1 /* 2 * linux/kernel/resource.c 3 * 4 * Copyright (C) 1999 Linus Torvalds 5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz> 6 * 7 * Arbitrary resource management. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/export.h> 13 #include <linux/errno.h> 14 #include <linux/ioport.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/device.h> 23 #include <linux/pfn.h> 24 #include <linux/mm.h> 25 #include <linux/resource_ext.h> 26 #include <asm/io.h> 27 28 29 struct resource ioport_resource = { 30 .name = "PCI IO", 31 .start = 0, 32 .end = IO_SPACE_LIMIT, 33 .flags = IORESOURCE_IO, 34 }; 35 EXPORT_SYMBOL(ioport_resource); 36 37 struct resource iomem_resource = { 38 .name = "PCI mem", 39 .start = 0, 40 .end = -1, 41 .flags = IORESOURCE_MEM, 42 }; 43 EXPORT_SYMBOL(iomem_resource); 44 45 /* constraints to be met while allocating resources */ 46 struct resource_constraint { 47 resource_size_t min, max, align; 48 resource_size_t (*alignf)(void *, const struct resource *, 49 resource_size_t, resource_size_t); 50 void *alignf_data; 51 }; 52 53 static DEFINE_RWLOCK(resource_lock); 54 55 /* 56 * For memory hotplug, there is no way to free resource entries allocated 57 * by boot mem after the system is up. So for reusing the resource entry 58 * we need to remember the resource. 59 */ 60 static struct resource *bootmem_resource_free; 61 static DEFINE_SPINLOCK(bootmem_resource_lock); 62 63 static struct resource *next_resource(struct resource *p, bool sibling_only) 64 { 65 /* Caller wants to traverse through siblings only */ 66 if (sibling_only) 67 return p->sibling; 68 69 if (p->child) 70 return p->child; 71 while (!p->sibling && p->parent) 72 p = p->parent; 73 return p->sibling; 74 } 75 76 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 77 { 78 struct resource *p = v; 79 (*pos)++; 80 return (void *)next_resource(p, false); 81 } 82 83 #ifdef CONFIG_PROC_FS 84 85 enum { MAX_IORES_LEVEL = 5 }; 86 87 static void *r_start(struct seq_file *m, loff_t *pos) 88 __acquires(resource_lock) 89 { 90 struct resource *p = m->private; 91 loff_t l = 0; 92 read_lock(&resource_lock); 93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 94 ; 95 return p; 96 } 97 98 static void r_stop(struct seq_file *m, void *v) 99 __releases(resource_lock) 100 { 101 read_unlock(&resource_lock); 102 } 103 104 static int r_show(struct seq_file *m, void *v) 105 { 106 struct resource *root = m->private; 107 struct resource *r = v, *p; 108 int width = root->end < 0x10000 ? 4 : 8; 109 int depth; 110 111 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 112 if (p->parent == root) 113 break; 114 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 115 depth * 2, "", 116 width, (unsigned long long) r->start, 117 width, (unsigned long long) r->end, 118 r->name ? r->name : "<BAD>"); 119 return 0; 120 } 121 122 static const struct seq_operations resource_op = { 123 .start = r_start, 124 .next = r_next, 125 .stop = r_stop, 126 .show = r_show, 127 }; 128 129 static int ioports_open(struct inode *inode, struct file *file) 130 { 131 int res = seq_open(file, &resource_op); 132 if (!res) { 133 struct seq_file *m = file->private_data; 134 m->private = &ioport_resource; 135 } 136 return res; 137 } 138 139 static int iomem_open(struct inode *inode, struct file *file) 140 { 141 int res = seq_open(file, &resource_op); 142 if (!res) { 143 struct seq_file *m = file->private_data; 144 m->private = &iomem_resource; 145 } 146 return res; 147 } 148 149 static const struct file_operations proc_ioports_operations = { 150 .open = ioports_open, 151 .read = seq_read, 152 .llseek = seq_lseek, 153 .release = seq_release, 154 }; 155 156 static const struct file_operations proc_iomem_operations = { 157 .open = iomem_open, 158 .read = seq_read, 159 .llseek = seq_lseek, 160 .release = seq_release, 161 }; 162 163 static int __init ioresources_init(void) 164 { 165 proc_create("ioports", 0, NULL, &proc_ioports_operations); 166 proc_create("iomem", 0, NULL, &proc_iomem_operations); 167 return 0; 168 } 169 __initcall(ioresources_init); 170 171 #endif /* CONFIG_PROC_FS */ 172 173 static void free_resource(struct resource *res) 174 { 175 if (!res) 176 return; 177 178 if (!PageSlab(virt_to_head_page(res))) { 179 spin_lock(&bootmem_resource_lock); 180 res->sibling = bootmem_resource_free; 181 bootmem_resource_free = res; 182 spin_unlock(&bootmem_resource_lock); 183 } else { 184 kfree(res); 185 } 186 } 187 188 static struct resource *alloc_resource(gfp_t flags) 189 { 190 struct resource *res = NULL; 191 192 spin_lock(&bootmem_resource_lock); 193 if (bootmem_resource_free) { 194 res = bootmem_resource_free; 195 bootmem_resource_free = res->sibling; 196 } 197 spin_unlock(&bootmem_resource_lock); 198 199 if (res) 200 memset(res, 0, sizeof(struct resource)); 201 else 202 res = kzalloc(sizeof(struct resource), flags); 203 204 return res; 205 } 206 207 /* Return the conflict entry if you can't request it */ 208 static struct resource * __request_resource(struct resource *root, struct resource *new) 209 { 210 resource_size_t start = new->start; 211 resource_size_t end = new->end; 212 struct resource *tmp, **p; 213 214 if (end < start) 215 return root; 216 if (start < root->start) 217 return root; 218 if (end > root->end) 219 return