1 /* 2 * linux/kernel/resource.c 3 * 4 * Copyright (C) 1999 Linus Torvalds 5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 6 * 7 * Arbitrary resource management. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/export.h> 13 #include <linux/errno.h> 14 #include <linux/ioport.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/device.h> 23 #include <linux/pfn.h> 24 #include <linux/mm.h> 25 #include <linux/resource_ext.h> 26 #include <asm/io.h> 27 28 29 struct resource ioport_resource = { 30 .name = "PCI IO", 31 .start = 0, 32 .end = IO_SPACE_LIMIT, 33 .flags = IORESOURCE_IO, 34 }; 35 EXPORT_SYMBOL(ioport_resource); 36 37 struct resource iomem_resource = { 38 .name = "PCI mem", 39 .start = 0, 40 .end = -1, 41 .flags = IORESOURCE_MEM, 42 }; 43 EXPORT_SYMBOL(iomem_resource); 44 45 /* constraints to be met while allocating resources */ 46 struct resource_constraint { 47 resource_size_t min, max, align; 48 resource_size_t (*alignf)(void *, const struct resource *, 49 resource_size_t, resource_size_t); 50 void *alignf_data; 51 }; 52 53 static DEFINE_RWLOCK(resource_lock); 54 55 /* 56 * For memory hotplug, there is no way to free resource entries allocated 57 * by boot mem after the system is up. So for reusing the resource entry 58 * we need to remember the resource. 59 */ 60 static struct resource *bootmem_resource_free; 61 static DEFINE_SPINLOCK(bootmem_resource_lock); 62 63 static struct resource *next_resource(struct resource *p, bool sibling_only) 64 { 65 /* Caller wants to traverse through siblings only */ 66 if (sibling_only) 67 return p->sibling; 68 69 if (p->child) 70 return p->child; 71 while (!p->sibling && p->parent) 72 p = p->parent; 73 return p->sibling; 74 } 75 76 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 77 { 78 struct resource *p = v; 79 (*pos)++; 80 return (void *)next_resource(p, false); 81 } 82 83 #ifdef CONFIG_PROC_FS 84 85 enum { MAX_IORES_LEVEL = 5 }; 86 87 static void *r_start(struct seq_file *m, loff_t *pos) 88 __acquires(resource_lock) 89 { 90 struct resource *p = m->private; 91 loff_t l = 0; 92 read_lock(&resource_lock); 93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 94 ; 95 return p; 96 } 97 98 static void r_stop(struct seq_file *m, void *v) 99 __releases(resource_lock) 100 { 101 read_unlock(&resource_lock); 102 } 103 104 static int r_show(struct seq_file *m, void *v) 105 { 106 struct resource *root = m->private; 107 struct resource *r = v, *p; 108 unsigned long long start, end; 109 int width = root->end < 0x10000 ? 4 : 8; 110 int depth; 111 112 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 113 if (p->parent == root) 114 break; 115 116 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 117 start = r->start; 118 end = r->end; 119 } else { 120 start = end = 0; 121 } 122 123 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 124 depth * 2, "", 125 width, start, 126 width, end, 127 r->name ? r->name : "<BAD>"); 128 return 0; 129 } 130 131 static const struct seq_operations resource_op = { 132 .start = r_start, 133 .next = r_next, 134 .stop = r_stop, 135 .show = r_show, 136 }; 137 138 static int ioports_open(struct inode *inode, struct file *file) 139 { 140 int res = seq_open(file, &resource_op); 141 if (!res) { 142 struct seq_file *m = file->private_data; 143 m->private = &ioport_resource; 144 } 145 return res; 146 } 147 148 static int iomem_open(struct inode *inode, struct file *file) 149 { 150 int res = seq_open(file, &resource_op); 151 if (!res) { 152 struct seq_file *m = file->private_data; 153 m->private = &iomem_resource; 154 } 155 return res; 156 } 157 158 static const struct file_operations proc_ioports_operations = { 159 .open = ioports_open, 160 .read = seq_read, 161 .llseek = seq_lseek, 162 .release = seq_release, 163 }; 164 165 static const struct file_operations proc_iomem_operations = { 166 .open = iomem_open, 167 .read = seq_read, 168 .llseek = seq_lseek, 169 .release = seq_release, 170 }; 171 172 static int __init ioresources_init(void) 173 { 174 proc_create("ioports", 0, NULL, &proc_ioports_operations); 175 proc_create("iomem", 0, NULL, &proc_iomem_operations); 176 return 0; 177 } 178 __initcall(ioresources_init); 179 180 #endif /* CONFIG_PROC_FS */ 181 182 static void free_resource(struct resource *res) 183 { 184 if (!res) 185 return; 186 187 if (!PageSlab(virt_to_head_page(res))) { 188 spin_lock(&bootmem_resource_lock); 189 res->sibling = bootmem_resource_free; 190 bootmem_resource_free = res; 191 spin_unlock(&bootmem_resource_lock); 192 } else { 193 kfree(res); 194 } 195 } 196 197 static struct resource *alloc_resource(gfp_t flags) 198 { 199 struct resource *res = NULL; 200 201 spin_lock(&bootmem_resource_lock); 202 if (bootmem_resource_free) { 203 res = bootmem_resource_free; 204 bootmem_resource_free = res->sibling; 205 } 206 spin_unlock(&bootmem_resource_lock); 207 208 if (res) 209 memset(res, 0, sizeof(struct resource)); 210 else 211 res = kzalloc(sizeof(struct resource), flags); 212 213 return res; 214 } 215 216 /* Return the conflict entry if you can't request it */ 217 static struct resource * __request_resource(struct resource *root, struct resource *new) 218 { 219 resource_size_t start = new->start; 220 resource_size_t end = new->end; 221 struct resource *tmp, **p; 222 223 if (end < start) 224 return root; 225 if (start < root->start) 226 return root; 227 if (end > root->end) 228 return root; 229 p = &root->child; 230 for (;;) { 231 tmp = *p; 232 if (!tmp || tmp->start > end) { 233 new->sibling = tmp; 234 *p = new; 235 new->parent = root; 236 return NULL; 237 } 238 p = &tmp->sibling; 239 if (tmp->end < start) 240 continue; 241 return tmp; 242 } 243 } 244 245 static int __release_resource(struct resource *old, bool release_child) 246 { 247 struct resource *tmp, **p, *chd; 248 249 p = &old->parent->child; 250 for (;;) { 251 tmp = *p; 252 if (!tmp) 253 break; 254 if (tmp == old) { 255 if (release_child || !