xref: /openbmc/linux/kernel/resource.c (revision 26ba4e57)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/device.h>
24 #include <linux/pfn.h>
25 #include <linux/mm.h>
26 #include <linux/resource_ext.h>
27 #include <asm/io.h>
28 
29 
30 struct resource ioport_resource = {
31 	.name	= "PCI IO",
32 	.start	= 0,
33 	.end	= IO_SPACE_LIMIT,
34 	.flags	= IORESOURCE_IO,
35 };
36 EXPORT_SYMBOL(ioport_resource);
37 
38 struct resource iomem_resource = {
39 	.name	= "PCI mem",
40 	.start	= 0,
41 	.end	= -1,
42 	.flags	= IORESOURCE_MEM,
43 };
44 EXPORT_SYMBOL(iomem_resource);
45 
46 /* constraints to be met while allocating resources */
47 struct resource_constraint {
48 	resource_size_t min, max, align;
49 	resource_size_t (*alignf)(void *, const struct resource *,
50 			resource_size_t, resource_size_t);
51 	void *alignf_data;
52 };
53 
54 static DEFINE_RWLOCK(resource_lock);
55 
56 /*
57  * For memory hotplug, there is no way to free resource entries allocated
58  * by boot mem after the system is up. So for reusing the resource entry
59  * we need to remember the resource.
60  */
61 static struct resource *bootmem_resource_free;
62 static DEFINE_SPINLOCK(bootmem_resource_lock);
63 
64 static struct resource *next_resource(struct resource *p, bool sibling_only)
65 {
66 	/* Caller wants to traverse through siblings only */
67 	if (sibling_only)
68 		return p->sibling;
69 
70 	if (p->child)
71 		return p->child;
72 	while (!p->sibling && p->parent)
73 		p = p->parent;
74 	return p->sibling;
75 }
76 
77 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
78 {
79 	struct resource *p = v;
80 	(*pos)++;
81 	return (void *)next_resource(p, false);
82 }
83 
84 #ifdef CONFIG_PROC_FS
85 
86 enum { MAX_IORES_LEVEL = 5 };
87 
88 static void *r_start(struct seq_file *m, loff_t *pos)
89 	__acquires(resource_lock)
90 {
91 	struct resource *p = PDE_DATA(file_inode(m->file));
92 	loff_t l = 0;
93 	read_lock(&resource_lock);
94 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
95 		;
96 	return p;
97 }
98 
99 static void r_stop(struct seq_file *m, void *v)
100 	__releases(resource_lock)
101 {
102 	read_unlock(&resource_lock);
103 }
104 
105 static int r_show(struct seq_file *m, void *v)
106 {
107 	struct resource *root = PDE_DATA(file_inode(m->file));
108 	struct resource *r = v, *p;
109 	unsigned long long start, end;
110 	int width = root->end < 0x10000 ? 4 : 8;
111 	int depth;
112 
113 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
114 		if (p->parent == root)
115 			break;
116 
117 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
118 		start = r->start;
119 		end = r->end;
120 	} else {
121 		start = end = 0;
122 	}
123 
124 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
125 			depth * 2, "",
126 			width, start,
127 			width, end,
128 			r->name ? r->name : "<BAD>");
129 	return 0;
130 }
131 
132 static const struct seq_operations resource_op = {
133 	.start	= r_start,
134 	.next	= r_next,
135 	.stop	= r_stop,
136 	.show	= r_show,
137 };
138 
139 static int __init ioresources_init(void)
140 {
141 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
142 			&ioport_resource);
143 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
144 	return 0;
145 }
146 __initcall(ioresources_init);
147 
148 #endif /* CONFIG_PROC_FS */
149 
150 static void free_resource(struct resource *res)
151 {
152 	if (!res)
153 		return;
154 
155 	if (!PageSlab(virt_to_head_page(res))) {
156 		spin_lock(&bootmem_resource_lock);
157 		res->sibling = bootmem_resource_free;
158 		bootmem_resource_free = res;
159 		spin_unlock(&bootmem_resource_lock);
160 	} else {
161 		kfree(res);
162 	}
163 }
164 
165 static struct resource *alloc_resource(gfp_t flags)
166 {
167 	struct resource *res = NULL;
168 
169 	spin_lock(&bootmem_resource_lock);
170 	if (bootmem_resource_free) {
171 		res = bootmem_resource_free;
172 		bootmem_resource_free = res->sibling;
173 	}
174 	spin_unlock(&bootmem_resource_lock);
175 
176 	if (res)
177 		memset(res, 0, sizeof(struct resource));
178 	else
179 		res = kzalloc(sizeof(struct resource), flags);
180 
181 	return res;
182 }
183 
184 /* Return the conflict entry if you can't request it */
185 static struct resource * __request_resource(struct resource *root, struct resource *new)
186 {
187 	resource_size_t start = new->start;
188 	resource_size_t end = new->end;
189 	struct resource *tmp, **p;
190 
191 	if (end < start)
192 		return root;
193 	if (start < root->start)
194 		return root;
195 	if (end > root->end)
196 		return root;
197 	p = &root->child;
198 	for (;;) {
199 		tmp = *p;
200 		if (!tmp || tmp->start > end) {
201 			new->sibling = tmp;
202 			*p = new;
203 			new->parent = root;
204 			return NULL;
205 		}
206 		p = &tmp->sibling;
207 		if (tmp->end < start)
208 			continue;
209 		return tmp;
210 	}
211 }
212 
213 static int __release_resource(struct resource *old, bool release_child)
214 {
215 	struct resource *tmp, **p, *chd;
216 
217 	p = &old->parent->child;
218 	for (;;) {
219 		tmp = *p;
220 		if (!tmp)
221 			break;
222 		if (tmp == old) {
223 			if (release_child || !(tmp->child)) {
224 				*p = tmp->sibling;
225 			} else {
226 				for (chd = tmp->child;; chd = chd->sibling) {
227 					chd->parent = tmp->parent;
228 					if (!(chd->sibling))
229 						break;
230 				}
231 				*p = tmp->child;
232 				chd->sibling = tmp->sibling;
233 			}
234 			old->parent = NULL;
235 			return 0;
236 		}
237 		p = &tmp->sibling;
238 	}
239 	return -EINVAL;
240 }
241 
242 static void __release_child_resources(struct resource *r)
243 {
244 	struct resource *tmp, *p;
245 	resource_size_t size;
246 
247 	p = r->child;
248 	r->child = NULL;
249 	while (p) {
250 		tmp = p;
251 		p = p->sibling;
252 
253 		tmp->parent = NULL;
254 		tmp->sibling = NULL;
255 		__release_child_resources(tmp);
256 
257 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
258 		/* need to restore size, and keep flags */
259 		size = resource_size(tmp);
260 		tmp->start = 0;
261 		tmp->end = size - 1;
262 	}
263 }
264 
265 void release_child_resources(struct resource *r)
266 {
267 	write_lock(&resource_lock);
268 	__release_child_resources(r);
269 	write_unlock(&resource_lock);
270 }
271 
272 /**
273  * request_resource_conflict - request and reserve an I/O or memory resource
274  * @root: root resource descriptor
275  * @new: resource descriptor desired by caller
276  *
277  * Returns 0 for success, conflict resource on error.
