xref: /openbmc/linux/kernel/resource.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <mj@ucw.cz>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <linux/resource_ext.h>
26 #include <asm/io.h>
27 
28 
29 struct resource ioport_resource = {
30 	.name	= "PCI IO",
31 	.start	= 0,
32 	.end	= IO_SPACE_LIMIT,
33 	.flags	= IORESOURCE_IO,
34 };
35 EXPORT_SYMBOL(ioport_resource);
36 
37 struct resource iomem_resource = {
38 	.name	= "PCI mem",
39 	.start	= 0,
40 	.end	= -1,
41 	.flags	= IORESOURCE_MEM,
42 };
43 EXPORT_SYMBOL(iomem_resource);
44 
45 /* constraints to be met while allocating resources */
46 struct resource_constraint {
47 	resource_size_t min, max, align;
48 	resource_size_t (*alignf)(void *, const struct resource *,
49 			resource_size_t, resource_size_t);
50 	void *alignf_data;
51 };
52 
53 static DEFINE_RWLOCK(resource_lock);
54 
55 /*
56  * For memory hotplug, there is no way to free resource entries allocated
57  * by boot mem after the system is up. So for reusing the resource entry
58  * we need to remember the resource.
59  */
60 static struct resource *bootmem_resource_free;
61 static DEFINE_SPINLOCK(bootmem_resource_lock);
62 
63 static struct resource *next_resource(struct resource *p, bool sibling_only)
64 {
65 	/* Caller wants to traverse through siblings only */
66 	if (sibling_only)
67 		return p->sibling;
68 
69 	if (p->child)
70 		return p->child;
71 	while (!p->sibling && p->parent)
72 		p = p->parent;
73 	return p->sibling;
74 }
75 
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 	struct resource *p = v;
79 	(*pos)++;
80 	return (void *)next_resource(p, false);
81 }
82 
83 #ifdef CONFIG_PROC_FS
84 
85 enum { MAX_IORES_LEVEL = 5 };
86 
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 	__acquires(resource_lock)
89 {
90 	struct resource *p = PDE_DATA(file_inode(m->file));
91 	loff_t l = 0;
92 	read_lock(&resource_lock);
93 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 		;
95 	return p;
96 }
97 
98 static void r_stop(struct seq_file *m, void *v)
99 	__releases(resource_lock)
100 {
101 	read_unlock(&resource_lock);
102 }
103 
104 static int r_show(struct seq_file *m, void *v)
105 {
106 	struct resource *root = PDE_DATA(file_inode(m->file));
107 	struct resource *r = v, *p;
108 	unsigned long long start, end;
109 	int width = root->end < 0x10000 ? 4 : 8;
110 	int depth;
111 
112 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
113 		if (p->parent == root)
114 			break;
115 
116 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
117 		start = r->start;
118 		end = r->end;
119 	} else {
120 		start = end = 0;
121 	}
122 
123 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
124 			depth * 2, "",
125 			width, start,
126 			width, end,
127 			r->name ? r->name : "<BAD>");
128 	return 0;
129 }
130 
131 static const struct seq_operations resource_op = {
132 	.start	= r_start,
133 	.next	= r_next,
134 	.stop	= r_stop,
135 	.show	= r_show,
136 };
137 
138 static int __init ioresources_init(void)
139 {
140 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
141 			&ioport_resource);
142 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
143 	return 0;
144 }
145 __initcall(ioresources_init);
146 
147 #endif /* CONFIG_PROC_FS */
148 
149 static void free_resource(struct resource *res)
150 {
151 	if (!res)
152 		return;
153 
154 	if (!PageSlab(virt_to_head_page(res))) {
155 		spin_lock(&bootmem_resource_lock);
156 		res->sibling = bootmem_resource_free;
157 		bootmem_resource_free = res;
158 		spin_unlock(&bootmem_resource_lock);
159 	} else {
160 		kfree(res);
161 	}
162 }
163 
164 static struct resource *alloc_resource(gfp_t flags)
165 {
166 	struct resource *res = NULL;
167 
168 	spin_lock(&bootmem_resource_lock);
169 	if (bootmem_resource_free) {
170 		res = bootmem_resource_free;
171 		bootmem_resource_free = res->sibling;
172 	}
173 	spin_unlock(&bootmem_resource_lock);
174 
175 	if (res)
176 		memset(res, 0, sizeof(struct resource));
177 	else
178 		res = kzalloc(sizeof(struct resource), flags);
179 
180 	return res;
181 }
182 
183 /* Return the conflict entry if you can't request it */
184 static struct resource * __request_resource(struct resource *root, struct resource *new)
185 {
186 	resource_size_t start = new->start;
187 	resource_size_t end = new->end;
188 	struct resource *tmp, **p;
189 
190 	if (end < start)
191 		return root;
192 	if (start < root->start)
193 		return root;
194 	if (end > root->end)
195 		return root;
196 	p = &root->child;
197 	for (;;) {
198 		tmp = *p;
199 		if (!tmp || tmp->start > end) {
200 			new->sibling = tmp;
201 			*p = new;
202 			new->parent = root;
203 			return NULL;
204 		}
205 		p = &tmp->sibling;
206 		if (tmp->end < start)
207 			continue;
208 		return tmp;
209 	}
210 }
211 
212 static int __release_resource(struct resource *old, bool release_child)
213 {
214 	struct resource *tmp, **p, *chd;
215 
216 	p = &old->parent->child;
217 	for (;;) {
218 		tmp = *p;
219 		if (!tmp)
220 			break;
221 		if (tmp == old) {
222 			if (release_child || !(tmp->child)) {
223 				*p = tmp->sibling;
224 			} else {
225 				for (chd = tmp->child;; chd = chd->sibling) {
226 					chd->parent = tmp->parent;
227 					if (!(chd->sibling))
228 						break;
229 				}
230 				*p = tmp->child;
231 				chd->sibling = tmp->sibling;
232 			}
233 			old->parent = NULL;
234 			return 0;
235 		}
236 		p = &tmp->sibling;
237 	}
238 	return -EINVAL;
239 }
240 
241 static void __release_child_resources(struct resource *r)
242 {
243 	struct resource *tmp, *p;
244 	resource_size_t size;
245 
246 	p = r->child;
247 	r->child = NULL;
248 	while (p) {
249 		tmp = p;
250 		p = p->sibling;
251 
252 		tmp->parent = NULL;
253 		tmp->sibling = NULL;
254 		__release_child_resources(tmp);
255 
256 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
257 		/* need to restore size, and keep flags */
258 		size = resource_size(tmp);
259 		tmp->start = 0;
260 		tmp->end = size - 1;
261 	}
262 }
263 
264 void release_child_resources(struct resource *r)
265 {
266 	write_lock(&resource_lock);
267 	__release_child_resources(r);
268 	write_unlock(&resource_lock);
269 }
270 
271 /**
272  * request_resource_conflict - request and reserve an I/O or memory resource
273  * @root: root resource descriptor
274  * @new: resource descriptor desired by caller
275  *
276  * Returns 0 for success, conflict resource on error.
