xref: /openbmc/linux/kernel/relay.c (revision e23feb16)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 	struct page *page;
45 	struct rchan_buf *buf = vma->vm_private_data;
46 	pgoff_t pgoff = vmf->pgoff;
47 
48 	if (!buf)
49 		return VM_FAULT_OOM;
50 
51 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 	if (!page)
53 		return VM_FAULT_SIGBUS;
54 	get_page(page);
55 	vmf->page = page;
56 
57 	return 0;
58 }
59 
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 	.fault = relay_buf_fault,
65 	.close = relay_file_mmap_close,
66 };
67 
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 	const size_t pa_size = n_pages * sizeof(struct page *);
74 	if (pa_size > PAGE_SIZE)
75 		return vzalloc(pa_size);
76 	return kzalloc(pa_size, GFP_KERNEL);
77 }
78 
79 /*
80  * free an array of pointers of struct page
81  */
82 static void relay_free_page_array(struct page **array)
83 {
84 	if (is_vmalloc_addr(array))
85 		vfree(array);
86 	else
87 		kfree(array);
88 }
89 
90 /**
91  *	relay_mmap_buf: - mmap channel buffer to process address space
92  *	@buf: relay channel buffer
93  *	@vma: vm_area_struct describing memory to be mapped
94  *
95  *	Returns 0 if ok, negative on error
96  *
97  *	Caller should already have grabbed mmap_sem.
98  */
99 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
100 {
101 	unsigned long length = vma->vm_end - vma->vm_start;
102 	struct file *filp = vma->vm_file;
103 
104 	if (!buf)
105 		return -EBADF;
106 
107 	if (length != (unsigned long)buf->chan->alloc_size)
108 		return -EINVAL;
109 
110 	vma->vm_ops = &relay_file_mmap_ops;
111 	vma->vm_flags |= VM_DONTEXPAND;
112 	vma->vm_private_data = buf;
113 	buf->chan->cb->buf_mapped(buf, filp);
114 
115 	return 0;
116 }
117 
118 /**
119  *	relay_alloc_buf - allocate a channel buffer
120  *	@buf: the buffer struct
121  *	@size: total size of the buffer
122  *
123  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
124  *	passed in size will get page aligned, if it isn't already.
125  */
126 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
127 {
128 	void *mem;
129 	unsigned int i, j, n_pages;
130 
131 	*size = PAGE_ALIGN(*size);
132 	n_pages = *size >> PAGE_SHIFT;
133 
134 	buf->page_array = relay_alloc_page_array(n_pages);
135 	if (!buf->page_array)
136 		return NULL;
137 
138 	for (i = 0; i < n_pages; i++) {
139 		buf->page_array[i] = alloc_page(GFP_KERNEL);
140 		if (unlikely(!buf->page_array[i]))
141 			goto depopulate;
142 		set_page_private(buf->page_array[i], (unsigned long)buf);
143 	}
144 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
145 	if (!mem)
146 		goto depopulate;
147 
148 	memset(mem, 0, *size);
149 	buf->page_count = n_pages;
150 	return mem;
151 
152 depopulate:
153 	for (j = 0; j < i; j++)
154 		__free_page(buf->page_array[j]);
155 	relay_free_page_array(buf->page_array);
156 	return NULL;
157 }
158 
159 /**
160  *	relay_create_buf - allocate and initialize a channel buffer
161  *	@chan: the relay channel
162  *
163  *	Returns channel buffer if successful, %NULL otherwise.
164  */
165 static struct rchan_buf *relay_create_buf(struct rchan *chan)
166 {
167 	struct rchan_buf *buf;
168 
169 	if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
170 		return NULL;
171 
172 	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
173 	if (!buf)
174 		return NULL;
175 	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
176 	if (!buf->padding)
177 		goto free_buf;
178 
179 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
180 	if (!buf->start)
181 		goto free_buf;
182 
183 	buf->chan = chan;
184 	kref_get(&buf->chan->kref);
185 	return buf;
186 
187 free_buf:
188 	kfree(buf->padding);
189 	kfree(buf);
190 	return NULL;
191 }
192 
193 /**
194  *	relay_destroy_channel - free the channel struct
195  *	@kref: target kernel reference that contains the relay channel
196  *
197  *	Should only be called from kref_put().
198  */
199 static void relay_destroy_channel(struct kref *kref)
200 {
201 	struct rchan *chan = container_of(kref, struct rchan, kref);
202 	kfree(chan);
203 }
204 
205 /**
206  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
207  *	@buf: the buffer struct
208  */
209 static void relay_destroy_buf(struct rchan_buf *buf)
210 {
211 	struct rchan *chan = buf->chan;
212 	unsigned int i;
213 
214 	if (likely(buf->start)) {
215 		vunmap(buf->start);
216 		for (i = 0; i < buf->page_count; i++)
217 			__free_page(buf->page_array[i]);
218 		relay_free_page_array(buf->page_array);
219 	}
220 	chan->buf[buf->cpu] = NULL;
221 	kfree(buf->padding);
222 	kfree(buf);
223 	kref_put(&chan->kref, relay_destroy_channel);
224 }
225 
226 /**
227  *	relay_remove_buf - remove a channel buffer
228  *	@kref: target kernel reference that contains the relay buffer
229  *
230  *	Removes the file from the fileystem, which also frees the
231  *	rchan_buf_struct and the channel buffer.  Should only be called from
232  *	kref_put().
