xref: /openbmc/linux/kernel/resource.c (revision 4cff79e9)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <linux/resource_ext.h>
26 #include <asm/io.h>
27 
28 
29 struct resource ioport_resource = {
30 	.name	= "PCI IO",
31 	.start	= 0,
32 	.end	= IO_SPACE_LIMIT,
33 	.flags	= IORESOURCE_IO,
34 };
35 EXPORT_SYMBOL(ioport_resource);
36 
37 struct resource iomem_resource = {
38 	.name	= "PCI mem",
39 	.start	= 0,
40 	.end	= -1,
41 	.flags	= IORESOURCE_MEM,
42 };
43 EXPORT_SYMBOL(iomem_resource);
44 
45 /* constraints to be met while allocating resources */
46 struct resource_constraint {
47 	resource_size_t min, max, align;
48 	resource_size_t (*alignf)(void *, const struct resource *,
49 			resource_size_t, resource_size_t);
50 	void *alignf_data;
51 };
52 
53 static DEFINE_RWLOCK(resource_lock);
54 
55 /*
56  * For memory hotplug, there is no way to free resource entries allocated
57  * by boot mem after the system is up. So for reusing the resource entry
58  * we need to remember the resource.
59  */
60 static struct resource *bootmem_resource_free;
61 static DEFINE_SPINLOCK(bootmem_resource_lock);
62 
63 static struct resource *next_resource(struct resource *p, bool sibling_only)
64 {
65 	/* Caller wants to traverse through siblings only */
66 	if (sibling_only)
67 		return p->sibling;
68 
69 	if (p->child)
70 		return p->child;
71 	while (!p->sibling && p->parent)
72 		p = p->parent;
73 	return p->sibling;
74 }
75 
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 	struct resource *p = v;
79 	(*pos)++;
80 	return (void *)next_resource(p, false);
81 }
82 
83 #ifdef CONFIG_PROC_FS
84 
85 enum { MAX_IORES_LEVEL = 5 };
86 
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 	__acquires(resource_lock)
89 {
90 	struct resource *p = m->private;
91 	loff_t l = 0;
92 	read_lock(&resource_lock);
93 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 		;
95 	return p;
96 }
97 
98 static void r_stop(struct seq_file *m, void *v)
99 	__releases(resource_lock)
100 {
101 	read_unlock(&resource_lock);
102 }
103 
104 static int r_show(struct seq_file *m, void *v)
105 {
106 	struct resource *root = m->private;
107 	struct resource *r = v, *p;
108 	unsigned long long start, end;
109 	int width = root->end < 0x10000 ? 4 : 8;
110 	int depth;
111 
112 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
113 		if (p->parent == root)
114 			break;
115 
116 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
117 		start = r->start;
118 		end = r->end;
119 	} else {
120 		start = end = 0;
121 	}
122 
123 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
124 			depth * 2, "",
125 			width, start,
126 			width, end,
127 			r->name ? r->name : "<BAD>");
128 	return 0;
129 }
130 
131 static const struct seq_operations resource_op = {
132 	.start	= r_start,
133 	.next	= r_next,
134 	.stop	= r_stop,
135 	.show	= r_show,
136 };
137 
138 static int ioports_open(struct inode *inode, struct file *file)
139 {
140 	int res = seq_open(file, &resource_op);
141 	if (!res) {
142 		struct seq_file *m = file->private_data;
143 		m->private = &ioport_resource;
144 	}
145 	return res;
146 }
147 
148 static int iomem_open(struct inode *inode, struct file *file)
149 {
150 	int res = seq_open(file, &resource_op);
151 	if (!res) {
152 		struct seq_file *m = file->private_data;
153 		m->private = &iomem_resource;
154 	}
155 	return res;
156 }
157 
158 static const struct file_operations proc_ioports_operations = {
159 	.open		= ioports_open,
160 	.read		= seq_read,
161 	.llseek		= seq_lseek,
162 	.release	= seq_release,
163 };
164 
165 static const struct file_operations proc_iomem_operations = {
166 	.open		= iomem_open,
167 	.read		= seq_read,
168 	.llseek		= seq_lseek,
169 	.release	= seq_release,
170 };
171 
172 static int __init ioresources_init(void)
173 {
174 	proc_create("ioports", 0, NULL, &proc_ioports_operations);
175 	proc_create("iomem", 0, NULL, &proc_iomem_operations);
176 	return 0;
177 }
178 __initcall(ioresources_init);
179 
180 #endif /* CONFIG_PROC_FS */
181 
182 static void free_resource(struct resource *res)
183 {
184 	if (!res)
185 		return;
186 
187 	if (!PageSlab(virt_to_head_page(res))) {
188 		spin_lock(&bootmem_resource_lock);
189 		res->sibling = bootmem_resource_free;
190 		bootmem_resource_free = res;
191 		spin_unlock(&bootmem_resource_lock);
192 	} else {
193 		kfree(res);
194 	}
195 }
196 
197 static struct resource *alloc_resource(gfp_t flags)
198 {
199 	struct resource *res = NULL;
200 
201 	spin_lock(&bootmem_resource_lock);
202 	if (bootmem_resource_free) {
203 		res = bootmem_resource_free;
204 		bootmem_resource_free = res->sibling;
205 	}
206 	spin_unlock(&bootmem_resource_lock);
207 
208 	if (res)
209 		memset(res, 0, sizeof(struct resource));
210 	else
211 		res = kzalloc(sizeof(struct resource), flags);
212 
213 	return res;
214 }
215 
216 /* Return the conflict entry if you can't request it */
217 static struct resource * __request_resource(struct resource *root, struct resource *new)
218 {
219 	resource_size_t start = new->start;
220 	resource_size_t end = new->end;
221 	struct resource *tmp, **p;
222 
223 	if (end < start)
224 		return root;
225 	if (start < root->start)
226 		return root;
227 	if (end > root->end)
228 		return root;
229 	p = &root->child;
230 	for (;;) {
231 		tmp = *p;
232 		if (!tmp || tmp->start > end) {
233 			new->sibling = tmp;
234 			*p = new;
235 			new->parent = root;
236 			return NULL;
237 		}
238 		p = &tmp->sibling;
239 		if (tmp->end < start)
240 			continue;
241 		return tmp;
242 	}
243 }
244 
245 static int __release_resource(struct resource *old, bool release_child)
246 {
247 	struct resource *tmp, **p, *chd;
248 
249 	p = &old->parent->child;
250 	for (;;) {