278  */
279 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
280 {
281 	struct resource *conflict;
282 
283 	write_lock(&resource_lock);
284 	conflict = __request_resource(root, new);
285 	write_unlock(&resource_lock);
286 	return conflict;
287 }
288 
289 /**
290  * request_resource - request and reserve an I/O or memory resource
291  * @root: root resource descriptor
292  * @new: resource descriptor desired by caller
293  *
294  * Returns 0 for success, negative error code on error.
295  */
296 int request_resource(struct resource *root, struct resource *new)
297 {
298 	struct resource *conflict;
299 
300 	conflict = request_resource_conflict(root, new);
301 	return conflict ? -EBUSY : 0;
302 }
303 
304 EXPORT_SYMBOL(request_resource);
305 
306 /**
307  * release_resource - release a previously reserved resource
308  * @old: resource pointer
309  */
310 int release_resource(struct resource *old)
311 {
312 	int retval;
313 
314 	write_lock(&resource_lock);
315 	retval = __release_resource(old, true);
316 	write_unlock(&resource_lock);
317 	return retval;
318 }
319 
320 EXPORT_SYMBOL(release_resource);
321 
322 /**
323  * Finds the lowest iomem resource that covers part of [@start..@end].  The
324  * caller must specify @start, @end, @flags, and @desc (which may be
325  * IORES_DESC_NONE).
326  *
327  * If a resource is found, returns 0 and @*res is overwritten with the part
328  * of the resource that's within [@start..@end]; if none is found, returns
329  * -ENODEV.  Returns -EINVAL for invalid parameters.
330  *
331  * This function walks the whole tree and not just first level children
332  * unless @first_lvl is true.
333  *
334  * @start:	start address of the resource searched for
335  * @end:	end address of same resource
336  * @flags:	flags which the resource must have
337  * @desc:	descriptor the resource must have
338  * @first_lvl:	walk only the first level children, if set
339  * @res:	return ptr, if resource found
340  */
341 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
342 			       unsigned long flags, unsigned long desc,
343 			       bool first_lvl, struct resource *res)
344 {
345 	bool siblings_only = true;
346 	struct resource *p;
347 
348 	if (!res)
349 		return -EINVAL;
350 
351 	if (start >= end)
352 		return -EINVAL;
353 
354 	read_lock(&resource_lock);
355 
356 	for (p = iomem_resource.child; p; p = next_resource(p, siblings_only)) {
357 		/* If we passed the resource we are looking for, stop */
358 		if (p->start > end) {
359 			p = NULL;
360 			break;
361 		}
362 
363 		/* Skip until we find a range that matches what we look for */
364 		if (p->end < start)
365 			continue;
366 
367 		/*
368 		 * Now that we found a range that matches what we look for,
369 		 * check the flags and the descriptor. If we were not asked to
370 		 * use only the first level, start looking at children as well.
371 		 */
372 		siblings_only = first_lvl;
373 
374 		if ((p->flags & flags) != flags)
375 			continue;
376 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
377 			continue;
378 
379 		/* Found a match, break */
380 		break;
381 	}
382 
383 	if (p) {
384 		/* copy data */
385 		res->start = max(start, p->start);
386 		res->end = min(end, p->end);
387 		res->flags = p->flags;
388 		res->desc = p->desc;
389 	}
390 
391 	read_unlock(&resource_lock);
392 	return p ? 0 : -ENODEV;
393 }
394 
395 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
396 				 unsigned long flags, unsigned long desc,
397 				 bool first_lvl, void *arg,
398 				 int (*func)(struct resource *, void *))
399 {
400 	struct resource res;
401 	int ret = -EINVAL;
402 
403 	while (start < end &&
404 	       !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) {
405 		ret = (*func)(&res, arg);
406 		if (ret)
407 			break;
408 
409 		start = res.end + 1;
410 	}
411 
412 	return ret;
413 }
414 
415 /**
416  * Walks through iomem resources and calls func() with matching resource
417  * ranges. This walks through whole tree and not just first level children.
418  * All the memory ranges which overlap start,end and also match flags and
419  * desc are valid candidates.
420  *
421  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
422  * @flags: I/O resource flags
423  * @start: start addr
424  * @end: end addr
425  * @arg: function argument for the callback @func
426  * @func: callback function that is called for each qualifying resource area
427  *
428  * NOTE: For a new descriptor search, define a new IORES_DESC in
429  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
430  */
431 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
432 		u64 end, void *arg, int (*func)(struct resource *, void *))
433 {
434 	return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func);
435 }
436 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
437 
438 /*
439  * This function calls the @func callback against all memory ranges of type
440  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
441  * Now, this function is only for System RAM, it deals with full ranges and
442  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
443  * ranges.
444  */
445 int walk_system_ram_res(u64 start, u64 end, void *arg,
446 			int (*func)(struct resource *, void *))
447 {
448 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
449 
450 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
451 				     arg, func);
452 }
453 
454 /*
455  * This function calls the @func callback against all memory ranges, which
456  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
457  */
458 int walk_mem_res(u64 start, u64 end, void *arg,
459 		 int (*func)(struct resource *, void *))
460 {
461 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
462 
463 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
464 				     arg, func);
465 }
466 
467 /*
468  * This function calls the @func callback against all memory ranges of type
469  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
470  * It is to be used only for System RAM.
471  *
472  * This will find System RAM ranges that are children of top-level resources
473  * in addition to top-level System RAM resources.
