xref: /openbmc/linux/kernel/relay.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 	struct page *page;
45 	struct rchan_buf *buf = vma->vm_private_data;
46 	pgoff_t pgoff = vmf->pgoff;
47 
48 	if (!buf)
49 		return VM_FAULT_OOM;
50 
51 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 	if (!page)
53 		return VM_FAULT_SIGBUS;
54 	get_page(page);
55 	vmf->page = page;
56 
57 	return 0;
58 }
59 
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static struct vm_operations_struct relay_file_mmap_ops = {
64 	.fault = relay_buf_fault,
65 	.close = relay_file_mmap_close,
66 };
67 
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 	struct page **array;
74 	size_t pa_size = n_pages * sizeof(struct page *);
75 
76 	if (pa_size > PAGE_SIZE) {
77 		array = vmalloc(pa_size);
78 		if (array)
79 			memset(array, 0, pa_size);
80 	} else {
81 		array = kzalloc(pa_size, GFP_KERNEL);
82 	}
83 	return array;
84 }
85 
86 /*
87  * free an array of pointers of struct page
88  */
89 static void relay_free_page_array(struct page **array)
90 {
91 	if (is_vmalloc_addr(array))
92 		vfree(array);
93 	else
94 		kfree(array);
95 }
96 
97 /**
98  *	relay_mmap_buf: - mmap channel buffer to process address space
99  *	@buf: relay channel buffer
100  *	@vma: vm_area_struct describing memory to be mapped
101  *
102  *	Returns 0 if ok, negative on error
103  *
104  *	Caller should already have grabbed mmap_sem.
105  */
106 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
107 {
108 	unsigned long length = vma->vm_end - vma->vm_start;
109 	struct file *filp = vma->vm_file;
110 
111 	if (!buf)
112 		return -EBADF;
113 
114 	if (length != (unsigned long)buf->chan->alloc_size)
115 		return -EINVAL;
116 
117 	vma->vm_ops = &relay_file_mmap_ops;
118 	vma->vm_flags |= VM_DONTEXPAND;
119 	vma->vm_private_data = buf;
120 	buf->chan->cb->buf_mapped(buf, filp);
121 
122 	return 0;
123 }
124 
125 /**
126  *	relay_alloc_buf - allocate a channel buffer
127  *	@buf: the buffer struct
128  *	@size: total size of the buffer
129  *
130  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
131  *	passed in size will get page aligned, if it isn't already.
132  */
133 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
134 {
135 	void *mem;
136 	unsigned int i, j, n_pages;
137 
138 	*size = PAGE_ALIGN(*size);
139 	n_pages = *size >> PAGE_SHIFT;
140 
141 	buf->page_array = relay_alloc_page_array(n_pages);
142 	if (!buf->page_array)
143 		return NULL;
144 
145 	for (i = 0; i < n_pages; i++) {
146 		buf->page_array[i] = alloc_page(GFP_KERNEL);
147 		if (unlikely(!buf->page_array[i]))
148 			goto depopulate;
149 		set_page_private(buf->page_array[i], (unsigned long)buf);
150 	}
151 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
152 	if (!mem)
153 		goto depopulate;
154 
155 	memset(mem, 0, *size);
156 	buf->page_count = n_pages;
157 	return mem;
158 
159 depopulate:
160 	for (j = 0; j < i; j++)
161 		__free_page(buf->page_array[j]);
162 	relay_free_page_array(buf->page_array);
163 	return NULL;
164 }
165 
166 /**
167  *	relay_create_buf - allocate and initialize a channel buffer
168  *	@chan: the relay channel
169  *
170  *	Returns channel buffer if successful, %NULL otherwise.
171  */
172 static struct rchan_buf *relay_create_buf(struct rchan *chan)
173 {
174 	struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
175 	if (!buf)
176 		return NULL;
177 
178 	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
179 	if (!buf->padding)
180 		goto free_buf;
181 
182 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
183 	if (!buf->start)
184 		goto free_buf;
185 
186 	buf->chan = chan;
187 	kref_get(&buf->chan->kref);
188 	return buf;
189 
190 free_buf:
191 	kfree(buf->padding);
192 	kfree(buf);
193 	return NULL;
194 }
195 
196 /**
197  *	relay_destroy_channel - free the channel struct
198  *	@kref: target kernel reference that contains the relay channel
199  *
200  *	Should only be called from kref_put().
201  */
202 static void relay_destroy_channel(struct kref *kref)
203 {
204 	struct rchan *chan = container_of(kref, struct rchan, kref);
205 	kfree(chan);
206 }
207 
208 /**
209  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
210  *	@buf: the buffer struct
211  */
212 static void relay_destroy_buf(struct rchan_buf *buf)
213 {
214 	struct rchan *chan = buf->chan;
215 	unsigned int i;
216 
217 	if (likely(buf->start)) {
218 		vunmap(buf->start);
219 		for (i = 0; i < buf->page_count; i++)
220 			__free_page(buf->page_array[i]);
221 		relay_free_page_array(buf->page_array);
222 	}
223 	chan->buf[buf->cpu] = NULL;
224 	kfree(buf->padding);
225 	kfree(buf);
226 	kref_put(&chan->kref, relay_destroy_channel);
227 }
228 
229 /**
230  *	relay_remove_buf - remove a channel buffer
231  *	@kref: target kernel reference that contains the relay buffer
232  *
233  *	Removes the file from the fileystem, which also frees the
234  *	rchan_buf_struct and the channel buffer.  Should only be called from
235  *	kref_put().