251 		tmp = *p;
252 		if (!tmp)
253 			break;
254 		if (tmp == old) {
255 			if (release_child || !(tmp->child)) {
256 				*p = tmp->sibling;
257 			} else {
258 				for (chd = tmp->child;; chd = chd->sibling) {
259 					chd->parent = tmp->parent;
260 					if (!(chd->sibling))
261 						break;
262 				}
263 				*p = tmp->child;
264 				chd->sibling = tmp->sibling;
265 			}
266 			old->parent = NULL;
267 			return 0;
268 		}
269 		p = &tmp->sibling;
270 	}
271 	return -EINVAL;
272 }
273 
274 static void __release_child_resources(struct resource *r)
275 {
276 	struct resource *tmp, *p;
277 	resource_size_t size;
278 
279 	p = r->child;
280 	r->child = NULL;
281 	while (p) {
282 		tmp = p;
283 		p = p->sibling;
284 
285 		tmp->parent = NULL;
286 		tmp->sibling = NULL;
287 		__release_child_resources(tmp);
288 
289 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
290 		/* need to restore size, and keep flags */
291 		size = resource_size(tmp);
292 		tmp->start = 0;
293 		tmp->end = size - 1;
294 	}
295 }
296 
297 void release_child_resources(struct resource *r)
298 {
299 	write_lock(&resource_lock);
300 	__release_child_resources(r);
301 	write_unlock(&resource_lock);
302 }
303 
304 /**
305  * request_resource_conflict - request and reserve an I/O or memory resource
306  * @root: root resource descriptor
307  * @new: resource descriptor desired by caller
308  *
309  * Returns 0 for success, conflict resource on error.
310  */
311 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
312 {
313 	struct resource *conflict;
314 
315 	write_lock(&resource_lock);
316 	conflict = __request_resource(root, new);
317 	write_unlock(&resource_lock);
318 	return conflict;
319 }
320 
321 /**
322  * request_resource - request and reserve an I/O or memory resource
323  * @root: root resource descriptor
324  * @new: resource descriptor desired by caller
325  *
326  * Returns 0 for success, negative error code on error.
327  */
328 int request_resource(struct resource *root, struct resource *new)
329 {
330 	struct resource *conflict;
331 
332 	conflict = request_resource_conflict(root, new);
333 	return conflict ? -EBUSY : 0;
334 }
335 
336 EXPORT_SYMBOL(request_resource);
337 
338 /**
339  * release_resource - release a previously reserved resource
340  * @old: resource pointer
341  */
342 int release_resource(struct resource *old)
343 {
344 	int retval;
345 
346 	write_lock(&resource_lock);
347 	retval = __release_resource(old, true);
348 	write_unlock(&resource_lock);
349 	return retval;
350 }
351 
352 EXPORT_SYMBOL(release_resource);
353 
354 /*
355  * Finds the lowest iomem resource existing within [res->start.res->end).
356  * The caller must specify res->start, res->end, res->flags, and optionally
357  * desc.  If found, returns 0, res is overwritten, if not found, returns -1.
358  * This function walks the whole tree and not just first level children until
359  * and unless first_level_children_only is true.
360  */
361 static int find_next_iomem_res(struct resource *res, unsigned long desc,
362 			       bool first_level_children_only)
363 {
364 	resource_size_t start, end;
365 	struct resource *p;
366 	bool sibling_only = false;
367 
368 	BUG_ON(!res);
369 
370 	start = res->start;
371 	end = res->end;
372 	BUG_ON(start >= end);
373 
374 	if (first_level_children_only)
375 		sibling_only = true;
376 
377 	read_lock(&resource_lock);
378 
379 	for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
380 		if ((p->flags & res->flags) != res->flags)
381 			continue;
382 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
383 			continue;
384 		if (p->start > end) {
385 			p = NULL;
386 			break;
387 		}
388 		if ((p->end >= start) && (p->start < end))
389 			break;
390 	}
391 
392 	read_unlock(&resource_lock);
393 	if (!p)
394 		return -1;
395 	/* copy data */
396 	if (res->start < p->start)
397 		res->start = p->start;
398 	if (res->end > p->end)
399 		res->end = p->end;
400 	res->flags = p->flags;
401 	res->desc = p->desc;
402 	return 0;
403 }
404 
405 static int __walk_iomem_res_desc(struct resource *res, unsigned long desc,
406 				 bool first_level_children_only,
407 				 void *arg,
408 				 int (*func)(struct resource *, void *))
409 {
410 	u64 orig_end = res->end;
411 	int ret = -1;
412 
413 	while ((res->start < res->end) &&
414 	       !find_next_iomem_res(res, desc, first_level_children_only)) {
415 		ret = (*func)(res, arg);
416 		if (ret)
417 			break;
418 
419 		res->start = res->end + 1;
420 		res->end = orig_end;
421 	}
422 
423 	return ret;
424 }
425 
426 /*
427  * Walks through iomem resources and calls func() with matching resource
428  * ranges. This walks through whole tree and not just first level children.
429  * All the memory ranges which overlap start,end and also match flags and
430  * desc are valid candidates.
431  *
432  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
433  * @flags: I/O resource flags
434  * @start: start addr
435  * @end: end addr
436  *
437  * NOTE: For a new descriptor search, define a new IORES_DESC in
438  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
439  */
440 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
441 		u64 end, void *arg, int (*func)(struct resource *, void *))
442 {
443 	struct resource res;
444 
445 	res.start = start;
446 	res.end = end;
447 	res.flags = flags;
448 
449 	return __walk_iomem_res_desc(&res, desc, false, arg, func);
450 }
451 
452 /*
453  * This function calls the @func callback against all memory ranges of type
454  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
455  * Now, this function is only for System RAM, it deals with full ranges and
456  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
457  * ranges.