474  */
475 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
476 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
477 {
478 	resource_size_t start, end;
479 	unsigned long flags;
480 	struct resource res;
481 	unsigned long pfn, end_pfn;
482 	int ret = -EINVAL;
483 
484 	start = (u64) start_pfn << PAGE_SHIFT;
485 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
486 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
487 	while (start < end &&
488 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE,
489 				    false, &res)) {
490 		pfn = PFN_UP(res.start);
491 		end_pfn = PFN_DOWN(res.end + 1);
492 		if (end_pfn > pfn)
493 			ret = (*func)(pfn, end_pfn - pfn, arg);
494 		if (ret)
495 			break;
496 		start = res.end + 1;
497 	}
498 	return ret;
499 }
500 
501 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
502 {
503 	return 1;
504 }
505 
506 /*
507  * This generic page_is_ram() returns true if specified address is
508  * registered as System RAM in iomem_resource list.
509  */
510 int __weak page_is_ram(unsigned long pfn)
511 {
512 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
513 }
514 EXPORT_SYMBOL_GPL(page_is_ram);
515 
516 /**
517  * region_intersects() - determine intersection of region with known resources
518  * @start: region start address
519  * @size: size of region
520  * @flags: flags of resource (in iomem_resource)
521  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
522  *
523  * Check if the specified region partially overlaps or fully eclipses a
524  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
525  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
526  * return REGION_MIXED if the region overlaps @flags/@desc and another
527  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
528  * and no other defined resource. Note that REGION_INTERSECTS is also
529  * returned in the case when the specified region overlaps RAM and undefined
530  * memory holes.
531  *
532  * region_intersect() is used by memory remapping functions to ensure
533  * the user is not remapping RAM and is a vast speed up over walking
534  * through the resource table page by page.
535  */
536 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
537 		      unsigned long desc)
538 {
539 	struct resource res;
540 	int type = 0; int other = 0;
541 	struct resource *p;
542 
543 	res.start = start;
544 	res.end = start + size - 1;
545 
546 	read_lock(&resource_lock);
547 	for (p = iomem_resource.child; p ; p = p->sibling) {
548 		bool is_type = (((p->flags & flags) == flags) &&
549 				((desc == IORES_DESC_NONE) ||
550 				 (desc == p->desc)));
551 
552 		if (resource_overlaps(p, &res))
553 			is_type ? type++ : other++;
554 	}
555 	read_unlock(&resource_lock);
556 
557 	if (other == 0)
558 		return type ? REGION_INTERSECTS : REGION_DISJOINT;
559 
560 	if (type)
561 		return REGION_MIXED;
562 
563 	return REGION_DISJOINT;
564 }
565 EXPORT_SYMBOL_GPL(region_intersects);
566 
567 void __weak arch_remove_reservations(struct resource *avail)
568 {
569 }
570 
571 static resource_size_t simple_align_resource(void *data,
572 					     const struct resource *avail,
573 					     resource_size_t size,
574 					     resource_size_t align)
575 {
576 	return avail->start;
577 }
578 
579 static void resource_clip(struct resource *res, resource_size_t min,
580 			  resource_size_t max)
581 {
582 	if (res->start < min)
583 		res->start = min;
584 	if (res->end > max)
585 		res->end = max;
586 }
587 
588 /*
589  * Find empty slot in the resource tree with the given range and
590  * alignment constraints
591  */
592 static int __find_resource(struct resource *root, struct resource *old,
593 			 struct resource *new,
594 			 resource_size_t  size,
595 			 struct resource_constraint *constraint)
596 {
597 	struct resource *this = root->child;
598 	struct resource tmp = *new, avail, alloc;
599 
600 	tmp.start = root->start;
601 	/*
602 	 * Skip past an allocated resource that starts at 0, since the assignment
603 	 * of this->start - 1 to tmp->end below would cause an underflow.
604 	 */
605 	if (this && this->start == root->start) {
606 		tmp.start = (this == old) ? old->start : this->end + 1;
607 		this = this->sibling;
608 	}
609 	for(;;) {
610 		if (this)
611 			tmp.end = (this == old) ?  this->end : this->start - 1;
612 		else
613 			tmp.end = root->end;
614 
615 		if (tmp.end < tmp.start)
616 			goto next;
617 
618 		resource_clip(&tmp, constraint->min, constraint->max);
619 		arch_remove_reservations(&tmp);
620 
621 		/* Check for overflow after ALIGN() */
622 		avail.start = ALIGN(tmp.start, constraint->align);
623 		avail.end = tmp.end;
624 		avail.flags = new->flags & ~IORESOURCE_UNSET;
625 		if (avail.start >= tmp.start) {
626 			alloc.flags = avail.flags;
627 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
628 					size, constraint->align);
629 			alloc.end = alloc.start + size - 1;
630 			if (alloc.start <= alloc.end &&
631 			    resource_contains(&avail, &alloc)) {
632 				new->start = alloc.start;
633 				new->end = alloc.end;
634 				return 0;
635 			}
636 		}
637 
638 next:		if (!this || this->end == root->end)
639 			break;
640 
641 		if (this != old)
642 			tmp.start = this->end + 1;
643 		this = this->sibling;
644 	}
645 	return -EBUSY;
646 }
647 
648 /*
649  * Find empty slot in the resource tree given range and alignment.
650  */
651 static int find_resource(struct resource *root, struct resource *new,
652 			resource_size_t size,
653 			struct resource_constraint  *constraint)
654 {
655 	return  __find_resource(root, NULL, new, size, constraint);
656 }
657 
658 /**
659  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
660  *	The resource will be relocated if the new size cannot be reallocated in the
661  *	current location.
662  *
663  * @root: root resource descriptor
664  * @old:  resource descriptor desired by caller
665  * @newsize: new size of the resource descriptor
666  * @constraint: the size and alignment constraints to be met.
