xref: /openbmc/linux/kernel/resource.c (revision 3a0d89d3)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <asm/io.h>
26 
27 
28 struct resource ioport_resource = {
29 	.name	= "PCI IO",
30 	.start	= 0,
31 	.end	= IO_SPACE_LIMIT,
32 	.flags	= IORESOURCE_IO,
33 };
34 EXPORT_SYMBOL(ioport_resource);
35 
36 struct resource iomem_resource = {
37 	.name	= "PCI mem",
38 	.start	= 0,
39 	.end	= -1,
40 	.flags	= IORESOURCE_MEM,
41 };
42 EXPORT_SYMBOL(iomem_resource);
43 
44 /* constraints to be met while allocating resources */
45 struct resource_constraint {
46 	resource_size_t min, max, align;
47 	resource_size_t (*alignf)(void *, const struct resource *,
48 			resource_size_t, resource_size_t);
49 	void *alignf_data;
50 };
51 
52 static DEFINE_RWLOCK(resource_lock);
53 
54 /*
55  * For memory hotplug, there is no way to free resource entries allocated
56  * by boot mem after the system is up. So for reusing the resource entry
57  * we need to remember the resource.
58  */
59 static struct resource *bootmem_resource_free;
60 static DEFINE_SPINLOCK(bootmem_resource_lock);
61 
62 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
63 {
64 	struct resource *p = v;
65 	(*pos)++;
66 	if (p->child)
67 		return p->child;
68 	while (!p->sibling && p->parent)
69 		p = p->parent;
70 	return p->sibling;
71 }
72 
73 #ifdef CONFIG_PROC_FS
74 
75 enum { MAX_IORES_LEVEL = 5 };
76 
77 static void *r_start(struct seq_file *m, loff_t *pos)
78 	__acquires(resource_lock)
79 {
80 	struct resource *p = m->private;
81 	loff_t l = 0;
82 	read_lock(&resource_lock);
83 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
84 		;
85 	return p;
86 }
87 
88 static void r_stop(struct seq_file *m, void *v)
89 	__releases(resource_lock)
90 {
91 	read_unlock(&resource_lock);
92 }
93 
94 static int r_show(struct seq_file *m, void *v)
95 {
96 	struct resource *root = m->private;
97 	struct resource *r = v, *p;
98 	int width = root->end < 0x10000 ? 4 : 8;
99 	int depth;
100 
101 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
102 		if (p->parent == root)
103 			break;
104 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
105 			depth * 2, "",
106 			width, (unsigned long long) r->start,
107 			width, (unsigned long long) r->end,
108 			r->name ? r->name : "<BAD>");
109 	return 0;
110 }
111 
112 static const struct seq_operations resource_op = {
113 	.start	= r_start,
114 	.next	= r_next,
115 	.stop	= r_stop,
116 	.show	= r_show,
117 };
118 
119 static int ioports_open(struct inode *inode, struct file *file)
120 {
121 	int res = seq_open(file, &resource_op);
122 	if (!res) {
123 		struct seq_file *m = file->private_data;
124 		m->private = &ioport_resource;
125 	}
126 	return res;
127 }
128 
129 static int iomem_open(struct inode *inode, struct file *file)
130 {
131 	int res = seq_open(file, &resource_op);
132 	if (!res) {
133 		struct seq_file *m = file->private_data;
134 		m->private = &iomem_resource;
135 	}
136 	return res;
137 }
138 
139 static const struct file_operations proc_ioports_operations = {
140 	.open		= ioports_open,
141 	.read		= seq_read,
142 	.llseek		= seq_lseek,
143 	.release	= seq_release,
144 };
145 
146 static const struct file_operations proc_iomem_operations = {
147 	.open		= iomem_open,
148 	.read		= seq_read,
149 	.llseek		= seq_lseek,
150 	.release	= seq_release,
151 };
152 
153 static int __init ioresources_init(void)
154 {
155 	proc_create("ioports", 0, NULL, &proc_ioports_operations);
156 	proc_create("iomem", 0, NULL, &proc_iomem_operations);
157 	return 0;
158 }
159 __initcall(ioresources_init);
160 
161 #endif /* CONFIG_PROC_FS */
162 
163 static void free_resource(struct resource *res)
164 {
165 	if (!res)
166 		return;
167 
168 	if (!PageSlab(virt_to_head_page(res))) {
169 		spin_lock(&bootmem_resource_lock);
170 		res->sibling = bootmem_resource_free;
171 		bootmem_resource_free = res;
172 		spin_unlock(&bootmem_resource_lock);
173 	} else {
174 		kfree(res);
175 	}
176 }
177 
178 static struct resource *alloc_resource(gfp_t flags)
179 {
180 	struct resource *res = NULL;
181 
182 	spin_lock(&bootmem_resource_lock);
183 	if (bootmem_resource_free) {
184 		res = bootmem_resource_free;
185 		bootmem_resource_free = res->sibling;
186 	}
187 	spin_unlock(&bootmem_resource_lock);
188 
189 	if (res)
190 		memset(res, 0, sizeof(struct resource));
191 	else
192 		res = kzalloc(sizeof(struct resource), flags);
193 
194 	return res;
195 }
196 
197 /* Return the conflict entry if you can't request it */
