xref: /openbmc/linux/kernel/resource.c (revision 0a73d21e)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <linux/resource_ext.h>
26 #include <asm/io.h>
27 
28 
29 struct resource ioport_resource = {
30 	.name	= "PCI IO",
31 	.start	= 0,
32 	.end	= IO_SPACE_LIMIT,
33 	.flags	= IORESOURCE_IO,
34 };
35 EXPORT_SYMBOL(ioport_resource);
36 
37 struct resource iomem_resource = {
38 	.name	= "PCI mem",
39 	.start	= 0,
40 	.end	= -1,
41 	.flags	= IORESOURCE_MEM,
42 };
43 EXPORT_SYMBOL(iomem_resource);
44 
45 /* constraints to be met while allocating resources */
46 struct resource_constraint {
47 	resource_size_t min, max, align;
48 	resource_size_t (*alignf)(void *, const struct resource *,
49 			resource_size_t, resource_size_t);
50 	void *alignf_data;
51 };
52 
53 static DEFINE_RWLOCK(resource_lock);
54 
55 /*
56  * For memory hotplug, there is no way to free resource entries allocated
57  * by boot mem after the system is up. So for reusing the resource entry
58  * we need to remember the resource.
59  */
60 static struct resource *bootmem_resource_free;
61 static DEFINE_SPINLOCK(bootmem_resource_lock);
62 
63 static struct resource *next_resource(struct resource *p, bool sibling_only)
64 {
65 	/* Caller wants to traverse through siblings only */
66 	if (sibling_only)
67 		return p->sibling;
68 
69 	if (p->child)
70 		return p->child;
71 	while (!p->sibling && p->parent)
72 		p = p->parent;
73 	return p->sibling;
74 }
75 
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 	struct resource *p = v;
79 	(*pos)++;
80 	return (void *)next_resource(p, false);
81 }
82 
83 #ifdef CONFIG_PROC_FS
84 
85 enum { MAX_IORES_LEVEL = 5 };
86 
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 	__acquires(resource_lock)
89 {
90 	struct resource *p = m->private;
91 	loff_t l = 0;
92 	read_lock(&resource_lock);
93 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 		;
95 	return p;
96 }
97 
98 static void r_stop(struct seq_file *m, void *v)
99 	__releases(resource_lock)
100 {
101 	read_unlock(&resource_lock);
102 }
103 
104 static int r_show(struct seq_file *m, void *v)
105 {
106 	struct resource *root = m->private;
107 	struct resource *r = v, *p;
108 	unsigned long long start, end;
109 	int width = root->end < 0x10000 ? 4 : 8;
110 	int depth;
111 
112 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
113 		if (p->parent == root)
114 			break;
115 
116 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
117 		start = r->start;
118 		end = r->end;
119 	} else {
120 		start = end = 0;
121 	}
122 
123 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
124 			depth * 2, "",
125 			width, start,
126 			width, end,
127 			r->name ? r->name : "<BAD>");
128 	return 0;
129 }
130 
131 static const struct seq_operations resource_op = {
132 	.start	= r_start,
133 	.next	= r_next,
134 	.stop	= r_stop,
135 	.show	= r_show,
136 };
137 
138 static int ioports_open(struct inode *inode, struct file *file)
139 {
140 	int res = seq_open(file, &resource_op);
141 	if (!res) {
142 		struct seq_file *m = file->private_data;
143 		m->private = &ioport_resource;
144 	}
145 	return res;
146 }
147 
148 static int iomem_open(struct inode *inode, struct file *file)
149 {
150 	int res = seq_open(file, &resource_op);
151 	if (!res) {
152 		struct seq_file *m = file->private_data;
153 		m->private = &iomem_resource;
154 	}
155 	return res;
156 }
157 
158 static const struct file_operations proc_ioports_operations = {
159 	.open		= ioports_open,
160 	.read		= seq_read,
161 	.llseek		= seq_lseek,
162 	.release	= seq_release,
163 };
164 
165 static const struct file_operations proc_iomem_operations = {
166 	.open		= iomem_open,
167 	.read		= seq_read,
168 	.llseek		= seq_lseek,
169 	.release	= seq_release,
170 };
171 
172 static int __init ioresources_init(void)
173 {
174 	proc_create("ioports", 0, NULL, &proc_ioports_operations);
175 	proc_create("iomem", 0, NULL, &proc_iomem_operations);
176 	return 0;
177 }
178 __initcall(ioresources_init);
179 
180 #endif /* CONFIG_PROC_FS */
181 
182 static void free_resource(struct resource *res)
183 {
184 	if (!res)
185 		return;
186 
187 	if (!PageSlab(virt_to_head_page(res))) {
188 		spin_lock(&bootmem_resource_lock);
189 		res->sibling = bootmem_resource_free;
190 		bootmem_resource_free = res;
191 		spin_unlock(&bootmem_resource_lock);
192 	} else {
193 		kfree(res);
194 	}
195 }
196 
197 static struct resource *alloc_resource(gfp_t flags)
198 {
199 	struct resource *res = NULL;
200 
201 	spin_lock(&bootmem_resource_lock);
202 	if (bootmem_resource_free) {
203 		res = bootmem_resource_free;
204 		bootmem_resource_free = res->sibling;
205 	}
206 	spin_unlock(&bootmem_resource_lock);
207 
208 	if (res)
209 		memset(res, 0, sizeof(struct resource));
210 	else
211 		res = kzalloc(sizeof(struct resource), flags);
212 
213 	return res;
214 }
215 
216 /* Return the conflict entry if you can't request it */
217 static struct resource * __request_resource(struct resource *root, struct resource *new)
218 {
219 	resource_size_t start = new->start;
220 	resource_size_t end = new->end;
221 	struct resource *tmp, **p;
222 
223 	if (end < start)
224 		return root;
225 	if (start < root->start)
226 		return root;
227 	if (end > root->end)
228 		return root;
229 	p = &root->child;
230 	for (;;) {
231 		tmp = *p;
232 		if (!tmp || tmp->start > end) {
233 			new->sibling = tmp;
234 			*p = new;
235 			new->parent = root;
236 			return NULL;
237 		}
238 		p = &tmp->sibling;
239 		if (tmp->end < start)
240 			continue;
241 		return tmp;
242 	}
243 }
244 
245 static int __release_resource(struct resource *old, bool release_child)
246 {
247 	struct resource *tmp, **p, *chd;
248 
249 	p = &old->parent->child;
250 	for (;;) {
