xref: /openbmc/linux/kernel/resource.c (revision 3932b9ca)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <asm/io.h>
26 
27 
28 struct resource ioport_resource = {
29 	.name	= "PCI IO",
30 	.start	= 0,
31 	.end	= IO_SPACE_LIMIT,
32 	.flags	= IORESOURCE_IO,
33 };
34 EXPORT_SYMBOL(ioport_resource);
35 
36 struct resource iomem_resource = {
37 	.name	= "PCI mem",
38 	.start	= 0,
39 	.end	= -1,
40 	.flags	= IORESOURCE_MEM,
41 };
42 EXPORT_SYMBOL(iomem_resource);
43 
44 /* constraints to be met while allocating resources */
45 struct resource_constraint {
46 	resource_size_t min, max, align;
47 	resource_size_t (*alignf)(void *, const struct resource *,
48 			resource_size_t, resource_size_t);
49 	void *alignf_data;
50 };
51 
52 static DEFINE_RWLOCK(resource_lock);
53 
54 /*
55  * For memory hotplug, there is no way to free resource entries allocated
56  * by boot mem after the system is up. So for reusing the resource entry
57  * we need to remember the resource.
58  */
59 static struct resource *bootmem_resource_free;
60 static DEFINE_SPINLOCK(bootmem_resource_lock);
61 
62 static struct resource *next_resource(struct resource *p, bool sibling_only)
63 {
64 	/* Caller wants to traverse through siblings only */
65 	if (sibling_only)
66 		return p->sibling;
67 
68 	if (p->child)
69 		return p->child;
70 	while (!p->sibling && p->parent)
71 		p = p->parent;
72 	return p->sibling;
73 }
74 
75 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
76 {
77 	struct resource *p = v;
78 	(*pos)++;
79 	return (void *)next_resource(p, false);
80 }
81 
82 #ifdef CONFIG_PROC_FS
83 
84 enum { MAX_IORES_LEVEL = 5 };
85 
86 static void *r_start(struct seq_file *m, loff_t *pos)
87 	__acquires(resource_lock)
88 {
89 	struct resource *p = m->private;
90 	loff_t l = 0;
91 	read_lock(&resource_lock);
92 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
93 		;
94 	return p;
95 }
96 
97 static void r_stop(struct seq_file *m, void *v)
98 	__releases(resource_lock)
99 {
100 	read_unlock(&resource_lock);
101 }
102 
103 static int r_show(struct seq_file *m, void *v)
104 {
105 	struct resource *root = m->private;
106 	struct resource *r = v, *p;
107 	int width = root->end < 0x10000 ? 4 : 8;
108 	int depth;
109 
110 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
111 		if (p->parent == root)
112 			break;
113 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
114 			depth * 2, "",
115 			width, (unsigned long long) r->start,
116 			width, (unsigned long long) r->end,
117 			r->name ? r->name : "<BAD>");
118 	return 0;
119 }
120 
121 static const struct seq_operations resource_op = {
122 	.start	= r_start,
123 	.next	= r_next,
124 	.stop	= r_stop,
125 	.show	= r_show,
126 };
127 
128 static int ioports_open(struct inode *inode, struct file *file)
129 {
130 	int res = seq_open(file, &resource_op);
131 	if (!res) {
132 		struct seq_file *m = file->private_data;
133 		m->private = &ioport_resource;
134 	}
135 	return res;
136 }
137 
138 static int iomem_open(struct inode *inode, struct file *file)
139 {
140 	int res = seq_open(file, &resource_op);
141 	if (!res) {
142 		struct seq_file *m = file->private_data;
143 		m->private = &iomem_resource;
144 	}
145 	return res;
146 }
147 
148 static const struct file_operations proc_ioports_operations = {
149 	.open		= ioports_open,
150 	.read		= seq_read,
151 	.llseek		= seq_lseek,
152 	.release	= seq_release,
153 };
154 
155 static const struct file_operations proc_iomem_operations = {
156 	.open		= iomem_open,
157 	.read		= seq_read,
158 	.llseek		= seq_lseek,
159 	.release	= seq_release,
160 };
161 
162 static int __init ioresources_init(void)
163 {
164 	proc_create("ioports", 0, NULL, &proc_ioports_operations);
165 	proc_create("iomem", 0, NULL, &proc_iomem_operations);
166 	return 0;
167 }
168 __initcall(ioresources_init);
169 
170 #endif /* CONFIG_PROC_FS */
171 
172 static void free_resource(struct resource *res)
173 {
174 	if (!res)
175 		return;
176 
177 	if (!PageSlab(virt_to_head_page(res))) {
178 		spin_lock(&bootmem_resource_lock);
179 		res->sibling = bootmem_resource_free;
180 		bootmem_resource_free = res;
181 		spin_unlock(&bootmem_resource_lock);
182 	} else {
183 		kfree(res);
184 	}
185 }
186 
187 static struct resource *alloc_resource(gfp_t flags)
188 {
189 	struct resource *res = NULL;
190 
191 	spin_lock(&bootmem_resource_lock);
192 	if (bootmem_resource_free) {
193 		res = bootmem_resource_free;
194 		bootmem_resource_free = res->sibling;
195 	}
196 	spin_unlock(&bootmem_resource_lock);
197 
198 	if (res)
199 		memset(res, 0, sizeof(struct resource));
200 	else
201 		res = kzalloc(sizeof(struct resource), flags);
202 
203 	return res;
204 }
205 
206 /* Return the conflict entry if you can't request it */