233  */
234 static void relay_remove_buf(struct kref *kref)
235 {
236 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
237 	relay_destroy_buf(buf);
238 }
239 
240 /**
241  *	relay_buf_empty - boolean, is the channel buffer empty?
242  *	@buf: channel buffer
243  *
244  *	Returns 1 if the buffer is empty, 0 otherwise.
245  */
246 static int relay_buf_empty(struct rchan_buf *buf)
247 {
248 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
249 }
250 
251 /**
252  *	relay_buf_full - boolean, is the channel buffer full?
253  *	@buf: channel buffer
254  *
255  *	Returns 1 if the buffer is full, 0 otherwise.
256  */
257 int relay_buf_full(struct rchan_buf *buf)
258 {
259 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
260 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
261 }
262 EXPORT_SYMBOL_GPL(relay_buf_full);
263 
264 /*
265  * High-level relay kernel API and associated functions.
266  */
267 
268 /*
269  * rchan_callback implementations defining default channel behavior.  Used
270  * in place of corresponding NULL values in client callback struct.
271  */
272 
273 /*
274  * subbuf_start() default callback.  Does nothing.
275  */
276 static int subbuf_start_default_callback (struct rchan_buf *buf,
277 					  void *subbuf,
278 					  void *prev_subbuf,
279 					  size_t prev_padding)
280 {
281 	if (relay_buf_full(buf))
282 		return 0;
283 
284 	return 1;
285 }
286 
287 /*
288  * buf_mapped() default callback.  Does nothing.
289  */
290 static void buf_mapped_default_callback(struct rchan_buf *buf,
291 					struct file *filp)
292 {
293 }
294 
295 /*
296  * buf_unmapped() default callback.  Does nothing.
297  */
298 static void buf_unmapped_default_callback(struct rchan_buf *buf,
299 					  struct file *filp)
300 {
301 }
302 
303 /*
304  * create_buf_file_create() default callback.  Does nothing.
305  */
306 static struct dentry *create_buf_file_default_callback(const char *filename,
307 						       struct dentry *parent,
308 						       umode_t mode,
309 						       struct rchan_buf *buf,
310 						       int *is_global)
311 {
312 	return NULL;
313 }
314 
315 /*
316  * remove_buf_file() default callback.  Does nothing.
317  */
318 static int remove_buf_file_default_callback(struct dentry *dentry)
319 {
320 	return -EINVAL;
321 }
322 
323 /* relay channel default callbacks */
324 static struct rchan_callbacks default_channel_callbacks = {
325 	.subbuf_start = subbuf_start_default_callback,
326 	.buf_mapped = buf_mapped_default_callback,
327 	.buf_unmapped = buf_unmapped_default_callback,
328 	.create_buf_file = create_buf_file_default_callback,
329 	.remove_buf_file = remove_buf_file_default_callback,
330 };
331 
332 /**
333  *	wakeup_readers - wake up readers waiting on a channel
334  *	@data: contains the channel buffer
335  *
336  *	This is the timer function used to defer reader waking.
337  */
338 static void wakeup_readers(unsigned long data)
339 {
340 	struct rchan_buf *buf = (struct rchan_buf *)data;
341 	wake_up_interruptible(&buf->read_wait);
342 }
343 
344 /**
345  *	__relay_reset - reset a channel buffer
346  *	@buf: the channel buffer
347  *	@init: 1 if this is a first-time initialization
348  *
349  *	See relay_reset() for description of effect.
350  */
351 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
352 {
353 	size_t i;
354 
355 	if (init) {
356 		init_waitqueue_head(&buf->read_wait);
357 		kref_init(&buf->kref);
358 		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
359 	} else
360 		del_timer_sync(&buf->timer);
361 
362 	buf->subbufs_produced = 0;
363 	buf->subbufs_consumed = 0;
364 	buf->bytes_consumed = 0;
365 	buf->finalized = 0;
366 	buf->data = buf->start;
367 	buf->offset = 0;
368 
369 	for (i = 0; i < buf->chan->n_subbufs; i++)
370 		buf->padding[i] = 0;
371 
372 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
373 }
374 
375 /**
376  *	relay_reset - reset the channel
377  *	@chan: the channel
378  *
379  *	This has the effect of erasing all data from all channel buffers
380  *	and restarting the channel in its initial state.  The buffers
381  *	are not freed, so any mappings are still in effect.
382  *
383  *	NOTE. Care should be taken that the channel isn't actually
384  *	being used by anything when this call is made.