(tmp->child)) { 256 *p = tmp->sibling; 257 } else { 258 for (chd = tmp->child;; chd = chd->sibling) { 259 chd->parent = tmp->parent; 260 if (!(chd->sibling)) 261 break; 262 } 263 *p = tmp->child; 264 chd->sibling = tmp->sibling; 265 } 266 old->parent = NULL; 267 return 0; 268 } 269 p = &tmp->sibling; 270 } 271 return -EINVAL; 272 } 273 274 static void __release_child_resources(struct resource *r) 275 { 276 struct resource *tmp, *p; 277 resource_size_t size; 278 279 p = r->child; 280 r->child = NULL; 281 while (p) { 282 tmp = p; 283 p = p->sibling; 284 285 tmp->parent = NULL; 286 tmp->sibling = NULL; 287 __release_child_resources(tmp); 288 289 printk(KERN_DEBUG "release child resource %pR\n", tmp); 290 /* need to restore size, and keep flags */ 291 size = resource_size(tmp); 292 tmp->start = 0; 293 tmp->end = size - 1; 294 } 295 } 296 297 void release_child_resources(struct resource *r) 298 { 299 write_lock(&resource_lock); 300 __release_child_resources(r); 301 write_unlock(&resource_lock); 302 } 303 304 /** 305 * request_resource_conflict - request and reserve an I/O or memory resource 306 * @root: root resource descriptor 307 * @new: resource descriptor desired by caller 308 * 309 * Returns 0 for success, conflict resource on error. 310 */ 311 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 312 { 313 struct resource *conflict; 314 315 write_lock(&resource_lock); 316 conflict = __request_resource(root, new); 317 write_unlock(&resource_lock); 318 return conflict; 319 } 320 321 /** 322 * request_resource - request and reserve an I/O or memory resource 323 * @root: root resource descriptor 324 * @new: resource descriptor desired by caller 325 * 326 * Returns 0 for success, negative error code on error. 327 */ 328 int request_resource(struct resource *root, struct resource *new) 329 { 330 struct resource *conflict; 331 332 conflict = request_resource_conflict(root, new); 333 return conflict ? -EBUSY : 0; 334 } 335 336 EXPORT_SYMBOL(request_resource); 337 338 /** 339 * release_resource - release a previously reserved resource 340 * @old: resource pointer 341 */ 342 int release_resource(struct resource *old) 343 { 344 int retval; 345 346 write_lock(&resource_lock); 347 retval = __release_resource(old, true); 348 write_unlock(&resource_lock); 349 return retval; 350 } 351 352 EXPORT_SYMBOL(release_resource); 353 354 /* 355 * Finds the lowest iomem resource existing within [res->start.res->end). 356 * The caller must specify res->start, res->end, res->flags, and optionally 357 * desc. If found, returns 0, res is overwritten, if not found, returns -1. 358 * This function walks the whole tree and not just first level children until 359 * and unless first_level_children_only is true. 360 */ 361 static int find_next_iomem_res(struct resource *res, unsigned long desc, 362 bool first_level_children_only) 363 { 364 resource_size_t start, end; 365 struct resource *p; 366 bool sibling_only = false; 367 368 BUG_ON(!res); 369 370 start = res->start; 371 end = res->end; 372 BUG_ON(start >= end); 373 374 if (first_level_children_only) 375 sibling_only = true; 376 377 read_lock(&resource_lock); 378 379 for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) { 380 if ((p->flags & res->flags) != res->flags) 381 continue; 382 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 383 continue; 384 if (p->start > end) { 385 p = NULL; 386 break; 387 } 388 if ((p->end >= start) && (p->start < end)) 389 break; 390 } 391 392 read_unlock(&resource_lock); 393 if (!p) 394 return -1; 395 /* copy data */ 396 if (res->start < p->start) 397 res->start = p->start; 398 if (res->end > p->end) 399 res->end = p->end; 400 res->flags = p->flags; 401 res->desc = p->desc; 402 return 0; 403 } 404 405 static int __walk_iomem_res_desc(struct resource *res, unsigned long desc, 406 bool first_level_children_only, 407 void *arg, 408 int (*func)(struct resource *, void *)) 409 { 410 u64 orig_end = res->end; 411 int ret = -1; 412 413 while ((res->start < res->end) && 414 !find_next_iomem_res(res, desc, first_level_children_only)) { 415 ret = (*func)(res, arg); 416 if (ret) 417 break; 418 419 res->start = res->end + 1; 420 res->end = orig_end; 421 } 422 423 return ret; 424 } 425 426 /* 427 * Walks through iomem resources and calls func() with matching resource 428 * ranges. This walks through whole tree and not just first level children. 429 * All the memory ranges which overlap start,end and also match flags and 430 * desc are valid candidates. 431 * 432 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 433 * @flags: I/O resource flags 434 * @start: start addr 435 * @end: end addr 436 * 437 * NOTE: For a new descriptor search, define a new IORES_DESC in 438 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 439 */ 440 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 441 u64 end, void *arg, int (*func)(struct resource *, void *)) 442 { 443 struct resource res; 444 445 res.start = start; 446 res.end = end; 447 res.flags = flags; 448 449 return __walk_iomem_res_desc(&res, desc, false, arg, func); 450 } 451 452 /* 453 * This function calls the @func callback against all memory ranges of type 454 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 455 * Now, this function is only for System RAM, it deals with full ranges and 456 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 457 * ranges. 