198 static struct resource * __request_resource(struct resource *root, struct resource *new)
199 {
200 	resource_size_t start = new->start;
201 	resource_size_t end = new->end;
202 	struct resource *tmp, **p;
203 
204 	if (end < start)
205 		return root;
206 	if (start < root->start)
207 		return root;
208 	if (end > root->end)
209 		return root;
210 	p = &root->child;
211 	for (;;) {
212 		tmp = *p;
213 		if (!tmp || tmp->start > end) {
214 			new->sibling = tmp;
215 			*p = new;
216 			new->parent = root;
217 			return NULL;
218 		}
219 		p = &tmp->sibling;
220 		if (tmp->end < start)
221 			continue;
222 		return tmp;
223 	}
224 }
225 
226 static int __release_resource(struct resource *old)
227 {
228 	struct resource *tmp, **p;
229 
230 	p = &old->parent->child;
231 	for (;;) {
232 		tmp = *p;
233 		if (!tmp)
234 			break;
235 		if (tmp == old) {
236 			*p = tmp->sibling;
237 			old->parent = NULL;
238 			return 0;
239 		}
240 		p = &tmp->sibling;
241 	}
242 	return -EINVAL;
243 }
244 
245 static void __release_child_resources(struct resource *r)
246 {
247 	struct resource *tmp, *p;
248 	resource_size_t size;
249 
250 	p = r->child;
251 	r->child = NULL;
252 	while (p) {
253 		tmp = p;
254 		p = p->sibling;
255 
256 		tmp->parent = NULL;
257 		tmp->sibling = NULL;
258 		__release_child_resources(tmp);
259 
260 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
261 		/* need to restore size, and keep flags */
262 		size = resource_size(tmp);
263 		tmp->start = 0;
264 		tmp->end = size - 1;
265 	}
266 }
267 
268 void release_child_resources(struct resource *r)
269 {
270 	write_lock(&resource_lock);
271 	__release_child_resources(r);
272 	write_unlock(&resource_lock);
273 }
274 
275 /**
276  * request_resource_conflict - request and reserve an I/O or memory resource
277  * @root: root resource descriptor
278  * @new: resource descriptor desired by caller
279  *
280  * Returns 0 for success, conflict resource on error.
281  */
282 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
283 {
284 	struct resource *conflict;
285 
286 	write_lock(&resource_lock);
287 	conflict = __request_resource(root, new);
288 	write_unlock(&resource_lock);
289 	return conflict;
290 }
291 
292 /**
293  * request_resource - request and reserve an I/O or memory resource
294  * @root: root resource descriptor
295  * @new: resource descriptor desired by caller
296  *
297  * Returns 0 for success, negative error code on error.
298  */
299 int request_resource(struct resource *root, struct resource *new)
300 {
301 	struct resource *conflict;
302 
303 	conflict = request_resource_conflict(root, new);
304 	return conflict ? -EBUSY : 0;
305 }
306 
307 EXPORT_SYMBOL(request_resource);
308 
309 /**
310  * release_resource - release a previously reserved resource
311  * @old: resource pointer
312  */
313 int release_resource(struct resource *old)
314 {
315 	int retval;
316 
317 	write_lock(&resource_lock);
318 	retval = __release_resource(old);
319 	write_unlock(&resource_lock);
320 	return retval;
321 }
322 
323 EXPORT_SYMBOL(release_resource);
324 
325 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
326 /*
327  * Finds the lowest memory reosurce exists within [res->start.res->end)
328  * the caller must specify res->start, res->end, res->flags and "name".
329  * If found, returns 0, res is overwritten, if not found, returns -1.
330  */
331 static int find_next_system_ram(struct resource *res, char *name)
332 {
333 	resource_size_t start, end;
334 	struct resource *p;
335 
336 	BUG_ON(!res);
337 
338 	start = res->start;
339 	end = res->end;
340 	BUG_ON(start >= end);
341 
342 	read_lock(&resource_lock);
343 	for (p = iomem_resource.child; p ; p = p->sibling) {
344 		/* system ram is just marked as IORESOURCE_MEM */
345 		if (p->flags != res->flags)
346 			continue;
347 		if (name && strcmp(p->name, name))
348 			continue;
349 		if (p->start > end) {
350 			p = NULL;
351 			break;
352 		}
353 		if ((p->end >= start) && (p->start < end))
354 			break;
355 	}
356 	read_unlock(&resource_lock);
357 	if (!p)
358 		return -1;
359 	/* copy data */
360 	if (res->start < p->start)
361 		res->start = p->start;
362 	if (res->end > p->end)
363 		res->end = p->end;
364 	return 0;
365 }
366 
367 /*
368  * This function calls callback against all memory range of "System RAM"
369  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
370  * Now, this function is only for "System RAM".