385  */
386 void relay_reset(struct rchan *chan)
387 {
388 	unsigned int i;
389 
390 	if (!chan)
391 		return;
392 
393 	if (chan->is_global && chan->buf[0]) {
394 		__relay_reset(chan->buf[0], 0);
395 		return;
396 	}
397 
398 	mutex_lock(&relay_channels_mutex);
399 	for_each_possible_cpu(i)
400 		if (chan->buf[i])
401 			__relay_reset(chan->buf[i], 0);
402 	mutex_unlock(&relay_channels_mutex);
403 }
404 EXPORT_SYMBOL_GPL(relay_reset);
405 
406 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
407 					struct dentry *dentry)
408 {
409 	buf->dentry = dentry;
410 	buf->dentry->d_inode->i_size = buf->early_bytes;
411 }
412 
413 static struct dentry *relay_create_buf_file(struct rchan *chan,
414 					    struct rchan_buf *buf,
415 					    unsigned int cpu)
416 {
417 	struct dentry *dentry;
418 	char *tmpname;
419 
420 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
421 	if (!tmpname)
422 		return NULL;
423 	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
424 
425 	/* Create file in fs */
426 	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
427 					   S_IRUSR, buf,
428 					   &chan->is_global);
429 
430 	kfree(tmpname);
431 
432 	return dentry;
433 }
434 
435 /*
436  *	relay_open_buf - create a new relay channel buffer
437  *
438  *	used by relay_open() and CPU hotplug.
439  */
440 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
441 {
442  	struct rchan_buf *buf = NULL;
443 	struct dentry *dentry;
444 
445  	if (chan->is_global)
446 		return chan->buf[0];
447 
448 	buf = relay_create_buf(chan);
449 	if (!buf)
450 		return NULL;
451 
452 	if (chan->has_base_filename) {
453 		dentry = relay_create_buf_file(chan, buf, cpu);
454 		if (!dentry)
455 			goto free_buf;
456 		relay_set_buf_dentry(buf, dentry);
457 	}
458 
459  	buf->cpu = cpu;
460  	__relay_reset(buf, 1);
461 
462  	if(chan->is_global) {
463  		chan->buf[0] = buf;
464  		buf->cpu = 0;
465   	}
466 
467 	return buf;
468 
469 free_buf:
470  	relay_destroy_buf(buf);
471 	return NULL;
472 }
473 
474 /**
475  *	relay_close_buf - close a channel buffer
476  *	@buf: channel buffer
477  *
478  *	Marks the buffer finalized and restores the default callbacks.
479  *	The channel buffer and channel buffer data structure are then freed
480  *	automatically when the last reference is given up.
481  */
482 static void relay_close_buf(struct rchan_buf *buf)
483 {
484 	buf->finalized = 1;
485 	del_timer_sync(&buf->timer);
486 	buf->chan->cb->remove_buf_file(buf->dentry);
487 	kref_put(&buf->kref, relay_remove_buf);
488 }
489 
490 static void setup_callbacks(struct rchan *chan,
491 				   struct rchan_callbacks *cb)
492 {
493 	if (!cb) {
494 		chan->cb = &default_channel_callbacks;
495 		return;
496 	}
497 
498 	if (!cb->subbuf_start)
499 		cb->subbuf_start = subbuf_start_default_callback;
500 	if (!cb->buf_mapped)
501 		cb->buf_mapped = buf_mapped_default_callback;
502 	if (!cb->buf_unmapped)
503 		cb->buf_unmapped = buf_unmapped_default_callback;
504 	if (!cb->create_buf_file)
505 		cb->create_buf_file = create_buf_file_default_callback;
506 	if (!cb->remove_buf_file)
507 		cb->remove_buf_file = remove_buf_file_default_callback;
508 	chan->cb = cb;
509 }
510 
511 /**
512  * 	relay_hotcpu_callback - CPU hotplug callback
513  * 	@nb: notifier block
514  * 	@action: hotplug action to take
515  * 	@hcpu: CPU number
516  *
517  * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
518  */
519 static int relay_hotcpu_callback(struct notifier_block *nb,
520 				unsigned long action,
521 				void *hcpu)
522 {
523 	unsigned int hotcpu = (unsigned long)hcpu;
524 	struct rchan *chan;
525 
526 	switch(action) {
527 	case CPU_UP_PREPARE:
528 	case CPU_UP_PREPARE_FROZEN:
529 		mutex_lock(&relay_channels_mutex);
530 		list_for_each_entry(chan, &relay_channels, list) {
531 			if (chan->buf[hotcpu])
532 				continue;
533 			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
534 			if(!chan->buf[hotcpu]) {
535 				printk(KERN_ERR
536 					"relay_hotcpu_callback: cpu %d buffer "
537 					"creation failed\n", hotcpu);
538 				mutex_unlock(&relay_channels_mutex);
539 				return notifier_from_errno(-ENOMEM);
540 			}
541 		}
542 		mutex_unlock(&relay_channels_mutex);
543 		break;
544 	case CPU_DEAD:
545 	case CPU_DEAD_FROZEN:
546 		/* No need to flush the cpu : will be flushed upon
547 		 * final relay_flush() call. */
548 		break;
549 	}
550 	return NOTIFY_OK;
551 }
552 
553 /**
554  *	relay_open - create a new relay channel
555  *	@base_filename: base name of files to create, %NULL for buffering only
556  *	@parent: dentry of parent directory, %NULL for root directory or buffer
557  *	@subbuf_size: size of sub-buffers
558  *	@n_subbufs: number of sub-buffers
559  *	@cb: client callback functions
560  *	@private_data: user-defined data
561  *
562  *	Returns channel pointer if successful, %NULL otherwise.