236  */
237 static void relay_remove_buf(struct kref *kref)
238 {
239 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
240 	buf->chan->cb->remove_buf_file(buf->dentry);
241 	relay_destroy_buf(buf);
242 }
243 
244 /**
245  *	relay_buf_empty - boolean, is the channel buffer empty?
246  *	@buf: channel buffer
247  *
248  *	Returns 1 if the buffer is empty, 0 otherwise.
249  */
250 static int relay_buf_empty(struct rchan_buf *buf)
251 {
252 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
253 }
254 
255 /**
256  *	relay_buf_full - boolean, is the channel buffer full?
257  *	@buf: channel buffer
258  *
259  *	Returns 1 if the buffer is full, 0 otherwise.
260  */
261 int relay_buf_full(struct rchan_buf *buf)
262 {
263 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
264 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
265 }
266 EXPORT_SYMBOL_GPL(relay_buf_full);
267 
268 /*
269  * High-level relay kernel API and associated functions.
270  */
271 
272 /*
273  * rchan_callback implementations defining default channel behavior.  Used
274  * in place of corresponding NULL values in client callback struct.
275  */
276 
277 /*
278  * subbuf_start() default callback.  Does nothing.
279  */
280 static int subbuf_start_default_callback (struct rchan_buf *buf,
281 					  void *subbuf,
282 					  void *prev_subbuf,
283 					  size_t prev_padding)
284 {
285 	if (relay_buf_full(buf))
286 		return 0;
287 
288 	return 1;
289 }
290 
291 /*
292  * buf_mapped() default callback.  Does nothing.
293  */
294 static void buf_mapped_default_callback(struct rchan_buf *buf,
295 					struct file *filp)
296 {
297 }
298 
299 /*
300  * buf_unmapped() default callback.  Does nothing.
301  */
302 static void buf_unmapped_default_callback(struct rchan_buf *buf,
303 					  struct file *filp)
304 {
305 }
306 
307 /*
308  * create_buf_file_create() default callback.  Does nothing.
309  */
310 static struct dentry *create_buf_file_default_callback(const char *filename,
311 						       struct dentry *parent,
312 						       int mode,
313 						       struct rchan_buf *buf,
314 						       int *is_global)
315 {
316 	return NULL;
317 }
318 
319 /*
320  * remove_buf_file() default callback.  Does nothing.
321  */
322 static int remove_buf_file_default_callback(struct dentry *dentry)
323 {
324 	return -EINVAL;
325 }
326 
327 /* relay channel default callbacks */
328 static struct rchan_callbacks default_channel_callbacks = {
329 	.subbuf_start = subbuf_start_default_callback,
330 	.buf_mapped = buf_mapped_default_callback,
331 	.buf_unmapped = buf_unmapped_default_callback,
332 	.create_buf_file = create_buf_file_default_callback,
333 	.remove_buf_file = remove_buf_file_default_callback,
334 };
335 
336 /**
337  *	wakeup_readers - wake up readers waiting on a channel
338  *	@data: contains the channel buffer
339  *
340  *	This is the timer function used to defer reader waking.
341  */
342 static void wakeup_readers(unsigned long data)
343 {
344 	struct rchan_buf *buf = (struct rchan_buf *)data;
345 	wake_up_interruptible(&buf->read_wait);
346 }
347 
348 /**
349  *	__relay_reset - reset a channel buffer
350  *	@buf: the channel buffer
351  *	@init: 1 if this is a first-time initialization
352  *
353  *	See relay_reset() for description of effect.
354  */
355 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
356 {
357 	size_t i;
358 
359 	if (init) {
360 		init_waitqueue_head(&buf->read_wait);
361 		kref_init(&buf->kref);
362 		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
363 	} else
364 		del_timer_sync(&buf->timer);
365 
366 	buf->subbufs_produced = 0;
367 	buf->subbufs_consumed = 0;
368 	buf->bytes_consumed = 0;
369 	buf->finalized = 0;
370 	buf->data = buf->start;
371 	buf->offset = 0;
372 
373 	for (i = 0; i < buf->chan->n_subbufs; i++)
374 		buf->padding[i] = 0;
375 
376 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
377 }
378 
379 /**
380  *	relay_reset - reset the channel
381  *	@chan: the channel
382  *
383  *	This has the effect of erasing all data from all channel buffers
384  *	and restarting the channel in its initial state.  The buffers
385  *	are not freed, so any mappings are still in effect.
386  *
387  *	NOTE. Care should be taken that the channel isn't actually
388  *	being used by anything when this call is made.