371  */
372 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
373 		void *arg, int (*func)(unsigned long, unsigned long, void *))
374 {
375 	struct resource res;
376 	unsigned long pfn, end_pfn;
377 	u64 orig_end;
378 	int ret = -1;
379 
380 	res.start = (u64) start_pfn << PAGE_SHIFT;
381 	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
382 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
383 	orig_end = res.end;
384 	while ((res.start < res.end) &&
385 		(find_next_system_ram(&res, "System RAM") >= 0)) {
386 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
387 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
388 		if (end_pfn > pfn)
389 			ret = (*func)(pfn, end_pfn - pfn, arg);
390 		if (ret)
391 			break;
392 		res.start = res.end + 1;
393 		res.end = orig_end;
394 	}
395 	return ret;
396 }
397 
398 #endif
399 
400 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
401 {
402 	return 1;
403 }
404 /*
405  * This generic page_is_ram() returns true if specified address is
406  * registered as "System RAM" in iomem_resource list.
407  */
408 int __weak page_is_ram(unsigned long pfn)
409 {
410 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
411 }
412 EXPORT_SYMBOL_GPL(page_is_ram);
413 
414 void __weak arch_remove_reservations(struct resource *avail)
415 {
416 }
417 
418 static resource_size_t simple_align_resource(void *data,
419 					     const struct resource *avail,
420 					     resource_size_t size,
421 					     resource_size_t align)
422 {
423 	return avail->start;
424 }
425 
426 static void resource_clip(struct resource *res, resource_size_t min,
427 			  resource_size_t max)
428 {
429 	if (res->start < min)
430 		res->start = min;
431 	if (res->end > max)
432 		res->end = max;
433 }
434 
435 /*
436  * Find empty slot in the resource tree with the given range and
437  * alignment constraints
438  */
439 static int __find_resource(struct resource *root, struct resource *old,
440 			 struct resource *new,
441 			 resource_size_t  size,
442 			 struct resource_constraint *constraint)
443 {
444 	struct resource *this = root->child;
445 	struct resource tmp = *new, avail, alloc;
446 
447 	tmp.start = root->start;
448 	/*
449 	 * Skip past an allocated resource that starts at 0, since the assignment
450 	 * of this->start - 1 to tmp->end below would cause an underflow.
451 	 */
452 	if (this && this->start == root->start) {
453 		tmp.start = (this == old) ? old->start : this->end + 1;
454 		this = this->sibling;
455 	}
456 	for(;;) {
457 		if (this)
458 			tmp.end = (this == old) ?  this->end : this->start - 1;
459 		else
460 			tmp.end = root->end;
461 
462 		if (tmp.end < tmp.start)
463 			goto next;
464 
465 		resource_clip(&tmp, constraint->min, constraint->max);
466 		arch_remove_reservations(&tmp);
467 
468 		/* Check for overflow after ALIGN() */
469 		avail.start = ALIGN(tmp.start, constraint->align);
470 		avail.end = tmp.end;
471 		avail.flags = new->flags & ~IORESOURCE_UNSET;
472 		if (avail.start >= tmp.start) {
473 			alloc.flags = avail.flags;
474 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
475 					size, constraint->align);
476 			alloc.end = alloc.start + size - 1;
477 			if (resource_contains(&avail, &alloc)) {
478 				new->start = alloc.start;
479 				new->end = alloc.end;
480 				return 0;
481 			}
482 		}
483 
484 next:		if (!this || this->end == root->end)
485 			break;
486 
487 		if (this != old)
488 			tmp.start = this->end + 1;
489 		this = this->sibling;
490 	}
491 	return -EBUSY;
492 }
493 
494 /*
495  * Find empty slot in the resource tree given range and alignment.
496  */
497 static int find_resource(struct resource *root, struct resource *new,
498 			resource_size_t size,
499 			struct resource_constraint  *constraint)
500 {
501 	return  __find_resource(root, NULL, new, size, constraint);
502 }
503 
504 /**
505  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
506  *	The resource will be relocated if the new size cannot be reallocated in the
507  *	current location.
508  *
509  * @root: root resource descriptor
510  * @old:  resource descriptor desired by caller
511  * @newsize: new size of the resource descriptor
512  * @constraint: the size and alignment constraints to be met.
