xref: /openbmc/linux/kernel/resource.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/device.h>
24 #include <linux/pfn.h>
25 #include <linux/mm.h>
26 #include <linux/resource_ext.h>
27 #include <asm/io.h>
28 
29 
30 struct resource ioport_resource = {
31 	.name	= "PCI IO",
32 	.start	= 0,
33 	.end	= IO_SPACE_LIMIT,
34 	.flags	= IORESOURCE_IO,
35 };
36 EXPORT_SYMBOL(ioport_resource);
37 
38 struct resource iomem_resource = {
39 	.name	= "PCI mem",
40 	.start	= 0,
41 	.end	= -1,
42 	.flags	= IORESOURCE_MEM,
43 };
44 EXPORT_SYMBOL(iomem_resource);
45 
46 /* constraints to be met while allocating resources */
47 struct resource_constraint {
48 	resource_size_t min, max, align;
49 	resource_size_t (*alignf)(void *, const struct resource *,
50 			resource_size_t, resource_size_t);
51 	void *alignf_data;
52 };
53 
54 static DEFINE_RWLOCK(resource_lock);
55 
56 /*
57  * For memory hotplug, there is no way to free resource entries allocated
58  * by boot mem after the system is up. So for reusing the resource entry
59  * we need to remember the resource.
60  */
61 static struct resource *bootmem_resource_free;
62 static DEFINE_SPINLOCK(bootmem_resource_lock);
63 
64 static struct resource *next_resource(struct resource *p, bool sibling_only)
65 {
66 	/* Caller wants to traverse through siblings only */
67 	if (sibling_only)
68 		return p->sibling;
69 
70 	if (p->child)
71 		return p->child;
72 	while (!p->sibling && p->parent)
73 		p = p->parent;
74 	return p->sibling;
75 }
76 
77 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
78 {
79 	struct resource *p = v;
80 	(*pos)++;
81 	return (void *)next_resource(p, false);
82 }
83 
84 #ifdef CONFIG_PROC_FS
85 
86 enum { MAX_IORES_LEVEL = 5 };
87 
88 static void *r_start(struct seq_file *m, loff_t *pos)
89 	__acquires(resource_lock)
90 {
91 	struct resource *p = PDE_DATA(file_inode(m->file));
92 	loff_t l = 0;
93 	read_lock(&resource_lock);
94 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
95 		;
96 	return p;
97 }
98 
99 static void r_stop(struct seq_file *m, void *v)
100 	__releases(resource_lock)
101 {
102 	read_unlock(&resource_lock);
103 }
104 
105 static int r_show(struct seq_file *m, void *v)
106 {
107 	struct resource *root = PDE_DATA(file_inode(m->file));
108 	struct resource *r = v, *p;
109 	unsigned long long start, end;
110 	int width = root->end < 0x10000 ? 4 : 8;
111 	int depth;
112 
113 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
114 		if (p->parent == root)
115 			break;
116 
117 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
118 		start = r->start;
119 		end = r->end;
120 	} else {
121 		start = end = 0;
122 	}
123 
124 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
125 			depth * 2, "",
126 			width, start,
127 			width, end,
128 			r->name ? r->name : "<BAD>");
129 	return 0;
130 }
131 
132 static const struct seq_operations resource_op = {
133 	.start	= r_start,
134 	.next	= r_next,
135 	.stop	= r_stop,
136 	.show	= r_show,
137 };
138 
139 static int __init ioresources_init(void)
140 {
141 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
142 			&ioport_resource);
143 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
144 	return 0;
145 }
146 __initcall(ioresources_init);
147 
148 #endif /* CONFIG_PROC_FS */
149 
150 static void free_resource(struct resource *res)
151 {
152 	if (!res)
153 		return;
154 
155 	if (!PageSlab(virt_to_head_page(res))) {
156 		spin_lock(&bootmem_resource_lock);
157 		res->sibling = bootmem_resource_free;
158 		bootmem_resource_free = res;
159 		spin_unlock(&bootmem_resource_lock);
160 	} else {
161 		kfree(res);
162 	}
163 }
164 
165 static struct resource *alloc_resource(gfp_t flags)
166 {
167 	struct resource *res = NULL;
168 
169 	spin_lock(&bootmem_resource_lock);
170 	if (bootmem_resource_free) {
171 		res = bootmem_resource_free;
172 		bootmem_resource_free = res->sibling;
173 	}
174 	spin_unlock(&bootmem_resource_lock);
175 
176 	if (res)
177 		memset(res, 0, sizeof(struct resource));
178 	else
179 		res = kzalloc(sizeof(struct resource), flags);
180 
181 	return res;
182 }
183 
184 /* Return the conflict entry if you can't request it */
185 static struct resource * __request_resource(struct resource *root, struct resource *new)
186 {
187 	resource_size_t start = new->start;
188 	resource_size_t end = new->end;
189 	struct resource *tmp, **p;
190 
191 	if (end < start)
192 		return root;
193 	if (start < root->start)
194 		return root;
195 	if (end > root->end)
196 		return root;
197 	p = &root->child;
198 	for (;;) {
199 		tmp = *p;
200 		if (!tmp || tmp->start > end) {
201 			new->sibling = tmp;
202 			*p = new;
203 			new->parent = root;
204 			return NULL;
205 		}
206 		p = &tmp->sibling;
207 		if (tmp->end < start)
208 			continue;
209 		return tmp;
210 	}
211 }
212 
213 static int __release_resource(struct resource *old, bool release_child)
214 {
215 	struct resource *tmp, **p, *chd;
216 
217 	p = &old->parent->child;
218 	for (;;) {
219 		tmp = *p;
220 		if (!tmp)
221 			break;
222 		if (tmp == old) {
223 			if (release_child || !(tmp->child)) {
224 				*p = tmp->sibling;
225 			} else {
226 				for (chd = tmp->child;; chd = chd->sibling) {
227 					chd->parent = tmp->parent;
228 					if (!(chd->sibling))
229 						break;
230 				}
231 				*p = tmp->child;
232 				chd->sibling = tmp->sibling;
233 			}
234 			old->parent = NULL;
235 			return 0;
236 		}
237 		p = &tmp->sibling;
238 	}
239 	return -EINVAL;
240 }
241 
242 static void __release_child_resources(struct resource *r)
243 {
244 	struct resource *tmp, *p;
245 	resource_size_t size;
246 
247 	p = r->child;
248 	r->child = NULL;
249 	while (p) {
250 		tmp = p;
251 		p = p->sibling;
252 
253 		tmp->parent = NULL;
254 		tmp->sibling = NULL;
255 		__release_child_resources(tmp);
256 
257 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
258 		/* need to restore size, and keep flags */
259 		size = resource_size(tmp);
260 		tmp->start = 0;
261 		tmp->end = size - 1;
262 	}
263 }
264 
265 void release_child_resources(struct resource *r)
266 {
267 	write_lock(&resource_lock);
268 	__release_child_resources(r);
269 	write_unlock(&resource_lock);
270 }
271 
272 /**
273  * request_resource_conflict - request and reserve an I/O or memory resource
274  * @root: root resource descriptor
275  * @new: resource descriptor desired by caller
276  *
277  * Returns 0 for success, conflict resource on error.