667  */
668 static int reallocate_resource(struct resource *root, struct resource *old,
669 			       resource_size_t newsize,
670 			       struct resource_constraint *constraint)
671 {
672 	int err=0;
673 	struct resource new = *old;
674 	struct resource *conflict;
675 
676 	write_lock(&resource_lock);
677 
678 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
679 		goto out;
680 
681 	if (resource_contains(&new, old)) {
682 		old->start = new.start;
683 		old->end = new.end;
684 		goto out;
685 	}
686 
687 	if (old->child) {
688 		err = -EBUSY;
689 		goto out;
690 	}
691 
692 	if (resource_contains(old, &new)) {
693 		old->start = new.start;
694 		old->end = new.end;
695 	} else {
696 		__release_resource(old, true);
697 		*old = new;
698 		conflict = __request_resource(root, old);
699 		BUG_ON(conflict);
700 	}
701 out:
702 	write_unlock(&resource_lock);
703 	return err;
704 }
705 
706 
707 /**
708  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
709  * 	The resource will be reallocated with a new size if it was already allocated
710  * @root: root resource descriptor
711  * @new: resource descriptor desired by caller
712  * @size: requested resource region size
713  * @min: minimum boundary to allocate
714  * @max: maximum boundary to allocate
715  * @align: alignment requested, in bytes
716  * @alignf: alignment function, optional, called if not NULL
717  * @alignf_data: arbitrary data to pass to the @alignf function
718  */
719 int allocate_resource(struct resource *root, struct resource *new,
720 		      resource_size_t size, resource_size_t min,
721 		      resource_size_t max, resource_size_t align,
722 		      resource_size_t (*alignf)(void *,
723 						const struct resource *,
724 						resource_size_t,
725 						resource_size_t),
726 		      void *alignf_data)
727 {
728 	int err;
729 	struct resource_constraint constraint;
730 
731 	if (!alignf)
732 		alignf = simple_align_resource;
733 
734 	constraint.min = min;
735 	constraint.max = max;
736 	constraint.align = align;
737 	constraint.alignf = alignf;
738 	constraint.alignf_data = alignf_data;
739 
740 	if ( new->parent ) {
741 		/* resource is already allocated, try reallocating with
742 		   the new constraints */
743 		return reallocate_resource(root, new, size, &constraint);
744 	}
745 
746 	write_lock(&resource_lock);
747 	err = find_resource(root, new, size, &constraint);
748 	if (err >= 0 && __request_resource(root, new))
749 		err = -EBUSY;
750 	write_unlock(&resource_lock);
751 	return err;
752 }
753 
754 EXPORT_SYMBOL(allocate_resource);
755 
756 /**
757  * lookup_resource - find an existing resource by a resource start address
758  * @root: root resource descriptor
759  * @start: resource start address
760  *
761  * Returns a pointer to the resource if found, NULL otherwise
762  */
763 struct resource *lookup_resource(struct resource *root, resource_size_t start)
764 {
765 	struct resource *res;
766 
767 	read_lock(&resource_lock);
768 	for (res = root->child; res; res = res->sibling) {
769 		if (res->start == start)
770 			break;
771 	}
772 	read_unlock(&resource_lock);
773 
774 	return res;
775 }
776 
777 /*
778  * Insert a resource into the resource tree. If successful, return NULL,
779  * otherwise return the conflicting resource (compare to __request_resource())
780  */
781 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
782 {
783 	struct resource *first, *next;
784 
785 	for (;; parent = first) {
786 		first = __request_resource(parent, new);
787 		if (!first)
788 			return first;
789 
790 		if (first == parent)
791 			return first;
792 		if (WARN_ON(first == new))	/* duplicated insertion */
793 			return first;
794 
795 		if ((first->start > new->start) || (first->end < new->end))
796 			break;
797 		if ((first->start == new->start) && (first->end == new->end))
798 			break;
799 	}
800 
801 	for (next = first; ; next = next->sibling) {
802 		/* Partial overlap? Bad, and unfixable */
803 		if (next->start < new->start || next->end > new->end)
804 			return next;
805 		if (!next->sibling)
806 			break;
807 		if (next->sibling->start > new->end)
808 			break;
809 	}
810 
811 	new->parent = parent;
812 	new->sibling = next->sibling;
813 	new->child = first;
814 
815 	next->sibling = NULL;
816 	for (next = first; next; next = next->sibling)
817 		next->parent = new;
818 
819 	if (parent->child == first) {
820 		parent->child = new;
821 	} else {
822 		next = parent->child;
823 		while (next->sibling != first)
824 			next = next->sibling;
825 		next->sibling = new;
826 	}
827 	return NULL;
828 }
829 
830 /**
831  * insert_resource_conflict - Inserts resource in the resource tree
832  * @parent: parent of the new resource
833  * @new: new resource to insert
834  *
835  * Returns 0 on success, conflict resource if the resource can't be inserted.
836  *
837  * This function is equivalent to request_resource_conflict when no conflict
838  * happens. If a conflict happens, and the conflicting resources
839  * entirely fit within the range of the new resource, then the new
840  * resource is inserted and the conflicting resources become children of
841  * the new resource.
842  *
843  * This function is intended for producers of resources, such as FW modules
844  * and bus drivers.
845  */
846 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
847 {
848 	struct resource *conflict;
849 
850 	write_lock(&resource_lock);
851 	conflict = __insert_resource(parent, new);
852 	write_unlock(&resource_lock);
853 	return conflict;
854 }
855 
856 /**
857  * insert_resource - Inserts a resource in the resource tree
858  * @parent: parent of the new resource
859  * @new: new resource to insert
860  *
861  * Returns 0 on success, -EBUSY if the resource can't be inserted.
862  *
863  * This function is intended for producers of resources, such as FW modules
864  * and bus drivers.
865  */
866 int insert_resource(struct resource *parent, struct resource *new)
867 {
868 	struct resource *conflict;
869 
870 	conflict = insert_resource_conflict(parent, new);
871 	return conflict ? -EBUSY : 0;
872 }
873 EXPORT_SYMBOL_GPL(insert_resource);
874 
875 /**
876  * insert_resource_expand_to_fit - Insert a resource into the resource tree
877  * @root: root resource descriptor
878  * @new: new resource to insert
879  *
880  * Insert a resource into the resource tree, possibly expanding it in order
881  * to make it encompass any conflicting resources.
882  */
883 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
884 {
885 	if (new->parent)
886 		return;
887 
888 	write_lock(&resource_lock);
889 	for (;;) {
890 		struct resource *conflict;
891 
892 		conflict = __insert_resource(root, new);
893 		if (!conflict)
894 			break;
895 		if (conflict == root)
896 			break;
897 
898 		/* Ok, expand resource to cover the conflict, then try again .. */
899 		if (conflict->start < new->start)
900 			new->start = conflict->start;
901 		if (conflict->end > new->end)
902 			new->end = conflict->end;
903 
904 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
905 	}
906 	write_unlock(&resource_lock);
907 }
908 
909 /**
910  * remove_resource - Remove a resource in the resource tree
911  * @old: resource to remove
912  *
913  * Returns 0 on success, -EINVAL if the resource is not valid.