389  */
390 void relay_reset(struct rchan *chan)
391 {
392 	unsigned int i;
393 
394 	if (!chan)
395 		return;
396 
397 	if (chan->is_global && chan->buf[0]) {
398 		__relay_reset(chan->buf[0], 0);
399 		return;
400 	}
401 
402 	mutex_lock(&relay_channels_mutex);
403 	for_each_online_cpu(i)
404 		if (chan->buf[i])
405 			__relay_reset(chan->buf[i], 0);
406 	mutex_unlock(&relay_channels_mutex);
407 }
408 EXPORT_SYMBOL_GPL(relay_reset);
409 
410 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
411 					struct dentry *dentry)
412 {
413 	buf->dentry = dentry;
414 	buf->dentry->d_inode->i_size = buf->early_bytes;
415 }
416 
417 static struct dentry *relay_create_buf_file(struct rchan *chan,
418 					    struct rchan_buf *buf,
419 					    unsigned int cpu)
420 {
421 	struct dentry *dentry;
422 	char *tmpname;
423 
424 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
425 	if (!tmpname)
426 		return NULL;
427 	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
428 
429 	/* Create file in fs */
430 	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
431 					   S_IRUSR, buf,
432 					   &chan->is_global);
433 
434 	kfree(tmpname);
435 
436 	return dentry;
437 }
438 
439 /*
440  *	relay_open_buf - create a new relay channel buffer
441  *
442  *	used by relay_open() and CPU hotplug.
443  */
444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
445 {
446  	struct rchan_buf *buf = NULL;
447 	struct dentry *dentry;
448 
449  	if (chan->is_global)
450 		return chan->buf[0];
451 
452 	buf = relay_create_buf(chan);
453 	if (!buf)
454 		return NULL;
455 
456 	if (chan->has_base_filename) {
457 		dentry = relay_create_buf_file(chan, buf, cpu);
458 		if (!dentry)
459 			goto free_buf;
460 		relay_set_buf_dentry(buf, dentry);
461 	}
462 
463  	buf->cpu = cpu;
464  	__relay_reset(buf, 1);
465 
466  	if(chan->is_global) {
467  		chan->buf[0] = buf;
468  		buf->cpu = 0;
469   	}
470 
471 	return buf;
472 
473 free_buf:
474  	relay_destroy_buf(buf);
475 	return NULL;
476 }
477 
478 /**
479  *	relay_close_buf - close a channel buffer
480  *	@buf: channel buffer
481  *
482  *	Marks the buffer finalized and restores the default callbacks.
483  *	The channel buffer and channel buffer data structure are then freed
484  *	automatically when the last reference is given up.
485  */
486 static void relay_close_buf(struct rchan_buf *buf)
487 {
488 	buf->finalized = 1;
489 	del_timer_sync(&buf->timer);
490 	kref_put(&buf->kref, relay_remove_buf);
491 }
492 
493 static void setup_callbacks(struct rchan *chan,
494 				   struct rchan_callbacks *cb)
495 {
496 	if (!cb) {
497 		chan->cb = &default_channel_callbacks;
498 		return;
499 	}
500 
501 	if (!cb->subbuf_start)
502 		cb->subbuf_start = subbuf_start_default_callback;
503 	if (!cb->buf_mapped)
504 		cb->buf_mapped = buf_mapped_default_callback;
505 	if (!cb->buf_unmapped)
506 		cb->buf_unmapped = buf_unmapped_default_callback;
507 	if (!cb->create_buf_file)
508 		cb->create_buf_file = create_buf_file_default_callback;
509 	if (!cb->remove_buf_file)
510 		cb->remove_buf_file = remove_buf_file_default_callback;
511 	chan->cb = cb;
512 }
513 
514 /**
515  * 	relay_hotcpu_callback - CPU hotplug callback
516  * 	@nb: notifier block
517  * 	@action: hotplug action to take
518  * 	@hcpu: CPU number
519  *
520  * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
521  */
522 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
523 				unsigned long action,
524 				void *hcpu)
525 {
526 	unsigned int hotcpu = (unsigned long)hcpu;
527 	struct rchan *chan;
528 
529 	switch(action) {
530 	case CPU_UP_PREPARE:
531 	case CPU_UP_PREPARE_FROZEN:
532 		mutex_lock(&relay_channels_mutex);
533 		list_for_each_entry(chan, &relay_channels, list) {
534 			if (chan->buf[hotcpu])
535 				continue;
536 			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
537 			if(!chan->buf[hotcpu]) {
538 				printk(KERN_ERR
539 					"relay_hotcpu_callback: cpu %d buffer "
540 					"creation failed\n", hotcpu);
541 				mutex_unlock(&relay_channels_mutex);
542 				return NOTIFY_BAD;
543 			}
544 		}
545 		mutex_unlock(&relay_channels_mutex);
546 		break;
547 	case CPU_DEAD:
548 	case CPU_DEAD_FROZEN:
549 		/* No need to flush the cpu : will be flushed upon
550 		 * final relay_flush() call. */
551 		break;
552 	}
553 	return NOTIFY_OK;
554 }
555 
556 /**
557  *	relay_open - create a new relay channel
558  *	@base_filename: base name of files to create, %NULL for buffering only
559  *	@parent: dentry of parent directory, %NULL for root directory or buffer
560  *	@subbuf_size: size of sub-buffers
561  *	@n_subbufs: number of sub-buffers
562  *	@cb: client callback functions
563  *	@private_data: user-defined data
564  *
565  *	Returns channel pointer if successful, %NULL otherwise.
