simple_align_resource(void *data, 419 const struct resource *avail, 420 resource_size_t size, 421 resource_size_t align) 422 { 423 return avail->start; 424 } 425 426 static void resource_clip(struct resource *res, resource_size_t min, 427 resource_size_t max) 428 { 429 if (res->start < min) 430 res->start = min; 431 if (res->end > max) 432 res->end = max; 433 } 434 435 static bool resource_contains(struct resource *res1, struct resource *res2) 436 { 437 return res1->start <= res2->start && res1->end >= res2->end; 438 } 439 440 /* 441 * Find empty slot in the resource tree with the given range and 442 * alignment constraints 443 */ 444 static int __find_resource(struct resource *root, struct resource *old, 445 struct resource *new, 446 resource_size_t size, 447 struct resource_constraint *constraint) 448 { 449 struct resource *this = root->child; 450 struct resource tmp = *new, avail, alloc; 451 452 tmp.start = root->start; 453 /* 454 * Skip past an allocated resource that starts at 0, since the assignment 455 * of this->start - 1 to tmp->end below would cause an underflow. 456 */ 457 if (this && this->start == root->start) { 458 tmp.start = (this == old) ? old->start : this->end + 1; 459 this = this->sibling; 460 } 461 for(;;) { 462 if (this) 463 tmp.end = (this == old) ? this->end : this->start - 1; 464 else 465 tmp.end = root->end; 466 467 if (tmp.end < tmp.start) 468 goto next; 469 470 resource_clip(&tmp, constraint->min, constraint->max); 471 arch_remove_reservations(&tmp); 472 473 /* Check for overflow after ALIGN() */ 474 avail = *new; 475 avail.start = ALIGN(tmp.start, constraint->align); 476 avail.end = tmp.end; 477 if (avail.start >= tmp.start) { 478 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 479 size, constraint->align); 480 alloc.end = alloc.start + size - 1; 481 if (resource_contains(&avail, &alloc)) { 482 new->start = alloc.start; 483 new->end = alloc.end; 484 return 0; 485 } 486 } 487 488 next: if (!this || this->end == root->end) 489 break; 490 491 if (this != old) 492 tmp.start = this->end + 1; 493 this = this->sibling; 494 } 495 return -EBUSY; 496 } 497 498 /* 499 * Find empty slot in the resource tree given range and alignment. 500 */ 501 static int find_resource(struct resource *root, struct resource *new, 502 resource_size_t size, 503 struct resource_constraint *constraint) 504 { 505 return __find_resource(root, NULL, new, size, constraint); 506 } 507 508 /** 509 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 510 * The resource will be relocated if the new size cannot be reallocated in the 511 * current location. 512 * 513 * @root: root resource descriptor 514 * @old: resource descriptor desired by caller 515 * @newsize: new size of the resource descriptor 516 * @constraint: the size and alignment constraints to be met. 517 */ 518 int reallocate_resource(struct resource *root, struct resource *old, 519 resource_size_t newsize, 520 struct resource_constraint *constraint) 521 { 522 int err=0; 523 struct resource new = *old; 524 struct resource *conflict; 525 526 write_lock(&resource_lock); 527 528 if ((err = __find_resource(root, old, &new, newsize, constraint))) 529 goto out; 530 531 if (resource_contains(&new, old)) { 532 old->start = new.start; 533 old->end = new.end; 534 goto out; 535 } 536 537 if (old->child) { 538 err = -EBUSY; 539 goto out; 540 } 541 542 if (resource_contains(old, &new)) { 543 old->start = new.start; 544 old->end = new.end; 545 } else { 546 __release_resource(old); 547 *old = new; 548 conflict = __request_resource(root, old); 549 BUG_ON(conflict); 550 } 551 out: 552 write_unlock(&resource_lock); 553 return err; 554 } 555 556 