207 static struct resource * __request_resource(struct resource *root, struct resource *new)
208 {
209 	resource_size_t start = new->start;
210 	resource_size_t end = new->end;
211 	struct resource *tmp, **p;
212 
213 	if (end < start)
214 		return root;
215 	if (start < root->start)
216 		return root;
217 	if (end > root->end)
218 		return root;
219 	p = &root->child;
220 	for (;;) {
221 		tmp = *p;
222 		if (!tmp || tmp->start > end) {
223 			new->sibling = tmp;
224 			*p = new;
225 			new->parent = root;
226 			return NULL;
227 		}
228 		p = &tmp->sibling;
229 		if (tmp->end < start)
230 			continue;
231 		return tmp;
232 	}
233 }
234 
235 static int __release_resource(struct resource *old)
236 {
237 	struct resource *tmp, **p;
238 
239 	p = &old->parent->child;
240 	for (;;) {
241 		tmp = *p;
242 		if (!tmp)
243 			break;
244 		if (tmp == old) {
245 			*p = tmp->sibling;
246 			old->parent = NULL;
247 			return 0;
248 		}
249 		p = &tmp->sibling;
250 	}
251 	return -EINVAL;
252 }
253 
254 static void __release_child_resources(struct resource *r)
255 {
256 	struct resource *tmp, *p;
257 	resource_size_t size;
258 
259 	p = r->child;
260 	r->child = NULL;
261 	while (p) {
262 		tmp = p;
263 		p = p->sibling;
264 
265 		tmp->parent = NULL;
266 		tmp->sibling = NULL;
267 		__release_child_resources(tmp);
268 
269 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
270 		/* need to restore size, and keep flags */
271 		size = resource_size(tmp);
272 		tmp->start = 0;
273 		tmp->end = size - 1;
274 	}
275 }
276 
277 void release_child_resources(struct resource *r)
278 {
279 	write_lock(&resource_lock);
280 	__release_child_resources(r);
281 	write_unlock(&resource_lock);
282 }
283 
284 /**
285  * request_resource_conflict - request and reserve an I/O or memory resource
286  * @root: root resource descriptor
287  * @new: resource descriptor desired by caller
288  *
289  * Returns 0 for success, conflict resource on error.
290  */
291 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
292 {
293 	struct resource *conflict;
294 
295 	write_lock(&resource_lock);
296 	conflict = __request_resource(root, new);
297 	write_unlock(&resource_lock);
298 	return conflict;
299 }
300 
301 /**
302  * request_resource - request and reserve an I/O or memory resource
303  * @root: root resource descriptor
304  * @new: resource descriptor desired by caller
305  *
306  * Returns 0 for success, negative error code on error.
307  */
308 int request_resource(struct resource *root, struct resource *new)
309 {
310 	struct resource *conflict;
311 
312 	conflict = request_resource_conflict(root, new);
313 	return conflict ? -EBUSY : 0;
314 }
315 
316 EXPORT_SYMBOL(request_resource);
317 
318 /**
319  * release_resource - release a previously reserved resource
320  * @old: resource pointer
321  */
322 int release_resource(struct resource *old)
323 {
324 	int retval;
325 
326 	write_lock(&resource_lock);
327 	retval = __release_resource(old);
328 	write_unlock(&resource_lock);
329 	return retval;
330 }
331 
332 EXPORT_SYMBOL(release_resource);
333 
334 /*
335  * Finds the lowest iomem reosurce exists with-in [res->start.res->end)
336  * the caller must specify res->start, res->end, res->flags and "name".
337  * If found, returns 0, res is overwritten, if not found, returns -1.
338  * This walks through whole tree and not just first level children
339  * until and unless first_level_children_only is true.
340  */
341 static int find_next_iomem_res(struct resource *res, char *name,
342 			       bool first_level_children_only)
343 {
344 	resource_size_t start, end;
345 	struct resource *p;
346 	bool sibling_only = false;
347 
348 	BUG_ON(!res);
349 
350 	start = res->start;
351 	end = res->end;
352 	BUG_ON(start >= end);
353 
354 	if (first_level_children_only)
355 		sibling_only = true;
356 
357 	read_lock(&resource_lock);
358 
359 	for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
360 		if (p->flags != res->flags)
361 			continue;
362 		if (name && strcmp(p->name, name))
363 			continue;
364 		if (p->start > end) {
365 			p = NULL;
366 			break;
367 		}
368 		if ((p->end >= start) && (p->start < end))
369 			break;
370 	}
371 
372 	read_unlock(&resource_lock);
373 	if (!p)
374 		return -1;
375 	/* copy data */
376 	if (res->start < p->start)
377 		res->start = p->start;
378 	if (res->end > p->end)
379 		res->end = p->end;
380 	return 0;
381 }
382 
383 /*
384  * Walks through iomem resources and calls func() with matching resource
385  * ranges. This walks through whole tree and not just first level children.
386  * All the memory ranges which overlap start,end and also match flags and
387  * name are valid candidates.