566  *
567  *	Creates a channel buffer for each cpu using the sizes and
568  *	attributes specified.  The created channel buffer files
569  *	will be named base_filename0...base_filenameN-1.  File
570  *	permissions will be %S_IRUSR.
571  */
572 struct rchan *relay_open(const char *base_filename,
573 			 struct dentry *parent,
574 			 size_t subbuf_size,
575 			 size_t n_subbufs,
576 			 struct rchan_callbacks *cb,
577 			 void *private_data)
578 {
579 	unsigned int i;
580 	struct rchan *chan;
581 
582 	if (!(subbuf_size && n_subbufs))
583 		return NULL;
584 
585 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
586 	if (!chan)
587 		return NULL;
588 
589 	chan->version = RELAYFS_CHANNEL_VERSION;
590 	chan->n_subbufs = n_subbufs;
591 	chan->subbuf_size = subbuf_size;
592 	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
593 	chan->parent = parent;
594 	chan->private_data = private_data;
595 	if (base_filename) {
596 		chan->has_base_filename = 1;
597 		strlcpy(chan->base_filename, base_filename, NAME_MAX);
598 	}
599 	setup_callbacks(chan, cb);
600 	kref_init(&chan->kref);
601 
602 	mutex_lock(&relay_channels_mutex);
603 	for_each_online_cpu(i) {
604 		chan->buf[i] = relay_open_buf(chan, i);
605 		if (!chan->buf[i])
606 			goto free_bufs;
607 	}
608 	list_add(&chan->list, &relay_channels);
609 	mutex_unlock(&relay_channels_mutex);
610 
611 	return chan;
612 
613 free_bufs:
614 	for_each_online_cpu(i) {
615 		if (!chan->buf[i])
616 			break;
617 		relay_close_buf(chan->buf[i]);
618 	}
619 
620 	kref_put(&chan->kref, relay_destroy_channel);
621 	mutex_unlock(&relay_channels_mutex);
622 	return NULL;
623 }
624 EXPORT_SYMBOL_GPL(relay_open);
625 
626 struct rchan_percpu_buf_dispatcher {
627 	struct rchan_buf *buf;
628 	struct dentry *dentry;
629 };
630 
631 /* Called in atomic context. */
632 static void __relay_set_buf_dentry(void *info)
633 {
634 	struct rchan_percpu_buf_dispatcher *p = info;
635 
636 	relay_set_buf_dentry(p->buf, p->dentry);
637 }
638 
639 /**
640  *	relay_late_setup_files - triggers file creation
641  *	@chan: channel to operate on
642  *	@base_filename: base name of files to create
643  *	@parent: dentry of parent directory, %NULL for root directory
644  *
645  *	Returns 0 if successful, non-zero otherwise.
646  *
647  *	Use to setup files for a previously buffer-only channel.
648  *	Useful to do early tracing in kernel, before VFS is up, for example.
649  */
650 int relay_late_setup_files(struct rchan *chan,
651 			   const char *base_filename,
652 			   struct dentry *parent)
653 {
654 	int err = 0;
655 	unsigned int i, curr_cpu;
656 	unsigned long flags;
657 	struct dentry *dentry;
658 	struct rchan_percpu_buf_dispatcher disp;
659 
660 	if (!chan || !base_filename)
661 		return -EINVAL;
662 
663 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
664 
665 	mutex_lock(&relay_channels_mutex);
666 	/* Is chan already set up? */
667 	if (unlikely(chan->has_base_filename))
668 		return -EEXIST;
669 	chan->has_base_filename = 1;
670 	chan->parent = parent;
671 	curr_cpu = get_cpu();
672 	/*
673 	 * The CPU hotplug notifier ran before us and created buffers with
674 	 * no files associated. So it's safe to call relay_setup_buf_file()
675 	 * on all currently online CPUs.
676 	 */
677 	for_each_online_cpu(i) {
678 		if (unlikely(!chan->buf[i])) {
679 			printk(KERN_ERR "relay_late_setup_files: CPU %u "
680 					"has no buffer, it must have!\n", i);
681 			BUG();
682 			err = -EINVAL;
683 			break;
684 		}
685 
686 		dentry = relay_create_buf_file(chan, chan->buf[i], i);
687 		if (unlikely(!dentry)) {
688 			err = -EINVAL;
689 			break;
690 		}
691 
692 		if (curr_cpu == i) {
693 			local_irq_save(flags);
694 			relay_set_buf_dentry(chan->buf[i], dentry);
695 			local_irq_restore(flags);
696 		} else {
697 			disp.buf = chan->buf[i];
698 			disp.dentry = dentry;
699 			smp_mb();
700 			/* relay_channels_mutex must be held, so wait. */
701 			err = smp_call_function_single(i,
702 						       __relay_set_buf_dentry,
703 						       &disp, 1);
704 		}
705 		if (unlikely(err))
706 			break;
707 	}
708 	put_cpu();
709 	mutex_unlock(&relay_channels_mutex);
710 
711 	return err;
712 }
713 
714 /**
715  *	relay_switch_subbuf - switch to a new sub-buffer
716  *	@buf: channel buffer
717  *	@length: size of current event
718  *
719  *	Returns either the length passed in or 0 if full.