458 */ 459 int walk_system_ram_res(u64 start, u64 end, void *arg, 460 int (*func)(struct resource *, void *)) 461 { 462 struct resource res; 463 464 res.start = start; 465 res.end = end; 466 res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 467 468 return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true, 469 arg, func); 470 } 471 472 /* 473 * This function calls the @func callback against all memory ranges, which 474 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 475 */ 476 int walk_mem_res(u64 start, u64 end, void *arg, 477 int (*func)(struct resource *, void *)) 478 { 479 struct resource res; 480 481 res.start = start; 482 res.end = end; 483 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; 484 485 return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true, 486 arg, func); 487 } 488 489 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) 490 491 /* 492 * This function calls the @func callback against all memory ranges of type 493 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 494 * It is to be used only for System RAM. 495 */ 496 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 497 void *arg, int (*func)(unsigned long, unsigned long, void *)) 498 { 499 struct resource res; 500 unsigned long pfn, end_pfn; 501 u64 orig_end; 502 int ret = -1; 503 504 res.start = (u64) start_pfn << PAGE_SHIFT; 505 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 506 res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 507 orig_end = res.end; 508 while ((res.start < res.end) && 509 (find_next_iomem_res(&res, IORES_DESC_NONE, true) >= 0)) { 510 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; 511 end_pfn = (res.end + 1) >> PAGE_SHIFT; 512 if (end_pfn > pfn) 513 ret = (*func)(pfn, end_pfn - pfn, arg); 514 if (ret) 515 break; 516 res.start = res.end + 1; 517 res.end = orig_end; 518 } 519 return ret; 520 } 521 522 #endif 523 524 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 525 { 526 return 1; 527 } 528 529 /* 530 * This generic page_is_ram() returns true if specified address is 531 * registered as System RAM in iomem_resource list. 532 */ 533 int __weak page_is_ram(unsigned long pfn) 534 { 535 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 536 } 537 EXPORT_SYMBOL_GPL(page_is_ram); 538 539 /** 540 * region_intersects() - determine intersection of region with known resources 541 * @start: region start address 542 * @size: size of region 543 * @flags: flags of resource (in iomem_resource) 544 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 545 * 546 * Check if the specified region partially overlaps or fully eclipses a 547 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 548 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 549 * return REGION_MIXED if the region overlaps @flags/@desc and another 550 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 551 * and no other defined resource. Note that REGION_INTERSECTS is also 552 * returned in the case when the specified region overlaps RAM and undefined 553 * memory holes. 554 * 555 * region_intersect() is used by memory remapping functions to ensure 556 * the user is not remapping RAM and is a vast speed up over walking 557 * through the resource table page by page. 558 */ 559 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 560 unsigned long desc) 561 { 562 resource_size_t end = start + size - 1; 563 int type = 0; int other = 0; 564 struct resource *p; 565 566 read_lock(&resource_lock); 567 for (p = iomem_resource.child; p ; p = p->sibling) { 568 bool is_type = (((p->flags & flags) == flags) && 569 ((desc == IORES_DESC_NONE) || 570 (desc == p->desc))); 571 572 if (start >= p->start && start <= p->end) 573 is_type ? type++ : other++; 574 if (end >= p->start && end <= p->end) 575 is_type ? type++ : other++; 576 if (p->start >= start && p->end <= end) 577 is_type ? type++ : other++; 578 } 579 read_unlock(&resource_lock); 580 581 if (other == 0) 582 return type ? REGION_INTERSECTS : REGION_DISJOINT; 583 584 if (type) 585 return REGION_MIXED; 586 587 return REGION_DISJOINT; 588 } 589 EXPORT_SYMBOL_GPL(region_intersects); 590 591 void __weak arch_remove_reservations(struct resource *avail) 592 { 593 } 594 595 static resource_size_t simple_align_resource(void *data, 596 const struct resource *avail, 597 resource_size_t size, 598 resource_size_t align) 599 { 600 return avail->start; 601 } 602 603 static void resource_clip(struct resource *res, resource_size_t min, 604 resource_size_t max) 605 { 606 if (res->start < min) 607 res->start = min; 608 if (res->end > max) 609 res->end = max; 610 } 611 612 /* 613 * Find empty slot in the resource tree with the given range and 614 * alignment constraints 615 */ 616 static int __find_resource(struct resource *root, struct resource *old, 617 struct resource *new, 618 resource_size_t size, 619 struct resource_constraint *constraint) 620 { 621 struct resource *this = root->child; 622 struct resource tmp = *new, avail, alloc; 623 624 tmp.start = root->start; 625 /* 626 * Skip past an allocated resource that starts at 0, since the assignment 627 * of this->start - 1 to tmp->end below would cause an underflow. 