388  *
389  * @name: name of resource
390  * @flags: resource flags
391  * @start: start addr
392  * @end: end addr
393  */
394 int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end,
395 		void *arg, int (*func)(u64, u64, void *))
396 {
397 	struct resource res;
398 	u64 orig_end;
399 	int ret = -1;
400 
401 	res.start = start;
402 	res.end = end;
403 	res.flags = flags;
404 	orig_end = res.end;
405 	while ((res.start < res.end) &&
406 		(!find_next_iomem_res(&res, name, false))) {
407 		ret = (*func)(res.start, res.end, arg);
408 		if (ret)
409 			break;
410 		res.start = res.end + 1;
411 		res.end = orig_end;
412 	}
413 	return ret;
414 }
415 
416 /*
417  * This function calls callback against all memory range of "System RAM"
418  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
419  * Now, this function is only for "System RAM". This function deals with
420  * full ranges and not pfn. If resources are not pfn aligned, dealing
421  * with pfn can truncate ranges.
422  */
423 int walk_system_ram_res(u64 start, u64 end, void *arg,
424 				int (*func)(u64, u64, void *))
425 {
426 	struct resource res;
427 	u64 orig_end;
428 	int ret = -1;
429 
430 	res.start = start;
431 	res.end = end;
432 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
433 	orig_end = res.end;
434 	while ((res.start < res.end) &&
435 		(!find_next_iomem_res(&res, "System RAM", true))) {
436 		ret = (*func)(res.start, res.end, arg);
437 		if (ret)
438 			break;
439 		res.start = res.end + 1;
440 		res.end = orig_end;
441 	}
442 	return ret;
443 }
444 
445 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
446 
447 /*
448  * This function calls callback against all memory range of "System RAM"
449  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
450  * Now, this function is only for "System RAM".
451  */
452 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
453 		void *arg, int (*func)(unsigned long, unsigned long, void *))
454 {
455 	struct resource res;
456 	unsigned long pfn, end_pfn;
457 	u64 orig_end;
458 	int ret = -1;
459 
460 	res.start = (u64) start_pfn << PAGE_SHIFT;
461 	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
462 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
463 	orig_end = res.end;
464 	while ((res.start < res.end) &&
465 		(find_next_iomem_res(&res, "System RAM", true) >= 0)) {
466 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
467 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
468 		if (end_pfn > pfn)
469 			ret = (*func)(pfn, end_pfn - pfn, arg);
470 		if (ret)
471 			break;
472 		res.start = res.end + 1;
473 		res.end = orig_end;
474 	}
475 	return ret;
476 }
477 
478 #endif
479 
480 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
481 {
482 	return 1;
483 }
484 /*
485  * This generic page_is_ram() returns true if specified address is
486  * registered as "System RAM" in iomem_resource list.
487  */
488 int __weak page_is_ram(unsigned long pfn)
489 {
490 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
491 }
492 EXPORT_SYMBOL_GPL(page_is_ram);
493 
494 void __weak arch_remove_reservations(struct resource *avail)
495 {
496 }
497 
498 static resource_size_t simple_align_resource(void *data,
499 					     const struct resource *avail,
500 					     resource_size_t size,
501 					     resource_size_t align)
502 {
503 	return avail->start;
504 }
505 
506 static void resource_clip(struct resource *res, resource_size_t min,
507 			  resource_size_t max)
508 {
509 	if (res->start < min)
510 		res->start = min;
511 	if (res->end > max)
512 		res->end = max;
513 }
514 
515 /*
516  * Find empty slot in the resource tree with the given range and
517  * alignment constraints
518  */
519 static int __find_resource(struct resource *root, struct resource *old,
520 			 struct resource *new,
521 			 resource_size_t  size,
522 			 struct resource_constraint *constraint)
523 {
524 	struct resource *this = root->child;
525 	struct resource tmp = *new, avail, alloc;
526 
527 	tmp.start = root->start;
528 	/*
529 	 * Skip past an allocated resource that starts at 0, since the assignment
530 	 * of this->start - 1 to tmp->end below would cause an underflow.
531 	 */
532 	if (this && this->start == root->start) {
533 		tmp.start = (this == old) ? old->start : this->end + 1;
534 		this = this->sibling;
535 	}
536 	for(;;) {
537 		if (this)
538 			tmp.end = (this == old) ?  this->end : this->start - 1;
539 		else
540 			tmp.end = root->end;
541 
542 		if (tmp.end < tmp.start)
543 			goto next;
544 
545 		resource_clip(&tmp, constraint->min, constraint->max);
546 		arch_remove_reservations(&tmp);
547 
548 		/* Check for overflow after ALIGN() */
549 		avail.start = ALIGN(tmp.start, constraint->align);
550 		avail.end = tmp.end;
551 		avail.flags = new->flags & ~IORESOURCE_UNSET;
552 		if (avail.start >= tmp.start) {
553 			alloc.flags = avail.flags;
554 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
555 					size, constraint->align);
556 			alloc.end = alloc.start + size - 1;
557 			if (resource_contains(&avail, &alloc)) {
558 				new->start = alloc.start;
559 				new->end = alloc.end;
560 				return 0;
561 			}
562 		}
563 
564 next:		if (!this || this->end == root->end)
565 			break;
566 
567 		if (this != old)
568 			tmp.start = this->end + 1;
569 		this = this->sibling;
570 	}
571 	return -EBUSY;
572 }
573 
574 /*
575  * Find empty slot in the resource tree given range and alignment.
