xref: /openbmc/linux/kernel/relay.c (revision e7bae9bb)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.rst for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
43 {
44 	struct page *page;
45 	struct rchan_buf *buf = vmf->vma->vm_private_data;
46 	pgoff_t pgoff = vmf->pgoff;
47 
48 	if (!buf)
49 		return VM_FAULT_OOM;
50 
51 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 	if (!page)
53 		return VM_FAULT_SIGBUS;
54 	get_page(page);
55 	vmf->page = page;
56 
57 	return 0;
58 }
59 
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 	.fault = relay_buf_fault,
65 	.close = relay_file_mmap_close,
66 };
67 
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 	const size_t pa_size = n_pages * sizeof(struct page *);
74 	if (pa_size > PAGE_SIZE)
75 		return vzalloc(pa_size);
76 	return kzalloc(pa_size, GFP_KERNEL);
77 }
78 
79 /*
80  * free an array of pointers of struct page
81  */
82 static void relay_free_page_array(struct page **array)
83 {
84 	kvfree(array);
85 }
86 
87 /**
88  *	relay_mmap_buf: - mmap channel buffer to process address space
89  *	@buf: relay channel buffer
90  *	@vma: vm_area_struct describing memory to be mapped
91  *
92  *	Returns 0 if ok, negative on error
93  *
94  *	Caller should already have grabbed mmap_lock.
95  */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98 	unsigned long length = vma->vm_end - vma->vm_start;
99 	struct file *filp = vma->vm_file;
100 
101 	if (!buf)
102 		return -EBADF;
103 
104 	if (length != (unsigned long)buf->chan->alloc_size)
105 		return -EINVAL;
106 
107 	vma->vm_ops = &relay_file_mmap_ops;
108 	vma->vm_flags |= VM_DONTEXPAND;
109 	vma->vm_private_data = buf;
110 	buf->chan->cb->buf_mapped(buf, filp);
111 
112 	return 0;
113 }
114 
115 /**
116  *	relay_alloc_buf - allocate a channel buffer
117  *	@buf: the buffer struct
118  *	@size: total size of the buffer
119  *
120  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121  *	passed in size will get page aligned, if it isn't already.
122  */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125 	void *mem;
126 	unsigned int i, j, n_pages;
127 
128 	*size = PAGE_ALIGN(*size);
129 	n_pages = *size >> PAGE_SHIFT;
130 
131 	buf->page_array = relay_alloc_page_array(n_pages);
132 	if (!buf->page_array)
133 		return NULL;
134 
135 	for (i = 0; i < n_pages; i++) {
136 		buf->page_array[i] = alloc_page(GFP_KERNEL);
137 		if (unlikely(!buf->page_array[i]))
138 			goto depopulate;
139 		set_page_private(buf->page_array[i], (unsigned long)buf);
140 	}
141 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 	if (!mem)
143 		goto depopulate;
144 
145 	memset(mem, 0, *size);
146 	buf->page_count = n_pages;
147 	return mem;
148 
149 depopulate:
150 	for (j = 0; j < i; j++)
151 		__free_page(buf->page_array[j]);
152 	relay_free_page_array(buf->page_array);
153 	return NULL;
154 }
155 
156 /**
157  *	relay_create_buf - allocate and initialize a channel buffer
158  *	@chan: the relay channel
159  *
160  *	Returns channel buffer if successful, %NULL otherwise.
161  */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164 	struct rchan_buf *buf;
165 
166 	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
167 		return NULL;
168 
169 	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 	if (!buf)
171 		return NULL;
172 	buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *),
173 				     GFP_KERNEL);
174 	if (!buf->padding)
175 		goto free_buf;
176 
177 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
178 	if (!buf->start)
179 		goto free_buf;
180 
181 	buf->chan = chan;
182 	kref_get(&buf->chan->kref);
183 	return buf;
184 
185 free_buf:
186 	kfree(buf->padding);
187 	kfree(buf);
188 	return NULL;
189 }
190 
191 /**
192  *	relay_destroy_channel - free the channel struct
193  *	@kref: target kernel reference that contains the relay channel
194  *
195  *	Should only be called from kref_put().
196  */
197 static void relay_destroy_channel(struct kref *kref)
198 {
199 	struct rchan *chan = container_of(kref, struct rchan, kref);
200 	free_percpu(chan->buf);
201 	kfree(chan);
202 }
203 
204 /**
205  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
206  *	@buf: the buffer struct
207  */
208 static void relay_destroy_buf(struct rchan_buf *buf)
209 {
210 	struct rchan *chan = buf->chan;
211 	unsigned int i;
212 
213 	if (likely(buf->start)) {
214 		vunmap(buf->start);
215 		for (i = 0; i < buf->page_count; i++)
216 			__free_page(buf->page_array[i]);
217 		relay_free_page_array(buf->page_array);
218 	}
219 	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
220 	kfree(buf->padding);
221 	kfree(buf);
222 	kref_put(&chan->kref, relay_destroy_channel);
223 }
224 
225 /**
226  *	relay_remove_buf - remove a channel buffer
227  *	@kref: target kernel reference that contains the relay buffer
228  *
229  *	Removes the file from the filesystem, which also frees the
230  *	rchan_buf_struct and the channel buffer.  Should only be called from
231  *	kref_put().