278  */
279 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
280 {
281 	struct resource *conflict;
282 
283 	write_lock(&resource_lock);
284 	conflict = __request_resource(root, new);
285 	write_unlock(&resource_lock);
286 	return conflict;
287 }
288 
289 /**
290  * request_resource - request and reserve an I/O or memory resource
291  * @root: root resource descriptor
292  * @new: resource descriptor desired by caller
293  *
294  * Returns 0 for success, negative error code on error.
295  */
296 int request_resource(struct resource *root, struct resource *new)
297 {
298 	struct resource *conflict;
299 
300 	conflict = request_resource_conflict(root, new);
301 	return conflict ? -EBUSY : 0;
302 }
303 
304 EXPORT_SYMBOL(request_resource);
305 
306 /**
307  * release_resource - release a previously reserved resource
308  * @old: resource pointer
309  */
310 int release_resource(struct resource *old)
311 {
312 	int retval;
313 
314 	write_lock(&resource_lock);
315 	retval = __release_resource(old, true);
316 	write_unlock(&resource_lock);
317 	return retval;
318 }
319 
320 EXPORT_SYMBOL(release_resource);
321 
322 /**
323  * Finds the lowest iomem resource that covers part of [@start..@end].  The
324  * caller must specify @start, @end, @flags, and @desc (which may be
325  * IORES_DESC_NONE).
326  *
327  * If a resource is found, returns 0 and @*res is overwritten with the part
328  * of the resource that's within [@start..@end]; if none is found, returns
329  * -1 or -EINVAL for other invalid parameters.
330  *
331  * This function walks the whole tree and not just first level children
332  * unless @first_lvl is true.
333  *
334  * @start:	start address of the resource searched for
335  * @end:	end address of same resource
336  * @flags:	flags which the resource must have
337  * @desc:	descriptor the resource must have
338  * @first_lvl:	walk only the first level children, if set
339  * @res:	return ptr, if resource found
340  */
341 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
342 			       unsigned long flags, unsigned long desc,
343 			       bool first_lvl, struct resource *res)
344 {
345 	struct resource *p;
346 
347 	if (!res)
348 		return -EINVAL;
349 
350 	if (start >= end)
351 		return -EINVAL;
352 
353 	read_lock(&resource_lock);
354 
355 	for (p = iomem_resource.child; p; p = next_resource(p, first_lvl)) {
356 		if ((p->flags & flags) != flags)
357 			continue;
358 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
359 			continue;
360 		if (p->start > end) {
361 			p = NULL;
362 			break;
363 		}
364 		if ((p->end >= start) && (p->start <= end))
365 			break;
366 	}
367 
368 	read_unlock(&resource_lock);
369 	if (!p)
370 		return -1;
371 
372 	/* copy data */
373 	res->start = max(start, p->start);
374 	res->end = min(end, p->end);
375 	res->flags = p->flags;
376 	res->desc = p->desc;
377 	return 0;
378 }
379 
380 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
381 				 unsigned long flags, unsigned long desc,
382 				 bool first_lvl, void *arg,
383 				 int (*func)(struct resource *, void *))
384 {
385 	struct resource res;
386 	int ret = -EINVAL;
387 
388 	while (start < end &&
389 	       !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) {
390 		ret = (*func)(&res, arg);
391 		if (ret)
392 			break;
393 
394 		start = res.end + 1;
395 	}
396 
397 	return ret;
398 }
399 
400 /**
401  * Walks through iomem resources and calls func() with matching resource
402  * ranges. This walks through whole tree and not just first level children.
403  * All the memory ranges which overlap start,end and also match flags and
404  * desc are valid candidates.
405  *
406  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
407  * @flags: I/O resource flags
408  * @start: start addr
409  * @end: end addr
410  * @arg: function argument for the callback @func
411  * @func: callback function that is called for each qualifying resource area
412  *
413  * NOTE: For a new descriptor search, define a new IORES_DESC in
414  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
415  */
416 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
417 		u64 end, void *arg, int (*func)(struct resource *, void *))
418 {
419 	return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func);
420 }
421 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
422 
423 /*
424  * This function calls the @func callback against all memory ranges of type
425  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
426  * Now, this function is only for System RAM, it deals with full ranges and
427  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
428  * ranges.
429  */
430 int walk_system_ram_res(u64 start, u64 end, void *arg,
431 			int (*func)(struct resource *, void *))
432 {
433 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
434 
435 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
436 				     arg, func);
437 }
438 
439 /*
440  * This function calls the @func callback against all memory ranges, which
441  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
442  */
443 int walk_mem_res(u64 start, u64 end, void *arg,
444 		 int (*func)(struct resource *, void *))
445 {
446 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
447 
448 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
449 				     arg, func);
450 }
451 
452 /*
453  * This function calls the @func callback against all memory ranges of type
454  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
455  * It is to be used only for System RAM.