277  */
278 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
279 {
280 	struct resource *conflict;
281 
282 	write_lock(&resource_lock);
283 	conflict = __request_resource(root, new);
284 	write_unlock(&resource_lock);
285 	return conflict;
286 }
287 
288 /**
289  * request_resource - request and reserve an I/O or memory resource
290  * @root: root resource descriptor
291  * @new: resource descriptor desired by caller
292  *
293  * Returns 0 for success, negative error code on error.
294  */
295 int request_resource(struct resource *root, struct resource *new)
296 {
297 	struct resource *conflict;
298 
299 	conflict = request_resource_conflict(root, new);
300 	return conflict ? -EBUSY : 0;
301 }
302 
303 EXPORT_SYMBOL(request_resource);
304 
305 /**
306  * release_resource - release a previously reserved resource
307  * @old: resource pointer
308  */
309 int release_resource(struct resource *old)
310 {
311 	int retval;
312 
313 	write_lock(&resource_lock);
314 	retval = __release_resource(old, true);
315 	write_unlock(&resource_lock);
316 	return retval;
317 }
318 
319 EXPORT_SYMBOL(release_resource);
320 
321 /**
322  * Finds the lowest iomem resource that covers part of [@start..@end].  The
323  * caller must specify @start, @end, @flags, and @desc (which may be
324  * IORES_DESC_NONE).
325  *
326  * If a resource is found, returns 0 and @*res is overwritten with the part
327  * of the resource that's within [@start..@end]; if none is found, returns
328  * -1 or -EINVAL for other invalid parameters.
329  *
330  * This function walks the whole tree and not just first level children
331  * unless @first_lvl is true.
332  *
333  * @start:	start address of the resource searched for
334  * @end:	end address of same resource
335  * @flags:	flags which the resource must have
336  * @desc:	descriptor the resource must have
337  * @first_lvl:	walk only the first level children, if set
338  * @res:	return ptr, if resource found
339  */
340 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
341 			       unsigned long flags, unsigned long desc,
342 			       bool first_lvl, struct resource *res)
343 {
344 	struct resource *p;
345 
346 	if (!res)
347 		return -EINVAL;
348 
349 	if (start >= end)
350 		return -EINVAL;
351 
352 	read_lock(&resource_lock);
353 
354 	for (p = iomem_resource.child; p; p = next_resource(p, first_lvl)) {
355 		if ((p->flags & flags) != flags)
356 			continue;
357 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
358 			continue;
359 		if (p->start > end) {
360 			p = NULL;
361 			break;
362 		}
363 		if ((p->end >= start) && (p->start <= end))
364 			break;
365 	}
366 
367 	read_unlock(&resource_lock);
368 	if (!p)
369 		return -1;
370 
371 	/* copy data */
372 	res->start = max(start, p->start);
373 	res->end = min(end, p->end);
374 	res->flags = p->flags;
375 	res->desc = p->desc;
376 	return 0;
377 }
378 
379 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
380 				 unsigned long flags, unsigned long desc,
381 				 bool first_lvl, void *arg,
382 				 int (*func)(struct resource *, void *))
383 {
384 	struct resource res;
385 	int ret = -1;
386 
387 	while (start < end &&
388 	       !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) {
389 		ret = (*func)(&res, arg);
390 		if (ret)
391 			break;
392 
393 		start = res.end + 1;
394 	}
395 
396 	return ret;
397 }
398 
399 /**
400  * Walks through iomem resources and calls func() with matching resource
401  * ranges. This walks through whole tree and not just first level children.
402  * All the memory ranges which overlap start,end and also match flags and
403  * desc are valid candidates.
404  *
405  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
406  * @flags: I/O resource flags
407  * @start: start addr
408  * @end: end addr
409  * @arg: function argument for the callback @func
410  * @func: callback function that is called for each qualifying resource area
411  *
412  * NOTE: For a new descriptor search, define a new IORES_DESC in
413  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
414  */
415 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
416 		u64 end, void *arg, int (*func)(struct resource *, void *))
417 {
418 	return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func);
419 }
420 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
421 
422 /*
423  * This function calls the @func callback against all memory ranges of type
424  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
425  * Now, this function is only for System RAM, it deals with full ranges and
426  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
427  * ranges.
428  */
429 int walk_system_ram_res(u64 start, u64 end, void *arg,
430 			int (*func)(struct resource *, void *))
431 {
432 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
433 
434 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
435 				     arg, func);
436 }
437 
438 /*
439  * This function calls the @func callback against all memory ranges, which
440  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
441  */
442 int walk_mem_res(u64 start, u64 end, void *arg,
443 		 int (*func)(struct resource *, void *))
444 {
445 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
446 
447 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true,
448 				     arg, func);
449 }
450 
451 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
452 
453 /*
454  * This function calls the @func callback against all memory ranges of type
455  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
456  * It is to be used only for System RAM.