628 */ 629 if (this && this->start == root->start) { 630 tmp.start = (this == old) ? old->start : this->end + 1; 631 this = this->sibling; 632 } 633 for(;;) { 634 if (this) 635 tmp.end = (this == old) ? this->end : this->start - 1; 636 else 637 tmp.end = root->end; 638 639 if (tmp.end < tmp.start) 640 goto next; 641 642 resource_clip(&tmp, constraint->min, constraint->max); 643 arch_remove_reservations(&tmp); 644 645 /* Check for overflow after ALIGN() */ 646 avail.start = ALIGN(tmp.start, constraint->align); 647 avail.end = tmp.end; 648 avail.flags = new->flags & ~IORESOURCE_UNSET; 649 if (avail.start >= tmp.start) { 650 alloc.flags = avail.flags; 651 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 652 size, constraint->align); 653 alloc.end = alloc.start + size - 1; 654 if (alloc.start <= alloc.end && 655 resource_contains(&avail, &alloc)) { 656 new->start = alloc.start; 657 new->end = alloc.end; 658 return 0; 659 } 660 } 661 662 next: if (!this || this->end == root->end) 663 break; 664 665 if (this != old) 666 tmp.start = this->end + 1; 667 this = this->sibling; 668 } 669 return -EBUSY; 670 } 671 672 /* 673 * Find empty slot in the resource tree given range and alignment. 674 */ 675 static int find_resource(struct resource *root, struct resource *new, 676 resource_size_t size, 677 struct resource_constraint *constraint) 678 { 679 return __find_resource(root, NULL, new, size, constraint); 680 } 681 682 /** 683 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 684 * The resource will be relocated if the new size cannot be reallocated in the 685 * current location. 686 * 687 * @root: root resource descriptor 688 * @old: resource descriptor desired by caller 689 * @newsize: new size of the resource descriptor 690 * @constraint: the size and alignment constraints to be met. 691 */ 692 static int reallocate_resource(struct resource *root, struct resource *old, 693 resource_size_t newsize, 694 struct resource_constraint *constraint) 695 { 696 int err=0; 697 struct resource new = *old; 698 struct resource *conflict; 699 700 write_lock(&resource_lock); 701 702 if ((err = __find_resource(root, old, &new, newsize, constraint))) 703 goto out; 704 705 if (resource_contains(&new, old)) { 706 old->start = new.start; 707 old->end = new.end; 708 goto out; 709 } 710 711 if (old->child) { 712 err = -EBUSY; 713 goto out; 714 } 715 716 if (resource_contains(old, &new)) { 717 old->start = new.start; 718 old->end = new.end; 719 } else { 720 __release_resource(old, true); 721 *old = new; 722 conflict = __request_resource(root, old); 723 BUG_ON(conflict); 724 } 725 out: 726 write_unlock(&resource_lock); 727 return err; 728 } 729 730 731 /** 732 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 733 * The resource will be reallocated with a new size if it was already allocated 734 * @root: root resource descriptor 735 * @new: resource descriptor desired by caller 736 * @size: requested resource region size 737 * @min: minimum boundary to allocate 738 * @max: maximum boundary to allocate 739 * @align: alignment requested, in bytes 740 * @alignf: alignment function, optional, called if not NULL 741 * @alignf_data: arbitrary data to pass to the @alignf function 742 */ 743 int allocate_resource(struct resource *root, struct resource *new, 744 resource_size_t size, resource_size_t min, 745 resource_size_t max, resource_size_t align, 746 resource_size_t (*alignf)(void *, 747 const struct resource *, 748 resource_size_t, 749 resource_size_t), 750 void *alignf_data) 751 { 752 int err; 753 struct resource_constraint constraint; 754 755 if (!alignf) 756 alignf = simple_align_resource; 757 758 constraint.min = min; 759 constraint.max = max; 760 constraint.align = align; 761 constraint.alignf = alignf; 762 constraint.alignf_data = alignf_data; 763 764 if ( new->parent ) { 765 /* resource is already allocated, try reallocating with 766 the new constraints */ 767 return reallocate_resource(root, new, size, &constraint); 768 } 769 770 write_lock(&resource_lock); 771 err = find_resource(root, new, size, &constraint); 772 if (err >= 0 && __request_resource(root, new)) 773 err = -EBUSY; 774 write_unlock(&resource_lock); 775 return err; 776 } 777 778 EXPORT_SYMBOL(allocate_resource); 779 780 /** 781 * lookup_resource - find an existing resource by a resource start address 782 * @root: root resource descriptor 783 * @start: resource start address 784 * 785 * Returns a pointer to the resource if found, NULL otherwise 786 */ 787 struct resource *lookup_resource(struct resource *root, resource_size_t start) 788 { 789 struct resource *res; 790 791 read_lock(&resource_lock); 792 for (res = root->child; res; res = res->sibling) { 793 if (res->start == start) 794 break; 795 } 796 read_unlock(&resource_lock); 797 798 return res; 799 } 800 801 /* 802 * Insert a resource into the resource tree. If successful, return NULL, 803 * otherwise return the conflicting resource (compare to __request_resource()) 804 */ 805 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 806 { 807 struct resource *first, *next; 808 809 for (;; parent = first) { 810 first = __request_resource(parent, new); 811 if (!first) 812 return first; 813 814 if (first == parent) 815 return first; 816 if (WARN_ON(first == new)) /* duplicated insertion */ 817 return first; 818 819 if ((first->start > new->start) || (first->end < new->end)) 820 break; 821 if ((first->start == new->start) && (first->end == new->end)) 822 break; 823 } 824 825 for (next = first; ; next = next->sibling) { 826 /* Partial overlap? Bad, and unfixable */ 827 if (next->start < new->start || next->end > new->end) 828 return next; 829 if (!next->sibling) 830 break; 831 if (next->sibling->start > new->end) 832 break; 833 } 834 835 new->parent = parent; 836 new->sibling = next->sibling; 837 new->child = first; 838 839 next->sibling = NULL; 840 for (next = first; next; next = next->sibling) 841 next->parent = new; 842 843 if (parent->child == first) { 844 parent->child = new; 845 } else { 846 next = parent->child; 847 while (next->sibling != first) 848 next = next->sibling; 849 next->sibling = new; 850 } 851 return NULL; 852 } 853 854 /** 855 * insert_resource_conflict - Inserts resource in the resource tree 856 * @parent: parent of the new resource 857 * @new: new resource to insert 858 * 859 * Returns 0 on success, conflict resource if the resource can't be inserted. 