232  */
233 static void relay_remove_buf(struct kref *kref)
234 {
235 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
236 	relay_destroy_buf(buf);
237 }
238 
239 /**
240  *	relay_buf_empty - boolean, is the channel buffer empty?
241  *	@buf: channel buffer
242  *
243  *	Returns 1 if the buffer is empty, 0 otherwise.
244  */
245 static int relay_buf_empty(struct rchan_buf *buf)
246 {
247 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
248 }
249 
250 /**
251  *	relay_buf_full - boolean, is the channel buffer full?
252  *	@buf: channel buffer
253  *
254  *	Returns 1 if the buffer is full, 0 otherwise.
255  */
256 int relay_buf_full(struct rchan_buf *buf)
257 {
258 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
259 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
260 }
261 EXPORT_SYMBOL_GPL(relay_buf_full);
262 
263 /*
264  * High-level relay kernel API and associated functions.
265  */
266 
267 /*
268  * rchan_callback implementations defining default channel behavior.  Used
269  * in place of corresponding NULL values in client callback struct.
270  */
271 
272 /*
273  * subbuf_start() default callback.  Does nothing.
274  */
275 static int subbuf_start_default_callback (struct rchan_buf *buf,
276 					  void *subbuf,
277 					  void *prev_subbuf,
278 					  size_t prev_padding)
279 {
280 	if (relay_buf_full(buf))
281 		return 0;
282 
283 	return 1;
284 }
285 
286 /*
287  * buf_mapped() default callback.  Does nothing.
288  */
289 static void buf_mapped_default_callback(struct rchan_buf *buf,
290 					struct file *filp)
291 {
292 }
293 
294 /*
295  * buf_unmapped() default callback.  Does nothing.
296  */
297 static void buf_unmapped_default_callback(struct rchan_buf *buf,
298 					  struct file *filp)
299 {
300 }
301 
302 /*
303  * create_buf_file_create() default callback.  Does nothing.
304  */
305 static struct dentry *create_buf_file_default_callback(const char *filename,
306 						       struct dentry *parent,
307 						       umode_t mode,
308 						       struct rchan_buf *buf,
309 						       int *is_global)
310 {
311 	return NULL;
312 }
313 
314 /*
315  * remove_buf_file() default callback.  Does nothing.
316  */
317 static int remove_buf_file_default_callback(struct dentry *dentry)
318 {
319 	return -EINVAL;
320 }
321 
322 /* relay channel default callbacks */
323 static struct rchan_callbacks default_channel_callbacks = {
324 	.subbuf_start = subbuf_start_default_callback,
325 	.buf_mapped = buf_mapped_default_callback,
326 	.buf_unmapped = buf_unmapped_default_callback,
327 	.create_buf_file = create_buf_file_default_callback,
328 	.remove_buf_file = remove_buf_file_default_callback,
329 };
330 
331 /**
332  *	wakeup_readers - wake up readers waiting on a channel
333  *	@work: contains the channel buffer
334  *
335  *	This is the function used to defer reader waking
336  */
337 static void wakeup_readers(struct irq_work *work)
338 {
339 	struct rchan_buf *buf;
340 
341 	buf = container_of(work, struct rchan_buf, wakeup_work);
342 	wake_up_interruptible(&buf->read_wait);
343 }
344 
345 /**
346  *	__relay_reset - reset a channel buffer
347  *	@buf: the channel buffer
348  *	@init: 1 if this is a first-time initialization
349  *
350  *	See relay_reset() for description of effect.
351  */
352 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
353 {
354 	size_t i;
355 
356 	if (init) {
357 		init_waitqueue_head(&buf->read_wait);
358 		kref_init(&buf->kref);
359 		init_irq_work(&buf->wakeup_work, wakeup_readers);
360 	} else {
361 		irq_work_sync(&buf->wakeup_work);
362 	}
363 
364 	buf->subbufs_produced = 0;
365 	buf->subbufs_consumed = 0;
366 	buf->bytes_consumed = 0;
367 	buf->finalized = 0;
368 	buf->data = buf->start;
369 	buf->offset = 0;
370 
371 	for (i = 0; i < buf->chan->n_subbufs; i++)
372 		buf->padding[i] = 0;
373 
374 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
375 }
376 
377 /**
378  *	relay_reset - reset the channel
379  *	@chan: the channel
380  *
381  *	This has the effect of erasing all data from all channel buffers
382  *	and restarting the channel in its initial state.  The buffers
383  *	are not freed, so any mappings are still in effect.
384  *
385  *	NOTE. Care should be taken that the channel isn't actually
386  *	being used by anything when this call is made.