557 /** 558 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 559 * The resource will be reallocated with a new size if it was already allocated 560 * @root: root resource descriptor 561 * @new: resource descriptor desired by caller 562 * @size: requested resource region size 563 * @min: minimum boundary to allocate 564 * @max: maximum boundary to allocate 565 * @align: alignment requested, in bytes 566 * @alignf: alignment function, optional, called if not NULL 567 * @alignf_data: arbitrary data to pass to the @alignf function 568 */ 569 int allocate_resource(struct resource *root, struct resource *new, 570 resource_size_t size, resource_size_t min, 571 resource_size_t max, resource_size_t align, 572 resource_size_t (*alignf)(void *, 573 const struct resource *, 574 resource_size_t, 575 resource_size_t), 576 void *alignf_data) 577 { 578 int err; 579 struct resource_constraint constraint; 580 581 if (!alignf) 582 alignf = simple_align_resource; 583 584 constraint.min = min; 585 constraint.max = max; 586 constraint.align = align; 587 constraint.alignf = alignf; 588 constraint.alignf_data = alignf_data; 589 590 if ( new->parent ) { 591 /* resource is already allocated, try reallocating with 592 the new constraints */ 593 return reallocate_resource(root, new, size, &constraint); 594 } 595 596 write_lock(&resource_lock); 597 err = find_resource(root, new, size, &constraint); 598 if (err >= 0 && __request_resource(root, new)) 599 err = -EBUSY; 600 write_unlock(&resource_lock); 601 return err; 602 } 603 604 EXPORT_SYMBOL(allocate_resource); 605 606 /** 607 * lookup_resource - find an existing resource by a resource start address 608 * @root: root resource descriptor 609 * @start: resource start address 610 * 611 * Returns a pointer to the resource if found, NULL otherwise 612 */ 613 struct resource *lookup_resource(struct resource *root, resource_size_t start) 614 { 615 struct resource *res; 616 617 read_lock(&resource_lock); 618 for (res = root->child; res; res = res->sibling) { 619 if (res->start == start) 620 break; 621 } 622 read_unlock(&resource_lock); 623 624 return res; 625 } 626 627 /* 628 * Insert a resource into the resource tree. If successful, return NULL, 629 * otherwise return the conflicting resource (compare to __request_resource()) 630 */ 631 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 632 { 633 struct resource *first, *next; 634 635 for (;; parent = first) { 636 first = __request_resource(parent, new); 637 if (!first) 638 return first; 639 640 if (first == parent) 641 return first; 642 if (WARN_ON(first == new)) /* duplicated insertion */ 643 return first; 644 645 if ((first->start > new->start) || (first->end < new->end)) 646 break; 647 if ((first->start == new->start) && (first->end == new->end)) 648 break; 649 } 650 651 for (next = first; ; next = next->sibling) { 652 /* Partial overlap? Bad, and unfixable */ 653 if (next->start < new->start || next->end > new->end) 654 return next; 655 if (!next->sibling) 656 break; 657 if (next->sibling->start > new->end) 658 break; 659 } 660 661 new->parent = parent; 662 new->sibling = next->sibling; 663 new->child = first; 664 665 next->sibling = NULL; 666 for (next = first; next; next = next->sibling) 667 next->parent = new; 668 669 if (parent->child == first) { 670 parent->child = new; 671 } else { 672 next = parent->child; 673 while (next->sibling != first) 674 next = next->sibling; 675 next->sibling = new; 676 } 677 return NULL; 678 } 679 680 /** 681 * insert_resource_conflict - Inserts resource in the resource tree 682 * @parent: parent of the new resource 683 * @new: new resource to insert 684 * 685 * Returns 0 on success, conflict resource if the resource can't be inserted. 