860 * 861 * This function is equivalent to request_resource_conflict when no conflict 862 * happens. If a conflict happens, and the conflicting resources 863 * entirely fit within the range of the new resource, then the new 864 * resource is inserted and the conflicting resources become children of 865 * the new resource. 866 * 867 * This function is intended for producers of resources, such as FW modules 868 * and bus drivers. 869 */ 870 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 871 { 872 struct resource *conflict; 873 874 write_lock(&resource_lock); 875 conflict = __insert_resource(parent, new); 876 write_unlock(&resource_lock); 877 return conflict; 878 } 879 880 /** 881 * insert_resource - Inserts a resource in the resource tree 882 * @parent: parent of the new resource 883 * @new: new resource to insert 884 * 885 * Returns 0 on success, -EBUSY if the resource can't be inserted. 886 * 887 * This function is intended for producers of resources, such as FW modules 888 * and bus drivers. 889 */ 890 int insert_resource(struct resource *parent, struct resource *new) 891 { 892 struct resource *conflict; 893 894 conflict = insert_resource_conflict(parent, new); 895 return conflict ? -EBUSY : 0; 896 } 897 EXPORT_SYMBOL_GPL(insert_resource); 898 899 /** 900 * insert_resource_expand_to_fit - Insert a resource into the resource tree 901 * @root: root resource descriptor 902 * @new: new resource to insert 903 * 904 * Insert a resource into the resource tree, possibly expanding it in order 905 * to make it encompass any conflicting resources. 906 */ 907 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 908 { 909 if (new->parent) 910 return; 911 912 write_lock(&resource_lock); 913 for (;;) { 914 struct resource *conflict; 915 916 conflict = __insert_resource(root, new); 917 if (!conflict) 918 break; 919 if (conflict == root) 920 break; 921 922 /* Ok, expand resource to cover the conflict, then try again .. */ 923 if (conflict->start < new->start) 924 new->start = conflict->start; 925 if (conflict->end > new->end) 926 new->end = conflict->end; 927 928 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 929 } 930 write_unlock(&resource_lock); 931 } 932 933 /** 934 * remove_resource - Remove a resource in the resource tree 935 * @old: resource to remove 936 * 937 * Returns 0 on success, -EINVAL if the resource is not valid. 938 * 939 * This function removes a resource previously inserted by insert_resource() 940 * or insert_resource_conflict(), and moves the children (if any) up to 941 * where they were before. insert_resource() and insert_resource_conflict() 942 * insert a new resource, and move any conflicting resources down to the 943 * children of the new resource. 944 * 945 * insert_resource(), insert_resource_conflict() and remove_resource() are 946 * intended for producers of resources, such as FW modules and bus drivers. 947 */ 948 int remove_resource(struct resource *old) 949 { 950 int retval; 951 952 write_lock(&resource_lock); 953 retval = __release_resource(old, false); 954 write_unlock(&resource_lock); 955 return retval; 956 } 957 EXPORT_SYMBOL_GPL(remove_resource); 958 959 static int __adjust_resource(struct resource *res, resource_size_t start, 960 resource_size_t size) 961 { 962 struct resource *tmp, *parent = res->parent; 963 resource_size_t end = start + size - 1; 964 int result = -EBUSY; 965 966 if (!parent) 967 goto skip; 968 969 if ((start < parent->start) || (end > parent->end)) 970 goto out; 971 972 if (res->sibling && (res->sibling->start <= end)) 973 goto out; 974 975 tmp = parent->child; 976 if (tmp != res) { 977 while (tmp->sibling != res) 978 tmp = tmp->sibling; 979 if (start <= tmp->end) 980 goto out; 981 } 982 983 skip: 984 for (tmp = res->child; tmp; tmp = tmp->sibling) 985 if ((tmp->start < start) || (tmp->end > end)) 986 goto out; 987 988 res->start = start; 989 res->end = end; 990 result = 0; 991 992 out: 993 return result; 994 } 995 996 /** 997 * adjust_resource - modify a resource's start and size 998 * @res: resource to modify 999 * @start: new start value 1000 * @size: new size 1001 * 1002 * Given an existing resource, change its start and size to match the 1003 * arguments. Returns 0 on success, -EBUSY if it can't fit. 1004 * Existing children of the resource are assumed to be immutable. 1005 */ 1006 int adjust_resource(struct resource *res, resource_size_t start, 1007 resource_size_t size) 1008 { 1009 int result; 1010 1011 write_lock(&resource_lock); 1012 result = __adjust_resource(res, start, size); 1013 write_unlock(&resource_lock); 1014 return result; 1015 } 1016 EXPORT_SYMBOL(adjust_resource); 1017 1018 static void __init __reserve_region_with_split(struct resource *root, 1019 resource_size_t start, resource_size_t end, 1020 const char *name) 1021 { 1022 struct resource *parent = root; 1023 struct resource *conflict; 1024 struct resource *res = alloc_resource(GFP_ATOMIC); 1025 struct resource *next_res = NULL; 1026 int type = resource_type(root); 1027 1028 if (!res) 1029 return; 1030 1031 res->name = name; 1032 res->start = start; 1033 res->end = end; 1034 res->flags = type | IORESOURCE_BUSY; 1035 res->desc = IORES_DESC_NONE; 1036 1037 while (1) { 1038 1039 conflict = __request_resource(parent, res); 1040 if (!conflict) { 1041 if (!next_res) 1042 break; 1043 res = next_res; 1044 next_res = NULL; 1045 continue; 1046 } 1047 1048 /* conflict covered whole