576  */
577 static int find_resource(struct resource *root, struct resource *new,
578 			resource_size_t size,
579 			struct resource_constraint  *constraint)
580 {
581 	return  __find_resource(root, NULL, new, size, constraint);
582 }
583 
584 /**
585  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
586  *	The resource will be relocated if the new size cannot be reallocated in the
587  *	current location.
588  *
589  * @root: root resource descriptor
590  * @old:  resource descriptor desired by caller
591  * @newsize: new size of the resource descriptor
592  * @constraint: the size and alignment constraints to be met.
593  */
594 static int reallocate_resource(struct resource *root, struct resource *old,
595 			resource_size_t newsize,
596 			struct resource_constraint  *constraint)
597 {
598 	int err=0;
599 	struct resource new = *old;
600 	struct resource *conflict;
601 
602 	write_lock(&resource_lock);
603 
604 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
605 		goto out;
606 
607 	if (resource_contains(&new, old)) {
608 		old->start = new.start;
609 		old->end = new.end;
610 		goto out;
611 	}
612 
613 	if (old->child) {
614 		err = -EBUSY;
615 		goto out;
616 	}
617 
618 	if (resource_contains(old, &new)) {
619 		old->start = new.start;
620 		old->end = new.end;
621 	} else {
622 		__release_resource(old);
623 		*old = new;
624 		conflict = __request_resource(root, old);
625 		BUG_ON(conflict);
626 	}
627 out:
628 	write_unlock(&resource_lock);
629 	return err;
630 }
631 
632 
633 /**
634  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
635  * 	The resource will be reallocated with a new size if it was already allocated
636  * @root: root resource descriptor
637  * @new: resource descriptor desired by caller
638  * @size: requested resource region size
639  * @min: minimum boundary to allocate
640  * @max: maximum boundary to allocate
641  * @align: alignment requested, in bytes
642  * @alignf: alignment function, optional, called if not NULL
643  * @alignf_data: arbitrary data to pass to the @alignf function
644  */
645 int allocate_resource(struct resource *root, struct resource *new,
646 		      resource_size_t size, resource_size_t min,
647 		      resource_size_t max, resource_size_t align,
648 		      resource_size_t (*alignf)(void *,
649 						const struct resource *,
650 						resource_size_t,
651 						resource_size_t),
652 		      void *alignf_data)
653 {
654 	int err;
655 	struct resource_constraint constraint;
656 
657 	if (!alignf)
658 		alignf = simple_align_resource;
659 
660 	constraint.min = min;
661 	constraint.max = max;
662 	constraint.align = align;
663 	constraint.alignf = alignf;
664 	constraint.alignf_data = alignf_data;
665 
666 	if ( new->parent ) {
667 		/* resource is already allocated, try reallocating with
668 		   the new constraints */
669 		return reallocate_resource(root, new, size, &constraint);
670 	}
671 
672 	write_lock(&resource_lock);
673 	err = find_resource(root, new, size, &constraint);
674 	if (err >= 0 && __request_resource(root, new))
675 		err = -EBUSY;
676 	write_unlock(&resource_lock);
677 	return err;
678 }
679 
680 EXPORT_SYMBOL(allocate_resource);
681 
682 /**
683  * lookup_resource - find an existing resource by a resource start address
684  * @root: root resource descriptor
685  * @start: resource start address
686  *
687  * Returns a pointer to the resource if found, NULL otherwise
688  */
689 struct resource *lookup_resource(struct resource *root, resource_size_t start)
690 {
691 	struct resource *res;
692 
693 	read_lock(&resource_lock);
694 	for (res = root->child; res; res = res->sibling) {
695 		if (res->start == start)
696 			break;
697 	}
698 	read_unlock(&resource_lock);
699 
700 	return res;
701 }
702 
703 /*
704  * Insert a resource into the resource tree. If successful, return NULL,
705  * otherwise return the conflicting resource (compare to __request_resource())
706  */
707 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
708 {
709 	struct resource *first, *next;
710 
711 	for (;; parent = first) {
712 		first = __request_resource(parent, new);
713 		if (!first)
714 			return first;
715 
716 		if (first == parent)
717 			return first;
718 		if (WARN_ON(first == new))	/* duplicated insertion */
719 			return first;
720 
721 		if ((first->start > new->start) || (first->end < new->end))
722 			break;
723 		if ((first->start == new->start) && (first->end == new->end))
724 			break;
725 	}
726 
727 	for (next = first; ; next = next->sibling) {
728 		/* Partial overlap? Bad, and unfixable */
729 		if (next->start < new->start || next->end > new->end)
730 			return next;
731 		if (!next->sibling)
732 			break;
733 		if (next->sibling->start > new->end)
734 			break;
735 	}
736 
737 	new->parent = parent;
738 	new->sibling = next->sibling;
739 	new->child = first;
740 
741 	next->sibling = NULL;
742 	for (next = first; next; next = next->sibling)
743 		next->parent = new;
744 
745 	if (parent->child == first) {
746 		parent->child = new;
747 	} else {
748 		next = parent->child;
749 		while (next->sibling != first)
750 			next = next->sibling;
751 		next->sibling = new;
752 	}
753 	return NULL;
754 }
755 
756 /**
757  * insert_resource_conflict - Inserts resource in the resource tree
758  * @parent: parent of the new resource
759  * @new: new resource to insert
760  *
761  * Returns 0 on success, conflict resource if the resource can't be inserted.