457  */
458 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
459 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
460 {
461 	resource_size_t start, end;
462 	unsigned long flags;
463 	struct resource res;
464 	unsigned long pfn, end_pfn;
465 	int ret = -1;
466 
467 	start = (u64) start_pfn << PAGE_SHIFT;
468 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
469 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
470 	while (start < end &&
471 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE,
472 				    true, &res)) {
473 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
474 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
475 		if (end_pfn > pfn)
476 			ret = (*func)(pfn, end_pfn - pfn, arg);
477 		if (ret)
478 			break;
479 		start = res.end + 1;
480 	}
481 	return ret;
482 }
483 
484 #endif
485 
486 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
487 {
488 	return 1;
489 }
490 
491 /*
492  * This generic page_is_ram() returns true if specified address is
493  * registered as System RAM in iomem_resource list.
494  */
495 int __weak page_is_ram(unsigned long pfn)
496 {
497 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
498 }
499 EXPORT_SYMBOL_GPL(page_is_ram);
500 
501 /**
502  * region_intersects() - determine intersection of region with known resources
503  * @start: region start address
504  * @size: size of region
505  * @flags: flags of resource (in iomem_resource)
506  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
507  *
508  * Check if the specified region partially overlaps or fully eclipses a
509  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
510  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
511  * return REGION_MIXED if the region overlaps @flags/@desc and another
512  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
513  * and no other defined resource. Note that REGION_INTERSECTS is also
514  * returned in the case when the specified region overlaps RAM and undefined
515  * memory holes.
516  *
517  * region_intersect() is used by memory remapping functions to ensure
518  * the user is not remapping RAM and is a vast speed up over walking
519  * through the resource table page by page.
520  */
521 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
522 		      unsigned long desc)
523 {
524 	resource_size_t end = start + size - 1;
525 	int type = 0; int other = 0;
526 	struct resource *p;
527 
528 	read_lock(&resource_lock);
529 	for (p = iomem_resource.child; p ; p = p->sibling) {
530 		bool is_type = (((p->flags & flags) == flags) &&
531 				((desc == IORES_DESC_NONE) ||
532 				 (desc == p->desc)));
533 
534 		if (start >= p->start && start <= p->end)
535 			is_type ? type++ : other++;
536 		if (end >= p->start && end <= p->end)
537 			is_type ? type++ : other++;
538 		if (p->start >= start && p->end <= end)
539 			is_type ? type++ : other++;
540 	}
541 	read_unlock(&resource_lock);
542 
543 	if (other == 0)
544 		return type ? REGION_INTERSECTS : REGION_DISJOINT;
545 
546 	if (type)
547 		return REGION_MIXED;
548 
549 	return REGION_DISJOINT;
550 }
551 EXPORT_SYMBOL_GPL(region_intersects);
552 
553 void __weak arch_remove_reservations(struct resource *avail)
554 {
555 }
556 
557 static resource_size_t simple_align_resource(void *data,
558 					     const struct resource *avail,
559 					     resource_size_t size,
560 					     resource_size_t align)
561 {
562 	return avail->start;
563 }
564 
565 static void resource_clip(struct resource *res, resource_size_t min,
566 			  resource_size_t max)
567 {
568 	if (res->start < min)
569 		res->start = min;
570 	if (res->end > max)
571 		res->end = max;
572 }
573 
574 /*
575  * Find empty slot in the resource tree with the given range and
576  * alignment constraints
577  */
578 static int __find_resource(struct resource *root, struct resource *old,
579 			 struct resource *new,
580 			 resource_size_t  size,
581 			 struct resource_constraint *constraint)
582 {
583 	struct resource *this = root->child;
584 	struct resource tmp = *new, avail, alloc;
585 
586 	tmp.start = root->start;
587 	/*
588 	 * Skip past an allocated resource that starts at 0, since the assignment
589 	 * of this->start - 1 to tmp->end below would cause an underflow.
590 	 */
591 	if (this && this->start == root->start) {
592 		tmp.start = (this == old) ? old->start : this->end + 1;
593 		this = this->sibling;
594 	}
595 	for(;;) {
596 		if (this)
597 			tmp.end = (this == old) ?  this->end : this->start - 1;
598 		else
599 			tmp.end = root->end;
600 
601 		if (tmp.end < tmp.start)
602 			goto next;
603 
604 		resource_clip(&tmp, constraint->min, constraint->max);
605 		arch_remove_reservations(&tmp);
606 
607 		/* Check for overflow after ALIGN() */
608 		avail.start = ALIGN(tmp.start, constraint->align);
609 		avail.end = tmp.end;
610 		avail.flags = new->flags & ~IORESOURCE_UNSET;
611 		if (avail.start >= tmp.start) {
612 			alloc.flags = avail.flags;
613 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
614 					size, constraint->align);
615 			alloc.end = alloc.start + size - 1;
616 			if (alloc.start <= alloc.end &&
617 			    resource_contains(&avail, &alloc)) {
618 				new->start = alloc.start;
619 				new->end = alloc.end;
620 				return 0;
621 			}
622 		}
623 
624 next:		if (!this || this->end == root->end)
625 			break;
626 
627 		if (this != old)
628 			tmp.start = this->end + 1;
629 		this = this->sibling;
630 	}
631 	return -EBUSY;
632 }
633 
634 /*
635  * Find empty slot in the resource tree given range and alignment.
636  */
637 static int find_resource(struct resource *root, struct resource *new,
638 			resource_size_t size,
639 			struct resource_constraint  *constraint)
640 {
641 	return  __find_resource(root, NULL, new, size, constraint);
642 }
643 
644 /**
645  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
646  *	The resource will be relocated if the new size cannot be reallocated in the
647  *	current location.
648  *
649  * @root: root resource descriptor
650  * @old:  resource descriptor desired by caller
651  * @newsize: new size of the resource descriptor
652  * @constraint: the size and alignment constraints to be met.