area */ 1049 if (conflict->start <= res->start && 1050 conflict->end >= res->end) { 1051 free_resource(res); 1052 WARN_ON(next_res); 1053 break; 1054 } 1055 1056 /* failed, split and try again */ 1057 if (conflict->start > res->start) { 1058 end = res->end; 1059 res->end = conflict->start - 1; 1060 if (conflict->end < end) { 1061 next_res = alloc_resource(GFP_ATOMIC); 1062 if (!next_res) { 1063 free_resource(res); 1064 break; 1065 } 1066 next_res->name = name; 1067 next_res->start = conflict->end + 1; 1068 next_res->end = end; 1069 next_res->flags = type | IORESOURCE_BUSY; 1070 next_res->desc = IORES_DESC_NONE; 1071 } 1072 } else { 1073 res->start = conflict->end + 1; 1074 } 1075 } 1076 1077 } 1078 1079 void __init reserve_region_with_split(struct resource *root, 1080 resource_size_t start, resource_size_t end, 1081 const char *name) 1082 { 1083 int abort = 0; 1084 1085 write_lock(&resource_lock); 1086 if (root->start > start || root->end < end) { 1087 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1088 (unsigned long long)start, (unsigned long long)end, 1089 root); 1090 if (start > root->end || end < root->start) 1091 abort = 1; 1092 else { 1093 if (end > root->end) 1094 end = root->end; 1095 if (start < root->start) 1096 start = root->start; 1097 pr_err("fixing request to [0x%llx-0x%llx]\n", 1098 (unsigned long long)start, 1099 (unsigned long long)end); 1100 } 1101 dump_stack(); 1102 } 1103 if (!abort) 1104 __reserve_region_with_split(root, start, end, name); 1105 write_unlock(&resource_lock); 1106 } 1107 1108 /** 1109 * resource_alignment - calculate resource's alignment 1110 * @res: resource pointer 1111 * 1112 * Returns alignment on success, 0 (invalid alignment) on failure. 1113 */ 1114 resource_size_t resource_alignment(struct resource *res) 1115 { 1116 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1117 case IORESOURCE_SIZEALIGN: 1118 return resource_size(res); 1119 case IORESOURCE_STARTALIGN: 1120 return res->start; 1121 default: 1122 return 0; 1123 } 1124 } 1125 1126 /* 1127 * This is compatibility stuff for IO resources. 1128 * 1129 * Note how this, unlike the above, knows about 1130 * the IO flag meanings (busy etc). 1131 * 1132 * request_region creates a new busy region. 1133 * 1134 * release_region releases a matching busy region. 1135 */ 1136 1137 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1138 1139 /** 1140 * __request_region - create a new busy resource region 1141 * @parent: parent resource descriptor 1142 * @start: resource start address 1143 * @n: resource region size 1144 * @name: reserving caller's ID string 1145 * @flags: IO resource flags 1146 */ 1147 struct resource * __request_region(struct resource *parent, 1148 resource_size_t start, resource_size_t n, 1149 const char *name, int flags) 1150 { 1151 DECLARE_WAITQUEUE(wait, current); 1152 struct resource *res = alloc_resource(GFP_KERNEL); 1153 1154 if (!res) 1155 return NULL; 1156 1157 res->name = name; 1158 res->start = start; 1159 res->end = start + n - 1; 1160 1161 write_lock(&resource_lock); 1162 1163 for (;;) { 1164 struct resource *conflict; 1165 1166 res->flags = resource_type(parent) | resource_ext_type(parent); 1167 res->flags |= IORESOURCE_BUSY | flags; 1168 res->desc = parent->desc; 1169 1170 conflict = __request_resource(parent, res); 1171 if (!conflict) 1172 break; 1173 if (conflict != parent) { 1174 if (!(conflict->flags & IORESOURCE_BUSY)) { 1175 parent = conflict; 1176 continue; 1177 } 1178 } 1179 if (conflict->flags & flags & IORESOURCE_MUXED) { 1180 add_wait_queue(&muxed_resource_wait, &wait); 1181 write_unlock(&resource_lock); 1182 set_current_state(TASK_UNINTERRUPTIBLE); 1183 schedule(); 1184 remove_wait_queue(&muxed_resource_wait, &wait); 1185 write_lock(&resource_lock); 1186 continue; 1187 } 1188 /* Uhhuh, that didn't work out.. */ 1189 free_resource(res); 1190 res = NULL; 1191 break; 1192 } 1193 write_unlock(&resource_lock); 1194 return res; 1195 } 1196 EXPORT_SYMBOL(__request_region); 1197 1198 /** 1199 * __release_region - release a previously reserved resource region 1200 * @parent: parent resource descriptor 1201 * @start: resource start address 1202 * @n: resource region size 1203 * 1204 * The described resource region must match a currently busy region. 1205 */ 1206 void __release_region(struct resource *parent, resource_size_t start, 1207 resource_size_t n) 1208 { 1209 struct resource **p; 1210 resource_size_t end; 1211 1212 p = &parent->child; 1213 end = start + n - 1; 1214 1215 write_lock(&resource_lock); 1216 1217 for (;;) { 1218 struct resource *res = *p; 1219 1220 if (!res) 1221 break; 1222 if (res->start <= start && res->end >= end) { 1223 if (!(res->flags & IORESOURCE_BUSY)) { 1224 p = &res->child; 1225 continue; 1226 } 1227 if (res->start != start || res->end != end) 1228 break; 1229 *p = res->sibling; 1230 write_unlock(&resource_lock); 1231 if (res->flags & IORESOURCE_MUXED) 1232 wake_up(&muxed_resource_wait); 1233 free_resource(res); 1234 return; 1235 } 1236 p = &res->sibling; 1237 } 1238 1239 write_unlock(&resource_lock); 1240 1241 printk(KERN_WARNING "Trying to free nonexistent resource " 1242 "<%016llx-%016llx>\n", (unsigned long long)start, 1243 (unsigned long long)end); 1244 } 1245 EXPORT_SYMBOL(__release_region); 1246 1247 #ifdef CONFIG_MEMORY_HOTREMOVE 1248 /** 1249 * release_mem_region_adjustable - release a previously reserved memory region 1250 * @parent: parent resource descriptor 1251 * @start: resource start address 1252 * @size: resource region size 1253 * 1254 * This interface is intended for memory hot-delete. The requested region 1255 * is released from a currently busy memory resource. The requested region 1256 * must either match exactly or fit into a single busy resource entry. In 1257 * the latter case, the remaining resource is adjusted accordingly. 