387  */
388 void relay_reset(struct rchan *chan)
389 {
390 	struct rchan_buf *buf;
391 	unsigned int i;
392 
393 	if (!chan)
394 		return;
395 
396 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
397 		__relay_reset(buf, 0);
398 		return;
399 	}
400 
401 	mutex_lock(&relay_channels_mutex);
402 	for_each_possible_cpu(i)
403 		if ((buf = *per_cpu_ptr(chan->buf, i)))
404 			__relay_reset(buf, 0);
405 	mutex_unlock(&relay_channels_mutex);
406 }
407 EXPORT_SYMBOL_GPL(relay_reset);
408 
409 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
410 					struct dentry *dentry)
411 {
412 	buf->dentry = dentry;
413 	d_inode(buf->dentry)->i_size = buf->early_bytes;
414 }
415 
416 static struct dentry *relay_create_buf_file(struct rchan *chan,
417 					    struct rchan_buf *buf,
418 					    unsigned int cpu)
419 {
420 	struct dentry *dentry;
421 	char *tmpname;
422 
423 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
424 	if (!tmpname)
425 		return NULL;
426 	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
427 
428 	/* Create file in fs */
429 	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
430 					   S_IRUSR, buf,
431 					   &chan->is_global);
432 	if (IS_ERR(dentry))
433 		dentry = NULL;
434 
435 	kfree(tmpname);
436 
437 	return dentry;
438 }
439 
440 /*
441  *	relay_open_buf - create a new relay channel buffer
442  *
443  *	used by relay_open() and CPU hotplug.
444  */
445 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
446 {
447  	struct rchan_buf *buf = NULL;
448 	struct dentry *dentry;
449 
450  	if (chan->is_global)
451 		return *per_cpu_ptr(chan->buf, 0);
452 
453 	buf = relay_create_buf(chan);
454 	if (!buf)
455 		return NULL;
456 
457 	if (chan->has_base_filename) {
458 		dentry = relay_create_buf_file(chan, buf, cpu);
459 		if (!dentry)
460 			goto free_buf;
461 		relay_set_buf_dentry(buf, dentry);
462 	} else {
463 		/* Only retrieve global info, nothing more, nothing less */
464 		dentry = chan->cb->create_buf_file(NULL, NULL,
465 						   S_IRUSR, buf,
466 						   &chan->is_global);
467 		if (IS_ERR_OR_NULL(dentry))
468 			goto free_buf;
469 	}
470 
471  	buf->cpu = cpu;
472  	__relay_reset(buf, 1);
473 
474  	if(chan->is_global) {
475 		*per_cpu_ptr(chan->buf, 0) = buf;
476  		buf->cpu = 0;
477   	}
478 
479 	return buf;
480 
481 free_buf:
482  	relay_destroy_buf(buf);
483 	return NULL;
484 }
485 
486 /**
487  *	relay_close_buf - close a channel buffer
488  *	@buf: channel buffer
489  *
490  *	Marks the buffer finalized and restores the default callbacks.
491  *	The channel buffer and channel buffer data structure are then freed
492  *	automatically when the last reference is given up.
493  */
494 static void relay_close_buf(struct rchan_buf *buf)
495 {
496 	buf->finalized = 1;
497 	irq_work_sync(&buf->wakeup_work);
498 	buf->chan->cb->remove_buf_file(buf->dentry);
499 	kref_put(&buf->kref, relay_remove_buf);
500 }
501 
502 static void setup_callbacks(struct rchan *chan,
503 				   struct rchan_callbacks *cb)
504 {
505 	if (!cb) {
506 		chan->cb = &default_channel_callbacks;
507 		return;
508 	}
509 
510 	if (!cb->subbuf_start)
511 		cb->subbuf_start = subbuf_start_default_callback;
512 	if (!cb->buf_mapped)
513 		cb->buf_mapped = buf_mapped_default_callback;
514 	if (!cb->buf_unmapped)
515 		cb->buf_unmapped = buf_unmapped_default_callback;
516 	if (!cb->create_buf_file)
517 		cb->create_buf_file = create_buf_file_default_callback;
518 	if (!cb->remove_buf_file)
519 		cb->remove_buf_file = remove_buf_file_default_callback;
520 	chan->cb = cb;
521 }
522 
523 int relay_prepare_cpu(unsigned int cpu)
524 {
525 	struct rchan *chan;
526 	struct rchan_buf *buf;
527 
528 	mutex_lock(&relay_channels_mutex);
529 	list_for_each_entry(chan, &relay_channels, list) {
530 		if ((buf = *per_cpu_ptr(chan->buf, cpu)))
531 			continue;
532 		buf = relay_open_buf(chan, cpu);
533 		if (!buf) {
534 			pr_err("relay: cpu %d buffer creation failed\n", cpu);
535 			mutex_unlock(&relay_channels_mutex);
536 			return -ENOMEM;
537 		}
538 		*per_cpu_ptr(chan->buf, cpu) = buf;
539 	}
540 	mutex_unlock(&relay_channels_mutex);
541 	return 0;
542 }
543 
544 /**
545  *	relay_open - create a new relay channel
546  *	@base_filename: base name of files to create, %NULL for buffering only
547  *	@parent: dentry of parent directory, %NULL for root directory or buffer
548  *	@subbuf_size: size of sub-buffers
549  *	@n_subbufs: number of sub-buffers
550  *	@cb: client callback functions
551  *	@private_data: user-defined data
552  *
553  *	Returns channel pointer if successful, %NULL otherwise.