762  *
763  * This function is equivalent to request_resource_conflict when no conflict
764  * happens. If a conflict happens, and the conflicting resources
765  * entirely fit within the range of the new resource, then the new
766  * resource is inserted and the conflicting resources become children of
767  * the new resource.
768  */
769 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
770 {
771 	struct resource *conflict;
772 
773 	write_lock(&resource_lock);
774 	conflict = __insert_resource(parent, new);
775 	write_unlock(&resource_lock);
776 	return conflict;
777 }
778 
779 /**
780  * insert_resource - Inserts a resource in the resource tree
781  * @parent: parent of the new resource
782  * @new: new resource to insert
783  *
784  * Returns 0 on success, -EBUSY if the resource can't be inserted.
785  */
786 int insert_resource(struct resource *parent, struct resource *new)
787 {
788 	struct resource *conflict;
789 
790 	conflict = insert_resource_conflict(parent, new);
791 	return conflict ? -EBUSY : 0;
792 }
793 
794 /**
795  * insert_resource_expand_to_fit - Insert a resource into the resource tree
796  * @root: root resource descriptor
797  * @new: new resource to insert
798  *
799  * Insert a resource into the resource tree, possibly expanding it in order
800  * to make it encompass any conflicting resources.
801  */
802 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
803 {
804 	if (new->parent)
805 		return;
806 
807 	write_lock(&resource_lock);
808 	for (;;) {
809 		struct resource *conflict;
810 
811 		conflict = __insert_resource(root, new);
812 		if (!conflict)
813 			break;
814 		if (conflict == root)
815 			break;
816 
817 		/* Ok, expand resource to cover the conflict, then try again .. */
818 		if (conflict->start < new->start)
819 			new->start = conflict->start;
820 		if (conflict->end > new->end)
821 			new->end = conflict->end;
822 
823 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
824 	}
825 	write_unlock(&resource_lock);
826 }
827 
828 static int __adjust_resource(struct resource *res, resource_size_t start,
829 				resource_size_t size)
830 {
831 	struct resource *tmp, *parent = res->parent;
832 	resource_size_t end = start + size - 1;
833 	int result = -EBUSY;
834 
835 	if (!parent)
836 		goto skip;
837 
838 	if ((start < parent->start) || (end > parent->end))
839 		goto out;
840 
841 	if (res->sibling && (res->sibling->start <= end))
842 		goto out;
843 
844 	tmp = parent->child;
845 	if (tmp != res) {
846 		while (tmp->sibling != res)
847 			tmp = tmp->sibling;
848 		if (start <= tmp->end)
849 			goto out;
850 	}
851 
852 skip:
853 	for (tmp = res->child; tmp; tmp = tmp->sibling)
854 		if ((tmp->start < start) || (tmp->end > end))
855 			goto out;
856 
857 	res->start = start;
858 	res->end = end;
859 	result = 0;
860 
861  out:
862 	return result;
863 }
864 
865 /**
866  * adjust_resource - modify a resource's start and size
867  * @res: resource to modify
868  * @start: new start value
869  * @size: new size
870  *
871  * Given an existing resource, change its start and size to match the
872  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
873  * Existing children of the resource are assumed to be immutable.
874  */
875 int adjust_resource(struct resource *res, resource_size_t start,
876 			resource_size_t size)
877 {
878 	int result;
879 
880 	write_lock(&resource_lock);
881 	result = __adjust_resource(res, start, size);
882 	write_unlock(&resource_lock);
883 	return result;
884 }
885 EXPORT_SYMBOL(adjust_resource);
886 
887 static void __init __reserve_region_with_split(struct resource *root,
888 		resource_size_t start, resource_size_t end,
889 		const char *name)
890 {
891 	struct resource *parent = root;
892 	struct resource *conflict;
893 	struct resource *res = alloc_resource(GFP_ATOMIC);
894 	struct resource *next_res = NULL;
895 
896 	if (!res)
897 		return;
898 
899 	res->name = name;
900 	res->start = start;
901 	res->end = end;
902 	res->flags = IORESOURCE_BUSY;
903 
904 	while (1) {
905 
906 		conflict = __request_resource(parent, res);
907 		if (!conflict) {
908 			if (!next_res)
909 				break;
910 			res = next_res;
911 			next_res = NULL;
912 			continue;
913 		}
914 
915 		/* conflict covered whole area */
916 		if (conflict->start <= res->start &&
917 				conflict->end >= res->end) {
918 			free_resource(res);
919 			WARN_ON(next_res);
920 			break;
921 		}
922 
923 		/* failed, split and try again */
924 		if (conflict->start > res->start) {
925 			end = res->end;
926 			res->end = conflict->start - 1;
927 			if (conflict->end < end) {
928 				next_res = alloc_resource(GFP_ATOMIC);
929 				if (!next_res) {
930 					free_resource(res);
931 					break;
932 				}
933 				next_res->name = name;
934 				next_res->start = conflict->end + 1;
935 				next_res->end = end;
936 				next_res->flags = IORESOURCE_BUSY;
937 			}
938 		} else {
939 			res->start = conflict->end + 1;
940 		}
941 	}
942 
943 }
944 
945 void __init reserve_region_with_split(struct resource *root,
946 		resource_size_t start, resource_size_t end,
947 		const char *name)
948 {
949 	int abort = 0;
950 
951 	write_lock(&resource_lock);
952 	if (root->start > start || root->end < end) {
953 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
954 		       (unsigned long long)start, (unsigned long long)end,
955 		       root);
956 		if (start > root->end || end < root->start)
957 			abort = 1;
958 		else {
959 			if (end > root->end)
960 				end = root->end;
961 			if (start < root->start)
962 				start = root->start;
963 			pr_err("fixing request to [0x%llx-0x%llx]\n",
964 			       (unsigned long long)start,
965 			       (unsigned long long)end);
966 		}
967 		dump_stack();
968 	}
969 	if (!abort)
970 		__reserve_region_with_split(root, start, end, name);
971 	write_unlock(&resource_lock);
972 }
973 
974 /**
975  * resource_alignment - calculate resource's alignment
976  * @res: resource pointer
977  *
978  * Returns alignment on success, 0 (invalid alignment) on failure.