513  */
514 static int reallocate_resource(struct resource *root, struct resource *old,
515 			resource_size_t newsize,
516 			struct resource_constraint  *constraint)
517 {
518 	int err=0;
519 	struct resource new = *old;
520 	struct resource *conflict;
521 
522 	write_lock(&resource_lock);
523 
524 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
525 		goto out;
526 
527 	if (resource_contains(&new, old)) {
528 		old->start = new.start;
529 		old->end = new.end;
530 		goto out;
531 	}
532 
533 	if (old->child) {
534 		err = -EBUSY;
535 		goto out;
536 	}
537 
538 	if (resource_contains(old, &new)) {
539 		old->start = new.start;
540 		old->end = new.end;
541 	} else {
542 		__release_resource(old);
543 		*old = new;
544 		conflict = __request_resource(root, old);
545 		BUG_ON(conflict);
546 	}
547 out:
548 	write_unlock(&resource_lock);
549 	return err;
550 }
551 
552 
553 /**
554  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
555  * 	The resource will be reallocated with a new size if it was already allocated
556  * @root: root resource descriptor
557  * @new: resource descriptor desired by caller
558  * @size: requested resource region size
559  * @min: minimum boundary to allocate
560  * @max: maximum boundary to allocate
561  * @align: alignment requested, in bytes
562  * @alignf: alignment function, optional, called if not NULL
563  * @alignf_data: arbitrary data to pass to the @alignf function
564  */
565 int allocate_resource(struct resource *root, struct resource *new,
566 		      resource_size_t size, resource_size_t min,
567 		      resource_size_t max, resource_size_t align,
568 		      resource_size_t (*alignf)(void *,
569 						const struct resource *,
570 						resource_size_t,
571 						resource_size_t),
572 		      void *alignf_data)
573 {
574 	int err;
575 	struct resource_constraint constraint;
576 
577 	if (!alignf)
578 		alignf = simple_align_resource;
579 
580 	constraint.min = min;
581 	constraint.max = max;
582 	constraint.align = align;
583 	constraint.alignf = alignf;
584 	constraint.alignf_data = alignf_data;
585 
586 	if ( new->parent ) {
587 		/* resource is already allocated, try reallocating with
588 		   the new constraints */
589 		return reallocate_resource(root, new, size, &constraint);
590 	}
591 
592 	write_lock(&resource_lock);
593 	err = find_resource(root, new, size, &constraint);
594 	if (err >= 0 && __request_resource(root, new))
595 		err = -EBUSY;
596 	write_unlock(&resource_lock);
597 	return err;
598 }
599 
600 EXPORT_SYMBOL(allocate_resource);
601 
602 /**
603  * lookup_resource - find an existing resource by a resource start address
604  * @root: root resource descriptor
605  * @start: resource start address
606  *
607  * Returns a pointer to the resource if found, NULL otherwise
608  */
609 struct resource *lookup_resource(struct resource *root, resource_size_t start)
610 {
611 	struct resource *res;
612 
613 	read_lock(&resource_lock);
614 	for (res = root->child; res; res = res->sibling) {
615 		if (res->start == start)
616 			break;
617 	}
618 	read_unlock(&resource_lock);
619 
620 	return res;
621 }
622 
623 /*
624  * Insert a resource into the resource tree. If successful, return NULL,
625  * otherwise return the conflicting resource (compare to __request_resource())
626  */
627 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
628 {
629 	struct resource *first, *next;
630 
631 	for (;; parent = first) {
632 		first = __request_resource(parent, new);
633 		if (!first)
634 			return first;
635 
636 		if (first == parent)
637 			return first;
638 		if (WARN_ON(first == new))	/* duplicated insertion */
639 			return first;
640 
641 		if ((first->start > new->start) || (first->end < new->end))
642 			break;
643 		if ((first->start == new->start) && (first->end == new->end))
644 			break;
645 	}
646 
647 	for (next = first; ; next = next->sibling) {
648 		/* Partial overlap? Bad, and unfixable */
649 		if (next->start < new->start || next->end > new->end)
650 			return next;
651 		if (!next->sibling)
652 			break;
653 		if (next->sibling->start > new->end)
654 			break;
655 	}
656 
657 	new->parent = parent;
658 	new->sibling = next->sibling;
659 	new->child = first;
660 
661 	next->sibling = NULL;
662 	for (next = first; next; next = next->sibling)
663 		next->parent = new;
664 
665 	if (parent->child == first) {
666 		parent->child = new;
667 	} else {
668 		next = parent->child;
669 		while (next->sibling != first)
670 			next = next->sibling;
671 		next->sibling = new;
672 	}
673 	return NULL;
674 }
675 
676 /**
677  * insert_resource_conflict - Inserts resource in the resource tree
678  * @parent: parent of the new resource
679  * @new: new resource to insert
680  *
681  * Returns 0 on success, conflict resource if the resource can't be inserted.
682  *
683  * This function is equivalent to request_resource_conflict when no conflict
684  * happens. If a conflict happens, and the conflicting resources
685  * entirely fit within the range of the new resource, then the new
686  * resource is inserted and the conflicting resources become children of
687  * the new resource.
688  */
689 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
690 {
691 	struct resource *conflict;
692 
693 	write_lock(&resource_lock);
694 	conflict = __insert_resource(parent, new);
695 	write_unlock(&resource_lock);
696 	return conflict;
697 }
698 
699 /**
700  * insert_resource - Inserts a resource in the resource tree
701  * @parent: parent of the new resource
702  * @new: new resource to insert
703  *
704  * Returns 0 on success, -EBUSY if the resource can't be inserted.