914  *
915  * This function removes a resource previously inserted by insert_resource()
916  * or insert_resource_conflict(), and moves the children (if any) up to
917  * where they were before.  insert_resource() and insert_resource_conflict()
918  * insert a new resource, and move any conflicting resources down to the
919  * children of the new resource.
920  *
921  * insert_resource(), insert_resource_conflict() and remove_resource() are
922  * intended for producers of resources, such as FW modules and bus drivers.
923  */
924 int remove_resource(struct resource *old)
925 {
926 	int retval;
927 
928 	write_lock(&resource_lock);
929 	retval = __release_resource(old, false);
930 	write_unlock(&resource_lock);
931 	return retval;
932 }
933 EXPORT_SYMBOL_GPL(remove_resource);
934 
935 static int __adjust_resource(struct resource *res, resource_size_t start,
936 				resource_size_t size)
937 {
938 	struct resource *tmp, *parent = res->parent;
939 	resource_size_t end = start + size - 1;
940 	int result = -EBUSY;
941 
942 	if (!parent)
943 		goto skip;
944 
945 	if ((start < parent->start) || (end > parent->end))
946 		goto out;
947 
948 	if (res->sibling && (res->sibling->start <= end))
949 		goto out;
950 
951 	tmp = parent->child;
952 	if (tmp != res) {
953 		while (tmp->sibling != res)
954 			tmp = tmp->sibling;
955 		if (start <= tmp->end)
956 			goto out;
957 	}
958 
959 skip:
960 	for (tmp = res->child; tmp; tmp = tmp->sibling)
961 		if ((tmp->start < start) || (tmp->end > end))
962 			goto out;
963 
964 	res->start = start;
965 	res->end = end;
966 	result = 0;
967 
968  out:
969 	return result;
970 }
971 
972 /**
973  * adjust_resource - modify a resource's start and size
974  * @res: resource to modify
975  * @start: new start value
976  * @size: new size
977  *
978  * Given an existing resource, change its start and size to match the
979  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
980  * Existing children of the resource are assumed to be immutable.
981  */
982 int adjust_resource(struct resource *res, resource_size_t start,
983 		    resource_size_t size)
984 {
985 	int result;
986 
987 	write_lock(&resource_lock);
988 	result = __adjust_resource(res, start, size);
989 	write_unlock(&resource_lock);
990 	return result;
991 }
992 EXPORT_SYMBOL(adjust_resource);
993 
994 static void __init
995 __reserve_region_with_split(struct resource *root, resource_size_t start,
996 			    resource_size_t end, const char *name)
997 {
998 	struct resource *parent = root;
999 	struct resource *conflict;
1000 	struct resource *res = alloc_resource(GFP_ATOMIC);
1001 	struct resource *next_res = NULL;
1002 	int type = resource_type(root);
1003 
1004 	if (!res)
1005 		return;
1006 
1007 	res->name = name;
1008 	res->start = start;
1009 	res->end = end;
1010 	res->flags = type | IORESOURCE_BUSY;
1011 	res->desc = IORES_DESC_NONE;
1012 
1013 	while (1) {
1014 
1015 		conflict = __request_resource(parent, res);
1016 		if (!conflict) {
1017 			if (!next_res)
1018 				break;
1019 			res = next_res;
1020 			next_res = NULL;
1021 			continue;
1022 		}
1023 
1024 		/* conflict covered whole area */
1025 		if (conflict->start <= res->start &&
1026 				conflict->end >= res->end) {
1027 			free_resource(res);
1028 			WARN_ON(next_res);
1029 			break;
1030 		}
1031 
1032 		/* failed, split and try again */
1033 		if (conflict->start > res->start) {
1034 			end = res->end;
1035 			res->end = conflict->start - 1;
1036 			if (conflict->end < end) {
1037 				next_res = alloc_resource(GFP_ATOMIC);
1038 				if (!next_res) {
1039 					free_resource(res);
1040 					break;
1041 				}
1042 				next_res->name = name;
1043 				next_res->start = conflict->end + 1;
1044 				next_res->end = end;
1045 				next_res->flags = type | IORESOURCE_BUSY;
1046 				next_res->desc = IORES_DESC_NONE;
1047 			}
1048 		} else {
1049 			res->start = conflict->end + 1;
1050 		}
1051 	}
1052 
1053 }
1054 
1055 void __init
1056 reserve_region_with_split(struct resource *root, resource_size_t start,
1057 			  resource_size_t end, const char *name)
1058 {
1059 	int abort = 0;
1060 
1061 	write_lock(&resource_lock);
1062 	if (root->start > start || root->end < end) {
1063 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1064 		       (unsigned long long)start, (unsigned long long)end,
1065 		       root);
1066 		if (start > root->end || end < root->start)
1067 			abort = 1;
1068 		else {
1069 			if (end > root->end)
1070 				end = root->end;
1071 			if (start < root->start)
1072 				start = root->start;
1073 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1074 			       (unsigned long long)start,
1075 			       (unsigned long long)end);
1076 		}
1077 		dump_stack();
1078 	}
1079 	if (!abort)
1080 		__reserve_region_with_split(root, start, end, name);
1081 	write_unlock(&resource_lock);
1082 }
1083 
1084 /**
1085  * resource_alignment - calculate resource's alignment
1086  * @res: resource pointer
1087  *
1088  * Returns alignment on success, 0 (invalid alignment) on failure.
1089  */
1090 resource_size_t resource_alignment(struct resource *res)
1091 {
1092 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1093 	case IORESOURCE_SIZEALIGN:
1094 		return resource_size(res);
1095 	case IORESOURCE_STARTALIGN:
1096 		return res->start;
1097 	default:
1098 		return 0;
1099 	}
1100 }
1101 
1102 /*
1103  * This is compatibility stuff for IO resources.
1104  *
1105  * Note how this, unlike the above, knows about
1106  * the IO flag meanings (busy etc).
1107  *
1108  * request_region creates a new busy region.
1109  *
1110  * release_region releases a matching busy region.