root; 220 p = &root->child; 221 for (;;) { 222 tmp = *p; 223 if (!tmp || tmp->start > end) { 224 new->sibling = tmp; 225 *p = new; 226 new->parent = root; 227 return NULL; 228 } 229 p = &tmp->sibling; 230 if (tmp->end < start) 231 continue; 232 return tmp; 233 } 234 } 235 236 static int __release_resource(struct resource *old) 237 { 238 struct resource *tmp, **p; 239 240 p = &old->parent->child; 241 for (;;) { 242 tmp = *p; 243 if (!tmp) 244 break; 245 if (tmp == old) { 246 *p = tmp->sibling; 247 old->parent = NULL; 248 return 0; 249 } 250 p = &tmp->sibling; 251 } 252 return -EINVAL; 253 } 254 255 static void __release_child_resources(struct resource *r) 256 { 257 struct resource *tmp, *p; 258 resource_size_t size; 259 260 p = r->child; 261 r->child = NULL; 262 while (p) { 263 tmp = p; 264 p = p->sibling; 265 266 tmp->parent = NULL; 267 tmp->sibling = NULL; 268 __release_child_resources(tmp); 269 270 printk(KERN_DEBUG "release child resource %pR\n", tmp); 271 /* need to restore size, and keep flags */ 272 size = resource_size(tmp); 273 tmp->start = 0; 274 tmp->end = size - 1; 275 } 276 } 277 278 void release_child_resources(struct resource *r) 279 { 280 write_lock(&resource_lock); 281 __release_child_resources(r); 282 write_unlock(&resource_lock); 283 } 284 285 /** 286 * request_resource_conflict - request and reserve an I/O or memory resource 287 * @root: root resource descriptor 288 * @new: resource descriptor desired by caller 289 * 290 * Returns 0 for success, conflict resource on error. 291 */ 292 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 293 { 294 struct resource *conflict; 295 296 write_lock(&resource_lock); 297 conflict = __request_resource(root, new); 298 write_unlock(&resource_lock); 299 return conflict; 300 } 301 302 /** 303 * request_resource - request and reserve an I/O or memory resource 304 * @root: root resource descriptor 305 * @new: resource descriptor desired by caller 306 * 307 * Returns 0 for success, negative error code on error. 308 */ 309 int request_resource(struct resource *root, struct resource *new) 310 { 311 struct resource *conflict; 312 313 conflict = request_resource_conflict(root, new); 314 return conflict ? -EBUSY : 0; 315 } 316 317 EXPORT_SYMBOL(request_resource); 318 319 /** 320 * release_resource - release a previously reserved resource 321 * @old: resource pointer 322 */ 323 int release_resource(struct resource *old) 324 { 325 int retval; 326 327 write_lock(&resource_lock); 328 retval = __release_resource(old); 329 write_unlock(&resource_lock); 330 return retval; 331 } 332 333 EXPORT_SYMBOL(release_resource); 334 335 /* 336 * Finds the lowest iomem reosurce exists with-in [res->start.res->end) 337 * the caller must specify res->start, res->end, res->flags and "name". 338 * If found, returns 0, res is overwritten, if not found, returns -1. 339 * This walks through whole tree and not just first level children 340 * until and unless first_level_children_only is true. 341 */ 342 static int find_next_iomem_res(struct resource *res, char *name, 343 bool first_level_children_only) 344 { 345 resource_size_t start, end; 346 struct resource *p; 347 bool sibling_only = false; 348 349 BUG_ON(!res); 350 351 start = res->start; 352 end = res->end; 353 BUG_ON(start >= end); 354 355 if (first_level_children_only) 356 sibling_only = true; 357 358 read_lock(&resource_lock); 359 360 for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) { 361 if (p->flags != res->flags) 362 continue; 363 if (name && strcmp(p->name, name)) 364 continue; 365 if (p->start > end) { 366 p = NULL; 367 break; 368 } 369 if ((p->end >= start) && (p->start < end)) 370 break; 371 } 372 373 read_unlock(&resource_lock); 374 if (!p) 375 return -1; 376 /* copy data */ 377 if (res->start < p->start) 378 res->start = p->start; 379 if (res->end > p->end) 380 res->end = p->end; 381 return 0; 382 } 383 384 /* 385 * Walks through iomem resources and calls func() with matching resource 386 * ranges. This walks through whole tree and not just first level children. 387 * All the memory ranges which overlap start,end and also match flags and 388 * name are valid candidates. 389 * 390 * @name: name of resource 391 * @flags: resource flags 392 * @start: start addr 393 * @end: end addr 394 */ 395 int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end, 396 void *arg, int (*func)(u64, u64, void *)) 397 { 398 struct resource res; 399 u64 orig_end; 400 int ret = -1; 401 402 res.start = start; 403 res.end = end; 404 res.flags = flags; 405 orig_end = res.end; 406 while ((res.start < res.end) && 407 (!find_next_iomem_res(&res, name, false))) { 408 ret = (*func)(res.start, res.end, arg); 409 if (ret) 410 break; 411 res.start = res.end + 1; 412 res.end = orig_end; 413 } 414 return ret; 415 } 416 417 /* 418 * This function calls callback against all memory range of "System RAM" 419 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. 420 * Now, this function is only for "System RAM". This function deals with 421 * full ranges and not pfn. If resources are not pfn aligned, dealing 422 * with pfn can truncate ranges. 