554  *
555  *	Creates a channel buffer for each cpu using the sizes and
556  *	attributes specified.  The created channel buffer files
557  *	will be named base_filename0...base_filenameN-1.  File
558  *	permissions will be %S_IRUSR.
559  *
560  *	If opening a buffer (@parent = NULL) that you later wish to register
561  *	in a filesystem, call relay_late_setup_files() once the @parent dentry
562  *	is available.
563  */
564 struct rchan *relay_open(const char *base_filename,
565 			 struct dentry *parent,
566 			 size_t subbuf_size,
567 			 size_t n_subbufs,
568 			 struct rchan_callbacks *cb,
569 			 void *private_data)
570 {
571 	unsigned int i;
572 	struct rchan *chan;
573 	struct rchan_buf *buf;
574 
575 	if (!(subbuf_size && n_subbufs))
576 		return NULL;
577 	if (subbuf_size > UINT_MAX / n_subbufs)
578 		return NULL;
579 
580 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
581 	if (!chan)
582 		return NULL;
583 
584 	chan->buf = alloc_percpu(struct rchan_buf *);
585 	if (!chan->buf) {
586 		kfree(chan);
587 		return NULL;
588 	}
589 
590 	chan->version = RELAYFS_CHANNEL_VERSION;
591 	chan->n_subbufs = n_subbufs;
592 	chan->subbuf_size = subbuf_size;
593 	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
594 	chan->parent = parent;
595 	chan->private_data = private_data;
596 	if (base_filename) {
597 		chan->has_base_filename = 1;
598 		strlcpy(chan->base_filename, base_filename, NAME_MAX);
599 	}
600 	setup_callbacks(chan, cb);
601 	kref_init(&chan->kref);
602 
603 	mutex_lock(&relay_channels_mutex);
604 	for_each_online_cpu(i) {
605 		buf = relay_open_buf(chan, i);
606 		if (!buf)
607 			goto free_bufs;
608 		*per_cpu_ptr(chan->buf, i) = buf;
609 	}
610 	list_add(&chan->list, &relay_channels);
611 	mutex_unlock(&relay_channels_mutex);
612 
613 	return chan;
614 
615 free_bufs:
616 	for_each_possible_cpu(i) {
617 		if ((buf = *per_cpu_ptr(chan->buf, i)))
618 			relay_close_buf(buf);
619 	}
620 
621 	kref_put(&chan->kref, relay_destroy_channel);
622 	mutex_unlock(&relay_channels_mutex);
623 	return NULL;
624 }
625 EXPORT_SYMBOL_GPL(relay_open);
626 
627 struct rchan_percpu_buf_dispatcher {
628 	struct rchan_buf *buf;
629 	struct dentry *dentry;
630 };
631 
632 /* Called in atomic context. */
633 static void __relay_set_buf_dentry(void *info)
634 {
635 	struct rchan_percpu_buf_dispatcher *p = info;
636 
637 	relay_set_buf_dentry(p->buf, p->dentry);
638 }
639 
640 /**
641  *	relay_late_setup_files - triggers file creation
642  *	@chan: channel to operate on
643  *	@base_filename: base name of files to create
644  *	@parent: dentry of parent directory, %NULL for root directory
645  *
646  *	Returns 0 if successful, non-zero otherwise.
647  *
648  *	Use to setup files for a previously buffer-only channel created
649  *	by relay_open() with a NULL parent dentry.
650  *
651  *	For example, this is useful for perfomring early tracing in kernel,
652  *	before VFS is up and then exposing the early results once the dentry
653  *	is available.
654  */
655 int relay_late_setup_files(struct rchan *chan,
656 			   const char *base_filename,
657 			   struct dentry *parent)
658 {
659 	int err = 0;
660 	unsigned int i, curr_cpu;
661 	unsigned long flags;
662 	struct dentry *dentry;
663 	struct rchan_buf *buf;
664 	struct rchan_percpu_buf_dispatcher disp;
665 
666 	if (!chan || !base_filename)
667 		return -EINVAL;
668 
669 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
670 
671 	mutex_lock(&relay_channels_mutex);
672 	/* Is chan already set up? */
673 	if (unlikely(chan->has_base_filename)) {
674 		mutex_unlock(&relay_channels_mutex);
675 		return -EEXIST;
676 	}
677 	chan->has_base_filename = 1;
678 	chan->parent = parent;
679 
680 	if (chan->is_global) {
681 		err = -EINVAL;
682 		buf = *per_cpu_ptr(chan->buf, 0);
683 		if (!WARN_ON_ONCE(!buf)) {
684 			dentry = relay_create_buf_file(chan, buf, 0);
685 			if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
686 				relay_set_buf_dentry(buf, dentry);
687 				err = 0;
688 			}
689 		}
690 		mutex_unlock(&relay_channels_mutex);
691 		return err;
692 	}
693 
694 	curr_cpu = get_cpu();
695 	/*
696 	 * The CPU hotplug notifier ran before us and created buffers with
697 	 * no files associated. So it's safe to call relay_setup_buf_file()
698 	 * on all currently online CPUs.