563  *
564  *	Creates a channel buffer for each cpu using the sizes and
565  *	attributes specified.  The created channel buffer files
566  *	will be named base_filename0...base_filenameN-1.  File
567  *	permissions will be %S_IRUSR.
568  */
569 struct rchan *relay_open(const char *base_filename,
570 			 struct dentry *parent,
571 			 size_t subbuf_size,
572 			 size_t n_subbufs,
573 			 struct rchan_callbacks *cb,
574 			 void *private_data)
575 {
576 	unsigned int i;
577 	struct rchan *chan;
578 
579 	if (!(subbuf_size && n_subbufs))
580 		return NULL;
581 	if (subbuf_size > UINT_MAX / n_subbufs)
582 		return NULL;
583 
584 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
585 	if (!chan)
586 		return NULL;
587 
588 	chan->version = RELAYFS_CHANNEL_VERSION;
589 	chan->n_subbufs = n_subbufs;
590 	chan->subbuf_size = subbuf_size;
591 	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
592 	chan->parent = parent;
593 	chan->private_data = private_data;
594 	if (base_filename) {
595 		chan->has_base_filename = 1;
596 		strlcpy(chan->base_filename, base_filename, NAME_MAX);
597 	}
598 	setup_callbacks(chan, cb);
599 	kref_init(&chan->kref);
600 
601 	mutex_lock(&relay_channels_mutex);
602 	for_each_online_cpu(i) {
603 		chan->buf[i] = relay_open_buf(chan, i);
604 		if (!chan->buf[i])
605 			goto free_bufs;
606 	}
607 	list_add(&chan->list, &relay_channels);
608 	mutex_unlock(&relay_channels_mutex);
609 
610 	return chan;
611 
612 free_bufs:
613 	for_each_possible_cpu(i) {
614 		if (chan->buf[i])
615 			relay_close_buf(chan->buf[i]);
616 	}
617 
618 	kref_put(&chan->kref, relay_destroy_channel);
619 	mutex_unlock(&relay_channels_mutex);
620 	return NULL;
621 }
622 EXPORT_SYMBOL_GPL(relay_open);
623 
624 struct rchan_percpu_buf_dispatcher {
625 	struct rchan_buf *buf;
626 	struct dentry *dentry;
627 };
628 
629 /* Called in atomic context. */
630 static void __relay_set_buf_dentry(void *info)
631 {
632 	struct rchan_percpu_buf_dispatcher *p = info;
633 
634 	relay_set_buf_dentry(p->buf, p->dentry);
635 }
636 
637 /**
638  *	relay_late_setup_files - triggers file creation
639  *	@chan: channel to operate on
640  *	@base_filename: base name of files to create
641  *	@parent: dentry of parent directory, %NULL for root directory
642  *
643  *	Returns 0 if successful, non-zero otherwise.
644  *
645  *	Use to setup files for a previously buffer-only channel.
646  *	Useful to do early tracing in kernel, before VFS is up, for example.
647  */
648 int relay_late_setup_files(struct rchan *chan,
649 			   const char *base_filename,
650 			   struct dentry *parent)
651 {
652 	int err = 0;
653 	unsigned int i, curr_cpu;
654 	unsigned long flags;
655 	struct dentry *dentry;
656 	struct rchan_percpu_buf_dispatcher disp;
657 
658 	if (!chan || !base_filename)
659 		return -EINVAL;
660 
661 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
662 
663 	mutex_lock(&relay_channels_mutex);
664 	/* Is chan already set up? */
665 	if (unlikely(chan->has_base_filename)) {
666 		mutex_unlock(&relay_channels_mutex);
667 		return -EEXIST;
668 	}
669 	chan->has_base_filename = 1;
670 	chan->parent = parent;
671 	curr_cpu = get_cpu();
672 	/*
673 	 * The CPU hotplug notifier ran before us and created buffers with
674 	 * no files associated. So it's safe to call relay_setup_buf_file()
675 	 * on all currently online CPUs.
676 	 */
677 	for_each_online_cpu(i) {
678 		if (unlikely(!chan->buf[i])) {
679 			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
680 			err = -EINVAL;
681 			break;
682 		}
683 
684 		dentry = relay_create_buf_file(chan, chan->buf[i], i);
685 		if (unlikely(!dentry)) {
686 			err = -EINVAL;
687 			break;
688 		}
689 
690 		if (curr_cpu == i) {
691 			local_irq_save(flags);
692 			relay_set_buf_dentry(chan->buf[i], dentry);
693 			local_irq_restore(flags);
694 		} else {
695 			disp.buf = chan->buf[i];
696 			disp.dentry = dentry;
697 			smp_mb();
698 			/* relay_channels_mutex must be held, so wait. */
699 			err = smp_call_function_single(i,
700 						       __relay_set_buf_dentry,
701 						       &disp, 1);
702 		}
703 		if (unlikely(err))
704 			break;
705 	}
706 	put_cpu();
707 	mutex_unlock(&relay_channels_mutex);
708 
709 	return err;
710 }
711 
712 /**
713  *	relay_switch_subbuf - switch to a new sub-buffer
714  *	@buf: channel buffer
715  *	@length: size of current event
716  *
717  *	Returns either the length passed in or 0 if full.