251 		tmp = *p;
252 		if (!tmp)
253 			break;
254 		if (tmp == old) {
255 			if (release_child || !(tmp->child)) {
256 				*p = tmp->sibling;
257 			} else {
258 				for (chd = tmp->child;; chd = chd->sibling) {
259 					chd->parent = tmp->parent;
260 					if (!(chd->sibling))
261 						break;
262 				}
263 				*p = tmp->child;
264 				chd->sibling = tmp->sibling;
265 			}
266 			old->parent = NULL;
267 			return 0;
268 		}
269 		p = &tmp->sibling;
270 	}
271 	return -EINVAL;
272 }
273 
274 static void __release_child_resources(struct resource *r)
275 {
276 	struct resource *tmp, *p;
277 	resource_size_t size;
278 
279 	p = r->child;
280 	r->child = NULL;
281 	while (p) {
282 		tmp = p;
283 		p = p->sibling;
284 
285 		tmp->parent = NULL;
286 		tmp->sibling = NULL;
287 		__release_child_resources(tmp);
288 
289 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
290 		/* need to restore size, and keep flags */
291 		size = resource_size(tmp);
292 		tmp->start = 0;
293 		tmp->end = size - 1;
294 	}
295 }
296 
297 void release_child_resources(struct resource *r)
298 {
299 	write_lock(&resource_lock);
300 	__release_child_resources(r);
301 	write_unlock(&resource_lock);
302 }
303 
304 /**
305  * request_resource_conflict - request and reserve an I/O or memory resource
306  * @root: root resource descriptor
307  * @new: resource descriptor desired by caller
308  *
309  * Returns 0 for success, conflict resource on error.
310  */
311 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
312 {
313 	struct resource *conflict;
314 
315 	write_lock(&resource_lock);
316 	conflict = __request_resource(root, new);
317 	write_unlock(&resource_lock);
318 	return conflict;
319 }
320 
321 /**
322  * request_resource - request and reserve an I/O or memory resource
323  * @root: root resource descriptor
324  * @new: resource descriptor desired by caller
325  *
326  * Returns 0 for success, negative error code on error.
327  */
328 int request_resource(struct resource *root, struct resource *new)
329 {
330 	struct resource *conflict;
331 
332 	conflict = request_resource_conflict(root, new);
333 	return conflict ? -EBUSY : 0;
334 }
335 
336 EXPORT_SYMBOL(request_resource);
337 
338 /**
339  * release_resource - release a previously reserved resource
340  * @old: resource pointer
341  */
342 int release_resource(struct resource *old)
343 {
344 	int retval;
345 
346 	write_lock(&resource_lock);
347 	retval = __release_resource(old, true);
348 	write_unlock(&resource_lock);
349 	return retval;
350 }
351 
352 EXPORT_SYMBOL(release_resource);
353 
354 /*
355  * Finds the lowest iomem resource existing within [res->start.res->end).
356  * The caller must specify res->start, res->end, res->flags, and optionally
357  * desc.  If found, returns 0, res is overwritten, if not found, returns -1.
358  * This function walks the whole tree and not just first level children until
359  * and unless first_level_children_only is true.
360  */
361 static int find_next_iomem_res(struct resource *res, unsigned long desc,
362 			       bool first_level_children_only)
363 {
364 	resource_size_t start, end;
365 	struct resource *p;
366 	bool sibling_only = false;
367 
368 	BUG_ON(!res);
369 
370 	start = res->start;
371 	end = res->end;
372 	BUG_ON(start >= end);
373 
374 	if (first_level_children_only)
375 		sibling_only = true;
376 
377 	read_lock(&resource_lock);
378 
379 	for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
380 		if ((p->flags & res->flags) != res->flags)
381 			continue;
382 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
383 			continue;
384 		if (p->start > end) {
385 			p = NULL;
386 			break;
387 		}
388 		if ((p->end >= start) && (p->start < end))
389 			break;
390 	}
391 
392 	read_unlock(&resource_lock);
393 	if (!p)
394 		return -1;
395 	/* copy data */
396 	if (res->start < p->start)
397 		res->start = p->start;
398 	if (res->end > p->end)
399 		res->end = p->end;
400 	res->flags = p->flags;
401 	res->desc = p->desc;
402 	return 0;
403 }
404 
405 static int __walk_iomem_res_desc(struct resource *res, unsigned long desc,
406 				 bool first_level_children_only,
407 				 void *arg,
408 				 int (*func)(struct resource *, void *))
409 {
410 	u64 orig_end = res->end;
411 	int ret = -1;
412 
413 	while ((res->start < res->end) &&
414 	       !find_next_iomem_res(res, desc, first_level_children_only)) {
415 		ret = (*func)(res, arg);
416 		if (ret)
417 			break;
418 
419 		res->start = res->end + 1;
420 		res->end = orig_end;
421 	}
422 
423 	return ret;
424 }
425 
426 /*
427  * Walks through iomem resources and calls func() with matching resource
428  * ranges. This walks through whole tree and not just first level children.
429  * All the memory ranges which overlap start,end and also match flags and
430  * desc are valid candidates.
431  *
432  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
433  * @flags: I/O resource flags
434  * @start: start addr
435  * @end: end addr
436  *
437  * NOTE: For a new descriptor search, define a new IORES_DESC in
438  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
439  */
440 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
441 		u64 end, void *arg, int (*func)(struct resource *, void *))
442 {
443 	struct resource res;
444 
445 	res.start = start;
446 	res.end = end;
447 	res.flags = flags;
448 
449 	return __walk_iomem_res_desc(&res, desc, false, arg, func);
450 }
451 
452 /*
453  * This function calls the @func callback against all memory ranges of type
454  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
455  * Now, this function is only for System RAM, it deals with full ranges and
456  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
457  * ranges.