705  */
706 int insert_resource(struct resource *parent, struct resource *new)
707 {
708 	struct resource *conflict;
709 
710 	conflict = insert_resource_conflict(parent, new);
711 	return conflict ? -EBUSY : 0;
712 }
713 
714 /**
715  * insert_resource_expand_to_fit - Insert a resource into the resource tree
716  * @root: root resource descriptor
717  * @new: new resource to insert
718  *
719  * Insert a resource into the resource tree, possibly expanding it in order
720  * to make it encompass any conflicting resources.
721  */
722 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
723 {
724 	if (new->parent)
725 		return;
726 
727 	write_lock(&resource_lock);
728 	for (;;) {
729 		struct resource *conflict;
730 
731 		conflict = __insert_resource(root, new);
732 		if (!conflict)
733 			break;
734 		if (conflict == root)
735 			break;
736 
737 		/* Ok, expand resource to cover the conflict, then try again .. */
738 		if (conflict->start < new->start)
739 			new->start = conflict->start;
740 		if (conflict->end > new->end)
741 			new->end = conflict->end;
742 
743 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
744 	}
745 	write_unlock(&resource_lock);
746 }
747 
748 static int __adjust_resource(struct resource *res, resource_size_t start,
749 				resource_size_t size)
750 {
751 	struct resource *tmp, *parent = res->parent;
752 	resource_size_t end = start + size - 1;
753 	int result = -EBUSY;
754 
755 	if (!parent)
756 		goto skip;
757 
758 	if ((start < parent->start) || (end > parent->end))
759 		goto out;
760 
761 	if (res->sibling && (res->sibling->start <= end))
762 		goto out;
763 
764 	tmp = parent->child;
765 	if (tmp != res) {
766 		while (tmp->sibling != res)
767 			tmp = tmp->sibling;
768 		if (start <= tmp->end)
769 			goto out;
770 	}
771 
772 skip:
773 	for (tmp = res->child; tmp; tmp = tmp->sibling)
774 		if ((tmp->start < start) || (tmp->end > end))
775 			goto out;
776 
777 	res->start = start;
778 	res->end = end;
779 	result = 0;
780 
781  out:
782 	return result;
783 }
784 
785 /**
786  * adjust_resource - modify a resource's start and size
787  * @res: resource to modify
788  * @start: new start value
789  * @size: new size
790  *
791  * Given an existing resource, change its start and size to match the
792  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
793  * Existing children of the resource are assumed to be immutable.
794  */
795 int adjust_resource(struct resource *res, resource_size_t start,
796 			resource_size_t size)
797 {
798 	int result;
799 
800 	write_lock(&resource_lock);
801 	result = __adjust_resource(res, start, size);
802 	write_unlock(&resource_lock);
803 	return result;
804 }
805 EXPORT_SYMBOL(adjust_resource);
806 
807 static void __init __reserve_region_with_split(struct resource *root,
808 		resource_size_t start, resource_size_t end,
809 		const char *name)
810 {
811 	struct resource *parent = root;
812 	struct resource *conflict;
813 	struct resource *res = alloc_resource(GFP_ATOMIC);
814 	struct resource *next_res = NULL;
815 
816 	if (!res)
817 		return;
818 
819 	res->name = name;
820 	res->start = start;
821 	res->end = end;
822 	res->flags = IORESOURCE_BUSY;
823 
824 	while (1) {
825 
826 		conflict = __request_resource(parent, res);
827 		if (!conflict) {
828 			if (!next_res)
829 				break;
830 			res = next_res;
831 			next_res = NULL;
832 			continue;
833 		}
834 
835 		/* conflict covered whole area */
836 		if (conflict->start <= res->start &&
837 				conflict->end >= res->end) {
838 			free_resource(res);
839 			WARN_ON(next_res);
840 			break;
841 		}
842 
843 		/* failed, split and try again */
844 		if (conflict->start > res->start) {
845 			end = res->end;
846 			res->end = conflict->start - 1;
847 			if (conflict->end < end) {
848 				next_res = alloc_resource(GFP_ATOMIC);
849 				if (!next_res) {
850 					free_resource(res);
851 					break;
852 				}
853 				next_res->name = name;
854 				next_res->start = conflict->end + 1;
855 				next_res->end = end;
856 				next_res->flags = IORESOURCE_BUSY;
857 			}
858 		} else {
859 			res->start = conflict->end + 1;
860 		}
861 	}
862 
863 }
864 
865 void __init reserve_region_with_split(struct resource *root,
866 		resource_size_t start, resource_size_t end,
867 		const char *name)
868 {
869 	int abort = 0;
870 
871 	write_lock(&resource_lock);
872 	if (root->start > start || root->end < end) {
873 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
874 		       (unsigned long long)start, (unsigned long long)end,
875 		       root);
876 		if (start > root->end || end < root->start)
877 			abort = 1;
878 		else {
879 			if (end > root->end)
880 				end = root->end;
881 			if (start < root->start)
882 				start = root->start;
883 			pr_err("fixing request to [0x%llx-0x%llx]\n",
884 			       (unsigned long long)start,
885 			       (unsigned long long)end);
886 		}
887 		dump_stack();
888 	}
889 	if (!abort)
890 		__reserve_region_with_split(root, start, end, name);
891 	write_unlock(&resource_lock);
892 }
893 
894 /**
895  * resource_alignment - calculate resource's alignment
896  * @res: resource pointer
897  *
898  * Returns alignment on success, 0 (invalid alignment) on failure.