718  *
719  *	Performs sub-buffer-switch tasks such as invoking callbacks,
720  *	updating padding counts, waking up readers, etc.
721  */
722 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
723 {
724 	void *old, *new;
725 	size_t old_subbuf, new_subbuf;
726 
727 	if (unlikely(length > buf->chan->subbuf_size))
728 		goto toobig;
729 
730 	if (buf->offset != buf->chan->subbuf_size + 1) {
731 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
732 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
733 		buf->padding[old_subbuf] = buf->prev_padding;
734 		buf->subbufs_produced++;
735 		if (buf->dentry)
736 			buf->dentry->d_inode->i_size +=
737 				buf->chan->subbuf_size -
738 				buf->padding[old_subbuf];
739 		else
740 			buf->early_bytes += buf->chan->subbuf_size -
741 					    buf->padding[old_subbuf];
742 		smp_mb();
743 		if (waitqueue_active(&buf->read_wait))
744 			/*
745 			 * Calling wake_up_interruptible() from here
746 			 * will deadlock if we happen to be logging
747 			 * from the scheduler (trying to re-grab
748 			 * rq->lock), so defer it.
749 			 */
750 			mod_timer(&buf->timer, jiffies + 1);
751 	}
752 
753 	old = buf->data;
754 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
755 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
756 	buf->offset = 0;
757 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
758 		buf->offset = buf->chan->subbuf_size + 1;
759 		return 0;
760 	}
761 	buf->data = new;
762 	buf->padding[new_subbuf] = 0;
763 
764 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
765 		goto toobig;
766 
767 	return length;
768 
769 toobig:
770 	buf->chan->last_toobig = length;
771 	return 0;
772 }
773 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
774 
775 /**
776  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
777  *	@chan: the channel
778  *	@cpu: the cpu associated with the channel buffer to update
779  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
780  *
781  *	Adds to the channel buffer's consumed sub-buffer count.
782  *	subbufs_consumed should be the number of sub-buffers newly consumed,
783  *	not the total consumed.
784  *
785  *	NOTE. Kernel clients don't need to call this function if the channel
786  *	mode is 'overwrite'.
787  */
788 void relay_subbufs_consumed(struct rchan *chan,
789 			    unsigned int cpu,
790 			    size_t subbufs_consumed)
791 {
792 	struct rchan_buf *buf;
793 
794 	if (!chan)
795 		return;
796 
797 	if (cpu >= NR_CPUS || !chan->buf[cpu] ||
798 					subbufs_consumed > chan->n_subbufs)
799 		return;
800 
801 	buf = chan->buf[cpu];
802 	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
803 		buf->subbufs_consumed = buf->subbufs_produced;
804 	else
805 		buf->subbufs_consumed += subbufs_consumed;
806 }
807 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
808 
809 /**
810  *	relay_close - close the channel
811  *	@chan: the channel
812  *
813  *	Closes all channel buffers and frees the channel.
814  */
815 void relay_close(struct rchan *chan)
816 {
817 	unsigned int i;
818 
819 	if (!chan)
820 		return;
821 
822 	mutex_lock(&relay_channels_mutex);
823 	if (chan->is_global && chan->buf[0])
824 		relay_close_buf(chan->buf[0]);
825 	else
826 		for_each_possible_cpu(i)
827 			if (chan->buf[i])
828 				relay_close_buf(chan->buf[i]);
829 
830 	if (chan->last_toobig)
831 		printk(KERN_WARNING "relay: one or more items not logged "
832 		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
833 		       chan->last_toobig, chan->subbuf_size);
834 
835 	list_del(&chan->list);
836 	kref_put(&chan->kref, relay_destroy_channel);
837 	mutex_unlock(&relay_channels_mutex);
838 }
839 EXPORT_SYMBOL_GPL(relay_close);
840 
841 /**
842  *	relay_flush - close the channel
843  *	@chan: the channel
844  *
845  *	Flushes all channel buffers, i.e. forces buffer switch.
846  */
847 void relay_flush(struct rchan *chan)
848 {
849 	unsigned int i;
850 
851 	if (!chan)
852 		return;
853 
854 	if (chan->is_global && chan->buf[0]) {
855 		relay_switch_subbuf(chan->buf[0], 0);
856 		return;
857 	}
858 
859 	mutex_lock(&relay_channels_mutex);
860 	for_each_possible_cpu(i)
861 		if (chan->buf[i])
862 			relay_switch_subbuf(chan->buf[i], 0);
863 	mutex_unlock(&relay_channels_mutex);
864 }
865 EXPORT_SYMBOL_GPL(relay_flush);
866 
867 /**
868  *	relay_file_open - open file op for relay files
869  *	@inode: the inode
870  *	@filp: the file
871  *
872  *	Increments the channel buffer refcount.