686 * 687 * This function is equivalent to request_resource_conflict when no conflict 688 * happens. If a conflict happens, and the conflicting resources 689 * entirely fit within the range of the new resource, then the new 690 * resource is inserted and the conflicting resources become children of 691 * the new resource. 692 */ 693 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 694 { 695 struct resource *conflict; 696 697 write_lock(&resource_lock); 698 conflict = __insert_resource(parent, new); 699 write_unlock(&resource_lock); 700 return conflict; 701 } 702 703 /** 704 * insert_resource - Inserts a resource in the resource tree 705 * @parent: parent of the new resource 706 * @new: new resource to insert 707 * 708 * Returns 0 on success, -EBUSY if the resource can't be inserted. 709 */ 710 int insert_resource(struct resource *parent, struct resource *new) 711 { 712 struct resource *conflict; 713 714 conflict = insert_resource_conflict(parent, new); 715 return conflict ? -EBUSY : 0; 716 } 717 718 /** 719 * insert_resource_expand_to_fit - Insert a resource into the resource tree 720 * @root: root resource descriptor 721 * @new: new resource to insert 722 * 723 * Insert a resource into the resource tree, possibly expanding it in order 724 * to make it encompass any conflicting resources. 725 */ 726 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 727 { 728 if (new->parent) 729 return; 730 731 write_lock(&resource_lock); 732 for (;;) { 733 struct resource *conflict; 734 735 conflict = __insert_resource(root, new); 736 if (!conflict) 737 break; 738 if (conflict == root) 739 break; 740 741 /* Ok, expand resource to cover the conflict, then try again .. */ 742 if (conflict->start < new->start) 743 new->start = conflict->start; 744 if (conflict->end > new->end) 745 new->end = conflict->end; 746 747 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 748 } 749 write_unlock(&resource_lock); 750 } 751 752 static int __adjust_resource(struct resource *res, resource_size_t start, 753 resource_size_t size) 754 { 755 struct resource *tmp, *parent = res->parent; 756 resource_size_t end = start + size - 1; 757 int result = -EBUSY; 758 759 if (!parent) 760 goto skip; 761 762 if ((start < parent->start) || (end > parent->end)) 763 goto out; 764 765 if (res->sibling && (res->sibling->start <= end)) 766 goto out; 767 768 tmp = parent->child; 769 if (tmp != res) { 770 while (tmp->sibling != res) 771 tmp = tmp->sibling; 772 if (start <= tmp->end) 773 goto out; 774 } 775 776 skip: 777 for (tmp = res->child; tmp; tmp = tmp->sibling) 778 if ((tmp->start < start) || (tmp->end > end)) 779 goto out; 780 781 res->start = start; 782 res->end = end; 783 result = 0; 784 785 out: 786 return result; 787 } 788 789 /** 790 * adjust_resource - modify a resource's start and size 791 * @res: resource to modify 792 * @start: new start value 793 * @size: new size 794 * 795 * Given an existing resource, change its start and size to match the 796 * arguments. Returns 0 on success, -EBUSY if it can't fit. 797 * Existing children of the resource are assumed to be immutable. 