899  */
900 resource_size_t resource_alignment(struct resource *res)
901 {
902 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
903 	case IORESOURCE_SIZEALIGN:
904 		return resource_size(res);
905 	case IORESOURCE_STARTALIGN:
906 		return res->start;
907 	default:
908 		return 0;
909 	}
910 }
911 
912 /*
913  * This is compatibility stuff for IO resources.
914  *
915  * Note how this, unlike the above, knows about
916  * the IO flag meanings (busy etc).
917  *
918  * request_region creates a new busy region.
919  *
920  * check_region returns non-zero if the area is already busy.
921  *
922  * release_region releases a matching busy region.
923  */
924 
925 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
926 
927 /**
928  * __request_region - create a new busy resource region
929  * @parent: parent resource descriptor
930  * @start: resource start address
931  * @n: resource region size
932  * @name: reserving caller's ID string
933  * @flags: IO resource flags
934  */
935 struct resource * __request_region(struct resource *parent,
936 				   resource_size_t start, resource_size_t n,
937 				   const char *name, int flags)
938 {
939 	DECLARE_WAITQUEUE(wait, current);
940 	struct resource *res = alloc_resource(GFP_KERNEL);
941 
942 	if (!res)
943 		return NULL;
944 
945 	res->name = name;
946 	res->start = start;
947 	res->end = start + n - 1;
948 	res->flags = resource_type(parent);
949 	res->flags |= IORESOURCE_BUSY | flags;
950 
951 	write_lock(&resource_lock);
952 
953 	for (;;) {
954 		struct resource *conflict;
955 
956 		conflict = __request_resource(parent, res);
957 		if (!conflict)
958 			break;
959 		if (conflict != parent) {
960 			parent = conflict;
961 			if (!(conflict->flags & IORESOURCE_BUSY))
962 				continue;
963 		}
964 		if (conflict->flags & flags & IORESOURCE_MUXED) {
965 			add_wait_queue(&muxed_resource_wait, &wait);
966 			write_unlock(&resource_lock);
967 			set_current_state(TASK_UNINTERRUPTIBLE);
968 			schedule();
969 			remove_wait_queue(&muxed_resource_wait, &wait);
970 			write_lock(&resource_lock);
971 			continue;
972 		}
973 		/* Uhhuh, that didn't work out.. */
974 		free_resource(res);
975 		res = NULL;
976 		break;
977 	}
978 	write_unlock(&resource_lock);
979 	return res;
980 }
981 EXPORT_SYMBOL(__request_region);
982 
983 /**
984  * __check_region - check if a resource region is busy or free
985  * @parent: parent resource descriptor
986  * @start: resource start address
987  * @n: resource region size
988  *
989  * Returns 0 if the region is free at the moment it is checked,
990  * returns %-EBUSY if the region is busy.
991  *
992  * NOTE:
993  * This function is deprecated because its use is racy.
994  * Even if it returns 0, a subsequent call to request_region()
995  * may fail because another driver etc. just allocated the region.
996  * Do NOT use it.  It will be removed from the kernel.
997  */
998 int __check_region(struct resource *parent, resource_size_t start,
999 			resource_size_t n)
1000 {
1001 	struct resource * res;
1002 
1003 	res = __request_region(parent, start, n, "check-region", 0);
1004 	if (!res)
1005 		return -EBUSY;
1006 
1007 	release_resource(res);
1008 	free_resource(res);
1009 	return 0;
1010 }
1011 EXPORT_SYMBOL(__check_region);
1012 
1013 /**
1014  * __release_region - release a previously reserved resource region
1015  * @parent: parent resource descriptor
1016  * @start: resource start address
1017  * @n: resource region size
1018  *
1019  * The described resource region must match a currently busy region.