458  */
459 int walk_system_ram_res(u64 start, u64 end, void *arg,
460 				int (*func)(struct resource *, void *))
461 {
462 	struct resource res;
463 
464 	res.start = start;
465 	res.end = end;
466 	res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
467 
468 	return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true,
469 				     arg, func);
470 }
471 
472 /*
473  * This function calls the @func callback against all memory ranges, which
474  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
475  */
476 int walk_mem_res(u64 start, u64 end, void *arg,
477 		 int (*func)(struct resource *, void *))
478 {
479 	struct resource res;
480 
481 	res.start = start;
482 	res.end = end;
483 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
484 
485 	return __walk_iomem_res_desc(&res, IORES_DESC_NONE, true,
486 				     arg, func);
487 }
488 
489 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
490 
491 /*
492  * This function calls the @func callback against all memory ranges of type
493  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
494  * It is to be used only for System RAM.
495  */
496 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
497 		void *arg, int (*func)(unsigned long, unsigned long, void *))
498 {
499 	struct resource res;
500 	unsigned long pfn, end_pfn;
501 	u64 orig_end;
502 	int ret = -1;
503 
504 	res.start = (u64) start_pfn << PAGE_SHIFT;
505 	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
506 	res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
507 	orig_end = res.end;
508 	while ((res.start < res.end) &&
509 		(find_next_iomem_res(&res, IORES_DESC_NONE, true) >= 0)) {
510 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
511 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
512 		if (end_pfn > pfn)
513 			ret = (*func)(pfn, end_pfn - pfn, arg);
514 		if (ret)
515 			break;
516 		res.start = res.end + 1;
517 		res.end = orig_end;
518 	}
519 	return ret;
520 }
521 
522 #endif
523 
524 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
525 {
526 	return 1;
527 }
528 
529 /*
530  * This generic page_is_ram() returns true if specified address is
531  * registered as System RAM in iomem_resource list.
532  */
533 int __weak page_is_ram(unsigned long pfn)
534 {
535 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
536 }
537 EXPORT_SYMBOL_GPL(page_is_ram);
538 
539 /**
540  * region_intersects() - determine intersection of region with known resources
541  * @start: region start address
542  * @size: size of region
543  * @flags: flags of resource (in iomem_resource)
544  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
545  *
546  * Check if the specified region partially overlaps or fully eclipses a
547  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
548  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
549  * return REGION_MIXED if the region overlaps @flags/@desc and another
550  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
551  * and no other defined resource. Note that REGION_INTERSECTS is also
552  * returned in the case when the specified region overlaps RAM and undefined
553  * memory holes.
554  *
555  * region_intersect() is used by memory remapping functions to ensure
556  * the user is not remapping RAM and is a vast speed up over walking
557  * through the resource table page by page.
558  */
559 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
560 		      unsigned long desc)
561 {
562 	resource_size_t end = start + size - 1;
563 	int type = 0; int other = 0;
564 	struct resource *p;
565 
566 	read_lock(&resource_lock);
567 	for (p = iomem_resource.child; p ; p = p->sibling) {
568 		bool is_type = (((p->flags & flags) == flags) &&
569 				((desc == IORES_DESC_NONE) ||
570 				 (desc == p->desc)));
571 
572 		if (start >= p->start && start <= p->end)
573 			is_type ? type++ : other++;
574 		if (end >= p->start && end <= p->end)
575 			is_type ? type++ : other++;
576 		if (p->start >= start && p->end <= end)
577 			is_type ? type++ : other++;
578 	}
579 	read_unlock(&resource_lock);
580 
581 	if (other == 0)
582 		return type ? REGION_INTERSECTS : REGION_DISJOINT;
583 
584 	if (type)
585 		return REGION_MIXED;
586 
587 	return REGION_DISJOINT;
588 }
589 EXPORT_SYMBOL_GPL(region_intersects);
590 
591 void __weak arch_remove_reservations(struct resource *avail)
592 {
593 }
594 
595 static resource_size_t simple_align_resource(void *data,
596 					     const struct resource *avail,
597 					     resource_size_t size,
598 					     resource_size_t align)
599 {
600 	return avail->start;
601 }
602 
603 static void resource_clip(struct resource *res, resource_size_t min,
604 			  resource_size_t max)
605 {
606 	if (res->start < min)
607 		res->start = min;
608 	if (res->end > max)
609 		res->end = max;
610 }
611 
612 /*
613  * Find empty slot in the resource tree with the given range and
614  * alignment constraints
615  */
616 static int __find_resource(struct resource *root, struct resource *old,
617 			 struct resource *new,
618 			 resource_size_t  size,
619 			 struct resource_constraint *constraint)
620 {
621 	struct resource *this = root->child;
622 	struct resource tmp = *new, avail, alloc;
623 
624 	tmp.start = root->start;
625 	/*
626 	 * Skip past an allocated resource that starts at 0, since the assignment
627 	 * of this->start - 1 to tmp->end below would cause an underflow.
628 	 */
629 	if (this && this->start == root->start) {
630 		tmp.start = (this == old) ? old->start : this->end + 1;
631 		this = this->sibling;
632 	}
633 	for(;;) {
634 		if (this)
635 			tmp.end = (this == old) ?  this->end : this->start - 1;
636 		else
637 			tmp.end = root->end;
638 
639 		if (tmp.end < tmp.start)
640 			goto next;
641 
642 		resource_clip(&tmp, constraint->min, constraint->max);
643 		arch_remove_reservations(&tmp);
644 
645 		/* Check for overflow after ALIGN() */
646 		avail.start = ALIGN(tmp.start, constraint->align);
647 		avail.end = tmp.end;
648 		avail.flags = new->flags & ~IORESOURCE_UNSET;
649 		if (avail.start >= tmp.start) {
650 			alloc.flags = avail.flags;
651 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
652 					size, constraint->align);
653 			alloc.end = alloc.start + size - 1;
654 			if (resource_contains(&avail, &alloc)) {
655 				new->start = alloc.start;
656 				new->end = alloc.end;
657 				return 0;
658 			}
659 		}
660 
661 next:		if (!this || this->end == root->end)
662 			break;
663 
664 		if (this != old)
665 			tmp.start = this->end + 1;
666 		this = this->sibling;
667 	}
668 	return -EBUSY;
669 }
670 
671 /*
672  * Find empty slot in the resource tree given range and alignment.