699 	 */
700 	for_each_online_cpu(i) {
701 		buf = *per_cpu_ptr(chan->buf, i);
702 		if (unlikely(!buf)) {
703 			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
704 			err = -EINVAL;
705 			break;
706 		}
707 
708 		dentry = relay_create_buf_file(chan, buf, i);
709 		if (unlikely(!dentry)) {
710 			err = -EINVAL;
711 			break;
712 		}
713 
714 		if (curr_cpu == i) {
715 			local_irq_save(flags);
716 			relay_set_buf_dentry(buf, dentry);
717 			local_irq_restore(flags);
718 		} else {
719 			disp.buf = buf;
720 			disp.dentry = dentry;
721 			smp_mb();
722 			/* relay_channels_mutex must be held, so wait. */
723 			err = smp_call_function_single(i,
724 						       __relay_set_buf_dentry,
725 						       &disp, 1);
726 		}
727 		if (unlikely(err))
728 			break;
729 	}
730 	put_cpu();
731 	mutex_unlock(&relay_channels_mutex);
732 
733 	return err;
734 }
735 EXPORT_SYMBOL_GPL(relay_late_setup_files);
736 
737 /**
738  *	relay_switch_subbuf - switch to a new sub-buffer
739  *	@buf: channel buffer
740  *	@length: size of current event
741  *
742  *	Returns either the length passed in or 0 if full.
743  *
744  *	Performs sub-buffer-switch tasks such as invoking callbacks,
745  *	updating padding counts, waking up readers, etc.
746  */
747 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
748 {
749 	void *old, *new;
750 	size_t old_subbuf, new_subbuf;
751 
752 	if (unlikely(length > buf->chan->subbuf_size))
753 		goto toobig;
754 
755 	if (buf->offset != buf->chan->subbuf_size + 1) {
756 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
757 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
758 		buf->padding[old_subbuf] = buf->prev_padding;
759 		buf->subbufs_produced++;
760 		if (buf->dentry)
761 			d_inode(buf->dentry)->i_size +=
762 				buf->chan->subbuf_size -
763 				buf->padding[old_subbuf];
764 		else
765 			buf->early_bytes += buf->chan->subbuf_size -
766 					    buf->padding[old_subbuf];
767 		smp_mb();
768 		if (waitqueue_active(&buf->read_wait)) {
769 			/*
770 			 * Calling wake_up_interruptible() from here
771 			 * will deadlock if we happen to be logging
772 			 * from the scheduler (trying to re-grab
773 			 * rq->lock), so defer it.
774 			 */
775 			irq_work_queue(&buf->wakeup_work);
776 		}
777 	}
778 
779 	old = buf->data;
780 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
781 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
782 	buf->offset = 0;
783 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
784 		buf->offset = buf->chan->subbuf_size + 1;
785 		return 0;
786 	}
787 	buf->data = new;
788 	buf->padding[new_subbuf] = 0;
789 
790 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
791 		goto toobig;
792 
793 	return length;
794 
795 toobig:
796 	buf->chan->last_toobig = length;
797 	return 0;
798 }
799 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
800 
801 /**
802  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
803  *	@chan: the channel
804  *	@cpu: the cpu associated with the channel buffer to update
805  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
806  *
807  *	Adds to the channel buffer's consumed sub-buffer count.
808  *	subbufs_consumed should be the number of sub-buffers newly consumed,
809  *	not the total consumed.
810  *
811  *	NOTE. Kernel clients don't need to call this function if the channel
812  *	mode is 'overwrite'.
813  */
814 void relay_subbufs_consumed(struct rchan *chan,
815 			    unsigned int cpu,
816 			    size_t subbufs_consumed)
817 {
818 	struct rchan_buf *buf;
819 
820 	if (!chan || cpu >= NR_CPUS)
821 		return;
822 
823 	buf = *per_cpu_ptr(chan->buf, cpu);
824 	if (!buf || subbufs_consumed > chan->n_subbufs)
825 		return;
826 
827 	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
828 		buf->subbufs_consumed = buf->subbufs_produced;
829 	else
830 		buf->subbufs_consumed += subbufs_consumed;
831 }
832 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
833 
834 /**
835  *	relay_close - close the channel
836  *	@chan: the channel
837  *
838  *	Closes all channel buffers and frees the channel.
839  */
840 void relay_close(struct rchan *chan)
841 {
842 	struct rchan_buf *buf;
843 	unsigned int i;
844 
845 	if (!chan)
846 		return;
847 
848 	mutex_lock(&relay_channels_mutex);
849 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
850 		relay_close_buf(buf);
851 	else
852 		for_each_possible_cpu(i)
853 			if ((buf = *per_cpu_ptr(chan->buf, i)))
854 				relay_close_buf(buf);
855 
856 	if (chan->last_toobig)
857 		printk(KERN_WARNING "relay: one or more items not logged "
858 		       "[item size (%zd) > sub-buffer size (%zd)]\n",
859 		       chan->last_toobig, chan->subbuf_size);
860 
861 	list_del(&chan->list);
862 	kref_put(&chan->kref, relay_destroy_channel);
863 	mutex_unlock(&relay_channels_mutex);
864 }
865 EXPORT_SYMBOL_GPL(relay_close);
866 
867 /**
868  *	relay_flush - close the channel
869  *	@chan: the channel
870  *
871  *	Flushes all channel buffers, i.e. forces buffer switch.