979  */
980 resource_size_t resource_alignment(struct resource *res)
981 {
982 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
983 	case IORESOURCE_SIZEALIGN:
984 		return resource_size(res);
985 	case IORESOURCE_STARTALIGN:
986 		return res->start;
987 	default:
988 		return 0;
989 	}
990 }
991 
992 /*
993  * This is compatibility stuff for IO resources.
994  *
995  * Note how this, unlike the above, knows about
996  * the IO flag meanings (busy etc).
997  *
998  * request_region creates a new busy region.
999  *
1000  * check_region returns non-zero if the area is already busy.
1001  *
1002  * release_region releases a matching busy region.
1003  */
1004 
1005 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1006 
1007 /**
1008  * __request_region - create a new busy resource region
1009  * @parent: parent resource descriptor
1010  * @start: resource start address
1011  * @n: resource region size
1012  * @name: reserving caller's ID string
1013  * @flags: IO resource flags
1014  */
1015 struct resource * __request_region(struct resource *parent,
1016 				   resource_size_t start, resource_size_t n,
1017 				   const char *name, int flags)
1018 {
1019 	DECLARE_WAITQUEUE(wait, current);
1020 	struct resource *res = alloc_resource(GFP_KERNEL);
1021 
1022 	if (!res)
1023 		return NULL;
1024 
1025 	res->name = name;
1026 	res->start = start;
1027 	res->end = start + n - 1;
1028 	res->flags = resource_type(parent);
1029 	res->flags |= IORESOURCE_BUSY | flags;
1030 
1031 	write_lock(&resource_lock);
1032 
1033 	for (;;) {
1034 		struct resource *conflict;
1035 
1036 		conflict = __request_resource(parent, res);
1037 		if (!conflict)
1038 			break;
1039 		if (conflict != parent) {
1040 			parent = conflict;
1041 			if (!(conflict->flags & IORESOURCE_BUSY))
1042 				continue;
1043 		}
1044 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1045 			add_wait_queue(&muxed_resource_wait, &wait);
1046 			write_unlock(&resource_lock);
1047 			set_current_state(TASK_UNINTERRUPTIBLE);
1048 			schedule();
1049 			remove_wait_queue(&muxed_resource_wait, &wait);
1050 			write_lock(&resource_lock);
1051 			continue;
1052 		}
1053 		/* Uhhuh, that didn't work out.. */
1054 		free_resource(res);
1055 		res = NULL;
1056 		break;
1057 	}
1058 	write_unlock(&resource_lock);
1059 	return res;
1060 }
1061 EXPORT_SYMBOL(__request_region);
1062 
1063 /**
1064  * __check_region - check if a resource region is busy or free
1065  * @parent: parent resource descriptor
1066  * @start: resource start address
1067  * @n: resource region size
1068  *
1069  * Returns 0 if the region is free at the moment it is checked,
1070  * returns %-EBUSY if the region is busy.
1071  *
1072  * NOTE:
1073  * This function is deprecated because its use is racy.
1074  * Even if it returns 0, a subsequent call to request_region()
1075  * may fail because another driver etc. just allocated the region.
1076  * Do NOT use it.  It will be removed from the kernel.
1077  */
1078 int __check_region(struct resource *parent, resource_size_t start,
1079 			resource_size_t n)
1080 {
1081 	struct resource * res;
1082 
1083 	res = __request_region(parent, start, n, "check-region", 0);
1084 	if (!res)
1085 		return -EBUSY;
1086 
1087 	release_resource(res);
1088 	free_resource(res);
1089 	return 0;
1090 }
1091 EXPORT_SYMBOL(__check_region);
1092 
1093 /**
1094  * __release_region - release a previously reserved resource region
1095  * @parent: parent resource descriptor
1096  * @start: resource start address
1097  * @n: resource region size
1098  *
1099  * The described resource region must match a currently busy region.