720  *
721  *	Performs sub-buffer-switch tasks such as invoking callbacks,
722  *	updating padding counts, waking up readers, etc.
723  */
724 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
725 {
726 	void *old, *new;
727 	size_t old_subbuf, new_subbuf;
728 
729 	if (unlikely(length > buf->chan->subbuf_size))
730 		goto toobig;
731 
732 	if (buf->offset != buf->chan->subbuf_size + 1) {
733 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
734 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
735 		buf->padding[old_subbuf] = buf->prev_padding;
736 		buf->subbufs_produced++;
737 		if (buf->dentry)
738 			buf->dentry->d_inode->i_size +=
739 				buf->chan->subbuf_size -
740 				buf->padding[old_subbuf];
741 		else
742 			buf->early_bytes += buf->chan->subbuf_size -
743 					    buf->padding[old_subbuf];
744 		smp_mb();
745 		if (waitqueue_active(&buf->read_wait))
746 			/*
747 			 * Calling wake_up_interruptible() from here
748 			 * will deadlock if we happen to be logging
749 			 * from the scheduler (trying to re-grab
750 			 * rq->lock), so defer it.
751 			 */
752 			__mod_timer(&buf->timer, jiffies + 1);
753 	}
754 
755 	old = buf->data;
756 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
757 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
758 	buf->offset = 0;
759 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
760 		buf->offset = buf->chan->subbuf_size + 1;
761 		return 0;
762 	}
763 	buf->data = new;
764 	buf->padding[new_subbuf] = 0;
765 
766 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
767 		goto toobig;
768 
769 	return length;
770 
771 toobig:
772 	buf->chan->last_toobig = length;
773 	return 0;
774 }
775 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
776 
777 /**
778  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
779  *	@chan: the channel
780  *	@cpu: the cpu associated with the channel buffer to update
781  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
782  *
783  *	Adds to the channel buffer's consumed sub-buffer count.
784  *	subbufs_consumed should be the number of sub-buffers newly consumed,
785  *	not the total consumed.
786  *
787  *	NOTE. Kernel clients don't need to call this function if the channel
788  *	mode is 'overwrite'.
789  */
790 void relay_subbufs_consumed(struct rchan *chan,
791 			    unsigned int cpu,
792 			    size_t subbufs_consumed)
793 {
794 	struct rchan_buf *buf;
795 
796 	if (!chan)
797 		return;
798 
799 	if (cpu >= NR_CPUS || !chan->buf[cpu])
800 		return;
801 
802 	buf = chan->buf[cpu];
803 	buf->subbufs_consumed += subbufs_consumed;
804 	if (buf->subbufs_consumed > buf->subbufs_produced)
805 		buf->subbufs_consumed = buf->subbufs_produced;
806 }
807 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
808 
809 /**
810  *	relay_close - close the channel
811  *	@chan: the channel
812  *
813  *	Closes all channel buffers and frees the channel.
814  */
815 void relay_close(struct rchan *chan)
816 {
817 	unsigned int i;
818 
819 	if (!chan)
820 		return;
821 
822 	mutex_lock(&relay_channels_mutex);
823 	if (chan->is_global && chan->buf[0])
824 		relay_close_buf(chan->buf[0]);
825 	else
826 		for_each_possible_cpu(i)
827 			if (chan->buf[i])
828 				relay_close_buf(chan->buf[i]);
829 
830 	if (chan->last_toobig)
831 		printk(KERN_WARNING "relay: one or more items not logged "
832 		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
833 		       chan->last_toobig, chan->subbuf_size);
834 
835 	list_del(&chan->list);
836 	kref_put(&chan->kref, relay_destroy_channel);
837 	mutex_unlock(&relay_channels_mutex);
838 }
839 EXPORT_SYMBOL_GPL(relay_close);
840 
841 /**
842  *	relay_flush - close the channel
843  *	@chan: the channel
844  *
845  *	Flushes all channel buffers, i.e. forces buffer switch.
846  */
847 void relay_flush(struct rchan *chan)
848 {
849 	unsigned int i;
850 
851 	if (!chan)
852 		return;
853 
854 	if (chan->is_global && chan->buf[0]) {
855 		relay_switch_subbuf(chan->buf[0], 0);
856 		return;
857 	}
858 
859 	mutex_lock(&relay_channels_mutex);
860 	for_each_possible_cpu(i)
861 		if (chan->buf[i])
862 			relay_switch_subbuf(chan->buf[i], 0);
863 	mutex_unlock(&relay_channels_mutex);
864 }
865 EXPORT_SYMBOL_GPL(relay_flush);
866 
867 /**
868  *	relay_file_open - open file op for relay files
869  *	@inode: the inode
870  *	@filp: the file
871  *
872  *	Increments the channel buffer refcount.