1020  */
1021 void __release_region(struct resource *parent, resource_size_t start,
1022 			resource_size_t n)
1023 {
1024 	struct resource **p;
1025 	resource_size_t end;
1026 
1027 	p = &parent->child;
1028 	end = start + n - 1;
1029 
1030 	write_lock(&resource_lock);
1031 
1032 	for (;;) {
1033 		struct resource *res = *p;
1034 
1035 		if (!res)
1036 			break;
1037 		if (res->start <= start && res->end >= end) {
1038 			if (!(res->flags & IORESOURCE_BUSY)) {
1039 				p = &res->child;
1040 				continue;
1041 			}
1042 			if (res->start != start || res->end != end)
1043 				break;
1044 			*p = res->sibling;
1045 			write_unlock(&resource_lock);
1046 			if (res->flags & IORESOURCE_MUXED)
1047 				wake_up(&muxed_resource_wait);
1048 			free_resource(res);
1049 			return;
1050 		}
1051 		p = &res->sibling;
1052 	}
1053 
1054 	write_unlock(&resource_lock);
1055 
1056 	printk(KERN_WARNING "Trying to free nonexistent resource "
1057 		"<%016llx-%016llx>\n", (unsigned long long)start,
1058 		(unsigned long long)end);
1059 }
1060 EXPORT_SYMBOL(__release_region);
1061 
1062 #ifdef CONFIG_MEMORY_HOTREMOVE
1063 /**
1064  * release_mem_region_adjustable - release a previously reserved memory region
1065  * @parent: parent resource descriptor
1066  * @start: resource start address
1067  * @size: resource region size
1068  *
1069  * This interface is intended for memory hot-delete.  The requested region
1070  * is released from a currently busy memory resource.  The requested region
1071  * must either match exactly or fit into a single busy resource entry.  In
1072  * the latter case, the remaining resource is adjusted accordingly.
1073  * Existing children of the busy memory resource must be immutable in the
1074  * request.
1075  *
1076  * Note:
1077  * - Additional release conditions, such as overlapping region, can be
1078  *   supported after they are confirmed as valid cases.
1079  * - When a busy memory resource gets split into two entries, the code
1080  *   assumes that all children remain in the lower address entry for
1081  *   simplicity.  Enhance this logic when necessary.
1082  */
1083 int release_mem_region_adjustable(struct resource *parent,
1084 			resource_size_t start, resource_size_t size)
1085 {
1086 	struct resource **p;
1087 	struct resource *res;
1088 	struct resource *new_res;
1089 	resource_size_t end;
1090 	int ret = -EINVAL;
1091 
1092 	end = start + size - 1;
1093 	if ((start < parent->start) || (end > parent->end))
1094 		return ret;
1095 
1096 	/* The alloc_resource() result gets checked later */
1097 	new_res = alloc_resource(GFP_KERNEL);
1098 
1099 	p = &parent->child;
1100 	write_lock(&resource_lock);
1101 
1102 	while ((res = *p)) {
1103 		if (res->start >= end)
1104 			break;
1105 
1106 		/* look for the next resource if it does not fit into */
1107 		if (res->start > start || res->end < end) {
1108 			p = &res->sibling;
1109 			continue;
1110 		}
1111 
1112 		if (!(res->flags & IORESOURCE_MEM))
1113 			break;
1114 
1115 		if (!(res->flags & IORESOURCE_BUSY)) {
1116 			p = &res->child;
1117 			continue;
1118 		}
1119 
1120 		/* found the target resource; let's adjust accordingly */
1121 		if (res->start == start && res->end == end) {
1122 			/* free the whole entry */
1123 			*p = res->sibling;
1124 			free_resource(res);
1125 			ret = 0;
1126 		} else if (res->start == start && res->end != end) {
1127 			/* adjust the start */
1128 			ret = __adjust_resource(res, end + 1,
1129 						res->end - end);
1130 		} else if (res->start != start && res->end == end) {
1131 			/* adjust the end */
1132 			ret = __adjust_resource(res, res->start,
1133 						start - res->start);
1134 		} else {
1135 			/* split into two entries */
1136 			if (!new_res) {
1137 				ret = -ENOMEM;
1138 				break;
1139 			}
1140 			new_res->name = res->name;
1141 			new_res->start = end + 1;
1142 			new_res->end = res->end;
1143 			new_res->flags = res->flags;
1144 			new_res->parent = res->parent;
1145 			new_res->sibling = res->sibling;
1146 			new_res->child = NULL;
1147 
1148 			ret = __adjust_resource(res, res->start,
1149 						start - res->start);
1150 			if (ret)
1151 				break;
1152 			res->sibling = new_res;
1153 			new_res = NULL;
1154 		}
1155 
1156 		break;
1157 	}
1158 
1159 	write_unlock(&resource_lock);
1160 	free_resource(new_res);
1161 	return ret;
1162 }
1163 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1164 
1165 /*
1166  * Managed region resource
1167  */
1168 struct region_devres {
1169 	struct resource *parent;
1170 	resource_size_t start;
1171 	resource_size_t n;
1172 };
1173 
1174 static void devm_region_release(struct device *dev, void *res)
1175 {
1176 	struct region_devres *this = res;
1177 
1178 	__release_region(this->parent, this->start, this->n);
1179 }
1180 
1181 static int devm_region_match(struct device *dev, void *res, void *match_data)
1182 {
1183 	struct region_devres *this = res, *match = match_data;
1184 
1185 	return this->parent == match->parent &&
1186 		this->start == match->start && this->n == match->n;
1187 }
1188 
1189 struct resource * __devm_request_region(struct device *dev,
1190 				struct resource *parent, resource_size_t start,
1191 				resource_size_t n, const char *name)
1192 {
1193 	struct region_devres *dr = NULL;
1194 	struct resource *res;
1195 
1196 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1197 			  GFP_KERNEL);
1198 	if (!dr)
1199 		return NULL;
1200 
1201 	dr->parent = parent;
1202 	dr->start = start;
1203 	dr->n = n;
1204 
1205 	res = __request_region(parent, start, n, name, 0);
1206 	if (res)
1207 		devres_add(dev, dr);
1208 	else
1209 		devres_free(dr);
1210 
1211 	return res;
1212 }
1213 EXPORT_SYMBOL(__devm_request_region);
1214 
1215 void __devm_release_region(struct device *dev, struct resource *parent,
1216 			   resource_size_t start, resource_size_t n)
1217 {
1218 	struct region_devres match_data = { parent, start, n };
1219 
1220 	__release_region(parent, start, n);
1221 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1222 			       &match_data));
1223 }
1224 EXPORT_SYMBOL(__devm_release_region);
1225 
1226 /*
1227  * Called from init/main.c to reserve IO ports.