456  *
457  * This will find System RAM ranges that are children of top-level resources
458  * in addition to top-level System RAM resources.
459  */
460 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
461 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
462 {
463 	resource_size_t start, end;
464 	unsigned long flags;
465 	struct resource res;
466 	unsigned long pfn, end_pfn;
467 	int ret = -EINVAL;
468 
469 	start = (u64) start_pfn << PAGE_SHIFT;
470 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
471 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
472 	while (start < end &&
473 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE,
474 				    false, &res)) {
475 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
476 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
477 		if (end_pfn > pfn)
478 			ret = (*func)(pfn, end_pfn - pfn, arg);
479 		if (ret)
480 			break;
481 		start = res.end + 1;
482 	}
483 	return ret;
484 }
485 
486 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
487 {
488 	return 1;
489 }
490 
491 /*
492  * This generic page_is_ram() returns true if specified address is
493  * registered as System RAM in iomem_resource list.
494  */
495 int __weak page_is_ram(unsigned long pfn)
496 {
497 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
498 }
499 EXPORT_SYMBOL_GPL(page_is_ram);
500 
501 /**
502  * region_intersects() - determine intersection of region with known resources
503  * @start: region start address
504  * @size: size of region
505  * @flags: flags of resource (in iomem_resource)
506  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
507  *
508  * Check if the specified region partially overlaps or fully eclipses a
509  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
510  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
511  * return REGION_MIXED if the region overlaps @flags/@desc and another
512  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
513  * and no other defined resource. Note that REGION_INTERSECTS is also
514  * returned in the case when the specified region overlaps RAM and undefined
515  * memory holes.
516  *
517  * region_intersect() is used by memory remapping functions to ensure
518  * the user is not remapping RAM and is a vast speed up over walking
519  * through the resource table page by page.
520  */
521 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
522 		      unsigned long desc)
523 {
524 	struct resource res;
525 	int type = 0; int other = 0;
526 	struct resource *p;
527 
528 	res.start = start;
529 	res.end = start + size - 1;
530 
531 	read_lock(&resource_lock);
532 	for (p = iomem_resource.child; p ; p = p->sibling) {
533 		bool is_type = (((p->flags & flags) == flags) &&
534 				((desc == IORES_DESC_NONE) ||
535 				 (desc == p->desc)));
536 
537 		if (resource_overlaps(p, &res))
538 			is_type ? type++ : other++;
539 	}
540 	read_unlock(&resource_lock);
541 
542 	if (other == 0)
543 		return type ? REGION_INTERSECTS : REGION_DISJOINT;
544 
545 	if (type)
546 		return REGION_MIXED;
547 
548 	return REGION_DISJOINT;
549 }
550 EXPORT_SYMBOL_GPL(region_intersects);
551 
552 void __weak arch_remove_reservations(struct resource *avail)
553 {
554 }
555 
556 static resource_size_t simple_align_resource(void *data,
557 					     const struct resource *avail,
558 					     resource_size_t size,
559 					     resource_size_t align)
560 {
561 	return avail->start;
562 }
563 
564 static void resource_clip(struct resource *res, resource_size_t min,
565 			  resource_size_t max)
566 {
567 	if (res->start < min)
568 		res->start = min;
569 	if (res->end > max)
570 		res->end = max;
571 }
572 
573 /*
574  * Find empty slot in the resource tree with the given range and
575  * alignment constraints
576  */
577 static int __find_resource(struct resource *root, struct resource *old,
578 			 struct resource *new,
579 			 resource_size_t  size,
580 			 struct resource_constraint *constraint)
581 {
582 	struct resource *this = root->child;
583 	struct resource tmp = *new, avail, alloc;
584 
585 	tmp.start = root->start;
586 	/*
587 	 * Skip past an allocated resource that starts at 0, since the assignment
588 	 * of this->start - 1 to tmp->end below would cause an underflow.
589 	 */
590 	if (this && this->start == root->start) {
591 		tmp.start = (this == old) ? old->start : this->end + 1;
592 		this = this->sibling;
593 	}
594 	for(;;) {
595 		if (this)
596 			tmp.end = (this == old) ?  this->end : this->start - 1;
597 		else
598 			tmp.end = root->end;
599 
600 		if (tmp.end < tmp.start)
601 			goto next;
602 
603 		resource_clip(&tmp, constraint->min, constraint->max);
604 		arch_remove_reservations(&tmp);
605 
606 		/* Check for overflow after ALIGN() */
607 		avail.start = ALIGN(tmp.start, constraint->align);
608 		avail.end = tmp.end;
609 		avail.flags = new->flags & ~IORESOURCE_UNSET;
610 		if (avail.start >= tmp.start) {
611 			alloc.flags = avail.flags;
612 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
613 					size, constraint->align);
614 			alloc.end = alloc.start + size - 1;
615 			if (alloc.start <= alloc.end &&
616 			    resource_contains(&avail, &alloc)) {
617 				new->start = alloc.start;
618 				new->end = alloc.end;
619 				return 0;
620 			}
621 		}
622 
623 next:		if (!this || this->end == root->end)
624 			break;
625 
626 		if (this != old)
627 			tmp.start = this->end + 1;
628 		this = this->sibling;
629 	}
630 	return -EBUSY;
631 }
632 
633 /*
634  * Find empty slot in the resource tree given range and alignment.
635  */
636 static int find_resource(struct resource *root, struct resource *new,
637 			resource_size_t size,
638 			struct resource_constraint  *constraint)
639 {
640 	return  __find_resource(root, NULL, new, size, constraint);
641 }
642 
643 /**
644  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
645  *	The resource will be relocated if the new size cannot be reallocated in the
646  *	current location.
647  *
648  * @root: root resource descriptor
649  * @old:  resource descriptor desired by caller
650  * @newsize: new size of the resource descriptor
651  * @constraint: the size and alignment constraints to be met.