798 */ 799 int adjust_resource(struct resource *res, resource_size_t start, 800 resource_size_t size) 801 { 802 int result; 803 804 write_lock(&resource_lock); 805 result = __adjust_resource(res, start, size); 806 write_unlock(&resource_lock); 807 return result; 808 } 809 EXPORT_SYMBOL(adjust_resource); 810 811 static void __init __reserve_region_with_split(struct resource *root, 812 resource_size_t start, resource_size_t end, 813 const char *name) 814 { 815 struct resource *parent = root; 816 struct resource *conflict; 817 struct resource *res = alloc_resource(GFP_ATOMIC); 818 struct resource *next_res = NULL; 819 820 if (!res) 821 return; 822 823 res->name = name; 824 res->start = start; 825 res->end = end; 826 res->flags = IORESOURCE_BUSY; 827 828 while (1) { 829 830 conflict = __request_resource(parent, res); 831 if (!conflict) { 832 if (!next_res) 833 break; 834 res = next_res; 835 next_res = NULL; 836 continue; 837 } 838 839 /* conflict covered whole area */ 840 if (conflict->start <= res->start && 841 conflict->end >= res->end) { 842 free_resource(res); 843 WARN_ON(next_res); 844 break; 845 } 846 847 /* failed, split and try again */ 848 if (conflict->start > res->start) { 849 end = res->end; 850 res->end = conflict->start - 1; 851 if (conflict->end < end) { 852 next_res = alloc_resource(GFP_ATOMIC); 853 if (!next_res) { 854 free_resource(res); 855 break; 856 } 857 next_res->name = name; 858 next_res->start = conflict->end + 1; 859 next_res->end = end; 860 next_res->flags = IORESOURCE_BUSY; 861 } 862 } else { 863 res->start = conflict->end + 1; 864 } 865 } 866 867 } 868 869 void __init reserve_region_with_split(struct resource *root, 870 resource_size_t start, resource_size_t end, 871 const char *name) 872 { 873 int abort = 0; 874 875 write_lock(&resource_lock); 876 if (root->start > start || root->end < end) { 877 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 878 (unsigned long long)start, (unsigned long long)end, 879 root); 880 if (start > root->end || end < root->start) 881 abort = 1; 882 else { 883 if (end > root->end) 884 end = root->end; 885 if (start < root->start) 886 start = root->start; 887 pr_err("fixing request to [0x%llx-0x%llx]\n", 888 (unsigned long long)start, 889 (unsigned long long)end); 890 } 891 dump_stack(); 892 } 893 if (!abort) 894 __reserve_region_with_split(root, start, end, name); 895 write_unlock(&resource_lock); 896 } 897 898 /** 899 * resource_alignment - calculate resource's alignment 900 * @res: resource pointer 901 * 902 * Returns alignment on success, 0 (invalid alignment) on failure. 903 */ 904 resource_size_t resource_alignment(struct resource *res) 905 { 906 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 907 case IORESOURCE_SIZEALIGN: 908 return resource_size(res); 909 case IORESOURCE_STARTALIGN: 910 return res->start; 911 default: 912 return 0; 913 } 914 } 915 916 /* 917 * This is compatibility stuff for IO resources. 918 * 919 * Note how this, unlike the above, knows about 920 * the IO flag meanings (busy etc). 921 * 922 * request_region creates a new busy region. 923 * 924 * check_region returns non-zero if the area is already busy. 925 * 926 * release_region releases a matching busy region. 927 */ 928 929 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 930 931 /** 932 * __request_region - create a new busy resource region 933 * @parent: parent resource descriptor 934 * @start: resource start address 935 * @n: resource region size 936 * @name: reserving caller's ID string 937 * @flags: IO resource flags 938 */ 939 struct resource * __request_region(struct resource *parent, 940 resource_size_t start, resource_size_t n, 941 const char *name, int flags) 942 { 943 DECLARE_WAITQUEUE(wait, current); 944 struct resource *res = alloc_resource(GFP_KERNEL); 945 946 if (!res) 947 return NULL; 948 949 res->name = name; 950 res->start = start; 951 res->end = start + n - 1; 952 res->flags = IORESOURCE_BUSY; 953 res->flags |= flags; 954 955 write_lock(&resource_lock); 956 957 for (;;) { 958 struct resource *conflict; 959 960 conflict = __request_resource(parent, res); 961 if (!conflict) 962 break; 963 if (conflict != parent) { 964 parent = conflict; 965 if (!