423 */ 424 int walk_system_ram_res(u64 start, u64 end, void *arg, 425 int (*func)(u64, u64, void *)) 426 { 427 struct resource res; 428 u64 orig_end; 429 int ret = -1; 430 431 res.start = start; 432 res.end = end; 433 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; 434 orig_end = res.end; 435 while ((res.start < res.end) && 436 (!find_next_iomem_res(&res, "System RAM", true))) { 437 ret = (*func)(res.start, res.end, arg); 438 if (ret) 439 break; 440 res.start = res.end + 1; 441 res.end = orig_end; 442 } 443 return ret; 444 } 445 446 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) 447 448 /* 449 * This function calls callback against all memory range of "System RAM" 450 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. 451 * Now, this function is only for "System RAM". 452 */ 453 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 454 void *arg, int (*func)(unsigned long, unsigned long, void *)) 455 { 456 struct resource res; 457 unsigned long pfn, end_pfn; 458 u64 orig_end; 459 int ret = -1; 460 461 res.start = (u64) start_pfn << PAGE_SHIFT; 462 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 463 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; 464 orig_end = res.end; 465 while ((res.start < res.end) && 466 (find_next_iomem_res(&res, "System RAM", true) >= 0)) { 467 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; 468 end_pfn = (res.end + 1) >> PAGE_SHIFT; 469 if (end_pfn > pfn) 470 ret = (*func)(pfn, end_pfn - pfn, arg); 471 if (ret) 472 break; 473 res.start = res.end + 1; 474 res.end = orig_end; 475 } 476 return ret; 477 } 478 479 #endif 480 481 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 482 { 483 return 1; 484 } 485 /* 486 * This generic page_is_ram() returns true if specified address is 487 * registered as "System RAM" in iomem_resource list. 488 */ 489 int __weak page_is_ram(unsigned long pfn) 490 { 491 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 492 } 493 EXPORT_SYMBOL_GPL(page_is_ram); 494 495 /* 496 * Search for a resouce entry that fully contains the specified region. 497 * If found, return 1 if it is RAM, 0 if not. 498 * If not found, or region is not fully contained, return -1 499 * 500 * Used by the ioremap functions to ensure the user is not remapping RAM and is 501 * a vast speed up over walking through the resource table page by page. 502 */ 503 int region_is_ram(resource_size_t start, unsigned long size) 504 { 505 struct resource *p; 506 resource_size_t end = start + size - 1; 507 int flags = IORESOURCE_MEM | IORESOURCE_BUSY; 508 const char *name = "System RAM"; 509 int ret = -1; 510 511 read_lock(&resource_lock); 512 for (p = iomem_resource.child; p ; p = p->sibling) { 513 if (end < p->start) 514 continue; 515 516 if (p->start <= start && end <= p->end) { 517 /* resource fully contains region */ 518 if ((p->flags != flags) || strcmp(p->name, name)) 519 ret = 0; 520 else 521 ret = 1; 522 break; 523 } 524 if (p->end < start) 525 break; /* not found */ 526 } 527 read_unlock(&resource_lock); 528 return ret; 529 } 530 531 void __weak arch_remove_reservations(struct resource *avail) 532 { 533 } 534 535 static resource_size_t simple_align_resource(void *data, 536 const struct resource *avail, 537 resource_size_t size, 538 resource_size_t align) 539 { 540 return avail->start; 541 } 542 543 static void resource_clip(struct resource *res, resource_size_t min, 544 resource_size_t max) 545 { 546 if (res->start < min) 547 res->start = min; 548 if (res->end > max) 549 res->end = max; 550 } 551 552 /* 553 * Find empty slot in the resource tree with the given range and 554 * alignment constraints 555 */ 556 static int __find_resource(struct resource *root, struct resource *old, 557 struct resource *new, 558 resource_size_t size, 559 struct resource_constraint *constraint) 560 { 561 struct resource *this = root->child; 562 struct resource tmp = *new, avail, alloc; 563 564 tmp.start = root->start; 565 /* 566 * Skip past an allocated resource that starts at 0, since the assignment 567 * of this->start - 1 to tmp->end below would cause an underflow. 568 */ 569 if (this && this->start == root->start) { 570 tmp.start = (this == old) ? old->start : this->end + 1; 571 this = this->sibling; 572 } 573 for(;;) { 574 if (this) 575 tmp.end = (this == old) ? this->end : this->start - 1; 576 else 577 tmp.end = root->end; 578 579 if (tmp.end < tmp.start) 580 goto next; 581 582 resource_clip(&tmp, constraint->min, constraint->max); 583 arch_remove_reservations(&tmp); 584 585 /* Check for overflow after ALIGN() */ 586 avail.start = ALIGN(tmp.start, constraint->align); 587 avail.end = tmp.end; 588 avail.flags = new->flags & ~IORESOURCE_UNSET; 589 if (avail.start >= tmp.start) { 590 alloc.flags = avail.flags; 591 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 592 size, constraint->align); 593 alloc.end = alloc.start + size - 1; 594 if (resource_contains(&avail, &alloc)) { 595 new->start = alloc.start; 596 new->end = alloc.end; 597 return 0; 598 } 599 } 600 601 next: if (!this || this->end == root->end) 602 break; 603 604 if (this != old) 605 tmp.start = this->end + 1; 606 this = this->sibling; 607 } 608 return -EBUSY; 609 } 610 611 /* 612 * Find empty slot in the resource tree given range and alignment. 