652  */
653 static int reallocate_resource(struct resource *root, struct resource *old,
654 			       resource_size_t newsize,
655 			       struct resource_constraint *constraint)
656 {
657 	int err=0;
658 	struct resource new = *old;
659 	struct resource *conflict;
660 
661 	write_lock(&resource_lock);
662 
663 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
664 		goto out;
665 
666 	if (resource_contains(&new, old)) {
667 		old->start = new.start;
668 		old->end = new.end;
669 		goto out;
670 	}
671 
672 	if (old->child) {
673 		err = -EBUSY;
674 		goto out;
675 	}
676 
677 	if (resource_contains(old, &new)) {
678 		old->start = new.start;
679 		old->end = new.end;
680 	} else {
681 		__release_resource(old, true);
682 		*old = new;
683 		conflict = __request_resource(root, old);
684 		BUG_ON(conflict);
685 	}
686 out:
687 	write_unlock(&resource_lock);
688 	return err;
689 }
690 
691 
692 /**
693  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
694  * 	The resource will be reallocated with a new size if it was already allocated
695  * @root: root resource descriptor
696  * @new: resource descriptor desired by caller
697  * @size: requested resource region size
698  * @min: minimum boundary to allocate
699  * @max: maximum boundary to allocate
700  * @align: alignment requested, in bytes
701  * @alignf: alignment function, optional, called if not NULL
702  * @alignf_data: arbitrary data to pass to the @alignf function
703  */
704 int allocate_resource(struct resource *root, struct resource *new,
705 		      resource_size_t size, resource_size_t min,
706 		      resource_size_t max, resource_size_t align,
707 		      resource_size_t (*alignf)(void *,
708 						const struct resource *,
709 						resource_size_t,
710 						resource_size_t),
711 		      void *alignf_data)
712 {
713 	int err;
714 	struct resource_constraint constraint;
715 
716 	if (!alignf)
717 		alignf = simple_align_resource;
718 
719 	constraint.min = min;
720 	constraint.max = max;
721 	constraint.align = align;
722 	constraint.alignf = alignf;
723 	constraint.alignf_data = alignf_data;
724 
725 	if ( new->parent ) {
726 		/* resource is already allocated, try reallocating with
727 		   the new constraints */
728 		return reallocate_resource(root, new, size, &constraint);
729 	}
730 
731 	write_lock(&resource_lock);
732 	err = find_resource(root, new, size, &constraint);
733 	if (err >= 0 && __request_resource(root, new))
734 		err = -EBUSY;
735 	write_unlock(&resource_lock);
736 	return err;
737 }
738 
739 EXPORT_SYMBOL(allocate_resource);
740 
741 /**
742  * lookup_resource - find an existing resource by a resource start address
743  * @root: root resource descriptor
744  * @start: resource start address
745  *
746  * Returns a pointer to the resource if found, NULL otherwise
747  */
748 struct resource *lookup_resource(struct resource *root, resource_size_t start)
749 {
750 	struct resource *res;
751 
752 	read_lock(&resource_lock);
753 	for (res = root->child; res; res = res->sibling) {
754 		if (res->start == start)
755 			break;
756 	}
757 	read_unlock(&resource_lock);
758 
759 	return res;
760 }
761 
762 /*
763  * Insert a resource into the resource tree. If successful, return NULL,
764  * otherwise return the conflicting resource (compare to __request_resource())
765  */
766 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
767 {
768 	struct resource *first, *next;
769 
770 	for (;; parent = first) {
771 		first = __request_resource(parent, new);
772 		if (!first)
773 			return first;
774 
775 		if (first == parent)
776 			return first;
777 		if (WARN_ON(first == new))	/* duplicated insertion */
778 			return first;
779 
780 		if ((first->start > new->start) || (first->end < new->end))
781 			break;
782 		if ((first->start == new->start) && (first->end == new->end))
783 			break;
784 	}
785 
786 	for (next = first; ; next = next->sibling) {
787 		/* Partial overlap? Bad, and unfixable */
788 		if (next->start < new->start || next->end > new->end)
789 			return next;
790 		if (!next->sibling)
791 			break;
792 		if (next->sibling->start > new->end)
793 			break;
794 	}
795 
796 	new->parent = parent;
797 	new->sibling = next->sibling;
798 	new->child = first;
799 
800 	next->sibling = NULL;
801 	for (next = first; next; next = next->sibling)
802 		next->parent = new;
803 
804 	if (parent->child == first) {
805 		parent->child = new;
806 	} else {
807 		next = parent->child;
808 		while (next->sibling != first)
809 			next = next->sibling;
810 		next->sibling = new;
811 	}
812 	return NULL;
813 }
814 
815 /**
816  * insert_resource_conflict - Inserts resource in the resource tree
817  * @parent: parent of the new resource
818  * @new: new resource to insert
819  *
820  * Returns 0 on success, conflict resource if the resource can't be inserted.
821  *
822  * This function is equivalent to request_resource_conflict when no conflict
823  * happens. If a conflict happens, and the conflicting resources
824  * entirely fit within the range of the new resource, then the new
825  * resource is inserted and the conflicting resources become children of
826  * the new resource.
827  *
828  * This function is intended for producers of resources, such as FW modules
829  * and bus drivers.
830  */
831 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
832 {
833 	struct resource *conflict;
834 
835 	write_lock(&resource_lock);
836 	conflict = __insert_resource(parent, new);
837 	write_unlock(&resource_lock);
838 	return conflict;
839 }
840 
841 /**
842  * insert_resource - Inserts a resource in the resource tree
843  * @parent: parent of the new resource
844  * @new: new resource to insert
845  *
846  * Returns 0 on success, -EBUSY if the resource can't be inserted.
847  *
848  * This function is intended for producers of resources, such as FW modules
849  * and bus drivers.
850  */
851 int insert_resource(struct resource *parent, struct resource *new)
852 {
853 	struct resource *conflict;
854 
855 	conflict = insert_resource_conflict(parent, new);
856 	return conflict ? -EBUSY : 0;
857 }
858 EXPORT_SYMBOL_GPL(insert_resource);
859 
860 /**
861  * insert_resource_expand_to_fit - Insert a resource into the resource tree
862  * @root: root resource descriptor
863  * @new: new resource to insert
864  *
865  * Insert a resource into the resource tree, possibly expanding it in order
866  * to make it encompass any conflicting resources.