458  */
459 int walk_system_ram_res(u64 start, u64 end, void *arg,
460 				int (*func)(struct resource *, void *))
461 {
462 	struct resource res;
463 
464 	res.start = start;
465 	res.end = end;
466 	res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
467 
468 	return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true,
469 				     arg, func);
470 }
471 
472 /*
473  * This function calls the @func callback against all memory ranges, which
474  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
475  */
476 int walk_mem_res(u64 start, u64 end, void *arg,
477 		 int (*func)(struct resource *, void *))
478 {
479 	struct resource res;
480 
481 	res.start = start;
482 	res.end = end;
483 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
484 
485 	return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true,
486 				     arg, func);
487 }
488 
489 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
490 
491 /*
492  * This function calls the @func callback against all memory ranges of type
493  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
494  * It is to be used only for System RAM.
495  */
496 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
497 		void *arg, int (*func)(unsigned long, unsigned long, void *))
498 {
499 	struct resource res;
500 	unsigned long pfn, end_pfn;
501 	u64 orig_end;
502 	int ret = -1;
503 
504 	res.start = (u64) start_pfn << PAGE_SHIFT;
505 	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
506 	res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
507 	orig_end = res.end;
508 	while ((res.start < res.end) &&
509 		(find_next_iomem_res(&res, IORES_DESC_NONE, true) >= 0)) {
510 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
511 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
512 		if (end_pfn > pfn)
513 			ret = (*func)(pfn, end_pfn - pfn, arg);
514 		if (ret)
515 			break;
516 		res.start = res.end + 1;
517 		res.end = orig_end;
518 	}
519 	return ret;
520 }
521 
522 #endif
523 
524 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
525 {
526 	return 1;
527 }
528 
529 /*
530  * This generic page_is_ram() returns true if specified address is
531  * registered as System RAM in iomem_resource list.
532  */
533 int __weak page_is_ram(unsigned long pfn)
534 {
535 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
536 }
537 EXPORT_SYMBOL_GPL(page_is_ram);
538 
539 /**
540  * region_intersects() - determine intersection of region with known resources
541  * @start: region start address
542  * @size: size of region
543  * @flags: flags of resource (in iomem_resource)
544  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
545  *
546  * Check if the specified region partially overlaps or fully eclipses a
547  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
548  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
549  * return REGION_MIXED if the region overlaps @flags/@desc and another
550  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
551  * and no other defined resource. Note that REGION_INTERSECTS is also
552  * returned in the case when the specified region overlaps RAM and undefined
553  * memory holes.
554  *
555  * region_intersect() is used by memory remapping functions to ensure
556  * the user is not remapping RAM and is a vast speed up over walking
557  * through the resource table page by page.
558  */
559 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
560 		      unsigned long desc)
561 {
562 	resource_size_t end = start + size - 1;
563 	int type = 0; int other = 0;
564 	struct resource *p;
565 
566 	read_lock(&resource_lock);
567 	for (p = iomem_resource.child; p ; p = p->sibling) {
568 		bool is_type = (((p->flags & flags) == flags) &&
569 				((desc == IORES_DESC_NONE) ||
570 				 (desc == p->desc)));
571 
572 		if (start >= p->start && start <= p->end)
573 			is_type ? type++ : other++;
574 		if (end >= p->start && end <= p->end)
575 			is_type ? type++ : other++;
576 		if (p->start >= start && p->end <= end)
577 			is_type ? type++ : other++;
578 	}
579 	read_unlock(&resource_lock);
580 
581 	if (other == 0)
582 		return type ? REGION_INTERSECTS : REGION_DISJOINT;
583 
584 	if (type)
585 		return REGION_MIXED;
586 
587 	return REGION_DISJOINT;
588 }
589 EXPORT_SYMBOL_GPL(region_intersects);
590 
591 void __weak arch_remove_reservations(struct resource *avail)
592 {
593 }
594 
595 static resource_size_t simple_align_resource(void *data,
596 					     const struct resource *avail,
597 					     resource_size_t size,
598 					     resource_size_t align)
599 {
600 	return avail->start;
601 }
602 
603 static void resource_clip(struct resource *res, resource_size_t min,
604 			  resource_size_t max)
605 {
606 	if (res->start < min)
607 		res->start = min;
608 	if (res->end > max)
609 		res->end = max;
610 }
611 
612 /*
613  * Find empty slot in the resource tree with the given range and
614  * alignment constraints
615  */
616 static int __find_resource(struct resource *root, struct resource *old,
617 			 struct resource *new,
618 			 resource_size_t  size,
619 			 struct resource_constraint *constraint)
620 {
621 	struct resource *this = root->child;
622 	struct resource tmp = *new, avail, alloc;
623 
624 	tmp.start = root->start;
625 	/*
626 	 * Skip past an allocated resource that starts at 0, since the assignment
627 	 * of this->start - 1 to tmp->end below would cause an underflow.
628 	 */
629 	if (this && this->start == root->start) {
630 		tmp.start = (this == old) ? old->start : this->end + 1;
631 		this = this->sibling;
632 	}
633 	for(;;) {
634 		if (this)
635 			tmp.end = (this == old) ?  this->end : this->start - 1;
636 		else
637 			tmp.end = root->end;
638 
639 		if (tmp.end < tmp.start)
640 			goto next;
641 
642 		resource_clip(&tmp, constraint->min, constraint->max);
643 		arch_remove_reservations(&tmp);
644 
645 		/* Check for overflow after ALIGN() */
646 		avail.start = ALIGN(tmp.start, constraint->align);
647 		avail.end = tmp.end;
648 		avail.flags = new->flags & ~IORESOURCE_UNSET;
649 		if (avail.start >= tmp.start) {
650 			alloc.flags = avail.flags;
651 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
652 					size, constraint->align);
653 			alloc.end = alloc.start + size - 1;
654 			if (alloc.start <= alloc.end &&
655 			    resource_contains(&avail, &alloc)) {
656 				new->start = alloc.start;
657 				new->end = alloc.end;
658 				return 0;
659 			}
660 		}
661 
662 next:		if (!this || this->end == root->end)
663 			break;
664 
665 		if (this != old)
666 			tmp.start = this->end + 1;
667 		this = this->sibling;
668 	}
669 	return -EBUSY;
670 }
671 
672 /*
673  * Find empty slot in the resource tree given range and alignment.