673  */
674 static int find_resource(struct resource *root, struct resource *new,
675 			resource_size_t size,
676 			struct resource_constraint  *constraint)
677 {
678 	return  __find_resource(root, NULL, new, size, constraint);
679 }
680 
681 /**
682  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
683  *	The resource will be relocated if the new size cannot be reallocated in the
684  *	current location.
685  *
686  * @root: root resource descriptor
687  * @old:  resource descriptor desired by caller
688  * @newsize: new size of the resource descriptor
689  * @constraint: the size and alignment constraints to be met.
690  */
691 static int reallocate_resource(struct resource *root, struct resource *old,
692 			resource_size_t newsize,
693 			struct resource_constraint  *constraint)
694 {
695 	int err=0;
696 	struct resource new = *old;
697 	struct resource *conflict;
698 
699 	write_lock(&resource_lock);
700 
701 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
702 		goto out;
703 
704 	if (resource_contains(&new, old)) {
705 		old->start = new.start;
706 		old->end = new.end;
707 		goto out;
708 	}
709 
710 	if (old->child) {
711 		err = -EBUSY;
712 		goto out;
713 	}
714 
715 	if (resource_contains(old, &new)) {
716 		old->start = new.start;
717 		old->end = new.end;
718 	} else {
719 		__release_resource(old, true);
720 		*old = new;
721 		conflict = __request_resource(root, old);
722 		BUG_ON(conflict);
723 	}
724 out:
725 	write_unlock(&resource_lock);
726 	return err;
727 }
728 
729 
730 /**
731  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
732  * 	The resource will be reallocated with a new size if it was already allocated
733  * @root: root resource descriptor
734  * @new: resource descriptor desired by caller
735  * @size: requested resource region size
736  * @min: minimum boundary to allocate
737  * @max: maximum boundary to allocate
738  * @align: alignment requested, in bytes
739  * @alignf: alignment function, optional, called if not NULL
740  * @alignf_data: arbitrary data to pass to the @alignf function
741  */
742 int allocate_resource(struct resource *root, struct resource *new,
743 		      resource_size_t size, resource_size_t min,
744 		      resource_size_t max, resource_size_t align,
745 		      resource_size_t (*alignf)(void *,
746 						const struct resource *,
747 						resource_size_t,
748 						resource_size_t),
749 		      void *alignf_data)
750 {
751 	int err;
752 	struct resource_constraint constraint;
753 
754 	if (!alignf)
755 		alignf = simple_align_resource;
756 
757 	constraint.min = min;
758 	constraint.max = max;
759 	constraint.align = align;
760 	constraint.alignf = alignf;
761 	constraint.alignf_data = alignf_data;
762 
763 	if ( new->parent ) {
764 		/* resource is already allocated, try reallocating with
765 		   the new constraints */
766 		return reallocate_resource(root, new, size, &constraint);
767 	}
768 
769 	write_lock(&resource_lock);
770 	err = find_resource(root, new, size, &constraint);
771 	if (err >= 0 && __request_resource(root, new))
772 		err = -EBUSY;
773 	write_unlock(&resource_lock);
774 	return err;
775 }
776 
777 EXPORT_SYMBOL(allocate_resource);
778 
779 /**
780  * lookup_resource - find an existing resource by a resource start address
781  * @root: root resource descriptor
782  * @start: resource start address
783  *
784  * Returns a pointer to the resource if found, NULL otherwise
785  */
786 struct resource *lookup_resource(struct resource *root, resource_size_t start)
787 {
788 	struct resource *res;
789 
790 	read_lock(&resource_lock);
791 	for (res = root->child; res; res = res->sibling) {
792 		if (res->start == start)
793 			break;
794 	}
795 	read_unlock(&resource_lock);
796 
797 	return res;
798 }
799 
800 /*
801  * Insert a resource into the resource tree. If successful, return NULL,
802  * otherwise return the conflicting resource (compare to __request_resource())
803  */
804 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
805 {
806 	struct resource *first, *next;
807 
808 	for (;; parent = first) {
809 		first = __request_resource(parent, new);
810 		if (!first)
811 			return first;
812 
813 		if (first == parent)
814 			return first;
815 		if (WARN_ON(first == new))	/* duplicated insertion */
816 			return first;
817 
818 		if ((first->start > new->start) || (first->end < new->end))
819 			break;
820 		if ((first->start == new->start) && (first->end == new->end))
821 			break;
822 	}
823 
824 	for (next = first; ; next = next->sibling) {
825 		/* Partial overlap? Bad, and unfixable */
826 		if (next->start < new->start || next->end > new->end)
827 			return next;
828 		if (!next->sibling)
829 			break;
830 		if (next->sibling->start > new->end)
831 			break;
832 	}
833 
834 	new->parent = parent;
835 	new->sibling = next->sibling;
836 	new->child = first;
837 
838 	next->sibling = NULL;
839 	for (next = first; next; next = next->sibling)
840 		next->parent = new;
841 
842 	if (parent->child == first) {
843 		parent->child = new;
844 	} else {
845 		next = parent->child;
846 		while (next->sibling != first)
847 			next = next->sibling;
848 		next->sibling = new;
849 	}
850 	return NULL;
851 }
852 
853 /**
854  * insert_resource_conflict - Inserts resource in the resource tree
855  * @parent: parent of the new resource
856  * @new: new resource to insert
857  *
858  * Returns 0 on success, conflict resource if the resource can't be inserted.
859  *
860  * This function is equivalent to request_resource_conflict when no conflict
861  * happens. If a conflict happens, and the conflicting resources
862  * entirely fit within the range of the new resource, then the new
863  * resource is inserted and the conflicting resources become children of
864  * the new resource.
865  *
866  * This function is intended for producers of resources, such as FW modules
867  * and bus drivers.