867  */
868 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
869 {
870 	if (new->parent)
871 		return;
872 
873 	write_lock(&resource_lock);
874 	for (;;) {
875 		struct resource *conflict;
876 
877 		conflict = __insert_resource(root, new);
878 		if (!conflict)
879 			break;
880 		if (conflict == root)
881 			break;
882 
883 		/* Ok, expand resource to cover the conflict, then try again .. */
884 		if (conflict->start < new->start)
885 			new->start = conflict->start;
886 		if (conflict->end > new->end)
887 			new->end = conflict->end;
888 
889 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
890 	}
891 	write_unlock(&resource_lock);
892 }
893 
894 /**
895  * remove_resource - Remove a resource in the resource tree
896  * @old: resource to remove
897  *
898  * Returns 0 on success, -EINVAL if the resource is not valid.
899  *
900  * This function removes a resource previously inserted by insert_resource()
901  * or insert_resource_conflict(), and moves the children (if any) up to
902  * where they were before.  insert_resource() and insert_resource_conflict()
903  * insert a new resource, and move any conflicting resources down to the
904  * children of the new resource.
905  *
906  * insert_resource(), insert_resource_conflict() and remove_resource() are
907  * intended for producers of resources, such as FW modules and bus drivers.
908  */
909 int remove_resource(struct resource *old)
910 {
911 	int retval;
912 
913 	write_lock(&resource_lock);
914 	retval = __release_resource(old, false);
915 	write_unlock(&resource_lock);
916 	return retval;
917 }
918 EXPORT_SYMBOL_GPL(remove_resource);
919 
920 static int __adjust_resource(struct resource *res, resource_size_t start,
921 				resource_size_t size)
922 {
923 	struct resource *tmp, *parent = res->parent;
924 	resource_size_t end = start + size - 1;
925 	int result = -EBUSY;
926 
927 	if (!parent)
928 		goto skip;
929 
930 	if ((start < parent->start) || (end > parent->end))
931 		goto out;
932 
933 	if (res->sibling && (res->sibling->start <= end))
934 		goto out;
935 
936 	tmp = parent->child;
937 	if (tmp != res) {
938 		while (tmp->sibling != res)
939 			tmp = tmp->sibling;
940 		if (start <= tmp->end)
941 			goto out;
942 	}
943 
944 skip:
945 	for (tmp = res->child; tmp; tmp = tmp->sibling)
946 		if ((tmp->start < start) || (tmp->end > end))
947 			goto out;
948 
949 	res->start = start;
950 	res->end = end;
951 	result = 0;
952 
953  out:
954 	return result;
955 }
956 
957 /**
958  * adjust_resource - modify a resource's start and size
959  * @res: resource to modify
960  * @start: new start value
961  * @size: new size
962  *
963  * Given an existing resource, change its start and size to match the
964  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
965  * Existing children of the resource are assumed to be immutable.
966  */
967 int adjust_resource(struct resource *res, resource_size_t start,
968 		    resource_size_t size)
969 {
970 	int result;
971 
972 	write_lock(&resource_lock);
973 	result = __adjust_resource(res, start, size);
974 	write_unlock(&resource_lock);
975 	return result;
976 }
977 EXPORT_SYMBOL(adjust_resource);
978 
979 static void __init
980 __reserve_region_with_split(struct resource *root, resource_size_t start,
981 			    resource_size_t end, const char *name)
982 {
983 	struct resource *parent = root;
984 	struct resource *conflict;
985 	struct resource *res = alloc_resource(GFP_ATOMIC);
986 	struct resource *next_res = NULL;
987 	int type = resource_type(root);
988 
989 	if (!res)
990 		return;
991 
992 	res->name = name;
993 	res->start = start;
994 	res->end = end;
995 	res->flags = type | IORESOURCE_BUSY;
996 	res->desc = IORES_DESC_NONE;
997 
998 	while (1) {
999 
1000 		conflict = __request_resource(parent, res);
1001 		if (!conflict) {
1002 			if (!next_res)
1003 				break;
1004 			res = next_res;
1005 			next_res = NULL;
1006 			continue;
1007 		}
1008 
1009 		/* conflict covered whole area */
1010 		if (conflict->start <= res->start &&
1011 				conflict->end >= res->end) {
1012 			free_resource(res);
1013 			WARN_ON(next_res);
1014 			break;
1015 		}
1016 
1017 		/* failed, split and try again */
1018 		if (conflict->start > res->start) {
1019 			end = res->end;
1020 			res->end = conflict->start - 1;
1021 			if (conflict->end < end) {
1022 				next_res = alloc_resource(GFP_ATOMIC);
1023 				if (!next_res) {
1024 					free_resource(res);
1025 					break;
1026 				}
1027 				next_res->name = name;
1028 				next_res->start = conflict->end + 1;
1029 				next_res->end = end;
1030 				next_res->flags = type | IORESOURCE_BUSY;
1031 				next_res->desc = IORES_DESC_NONE;
1032 			}
1033 		} else {
1034 			res->start = conflict->end + 1;
1035 		}
1036 	}
1037 
1038 }
1039 
1040 void __init
1041 reserve_region_with_split(struct resource *root, resource_size_t start,
1042 			  resource_size_t end, const char *name)
1043 {
1044 	int abort = 0;
1045 
1046 	write_lock(&resource_lock);
1047 	if (root->start > start || root->end < end) {
1048 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1049 		       (unsigned long long)start, (unsigned long long)end,
1050 		       root);
1051 		if (start > root->end || end < root->start)
1052 			abort = 1;
1053 		else {
1054 			if (end > root->end)
1055 				end = root->end;
1056 			if (start < root->start)
1057 				start = root->start;
1058 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1059 			       (unsigned long long)start,
1060 			       (unsigned long long)end);
1061 		}
1062 		dump_stack();
1063 	}
1064 	if (!abort)
1065 		__reserve_region_with_split(root, start, end, name);
1066 	write_unlock(&resource_lock);
1067 }
1068 
1069 /**
1070  * resource_alignment - calculate resource's alignment
1071  * @res: resource pointer
1072  *
1073  * Returns alignment on success, 0 (invalid alignment) on failure.