1111  */
1112 
1113 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1114 
1115 /**
1116  * __request_region - create a new busy resource region
1117  * @parent: parent resource descriptor
1118  * @start: resource start address
1119  * @n: resource region size
1120  * @name: reserving caller's ID string
1121  * @flags: IO resource flags
1122  */
1123 struct resource * __request_region(struct resource *parent,
1124 				   resource_size_t start, resource_size_t n,
1125 				   const char *name, int flags)
1126 {
1127 	DECLARE_WAITQUEUE(wait, current);
1128 	struct resource *res = alloc_resource(GFP_KERNEL);
1129 
1130 	if (!res)
1131 		return NULL;
1132 
1133 	res->name = name;
1134 	res->start = start;
1135 	res->end = start + n - 1;
1136 
1137 	write_lock(&resource_lock);
1138 
1139 	for (;;) {
1140 		struct resource *conflict;
1141 
1142 		res->flags = resource_type(parent) | resource_ext_type(parent);
1143 		res->flags |= IORESOURCE_BUSY | flags;
1144 		res->desc = parent->desc;
1145 
1146 		conflict = __request_resource(parent, res);
1147 		if (!conflict)
1148 			break;
1149 		/*
1150 		 * mm/hmm.c reserves physical addresses which then
1151 		 * become unavailable to other users.  Conflicts are
1152 		 * not expected.  Warn to aid debugging if encountered.
1153 		 */
1154 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1155 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1156 				conflict->name, conflict, res);
1157 		}
1158 		if (conflict != parent) {
1159 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1160 				parent = conflict;
1161 				continue;
1162 			}
1163 		}
1164 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1165 			add_wait_queue(&muxed_resource_wait, &wait);
1166 			write_unlock(&resource_lock);
1167 			set_current_state(TASK_UNINTERRUPTIBLE);
1168 			schedule();
1169 			remove_wait_queue(&muxed_resource_wait, &wait);
1170 			write_lock(&resource_lock);
1171 			continue;
1172 		}
1173 		/* Uhhuh, that didn't work out.. */
1174 		free_resource(res);
1175 		res = NULL;
1176 		break;
1177 	}
1178 	write_unlock(&resource_lock);
1179 	return res;
1180 }
1181 EXPORT_SYMBOL(__request_region);
1182 
1183 /**
1184  * __release_region - release a previously reserved resource region
1185  * @parent: parent resource descriptor
1186  * @start: resource start address
1187  * @n: resource region size
1188  *
1189  * The described resource region must match a currently busy region.
1190  */
1191 void __release_region(struct resource *parent, resource_size_t start,
1192 		      resource_size_t n)
1193 {
1194 	struct resource **p;
1195 	resource_size_t end;
1196 
1197 	p = &parent->child;
1198 	end = start + n - 1;
1199 
1200 	write_lock(&resource_lock);
1201 
1202 	for (;;) {
1203 		struct resource *res = *p;
1204 
1205 		if (!res)
1206 			break;
1207 		if (res->start <= start && res->end >= end) {
1208 			if (!(res->flags & IORESOURCE_BUSY)) {
1209 				p = &res->child;
1210 				continue;
1211 			}
1212 			if (res->start != start || res->end != end)
1213 				break;
1214 			*p = res->sibling;
1215 			write_unlock(&resource_lock);
1216 			if (res->flags & IORESOURCE_MUXED)
1217 				wake_up(&muxed_resource_wait);
1218 			free_resource(res);
1219 			return;
1220 		}
1221 		p = &res->sibling;
1222 	}
1223 
1224 	write_unlock(&resource_lock);
1225 
1226 	printk(KERN_WARNING "Trying to free nonexistent resource "
1227 		"<%016llx-%016llx>\n", (unsigned long long)start,
1228 		(unsigned long long)end);
1229 }
1230 EXPORT_SYMBOL(__release_region);
1231 
1232 #ifdef CONFIG_MEMORY_HOTREMOVE
1233 /**
1234  * release_mem_region_adjustable - release a previously reserved memory region
1235  * @parent: parent resource descriptor
1236  * @start: resource start address
1237  * @size: resource region size
1238  *
1239  * This interface is intended for memory hot-delete.  The requested region
1240  * is released from a currently busy memory resource.  The requested region
1241  * must either match exactly or fit into a single busy resource entry.  In
1242  * the latter case, the remaining resource is adjusted accordingly.
1243  * Existing children of the busy memory resource must be immutable in the
1244  * request.
1245  *
1246  * Note:
1247  * - Additional release conditions, such as overlapping region, can be
1248  *   supported after they are confirmed as valid cases.
1249  * - When a busy memory resource gets split into two entries, the code
1250  *   assumes that all children remain in the lower address entry for
1251  *   simplicity.  Enhance this logic when necessary.
1252  */
1253 int release_mem_region_adjustable(struct resource *parent,
1254 				  resource_size_t start, resource_size_t size)
1255 {
1256 	struct resource **p;
1257 	struct resource *res;
1258 	struct resource *new_res;
1259 	resource_size_t end;
1260 	int ret = -EINVAL;
1261 
1262 	end = start + size - 1;
1263 	if ((start < parent->start) || (end > parent->end))
1264 		return ret;
1265 
1266 	/* The alloc_resource() result gets checked later */
1267 	new_res = alloc_resource(GFP_KERNEL);
1268 
1269 	p = &parent->child;
1270 	write_lock(&resource_lock);
1271 
1272 	while ((res = *p)) {
1273 		if (res->start >= end)
1274 			break;
1275 
1276 		/* look for the next resource if it does not fit into */
1277 		if (res->start > start || res->end < end) {
1278 			p = &res->sibling;
1279 			continue;
1280 		}
1281 
1282 		/*
1283 		 * All memory regions added from memory-hotplug path have the
1284 		 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1285 		 * this flag, we know that we are dealing with a resource coming
1286 		 * from HMM/devm. HMM/devm use another mechanism to add/release
1287 		 * a resource. This goes via devm_request_mem_region and
1288 		 * devm_release_mem_region.
1289 		 * HMM/devm take care to release their resources when they want,
1290 		 * so if we are dealing with them, let us just back off here.