(conflict->flags & IORESOURCE_BUSY)) 966 continue; 967 } 968 if (conflict->flags & flags & IORESOURCE_MUXED) { 969 add_wait_queue(&muxed_resource_wait, &wait); 970 write_unlock(&resource_lock); 971 set_current_state(TASK_UNINTERRUPTIBLE); 972 schedule(); 973 remove_wait_queue(&muxed_resource_wait, &wait); 974 write_lock(&resource_lock); 975 continue; 976 } 977 /* Uhhuh, that didn't work out.. */ 978 free_resource(res); 979 res = NULL; 980 break; 981 } 982 write_unlock(&resource_lock); 983 return res; 984 } 985 EXPORT_SYMBOL(__request_region); 986 987 /** 988 * __check_region - check if a resource region is busy or free 989 * @parent: parent resource descriptor 990 * @start: resource start address 991 * @n: resource region size 992 * 993 * Returns 0 if the region is free at the moment it is checked, 994 * returns %-EBUSY if the region is busy. 995 * 996 * NOTE: 997 * This function is deprecated because its use is racy. 998 * Even if it returns 0, a subsequent call to request_region() 999 * may fail because another driver etc. just allocated the region. 1000 * Do NOT use it. It will be removed from the kernel. 1001 */ 1002 int __check_region(struct resource *parent, resource_size_t start, 1003 resource_size_t n) 1004 { 1005 struct resource * res; 1006 1007 res = __request_region(parent, start, n, "check-region", 0); 1008 if (!res) 1009 return -EBUSY; 1010 1011 release_resource(res); 1012 free_resource(res); 1013 return 0; 1014 } 1015 EXPORT_SYMBOL(__check_region); 1016 1017 /** 1018 * __release_region - release a previously reserved resource region 1019 * @parent: parent resource descriptor 1020 * @start: resource start address 1021 * @n: resource region size 1022 * 1023 * The described resource region must match a currently busy region. 1024 */ 1025 void __release_region(struct resource *parent, resource_size_t start, 1026 resource_size_t n) 1027 { 1028 struct resource **p; 1029 resource_size_t end; 1030 1031 p = &parent->child; 1032 end = start + n - 1; 1033 1034 write_lock(&resource_lock); 1035 1036 for (;;) { 1037 struct resource *res = *p; 1038 1039 if (!res) 1040 break; 1041 if (res->start <= start && res->end >= end) { 1042 if (!(res->flags & IORESOURCE_BUSY)) { 1043 p = &res->child; 1044 continue; 1045 } 1046 if (res->start != start || res->end != end) 1047 break; 1048 *p = res->sibling; 1049 write_unlock(&resource_lock); 1050 if (res->flags & IORESOURCE_MUXED) 1051 wake_up(&muxed_resource_wait); 1052 free_resource(res); 1053 return; 1054 } 1055 p = &res->sibling; 1056 } 1057 1058 write_unlock(&resource_lock); 1059 1060 printk(KERN_WARNING "Trying to free nonexistent resource " 1061 "<%016llx-%016llx>\n", (unsigned long long)start, 1062 (unsigned long long)end); 1063 } 1064 EXPORT_SYMBOL(__release_region); 1065 1066 #ifdef CONFIG_MEMORY_HOTREMOVE 1067 /** 1068 * release_mem_region_adjustable - release a previously reserved memory region 1069 * @parent: parent resource descriptor 1070 * @start: resource start address 1071 * @size: resource region size 1072 * 1073 * This interface is intended for memory hot-delete. The requested region 1074 * is released from a currently busy memory resource. The requested region 1075 * must either match exactly or fit into a single busy resource entry. In 1076 * the latter case, the remaining resource is adjusted accordingly. 1077 * Existing children of the busy memory resource must be immutable in the 1078 * request. 1079 * 1080 * Note: 1081 * - Additional release conditions, such as overlapping region, can be 1082 * supported after they are confirmed as valid cases. 