1100  */
1101 void __release_region(struct resource *parent, resource_size_t start,
1102 			resource_size_t n)
1103 {
1104 	struct resource **p;
1105 	resource_size_t end;
1106 
1107 	p = &parent->child;
1108 	end = start + n - 1;
1109 
1110 	write_lock(&resource_lock);
1111 
1112 	for (;;) {
1113 		struct resource *res = *p;
1114 
1115 		if (!res)
1116 			break;
1117 		if (res->start <= start && res->end >= end) {
1118 			if (!(res->flags & IORESOURCE_BUSY)) {
1119 				p = &res->child;
1120 				continue;
1121 			}
1122 			if (res->start != start || res->end != end)
1123 				break;
1124 			*p = res->sibling;
1125 			write_unlock(&resource_lock);
1126 			if (res->flags & IORESOURCE_MUXED)
1127 				wake_up(&muxed_resource_wait);
1128 			free_resource(res);
1129 			return;
1130 		}
1131 		p = &res->sibling;
1132 	}
1133 
1134 	write_unlock(&resource_lock);
1135 
1136 	printk(KERN_WARNING "Trying to free nonexistent resource "
1137 		"<%016llx-%016llx>\n", (unsigned long long)start,
1138 		(unsigned long long)end);
1139 }
1140 EXPORT_SYMBOL(__release_region);
1141 
1142 #ifdef CONFIG_MEMORY_HOTREMOVE
1143 /**
1144  * release_mem_region_adjustable - release a previously reserved memory region
1145  * @parent: parent resource descriptor
1146  * @start: resource start address
1147  * @size: resource region size
1148  *
1149  * This interface is intended for memory hot-delete.  The requested region
1150  * is released from a currently busy memory resource.  The requested region
1151  * must either match exactly or fit into a single busy resource entry.  In
1152  * the latter case, the remaining resource is adjusted accordingly.
1153  * Existing children of the busy memory resource must be immutable in the
1154  * request.
1155  *
1156  * Note:
1157  * - Additional release conditions, such as overlapping region, can be
1158  *   supported after they are confirmed as valid cases.
1159  * - When a busy memory resource gets split into two entries, the code
1160  *   assumes that all children remain in the lower address entry for
1161  *   simplicity.  Enhance this logic when necessary.
1162  */
1163 int release_mem_region_adjustable(struct resource *parent,
1164 			resource_size_t start, resource_size_t size)
1165 {
1166 	struct resource **p;
1167 	struct resource *res;
1168 	struct resource *new_res;
1169 	resource_size_t end;
1170 	int ret = -EINVAL;
1171 
1172 	end = start + size - 1;
1173 	if ((start < parent->start) || (end > parent->end))
1174 		return ret;
1175 
1176 	/* The alloc_resource() result gets checked later */
1177 	new_res = alloc_resource(GFP_KERNEL);
1178 
1179 	p = &parent->child;
1180 	write_lock(&resource_lock);
1181 
1182 	while ((res = *p)) {
1183 		if (res->start >= end)
1184 			break;
1185 
1186 		/* look for the next resource if it does not fit into */
1187 		if (res->start > start || res->end < end) {
1188 			p = &res->sibling;
1189 			continue;
1190 		}
1191 
1192 		if (!(res->flags & IORESOURCE_MEM))
1193 			break;
1194 
1195 		if (!(res->flags & IORESOURCE_BUSY)) {
1196 			p = &res->child;
1197 			continue;
1198 		}
1199 
1200 		/* found the target resource; let's adjust accordingly */
1201 		if (res->start == start && res->end == end) {
1202 			/* free the whole entry */
1203 			*p = res->sibling;
1204 			free_resource(res);
1205 			ret = 0;
1206 		} else if (res->start == start && res->end != end) {
1207 			/* adjust the start */
1208 			ret = __adjust_resource(res, end + 1,
1209 						res->end - end);
1210 		} else if (res->start != start && res->end == end) {
1211 			/* adjust the end */
1212 			ret = __adjust_resource(res, res->start,
1213 						start - res->start);
1214 		} else {
1215 			/* split into two entries */
1216 			if (!new_res) {
1217 				ret = -ENOMEM;
1218 				break;
1219 			}
1220 			new_res->name = res->name;
1221 			new_res->start = end + 1;
1222 			new_res->end = res->end;
1223 			new_res->flags = res->flags;
1224 			new_res->parent = res->parent;
1225 			new_res->sibling = res->sibling;
1226 			new_res->child = NULL;
1227 
1228 			ret = __adjust_resource(res, res->start,
1229 						start - res->start);
1230 			if (ret)
1231 				break;
1232 			res->sibling = new_res;
1233 			new_res = NULL;
1234 		}
1235 
1236 		break;
1237 	}
1238 
1239 	write_unlock(&resource_lock);
1240 	free_resource(new_res);
1241 	return ret;
1242 }
1243 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1244 
1245 /*
1246  * Managed region resource
1247  */
1248 struct region_devres {
1249 	struct resource *parent;
1250 	resource_size_t start;
1251 	resource_size_t n;
1252 };
1253 
1254 static void devm_region_release(struct device *dev, void *res)
1255 {
1256 	struct region_devres *this = res;
1257 
1258 	__release_region(this->parent, this->start, this->n);
1259 }
1260 
1261 static int devm_region_match(struct device *dev, void *res, void *match_data)
1262 {
1263 	struct region_devres *this = res, *match = match_data;
1264 
1265 	return this->parent == match->parent &&
1266 		this->start == match->start && this->n == match->n;
1267 }
1268 
1269 struct resource * __devm_request_region(struct device *dev,
1270 				struct resource *parent, resource_size_t start,
1271 				resource_size_t n, const char *name)
1272 {
1273 	struct region_devres *dr = NULL;
1274 	struct resource *res;
1275 
1276 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1277 			  GFP_KERNEL);
1278 	if (!dr)
1279 		return NULL;
1280 
1281 	dr->parent = parent;
1282 	dr->start = start;
1283 	dr->n = n;
1284 
1285 	res = __request_region(parent, start, n, name, 0);
1286 	if (res)
1287 		devres_add(dev, dr);
1288 	else
1289 		devres_free(dr);
1290 
1291 	return res;
1292 }
1293 EXPORT_SYMBOL(__devm_request_region);
1294 
1295 void __devm_release_region(struct device *dev, struct resource *parent,
1296 			   resource_size_t start, resource_size_t n)
1297 {
1298 	struct region_devres match_data = { parent, start, n };
1299 
1300 	__release_region(parent, start, n);
1301 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1302 			       &match_data));
1303 }
1304 EXPORT_SYMBOL(__devm_release_region);
1305 
1306 /*
1307  * Called from init/main.c to reserve IO ports.