868  */
869 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
870 {
871 	struct resource *conflict;
872 
873 	write_lock(&resource_lock);
874 	conflict = __insert_resource(parent, new);
875 	write_unlock(&resource_lock);
876 	return conflict;
877 }
878 
879 /**
880  * insert_resource - Inserts a resource in the resource tree
881  * @parent: parent of the new resource
882  * @new: new resource to insert
883  *
884  * Returns 0 on success, -EBUSY if the resource can't be inserted.
885  *
886  * This function is intended for producers of resources, such as FW modules
887  * and bus drivers.
888  */
889 int insert_resource(struct resource *parent, struct resource *new)
890 {
891 	struct resource *conflict;
892 
893 	conflict = insert_resource_conflict(parent, new);
894 	return conflict ? -EBUSY : 0;
895 }
896 EXPORT_SYMBOL_GPL(insert_resource);
897 
898 /**
899  * insert_resource_expand_to_fit - Insert a resource into the resource tree
900  * @root: root resource descriptor
901  * @new: new resource to insert
902  *
903  * Insert a resource into the resource tree, possibly expanding it in order
904  * to make it encompass any conflicting resources.
905  */
906 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
907 {
908 	if (new->parent)
909 		return;
910 
911 	write_lock(&resource_lock);
912 	for (;;) {
913 		struct resource *conflict;
914 
915 		conflict = __insert_resource(root, new);
916 		if (!conflict)
917 			break;
918 		if (conflict == root)
919 			break;
920 
921 		/* Ok, expand resource to cover the conflict, then try again .. */
922 		if (conflict->start < new->start)
923 			new->start = conflict->start;
924 		if (conflict->end > new->end)
925 			new->end = conflict->end;
926 
927 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
928 	}
929 	write_unlock(&resource_lock);
930 }
931 
932 /**
933  * remove_resource - Remove a resource in the resource tree
934  * @old: resource to remove
935  *
936  * Returns 0 on success, -EINVAL if the resource is not valid.
937  *
938  * This function removes a resource previously inserted by insert_resource()
939  * or insert_resource_conflict(), and moves the children (if any) up to
940  * where they were before.  insert_resource() and insert_resource_conflict()
941  * insert a new resource, and move any conflicting resources down to the
942  * children of the new resource.
943  *
944  * insert_resource(), insert_resource_conflict() and remove_resource() are
945  * intended for producers of resources, such as FW modules and bus drivers.
946  */
947 int remove_resource(struct resource *old)
948 {
949 	int retval;
950 
951 	write_lock(&resource_lock);
952 	retval = __release_resource(old, false);
953 	write_unlock(&resource_lock);
954 	return retval;
955 }
956 EXPORT_SYMBOL_GPL(remove_resource);
957 
958 static int __adjust_resource(struct resource *res, resource_size_t start,
959 				resource_size_t size)
960 {
961 	struct resource *tmp, *parent = res->parent;
962 	resource_size_t end = start + size - 1;
963 	int result = -EBUSY;
964 
965 	if (!parent)
966 		goto skip;
967 
968 	if ((start < parent->start) || (end > parent->end))
969 		goto out;
970 
971 	if (res->sibling && (res->sibling->start <= end))
972 		goto out;
973 
974 	tmp = parent->child;
975 	if (tmp != res) {
976 		while (tmp->sibling != res)
977 			tmp = tmp->sibling;
978 		if (start <= tmp->end)
979 			goto out;
980 	}
981 
982 skip:
983 	for (tmp = res->child; tmp; tmp = tmp->sibling)
984 		if ((tmp->start < start) || (tmp->end > end))
985 			goto out;
986 
987 	res->start = start;
988 	res->end = end;
989 	result = 0;
990 
991  out:
992 	return result;
993 }
994 
995 /**
996  * adjust_resource - modify a resource's start and size
997  * @res: resource to modify
998  * @start: new start value
999  * @size: new size
1000  *
1001  * Given an existing resource, change its start and size to match the
1002  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1003  * Existing children of the resource are assumed to be immutable.
1004  */
1005 int adjust_resource(struct resource *res, resource_size_t start,
1006 			resource_size_t size)
1007 {
1008 	int result;
1009 
1010 	write_lock(&resource_lock);
1011 	result = __adjust_resource(res, start, size);
1012 	write_unlock(&resource_lock);
1013 	return result;
1014 }
1015 EXPORT_SYMBOL(adjust_resource);
1016 
1017 static void __init __reserve_region_with_split(struct resource *root,
1018 		resource_size_t start, resource_size_t end,
1019 		const char *name)
1020 {
1021 	struct resource *parent = root;
1022 	struct resource *conflict;
1023 	struct resource *res = alloc_resource(GFP_ATOMIC);
1024 	struct resource *next_res = NULL;
1025 	int type = resource_type(root);
1026 
1027 	if (!res)
1028 		return;
1029 
1030 	res->name = name;
1031 	res->start = start;
1032 	res->end = end;
1033 	res->flags = type | IORESOURCE_BUSY;
1034 	res->desc = IORES_DESC_NONE;
1035 
1036 	while (1) {
1037 
1038 		conflict = __request_resource(parent, res);
1039 		if (!conflict) {
1040 			if (!next_res)
1041 				break;
1042 			res = next_res;
1043 			next_res = NULL;
1044 			continue;
1045 		}
1046 
1047 		/* conflict covered whole area */
1048 		if (conflict->start <= res->start &&
1049 				conflict->end >= res->end) {
1050 			free_resource(res);
1051 			WARN_ON(next_res);
1052 			break;
1053 		}
1054 
1055 		/* failed, split and try again */
1056 		if (conflict->start > res->start) {
1057 			end = res->end;
1058 			res->end = conflict->start - 1;
1059 			if (conflict->end < end) {
1060 				next_res = alloc_resource(GFP_ATOMIC);
1061 				if (!next_res) {
1062 					free_resource(res);
1063 					break;
1064 				}
1065 				next_res->name = name;
1066 				next_res->start = conflict->end + 1;
1067 				next_res->end = end;
1068 				next_res->flags = type | IORESOURCE_BUSY;
1069 				next_res->desc = IORES_DESC_NONE;
1070 			}
1071 		} else {
1072 			res->start = conflict->end + 1;
1073 		}
1074 	}
1075 
1076 }
1077 
1078 void __init reserve_region_with_split(struct resource *root,
1079 		resource_size_t start, resource_size_t end,
1080 		const char *name)
1081 {
1082 	int abort = 0;
1083 
1084 	write_lock(&resource_lock);
1085 	if (root->start > start || root->end < end) {
1086 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1087 		       (unsigned long long)start, (unsigned long long)end,
1088 		       root);
1089 		if (start > root->end || end < root->start)
1090 			abort = 1;
1091 		else {
1092 			if (end > root->end)
1093 				end = root->end;
1094 			if (start < root->start)
1095 				start = root->start;
1096 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1097 			       (unsigned long long)start,
1098 			       (unsigned long long)end);
1099 		}
1100 		dump_stack();
1101 	}
1102 	if (!abort)
1103 		__reserve_region_with_split(root, start, end, name);
1104 	write_unlock(&resource_lock);
1105 }
1106 
1107 /**
1108  * resource_alignment - calculate resource's alignment
1109  * @res: resource pointer
1110  *
1111  * Returns alignment on success, 0 (invalid alignment) on failure.