674  */
675 static int find_resource(struct resource *root, struct resource *new,
676 			resource_size_t size,
677 			struct resource_constraint  *constraint)
678 {
679 	return  __find_resource(root, NULL, new, size, constraint);
680 }
681 
682 /**
683  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
684  *	The resource will be relocated if the new size cannot be reallocated in the
685  *	current location.
686  *
687  * @root: root resource descriptor
688  * @old:  resource descriptor desired by caller
689  * @newsize: new size of the resource descriptor
690  * @constraint: the size and alignment constraints to be met.
691  */
692 static int reallocate_resource(struct resource *root, struct resource *old,
693 			resource_size_t newsize,
694 			struct resource_constraint  *constraint)
695 {
696 	int err=0;
697 	struct resource new = *old;
698 	struct resource *conflict;
699 
700 	write_lock(&resource_lock);
701 
702 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
703 		goto out;
704 
705 	if (resource_contains(&new, old)) {
706 		old->start = new.start;
707 		old->end = new.end;
708 		goto out;
709 	}
710 
711 	if (old->child) {
712 		err = -EBUSY;
713 		goto out;
714 	}
715 
716 	if (resource_contains(old, &new)) {
717 		old->start = new.start;
718 		old->end = new.end;
719 	} else {
720 		__release_resource(old, true);
721 		*old = new;
722 		conflict = __request_resource(root, old);
723 		BUG_ON(conflict);
724 	}
725 out:
726 	write_unlock(&resource_lock);
727 	return err;
728 }
729 
730 
731 /**
732  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
733  * 	The resource will be reallocated with a new size if it was already allocated
734  * @root: root resource descriptor
735  * @new: resource descriptor desired by caller
736  * @size: requested resource region size
737  * @min: minimum boundary to allocate
738  * @max: maximum boundary to allocate
739  * @align: alignment requested, in bytes
740  * @alignf: alignment function, optional, called if not NULL
741  * @alignf_data: arbitrary data to pass to the @alignf function
742  */
743 int allocate_resource(struct resource *root, struct resource *new,
744 		      resource_size_t size, resource_size_t min,
745 		      resource_size_t max, resource_size_t align,
746 		      resource_size_t (*alignf)(void *,
747 						const struct resource *,
748 						resource_size_t,
749 						resource_size_t),
750 		      void *alignf_data)
751 {
752 	int err;
753 	struct resource_constraint constraint;
754 
755 	if (!alignf)
756 		alignf = simple_align_resource;
757 
758 	constraint.min = min;
759 	constraint.max = max;
760 	constraint.align = align;
761 	constraint.alignf = alignf;
762 	constraint.alignf_data = alignf_data;
763 
764 	if ( new->parent ) {
765 		/* resource is already allocated, try reallocating with
766 		   the new constraints */
767 		return reallocate_resource(root, new, size, &constraint);
768 	}
769 
770 	write_lock(&resource_lock);
771 	err = find_resource(root, new, size, &constraint);
772 	if (err >= 0 && __request_resource(root, new))
773 		err = -EBUSY;
774 	write_unlock(&resource_lock);
775 	return err;
776 }
777 
778 EXPORT_SYMBOL(allocate_resource);
779 
780 /**
781  * lookup_resource - find an existing resource by a resource start address
782  * @root: root resource descriptor
783  * @start: resource start address
784  *
785  * Returns a pointer to the resource if found, NULL otherwise
786  */
787 struct resource *lookup_resource(struct resource *root, resource_size_t start)
788 {
789 	struct resource *res;
790 
791 	read_lock(&resource_lock);
792 	for (res = root->child; res; res = res->sibling) {
793 		if (res->start == start)
794 			break;
795 	}
796 	read_unlock(&resource_lock);
797 
798 	return res;
799 }
800 
801 /*
802  * Insert a resource into the resource tree. If successful, return NULL,
803  * otherwise return the conflicting resource (compare to __request_resource())
804  */
805 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
806 {
807 	struct resource *first, *next;
808 
809 	for (;; parent = first) {
810 		first = __request_resource(parent, new);
811 		if (!first)
812 			return first;
813 
814 		if (first == parent)
815 			return first;
816 		if (WARN_ON(first == new))	/* duplicated insertion */
817 			return first;
818 
819 		if ((first->start > new->start) || (first->end < new->end))
820 			break;
821 		if ((first->start == new->start) && (first->end == new->end))
822 			break;
823 	}
824 
825 	for (next = first; ; next = next->sibling) {
826 		/* Partial overlap? Bad, and unfixable */
827 		if (next->start < new->start || next->end > new->end)
828 			return next;
829 		if (!next->sibling)
830 			break;
831 		if (next->sibling->start > new->end)
832 			break;
833 	}
834 
835 	new->parent = parent;
836 	new->sibling = next->sibling;
837 	new->child = first;
838 
839 	next->sibling = NULL;
840 	for (next = first; next; next = next->sibling)
841 		next->parent = new;
842 
843 	if (parent->child == first) {
844 		parent->child = new;
845 	} else {
846 		next = parent->child;
847 		while (next->sibling != first)
848 			next = next->sibling;
849 		next->sibling = new;
850 	}
851 	return NULL;
852 }
853 
854 /**
855  * insert_resource_conflict - Inserts resource in the resource tree
856  * @parent: parent of the new resource
857  * @new: new resource to insert
858  *
859  * Returns 0 on success, conflict resource if the resource can't be inserted.
860  *
861  * This function is equivalent to request_resource_conflict when no conflict
862  * happens. If a conflict happens, and the conflicting resources
863  * entirely fit within the range of the new resource, then the new
864  * resource is inserted and the conflicting resources become children of
865  * the new resource.
866  *
867  * This function is intended for producers of resources, such as FW modules
868  * and bus drivers.