872  */
873 void relay_flush(struct rchan *chan)
874 {
875 	struct rchan_buf *buf;
876 	unsigned int i;
877 
878 	if (!chan)
879 		return;
880 
881 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
882 		relay_switch_subbuf(buf, 0);
883 		return;
884 	}
885 
886 	mutex_lock(&relay_channels_mutex);
887 	for_each_possible_cpu(i)
888 		if ((buf = *per_cpu_ptr(chan->buf, i)))
889 			relay_switch_subbuf(buf, 0);
890 	mutex_unlock(&relay_channels_mutex);
891 }
892 EXPORT_SYMBOL_GPL(relay_flush);
893 
894 /**
895  *	relay_file_open - open file op for relay files
896  *	@inode: the inode
897  *	@filp: the file
898  *
899  *	Increments the channel buffer refcount.
900  */
901 static int relay_file_open(struct inode *inode, struct file *filp)
902 {
903 	struct rchan_buf *buf = inode->i_private;
904 	kref_get(&buf->kref);
905 	filp->private_data = buf;
906 
907 	return nonseekable_open(inode, filp);
908 }
909 
910 /**
911  *	relay_file_mmap - mmap file op for relay files
912  *	@filp: the file
913  *	@vma: the vma describing what to map
914  *
915  *	Calls upon relay_mmap_buf() to map the file into user space.
916  */
917 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
918 {
919 	struct rchan_buf *buf = filp->private_data;
920 	return relay_mmap_buf(buf, vma);
921 }
922 
923 /**
924  *	relay_file_poll - poll file op for relay files
925  *	@filp: the file
926  *	@wait: poll table
927  *
928  *	Poll implemention.
929  */
930 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
931 {
932 	__poll_t mask = 0;
933 	struct rchan_buf *buf = filp->private_data;
934 
935 	if (buf->finalized)
936 		return EPOLLERR;
937 
938 	if (filp->f_mode & FMODE_READ) {
939 		poll_wait(filp, &buf->read_wait, wait);
940 		if (!relay_buf_empty(buf))
941 			mask |= EPOLLIN | EPOLLRDNORM;
942 	}
943 
944 	return mask;
945 }
946 
947 /**
948  *	relay_file_release - release file op for relay files
949  *	@inode: the inode
950  *	@filp: the file
951  *
952  *	Decrements the channel refcount, as the filesystem is
953  *	no longer using it.
954  */
955 static int relay_file_release(struct inode *inode, struct file *filp)
956 {
957 	struct rchan_buf *buf = filp->private_data;
958 	kref_put(&buf->kref, relay_remove_buf);
959 
960 	return 0;
961 }
962 
963 /*
964  *	relay_file_read_consume - update the consumed count for the buffer
965  */
966 static void relay_file_read_consume(struct rchan_buf *buf,
967 				    size_t read_pos,
968 				    size_t bytes_consumed)
969 {
970 	size_t subbuf_size = buf->chan->subbuf_size;
971 	size_t n_subbufs = buf->chan->n_subbufs;
972 	size_t read_subbuf;
973 
974 	if (buf->subbufs_produced == buf->subbufs_consumed &&
975 	    buf->offset == buf->bytes_consumed)
976 		return;
977 
978 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
979 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
980 		buf->bytes_consumed = 0;
981 	}
982 
983 	buf->bytes_consumed += bytes_consumed;
984 	if (!read_pos)
985 		read_subbuf = buf->subbufs_consumed % n_subbufs;
986 	else
987 		read_subbuf = read_pos / buf->chan->subbuf_size;
988 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
989 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
990 		    (buf->offset == subbuf_size))
991 			return;
992 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
993 		buf->bytes_consumed = 0;
994 	}
995 }
996 
997 /*
998  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
999  */
1000 static int relay_file_read_avail(struct rchan_buf *buf)
1001 {
1002 	size_t subbuf_size = buf->chan->subbuf_size;
1003 	size_t n_subbufs = buf->chan->n_subbufs;
1004 	size_t produced = buf->subbufs_produced;
1005 	size_t consumed = buf->subbufs_consumed;
1006 
1007 	relay_file_read_consume(buf, 0, 0);
1008 
1009 	consumed = buf->subbufs_consumed;
1010 
1011 	if (unlikely(buf->offset > subbuf_size)) {
1012 		if (produced == consumed)
1013 			return 0;
1014 		return 1;
1015 	}
1016 
1017 	if (unlikely(produced - consumed >= n_subbufs)) {
1018 		consumed = produced - n_subbufs + 1;
1019 		buf->subbufs_consumed = consumed;
1020 		buf->bytes_consumed = 0;
1021 	}
1022 
1023 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1024 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1025 
1026 	if (consumed > produced)
1027 		produced += n_subbufs * subbuf_size;
1028 
1029 	if (consumed == produced) {
1030 		if (buf->offset == subbuf_size &&
1031 		    buf->subbufs_produced > buf->subbufs_consumed)
