1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.rst for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * fault() vm_op implementation for relay file mapping. 41 */ 42 static vm_fault_t relay_buf_fault(struct vm_fault *vmf) 43 { 44 struct page *page; 45 struct rchan_buf *buf = vmf->vma->vm_private_data; 46 pgoff_t pgoff = vmf->pgoff; 47 48 if (!buf) 49 return VM_FAULT_OOM; 50 51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 52 if (!page) 53 return VM_FAULT_SIGBUS; 54 get_page(page); 55 vmf->page = page; 56 57 return 0; 58 } 59 60 /* 61 * vm_ops for relay file mappings. 62 */ 63 static const struct vm_operations_struct relay_file_mmap_ops = { 64 .fault = relay_buf_fault, 65 .close = relay_file_mmap_close, 66 }; 67 68 /* 69 * allocate an array of pointers of struct page 70 */ 71 static struct page **relay_alloc_page_array(unsigned int n_pages) 72 { 73 const size_t pa_size = n_pages * sizeof(struct page *); 74 if (pa_size > PAGE_SIZE) 75 return vzalloc(pa_size); 76 return kzalloc(pa_size, GFP_KERNEL); 77 } 78 79 /* 80 * free an array of pointers of struct page 81 */ 82 static void relay_free_page_array(struct page **array) 83 { 84 kvfree(array); 85 } 86 87 /** 88 * relay_mmap_buf: - mmap channel buffer to process address space 89 * @buf: relay channel buffer 90 * @vma: vm_area_struct describing memory to be mapped 91 * 92 * Returns 0 if ok, negative on error 93 * 94 * Caller should already have grabbed mmap_lock. 95 */ 96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 97 { 98 unsigned long length = vma->vm_end - vma->vm_start; 99 struct file *filp = vma->vm_file; 100 101 if (!buf) 102 return -EBADF; 103 104 if (length != (unsigned long)buf->chan->alloc_size) 105 return -EINVAL; 106 107 vma->vm_ops = &relay_file_mmap_ops; 108 vma->vm_flags |= VM_DONTEXPAND; 109 vma->vm_private_data = buf; 110 buf->chan->cb->buf_mapped(buf, filp); 111 112 return 0; 113 } 114 115 /** 116 * relay_alloc_buf - allocate a channel buffer 117 * @buf: the buffer struct 118 * @size: total size of the buffer 119 * 120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 121 * passed in size will get page aligned, if it isn't already. 122 */ 123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 124 { 125 void *mem; 126 unsigned int i, j, n_pages; 127 128 *size = PAGE_ALIGN(*size); 129 n_pages = *size >> PAGE_SHIFT; 130 131 buf->page_array = relay_alloc_page_array(n_pages); 132 if (!buf->page_array) 133 return NULL; 134 135 for (i = 0; i < n_pages; i++) { 136 buf->page_array[i] = alloc_page(GFP_KERNEL); 137 if (unlikely(!buf->page_array[i])) 138 goto depopulate; 139 set_page_private(buf->page_array[i], (unsigned long)buf); 140 } 141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 142 if (!mem) 143 goto depopulate; 144 145 memset(mem, 0, *size); 146 buf->page_count = n_pages; 147 return mem; 148 149 depopulate: 150 for (j = 0; j < i; j++) 151 __free_page(buf->page_array[j]); 152 relay_free_page_array(buf->page_array); 153 return NULL; 154 } 155 156 /** 157 * relay_create_buf - allocate and initialize a channel buffer 158 * @chan: the relay channel 159 * 160 * Returns channel buffer if successful, %NULL otherwise. 161 */ 162 static struct rchan_buf *relay_create_buf(struct rchan *chan) 163 { 164 struct rchan_buf *buf; 165 166 if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *)) 167 return NULL; 168 169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 170 if (!buf) 171 return NULL; 172 buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *), 173 GFP_KERNEL); 174 if (!buf->padding) 175 goto free_buf; 176 177 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 178 if (!buf->start) 179 goto free_buf; 180 181 buf->chan = chan; 182 kref_get(&buf->chan->kref); 183 return buf; 184 185 free_buf: 186 kfree(buf->padding); 187 kfree(buf); 188 return NULL; 189 } 190 191 /** 192 * relay_destroy_channel - free the channel struct 193 * @kref: target kernel reference that contains the relay channel 194 * 195 * Should only be called from kref_put(). 196 */ 197 static void relay_destroy_channel(struct kref *kref) 198 { 199 struct rchan *chan = container_of(kref, struct rchan, kref); 200 free_percpu(chan->buf); 201 kfree(chan); 202 } 203 204 /** 205 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 206 * @buf: the buffer struct 207 */ 208 static void relay_destroy_buf(struct rchan_buf *buf) 209 { 210 struct rchan *chan = buf->chan; 211 unsigned int i; 212 213 if (likely(buf->start)) { 214 vunmap(buf->start); 215 for (i = 0; i < buf->page_count; i++) 216 __free_page(buf->page_array[i]); 217 relay_free_page_array(buf->page_array); 218 } 219 *per_cpu_ptr(chan->buf, buf->cpu) = NULL; 220 kfree(buf->padding); 221 kfree(buf); 222 kref_put(&chan->kref, relay_destroy_channel); 223 } 224 225 /** 226 * relay_remove_buf - remove a channel buffer 227 * @kref: target kernel reference that contains the relay buffer 228 * 229 * Removes the file from the filesystem, which also frees the 230 * rchan_buf_struct and the channel buffer. Should only be called from 231 * kref_put(). 