873  */
874 static int relay_file_open(struct inode *inode, struct file *filp)
875 {
876 	struct rchan_buf *buf = inode->i_private;
877 	kref_get(&buf->kref);
878 	filp->private_data = buf;
879 
880 	return nonseekable_open(inode, filp);
881 }
882 
883 /**
884  *	relay_file_mmap - mmap file op for relay files
885  *	@filp: the file
886  *	@vma: the vma describing what to map
887  *
888  *	Calls upon relay_mmap_buf() to map the file into user space.
889  */
890 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
891 {
892 	struct rchan_buf *buf = filp->private_data;
893 	return relay_mmap_buf(buf, vma);
894 }
895 
896 /**
897  *	relay_file_poll - poll file op for relay files
898  *	@filp: the file
899  *	@wait: poll table
900  *
901  *	Poll implemention.
902  */
903 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
904 {
905 	unsigned int mask = 0;
906 	struct rchan_buf *buf = filp->private_data;
907 
908 	if (buf->finalized)
909 		return POLLERR;
910 
911 	if (filp->f_mode & FMODE_READ) {
912 		poll_wait(filp, &buf->read_wait, wait);
913 		if (!relay_buf_empty(buf))
914 			mask |= POLLIN | POLLRDNORM;
915 	}
916 
917 	return mask;
918 }
919 
920 /**
921  *	relay_file_release - release file op for relay files
922  *	@inode: the inode
923  *	@filp: the file
924  *
925  *	Decrements the channel refcount, as the filesystem is
926  *	no longer using it.
927  */
928 static int relay_file_release(struct inode *inode, struct file *filp)
929 {
930 	struct rchan_buf *buf = filp->private_data;
931 	kref_put(&buf->kref, relay_remove_buf);
932 
933 	return 0;
934 }
935 
936 /*
937  *	relay_file_read_consume - update the consumed count for the buffer
938  */
939 static void relay_file_read_consume(struct rchan_buf *buf,
940 				    size_t read_pos,
941 				    size_t bytes_consumed)
942 {
943 	size_t subbuf_size = buf->chan->subbuf_size;
944 	size_t n_subbufs = buf->chan->n_subbufs;
945 	size_t read_subbuf;
946 
947 	if (buf->subbufs_produced == buf->subbufs_consumed &&
948 	    buf->offset == buf->bytes_consumed)
949 		return;
950 
951 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
952 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
953 		buf->bytes_consumed = 0;
954 	}
955 
956 	buf->bytes_consumed += bytes_consumed;
957 	if (!read_pos)
958 		read_subbuf = buf->subbufs_consumed % n_subbufs;
959 	else
960 		read_subbuf = read_pos / buf->chan->subbuf_size;
961 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
962 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
963 		    (buf->offset == subbuf_size))
964 			return;
965 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
966 		buf->bytes_consumed = 0;
967 	}
968 }
969 
970 /*
971  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
972  */
973 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
974 {
975 	size_t subbuf_size = buf->chan->subbuf_size;
976 	size_t n_subbufs = buf->chan->n_subbufs;
977 	size_t produced = buf->subbufs_produced;
978 	size_t consumed = buf->subbufs_consumed;
979 
980 	relay_file_read_consume(buf, read_pos, 0);
981 
982 	consumed = buf->subbufs_consumed;
983 
984 	if (unlikely(buf->offset > subbuf_size)) {
985 		if (produced == consumed)
986 			return 0;
987 		return 1;
988 	}
989 
990 	if (unlikely(produced - consumed >= n_subbufs)) {
991 		consumed = produced - n_subbufs + 1;
992 		buf->subbufs_consumed = consumed;
993 		buf->bytes_consumed = 0;
994 	}
995 
996 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
997 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
998 
999 	if (consumed > produced)
1000 		produced += n_subbufs * subbuf_size;
1001 
1002 	if (consumed == produced) {
1003 		if (buf->offset == subbuf_size &&
1004 		    buf->subbufs_produced > buf->subbufs_consumed)
1005 			return 1;
1006 		return 0;
1007 	}
1008 
1009 	return 1;
1010 }
1011 
1012 /**
1013  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1014  *	@read_pos: file read position
1015  *	@buf: relay channel buffer
1016  */
1017 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1018 					   struct rchan_buf *buf)
1019 {
1020 	size_t padding, avail = 0;
1021 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1022 	size_t subbuf_size = buf->chan->subbuf_size;
1023 
1024 	write_subbuf = (buf->data - buf->start) / subbuf_size;
1025 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1026 	read_subbuf = read_pos / subbuf_size;
1027 	read_offset = read_pos % subbuf_size;
1028 	padding = buf->padding[read_subbuf];
1029 
1030 	if (read_subbuf == write_subbuf) {
1031 		if (read_offset + padding < write_offset)
1032 			avail = write_offset - (read_offset + padding);
1033 	} else
1034 		avail = (subbuf_size - padding) - read_offset;
1035 
1036 	return avail;
1037 }
1038 
1039 /**
1040  *	relay_file_read_start_pos - find the first available byte to read
1041  *	@read_pos: file read position
1042  *	@buf: relay channel buffer
1043  *
1044  *	If the @read_pos is in the middle of padding, return the
1045  *	position of the first actually available byte, otherwise
1046  *	return the original value.