653  */
654 static int reallocate_resource(struct resource *root, struct resource *old,
655 			       resource_size_t newsize,
656 			       struct resource_constraint *constraint)
657 {
658 	int err=0;
659 	struct resource new = *old;
660 	struct resource *conflict;
661 
662 	write_lock(&resource_lock);
663 
664 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
665 		goto out;
666 
667 	if (resource_contains(&new, old)) {
668 		old->start = new.start;
669 		old->end = new.end;
670 		goto out;
671 	}
672 
673 	if (old->child) {
674 		err = -EBUSY;
675 		goto out;
676 	}
677 
678 	if (resource_contains(old, &new)) {
679 		old->start = new.start;
680 		old->end = new.end;
681 	} else {
682 		__release_resource(old, true);
683 		*old = new;
684 		conflict = __request_resource(root, old);
685 		BUG_ON(conflict);
686 	}
687 out:
688 	write_unlock(&resource_lock);
689 	return err;
690 }
691 
692 
693 /**
694  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
695  * 	The resource will be reallocated with a new size if it was already allocated
696  * @root: root resource descriptor
697  * @new: resource descriptor desired by caller
698  * @size: requested resource region size
699  * @min: minimum boundary to allocate
700  * @max: maximum boundary to allocate
701  * @align: alignment requested, in bytes
702  * @alignf: alignment function, optional, called if not NULL
703  * @alignf_data: arbitrary data to pass to the @alignf function
704  */
705 int allocate_resource(struct resource *root, struct resource *new,
706 		      resource_size_t size, resource_size_t min,
707 		      resource_size_t max, resource_size_t align,
708 		      resource_size_t (*alignf)(void *,
709 						const struct resource *,
710 						resource_size_t,
711 						resource_size_t),
712 		      void *alignf_data)
713 {
714 	int err;
715 	struct resource_constraint constraint;
716 
717 	if (!alignf)
718 		alignf = simple_align_resource;
719 
720 	constraint.min = min;
721 	constraint.max = max;
722 	constraint.align = align;
723 	constraint.alignf = alignf;
724 	constraint.alignf_data = alignf_data;
725 
726 	if ( new->parent ) {
727 		/* resource is already allocated, try reallocating with
728 		   the new constraints */
729 		return reallocate_resource(root, new, size, &constraint);
730 	}
731 
732 	write_lock(&resource_lock);
733 	err = find_resource(root, new, size, &constraint);
734 	if (err >= 0 && __request_resource(root, new))
735 		err = -EBUSY;
736 	write_unlock(&resource_lock);
737 	return err;
738 }
739 
740 EXPORT_SYMBOL(allocate_resource);
741 
742 /**
743  * lookup_resource - find an existing resource by a resource start address
744  * @root: root resource descriptor
745  * @start: resource start address
746  *
747  * Returns a pointer to the resource if found, NULL otherwise
748  */
749 struct resource *lookup_resource(struct resource *root, resource_size_t start)
750 {
751 	struct resource *res;
752 
753 	read_lock(&resource_lock);
754 	for (res = root->child; res; res = res->sibling) {
755 		if (res->start == start)
756 			break;
757 	}
758 	read_unlock(&resource_lock);
759 
760 	return res;
761 }
762 
763 /*
764  * Insert a resource into the resource tree. If successful, return NULL,
765  * otherwise return the conflicting resource (compare to __request_resource())
766  */
767 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
768 {
769 	struct resource *first, *next;
770 
771 	for (;; parent = first) {
772 		first = __request_resource(parent, new);
773 		if (!first)
774 			return first;
775 
776 		if (first == parent)
777 			return first;
778 		if (WARN_ON(first == new))	/* duplicated insertion */
779 			return first;
780 
781 		if ((first->start > new->start) || (first->end < new->end))
782 			break;
783 		if ((first->start == new->start) && (first->end == new->end))
784 			break;
785 	}
786 
787 	for (next = first; ; next = next->sibling) {
788 		/* Partial overlap? Bad, and unfixable */
789 		if (next->start < new->start || next->end > new->end)
790 			return next;
791 		if (!next->sibling)
792 			break;
793 		if (next->sibling->start > new->end)
794 			break;
795 	}
796 
797 	new->parent = parent;
798 	new->sibling = next->sibling;
799 	new->child = first;
800 
801 	next->sibling = NULL;
802 	for (next = first; next; next = next->sibling)
803 		next->parent = new;
804 
805 	if (parent->child == first) {
806 		parent->child = new;
807 	} else {
808 		next = parent->child;
809 		while (next->sibling != first)
810 			next = next->sibling;
811 		next->sibling = new;
812 	}
813 	return NULL;
814 }
815 
816 /**
817  * insert_resource_conflict - Inserts resource in the resource tree
818  * @parent: parent of the new resource
819  * @new: new resource to insert
820  *
821  * Returns 0 on success, conflict resource if the resource can't be inserted.
822  *
823  * This function is equivalent to request_resource_conflict when no conflict
824  * happens. If a conflict happens, and the conflicting resources
825  * entirely fit within the range of the new resource, then the new
826  * resource is inserted and the conflicting resources become children of
827  * the new resource.
828  *
829  * This function is intended for producers of resources, such as FW modules
830  * and bus drivers.
831  */
832 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
833 {
834 	struct resource *conflict;
835 
836 	write_lock(&resource_lock);
837 	conflict = __insert_resource(parent, new);
838 	write_unlock(&resource_lock);
839 	return conflict;
840 }
841 
842 /**
843  * insert_resource - Inserts a resource in the resource tree
844  * @parent: parent of the new resource
845  * @new: new resource to insert
846  *
847  * Returns 0 on success, -EBUSY if the resource can't be inserted.
848  *
849  * This function is intended for producers of resources, such as FW modules
850  * and bus drivers.