1074  */
1075 resource_size_t resource_alignment(struct resource *res)
1076 {
1077 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1078 	case IORESOURCE_SIZEALIGN:
1079 		return resource_size(res);
1080 	case IORESOURCE_STARTALIGN:
1081 		return res->start;
1082 	default:
1083 		return 0;
1084 	}
1085 }
1086 
1087 /*
1088  * This is compatibility stuff for IO resources.
1089  *
1090  * Note how this, unlike the above, knows about
1091  * the IO flag meanings (busy etc).
1092  *
1093  * request_region creates a new busy region.
1094  *
1095  * release_region releases a matching busy region.
1096  */
1097 
1098 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1099 
1100 /**
1101  * __request_region - create a new busy resource region
1102  * @parent: parent resource descriptor
1103  * @start: resource start address
1104  * @n: resource region size
1105  * @name: reserving caller's ID string
1106  * @flags: IO resource flags
1107  */
1108 struct resource * __request_region(struct resource *parent,
1109 				   resource_size_t start, resource_size_t n,
1110 				   const char *name, int flags)
1111 {
1112 	DECLARE_WAITQUEUE(wait, current);
1113 	struct resource *res = alloc_resource(GFP_KERNEL);
1114 
1115 	if (!res)
1116 		return NULL;
1117 
1118 	res->name = name;
1119 	res->start = start;
1120 	res->end = start + n - 1;
1121 
1122 	write_lock(&resource_lock);
1123 
1124 	for (;;) {
1125 		struct resource *conflict;
1126 
1127 		res->flags = resource_type(parent) | resource_ext_type(parent);
1128 		res->flags |= IORESOURCE_BUSY | flags;
1129 		res->desc = parent->desc;
1130 
1131 		conflict = __request_resource(parent, res);
1132 		if (!conflict)
1133 			break;
1134 		/*
1135 		 * mm/hmm.c reserves physical addresses which then
1136 		 * become unavailable to other users.  Conflicts are
1137 		 * not expected.  Warn to aid debugging if encountered.
1138 		 */
1139 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1140 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1141 				conflict->name, conflict, res);
1142 		}
1143 		if (conflict != parent) {
1144 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1145 				parent = conflict;
1146 				continue;
1147 			}
1148 		}
1149 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1150 			add_wait_queue(&muxed_resource_wait, &wait);
1151 			write_unlock(&resource_lock);
1152 			set_current_state(TASK_UNINTERRUPTIBLE);
1153 			schedule();
1154 			remove_wait_queue(&muxed_resource_wait, &wait);
1155 			write_lock(&resource_lock);
1156 			continue;
1157 		}
1158 		/* Uhhuh, that didn't work out.. */
1159 		free_resource(res);
1160 		res = NULL;
1161 		break;
1162 	}
1163 	write_unlock(&resource_lock);
1164 	return res;
1165 }
1166 EXPORT_SYMBOL(__request_region);
1167 
1168 /**
1169  * __release_region - release a previously reserved resource region
1170  * @parent: parent resource descriptor
1171  * @start: resource start address
1172  * @n: resource region size
1173  *
1174  * The described resource region must match a currently busy region.
1175  */
1176 void __release_region(struct resource *parent, resource_size_t start,
1177 		      resource_size_t n)
1178 {
1179 	struct resource **p;
1180 	resource_size_t end;
1181 
1182 	p = &parent->child;
1183 	end = start + n - 1;
1184 
1185 	write_lock(&resource_lock);
1186 
1187 	for (;;) {
1188 		struct resource *res = *p;
1189 
1190 		if (!res)
1191 			break;
1192 		if (res->start <= start && res->end >= end) {
1193 			if (!(res->flags & IORESOURCE_BUSY)) {
1194 				p = &res->child;
1195 				continue;
1196 			}
1197 			if (res->start != start || res->end != end)
1198 				break;
1199 			*p = res->sibling;
1200 			write_unlock(&resource_lock);
1201 			if (res->flags & IORESOURCE_MUXED)
1202 				wake_up(&muxed_resource_wait);
1203 			free_resource(res);
1204 			return;
1205 		}
1206 		p = &res->sibling;
1207 	}
1208 
1209 	write_unlock(&resource_lock);
1210 
1211 	printk(KERN_WARNING "Trying to free nonexistent resource "
1212 		"<%016llx-%016llx>\n", (unsigned long long)start,
1213 		(unsigned long long)end);
1214 }
1215 EXPORT_SYMBOL(__release_region);
1216 
1217 #ifdef CONFIG_MEMORY_HOTREMOVE
1218 /**
1219  * release_mem_region_adjustable - release a previously reserved memory region
1220  * @parent: parent resource descriptor
1221  * @start: resource start address
1222  * @size: resource region size
1223  *
1224  * This interface is intended for memory hot-delete.  The requested region
1225  * is released from a currently busy memory resource.  The requested region
1226  * must either match exactly or fit into a single busy resource entry.  In
1227  * the latter case, the remaining resource is adjusted accordingly.
1228  * Existing children of the busy memory resource must be immutable in the
1229  * request.
1230  *
1231  * Note:
1232  * - Additional release conditions, such as overlapping region, can be
1233  *   supported after they are confirmed as valid cases.
1234  * - When a busy memory resource gets split into two entries, the code
1235  *   assumes that all children remain in the lower address entry for
1236  *   simplicity.  Enhance this logic when necessary.