1047  */
1048 static size_t relay_file_read_start_pos(size_t read_pos,
1049 					struct rchan_buf *buf)
1050 {
1051 	size_t read_subbuf, padding, padding_start, padding_end;
1052 	size_t subbuf_size = buf->chan->subbuf_size;
1053 	size_t n_subbufs = buf->chan->n_subbufs;
1054 	size_t consumed = buf->subbufs_consumed % n_subbufs;
1055 
1056 	if (!read_pos)
1057 		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1058 	read_subbuf = read_pos / subbuf_size;
1059 	padding = buf->padding[read_subbuf];
1060 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1061 	padding_end = (read_subbuf + 1) * subbuf_size;
1062 	if (read_pos >= padding_start && read_pos < padding_end) {
1063 		read_subbuf = (read_subbuf + 1) % n_subbufs;
1064 		read_pos = read_subbuf * subbuf_size;
1065 	}
1066 
1067 	return read_pos;
1068 }
1069 
1070 /**
1071  *	relay_file_read_end_pos - return the new read position
1072  *	@read_pos: file read position
1073  *	@buf: relay channel buffer
1074  *	@count: number of bytes to be read
1075  */
1076 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1077 				      size_t read_pos,
1078 				      size_t count)
1079 {
1080 	size_t read_subbuf, padding, end_pos;
1081 	size_t subbuf_size = buf->chan->subbuf_size;
1082 	size_t n_subbufs = buf->chan->n_subbufs;
1083 
1084 	read_subbuf = read_pos / subbuf_size;
1085 	padding = buf->padding[read_subbuf];
1086 	if (read_pos % subbuf_size + count + padding == subbuf_size)
1087 		end_pos = (read_subbuf + 1) * subbuf_size;
1088 	else
1089 		end_pos = read_pos + count;
1090 	if (end_pos >= subbuf_size * n_subbufs)
1091 		end_pos = 0;
1092 
1093 	return end_pos;
1094 }
1095 
1096 /*
1097  *	subbuf_read_actor - read up to one subbuf's worth of data
1098  */
1099 static int subbuf_read_actor(size_t read_start,
1100 			     struct rchan_buf *buf,
1101 			     size_t avail,
1102 			     read_descriptor_t *desc)
1103 {
1104 	void *from;
1105 	int ret = 0;
1106 
1107 	from = buf->start + read_start;
1108 	ret = avail;
1109 	if (copy_to_user(desc->arg.buf, from, avail)) {
1110 		desc->error = -EFAULT;
1111 		ret = 0;
1112 	}
1113 	desc->arg.data += ret;
1114 	desc->written += ret;
1115 	desc->count -= ret;
1116 
1117 	return ret;
1118 }
1119 
1120 typedef int (*subbuf_actor_t) (size_t read_start,
1121 			       struct rchan_buf *buf,
1122 			       size_t avail,
1123 			       read_descriptor_t *desc);
1124 
1125 /*
1126  *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1127  */
1128 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1129 					subbuf_actor_t subbuf_actor,
1130 					read_descriptor_t *desc)
1131 {
1132 	struct rchan_buf *buf = filp->private_data;
1133 	size_t read_start, avail;
1134 	int ret;
1135 
1136 	if (!desc->count)
1137 		return 0;
1138 
1139 	mutex_lock(&file_inode(filp)->i_mutex);
1140 	do {
1141 		if (!relay_file_read_avail(buf, *ppos))
1142 			break;
1143 
1144 		read_start = relay_file_read_start_pos(*ppos, buf);
1145 		avail = relay_file_read_subbuf_avail(read_start, buf);
1146 		if (!avail)
1147 			break;
1148 
1149 		avail = min(desc->count, avail);
1150 		ret = subbuf_actor(read_start, buf, avail, desc);
1151 		if (desc->error < 0)
1152 			break;
1153 
1154 		if (ret) {
1155 			relay_file_read_consume(buf, read_start, ret);
1156 			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1157 		}
1158 	} while (desc->count && ret);
1159 	mutex_unlock(&file_inode(filp)->i_mutex);
1160 
1161 	return desc->written;
1162 }
1163 
1164 static ssize_t relay_file_read(struct file *filp,
1165 			       char __user *buffer,
1166 			       size_t count,
1167 			       loff_t *ppos)
1168 {
1169 	read_descriptor_t desc;
1170 	desc.written = 0;
1171 	desc.count = count;
1172 	desc.arg.buf = buffer;
1173 	desc.error = 0;
1174 	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc);
1175 }
1176 
1177 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1178 {
1179 	rbuf->bytes_consumed += bytes_consumed;
1180 
1181 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1182 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1183 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1184 	}
1185 }
1186 
1187 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1188 				   struct pipe_buffer *buf)
1189 {
1190 	struct rchan_buf *rbuf;
1191 
1192 	rbuf = (struct rchan_buf *)page_private(buf->page);
1193 	relay_consume_bytes(rbuf, buf->private);
1194 }
1195 
1196 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1197 	.can_merge = 0,
1198 	.map = generic_pipe_buf_map,
1199 	.unmap = generic_pipe_buf_unmap,