613 */ 614 static int find_resource(struct resource *root, struct resource *new, 615 resource_size_t size, 616 struct resource_constraint *constraint) 617 { 618 return __find_resource(root, NULL, new, size, constraint); 619 } 620 621 /** 622 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 623 * The resource will be relocated if the new size cannot be reallocated in the 624 * current location. 625 * 626 * @root: root resource descriptor 627 * @old: resource descriptor desired by caller 628 * @newsize: new size of the resource descriptor 629 * @constraint: the size and alignment constraints to be met. 630 */ 631 static int reallocate_resource(struct resource *root, struct resource *old, 632 resource_size_t newsize, 633 struct resource_constraint *constraint) 634 { 635 int err=0; 636 struct resource new = *old; 637 struct resource *conflict; 638 639 write_lock(&resource_lock); 640 641 if ((err = __find_resource(root, old, &new, newsize, constraint))) 642 goto out; 643 644 if (resource_contains(&new, old)) { 645 old->start = new.start; 646 old->end = new.end; 647 goto out; 648 } 649 650 if (old->child) { 651 err = -EBUSY; 652 goto out; 653 } 654 655 if (resource_contains(old, &new)) { 656 old->start = new.start; 657 old->end = new.end; 658 } else { 659 __release_resource(old); 660 *old = new; 661 conflict = __request_resource(root, old); 662 BUG_ON(conflict); 663 } 664 out: 665 write_unlock(&resource_lock); 666 return err; 667 } 668 669 670 /** 671 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 672 * The resource will be reallocated with a new size if it was already allocated 673 * @root: root resource descriptor 674 * @new: resource descriptor desired by caller 675 * @size: requested resource region size 676 * @min: minimum boundary to allocate 677 * @max: maximum boundary to allocate 678 * @align: alignment requested, in bytes 679 * @alignf: alignment function, optional, called if not NULL 680 * @alignf_data: arbitrary data to pass to the @alignf function 681 */ 682 int allocate_resource(struct resource *root, struct resource *new, 683 resource_size_t size, resource_size_t min, 684 resource_size_t max, resource_size_t align, 685 resource_size_t (*alignf)(void *, 686 const struct resource *, 687 resource_size_t, 688 resource_size_t), 689 void *alignf_data) 690 { 691 int err; 692 struct resource_constraint constraint; 693 694 if (!alignf) 695 alignf = simple_align_resource; 696 697 constraint.min = min; 698 constraint.max = max; 699 constraint.align = align; 700 constraint.alignf = alignf; 701 constraint.alignf_data = alignf_data; 702 703 if ( new->parent ) { 704 /* resource is already allocated, try reallocating with 705 the new constraints */ 706 return reallocate_resource(root, new, size, &constraint); 707 } 708 709 write_lock(&resource_lock); 710 err = find_resource(root, new, size, &constraint); 711 if (err >= 0 && __request_resource(root, new)) 712 err = -EBUSY; 713 write_unlock(&resource_lock); 714 return err; 715 } 716 717 EXPORT_SYMBOL(allocate_resource); 718 719 /** 720 * lookup_resource - find an existing resource by a resource start address 721 * @root: root resource descriptor 722 * @start: resource start address 723 * 724 * Returns a pointer to the resource if found, NULL otherwise 725 */ 726 struct resource *lookup_resource(struct resource *root, resource_size_t start) 727 { 728 struct resource *res; 729 730 read_lock(&resource_lock); 731 for (res = root->child; res; res = res->sibling) { 732 if (res->start == start) 733 break; 734 } 735 read_unlock(&resource_lock); 736 737 return res; 738 } 739 740 /* 741 * Insert a resource into the resource tree. If successful, return NULL, 742 * otherwise return the conflicting resource (compare to __request_resource()) 743 */ 744 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 745 { 746 struct resource *first, *next; 747 748 for (;; parent = first) { 749 first = __request_resource(parent, new); 750 if (!first) 751 return first; 752 753 if (first == parent) 754 return first; 755 if (WARN_ON(first == new)) /* duplicated insertion */ 756 return first; 757 758 if ((first->start > new->start) || (first->end < new->end)) 759 break; 760 if ((first->start == new->start) && (first->end == new->end)) 761 break; 762 } 763 764 for (next = first; ; next = next->sibling) { 765 /* Partial overlap? Bad, and unfixable */ 766 if (next->start < new->start || next->end > new->end) 767 return next; 768 if (!next->sibling) 769 break; 770 if (next->sibling->start > new->end) 771 break; 772 } 773 774 new->parent = parent; 775 new->sibling = next->sibling; 776 new->child = first; 777 778 next->sibling = NULL; 779 for (next = first; next; next = next->sibling) 780 next->parent = new; 781 782 if (parent->child == first) { 783 parent->child = new; 784 } else { 785 next = parent->child; 786 while (next->sibling != first) 787 next = next->sibling; 788 next->sibling = new; 789 } 790 return NULL; 791 } 792 793 /** 794 * insert_resource_conflict - Inserts resource in the resource tree 795 * @parent: parent of the new resource 796 * @new: new resource to insert 797 * 798 * Returns 0 on success, conflict resource if the resource can't be inserted. 799 * 800 * This function is equivalent to request_resource_conflict when no conflict 801 * happens. If a conflict happens, and the conflicting resources 802 * entirely fit within the range of the new resource, then the new 803 * resource is inserted and the conflicting resources become children of 804 * the new resource. 