1032 			return 1;
1033 		return 0;
1034 	}
1035 
1036 	return 1;
1037 }
1038 
1039 /**
1040  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1041  *	@read_pos: file read position
1042  *	@buf: relay channel buffer
1043  */
1044 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1045 					   struct rchan_buf *buf)
1046 {
1047 	size_t padding, avail = 0;
1048 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1049 	size_t subbuf_size = buf->chan->subbuf_size;
1050 
1051 	write_subbuf = (buf->data - buf->start) / subbuf_size;
1052 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1053 	read_subbuf = read_pos / subbuf_size;
1054 	read_offset = read_pos % subbuf_size;
1055 	padding = buf->padding[read_subbuf];
1056 
1057 	if (read_subbuf == write_subbuf) {
1058 		if (read_offset + padding < write_offset)
1059 			avail = write_offset - (read_offset + padding);
1060 	} else
1061 		avail = (subbuf_size - padding) - read_offset;
1062 
1063 	return avail;
1064 }
1065 
1066 /**
1067  *	relay_file_read_start_pos - find the first available byte to read
1068  *	@buf: relay channel buffer
1069  *
1070  *	If the read_pos is in the middle of padding, return the
1071  *	position of the first actually available byte, otherwise
1072  *	return the original value.
1073  */
1074 static size_t relay_file_read_start_pos(struct rchan_buf *buf)
1075 {
1076 	size_t read_subbuf, padding, padding_start, padding_end;
1077 	size_t subbuf_size = buf->chan->subbuf_size;
1078 	size_t n_subbufs = buf->chan->n_subbufs;
1079 	size_t consumed = buf->subbufs_consumed % n_subbufs;
1080 	size_t read_pos = consumed * subbuf_size + buf->bytes_consumed;
1081 
1082 	read_subbuf = read_pos / subbuf_size;
1083 	padding = buf->padding[read_subbuf];
1084 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1085 	padding_end = (read_subbuf + 1) * subbuf_size;
1086 	if (read_pos >= padding_start && read_pos < padding_end) {
1087 		read_subbuf = (read_subbuf + 1) % n_subbufs;
1088 		read_pos = read_subbuf * subbuf_size;
1089 	}
1090 
1091 	return read_pos;
1092 }
1093 
1094 /**
1095  *	relay_file_read_end_pos - return the new read position
1096  *	@read_pos: file read position
1097  *	@buf: relay channel buffer
1098  *	@count: number of bytes to be read
1099  */
1100 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1101 				      size_t read_pos,
1102 				      size_t count)
1103 {
1104 	size_t read_subbuf, padding, end_pos;
1105 	size_t subbuf_size = buf->chan->subbuf_size;
1106 	size_t n_subbufs = buf->chan->n_subbufs;
1107 
1108 	read_subbuf = read_pos / subbuf_size;
1109 	padding = buf->padding[read_subbuf];
1110 	if (read_pos % subbuf_size + count + padding == subbuf_size)
1111 		end_pos = (read_subbuf + 1) * subbuf_size;
1112 	else
1113 		end_pos = read_pos + count;
1114 	if (end_pos >= subbuf_size * n_subbufs)
1115 		end_pos = 0;
1116 
1117 	return end_pos;
1118 }
1119 
1120 static ssize_t relay_file_read(struct file *filp,
1121 			       char __user *buffer,
1122 			       size_t count,
1123 			       loff_t *ppos)
1124 {
1125 	struct rchan_buf *buf = filp->private_data;
1126 	size_t read_start, avail;
1127 	size_t written = 0;
1128 	int ret;
1129 
1130 	if (!count)
1131 		return 0;
1132 
1133 	inode_lock(file_inode(filp));
1134 	do {
1135 		void *from;
1136 
1137 		if (!relay_file_read_avail(buf))
1138 			break;
1139 
1140 		read_start = relay_file_read_start_pos(buf);
1141 		avail = relay_file_read_subbuf_avail(read_start, buf);
1142 		if (!avail)
1143 			break;
1144 
1145 		avail = min(count, avail);
1146 		from = buf->start + read_start;
1147 		ret = avail;
1148 		if (copy_to_user(buffer, from, avail))
1149 			break;
1150 
1151 		buffer += ret;
1152 		written += ret;
1153 		count -= ret;
1154 
1155 		relay_file_read_consume(buf, read_start, ret);
1156 		*ppos = relay_file_read_end_pos(buf, read_start, ret);
1157 	} while (count);
1158 	inode_unlock(file_inode(filp));
1159 
1160 	return written;
1161 }
1162 
1163 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1164 {
1165 	rbuf->bytes_consumed += bytes_consumed;
1166 
1167 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1168 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1169 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1170 	}
1171 }
1172 
1173 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1174 				   struct pipe_buffer *buf)
1175 {
1176 	struct rchan_buf *rbuf;
1177 
1178 	rbuf = (struct rchan_buf *)page_private(buf->page);