1228  */
1229 #define MAXRESERVE 4
1230 static int __init reserve_setup(char *str)
1231 {
1232 	static int reserved;
1233 	static struct resource reserve[MAXRESERVE];
1234 
1235 	for (;;) {
1236 		unsigned int io_start, io_num;
1237 		int x = reserved;
1238 
1239 		if (get_option (&str, &io_start) != 2)
1240 			break;
1241 		if (get_option (&str, &io_num)   == 0)
1242 			break;
1243 		if (x < MAXRESERVE) {
1244 			struct resource *res = reserve + x;
1245 			res->name = "reserved";
1246 			res->start = io_start;
1247 			res->end = io_start + io_num - 1;
1248 			res->flags = IORESOURCE_BUSY;
1249 			res->child = NULL;
1250 			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1251 				reserved = x+1;
1252 		}
1253 	}
1254 	return 1;
1255 }
1256 
1257 __setup("reserve=", reserve_setup);
1258 
1259 /*
1260  * Check if the requested addr and size spans more than any slot in the
1261  * iomem resource tree.
1262  */
1263 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1264 {
1265 	struct resource *p = &iomem_resource;
1266 	int err = 0;
1267 	loff_t l;
1268 
1269 	read_lock(&resource_lock);
1270 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1271 		/*
1272 		 * We can probably skip the resources without
1273 		 * IORESOURCE_IO attribute?
1274 		 */
1275 		if (p->start >= addr + size)
1276 			continue;
1277 		if (p->end < addr)
1278 			continue;
1279 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1280 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1281 			continue;
1282 		/*
1283 		 * if a resource is "BUSY", it's not a hardware resource
1284 		 * but a driver mapping of such a resource; we don't want
1285 		 * to warn for those; some drivers legitimately map only
1286 		 * partial hardware resources. (example: vesafb)
1287 		 */
1288 		if (p->flags & IORESOURCE_BUSY)
1289 			continue;
1290 
1291 		printk(KERN_WARNING "resource map sanity check conflict: "
1292 		       "0x%llx 0x%llx 0x%llx 0x%llx %s\n",
1293 		       (unsigned long long)addr,
1294 		       (unsigned long long)(addr + size - 1),
1295 		       (unsigned long long)p->start,
1296 		       (unsigned long long)p->end,
1297 		       p->name);
1298 		err = -1;
1299 		break;
1300 	}
1301 	read_unlock(&resource_lock);
1302 
1303 	return err;
1304 }
1305 
1306 #ifdef CONFIG_STRICT_DEVMEM
1307 static int strict_iomem_checks = 1;
1308 #else
1309 static int strict_iomem_checks;
1310 #endif
1311 
1312 /*
1313  * check if an address is reserved in the iomem resource tree
1314  * returns 1 if reserved, 0 if not reserved.
1315  */
1316 int iomem_is_exclusive(u64 addr)
1317 {
1318 	struct resource *p = &iomem_resource;
1319 	int err = 0;
1320 	loff_t l;
1321 	int size = PAGE_SIZE;
1322 
1323 	if (!strict_iomem_checks)
1324 		return 0;
1325 
1326 	addr = addr & PAGE_MASK;
1327 
1328 	read_lock(&resource_lock);
1329 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1330 		/*
1331 		 * We can probably skip the resources without
1332 		 * IORESOURCE_IO attribute?
1333 		 */
1334 		if (p->start >= addr + size)
1335 			break;
1336 		if (p->end < addr)
1337 			continue;
1338 		if (p->flags & IORESOURCE_BUSY &&
1339 		     p->flags & IORESOURCE_EXCLUSIVE) {
1340 			err = 1;
1341 			break;
1342 		}
1343 	}
1344 	read_unlock(&resource_lock);
1345 
1346 	return err;
1347 }
1348 
1349 static int __init strict_iomem(char *str)
1350 {
1351 	if (strstr(str, "relaxed"))
1352 		strict_iomem_checks = 0;
1353 	if (strstr(str, "strict"))
1354 		strict_iomem_checks = 1;
1355 	return 1;
1356 }
1357 
1358 __setup("iomem=", strict_iomem);
1359