1258 * Existing children of the busy memory resource must be immutable in the 1259 * request. 1260 * 1261 * Note: 1262 * - Additional release conditions, such as overlapping region, can be 1263 * supported after they are confirmed as valid cases. 1264 * - When a busy memory resource gets split into two entries, the code 1265 * assumes that all children remain in the lower address entry for 1266 * simplicity. Enhance this logic when necessary. 1267 */ 1268 int release_mem_region_adjustable(struct resource *parent, 1269 resource_size_t start, resource_size_t size) 1270 { 1271 struct resource **p; 1272 struct resource *res; 1273 struct resource *new_res; 1274 resource_size_t end; 1275 int ret = -EINVAL; 1276 1277 end = start + size - 1; 1278 if ((start < parent->start) || (end > parent->end)) 1279 return ret; 1280 1281 /* The alloc_resource() result gets checked later */ 1282 new_res = alloc_resource(GFP_KERNEL); 1283 1284 p = &parent->child; 1285 write_lock(&resource_lock); 1286 1287 while ((res = *p)) { 1288 if (res->start >= end) 1289 break; 1290 1291 /* look for the next resource if it does not fit into */ 1292 if (res->start > start || res->end < end) { 1293 p = &res->sibling; 1294 continue; 1295 } 1296 1297 if (!(res->flags & IORESOURCE_MEM)) 1298 break; 1299 1300 if (!(res->flags & IORESOURCE_BUSY)) { 1301 p = &res->child; 1302 continue; 1303 } 1304 1305 /* found the target resource; let's adjust accordingly */ 1306 if (res->start == start && res->end == end) { 1307 /* free the whole entry */ 1308 *p = res->sibling; 1309 free_resource(res); 1310 ret = 0; 1311 } else if (res->start == start && res->end != end) { 1312 /* adjust the start */ 1313 ret = __adjust_resource(res, end + 1, 1314 res->end - end); 1315 } else if (res->start != start && res->end == end) { 1316 /* adjust the end */ 1317 ret = __adjust_resource(res, res->start, 1318 start - res->start); 1319 } else { 1320 /* split into two entries */ 1321 if (!new_res) { 1322 ret = -ENOMEM; 1323 break; 1324 } 1325 new_res->name = res->name; 1326 new_res->start = end + 1; 1327 new_res->end = res->end; 1328 new_res->flags = res->flags; 1329 new_res->desc = res->desc; 1330 new_res->parent = res->parent; 1331 new_res->sibling = res->sibling; 1332 new_res->child = NULL; 1333 1334 ret = __adjust_resource(res, res->start, 1335 start - res->start); 1336 if (ret) 1337 break; 1338 res->sibling = new_res; 1339 new_res = NULL; 1340 } 1341 1342 break; 1343 } 1344 1345 write_unlock(&resource_lock); 1346 free_resource(new_res); 1347 return ret; 1348 } 1349 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1350 1351 /* 1352 * Managed region resource 1353 */ 1354 static void devm_resource_release(struct device *dev, void *ptr) 1355 { 1356 struct resource **r = ptr; 1357 1358 release_resource(*r); 1359 } 1360 1361 /** 1362 * devm_request_resource() - request and reserve an I/O or memory resource 1363 * @dev: device for which to request the resource 1364 * @root: root of the resource tree from which to request the resource 1365 * @new: descriptor of the resource to request 1366 * 1367 * This is a device-managed version of request_resource(). There is usually 1368 * no need to release resources requested by this function explicitly since 1369 * that will be taken care of when the device is unbound from its driver. 1370 * If for some reason the resource needs to be released explicitly, because 1371 * of ordering issues for example, drivers must call devm_release_resource() 1372 * rather than the regular release_resource(). 1373 * 1374 * When a conflict is detected between any existing resources and the newly 1375 * requested resource, an error message will be printed. 1376 * 1377 * Returns 0 on success or a negative error code on failure. 1378 */ 1379 int devm_request_resource(struct device *dev, struct resource *root, 1380 struct resource *new) 1381 { 1382 struct resource *conflict, **ptr; 1383 1384 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1385 if (!ptr) 1386 return -ENOMEM; 1387 1388 *ptr = new; 1389 1390 conflict = request_resource_conflict(root, new); 1391 if (conflict) { 1392 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1393 new, conflict->name, conflict); 1394 devres_free(ptr); 1395 return -EBUSY; 1396 } 1397 1398 devres_add(dev, ptr); 1399 return 0; 1400 } 1401 EXPORT_SYMBOL(devm_request_resource); 1402 1403 static int devm_resource_match(struct device *dev, void *res, void *data) 1404 { 1405 struct resource **ptr = res; 1406 1407 return *ptr == data; 1408 } 1409 1410 /** 1411 * devm_release_resource() - release a previously requested resource 1412 * @dev: device for which to release the resource 1413 * @new: descriptor of the resource to release 1414 * 1415 * Releases a resource previously requested using devm_request_resource(). 