805 */ 806 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 807 { 808 struct resource *conflict; 809 810 write_lock(&resource_lock); 811 conflict = __insert_resource(parent, new); 812 write_unlock(&resource_lock); 813 return conflict; 814 } 815 816 /** 817 * insert_resource - Inserts a resource in the resource tree 818 * @parent: parent of the new resource 819 * @new: new resource to insert 820 * 821 * Returns 0 on success, -EBUSY if the resource can't be inserted. 822 */ 823 int insert_resource(struct resource *parent, struct resource *new) 824 { 825 struct resource *conflict; 826 827 conflict = insert_resource_conflict(parent, new); 828 return conflict ? -EBUSY : 0; 829 } 830 831 /** 832 * insert_resource_expand_to_fit - Insert a resource into the resource tree 833 * @root: root resource descriptor 834 * @new: new resource to insert 835 * 836 * Insert a resource into the resource tree, possibly expanding it in order 837 * to make it encompass any conflicting resources. 838 */ 839 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 840 { 841 if (new->parent) 842 return; 843 844 write_lock(&resource_lock); 845 for (;;) { 846 struct resource *conflict; 847 848 conflict = __insert_resource(root, new); 849 if (!conflict) 850 break; 851 if (conflict == root) 852 break; 853 854 /* Ok, expand resource to cover the conflict, then try again .. */ 855 if (conflict->start < new->start) 856 new->start = conflict->start; 857 if (conflict->end > new->end) 858 new->end = conflict->end; 859 860 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 861 } 862 write_unlock(&resource_lock); 863 } 864 865 static int __adjust_resource(struct resource *res, resource_size_t start, 866 resource_size_t size) 867 { 868 struct resource *tmp, *parent = res->parent; 869 resource_size_t end = start + size - 1; 870 int result = -EBUSY; 871 872 if (!parent) 873 goto skip; 874 875 if ((start < parent->start) || (end > parent->end)) 876 goto out; 877 878 if (res->sibling && (res->sibling->start <= end)) 879 goto out; 880 881 tmp = parent->child; 882 if (tmp != res) { 883 while (tmp->sibling != res) 884 tmp = tmp->sibling; 885 if (start <= tmp->end) 886 goto out; 887 } 888 889 skip: 890 for (tmp = res->child; tmp; tmp = tmp->sibling) 891 if ((tmp->start < start) || (tmp->end > end)) 892 goto out; 893 894 res->start = start; 895 res->end = end; 896 result = 0; 897 898 out: 899 return result; 900 } 901 902 /** 903 * adjust_resource - modify a resource's start and size 904 * @res: resource to modify 905 * @start: new start value 906 * @size: new size 907 * 908 * Given an existing resource, change its start and size to match the 909 * arguments. Returns 0 on success, -EBUSY if it can't fit. 910 * Existing children of the resource are assumed to be immutable. 911 */ 912 int adjust_resource(struct resource *res, resource_size_t start, 913 resource_size_t size) 914 { 915 int result; 916 917 write_lock(&resource_lock); 918 result = __adjust_resource(res, start, size); 919 write_unlock(&resource_lock); 920 return result; 921 } 922 EXPORT_SYMBOL(adjust_resource); 923 924 static void __init __reserve_region_with_split(struct resource *root, 925 resource_size_t start, resource_size_t end, 926 const char *name) 927 { 928 struct resource *parent = root; 929 struct resource *conflict; 930 struct resource *res = alloc_resource(GFP_ATOMIC); 931 struct resource *next_res = NULL; 932 933 if (!res) 934 return; 935 936 res->name = name; 937 res->start = start; 938 res->end = end; 939 res->flags = IORESOURCE_BUSY; 940 941 while (1) { 942 943 conflict = __request_resource(parent, res); 944 if (!conflict) { 945 if (!next_res) 946 break; 947 res = next_res; 948 next_res = NULL; 949 continue; 950 } 951 952 /* conflict covered whole area */ 953 if (conflict->start <= res->start && 954 conflict->end >= res->end) { 955 free_resource(res); 956 WARN_ON(next_res); 957 break; 958 } 959 960 /* failed, split and try again */ 961 if (conflict->start > res->start) { 962 end = res->end; 963 res->end = conflict->start - 1; 964 if (conflict->end < end) { 965 next_res = alloc_resource(GFP_ATOMIC); 966 if (!next_res) { 967 free_resource(res); 968 break; 969 } 970 next_res->name = name; 971 next_res->start = conflict->end + 1; 972 next_res->end = end; 973 next_res->flags = IORESOURCE_BUSY; 974 } 975 } else { 976 res->start = conflict->end + 1; 977 } 978 } 979 980 } 981 982 void __init reserve_region_with_split(struct resource *root, 983 resource_size_t start, resource_size_t end, 984 const char *name) 985 { 986 int abort = 0; 987 988 write_lock(&resource_lock); 989 if (root->start > start || root->end < end) { 990 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 991 (unsigned long long)start, (unsigned long long)end, 992 root); 993 if (start > root->end || end < root->start) 994 abort = 1; 995 else { 996 if (end > root->end) 997 end = root->end; 998 if (start < root->start) 999 start = root->start; 1000 pr_err("fixing request to [0x%llx-0x%llx]\n", 1001 (unsigned long long)start, 1002 (unsigned long long)end); 1003 } 1004 dump_stack(); 1005 } 1006 if (!abort) 1007 __reserve_region_with_split(root, start, end, name); 1008 write_unlock(&resource_lock); 1009 } 1010 1011 /** 1012 * resource_alignment - calculate resource's alignment 1013 * @res: resource pointer 1014 * 1015 * Returns alignment on success, 0 (invalid alignment) on failure. 