873  */
874 static int relay_file_open(struct inode *inode, struct file *filp)
875 {
876 	struct rchan_buf *buf = inode->i_private;
877 	kref_get(&buf->kref);
878 	filp->private_data = buf;
879 
880 	return nonseekable_open(inode, filp);
881 }
882 
883 /**
884  *	relay_file_mmap - mmap file op for relay files
885  *	@filp: the file
886  *	@vma: the vma describing what to map
887  *
888  *	Calls upon relay_mmap_buf() to map the file into user space.
889  */
890 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
891 {
892 	struct rchan_buf *buf = filp->private_data;
893 	return relay_mmap_buf(buf, vma);
894 }
895 
896 /**
897  *	relay_file_poll - poll file op for relay files
898  *	@filp: the file
899  *	@wait: poll table
900  *
901  *	Poll implemention.
902  */
903 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
904 {
905 	unsigned int mask = 0;
906 	struct rchan_buf *buf = filp->private_data;
907 
908 	if (buf->finalized)
909 		return POLLERR;
910 
911 	if (filp->f_mode & FMODE_READ) {
912 		poll_wait(filp, &buf->read_wait, wait);
913 		if (!relay_buf_empty(buf))
914 			mask |= POLLIN | POLLRDNORM;
915 	}
916 
917 	return mask;
918 }
919 
920 /**
921  *	relay_file_release - release file op for relay files
922  *	@inode: the inode
923  *	@filp: the file
924  *
925  *	Decrements the channel refcount, as the filesystem is
926  *	no longer using it.
927  */
928 static int relay_file_release(struct inode *inode, struct file *filp)
929 {
930 	struct rchan_buf *buf = filp->private_data;
931 	kref_put(&buf->kref, relay_remove_buf);
932 
933 	return 0;
934 }
935 
936 /*
937  *	relay_file_read_consume - update the consumed count for the buffer
938  */
939 static void relay_file_read_consume(struct rchan_buf *buf,
940 				    size_t read_pos,
941 				    size_t bytes_consumed)
942 {
943 	size_t subbuf_size = buf->chan->subbuf_size;
944 	size_t n_subbufs = buf->chan->n_subbufs;
945 	size_t read_subbuf;
946 
947 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
948 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
949 		buf->bytes_consumed = 0;
950 	}
951 
952 	buf->bytes_consumed += bytes_consumed;
953 	if (!read_pos)
954 		read_subbuf = buf->subbufs_consumed % n_subbufs;
955 	else
956 		read_subbuf = read_pos / buf->chan->subbuf_size;
957 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
958 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
959 		    (buf->offset == subbuf_size))
960 			return;
961 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
962 		buf->bytes_consumed = 0;
963 	}
964 }
965 
966 /*
967  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
968  */
969 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
970 {
971 	size_t subbuf_size = buf->chan->subbuf_size;
972 	size_t n_subbufs = buf->chan->n_subbufs;
973 	size_t produced = buf->subbufs_produced;
974 	size_t consumed = buf->subbufs_consumed;
975 
976 	relay_file_read_consume(buf, read_pos, 0);
977 
978 	if (unlikely(buf->offset > subbuf_size)) {
979 		if (produced == consumed)
980 			return 0;
981 		return 1;
982 	}
983 
984 	if (unlikely(produced - consumed >= n_subbufs)) {
985 		consumed = produced - n_subbufs + 1;
986 		buf->subbufs_consumed = consumed;
987 		buf->bytes_consumed = 0;
988 	}
989 
990 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
991 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
992 
993 	if (consumed > produced)
994 		produced += n_subbufs * subbuf_size;
995 
996 	if (consumed == produced)
997 		return 0;
998 
999 	return 1;
1000 }
1001 
1002 /**
1003  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1004  *	@read_pos: file read position
1005  *	@buf: relay channel buffer
1006  */
1007 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1008 					   struct rchan_buf *buf)
1009 {
1010 	size_t padding, avail = 0;
1011 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1012 	size_t subbuf_size = buf->chan->subbuf_size;
1013 
1014 	write_subbuf = (buf->data - buf->start) / subbuf_size;
1015 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1016 	read_subbuf = read_pos / subbuf_size;
1017 	read_offset = read_pos % subbuf_size;
1018 	padding = buf->padding[read_subbuf];
1019 
1020 	if (read_subbuf == write_subbuf) {
1021 		if (read_offset + padding < write_offset)
1022 			avail = write_offset - (read_offset + padding);
1023 	} else
1024 		avail = (subbuf_size - padding) - read_offset;
1025 
1026 	return avail;
1027 }
1028 
1029 /**
1030  *	relay_file_read_start_pos - find the first available byte to read
1031  *	@read_pos: file read position
1032  *	@buf: relay channel buffer
1033  *
1034  *	If the @read_pos is in the middle of padding, return the
1035  *	position of the first actually available byte, otherwise
1036  *	return the original value.