1416 */ 1417 void devm_release_resource(struct device *dev, struct resource *new) 1418 { 1419 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1420 new)); 1421 } 1422 EXPORT_SYMBOL(devm_release_resource); 1423 1424 struct region_devres { 1425 struct resource *parent; 1426 resource_size_t start; 1427 resource_size_t n; 1428 }; 1429 1430 static void devm_region_release(struct device *dev, void *res) 1431 { 1432 struct region_devres *this = res; 1433 1434 __release_region(this->parent, this->start, this->n); 1435 } 1436 1437 static int devm_region_match(struct device *dev, void *res, void *match_data) 1438 { 1439 struct region_devres *this = res, *match = match_data; 1440 1441 return this->parent == match->parent && 1442 this->start == match->start && this->n == match->n; 1443 } 1444 1445 struct resource * __devm_request_region(struct device *dev, 1446 struct resource *parent, resource_size_t start, 1447 resource_size_t n, const char *name) 1448 { 1449 struct region_devres *dr = NULL; 1450 struct resource *res; 1451 1452 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1453 GFP_KERNEL); 1454 if (!dr) 1455 return NULL; 1456 1457 dr->parent = parent; 1458 dr->start = start; 1459 dr->n = n; 1460 1461 res = __request_region(parent, start, n, name, 0); 1462 if (res) 1463 devres_add(dev, dr); 1464 else 1465 devres_free(dr); 1466 1467 return res; 1468 } 1469 EXPORT_SYMBOL(__devm_request_region); 1470 1471 void __devm_release_region(struct device *dev, struct resource *parent, 1472 resource_size_t start, resource_size_t n) 1473 { 1474 struct region_devres match_data = { parent, start, n }; 1475 1476 __release_region(parent, start, n); 1477 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1478 &match_data)); 1479 } 1480 EXPORT_SYMBOL(__devm_release_region); 1481 1482 /* 1483 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1484 */ 1485 #define MAXRESERVE 4 1486 static int __init reserve_setup(char *str) 1487 { 1488 static int reserved; 1489 static struct resource reserve[MAXRESERVE]; 1490 1491 for (;;) { 1492 unsigned int io_start, io_num; 1493 int x = reserved; 1494 struct resource *parent; 1495 1496 if (get_option(&str, &io_start) != 2) 1497 break; 1498 if (get_option(&str, &io_num) == 0) 1499 break; 1500 if (x < MAXRESERVE) { 1501 struct resource *res = reserve + x; 1502 1503 /* 1504 * If the region starts below 0x10000, we assume it's 1505 * I/O port space; otherwise assume it's memory. 1506 */ 1507 if (io_start < 0x10000) { 1508 res->flags = IORESOURCE_IO; 1509 parent = &ioport_resource; 1510 } else { 1511 res->flags = IORESOURCE_MEM; 1512 parent = &iomem_resource; 1513 } 1514 res->name = "reserved"; 1515 res->start = io_start; 1516 res->end = io_start + io_num - 1; 1517 res->flags |= IORESOURCE_BUSY; 1518 res->desc = IORES_DESC_NONE; 1519 res->child = NULL; 1520 if (request_resource(parent, res) == 0) 1521 reserved = x+1; 1522 } 1523 } 1524 return 1; 1525 } 1526 __setup("reserve=", reserve_setup); 1527 1528 /* 1529 * Check if the requested addr and size spans more than any slot in the 1530 * iomem resource tree. 1531 */ 1532 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1533 { 1534 struct resource *p = &iomem_resource; 1535 int err = 0; 1536 loff_t l; 1537 1538 read_lock(&resource_lock); 1539 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1540 /* 1541 * We can probably skip the resources without 1542 * IORESOURCE_IO attribute? 1543 */ 1544 if (p->start >= addr + size) 1545 continue; 1546 if (p->end < addr) 1547 continue; 1548 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1549 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1550 continue; 1551 /* 1552 * if a resource is "BUSY", it's not a hardware resource 1553 * but a driver mapping of such a resource; we don't want 1554 * to warn for those; some drivers legitimately map only 1555 * partial hardware resources. (example: vesafb) 1556 */ 1557 if (p->flags & IORESOURCE_BUSY) 1558 continue; 1559 1560 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1561 (unsigned long long)addr, 1562 (unsigned long long)(addr + size - 1), 1563 p->name, p); 1564 err = -1; 1565 break; 1566 } 1567 read_unlock(&resource_lock); 1568 1569 return err; 1570 } 1571 1572 #ifdef CONFIG_STRICT_DEVMEM 1573 static int strict_iomem_checks = 1; 1574 #else 1575 static int strict_iomem_checks; 1576 #endif 1577 1578 /* 1579 * check if an address is reserved in the iomem resource tree 1580 * returns true if reserved, false if not reserved. 1581 */ 1582 bool iomem_is_exclusive(u64 addr) 1583 { 1584 struct resource *p = &iomem_resource; 1585 bool err = false; 1586 loff_t l; 1587 int size = PAGE_SIZE; 1588 1589 if (!strict_iomem_checks) 1590 return false; 1591 1592 addr = addr & PAGE_MASK; 1593 1594 read_lock(&resource_lock); 1595 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1596 /* 1597 * We can probably skip the resources without 1598 * IORESOURCE_IO attribute? 1599 */ 1600 if (p->start >= addr + size) 1601 break; 1602 if (p->end < addr) 1603 continue; 1604 /* 1605 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1606 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1607 * resource is busy. 1608 */ 1609 if ((p->flags & IORESOURCE_BUSY) == 0) 1610 continue; 1611 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1612 || p->flags & IORESOURCE_EXCLUSIVE) { 1613 err = true; 1614 break; 1615 } 1616 } 1617 read_unlock(&resource_lock); 1618 1619 return err; 1620 } 1621 1622 struct resource_entry *resource_list_create_entry(struct resource *res, 1623 size_t extra_size) 1624 { 1625 struct resource_entry *entry; 1626 1627 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1628 if (entry) { 1629 INIT_LIST_HEAD(&entry->node); 1630 entry->res = res ? res : &entry->__res; 1631 } 1632 1633 return entry; 1634 } 1635 EXPORT_SYMBOL(resource_list_create_entry); 1636 1637 void resource_list_free(struct list_head *head) 1638 { 1639 struct resource_entry *entry, *tmp; 1640 1641 list_for_each_entry_safe(entry, tmp, head, node) 1642 resource_list_destroy_entry(entry); 1643 } 1644 EXPORT_SYMBOL(resource_list_free); 1645 1646 static int __init strict_iomem(char *str) 1647 { 1648 if (strstr(str, "relaxed")) 1649 strict_iomem_checks = 0; 1650 if (strstr(str, "strict")) 1651 strict_iomem_checks = 1; 1652 return 1; 1653 } 1654 1655 __setup("iomem=", strict_iomem); 1656