1112  */
1113 resource_size_t resource_alignment(struct resource *res)
1114 {
1115 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1116 	case IORESOURCE_SIZEALIGN:
1117 		return resource_size(res);
1118 	case IORESOURCE_STARTALIGN:
1119 		return res->start;
1120 	default:
1121 		return 0;
1122 	}
1123 }
1124 
1125 /*
1126  * This is compatibility stuff for IO resources.
1127  *
1128  * Note how this, unlike the above, knows about
1129  * the IO flag meanings (busy etc).
1130  *
1131  * request_region creates a new busy region.
1132  *
1133  * release_region releases a matching busy region.
1134  */
1135 
1136 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1137 
1138 /**
1139  * __request_region - create a new busy resource region
1140  * @parent: parent resource descriptor
1141  * @start: resource start address
1142  * @n: resource region size
1143  * @name: reserving caller's ID string
1144  * @flags: IO resource flags
1145  */
1146 struct resource * __request_region(struct resource *parent,
1147 				   resource_size_t start, resource_size_t n,
1148 				   const char *name, int flags)
1149 {
1150 	DECLARE_WAITQUEUE(wait, current);
1151 	struct resource *res = alloc_resource(GFP_KERNEL);
1152 
1153 	if (!res)
1154 		return NULL;
1155 
1156 	res->name = name;
1157 	res->start = start;
1158 	res->end = start + n - 1;
1159 
1160 	write_lock(&resource_lock);
1161 
1162 	for (;;) {
1163 		struct resource *conflict;
1164 
1165 		res->flags = resource_type(parent) | resource_ext_type(parent);
1166 		res->flags |= IORESOURCE_BUSY | flags;
1167 		res->desc = parent->desc;
1168 
1169 		conflict = __request_resource(parent, res);
1170 		if (!conflict)
1171 			break;
1172 		if (conflict != parent) {
1173 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1174 				parent = conflict;
1175 				continue;
1176 			}
1177 		}
1178 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1179 			add_wait_queue(&muxed_resource_wait, &wait);
1180 			write_unlock(&resource_lock);
1181 			set_current_state(TASK_UNINTERRUPTIBLE);
1182 			schedule();
1183 			remove_wait_queue(&muxed_resource_wait, &wait);
1184 			write_lock(&resource_lock);
1185 			continue;
1186 		}
1187 		/* Uhhuh, that didn't work out.. */
1188 		free_resource(res);
1189 		res = NULL;
1190 		break;
1191 	}
1192 	write_unlock(&resource_lock);
1193 	return res;
1194 }
1195 EXPORT_SYMBOL(__request_region);
1196 
1197 /**
1198  * __release_region - release a previously reserved resource region
1199  * @parent: parent resource descriptor
1200  * @start: resource start address
1201  * @n: resource region size
1202  *
1203  * The described resource region must match a currently busy region.
1204  */
1205 void __release_region(struct resource *parent, resource_size_t start,
1206 			resource_size_t n)
1207 {
1208 	struct resource **p;
1209 	resource_size_t end;
1210 
1211 	p = &parent->child;
1212 	end = start + n - 1;
1213 
1214 	write_lock(&resource_lock);
1215 
1216 	for (;;) {
1217 		struct resource *res = *p;
1218 
1219 		if (!res)
1220 			break;
1221 		if (res->start <= start && res->end >= end) {
1222 			if (!(res->flags & IORESOURCE_BUSY)) {
1223 				p = &res->child;
1224 				continue;
1225 			}
1226 			if (res->start != start || res->end != end)
1227 				break;
1228 			*p = res->sibling;
1229 			write_unlock(&resource_lock);
1230 			if (res->flags & IORESOURCE_MUXED)
1231 				wake_up(&muxed_resource_wait);
1232 			free_resource(res);
1233 			return;
1234 		}
1235 		p = &res->sibling;
1236 	}
1237 
1238 	write_unlock(&resource_lock);
1239 
1240 	printk(KERN_WARNING "Trying to free nonexistent resource "
1241 		"<%016llx-%016llx>\n", (unsigned long long)start,
1242 		(unsigned long long)end);
1243 }
1244 EXPORT_SYMBOL(__release_region);
1245 
1246 #ifdef CONFIG_MEMORY_HOTREMOVE
1247 /**
1248  * release_mem_region_adjustable - release a previously reserved memory region
1249  * @parent: parent resource descriptor
1250  * @start: resource start address
1251  * @size: resource region size
1252  *
1253  * This interface is intended for memory hot-delete.  The requested region
1254  * is released from a currently busy memory resource.  The requested region
1255  * must either match exactly or fit into a single busy resource entry.  In
1256  * the latter case, the remaining resource is adjusted accordingly.
1257  * Existing children of the busy memory resource must be immutable in the
1258  * request.