1291 		 */
1292 		if (!(res->flags & IORESOURCE_SYSRAM)) {
1293 			ret = 0;
1294 			break;
1295 		}
1296 
1297 		if (!(res->flags & IORESOURCE_MEM))
1298 			break;
1299 
1300 		if (!(res->flags & IORESOURCE_BUSY)) {
1301 			p = &res->child;
1302 			continue;
1303 		}
1304 
1305 		/* found the target resource; let's adjust accordingly */
1306 		if (res->start == start && res->end == end) {
1307 			/* free the whole entry */
1308 			*p = res->sibling;
1309 			free_resource(res);
1310 			ret = 0;
1311 		} else if (res->start == start && res->end != end) {
1312 			/* adjust the start */
1313 			ret = __adjust_resource(res, end + 1,
1314 						res->end - end);
1315 		} else if (res->start != start && res->end == end) {
1316 			/* adjust the end */
1317 			ret = __adjust_resource(res, res->start,
1318 						start - res->start);
1319 		} else {
1320 			/* split into two entries */
1321 			if (!new_res) {
1322 				ret = -ENOMEM;
1323 				break;
1324 			}
1325 			new_res->name = res->name;
1326 			new_res->start = end + 1;
1327 			new_res->end = res->end;
1328 			new_res->flags = res->flags;
1329 			new_res->desc = res->desc;
1330 			new_res->parent = res->parent;
1331 			new_res->sibling = res->sibling;
1332 			new_res->child = NULL;
1333 
1334 			ret = __adjust_resource(res, res->start,
1335 						start - res->start);
1336 			if (ret)
1337 				break;
1338 			res->sibling = new_res;
1339 			new_res = NULL;
1340 		}
1341 
1342 		break;
1343 	}
1344 
1345 	write_unlock(&resource_lock);
1346 	free_resource(new_res);
1347 	return ret;
1348 }
1349 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1350 
1351 /*
1352  * Managed region resource
1353  */
1354 static void devm_resource_release(struct device *dev, void *ptr)
1355 {
1356 	struct resource **r = ptr;
1357 
1358 	release_resource(*r);
1359 }
1360 
1361 /**
1362  * devm_request_resource() - request and reserve an I/O or memory resource
1363  * @dev: device for which to request the resource
1364  * @root: root of the resource tree from which to request the resource
1365  * @new: descriptor of the resource to request
1366  *
1367  * This is a device-managed version of request_resource(). There is usually
1368  * no need to release resources requested by this function explicitly since
1369  * that will be taken care of when the device is unbound from its driver.
1370  * If for some reason the resource needs to be released explicitly, because
1371  * of ordering issues for example, drivers must call devm_release_resource()
1372  * rather than the regular release_resource().
1373  *
1374  * When a conflict is detected between any existing resources and the newly
1375  * requested resource, an error message will be printed.
1376  *
1377  * Returns 0 on success or a negative error code on failure.
1378  */
1379 int devm_request_resource(struct device *dev, struct resource *root,
1380 			  struct resource *new)
1381 {
1382 	struct resource *conflict, **ptr;
1383 
1384 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1385 	if (!ptr)
1386 		return -ENOMEM;
1387 
1388 	*ptr = new;
1389 
1390 	conflict = request_resource_conflict(root, new);
1391 	if (conflict) {
1392 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1393 			new, conflict->name, conflict);
1394 		devres_free(ptr);
1395 		return -EBUSY;
1396 	}
1397 
1398 	devres_add(dev, ptr);
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL(devm_request_resource);
1402 
1403 static int devm_resource_match(struct device *dev, void *res, void *data)
1404 {
1405 	struct resource **ptr = res;
1406 
1407 	return *ptr == data;
1408 }
1409 
1410 /**
1411  * devm_release_resource() - release a previously requested resource
1412  * @dev: device for which to release the resource
1413  * @new: descriptor of the resource to release
1414  *
1415  * Releases a resource previously requested using devm_request_resource().
1416  */
1417 void devm_release_resource(struct device *dev, struct resource *new)
1418 {
1419 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1420 			       new));
1421 }
1422 EXPORT_SYMBOL(devm_release_resource);
1423 
1424 struct region_devres {
1425 	struct resource *parent;
1426 	resource_size_t start;
1427 	resource_size_t n;
1428 };
1429 
1430 static void devm_region_release(struct device *dev, void *res)
1431 {
1432 	struct region_devres *this = res;
1433 
1434 	__release_region(this->parent, this->start, this->n);
1435 }
1436 
1437 static int devm_region_match(struct device *dev, void *res, void *match_data)
1438 {
1439 	struct region_devres *this = res, *match = match_data;
1440 
1441 	return this->parent == match->parent &&
1442 		this->start == match->start && this->n == match->n;
1443 }
1444 
1445 struct resource *
1446 __devm_request_region(struct device *dev, struct resource *parent,
1447 		      resource_size_t start, resource_size_t n, const char *name)
1448 {
1449 	struct region_devres *dr = NULL;
1450 	struct resource *res;
1451 
1452 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1453 			  GFP_KERNEL);
1454 	if (!dr)
1455 		return NULL;
1456 
1457 	dr->parent = parent;
1458 	dr->start = start;
1459 	dr->n = n;
1460 
1461 	res = __request_region(parent, start, n, name, 0);
1462 	if (res)
1463 		devres_add(dev, dr);
1464 	else
1465 		devres_free(dr);
1466 
1467 	return res;
1468 }
1469 EXPORT_SYMBOL(__devm_request_region);
1470 
1471 void __devm_release_region(struct device *dev, struct resource *parent,
1472 			   resource_size_t start, resource_size_t n)
1473 {
1474 	struct region_devres match_data = { parent, start, n };
1475 
1476 	__release_region(parent, start, n);
1477 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1478 			       &match_data));
1479 }
1480 EXPORT_SYMBOL(__devm_release_region);
1481 
1482 /*
1483  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1484  */
1485 #define MAXRESERVE 4
1486 static int __init reserve_setup(char *str)
1487 {
1488 	static int reserved;
1489 	static struct resource reserve[MAXRESERVE];
1490 
1491 	for (;;) {
1492 		unsigned int io_start, io_num;
1493 		int x = reserved;
1494 		struct resource *parent;
1495 
1496 		if (get_option(&str, &io_start) != 2)
1497 			break;
1498 		if (get_option(&str, &io_num) == 0)
1499 			break;
1500 		if (x < MAXRESERVE) {
1501 			struct resource *res = reserve + x;
1502 
1503 			/*
1504 			 * If the region starts below 0x10000, we assume it's
1505 			 * I/O port space; otherwise assume it's memory.