869  */
870 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
871 {
872 	struct resource *conflict;
873 
874 	write_lock(&resource_lock);
875 	conflict = __insert_resource(parent, new);
876 	write_unlock(&resource_lock);
877 	return conflict;
878 }
879 
880 /**
881  * insert_resource - Inserts a resource in the resource tree
882  * @parent: parent of the new resource
883  * @new: new resource to insert
884  *
885  * Returns 0 on success, -EBUSY if the resource can't be inserted.
886  *
887  * This function is intended for producers of resources, such as FW modules
888  * and bus drivers.
889  */
890 int insert_resource(struct resource *parent, struct resource *new)
891 {
892 	struct resource *conflict;
893 
894 	conflict = insert_resource_conflict(parent, new);
895 	return conflict ? -EBUSY : 0;
896 }
897 EXPORT_SYMBOL_GPL(insert_resource);
898 
899 /**
900  * insert_resource_expand_to_fit - Insert a resource into the resource tree
901  * @root: root resource descriptor
902  * @new: new resource to insert
903  *
904  * Insert a resource into the resource tree, possibly expanding it in order
905  * to make it encompass any conflicting resources.
906  */
907 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
908 {
909 	if (new->parent)
910 		return;
911 
912 	write_lock(&resource_lock);
913 	for (;;) {
914 		struct resource *conflict;
915 
916 		conflict = __insert_resource(root, new);
917 		if (!conflict)
918 			break;
919 		if (conflict == root)
920 			break;
921 
922 		/* Ok, expand resource to cover the conflict, then try again .. */
923 		if (conflict->start < new->start)
924 			new->start = conflict->start;
925 		if (conflict->end > new->end)
926 			new->end = conflict->end;
927 
928 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
929 	}
930 	write_unlock(&resource_lock);
931 }
932 
933 /**
934  * remove_resource - Remove a resource in the resource tree
935  * @old: resource to remove
936  *
937  * Returns 0 on success, -EINVAL if the resource is not valid.
938  *
939  * This function removes a resource previously inserted by insert_resource()
940  * or insert_resource_conflict(), and moves the children (if any) up to
941  * where they were before.  insert_resource() and insert_resource_conflict()
942  * insert a new resource, and move any conflicting resources down to the
943  * children of the new resource.
944  *
945  * insert_resource(), insert_resource_conflict() and remove_resource() are
946  * intended for producers of resources, such as FW modules and bus drivers.
947  */
948 int remove_resource(struct resource *old)
949 {
950 	int retval;
951 
952 	write_lock(&resource_lock);
953 	retval = __release_resource(old, false);
954 	write_unlock(&resource_lock);
955 	return retval;
956 }
957 EXPORT_SYMBOL_GPL(remove_resource);
958 
959 static int __adjust_resource(struct resource *res, resource_size_t start,
960 				resource_size_t size)
961 {
962 	struct resource *tmp, *parent = res->parent;
963 	resource_size_t end = start + size - 1;
964 	int result = -EBUSY;
965 
966 	if (!parent)
967 		goto skip;
968 
969 	if ((start < parent->start) || (end > parent->end))
970 		goto out;
971 
972 	if (res->sibling && (res->sibling->start <= end))
973 		goto out;
974 
975 	tmp = parent->child;
976 	if (tmp != res) {
977 		while (tmp->sibling != res)
978 			tmp = tmp->sibling;
979 		if (start <= tmp->end)
980 			goto out;
981 	}
982 
983 skip:
984 	for (tmp = res->child; tmp; tmp = tmp->sibling)
985 		if ((tmp->start < start) || (tmp->end > end))
986 			goto out;
987 
988 	res->start = start;
989 	res->end = end;
990 	result = 0;
991 
992  out:
993 	return result;
994 }
995 
996 /**
997  * adjust_resource - modify a resource's start and size
998  * @res: resource to modify
999  * @start: new start value
1000  * @size: new size
1001  *
1002  * Given an existing resource, change its start and size to match the
1003  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1004  * Existing children of the resource are assumed to be immutable.
1005  */
1006 int adjust_resource(struct resource *res, resource_size_t start,
1007 			resource_size_t size)
1008 {
1009 	int result;
1010 
1011 	write_lock(&resource_lock);
1012 	result = __adjust_resource(res, start, size);
1013 	write_unlock(&resource_lock);
1014 	return result;
1015 }
1016 EXPORT_SYMBOL(adjust_resource);
1017 
1018 static void __init __reserve_region_with_split(struct resource *root,
1019 		resource_size_t start, resource_size_t end,
1020 		const char *name)
1021 {
1022 	struct resource *parent = root;
1023 	struct resource *conflict;
1024 	struct resource *res = alloc_resource(GFP_ATOMIC);
1025 	struct resource *next_res = NULL;
1026 	int type = resource_type(root);
1027 
1028 	if (!res)
1029 		return;
1030 
1031 	res->name = name;
1032 	res->start = start;
1033 	res->end = end;
1034 	res->flags = type | IORESOURCE_BUSY;
1035 	res->desc = IORES_DESC_NONE;
1036 
1037 	while (1) {
1038 
1039 		conflict = __request_resource(parent, res);
1040 		if (!conflict) {
1041 			if (!next_res)
1042 				break;
1043 			res = next_res;
1044 			next_res = NULL;
1045 			continue;
1046 		}
1047 
1048 		/* conflict covered whole area */
1049 		if (conflict->start <= res->start &&
1050 				conflict->end >= res->end) {
1051 			free_resource(res);
1052 			WARN_ON(next_res);
1053 			break;
1054 		}
1055 
1056 		/* failed, split and try again */
1057 		if (conflict->start > res->start) {
1058 			end = res->end;
1059 			res->end = conflict->start - 1;
1060 			if (conflict->end < end) {
1061 				next_res = alloc_resource(GFP_ATOMIC);
1062 				if (!next_res) {
1063 					free_resource(res);
1064 					break;
1065 				}
1066 				next_res->name = name;
1067 				next_res->start = conflict->end + 1;
1068 				next_res->end = end;
1069 				next_res->flags = type | IORESOURCE_BUSY;
1070 				next_res->desc = IORES_DESC_NONE;
1071 			}
1072 		} else {
1073 			res->start = conflict->end + 1;
1074 		}
1075 	}
1076 
1077 }
1078 
1079 void __init reserve_region_with_split(struct resource *root,
1080 		resource_size_t start, resource_size_t end,
1081 		const char *name)
1082 {
1083 	int abort = 0;
1084 
1085 	write_lock(&resource_lock);
1086 	if (root->start > start || root->end < end) {
1087 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1088 		       (unsigned long long)start, (unsigned long long)end,
1089 		       root);
1090 		if (start > root->end || end < root->start)
1091 			abort = 1;
1092 		else {
1093 			if (end > root->end)
1094 				end = root->end;
1095 			if (start < root->start)
1096 				start = root->start;
1097 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1098 			       (unsigned long long)start,
1099 			       (unsigned long long)end);
1100 		}
1101 		dump_stack();
1102 	}
1103 	if (!abort)
1104 		__reserve_region_with_split(root, start, end, name);
1105 	write_unlock(&resource_lock);
1106 }
1107 
1108 /**
1109  * resource_alignment - calculate resource's alignment
1110  * @res: resource pointer
1111  *
1112  * Returns alignment on success, 0 (invalid alignment) on failure.