851  */
852 int insert_resource(struct resource *parent, struct resource *new)
853 {
854 	struct resource *conflict;
855 
856 	conflict = insert_resource_conflict(parent, new);
857 	return conflict ? -EBUSY : 0;
858 }
859 EXPORT_SYMBOL_GPL(insert_resource);
860 
861 /**
862  * insert_resource_expand_to_fit - Insert a resource into the resource tree
863  * @root: root resource descriptor
864  * @new: new resource to insert
865  *
866  * Insert a resource into the resource tree, possibly expanding it in order
867  * to make it encompass any conflicting resources.
868  */
869 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
870 {
871 	if (new->parent)
872 		return;
873 
874 	write_lock(&resource_lock);
875 	for (;;) {
876 		struct resource *conflict;
877 
878 		conflict = __insert_resource(root, new);
879 		if (!conflict)
880 			break;
881 		if (conflict == root)
882 			break;
883 
884 		/* Ok, expand resource to cover the conflict, then try again .. */
885 		if (conflict->start < new->start)
886 			new->start = conflict->start;
887 		if (conflict->end > new->end)
888 			new->end = conflict->end;
889 
890 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
891 	}
892 	write_unlock(&resource_lock);
893 }
894 
895 /**
896  * remove_resource - Remove a resource in the resource tree
897  * @old: resource to remove
898  *
899  * Returns 0 on success, -EINVAL if the resource is not valid.
900  *
901  * This function removes a resource previously inserted by insert_resource()
902  * or insert_resource_conflict(), and moves the children (if any) up to
903  * where they were before.  insert_resource() and insert_resource_conflict()
904  * insert a new resource, and move any conflicting resources down to the
905  * children of the new resource.
906  *
907  * insert_resource(), insert_resource_conflict() and remove_resource() are
908  * intended for producers of resources, such as FW modules and bus drivers.
909  */
910 int remove_resource(struct resource *old)
911 {
912 	int retval;
913 
914 	write_lock(&resource_lock);
915 	retval = __release_resource(old, false);
916 	write_unlock(&resource_lock);
917 	return retval;
918 }
919 EXPORT_SYMBOL_GPL(remove_resource);
920 
921 static int __adjust_resource(struct resource *res, resource_size_t start,
922 				resource_size_t size)
923 {
924 	struct resource *tmp, *parent = res->parent;
925 	resource_size_t end = start + size - 1;
926 	int result = -EBUSY;
927 
928 	if (!parent)
929 		goto skip;
930 
931 	if ((start < parent->start) || (end > parent->end))
932 		goto out;
933 
934 	if (res->sibling && (res->sibling->start <= end))
935 		goto out;
936 
937 	tmp = parent->child;
938 	if (tmp != res) {
939 		while (tmp->sibling != res)
940 			tmp = tmp->sibling;
941 		if (start <= tmp->end)
942 			goto out;
943 	}
944 
945 skip:
946 	for (tmp = res->child; tmp; tmp = tmp->sibling)
947 		if ((tmp->start < start) || (tmp->end > end))
948 			goto out;
949 
950 	res->start = start;
951 	res->end = end;
952 	result = 0;
953 
954  out:
955 	return result;
956 }
957 
958 /**
959  * adjust_resource - modify a resource's start and size
960  * @res: resource to modify
961  * @start: new start value
962  * @size: new size
963  *
964  * Given an existing resource, change its start and size to match the
965  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
966  * Existing children of the resource are assumed to be immutable.
967  */
968 int adjust_resource(struct resource *res, resource_size_t start,
969 		    resource_size_t size)
970 {
971 	int result;
972 
973 	write_lock(&resource_lock);
974 	result = __adjust_resource(res, start, size);
975 	write_unlock(&resource_lock);
976 	return result;
977 }
978 EXPORT_SYMBOL(adjust_resource);
979 
980 static void __init
981 __reserve_region_with_split(struct resource *root, resource_size_t start,
982 			    resource_size_t end, const char *name)
983 {
984 	struct resource *parent = root;
985 	struct resource *conflict;
986 	struct resource *res = alloc_resource(GFP_ATOMIC);
987 	struct resource *next_res = NULL;
988 	int type = resource_type(root);
989 
990 	if (!res)
991 		return;
992 
993 	res->name = name;
994 	res->start = start;
995 	res->end = end;
996 	res->flags = type | IORESOURCE_BUSY;
997 	res->desc = IORES_DESC_NONE;
998 
999 	while (1) {
1000 
1001 		conflict = __request_resource(parent, res);
1002 		if (!conflict) {
1003 			if (!next_res)
1004 				break;
1005 			res = next_res;
1006 			next_res = NULL;
1007 			continue;
1008 		}
1009 
1010 		/* conflict covered whole area */
1011 		if (conflict->start <= res->start &&
1012 				conflict->end >= res->end) {
1013 			free_resource(res);
1014 			WARN_ON(next_res);
1015 			break;
1016 		}
1017 
1018 		/* failed, split and try again */
1019 		if (conflict->start > res->start) {
1020 			end = res->end;
1021 			res->end = conflict->start - 1;
1022 			if (conflict->end < end) {
1023 				next_res = alloc_resource(GFP_ATOMIC);
1024 				if (!next_res) {
1025 					free_resource(res);
1026 					break;
1027 				}
1028 				next_res->name = name;
1029 				next_res->start = conflict->end + 1;
1030 				next_res->end = end;
1031 				next_res->flags = type | IORESOURCE_BUSY;
1032 				next_res->desc = IORES_DESC_NONE;
1033 			}
1034 		} else {
1035 			res->start = conflict->end + 1;
1036 		}
1037 	}
1038 
1039 }
1040 
1041 void __init
1042 reserve_region_with_split(struct resource *root, resource_size_t start,
1043 			  resource_size_t end, const char *name)
1044 {
1045 	int abort = 0;
1046 
1047 	write_lock(&resource_lock);
1048 	if (root->start > start || root->end < end) {
1049 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1050 		       (unsigned long long)start, (unsigned long long)end,
1051 		       root);
1052 		if (start > root->end || end < root->start)
1053 			abort = 1;
1054 		else {
1055 			if (end > root->end)
1056 				end = root->end;
1057 			if (start < root->start)
1058 				start = root->start;
1059 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1060 			       (unsigned long long)start,
1061 			       (unsigned long long)end);
1062 		}
1063 		dump_stack();
1064 	}
1065 	if (!abort)
1066 		__reserve_region_with_split(root, start, end, name);
1067 	write_unlock(&resource_lock);
1068 }
1069 
1070 /**
1071  * resource_alignment - calculate resource's alignment
1072  * @res: resource pointer
1073  *
1074  * Returns alignment on success, 0 (invalid alignment) on failure.