1259  *
1260  * Note:
1261  * - Additional release conditions, such as overlapping region, can be
1262  *   supported after they are confirmed as valid cases.
1263  * - When a busy memory resource gets split into two entries, the code
1264  *   assumes that all children remain in the lower address entry for
1265  *   simplicity.  Enhance this logic when necessary.
1266  */
1267 int release_mem_region_adjustable(struct resource *parent,
1268 			resource_size_t start, resource_size_t size)
1269 {
1270 	struct resource **p;
1271 	struct resource *res;
1272 	struct resource *new_res;
1273 	resource_size_t end;
1274 	int ret = -EINVAL;
1275 
1276 	end = start + size - 1;
1277 	if ((start < parent->start) || (end > parent->end))
1278 		return ret;
1279 
1280 	/* The alloc_resource() result gets checked later */
1281 	new_res = alloc_resource(GFP_KERNEL);
1282 
1283 	p = &parent->child;
1284 	write_lock(&resource_lock);
1285 
1286 	while ((res = *p)) {
1287 		if (res->start >= end)
1288 			break;
1289 
1290 		/* look for the next resource if it does not fit into */
1291 		if (res->start > start || res->end < end) {
1292 			p = &res->sibling;
1293 			continue;
1294 		}
1295 
1296 		if (!(res->flags & IORESOURCE_MEM))
1297 			break;
1298 
1299 		if (!(res->flags & IORESOURCE_BUSY)) {
1300 			p = &res->child;
1301 			continue;
1302 		}
1303 
1304 		/* found the target resource; let's adjust accordingly */
1305 		if (res->start == start && res->end == end) {
1306 			/* free the whole entry */
1307 			*p = res->sibling;
1308 			free_resource(res);
1309 			ret = 0;
1310 		} else if (res->start == start && res->end != end) {
1311 			/* adjust the start */
1312 			ret = __adjust_resource(res, end + 1,
1313 						res->end - end);
1314 		} else if (res->start != start && res->end == end) {
1315 			/* adjust the end */
1316 			ret = __adjust_resource(res, res->start,
1317 						start - res->start);
1318 		} else {
1319 			/* split into two entries */
1320 			if (!new_res) {
1321 				ret = -ENOMEM;
1322 				break;
1323 			}
1324 			new_res->name = res->name;
1325 			new_res->start = end + 1;
1326 			new_res->end = res->end;
1327 			new_res->flags = res->flags;
1328 			new_res->desc = res->desc;
1329 			new_res->parent = res->parent;
1330 			new_res->sibling = res->sibling;
1331 			new_res->child = NULL;
1332 
1333 			ret = __adjust_resource(res, res->start,
1334 						start - res->start);
1335 			if (ret)
1336 				break;
1337 			res->sibling = new_res;
1338 			new_res = NULL;
1339 		}
1340 
1341 		break;
1342 	}
1343 
1344 	write_unlock(&resource_lock);
1345 	free_resource(new_res);
1346 	return ret;
1347 }
1348 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1349 
1350 /*
1351  * Managed region resource
1352  */
1353 static void devm_resource_release(struct device *dev, void *ptr)
1354 {
1355 	struct resource **r = ptr;
1356 
1357 	release_resource(*r);
1358 }
1359 
1360 /**
1361  * devm_request_resource() - request and reserve an I/O or memory resource
1362  * @dev: device for which to request the resource
1363  * @root: root of the resource tree from which to request the resource
1364  * @new: descriptor of the resource to request
1365  *
1366  * This is a device-managed version of request_resource(). There is usually
1367  * no need to release resources requested by this function explicitly since
1368  * that will be taken care of when the device is unbound from its driver.
1369  * If for some reason the resource needs to be released explicitly, because
1370  * of ordering issues for example, drivers must call devm_release_resource()
1371  * rather than the regular release_resource().
1372  *
1373  * When a conflict is detected between any existing resources and the newly
1374  * requested resource, an error message will be printed.
1375  *
1376  * Returns 0 on success or a negative error code on failure.
1377  */
1378 int devm_request_resource(struct device *dev, struct resource *root,
1379 			  struct resource *new)
1380 {
1381 	struct resource *conflict, **ptr;
1382 
1383 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1384 	if (!ptr)
1385 		return -ENOMEM;
1386 
1387 	*ptr = new;
1388 
1389 	conflict = request_resource_conflict(root, new);
1390 	if (conflict) {
1391 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1392 			new, conflict->name, conflict);
1393 		devres_free(ptr);
1394 		return -EBUSY;
1395 	}
1396 
1397 	devres_add(dev, ptr);
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL(devm_request_resource);
1401 
1402 static int devm_resource_match(struct device *dev, void *res, void *data)
1403 {
1404 	struct resource **ptr = res;
1405 
1406 	return *ptr == data;
1407 }
1408 
1409 /**
1410  * devm_release_resource() - release a previously requested resource
1411  * @dev: device for which to release the resource
1412  * @new: descriptor of the resource to release
1413  *
1414  * Releases a resource previously requested using devm_request_resource().