1113  */
1114 resource_size_t resource_alignment(struct resource *res)
1115 {
1116 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1117 	case IORESOURCE_SIZEALIGN:
1118 		return resource_size(res);
1119 	case IORESOURCE_STARTALIGN:
1120 		return res->start;
1121 	default:
1122 		return 0;
1123 	}
1124 }
1125 
1126 /*
1127  * This is compatibility stuff for IO resources.
1128  *
1129  * Note how this, unlike the above, knows about
1130  * the IO flag meanings (busy etc).
1131  *
1132  * request_region creates a new busy region.
1133  *
1134  * release_region releases a matching busy region.
1135  */
1136 
1137 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1138 
1139 /**
1140  * __request_region - create a new busy resource region
1141  * @parent: parent resource descriptor
1142  * @start: resource start address
1143  * @n: resource region size
1144  * @name: reserving caller's ID string
1145  * @flags: IO resource flags
1146  */
1147 struct resource * __request_region(struct resource *parent,
1148 				   resource_size_t start, resource_size_t n,
1149 				   const char *name, int flags)
1150 {
1151 	DECLARE_WAITQUEUE(wait, current);
1152 	struct resource *res = alloc_resource(GFP_KERNEL);
1153 
1154 	if (!res)
1155 		return NULL;
1156 
1157 	res->name = name;
1158 	res->start = start;
1159 	res->end = start + n - 1;
1160 
1161 	write_lock(&resource_lock);
1162 
1163 	for (;;) {
1164 		struct resource *conflict;
1165 
1166 		res->flags = resource_type(parent) | resource_ext_type(parent);
1167 		res->flags |= IORESOURCE_BUSY | flags;
1168 		res->desc = parent->desc;
1169 
1170 		conflict = __request_resource(parent, res);
1171 		if (!conflict)
1172 			break;
1173 		if (conflict != parent) {
1174 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1175 				parent = conflict;
1176 				continue;
1177 			}
1178 		}
1179 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1180 			add_wait_queue(&muxed_resource_wait, &wait);
1181 			write_unlock(&resource_lock);
1182 			set_current_state(TASK_UNINTERRUPTIBLE);
1183 			schedule();
1184 			remove_wait_queue(&muxed_resource_wait, &wait);
1185 			write_lock(&resource_lock);
1186 			continue;
1187 		}
1188 		/* Uhhuh, that didn't work out.. */
1189 		free_resource(res);
1190 		res = NULL;
1191 		break;
1192 	}
1193 	write_unlock(&resource_lock);
1194 	return res;
1195 }
1196 EXPORT_SYMBOL(__request_region);
1197 
1198 /**
1199  * __release_region - release a previously reserved resource region
1200  * @parent: parent resource descriptor
1201  * @start: resource start address
1202  * @n: resource region size
1203  *
1204  * The described resource region must match a currently busy region.
1205  */
1206 void __release_region(struct resource *parent, resource_size_t start,
1207 			resource_size_t n)
1208 {
1209 	struct resource **p;
1210 	resource_size_t end;
1211 
1212 	p = &parent->child;
1213 	end = start + n - 1;
1214 
1215 	write_lock(&resource_lock);
1216 
1217 	for (;;) {
1218 		struct resource *res = *p;
1219 
1220 		if (!res)
1221 			break;
1222 		if (res->start <= start && res->end >= end) {
1223 			if (!(res->flags & IORESOURCE_BUSY)) {
1224 				p = &res->child;
1225 				continue;
1226 			}
1227 			if (res->start != start || res->end != end)
1228 				break;
1229 			*p = res->sibling;
1230 			write_unlock(&resource_lock);
1231 			if (res->flags & IORESOURCE_MUXED)
1232 				wake_up(&muxed_resource_wait);
1233 			free_resource(res);
1234 			return;
1235 		}
1236 		p = &res->sibling;
1237 	}
1238 
1239 	write_unlock(&resource_lock);
1240 
1241 	printk(KERN_WARNING "Trying to free nonexistent resource "
1242 		"<%016llx-%016llx>\n", (unsigned long long)start,
1243 		(unsigned long long)end);
1244 }
1245 EXPORT_SYMBOL(__release_region);
1246 
1247 #ifdef CONFIG_MEMORY_HOTREMOVE
1248 /**
1249  * release_mem_region_adjustable - release a previously reserved memory region
1250  * @parent: parent resource descriptor
1251  * @start: resource start address
1252  * @size: resource region size
1253  *
1254  * This interface is intended for memory hot-delete.  The requested region
1255  * is released from a currently busy memory resource.  The requested region
1256  * must either match exactly or fit into a single busy resource entry.  In
1257  * the latter case, the remaining resource is adjusted accordingly.
1258  * Existing children of the busy memory resource must be immutable in the
1259  * request.