1075  */
1076 resource_size_t resource_alignment(struct resource *res)
1077 {
1078 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1079 	case IORESOURCE_SIZEALIGN:
1080 		return resource_size(res);
1081 	case IORESOURCE_STARTALIGN:
1082 		return res->start;
1083 	default:
1084 		return 0;
1085 	}
1086 }
1087 
1088 /*
1089  * This is compatibility stuff for IO resources.
1090  *
1091  * Note how this, unlike the above, knows about
1092  * the IO flag meanings (busy etc).
1093  *
1094  * request_region creates a new busy region.
1095  *
1096  * release_region releases a matching busy region.
1097  */
1098 
1099 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1100 
1101 /**
1102  * __request_region - create a new busy resource region
1103  * @parent: parent resource descriptor
1104  * @start: resource start address
1105  * @n: resource region size
1106  * @name: reserving caller's ID string
1107  * @flags: IO resource flags
1108  */
1109 struct resource * __request_region(struct resource *parent,
1110 				   resource_size_t start, resource_size_t n,
1111 				   const char *name, int flags)
1112 {
1113 	DECLARE_WAITQUEUE(wait, current);
1114 	struct resource *res = alloc_resource(GFP_KERNEL);
1115 
1116 	if (!res)
1117 		return NULL;
1118 
1119 	res->name = name;
1120 	res->start = start;
1121 	res->end = start + n - 1;
1122 
1123 	write_lock(&resource_lock);
1124 
1125 	for (;;) {
1126 		struct resource *conflict;
1127 
1128 		res->flags = resource_type(parent) | resource_ext_type(parent);
1129 		res->flags |= IORESOURCE_BUSY | flags;
1130 		res->desc = parent->desc;
1131 
1132 		conflict = __request_resource(parent, res);
1133 		if (!conflict)
1134 			break;
1135 		if (conflict != parent) {
1136 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1137 				parent = conflict;
1138 				continue;
1139 			}
1140 		}
1141 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1142 			add_wait_queue(&muxed_resource_wait, &wait);
1143 			write_unlock(&resource_lock);
1144 			set_current_state(TASK_UNINTERRUPTIBLE);
1145 			schedule();
1146 			remove_wait_queue(&muxed_resource_wait, &wait);
1147 			write_lock(&resource_lock);
1148 			continue;
1149 		}
1150 		/* Uhhuh, that didn't work out.. */
1151 		free_resource(res);
1152 		res = NULL;
1153 		break;
1154 	}
1155 	write_unlock(&resource_lock);
1156 	return res;
1157 }
1158 EXPORT_SYMBOL(__request_region);
1159 
1160 /**
1161  * __release_region - release a previously reserved resource region
1162  * @parent: parent resource descriptor
1163  * @start: resource start address
1164  * @n: resource region size
1165  *
1166  * The described resource region must match a currently busy region.
1167  */
1168 void __release_region(struct resource *parent, resource_size_t start,
1169 		      resource_size_t n)
1170 {
1171 	struct resource **p;
1172 	resource_size_t end;
1173 
1174 	p = &parent->child;
1175 	end = start + n - 1;
1176 
1177 	write_lock(&resource_lock);
1178 
1179 	for (;;) {
1180 		struct resource *res = *p;
1181 
1182 		if (!res)
1183 			break;
1184 		if (res->start <= start && res->end >= end) {
1185 			if (!(res->flags & IORESOURCE_BUSY)) {
1186 				p = &res->child;
1187 				continue;
1188 			}
1189 			if (res->start != start || res->end != end)
1190 				break;
1191 			*p = res->sibling;
1192 			write_unlock(&resource_lock);
1193 			if (res->flags & IORESOURCE_MUXED)
1194 				wake_up(&muxed_resource_wait);
1195 			free_resource(res);
1196 			return;
1197 		}
1198 		p = &res->sibling;
1199 	}
1200 
1201 	write_unlock(&resource_lock);
1202 
1203 	printk(KERN_WARNING "Trying to free nonexistent resource "
1204 		"<%016llx-%016llx>\n", (unsigned long long)start,
1205 		(unsigned long long)end);
1206 }
1207 EXPORT_SYMBOL(__release_region);
1208 
1209 #ifdef CONFIG_MEMORY_HOTREMOVE
1210 /**
1211  * release_mem_region_adjustable - release a previously reserved memory region
1212  * @parent: parent resource descriptor
1213  * @start: resource start address
1214  * @size: resource region size
1215  *
1216  * This interface is intended for memory hot-delete.  The requested region
1217  * is released from a currently busy memory resource.  The requested region
1218  * must either match exactly or fit into a single busy resource entry.  In
1219  * the latter case, the remaining resource is adjusted accordingly.
1220  * Existing children of the busy memory resource must be immutable in the
1221  * request.
1222  *
1223  * Note:
1224  * - Additional release conditions, such as overlapping region, can be
1225  *   supported after they are confirmed as valid cases.
1226  * - When a busy memory resource gets split into two entries, the code
1227  *   assumes that all children remain in the lower address entry for
1228  *   simplicity.  Enhance this logic when necessary.