1308  */
1309 #define MAXRESERVE 4
1310 static int __init reserve_setup(char *str)
1311 {
1312 	static int reserved;
1313 	static struct resource reserve[MAXRESERVE];
1314 
1315 	for (;;) {
1316 		unsigned int io_start, io_num;
1317 		int x = reserved;
1318 
1319 		if (get_option (&str, &io_start) != 2)
1320 			break;
1321 		if (get_option (&str, &io_num)   == 0)
1322 			break;
1323 		if (x < MAXRESERVE) {
1324 			struct resource *res = reserve + x;
1325 			res->name = "reserved";
1326 			res->start = io_start;
1327 			res->end = io_start + io_num - 1;
1328 			res->flags = IORESOURCE_BUSY;
1329 			res->child = NULL;
1330 			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1331 				reserved = x+1;
1332 		}
1333 	}
1334 	return 1;
1335 }
1336 
1337 __setup("reserve=", reserve_setup);
1338 
1339 /*
1340  * Check if the requested addr and size spans more than any slot in the
1341  * iomem resource tree.
1342  */
1343 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1344 {
1345 	struct resource *p = &iomem_resource;
1346 	int err = 0;
1347 	loff_t l;
1348 
1349 	read_lock(&resource_lock);
1350 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1351 		/*
1352 		 * We can probably skip the resources without
1353 		 * IORESOURCE_IO attribute?
1354 		 */
1355 		if (p->start >= addr + size)
1356 			continue;
1357 		if (p->end < addr)
1358 			continue;
1359 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1360 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1361 			continue;
1362 		/*
1363 		 * if a resource is "BUSY", it's not a hardware resource
1364 		 * but a driver mapping of such a resource; we don't want
1365 		 * to warn for those; some drivers legitimately map only
1366 		 * partial hardware resources. (example: vesafb)
1367 		 */
1368 		if (p->flags & IORESOURCE_BUSY)
1369 			continue;
1370 
1371 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1372 		       (unsigned long long)addr,
1373 		       (unsigned long long)(addr + size - 1),
1374 		       p->name, p);
1375 		err = -1;
1376 		break;
1377 	}
1378 	read_unlock(&resource_lock);
1379 
1380 	return err;
1381 }
1382 
1383 #ifdef CONFIG_STRICT_DEVMEM
1384 static int strict_iomem_checks = 1;
1385 #else
1386 static int strict_iomem_checks;
1387 #endif
1388 
1389 /*
1390  * check if an address is reserved in the iomem resource tree
1391  * returns 1 if reserved, 0 if not reserved.
1392  */
1393 int iomem_is_exclusive(u64 addr)
1394 {
1395 	struct resource *p = &iomem_resource;
1396 	int err = 0;
1397 	loff_t l;
1398 	int size = PAGE_SIZE;
1399 
1400 	if (!strict_iomem_checks)
1401 		return 0;
1402 
1403 	addr = addr & PAGE_MASK;
1404 
1405 	read_lock(&resource_lock);
1406 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1407 		/*
1408 		 * We can probably skip the resources without
1409 		 * IORESOURCE_IO attribute?
1410 		 */
1411 		if (p->start >= addr + size)
1412 			break;
1413 		if (p->end < addr)
1414 			continue;
1415 		if (p->flags & IORESOURCE_BUSY &&
1416 		     p->flags & IORESOURCE_EXCLUSIVE) {
1417 			err = 1;
1418 			break;
1419 		}
1420 	}
1421 	read_unlock(&resource_lock);
1422 
1423 	return err;
1424 }
1425 
1426 static int __init strict_iomem(char *str)
1427 {
1428 	if (strstr(str, "relaxed"))
1429 		strict_iomem_checks = 0;
1430 	if (strstr(str, "strict"))
1431 		strict_iomem_checks = 1;
1432 	return 1;
1433 }
1434 
1435 __setup("iomem=", strict_iomem);
1436