1415  */
1416 void devm_release_resource(struct device *dev, struct resource *new)
1417 {
1418 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1419 			       new));
1420 }
1421 EXPORT_SYMBOL(devm_release_resource);
1422 
1423 struct region_devres {
1424 	struct resource *parent;
1425 	resource_size_t start;
1426 	resource_size_t n;
1427 };
1428 
1429 static void devm_region_release(struct device *dev, void *res)
1430 {
1431 	struct region_devres *this = res;
1432 
1433 	__release_region(this->parent, this->start, this->n);
1434 }
1435 
1436 static int devm_region_match(struct device *dev, void *res, void *match_data)
1437 {
1438 	struct region_devres *this = res, *match = match_data;
1439 
1440 	return this->parent == match->parent &&
1441 		this->start == match->start && this->n == match->n;
1442 }
1443 
1444 struct resource * __devm_request_region(struct device *dev,
1445 				struct resource *parent, resource_size_t start,
1446 				resource_size_t n, const char *name)
1447 {
1448 	struct region_devres *dr = NULL;
1449 	struct resource *res;
1450 
1451 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1452 			  GFP_KERNEL);
1453 	if (!dr)
1454 		return NULL;
1455 
1456 	dr->parent = parent;
1457 	dr->start = start;
1458 	dr->n = n;
1459 
1460 	res = __request_region(parent, start, n, name, 0);
1461 	if (res)
1462 		devres_add(dev, dr);
1463 	else
1464 		devres_free(dr);
1465 
1466 	return res;
1467 }
1468 EXPORT_SYMBOL(__devm_request_region);
1469 
1470 void __devm_release_region(struct device *dev, struct resource *parent,
1471 			   resource_size_t start, resource_size_t n)
1472 {
1473 	struct region_devres match_data = { parent, start, n };
1474 
1475 	__release_region(parent, start, n);
1476 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1477 			       &match_data));
1478 }
1479 EXPORT_SYMBOL(__devm_release_region);
1480 
1481 /*
1482  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1483  */
1484 #define MAXRESERVE 4
1485 static int __init reserve_setup(char *str)
1486 {
1487 	static int reserved;
1488 	static struct resource reserve[MAXRESERVE];
1489 
1490 	for (;;) {
1491 		unsigned int io_start, io_num;
1492 		int x = reserved;
1493 		struct resource *parent;
1494 
1495 		if (get_option(&str, &io_start) != 2)
1496 			break;
1497 		if (get_option(&str, &io_num) == 0)
1498 			break;
1499 		if (x < MAXRESERVE) {
1500 			struct resource *res = reserve + x;
1501 
1502 			/*
1503 			 * If the region starts below 0x10000, we assume it's
1504 			 * I/O port space; otherwise assume it's memory.
1505 			 */
1506 			if (io_start < 0x10000) {
1507 				res->flags = IORESOURCE_IO;
1508 				parent = &ioport_resource;
1509 			} else {
1510 				res->flags = IORESOURCE_MEM;
1511 				parent = &iomem_resource;
1512 			}
1513 			res->name = "reserved";
1514 			res->start = io_start;
1515 			res->end = io_start + io_num - 1;
1516 			res->flags |= IORESOURCE_BUSY;
1517 			res->desc = IORES_DESC_NONE;
1518 			res->child = NULL;
1519 			if (request_resource(parent, res) == 0)
1520 				reserved = x+1;
1521 		}
1522 	}
1523 	return 1;
1524 }
1525 __setup("reserve=", reserve_setup);
1526 
1527 /*
1528  * Check if the requested addr and size spans more than any slot in the
1529  * iomem resource tree.
1530  */
1531 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1532 {
1533 	struct resource *p = &iomem_resource;
1534 	int err = 0;
1535 	loff_t l;
1536 
1537 	read_lock(&resource_lock);
1538 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1539 		/*
1540 		 * We can probably skip the resources without
1541 		 * IORESOURCE_IO attribute?
1542 		 */
1543 		if (p->start >= addr + size)
1544 			continue;
1545 		if (p->end < addr)
1546 			continue;
1547 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1548 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1549 			continue;
1550 		/*
1551 		 * if a resource is "BUSY", it's not a hardware resource
1552 		 * but a driver mapping of such a resource; we don't want
1553 		 * to warn for those; some drivers legitimately map only
1554 		 * partial hardware resources. (example: vesafb)
1555 		 */
1556 		if (p->flags & IORESOURCE_BUSY)
1557 			continue;
1558 
1559 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1560 		       (unsigned long long)addr,
1561 		       (unsigned long long)(addr + size - 1),
1562 		       p->name, p);
1563 		err = -1;
1564 		break;
1565 	}
1566 	read_unlock(&resource_lock);
1567 
1568 	return err;
1569 }
1570 
1571 #ifdef CONFIG_STRICT_DEVMEM
1572 static int strict_iomem_checks = 1;
1573 #else
1574 static int strict_iomem_checks;
1575 #endif
1576 
1577 /*
1578  * check if an address is reserved in the iomem resource tree
1579  * returns true if reserved, false if not reserved.
1580  */
1581 bool iomem_is_exclusive(u64 addr)
1582 {
1583 	struct resource *p = &iomem_resource;
1584 	bool err = false;
1585 	loff_t l;
1586 	int size = PAGE_SIZE;
1587 
1588 	if (!strict_iomem_checks)
1589 		return false;
1590 
1591 	addr = addr & PAGE_MASK;
1592 
1593 	read_lock(&resource_lock);
1594 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1595 		/*
1596 		 * We can probably skip the resources without
1597 		 * IORESOURCE_IO attribute?
1598 		 */
1599 		if (p->start >= addr + size)
1600 			break;
1601 		if (p->end < addr)
1602 			continue;
1603 		/*
1604 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1605 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1606 		 * resource is busy.
1607 		 */
1608 		if ((p->flags & IORESOURCE_BUSY) == 0)
1609 			continue;
1610 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1611 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1612 			err = true;
1613 			break;
1614 		}
1615 	}
1616 	read_unlock(&resource_lock);
1617 
1618 	return err;
1619 }
1620 
1621 struct resource_entry *resource_list_create_entry(struct resource *res,
1622 						  size_t extra_size)
1623 {
1624 	struct resource_entry *entry;
1625 
1626 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1627 	if (entry) {
1628 		INIT_LIST_HEAD(&entry->node);
1629 		entry->res = res ? res : &entry->__res;
1630 	}
1631 
1632 	return entry;
1633 }
1634 EXPORT_SYMBOL(resource_list_create_entry);
1635 
1636 void resource_list_free(struct list_head *head)
1637 {
1638 	struct resource_entry *entry, *tmp;
1639 
1640 	list_for_each_entry_safe(entry, tmp, head, node)
1641 		resource_list_destroy_entry(entry);
1642 }
1643 EXPORT_SYMBOL(resource_list_free);
1644 
1645 static int __init strict_iomem(char *str)
1646 {
1647 	if (strstr(str, "relaxed"))
1648 		strict_iomem_checks = 0;
1649 	if (strstr(str, "strict"))
1650 		strict_iomem_checks = 1;
1651 	return 1;
1652 }
1653 
1654 __setup("iomem=", strict_iomem);
1655