1037  */
1038 static size_t relay_file_read_start_pos(size_t read_pos,
1039 					struct rchan_buf *buf)
1040 {
1041 	size_t read_subbuf, padding, padding_start, padding_end;
1042 	size_t subbuf_size = buf->chan->subbuf_size;
1043 	size_t n_subbufs = buf->chan->n_subbufs;
1044 	size_t consumed = buf->subbufs_consumed % n_subbufs;
1045 
1046 	if (!read_pos)
1047 		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1048 	read_subbuf = read_pos / subbuf_size;
1049 	padding = buf->padding[read_subbuf];
1050 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1051 	padding_end = (read_subbuf + 1) * subbuf_size;
1052 	if (read_pos >= padding_start && read_pos < padding_end) {
1053 		read_subbuf = (read_subbuf + 1) % n_subbufs;
1054 		read_pos = read_subbuf * subbuf_size;
1055 	}
1056 
1057 	return read_pos;
1058 }
1059 
1060 /**
1061  *	relay_file_read_end_pos - return the new read position
1062  *	@read_pos: file read position
1063  *	@buf: relay channel buffer
1064  *	@count: number of bytes to be read
1065  */
1066 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1067 				      size_t read_pos,
1068 				      size_t count)
1069 {
1070 	size_t read_subbuf, padding, end_pos;
1071 	size_t subbuf_size = buf->chan->subbuf_size;
1072 	size_t n_subbufs = buf->chan->n_subbufs;
1073 
1074 	read_subbuf = read_pos / subbuf_size;
1075 	padding = buf->padding[read_subbuf];
1076 	if (read_pos % subbuf_size + count + padding == subbuf_size)
1077 		end_pos = (read_subbuf + 1) * subbuf_size;
1078 	else
1079 		end_pos = read_pos + count;
1080 	if (end_pos >= subbuf_size * n_subbufs)
1081 		end_pos = 0;
1082 
1083 	return end_pos;
1084 }
1085 
1086 /*
1087  *	subbuf_read_actor - read up to one subbuf's worth of data
1088  */
1089 static int subbuf_read_actor(size_t read_start,
1090 			     struct rchan_buf *buf,
1091 			     size_t avail,
1092 			     read_descriptor_t *desc,
1093 			     read_actor_t actor)
1094 {
1095 	void *from;
1096 	int ret = 0;
1097 
1098 	from = buf->start + read_start;
1099 	ret = avail;
1100 	if (copy_to_user(desc->arg.buf, from, avail)) {
1101 		desc->error = -EFAULT;
1102 		ret = 0;
1103 	}
1104 	desc->arg.data += ret;
1105 	desc->written += ret;
1106 	desc->count -= ret;
1107 
1108 	return ret;
1109 }
1110 
1111 typedef int (*subbuf_actor_t) (size_t read_start,
1112 			       struct rchan_buf *buf,
1113 			       size_t avail,
1114 			       read_descriptor_t *desc,
1115 			       read_actor_t actor);
1116 
1117 /*
1118  *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1119  */
1120 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1121 					subbuf_actor_t subbuf_actor,
1122 					read_actor_t actor,
1123 					read_descriptor_t *desc)
1124 {
1125 	struct rchan_buf *buf = filp->private_data;
1126 	size_t read_start, avail;
1127 	int ret;
1128 
1129 	if (!desc->count)
1130 		return 0;
1131 
1132 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1133 	do {
1134 		if (!relay_file_read_avail(buf, *ppos))
1135 			break;
1136 
1137 		read_start = relay_file_read_start_pos(*ppos, buf);
1138 		avail = relay_file_read_subbuf_avail(read_start, buf);
1139 		if (!avail)
1140 			break;
1141 
1142 		avail = min(desc->count, avail);
1143 		ret = subbuf_actor(read_start, buf, avail, desc, actor);
1144 		if (desc->error < 0)
1145 			break;
1146 
1147 		if (ret) {
1148 			relay_file_read_consume(buf, read_start, ret);
1149 			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1150 		}
1151 	} while (desc->count && ret);
1152 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1153 
1154 	return desc->written;
1155 }
1156 
1157 static ssize_t relay_file_read(struct file *filp,
1158 			       char __user *buffer,
1159 			       size_t count,
1160 			       loff_t *ppos)
1161 {
1162 	read_descriptor_t desc;
1163 	desc.written = 0;
1164 	desc.count = count;
1165 	desc.arg.buf = buffer;
1166 	desc.error = 0;
1167 	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1168 				       NULL, &desc);
1169 }
1170 
1171 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1172 {
1173 	rbuf->bytes_consumed += bytes_consumed;
1174 
1175 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1176 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1177 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1178 	}
1179 }
1180 
1181 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1182 				   struct pipe_buffer *buf)
1183 {
1184 	struct rchan_buf *rbuf;
1185 
1186 	rbuf = (struct rchan_buf *)page_private(buf->page);
1187 	relay_consume_bytes(rbuf, buf->private);
1188 }
1189 