1200 	.confirm = generic_pipe_buf_confirm,
1201 	.release = relay_pipe_buf_release,
1202 	.steal = generic_pipe_buf_steal,
1203 	.get = generic_pipe_buf_get,
1204 };
1205 
1206 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1207 {
1208 }
1209 
1210 /*
1211  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1212  */
1213 static ssize_t subbuf_splice_actor(struct file *in,
1214 			       loff_t *ppos,
1215 			       struct pipe_inode_info *pipe,
1216 			       size_t len,
1217 			       unsigned int flags,
1218 			       int *nonpad_ret)
1219 {
1220 	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1221 	struct rchan_buf *rbuf = in->private_data;
1222 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1223 	uint64_t pos = (uint64_t) *ppos;
1224 	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1225 	size_t read_start = (size_t) do_div(pos, alloc_size);
1226 	size_t read_subbuf = read_start / subbuf_size;
1227 	size_t padding = rbuf->padding[read_subbuf];
1228 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1229 	struct page *pages[PIPE_DEF_BUFFERS];
1230 	struct partial_page partial[PIPE_DEF_BUFFERS];
1231 	struct splice_pipe_desc spd = {
1232 		.pages = pages,
1233 		.nr_pages = 0,
1234 		.nr_pages_max = PIPE_DEF_BUFFERS,
1235 		.partial = partial,
1236 		.flags = flags,
1237 		.ops = &relay_pipe_buf_ops,
1238 		.spd_release = relay_page_release,
1239 	};
1240 	ssize_t ret;
1241 
1242 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1243 		return 0;
1244 	if (splice_grow_spd(pipe, &spd))
1245 		return -ENOMEM;
1246 
1247 	/*
1248 	 * Adjust read len, if longer than what is available
1249 	 */
1250 	if (len > (subbuf_size - read_start % subbuf_size))
1251 		len = subbuf_size - read_start % subbuf_size;
1252 
1253 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1254 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1255 	poff = read_start & ~PAGE_MASK;
1256 	nr_pages = min_t(unsigned int, subbuf_pages, pipe->buffers);
1257 
1258 	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1259 		unsigned int this_len, this_end, private;
1260 		unsigned int cur_pos = read_start + total_len;
1261 
1262 		if (!len)
1263 			break;
1264 
1265 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1266 		private = this_len;
1267 
1268 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1269 		spd.partial[spd.nr_pages].offset = poff;
1270 
1271 		this_end = cur_pos + this_len;
1272 		if (this_end >= nonpad_end) {
1273 			this_len = nonpad_end - cur_pos;
1274 			private = this_len + padding;
1275 		}
1276 		spd.partial[spd.nr_pages].len = this_len;
1277 		spd.partial[spd.nr_pages].private = private;
1278 
1279 		len -= this_len;
1280 		total_len += this_len;
1281 		poff = 0;
1282 		pidx = (pidx + 1) % subbuf_pages;
1283 
1284 		if (this_end >= nonpad_end) {
1285 			spd.nr_pages++;
1286 			break;
1287 		}
1288 	}
1289 
1290 	ret = 0;
1291 	if (!spd.nr_pages)
1292 		goto out;
1293 
1294 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1295 	if (ret < 0 || ret < total_len)
1296 		goto out;
1297 
1298         if (read_start + ret == nonpad_end)
1299                 ret += padding;
1300 
1301 out:
1302 	splice_shrink_spd(&spd);
1303 	return ret;
1304 }
1305 
1306 static ssize_t relay_file_splice_read(struct file *in,
1307 				      loff_t *ppos,
1308 				      struct pipe_inode_info *pipe,
1309 				      size_t len,
1310 				      unsigned int flags)
1311 {
1312 	ssize_t spliced;
1313 	int ret;
1314 	int nonpad_ret = 0;
1315 
1316 	ret = 0;
1317 	spliced = 0;
1318 
1319 	while (len && !spliced) {
1320 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1321 		if (ret < 0)
1322 			break;
1323 		else if (!ret) {
1324 			if (flags & SPLICE_F_NONBLOCK)
1325 				ret = -EAGAIN;
1326 			break;
1327 		}
1328 
1329 		*ppos += ret;
1330 		if (ret > len)
1331 			len = 0;
1332 		else
1333 			len -= ret;
1334 		spliced += nonpad_ret;
1335 		nonpad_ret = 0;
1336 	}
1337 
1338 	if (spliced)
1339 		return spliced;
1340 
1341 	return ret;
1342 }
1343 
1344 const struct file_operations relay_file_operations = {
1345 	.open		= relay_file_open,
1346 	.poll		= relay_file_poll,
1347 	.mmap		= relay_file_mmap,
1348 	.read		= relay_file_read,
1349 	.llseek		= no_llseek,
1350 	.release	= relay_file_release,
1351 	.splice_read	= relay_file_splice_read,
1352 };
1353 EXPORT_SYMBOL_GPL(relay_file_operations);
1354 
1355 static __init int relay_init(void)
1356 {
1357 
1358 	hotcpu_notifier(relay_hotcpu_callback, 0);
1359 	return 0;
1360 }
1361 
1362 early_initcall(relay_init);
1363