1260  *
1261  * Note:
1262  * - Additional release conditions, such as overlapping region, can be
1263  *   supported after they are confirmed as valid cases.
1264  * - When a busy memory resource gets split into two entries, the code
1265  *   assumes that all children remain in the lower address entry for
1266  *   simplicity.  Enhance this logic when necessary.
1267  */
1268 int release_mem_region_adjustable(struct resource *parent,
1269 			resource_size_t start, resource_size_t size)
1270 {
1271 	struct resource **p;
1272 	struct resource *res;
1273 	struct resource *new_res;
1274 	resource_size_t end;
1275 	int ret = -EINVAL;
1276 
1277 	end = start + size - 1;
1278 	if ((start < parent->start) || (end > parent->end))
1279 		return ret;
1280 
1281 	/* The alloc_resource() result gets checked later */
1282 	new_res = alloc_resource(GFP_KERNEL);
1283 
1284 	p = &parent->child;
1285 	write_lock(&resource_lock);
1286 
1287 	while ((res = *p)) {
1288 		if (res->start >= end)
1289 			break;
1290 
1291 		/* look for the next resource if it does not fit into */
1292 		if (res->start > start || res->end < end) {
1293 			p = &res->sibling;
1294 			continue;
1295 		}
1296 
1297 		if (!(res->flags & IORESOURCE_MEM))
1298 			break;
1299 
1300 		if (!(res->flags & IORESOURCE_BUSY)) {
1301 			p = &res->child;
1302 			continue;
1303 		}
1304 
1305 		/* found the target resource; let's adjust accordingly */
1306 		if (res->start == start && res->end == end) {
1307 			/* free the whole entry */
1308 			*p = res->sibling;
1309 			free_resource(res);
1310 			ret = 0;
1311 		} else if (res->start == start && res->end != end) {
1312 			/* adjust the start */
1313 			ret = __adjust_resource(res, end + 1,
1314 						res->end - end);
1315 		} else if (res->start != start && res->end == end) {
1316 			/* adjust the end */
1317 			ret = __adjust_resource(res, res->start,
1318 						start - res->start);
1319 		} else {
1320 			/* split into two entries */
1321 			if (!new_res) {
1322 				ret = -ENOMEM;
1323 				break;
1324 			}
1325 			new_res->name = res->name;
1326 			new_res->start = end + 1;
1327 			new_res->end = res->end;
1328 			new_res->flags = res->flags;
1329 			new_res->desc = res->desc;
1330 			new_res->parent = res->parent;
1331 			new_res->sibling = res->sibling;
1332 			new_res->child = NULL;
1333 
1334 			ret = __adjust_resource(res, res->start,
1335 						start - res->start);
1336 			if (ret)
1337 				break;
1338 			res->sibling = new_res;
1339 			new_res = NULL;
1340 		}
1341 
1342 		break;
1343 	}
1344 
1345 	write_unlock(&resource_lock);
1346 	free_resource(new_res);
1347 	return ret;
1348 }
1349 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1350 
1351 /*
1352  * Managed region resource
1353  */
1354 static void devm_resource_release(struct device *dev, void *ptr)
1355 {
1356 	struct resource **r = ptr;
1357 
1358 	release_resource(*r);
1359 }
1360 
1361 /**
1362  * devm_request_resource() - request and reserve an I/O or memory resource
1363  * @dev: device for which to request the resource
1364  * @root: root of the resource tree from which to request the resource
1365  * @new: descriptor of the resource to request
1366  *
1367  * This is a device-managed version of request_resource(). There is usually
1368  * no need to release resources requested by this function explicitly since
1369  * that will be taken care of when the device is unbound from its driver.
1370  * If for some reason the resource needs to be released explicitly, because
1371  * of ordering issues for example, drivers must call devm_release_resource()
1372  * rather than the regular release_resource().
1373  *
1374  * When a conflict is detected between any existing resources and the newly
1375  * requested resource, an error message will be printed.
1376  *
1377  * Returns 0 on success or a negative error code on failure.
1378  */
1379 int devm_request_resource(struct device *dev, struct resource *root,
1380 			  struct resource *new)
1381 {
1382 	struct resource *conflict, **ptr;
1383 
1384 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1385 	if (!ptr)
1386 		return -ENOMEM;
1387 
1388 	*ptr = new;
1389 
1390 	conflict = request_resource_conflict(root, new);
1391 	if (conflict) {
1392 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1393 			new, conflict->name, conflict);
1394 		devres_free(ptr);
1395 		return -EBUSY;
1396 	}
1397 
1398 	devres_add(dev, ptr);
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL(devm_request_resource);
1402 
1403 static int devm_resource_match(struct device *dev, void *res, void *data)
1404 {
1405 	struct resource **ptr = res;
1406 
1407 	return *ptr == data;
1408 }
1409 
1410 /**
1411  * devm_release_resource() - release a previously requested resource
1412  * @dev: device for which to release the resource
1413  * @new: descriptor of the resource to release
1414  *
1415  * Releases a resource previously requested using devm_request_resource().