1506 			 */
1507 			if (io_start < 0x10000) {
1508 				res->flags = IORESOURCE_IO;
1509 				parent = &ioport_resource;
1510 			} else {
1511 				res->flags = IORESOURCE_MEM;
1512 				parent = &iomem_resource;
1513 			}
1514 			res->name = "reserved";
1515 			res->start = io_start;
1516 			res->end = io_start + io_num - 1;
1517 			res->flags |= IORESOURCE_BUSY;
1518 			res->desc = IORES_DESC_NONE;
1519 			res->child = NULL;
1520 			if (request_resource(parent, res) == 0)
1521 				reserved = x+1;
1522 		}
1523 	}
1524 	return 1;
1525 }
1526 __setup("reserve=", reserve_setup);
1527 
1528 /*
1529  * Check if the requested addr and size spans more than any slot in the
1530  * iomem resource tree.
1531  */
1532 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1533 {
1534 	struct resource *p = &iomem_resource;
1535 	int err = 0;
1536 	loff_t l;
1537 
1538 	read_lock(&resource_lock);
1539 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1540 		/*
1541 		 * We can probably skip the resources without
1542 		 * IORESOURCE_IO attribute?
1543 		 */
1544 		if (p->start >= addr + size)
1545 			continue;
1546 		if (p->end < addr)
1547 			continue;
1548 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1549 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1550 			continue;
1551 		/*
1552 		 * if a resource is "BUSY", it's not a hardware resource
1553 		 * but a driver mapping of such a resource; we don't want
1554 		 * to warn for those; some drivers legitimately map only
1555 		 * partial hardware resources. (example: vesafb)
1556 		 */
1557 		if (p->flags & IORESOURCE_BUSY)
1558 			continue;
1559 
1560 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1561 		       (unsigned long long)addr,
1562 		       (unsigned long long)(addr + size - 1),
1563 		       p->name, p);
1564 		err = -1;
1565 		break;
1566 	}
1567 	read_unlock(&resource_lock);
1568 
1569 	return err;
1570 }
1571 
1572 #ifdef CONFIG_STRICT_DEVMEM
1573 static int strict_iomem_checks = 1;
1574 #else
1575 static int strict_iomem_checks;
1576 #endif
1577 
1578 /*
1579  * check if an address is reserved in the iomem resource tree
1580  * returns true if reserved, false if not reserved.
1581  */
1582 bool iomem_is_exclusive(u64 addr)
1583 {
1584 	struct resource *p = &iomem_resource;
1585 	bool err = false;
1586 	loff_t l;
1587 	int size = PAGE_SIZE;
1588 
1589 	if (!strict_iomem_checks)
1590 		return false;
1591 
1592 	addr = addr & PAGE_MASK;
1593 
1594 	read_lock(&resource_lock);
1595 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1596 		/*
1597 		 * We can probably skip the resources without
1598 		 * IORESOURCE_IO attribute?
1599 		 */
1600 		if (p->start >= addr + size)
1601 			break;
1602 		if (p->end < addr)
1603 			continue;
1604 		/*
1605 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1606 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1607 		 * resource is busy.
1608 		 */
1609 		if ((p->flags & IORESOURCE_BUSY) == 0)
1610 			continue;
1611 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1612 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1613 			err = true;
1614 			break;
1615 		}
1616 	}
1617 	read_unlock(&resource_lock);
1618 
1619 	return err;
1620 }
1621 
1622 struct resource_entry *resource_list_create_entry(struct resource *res,
1623 						  size_t extra_size)
1624 {
1625 	struct resource_entry *entry;
1626 
1627 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1628 	if (entry) {
1629 		INIT_LIST_HEAD(&entry->node);
1630 		entry->res = res ? res : &entry->__res;
1631 	}
1632 
1633 	return entry;
1634 }
1635 EXPORT_SYMBOL(resource_list_create_entry);
1636 
1637 void resource_list_free(struct list_head *head)
1638 {
1639 	struct resource_entry *entry, *tmp;
1640 
1641 	list_for_each_entry_safe(entry, tmp, head, node)
1642 		resource_list_destroy_entry(entry);
1643 }
1644 EXPORT_SYMBOL(resource_list_free);
1645 
1646 #ifdef CONFIG_DEVICE_PRIVATE
1647 static struct resource *__request_free_mem_region(struct device *dev,
1648 		struct resource *base, unsigned long size, const char *name)
1649 {
1650 	resource_size_t end, addr;
1651 	struct resource *res;
1652 
1653 	size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1654 	end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1655 	addr = end - size + 1UL;
1656 
1657 	for (; addr > size && addr >= base->start; addr -= size) {
1658 		if (region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1659 				REGION_DISJOINT)
1660 			continue;
1661 
1662 		if (dev)
1663 			res = devm_request_mem_region(dev, addr, size, name);
1664 		else
1665 			res = request_mem_region(addr, size, name);
1666 		if (!res)
1667 			return ERR_PTR(-ENOMEM);
1668 		res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1669 		return res;
1670 	}
1671 
1672 	return ERR_PTR(-ERANGE);
1673 }
1674 
1675 /**
1676  * devm_request_free_mem_region - find free region for device private memory
1677  *
1678  * @dev: device struct to bind the resource to
1679  * @size: size in bytes of the device memory to add
1680  * @base: resource tree to look in
1681  *
1682  * This function tries to find an empty range of physical address big enough to
1683  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1684  * memory, which in turn allocates struct pages.
1685  */
1686 struct resource *devm_request_free_mem_region(struct device *dev,
1687 		struct resource *base, unsigned long size)
1688 {
1689 	return __request_free_mem_region(dev, base, size, dev_name(dev));
1690 }
1691 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1692 
1693 struct resource *request_free_mem_region(struct resource *base,
1694 		unsigned long size, const char *name)
1695 {
1696 	return __request_free_mem_region(NULL, base, size, name);
1697 }
1698 EXPORT_SYMBOL_GPL(request_free_mem_region);
1699 
1700 #endif /* CONFIG_DEVICE_PRIVATE */
1701 
1702 static int __init strict_iomem(char *str)
1703 {
1704 	if (strstr(str, "relaxed"))
1705 		strict_iomem_checks = 0;
1706 	if (strstr(str, "strict"))
1707 		strict_iomem_checks = 1;
1708 	return 1;
1709 }
1710 
1711 __setup("iomem=", strict_iomem);
1712