1016 */ 1017 resource_size_t resource_alignment(struct resource *res) 1018 { 1019 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1020 case IORESOURCE_SIZEALIGN: 1021 return resource_size(res); 1022 case IORESOURCE_STARTALIGN: 1023 return res->start; 1024 default: 1025 return 0; 1026 } 1027 } 1028 1029 /* 1030 * This is compatibility stuff for IO resources. 1031 * 1032 * Note how this, unlike the above, knows about 1033 * the IO flag meanings (busy etc). 1034 * 1035 * request_region creates a new busy region. 1036 * 1037 * check_region returns non-zero if the area is already busy. 1038 * 1039 * release_region releases a matching busy region. 1040 */ 1041 1042 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1043 1044 /** 1045 * __request_region - create a new busy resource region 1046 * @parent: parent resource descriptor 1047 * @start: resource start address 1048 * @n: resource region size 1049 * @name: reserving caller's ID string 1050 * @flags: IO resource flags 1051 */ 1052 struct resource * __request_region(struct resource *parent, 1053 resource_size_t start, resource_size_t n, 1054 const char *name, int flags) 1055 { 1056 DECLARE_WAITQUEUE(wait, current); 1057 struct resource *res = alloc_resource(GFP_KERNEL); 1058 1059 if (!res) 1060 return NULL; 1061 1062 res->name = name; 1063 res->start = start; 1064 res->end = start + n - 1; 1065 res->flags = resource_type(parent); 1066 res->flags |= IORESOURCE_BUSY | flags; 1067 1068 write_lock(&resource_lock); 1069 1070 for (;;) { 1071 struct resource *conflict; 1072 1073 conflict = __request_resource(parent, res); 1074 if (!conflict) 1075 break; 1076 if (conflict != parent) { 1077 parent = conflict; 1078 if (!(conflict->flags & IORESOURCE_BUSY)) 1079 continue; 1080 } 1081 if (conflict->flags & flags & IORESOURCE_MUXED) { 1082 add_wait_queue(&muxed_resource_wait, &wait); 1083 write_unlock(&resource_lock); 1084 set_current_state(TASK_UNINTERRUPTIBLE); 1085 schedule(); 1086 remove_wait_queue(&muxed_resource_wait, &wait); 1087 write_lock(&resource_lock); 1088 continue; 1089 } 1090 /* Uhhuh, that didn't work out.. */ 1091 free_resource(res); 1092 res = NULL; 1093 break; 1094 } 1095 write_unlock(&resource_lock); 1096 return res; 1097 } 1098 EXPORT_SYMBOL(__request_region); 1099 1100 /** 1101 * __check_region - check if a resource region is busy or free 1102 * @parent: parent resource descriptor 1103 * @start: resource start address 1104 * @n: resource region size 1105 * 1106 * Returns 0 if the region is free at the moment it is checked, 1107 * returns %-EBUSY if the region is busy. 1108 * 1109 * NOTE: 1110 * This function is deprecated because its use is racy. 1111 * Even if it returns 0, a subsequent call to request_region() 1112 * may fail because another driver etc. just allocated the region. 1113 * Do NOT use it. It will be removed from the kernel. 1114 */ 1115 int __check_region(struct resource *parent, resource_size_t start, 1116 resource_size_t n) 1117 { 1118 struct resource * res; 1119 1120 res = __request_region(parent, start, n, "check-region", 0); 1121 if (!res) 1122 return -EBUSY; 1123 1124 release_resource(res); 1125 free_resource(res); 1126 return 0; 1127 } 1128 EXPORT_SYMBOL(__check_region); 1129 1130 /** 1131 * __release_region - release a previously reserved resource region 1132 * @parent: parent resource descriptor 1133 * @start: resource start address 1134 * @n: resource region size 1135 * 1136 * The described resource region must match a currently busy region. 1137 */ 1138 void __release_region(struct resource *parent, resource_size_t start, 1139 resource_size_t n) 1140 { 1141 struct resource **p; 1142 resource_size_t end; 1143 1144 p = &parent->child; 1145 end = start + n - 1; 1146 1147 write_lock(&resource_lock); 1148 1149 for (;;) { 1150 struct resource *res = *p; 1151 1152 if (!res) 1153 break; 1154 if (res->start <= start && res->end >= end) { 1155 if (!(res->flags & IORESOURCE_BUSY)) { 1156 p = &res->child; 1157 continue; 1158 } 1159 if (res->start != start || res->end != end) 1160 break; 1161 *p = res->sibling; 1162 write_unlock(&resource_lock); 1163 if (res->flags & IORESOURCE_MUXED) 1164 wake_up(&muxed_resource_wait); 1165 free_resource(res); 1166 return; 1167 } 1168 p = &res->sibling; 1169 } 1170 1171 write_unlock(&resource_lock); 1172 1173 printk(KERN_WARNING "Trying to free nonexistent resource " 1174 "<%016llx-%016llx>\n", (unsigned long long)start, 1175 (unsigned long long)end); 1176 } 1177 EXPORT_SYMBOL(__release_region); 1178 1179 #ifdef CONFIG_MEMORY_HOTREMOVE 1180 /** 1181 * release_mem_region_adjustable - release a previously reserved memory region 1182 * @parent: parent resource descriptor 1183 * @start: resource start address 1184 * @size: resource region size 1185 * 1186 * This interface is intended for memory hot-delete. The requested region 1187 * is released from a currently busy memory resource. The requested region 1188 * must either match exactly or fit into a single busy resource entry. In 1189 * the latter case, the remaining resource is adjusted accordingly. 