1229  */
1230 int release_mem_region_adjustable(struct resource *parent,
1231 				  resource_size_t start, resource_size_t size)
1232 {
1233 	struct resource **p;
1234 	struct resource *res;
1235 	struct resource *new_res;
1236 	resource_size_t end;
1237 	int ret = -EINVAL;
1238 
1239 	end = start + size - 1;
1240 	if ((start < parent->start) || (end > parent->end))
1241 		return ret;
1242 
1243 	/* The alloc_resource() result gets checked later */
1244 	new_res = alloc_resource(GFP_KERNEL);
1245 
1246 	p = &parent->child;
1247 	write_lock(&resource_lock);
1248 
1249 	while ((res = *p)) {
1250 		if (res->start >= end)
1251 			break;
1252 
1253 		/* look for the next resource if it does not fit into */
1254 		if (res->start > start || res->end < end) {
1255 			p = &res->sibling;
1256 			continue;
1257 		}
1258 
1259 		if (!(res->flags & IORESOURCE_MEM))
1260 			break;
1261 
1262 		if (!(res->flags & IORESOURCE_BUSY)) {
1263 			p = &res->child;
1264 			continue;
1265 		}
1266 
1267 		/* found the target resource; let's adjust accordingly */
1268 		if (res->start == start && res->end == end) {
1269 			/* free the whole entry */
1270 			*p = res->sibling;
1271 			free_resource(res);
1272 			ret = 0;
1273 		} else if (res->start == start && res->end != end) {
1274 			/* adjust the start */
1275 			ret = __adjust_resource(res, end + 1,
1276 						res->end - end);
1277 		} else if (res->start != start && res->end == end) {
1278 			/* adjust the end */
1279 			ret = __adjust_resource(res, res->start,
1280 						start - res->start);
1281 		} else {
1282 			/* split into two entries */
1283 			if (!new_res) {
1284 				ret = -ENOMEM;
1285 				break;
1286 			}
1287 			new_res->name = res->name;
1288 			new_res->start = end + 1;
1289 			new_res->end = res->end;
1290 			new_res->flags = res->flags;
1291 			new_res->desc = res->desc;
1292 			new_res->parent = res->parent;
1293 			new_res->sibling = res->sibling;
1294 			new_res->child = NULL;
1295 
1296 			ret = __adjust_resource(res, res->start,
1297 						start - res->start);
1298 			if (ret)
1299 				break;
1300 			res->sibling = new_res;
1301 			new_res = NULL;
1302 		}
1303 
1304 		break;
1305 	}
1306 
1307 	write_unlock(&resource_lock);
1308 	free_resource(new_res);
1309 	return ret;
1310 }
1311 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1312 
1313 /*
1314  * Managed region resource
1315  */
1316 static void devm_resource_release(struct device *dev, void *ptr)
1317 {
1318 	struct resource **r = ptr;
1319 
1320 	release_resource(*r);
1321 }
1322 
1323 /**
1324  * devm_request_resource() - request and reserve an I/O or memory resource
1325  * @dev: device for which to request the resource
1326  * @root: root of the resource tree from which to request the resource
1327  * @new: descriptor of the resource to request
1328  *
1329  * This is a device-managed version of request_resource(). There is usually
1330  * no need to release resources requested by this function explicitly since
1331  * that will be taken care of when the device is unbound from its driver.
1332  * If for some reason the resource needs to be released explicitly, because
1333  * of ordering issues for example, drivers must call devm_release_resource()
1334  * rather than the regular release_resource().
1335  *
1336  * When a conflict is detected between any existing resources and the newly
1337  * requested resource, an error message will be printed.
1338  *
1339  * Returns 0 on success or a negative error code on failure.
1340  */
1341 int devm_request_resource(struct device *dev, struct resource *root,
1342 			  struct resource *new)
1343 {
1344 	struct resource *conflict, **ptr;
1345 
1346 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1347 	if (!ptr)
1348 		return -ENOMEM;
1349 
1350 	*ptr = new;
1351 
1352 	conflict = request_resource_conflict(root, new);
1353 	if (conflict) {
1354 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1355 			new, conflict->name, conflict);
1356 		devres_free(ptr);
1357 		return -EBUSY;
1358 	}
1359 
1360 	devres_add(dev, ptr);
1361 	return 0;
1362 }
1363 EXPORT_SYMBOL(devm_request_resource);
1364 
1365 static int devm_resource_match(struct device *dev, void *res, void *data)
1366 {
1367 	struct resource **ptr = res;
1368 
1369 	return *ptr == data;
1370 }
1371 
1372 /**
1373  * devm_release_resource() - release a previously requested resource
1374  * @dev: device for which to release the resource
1375  * @new: descriptor of the resource to release
1376  *
1377  * Releases a resource previously requested using devm_request_resource().