1179 	relay_consume_bytes(rbuf, buf->private);
1180 }
1181 
1182 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1183 	.release	= relay_pipe_buf_release,
1184 	.try_steal	= generic_pipe_buf_try_steal,
1185 	.get		= generic_pipe_buf_get,
1186 };
1187 
1188 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1189 {
1190 }
1191 
1192 /*
1193  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1194  */
1195 static ssize_t subbuf_splice_actor(struct file *in,
1196 			       loff_t *ppos,
1197 			       struct pipe_inode_info *pipe,
1198 			       size_t len,
1199 			       unsigned int flags,
1200 			       int *nonpad_ret)
1201 {
1202 	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1203 	struct rchan_buf *rbuf = in->private_data;
1204 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1205 	uint64_t pos = (uint64_t) *ppos;
1206 	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1207 	size_t read_start = (size_t) do_div(pos, alloc_size);
1208 	size_t read_subbuf = read_start / subbuf_size;
1209 	size_t padding = rbuf->padding[read_subbuf];
1210 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1211 	struct page *pages[PIPE_DEF_BUFFERS];
1212 	struct partial_page partial[PIPE_DEF_BUFFERS];
1213 	struct splice_pipe_desc spd = {
1214 		.pages = pages,
1215 		.nr_pages = 0,
1216 		.nr_pages_max = PIPE_DEF_BUFFERS,
1217 		.partial = partial,
1218 		.ops = &relay_pipe_buf_ops,
1219 		.spd_release = relay_page_release,
1220 	};
1221 	ssize_t ret;
1222 
1223 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1224 		return 0;
1225 	if (splice_grow_spd(pipe, &spd))
1226 		return -ENOMEM;
1227 
1228 	/*
1229 	 * Adjust read len, if longer than what is available
1230 	 */
1231 	if (len > (subbuf_size - read_start % subbuf_size))
1232 		len = subbuf_size - read_start % subbuf_size;
1233 
1234 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1235 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1236 	poff = read_start & ~PAGE_MASK;
1237 	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1238 
1239 	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1240 		unsigned int this_len, this_end, private;
1241 		unsigned int cur_pos = read_start + total_len;
1242 
1243 		if (!len)
1244 			break;
1245 
1246 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1247 		private = this_len;
1248 
1249 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1250 		spd.partial[spd.nr_pages].offset = poff;
1251 
1252 		this_end = cur_pos + this_len;
1253 		if (this_end >= nonpad_end) {
1254 			this_len = nonpad_end - cur_pos;
1255 			private = this_len + padding;
1256 		}
1257 		spd.partial[spd.nr_pages].len = this_len;
1258 		spd.partial[spd.nr_pages].private = private;
1259 
1260 		len -= this_len;
1261 		total_len += this_len;
1262 		poff = 0;
1263 		pidx = (pidx + 1) % subbuf_pages;
1264 
1265 		if (this_end >= nonpad_end) {
1266 			spd.nr_pages++;
1267 			break;
1268 		}
1269 	}
1270 
1271 	ret = 0;
1272 	if (!spd.nr_pages)
1273 		goto out;
1274 
1275 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1276 	if (ret < 0 || ret < total_len)
1277 		goto out;
1278 
1279         if (read_start + ret == nonpad_end)
1280                 ret += padding;
1281 
1282 out:
1283 	splice_shrink_spd(&spd);
1284 	return ret;
1285 }
1286 
1287 static ssize_t relay_file_splice_read(struct file *in,
1288 				      loff_t *ppos,
1289 				      struct pipe_inode_info *pipe,
1290 				      size_t len,
1291 				      unsigned int flags)
1292 {
1293 	ssize_t spliced;
1294 	int ret;
1295 	int nonpad_ret = 0;
1296 
1297 	ret = 0;
1298 	spliced = 0;
1299 
1300 	while (len && !spliced) {
1301 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1302 		if (ret < 0)
1303 			break;
1304 		else if (!ret) {
1305 			if (flags & SPLICE_F_NONBLOCK)
1306 				ret = -EAGAIN;
1307 			break;
1308 		}
1309 
1310 		*ppos += ret;
1311 		if (ret > len)
1312 			len = 0;
1313 		else
1314 			len -= ret;
1315 		spliced += nonpad_ret;
1316 		nonpad_ret = 0;
1317 	}
1318 
1319 	if (spliced)
1320 		return spliced;
1321 
1322 	return ret;
1323 }
1324 
1325 const struct file_operations relay_file_operations = {
1326 	.open		= relay_file_open,
1327 	.poll		= relay_file_poll,
1328 	.mmap		= relay_file_mmap,
1329 	.read		= relay_file_read,
1330 	.llseek		= no_llseek,
1331 	.release	= relay_file_release,
1332 	.splice_read	= relay_file_splice_read,
1333 };
1334 EXPORT_SYMBOL_GPL(relay_file_operations);
1335