1190 static struct pipe_buf_operations relay_pipe_buf_ops = {
1191 	.can_merge = 0,
1192 	.map = generic_pipe_buf_map,
1193 	.unmap = generic_pipe_buf_unmap,
1194 	.confirm = generic_pipe_buf_confirm,
1195 	.release = relay_pipe_buf_release,
1196 	.steal = generic_pipe_buf_steal,
1197 	.get = generic_pipe_buf_get,
1198 };
1199 
1200 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1201 {
1202 }
1203 
1204 /*
1205  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1206  */
1207 static int subbuf_splice_actor(struct file *in,
1208 			       loff_t *ppos,
1209 			       struct pipe_inode_info *pipe,
1210 			       size_t len,
1211 			       unsigned int flags,
1212 			       int *nonpad_ret)
1213 {
1214 	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret;
1215 	struct rchan_buf *rbuf = in->private_data;
1216 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1217 	uint64_t pos = (uint64_t) *ppos;
1218 	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1219 	size_t read_start = (size_t) do_div(pos, alloc_size);
1220 	size_t read_subbuf = read_start / subbuf_size;
1221 	size_t padding = rbuf->padding[read_subbuf];
1222 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1223 	struct page *pages[PIPE_BUFFERS];
1224 	struct partial_page partial[PIPE_BUFFERS];
1225 	struct splice_pipe_desc spd = {
1226 		.pages = pages,
1227 		.nr_pages = 0,
1228 		.partial = partial,
1229 		.flags = flags,
1230 		.ops = &relay_pipe_buf_ops,
1231 		.spd_release = relay_page_release,
1232 	};
1233 
1234 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1235 		return 0;
1236 
1237 	/*
1238 	 * Adjust read len, if longer than what is available
1239 	 */
1240 	if (len > (subbuf_size - read_start % subbuf_size))
1241 		len = subbuf_size - read_start % subbuf_size;
1242 
1243 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1244 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1245 	poff = read_start & ~PAGE_MASK;
1246 	nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1247 
1248 	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1249 		unsigned int this_len, this_end, private;
1250 		unsigned int cur_pos = read_start + total_len;
1251 
1252 		if (!len)
1253 			break;
1254 
1255 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1256 		private = this_len;
1257 
1258 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1259 		spd.partial[spd.nr_pages].offset = poff;
1260 
1261 		this_end = cur_pos + this_len;
1262 		if (this_end >= nonpad_end) {
1263 			this_len = nonpad_end - cur_pos;
1264 			private = this_len + padding;
1265 		}
1266 		spd.partial[spd.nr_pages].len = this_len;
1267 		spd.partial[spd.nr_pages].private = private;
1268 
1269 		len -= this_len;
1270 		total_len += this_len;
1271 		poff = 0;
1272 		pidx = (pidx + 1) % subbuf_pages;
1273 
1274 		if (this_end >= nonpad_end) {
1275 			spd.nr_pages++;
1276 			break;
1277 		}
1278 	}
1279 
1280 	if (!spd.nr_pages)
1281 		return 0;
1282 
1283 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1284 	if (ret < 0 || ret < total_len)
1285 		return ret;
1286 
1287         if (read_start + ret == nonpad_end)
1288                 ret += padding;
1289 
1290         return ret;
1291 }
1292 
1293 static ssize_t relay_file_splice_read(struct file *in,
1294 				      loff_t *ppos,
1295 				      struct pipe_inode_info *pipe,
1296 				      size_t len,
1297 				      unsigned int flags)
1298 {
1299 	ssize_t spliced;
1300 	int ret;
1301 	int nonpad_ret = 0;
1302 
1303 	ret = 0;
1304 	spliced = 0;
1305 
1306 	while (len && !spliced) {
1307 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1308 		if (ret < 0)
1309 			break;
1310 		else if (!ret) {
1311 			if (spliced)
1312 				break;
1313 			if (flags & SPLICE_F_NONBLOCK) {
1314 				ret = -EAGAIN;
1315 				break;
1316 			}
1317 		}
1318 
1319 		*ppos += ret;
1320 		if (ret > len)
1321 			len = 0;
1322 		else
1323 			len -= ret;
1324 		spliced += nonpad_ret;
1325 		nonpad_ret = 0;
1326 	}
1327 
1328 	if (spliced)
1329 		return spliced;
1330 
1331 	return ret;
1332 }
1333 
1334 const struct file_operations relay_file_operations = {
1335 	.open		= relay_file_open,
1336 	.poll		= relay_file_poll,
1337 	.mmap		= relay_file_mmap,
1338 	.read		= relay_file_read,
1339 	.llseek		= no_llseek,
1340 	.release	= relay_file_release,
1341 	.splice_read	= relay_file_splice_read,
1342 };
1343 EXPORT_SYMBOL_GPL(relay_file_operations);
1344 
1345 static __init int relay_init(void)
1346 {
1347 
1348 	hotcpu_notifier(relay_hotcpu_callback, 0);
1349 	return 0;
1350 }
1351 
1352 early_initcall(relay_init);
1353