1083 * - When a busy memory resource gets split into two entries, the code 1084 * assumes that all children remain in the lower address entry for 1085 * simplicity. Enhance this logic when necessary. 1086 */ 1087 int release_mem_region_adjustable(struct resource *parent, 1088 resource_size_t start, resource_size_t size) 1089 { 1090 struct resource **p; 1091 struct resource *res; 1092 struct resource *new_res; 1093 resource_size_t end; 1094 int ret = -EINVAL; 1095 1096 end = start + size - 1; 1097 if ((start < parent->start) || (end > parent->end)) 1098 return ret; 1099 1100 /* The alloc_resource() result gets checked later */ 1101 new_res = alloc_resource(GFP_KERNEL); 1102 1103 p = &parent->child; 1104 write_lock(&resource_lock); 1105 1106 while ((res = *p)) { 1107 if (res->start >= end) 1108 break; 1109 1110 /* look for the next resource if it does not fit into */ 1111 if (res->start > start || res->end < end) { 1112 p = &res->sibling; 1113 continue; 1114 } 1115 1116 if (!(res->flags & IORESOURCE_MEM)) 1117 break; 1118 1119 if (!(res->flags & IORESOURCE_BUSY)) { 1120 p = &res->child; 1121 continue; 1122 } 1123 1124 /* found the target resource; let's adjust accordingly */ 1125 if (res->start == start && res->end == end) { 1126 /* free the whole entry */ 1127 *p = res->sibling; 1128 free_resource(res); 1129 ret = 0; 1130 } else if (res->start == start && res->end != end) { 1131 /* adjust the start */ 1132 ret = __adjust_resource(res, end + 1, 1133 res->end - end); 1134 } else if (res->start != start && res->end == end) { 1135 /* adjust the end */ 1136 ret = __adjust_resource(res, res->start, 1137 start - res->start); 1138 } else { 1139 /* split into two entries */ 1140 if (!new_res) { 1141 ret = -ENOMEM; 1142 break; 1143 } 1144 new_res->name = res->name; 1145 new_res->start = end + 1; 1146 new_res->end = res->end; 1147 new_res->flags = res->flags; 1148 new_res->parent = res->parent; 1149 new_res->sibling = res->sibling; 1150 new_res->child = NULL; 1151 1152 ret = __adjust_resource(res, res->start, 1153 start - res->start); 1154 if (ret) 1155 break; 1156 res->sibling = new_res; 1157 new_res = NULL; 1158 } 1159 1160 break; 1161 } 1162 1163 write_unlock(&resource_lock); 1164 free_resource(new_res); 1165 return ret; 1166 } 1167 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1168 1169 /* 1170 * Managed region resource 1171 */ 1172 struct region_devres { 1173 struct resource *parent; 1174 resource_size_t start; 1175 resource_size_t n; 1176 }; 1177 1178 static void devm_region_release(struct device *dev, void *res) 1179 { 1180 struct region_devres *this = res; 1181 1182 __release_region(this->parent, this->start, this->n); 1183 } 1184 1185 static int devm_region_match(struct device *dev, void *res, void *match_data) 1186 { 1187 struct region_devres *this = res, *match = match_data; 1188 1189 return this->parent == match->parent && 1190 this->start == match->start && this->n == match->n; 1191 } 1192 1193 struct resource * __devm_request_region(struct device *dev, 1194 struct resource *parent, resource_size_t start, 1195 resource_size_t n, const char *name) 1196 { 1197 struct region_devres *dr = NULL; 1198 struct resource *res; 1199 1200 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1201 GFP_KERNEL); 1202 if (!dr) 1203 return NULL; 1204 1205 dr->parent = parent; 1206 dr->start = start; 1207 dr->n = n; 1208 1209 res = __request_region(parent, start, n, name, 0); 1210 if (res) 1211 devres_add(dev, dr); 1212 else 1213 devres_free(dr); 1214 1215 return res; 1216 } 1217 EXPORT_SYMBOL(__devm_request_region); 1218 1219 void __devm_release_region(struct device *dev, struct resource *parent, 1220 resource_size_t start, resource_size_t n) 1221 { 1222 struct region_devres match_data = { parent, start, n }; 1223 1224 __release_region(parent, start, n); 1225 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1226 &match_data)); 1227 } 1228 EXPORT_SYMBOL(__devm_release_region); 1229 1230 /* 1231 * Called from init/main.c to reserve IO ports. 