1190 * Existing children of the busy memory resource must be immutable in the 1191 * request. 1192 * 1193 * Note: 1194 * - Additional release conditions, such as overlapping region, can be 1195 * supported after they are confirmed as valid cases. 1196 * - When a busy memory resource gets split into two entries, the code 1197 * assumes that all children remain in the lower address entry for 1198 * simplicity. Enhance this logic when necessary. 1199 */ 1200 int release_mem_region_adjustable(struct resource *parent, 1201 resource_size_t start, resource_size_t size) 1202 { 1203 struct resource **p; 1204 struct resource *res; 1205 struct resource *new_res; 1206 resource_size_t end; 1207 int ret = -EINVAL; 1208 1209 end = start + size - 1; 1210 if ((start < parent->start) || (end > parent->end)) 1211 return ret; 1212 1213 /* The alloc_resource() result gets checked later */ 1214 new_res = alloc_resource(GFP_KERNEL); 1215 1216 p = &parent->child; 1217 write_lock(&resource_lock); 1218 1219 while ((res = *p)) { 1220 if (res->start >= end) 1221 break; 1222 1223 /* look for the next resource if it does not fit into */ 1224 if (res->start > start || res->end < end) { 1225 p = &res->sibling; 1226 continue; 1227 } 1228 1229 if (!(res->flags & IORESOURCE_MEM)) 1230 break; 1231 1232 if (!(res->flags & IORESOURCE_BUSY)) { 1233 p = &res->child; 1234 continue; 1235 } 1236 1237 /* found the target resource; let's adjust accordingly */ 1238 if (res->start == start && res->end == end) { 1239 /* free the whole entry */ 1240 *p = res->sibling; 1241 free_resource(res); 1242 ret = 0; 1243 } else if (res->start == start && res->end != end) { 1244 /* adjust the start */ 1245 ret = __adjust_resource(res, end + 1, 1246 res->end - end); 1247 } else if (res->start != start && res->end == end) { 1248 /* adjust the end */ 1249 ret = __adjust_resource(res, res->start, 1250 start - res->start); 1251 } else { 1252 /* split into two entries */ 1253 if (!new_res) { 1254 ret = -ENOMEM; 1255 break; 1256 } 1257 new_res->name = res->name; 1258 new_res->start = end + 1; 1259 new_res->end = res->end; 1260 new_res->flags = res->flags; 1261 new_res->parent = res->parent; 1262 new_res->sibling = res->sibling; 1263 new_res->child = NULL; 1264 1265 ret = __adjust_resource(res, res->start, 1266 start - res->start); 1267 if (ret) 1268 break; 1269 res->sibling = new_res; 1270 new_res = NULL; 1271 } 1272 1273 break; 1274 } 1275 1276 write_unlock(&resource_lock); 1277 free_resource(new_res); 1278 return ret; 1279 } 1280 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1281 1282 /* 1283 * Managed region resource 1284 */ 1285 static void devm_resource_release(struct device *dev, void *ptr) 1286 { 1287 struct resource **r = ptr; 1288 1289 release_resource(*r); 1290 } 1291 1292 /** 1293 * devm_request_resource() - request and reserve an I/O or memory resource 1294 * @dev: device for which to request the resource 1295 * @root: root of the resource tree from which to request the resource 1296 * @new: descriptor of the resource to request 1297 * 1298 * This is a device-managed version of request_resource(). There is usually 1299 * no need to release resources requested by this function explicitly since 1300 * that will be taken care of when the device is unbound from its driver. 1301 * If for some reason the resource needs to be released explicitly, because 1302 * of ordering issues for example, drivers must call devm_release_resource() 1303 * rather than the regular release_resource(). 1304 * 1305 * When a conflict is detected between any existing resources and the newly 1306 * requested resource, an error message will be printed. 1307 * 1308 * Returns 0 on success or a negative error code on failure. 1309 */ 1310 int devm_request_resource(struct device *dev, struct resource *root, 1311 struct resource *new) 1312 { 1313 struct resource *conflict, **ptr; 1314 1315 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1316 if (!ptr) 1317 return -ENOMEM; 1318 1319 *ptr = new; 1320 1321 conflict = request_resource_conflict(root, new); 1322 if (conflict) { 1323 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1324 new, conflict->name, conflict); 1325 devres_free(ptr); 1326 return -EBUSY; 1327 } 1328 1329 devres_add(dev, ptr); 1330 return 0; 1331 } 1332 EXPORT_SYMBOL(devm_request_resource); 1333 1334 static int devm_resource_match(struct device *dev, void *res, void *data) 1335 { 1336 struct resource **ptr = res; 1337 1338 return *ptr == data; 1339 } 1340 1341 /** 1342 * devm_release_resource() - release a previously requested resource 1343 * @dev: device for which to release the resource 1344 * @new: descriptor of the resource to release 1345 * 1346 * Releases a resource previously requested using devm_request_resource(). 