1237  */
1238 int release_mem_region_adjustable(struct resource *parent,
1239 				  resource_size_t start, resource_size_t size)
1240 {
1241 	struct resource **p;
1242 	struct resource *res;
1243 	struct resource *new_res;
1244 	resource_size_t end;
1245 	int ret = -EINVAL;
1246 
1247 	end = start + size - 1;
1248 	if ((start < parent->start) || (end > parent->end))
1249 		return ret;
1250 
1251 	/* The alloc_resource() result gets checked later */
1252 	new_res = alloc_resource(GFP_KERNEL);
1253 
1254 	p = &parent->child;
1255 	write_lock(&resource_lock);
1256 
1257 	while ((res = *p)) {
1258 		if (res->start >= end)
1259 			break;
1260 
1261 		/* look for the next resource if it does not fit into */
1262 		if (res->start > start || res->end < end) {
1263 			p = &res->sibling;
1264 			continue;
1265 		}
1266 
1267 		/*
1268 		 * All memory regions added from memory-hotplug path have the
1269 		 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1270 		 * this flag, we know that we are dealing with a resource coming
1271 		 * from HMM/devm. HMM/devm use another mechanism to add/release
1272 		 * a resource. This goes via devm_request_mem_region and
1273 		 * devm_release_mem_region.
1274 		 * HMM/devm take care to release their resources when they want,
1275 		 * so if we are dealing with them, let us just back off here.
1276 		 */
1277 		if (!(res->flags & IORESOURCE_SYSRAM)) {
1278 			ret = 0;
1279 			break;
1280 		}
1281 
1282 		if (!(res->flags & IORESOURCE_MEM))
1283 			break;
1284 
1285 		if (!(res->flags & IORESOURCE_BUSY)) {
1286 			p = &res->child;
1287 			continue;
1288 		}
1289 
1290 		/* found the target resource; let's adjust accordingly */
1291 		if (res->start == start && res->end == end) {
1292 			/* free the whole entry */
1293 			*p = res->sibling;
1294 			free_resource(res);
1295 			ret = 0;
1296 		} else if (res->start == start && res->end != end) {
1297 			/* adjust the start */
1298 			ret = __adjust_resource(res, end + 1,
1299 						res->end - end);
1300 		} else if (res->start != start && res->end == end) {
1301 			/* adjust the end */
1302 			ret = __adjust_resource(res, res->start,
1303 						start - res->start);
1304 		} else {
1305 			/* split into two entries */
1306 			if (!new_res) {
1307 				ret = -ENOMEM;
1308 				break;
1309 			}
1310 			new_res->name = res->name;
1311 			new_res->start = end + 1;
1312 			new_res->end = res->end;
1313 			new_res->flags = res->flags;
1314 			new_res->desc = res->desc;
1315 			new_res->parent = res->parent;
1316 			new_res->sibling = res->sibling;
1317 			new_res->child = NULL;
1318 
1319 			ret = __adjust_resource(res, res->start,
1320 						start - res->start);
1321 			if (ret)
1322 				break;
1323 			res->sibling = new_res;
1324 			new_res = NULL;
1325 		}
1326 
1327 		break;
1328 	}
1329 
1330 	write_unlock(&resource_lock);
1331 	free_resource(new_res);
1332 	return ret;
1333 }
1334 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1335 
1336 /*
1337  * Managed region resource
1338  */
1339 static void devm_resource_release(struct device *dev, void *ptr)
1340 {
1341 	struct resource **r = ptr;
1342 
1343 	release_resource(*r);
1344 }
1345 
1346 /**
1347  * devm_request_resource() - request and reserve an I/O or memory resource
1348  * @dev: device for which to request the resource
1349  * @root: root of the resource tree from which to request the resource
1350  * @new: descriptor of the resource to request
1351  *
1352  * This is a device-managed version of request_resource(). There is usually
1353  * no need to release resources requested by this function explicitly since
1354  * that will be taken care of when the device is unbound from its driver.
1355  * If for some reason the resource needs to be released explicitly, because
1356  * of ordering issues for example, drivers must call devm_release_resource()
1357  * rather than the regular release_resource().
1358  *
1359  * When a conflict is detected between any existing resources and the newly
1360  * requested resource, an error message will be printed.
1361  *
1362  * Returns 0 on success or a negative error code on failure.
1363  */
1364 int devm_request_resource(struct device *dev, struct resource *root,
1365 			  struct resource *new)
1366 {
1367 	struct resource *conflict, **ptr;
1368 
1369 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1370 	if (!ptr)
1371 		return -ENOMEM;
1372 
1373 	*ptr = new;
1374 
1375 	conflict = request_resource_conflict(root, new);
1376 	if (conflict) {
1377 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1378 			new, conflict->name, conflict);
1379 		devres_free(ptr);
1380 		return -EBUSY;
1381 	}
1382 
1383 	devres_add(dev, ptr);
1384 	return 0;
1385 }
1386 EXPORT_SYMBOL(devm_request_resource);
1387 
1388 static int devm_resource_match(struct device *dev, void *res, void *data)
1389 {
1390 	struct resource **ptr = res;
1391 
1392 	return *ptr == data;
1393 }
1394 
1395 /**
1396  * devm_release_resource() - release a previously requested resource
1397  * @dev: device for which to release the resource
1398  * @new: descriptor of the resource to release
1399  *
1400  * Releases a resource previously requested using devm_request_resource().