1232 */ 1233 #define MAXRESERVE 4 1234 static int __init reserve_setup(char *str) 1235 { 1236 static int reserved; 1237 static struct resource reserve[MAXRESERVE]; 1238 1239 for (;;) { 1240 unsigned int io_start, io_num; 1241 int x = reserved; 1242 1243 if (get_option (&str, &io_start) != 2) 1244 break; 1245 if (get_option (&str, &io_num) == 0) 1246 break; 1247 if (x < MAXRESERVE) { 1248 struct resource *res = reserve + x; 1249 res->name = "reserved"; 1250 res->start = io_start; 1251 res->end = io_start + io_num - 1; 1252 res->flags = IORESOURCE_BUSY; 1253 res->child = NULL; 1254 if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0) 1255 reserved = x+1; 1256 } 1257 } 1258 return 1; 1259 } 1260 1261 __setup("reserve=", reserve_setup); 1262 1263 /* 1264 * Check if the requested addr and size spans more than any slot in the 1265 * iomem resource tree. 1266 */ 1267 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1268 { 1269 struct resource *p = &iomem_resource; 1270 int err = 0; 1271 loff_t l; 1272 1273 read_lock(&resource_lock); 1274 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1275 /* 1276 * We can probably skip the resources without 1277 * IORESOURCE_IO attribute? 1278 */ 1279 if (p->start >= addr + size) 1280 continue; 1281 if (p->end < addr) 1282 continue; 1283 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1284 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1285 continue; 1286 /* 1287 * if a resource is "BUSY", it's not a hardware resource 1288 * but a driver mapping of such a resource; we don't want 1289 * to warn for those; some drivers legitimately map only 1290 * partial hardware resources. (example: vesafb) 1291 */ 1292 if (p->flags & IORESOURCE_BUSY) 1293 continue; 1294 1295 printk(KERN_WARNING "resource map sanity check conflict: " 1296 "0x%llx 0x%llx 0x%llx 0x%llx %s\n", 1297 (unsigned long long)addr, 1298 (unsigned long long)(addr + size - 1), 1299 (unsigned long long)p->start, 1300 (unsigned long long)p->end, 1301 p->name); 1302 err = -1; 1303 break; 1304 } 1305 read_unlock(&resource_lock); 1306 1307 return err; 1308 } 1309 1310 #ifdef CONFIG_STRICT_DEVMEM 1311 static int strict_iomem_checks = 1; 1312 #else 1313 static int strict_iomem_checks; 1314 #endif 1315 1316 /* 1317 * check if an address is reserved in the iomem resource tree 1318 * returns 1 if reserved, 0 if not reserved. 1319 */ 1320 int iomem_is_exclusive(u64 addr) 1321 { 1322 struct resource *p = &iomem_resource; 1323 int err = 0; 1324 loff_t l; 1325 int size = PAGE_SIZE; 1326 1327 if (!strict_iomem_checks) 1328 return 0; 1329 1330 addr = addr & PAGE_MASK; 1331 1332 read_lock(&resource_lock); 1333 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1334 /* 1335 * We can probably skip the resources without 1336 * IORESOURCE_IO attribute? 1337 */ 1338 if (p->start >= addr + size) 1339 break; 1340 if (p->end < addr) 1341 continue; 1342 if (p->flags & IORESOURCE_BUSY && 1343 p->flags & IORESOURCE_EXCLUSIVE) { 1344 err = 1; 1345 break; 1346 } 1347 } 1348 read_unlock(&resource_lock); 1349 1350 return err; 1351 } 1352 1353 static int __init strict_iomem(char *str) 1354 { 1355 if (strstr(str, "relaxed")) 1356 strict_iomem_checks = 0; 1357 if (strstr(str, "strict")) 1358 strict_iomem_checks = 1; 1359 return 1; 1360 } 1361 1362 __setup("iomem=", strict_iomem); 1363