1347 */ 1348 void devm_release_resource(struct device *dev, struct resource *new) 1349 { 1350 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1351 new)); 1352 } 1353 EXPORT_SYMBOL(devm_release_resource); 1354 1355 struct region_devres { 1356 struct resource *parent; 1357 resource_size_t start; 1358 resource_size_t n; 1359 }; 1360 1361 static void devm_region_release(struct device *dev, void *res) 1362 { 1363 struct region_devres *this = res; 1364 1365 __release_region(this->parent, this->start, this->n); 1366 } 1367 1368 static int devm_region_match(struct device *dev, void *res, void *match_data) 1369 { 1370 struct region_devres *this = res, *match = match_data; 1371 1372 return this->parent == match->parent && 1373 this->start == match->start && this->n == match->n; 1374 } 1375 1376 struct resource * __devm_request_region(struct device *dev, 1377 struct resource *parent, resource_size_t start, 1378 resource_size_t n, const char *name) 1379 { 1380 struct region_devres *dr = NULL; 1381 struct resource *res; 1382 1383 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1384 GFP_KERNEL); 1385 if (!dr) 1386 return NULL; 1387 1388 dr->parent = parent; 1389 dr->start = start; 1390 dr->n = n; 1391 1392 res = __request_region(parent, start, n, name, 0); 1393 if (res) 1394 devres_add(dev, dr); 1395 else 1396 devres_free(dr); 1397 1398 return res; 1399 } 1400 EXPORT_SYMBOL(__devm_request_region); 1401 1402 void __devm_release_region(struct device *dev, struct resource *parent, 1403 resource_size_t start, resource_size_t n) 1404 { 1405 struct region_devres match_data = { parent, start, n }; 1406 1407 __release_region(parent, start, n); 1408 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1409 &match_data)); 1410 } 1411 EXPORT_SYMBOL(__devm_release_region); 1412 1413 /* 1414 * Called from init/main.c to reserve IO ports. 1415 */ 1416 #define MAXRESERVE 4 1417 static int __init reserve_setup(char *str) 1418 { 1419 static int reserved; 1420 static struct resource reserve[MAXRESERVE]; 1421 1422 for (;;) { 1423 unsigned int io_start, io_num; 1424 int x = reserved; 1425 1426 if (get_option (&str, &io_start) != 2) 1427 break; 1428 if (get_option (&str, &io_num) == 0) 1429 break; 1430 if (x < MAXRESERVE) { 1431 struct resource *res = reserve + x; 1432 res->name = "reserved"; 1433 res->start = io_start; 1434 res->end = io_start + io_num - 1; 1435 res->flags = IORESOURCE_BUSY; 1436 res->child = NULL; 1437 if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0) 1438 reserved = x+1; 1439 } 1440 } 1441 return 1; 1442 } 1443 1444 __setup("reserve=", reserve_setup); 1445 1446 /* 1447 * Check if the requested addr and size spans more than any slot in the 1448 * iomem resource tree. 1449 */ 1450 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1451 { 1452 struct resource *p = &iomem_resource; 1453 int err = 0; 1454 loff_t l; 1455 1456 read_lock(&resource_lock); 1457 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1458 /* 1459 * We can probably skip the resources without 1460 * IORESOURCE_IO attribute? 1461 */ 1462 if (p->start >= addr + size) 1463 continue; 1464 if (p->end < addr) 1465 continue; 1466 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1467 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1468 continue; 1469 /* 1470 * if a resource is "BUSY", it's not a hardware resource 1471 * but a driver mapping of such a resource; we don't want 1472 * to warn for those; some drivers legitimately map only 1473 * partial hardware resources. (example: vesafb) 1474 */ 1475 if (p->flags & IORESOURCE_BUSY) 1476 continue; 1477 1478 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1479 (unsigned long long)addr, 1480 (unsigned long long)(addr + size - 1), 1481 p->name, p); 1482 err = -1; 1483 break; 1484 } 1485 read_unlock(&resource_lock); 1486 1487 return err; 1488 } 1489 1490 #ifdef CONFIG_STRICT_DEVMEM 1491 static int strict_iomem_checks = 1; 1492 #else 1493 static int strict_iomem_checks; 1494 #endif 1495 1496 /* 1497 * check if an address is reserved in the iomem resource tree 1498 * returns 1 if reserved, 0 if not reserved. 1499 */ 1500 int iomem_is_exclusive(u64 addr) 1501 { 1502 struct resource *p = &iomem_resource; 1503 int err = 0; 1504 loff_t l; 1505 int size = PAGE_SIZE; 1506 1507 if (!strict_iomem_checks) 1508 return 0; 1509 1510 addr = addr & PAGE_MASK; 1511 1512 read_lock(&resource_lock); 1513 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1514 /* 1515 * We can probably skip the resources without 1516 * IORESOURCE_IO attribute? 1517 */ 1518 if (p->start >= addr + size) 1519 break; 1520 if (p->end < addr) 1521 continue; 1522 if (p->flags & IORESOURCE_BUSY && 1523 p->flags & IORESOURCE_EXCLUSIVE) { 1524 err = 1; 1525 break; 1526 } 1527 } 1528 read_unlock(&resource_lock); 1529 1530 return err; 1531 } 1532 1533 struct resource_entry *resource_list_create_entry(struct resource *res, 1534 size_t extra_size) 1535 { 1536 struct resource_entry *entry; 1537 1538 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1539 if (entry) { 1540 INIT_LIST_HEAD(&entry->node); 1541 entry->res = res ? res : &entry->__res; 1542 } 1543 1544 return entry; 1545 } 1546 EXPORT_SYMBOL(resource_list_create_entry); 1547 1548 void resource_list_free(struct list_head *head) 1549 { 1550 struct resource_entry *entry, *tmp; 1551 1552 list_for_each_entry_safe(entry, tmp, head, node) 1553 resource_list_destroy_entry(entry); 1554 } 1555 EXPORT_SYMBOL(resource_list_free); 1556 1557 static int __init strict_iomem(char *str) 1558 { 1559 if (strstr(str, "relaxed")) 1560 strict_iomem_checks = 0; 1561 if (strstr(str, "strict")) 1562 strict_iomem_checks = 1; 1563 return 1; 1564 } 1565 1566 __setup("iomem=", strict_iomem); 1567