1416  */
1417 void devm_release_resource(struct device *dev, struct resource *new)
1418 {
1419 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1420 			       new));
1421 }
1422 EXPORT_SYMBOL(devm_release_resource);
1423 
1424 struct region_devres {
1425 	struct resource *parent;
1426 	resource_size_t start;
1427 	resource_size_t n;
1428 };
1429 
1430 static void devm_region_release(struct device *dev, void *res)
1431 {
1432 	struct region_devres *this = res;
1433 
1434 	__release_region(this->parent, this->start, this->n);
1435 }
1436 
1437 static int devm_region_match(struct device *dev, void *res, void *match_data)
1438 {
1439 	struct region_devres *this = res, *match = match_data;
1440 
1441 	return this->parent == match->parent &&
1442 		this->start == match->start && this->n == match->n;
1443 }
1444 
1445 struct resource * __devm_request_region(struct device *dev,
1446 				struct resource *parent, resource_size_t start,
1447 				resource_size_t n, const char *name)
1448 {
1449 	struct region_devres *dr = NULL;
1450 	struct resource *res;
1451 
1452 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1453 			  GFP_KERNEL);
1454 	if (!dr)
1455 		return NULL;
1456 
1457 	dr->parent = parent;
1458 	dr->start = start;
1459 	dr->n = n;
1460 
1461 	res = __request_region(parent, start, n, name, 0);
1462 	if (res)
1463 		devres_add(dev, dr);
1464 	else
1465 		devres_free(dr);
1466 
1467 	return res;
1468 }
1469 EXPORT_SYMBOL(__devm_request_region);
1470 
1471 void __devm_release_region(struct device *dev, struct resource *parent,
1472 			   resource_size_t start, resource_size_t n)
1473 {
1474 	struct region_devres match_data = { parent, start, n };
1475 
1476 	__release_region(parent, start, n);
1477 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1478 			       &match_data));
1479 }
1480 EXPORT_SYMBOL(__devm_release_region);
1481 
1482 /*
1483  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1484  */
1485 #define MAXRESERVE 4
1486 static int __init reserve_setup(char *str)
1487 {
1488 	static int reserved;
1489 	static struct resource reserve[MAXRESERVE];
1490 
1491 	for (;;) {
1492 		unsigned int io_start, io_num;
1493 		int x = reserved;
1494 		struct resource *parent;
1495 
1496 		if (get_option(&str, &io_start) != 2)
1497 			break;
1498 		if (get_option(&str, &io_num) == 0)
1499 			break;
1500 		if (x < MAXRESERVE) {
1501 			struct resource *res = reserve + x;
1502 
1503 			/*
1504 			 * If the region starts below 0x10000, we assume it's
1505 			 * I/O port space; otherwise assume it's memory.
1506 			 */
1507 			if (io_start < 0x10000) {
1508 				res->flags = IORESOURCE_IO;
1509 				parent = &ioport_resource;
1510 			} else {
1511 				res->flags = IORESOURCE_MEM;
1512 				parent = &iomem_resource;
1513 			}
1514 			res->name = "reserved";
1515 			res->start = io_start;
1516 			res->end = io_start + io_num - 1;
1517 			res->flags |= IORESOURCE_BUSY;
1518 			res->desc = IORES_DESC_NONE;
1519 			res->child = NULL;
1520 			if (request_resource(parent, res) == 0)
1521 				reserved = x+1;
1522 		}
1523 	}
1524 	return 1;
1525 }
1526 __setup("reserve=", reserve_setup);
1527 
1528 /*
1529  * Check if the requested addr and size spans more than any slot in the
1530  * iomem resource tree.
1531  */
1532 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1533 {
1534 	struct resource *p = &iomem_resource;
1535 	int err = 0;
1536 	loff_t l;
1537 
1538 	read_lock(&resource_lock);
1539 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1540 		/*
1541 		 * We can probably skip the resources without
1542 		 * IORESOURCE_IO attribute?
1543 		 */
1544 		if (p->start >= addr + size)
1545 			continue;
1546 		if (p->end < addr)
1547 			continue;
1548 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1549 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1550 			continue;
1551 		/*
1552 		 * if a resource is "BUSY", it's not a hardware resource
1553 		 * but a driver mapping of such a resource; we don't want
1554 		 * to warn for those; some drivers legitimately map only
1555 		 * partial hardware resources. (example: vesafb)
1556 		 */
1557 		if (p->flags & IORESOURCE_BUSY)
1558 			continue;
1559 
1560 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1561 		       (unsigned long long)addr,
1562 		       (unsigned long long)(addr + size - 1),
1563 		       p->name, p);
1564 		err = -1;
1565 		break;
1566 	}
1567 	read_unlock(&resource_lock);
1568 
1569 	return err;
1570 }
1571 
1572 #ifdef CONFIG_STRICT_DEVMEM
1573 static int strict_iomem_checks = 1;
1574 #else
1575 static int strict_iomem_checks;
1576 #endif
1577 
1578 /*
1579  * check if an address is reserved in the iomem resource tree
1580  * returns true if reserved, false if not reserved.
1581  */
1582 bool iomem_is_exclusive(u64 addr)
1583 {
1584 	struct resource *p = &iomem_resource;
1585 	bool err = false;
1586 	loff_t l;
1587 	int size = PAGE_SIZE;
1588 
1589 	if (!strict_iomem_checks)
1590 		return false;
1591 
1592 	addr = addr & PAGE_MASK;
1593 
1594 	read_lock(&resource_lock);
1595 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1596 		/*
1597 		 * We can probably skip the resources without
1598 		 * IORESOURCE_IO attribute?
1599 		 */
1600 		if (p->start >= addr + size)
1601 			break;
1602 		if (p->end < addr)
1603 			continue;
1604 		/*
1605 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1606 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1607 		 * resource is busy.
1608 		 */
1609 		if ((p->flags & IORESOURCE_BUSY) == 0)
1610 			continue;
1611 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1612 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1613 			err = true;
1614 			break;
1615 		}
1616 	}
1617 	read_unlock(&resource_lock);
1618 
1619 	return err;
1620 }
1621 
1622 struct resource_entry *resource_list_create_entry(struct resource *res,
1623 						  size_t extra_size)
1624 {
1625 	struct resource_entry *entry;
1626 
1627 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1628 	if (entry) {
1629 		INIT_LIST_HEAD(&entry->node);
1630 		entry->res = res ? res : &entry->__res;
1631 	}
1632 
1633 	return entry;
1634 }
1635 EXPORT_SYMBOL(resource_list_create_entry);
1636 
1637 void resource_list_free(struct list_head *head)
1638 {
1639 	struct resource_entry *entry, *tmp;
1640 
1641 	list_for_each_entry_safe(entry, tmp, head, node)
1642 		resource_list_destroy_entry(entry);
1643 }
1644 EXPORT_SYMBOL(resource_list_free);
1645 
1646 static int __init strict_iomem(char *str)
1647 {
1648 	if (strstr(str, "relaxed"))
1649 		strict_iomem_checks = 0;
1650 	if (strstr(str, "strict"))
1651 		strict_iomem_checks = 1;
1652 	return 1;
1653 }
1654 
1655 __setup("iomem=", strict_iomem);
1656