1378  */
1379 void devm_release_resource(struct device *dev, struct resource *new)
1380 {
1381 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1382 			       new));
1383 }
1384 EXPORT_SYMBOL(devm_release_resource);
1385 
1386 struct region_devres {
1387 	struct resource *parent;
1388 	resource_size_t start;
1389 	resource_size_t n;
1390 };
1391 
1392 static void devm_region_release(struct device *dev, void *res)
1393 {
1394 	struct region_devres *this = res;
1395 
1396 	__release_region(this->parent, this->start, this->n);
1397 }
1398 
1399 static int devm_region_match(struct device *dev, void *res, void *match_data)
1400 {
1401 	struct region_devres *this = res, *match = match_data;
1402 
1403 	return this->parent == match->parent &&
1404 		this->start == match->start && this->n == match->n;
1405 }
1406 
1407 struct resource *
1408 __devm_request_region(struct device *dev, struct resource *parent,
1409 		      resource_size_t start, resource_size_t n, const char *name)
1410 {
1411 	struct region_devres *dr = NULL;
1412 	struct resource *res;
1413 
1414 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1415 			  GFP_KERNEL);
1416 	if (!dr)
1417 		return NULL;
1418 
1419 	dr->parent = parent;
1420 	dr->start = start;
1421 	dr->n = n;
1422 
1423 	res = __request_region(parent, start, n, name, 0);
1424 	if (res)
1425 		devres_add(dev, dr);
1426 	else
1427 		devres_free(dr);
1428 
1429 	return res;
1430 }
1431 EXPORT_SYMBOL(__devm_request_region);
1432 
1433 void __devm_release_region(struct device *dev, struct resource *parent,
1434 			   resource_size_t start, resource_size_t n)
1435 {
1436 	struct region_devres match_data = { parent, start, n };
1437 
1438 	__release_region(parent, start, n);
1439 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1440 			       &match_data));
1441 }
1442 EXPORT_SYMBOL(__devm_release_region);
1443 
1444 /*
1445  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1446  */
1447 #define MAXRESERVE 4
1448 static int __init reserve_setup(char *str)
1449 {
1450 	static int reserved;
1451 	static struct resource reserve[MAXRESERVE];
1452 
1453 	for (;;) {
1454 		unsigned int io_start, io_num;
1455 		int x = reserved;
1456 		struct resource *parent;
1457 
1458 		if (get_option(&str, &io_start) != 2)
1459 			break;
1460 		if (get_option(&str, &io_num) == 0)
1461 			break;
1462 		if (x < MAXRESERVE) {
1463 			struct resource *res = reserve + x;
1464 
1465 			/*
1466 			 * If the region starts below 0x10000, we assume it's
1467 			 * I/O port space; otherwise assume it's memory.
1468 			 */
1469 			if (io_start < 0x10000) {
1470 				res->flags = IORESOURCE_IO;
1471 				parent = &ioport_resource;
1472 			} else {
1473 				res->flags = IORESOURCE_MEM;
1474 				parent = &iomem_resource;
1475 			}
1476 			res->name = "reserved";
1477 			res->start = io_start;
1478 			res->end = io_start + io_num - 1;
1479 			res->flags |= IORESOURCE_BUSY;
1480 			res->desc = IORES_DESC_NONE;
1481 			res->child = NULL;
1482 			if (request_resource(parent, res) == 0)
1483 				reserved = x+1;
1484 		}
1485 	}
1486 	return 1;
1487 }
1488 __setup("reserve=", reserve_setup);
1489 
1490 /*
1491  * Check if the requested addr and size spans more than any slot in the
1492  * iomem resource tree.
1493  */
1494 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1495 {
1496 	struct resource *p = &iomem_resource;
1497 	int err = 0;
1498 	loff_t l;
1499 
1500 	read_lock(&resource_lock);
1501 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1502 		/*
1503 		 * We can probably skip the resources without
1504 		 * IORESOURCE_IO attribute?
1505 		 */
1506 		if (p->start >= addr + size)
1507 			continue;
1508 		if (p->end < addr)
1509 			continue;
1510 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1511 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1512 			continue;
1513 		/*
1514 		 * if a resource is "BUSY", it's not a hardware resource
1515 		 * but a driver mapping of such a resource; we don't want
1516 		 * to warn for those; some drivers legitimately map only
1517 		 * partial hardware resources. (example: vesafb)
1518 		 */
1519 		if (p->flags & IORESOURCE_BUSY)
1520 			continue;
1521 
1522 		printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1523 		       (unsigned long long)addr,
1524 		       (unsigned long long)(addr + size - 1),
1525 		       p->name, p);
1526 		err = -1;
1527 		break;
1528 	}
1529 	read_unlock(&resource_lock);
1530 
1531 	return err;
1532 }
1533 
1534 #ifdef CONFIG_STRICT_DEVMEM
1535 static int strict_iomem_checks = 1;
1536 #else
1537 static int strict_iomem_checks;
1538 #endif
1539 
1540 /*
1541  * check if an address is reserved in the iomem resource tree
1542  * returns true if reserved, false if not reserved.
1543  */
1544 bool iomem_is_exclusive(u64 addr)
1545 {
1546 	struct resource *p = &iomem_resource;
1547 	bool err = false;
1548 	loff_t l;
1549 	int size = PAGE_SIZE;
1550 
1551 	if (!strict_iomem_checks)
1552 		return false;
1553 
1554 	addr = addr & PAGE_MASK;
1555 
1556 	read_lock(&resource_lock);
1557 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1558 		/*
1559 		 * We can probably skip the resources without
1560 		 * IORESOURCE_IO attribute?
1561 		 */
1562 		if (p->start >= addr + size)
1563 			break;
1564 		if (p->end < addr)
1565 			continue;
1566 		/*
1567 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1568 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1569 		 * resource is busy.
1570 		 */
1571 		if ((p->flags & IORESOURCE_BUSY) == 0)
1572 			continue;
1573 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1574 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1575 			err = true;
1576 			break;
1577 		}
1578 	}
1579 	read_unlock(&resource_lock);
1580 
1581 	return err;
1582 }
1583 
1584 struct resource_entry *resource_list_create_entry(struct resource *res,
1585 						  size_t extra_size)
1586 {
1587 	struct resource_entry *entry;
1588 
1589 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1590 	if (entry) {
1591 		INIT_LIST_HEAD(&entry->node);
1592 		entry->res = res ? res : &entry->__res;
1593 	}
1594 
1595 	return entry;
1596 }
1597 EXPORT_SYMBOL(resource_list_create_entry);
1598 
1599 void resource_list_free(struct list_head *head)
1600 {
1601 	struct resource_entry *entry, *tmp;
1602 
1603 	list_for_each_entry_safe(entry, tmp, head, node)
1604 		resource_list_destroy_entry(entry);
1605 }
1606 EXPORT_SYMBOL(resource_list_free);
1607 
1608 static int __init strict_iomem(char *str)
1609 {
1610 	if (strstr(str, "relaxed"))
1611 		strict_iomem_checks = 0;
1612 	if (strstr(str, "strict"))
1613 		strict_iomem_checks = 1;
1614 	return 1;
1615 }
1616 
1617 __setup("iomem=", strict_iomem);
1618