1401  */
1402 void devm_release_resource(struct device *dev, struct resource *new)
1403 {
1404 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1405 			       new));
1406 }
1407 EXPORT_SYMBOL(devm_release_resource);
1408 
1409 struct region_devres {
1410 	struct resource *parent;
1411 	resource_size_t start;
1412 	resource_size_t n;
1413 };
1414 
1415 static void devm_region_release(struct device *dev, void *res)
1416 {
1417 	struct region_devres *this = res;
1418 
1419 	__release_region(this->parent, this->start, this->n);
1420 }
1421 
1422 static int devm_region_match(struct device *dev, void *res, void *match_data)
1423 {
1424 	struct region_devres *this = res, *match = match_data;
1425 
1426 	return this->parent == match->parent &&
1427 		this->start == match->start && this->n == match->n;
1428 }
1429 
1430 struct resource *
1431 __devm_request_region(struct device *dev, struct resource *parent,
1432 		      resource_size_t start, resource_size_t n, const char *name)
1433 {
1434 	struct region_devres *dr = NULL;
1435 	struct resource *res;
1436 
1437 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1438 			  GFP_KERNEL);
1439 	if (!dr)
1440 		return NULL;
1441 
1442 	dr->parent = parent;
1443 	dr->start = start;
1444 	dr->n = n;
1445 
1446 	res = __request_region(parent, start, n, name, 0);
1447 	if (res)
1448 		devres_add(dev, dr);
1449 	else
1450 		devres_free(dr);
1451 
1452 	return res;
1453 }
1454 EXPORT_SYMBOL(__devm_request_region);
1455 
1456 void __devm_release_region(struct device *dev, struct resource *parent,
1457 			   resource_size_t start, resource_size_t n)
1458 {
1459 	struct region_devres match_data = { parent, start, n };
1460 
1461 	__release_region(parent, start, n);
1462 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1463 			       &match_data));
1464 }
1465 EXPORT_SYMBOL(__devm_release_region);
1466 
1467 /*
1468  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1469  */
1470 #define MAXRESERVE 4
1471 static int __init reserve_setup(char *str)
1472 {
1473 	static int reserved;
1474 	static struct resource reserve[MAXRESERVE];
1475 
1476 	for (;;) {
1477 		unsigned int io_start, io_num;
1478 		int x = reserved;
1479 		struct resource *parent;
1480 
1481 		if (get_option(&str, &io_start) != 2)
1482 			break;
1483 		if (get_option(&str, &io_num) == 0)
1484 			break;
1485 		if (x < MAXRESERVE) {
1486 			struct resource *res = reserve + x;
1487 
1488 			/*
1489 			 * If the region starts below 0x10000, we assume it's
1490 			 * I/O port space; otherwise assume it's memory.
1491 			 */
1492 			if (io_start < 0x10000) {
1493 				res->flags = IORESOURCE_IO;
1494 				parent = &ioport_resource;
1495 			} else {
1496 				res->flags = IORESOURCE_MEM;
1497 				parent = &iomem_resource;
1498 			}
1499 			res->name = "reserved";
1500 			res->start = io_start;
1501 			res->end = io_start + io_num - 1;
1502 			res->flags |= IORESOURCE_BUSY;
1503 			res->desc = IORES_DESC_NONE;
1504 			res->child = NULL;
1505 			if (request_resource(parent, res) == 0)
1506 				reserved = x+1;
1507 		}
1508 	}
1509 	return 1;
1510 }
1511 __setup("reserve=", reserve_setup);
1512 
1513 /*
1514  * Check if the requested addr and size spans more than any slot in the
1515  * iomem resource tree.
1516  */
1517 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1518 {
1519 	struct resource *p = &iomem_resource;
1520 	int err = 0;
1521 	loff_t l;
1522 
1523 	read_lock(&resource_lock);
1524 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1525 		/*
1526 		 * We can probably skip the resources without
1527 		 * IORESOURCE_IO attribute?
1528 		 */
1529 		if (p->start >= addr + size)
1530 			continue;
1531 		if (p->end < addr)
1532 			continue;
1533 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1534 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1535 			continue;
1536 		/*
1537 		 * if a resource is "BUSY", it's not a hardware resource
1538 		 * but a driver mapping of such a resource; we don't want
1539 		 * to warn for those; some drivers legitimately map only
1540 		 * partial hardware resources. (example: vesafb)
1541 		 */
1542 		if (p->flags & IORESOURCE_BUSY)
1543 			continue;
1544 
1545 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1546 		       (unsigned long long)addr,
1547 		       (unsigned long long)(addr + size - 1),
1548 		       p->name, p);
1549 		err = -1;
1550 		break;
1551 	}
1552 	read_unlock(&resource_lock);
1553 
1554 	return err;
1555 }
1556 
1557 #ifdef CONFIG_STRICT_DEVMEM
1558 static int strict_iomem_checks = 1;
1559 #else
1560 static int strict_iomem_checks;
1561 #endif
1562 
1563 /*
1564  * check if an address is reserved in the iomem resource tree
1565  * returns true if reserved, false if not reserved.
1566  */
1567 bool iomem_is_exclusive(u64 addr)
1568 {
1569 	struct resource *p = &iomem_resource;
1570 	bool err = false;
1571 	loff_t l;
1572 	int size = PAGE_SIZE;
1573 
1574 	if (!strict_iomem_checks)
1575 		return false;
1576 
1577 	addr = addr & PAGE_MASK;
1578 
1579 	read_lock(&resource_lock);
1580 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1581 		/*
1582 		 * We can probably skip the resources without
1583 		 * IORESOURCE_IO attribute?
1584 		 */
1585 		if (p->start >= addr + size)
1586 			break;
1587 		if (p->end < addr)
1588 			continue;
1589 		/*
1590 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1591 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1592 		 * resource is busy.
1593 		 */
1594 		if ((p->flags & IORESOURCE_BUSY) == 0)
1595 			continue;
1596 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1597 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1598 			err = true;
1599 			break;
1600 		}
1601 	}
1602 	read_unlock(&resource_lock);
1603 
1604 	return err;
1605 }
1606 
1607 struct resource_entry *resource_list_create_entry(struct resource *res,
1608 						  size_t extra_size)
1609 {
1610 	struct resource_entry *entry;
1611 
1612 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1613 	if (entry) {
1614 		INIT_LIST_HEAD(&entry->node);
1615 		entry->res = res ? res : &entry->__res;
1616 	}
1617 
1618 	return entry;
1619 }
1620 EXPORT_SYMBOL(resource_list_create_entry);
1621 
1622 void resource_list_free(struct list_head *head)
1623 {
1624 	struct resource_entry *entry, *tmp;
1625 
1626 	list_for_each_entry_safe(entry, tmp, head, node)
1627 		resource_list_destroy_entry(entry);
1628 }
1629 EXPORT_SYMBOL(resource_list_free);
1630 
1631 static int __init strict_iomem(char *str)
1632 {
1633 	if (strstr(str, "relaxed"))
1634 		strict_iomem_checks = 0;
1635 	if (strstr(str, "strict"))
1636 		strict_iomem_checks = 1;
1637 	return 1;
1638 }
1639 
1640 __setup("iomem=", strict_iomem);
1641