232 */ 233 static void relay_remove_buf(struct kref *kref) 234 { 235 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 236 relay_destroy_buf(buf); 237 } 238 239 /** 240 * relay_buf_empty - boolean, is the channel buffer empty? 241 * @buf: channel buffer 242 * 243 * Returns 1 if the buffer is empty, 0 otherwise. 244 */ 245 static int relay_buf_empty(struct rchan_buf *buf) 246 { 247 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 248 } 249 250 /** 251 * relay_buf_full - boolean, is the channel buffer full? 252 * @buf: channel buffer 253 * 254 * Returns 1 if the buffer is full, 0 otherwise. 255 */ 256 int relay_buf_full(struct rchan_buf *buf) 257 { 258 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 259 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 260 } 261 EXPORT_SYMBOL_GPL(relay_buf_full); 262 263 /* 264 * High-level relay kernel API and associated functions. 265 */ 266 267 /* 268 * rchan_callback implementations defining default channel behavior. Used 269 * in place of corresponding NULL values in client callback struct. 270 */ 271 272 /* 273 * subbuf_start() default callback. Does nothing. 274 */ 275 static int subbuf_start_default_callback (struct rchan_buf *buf, 276 void *subbuf, 277 void *prev_subbuf, 278 size_t prev_padding) 279 { 280 if (relay_buf_full(buf)) 281 return 0; 282 283 return 1; 284 } 285 286 /* 287 * buf_mapped() default callback. Does nothing. 288 */ 289 static void buf_mapped_default_callback(struct rchan_buf *buf, 290 struct file *filp) 291 { 292 } 293 294 /* 295 * buf_unmapped() default callback. Does nothing. 296 */ 297 static void buf_unmapped_default_callback(struct rchan_buf *buf, 298 struct file *filp) 299 { 300 } 301 302 /* 303 * create_buf_file_create() default callback. Does nothing. 304 */ 305 static struct dentry *create_buf_file_default_callback(const char *filename, 306 struct dentry *parent, 307 umode_t mode, 308 struct rchan_buf *buf, 309 int *is_global) 310 { 311 return NULL; 312 } 313 314 /* 315 * remove_buf_file() default callback. Does nothing. 316 */ 317 static int remove_buf_file_default_callback(struct dentry *dentry) 318 { 319 return -EINVAL; 320 } 321 322 /* relay channel default callbacks */ 323 static struct rchan_callbacks default_channel_callbacks = { 324 .subbuf_start = subbuf_start_default_callback, 325 .buf_mapped = buf_mapped_default_callback, 326 .buf_unmapped = buf_unmapped_default_callback, 327 .create_buf_file = create_buf_file_default_callback, 328 .remove_buf_file = remove_buf_file_default_callback, 329 }; 330 331 /** 332 * wakeup_readers - wake up readers waiting on a channel 333 * @work: contains the channel buffer 334 * 335 * This is the function used to defer reader waking 336 */ 337 static void wakeup_readers(struct irq_work *work) 338 { 339 struct rchan_buf *buf; 340 341 buf = container_of(work, struct rchan_buf, wakeup_work); 342 wake_up_interruptible(&buf->read_wait); 343 } 344 345 /** 346 * __relay_reset - reset a channel buffer 347 * @buf: the channel buffer 348 * @init: 1 if this is a first-time initialization 349 * 350 * See relay_reset() for description of effect. 351 */ 352 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 353 { 354 size_t i; 355 356 if (init) { 357 init_waitqueue_head(&buf->read_wait); 358 kref_init(&buf->kref); 359 init_irq_work(&buf->wakeup_work, wakeup_readers); 360 } else { 361 irq_work_sync(&buf->wakeup_work); 362 } 363 364 buf->subbufs_produced = 0; 365 buf->subbufs_consumed = 0; 366 buf->bytes_consumed = 0; 367 buf->finalized = 0; 368 buf->data = buf->start; 369 buf->offset = 0; 370 371 for (i = 0; i < buf->chan->n_subbufs; i++) 372 buf->padding[i] = 0; 373 374 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 375 } 376 377 /** 378 * relay_reset - reset the channel 379 * @chan: the channel 380 * 381 * This has the effect of erasing all data from all channel buffers 382 * and restarting the channel in its initial state. The buffers 383 * are not freed, so any mappings are still in effect. 384 * 385 * NOTE. Care should be taken that the channel isn't actually 386 * being used by anything when this call is made. 387 */ 388 void relay_reset(struct rchan *chan) 389 { 390 struct rchan_buf *buf; 391 unsigned int i; 392 393 if (!chan) 394 return; 395 396 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 397 __relay_reset(buf, 0); 398 return; 399 } 400 401 mutex_lock(&relay_channels_mutex); 402 for_each_possible_cpu(i) 403 if ((buf = *per_cpu_ptr(chan->buf, i))) 404 __relay_reset(buf, 0); 405 mutex_unlock(&relay_channels_mutex); 406 } 407 EXPORT_SYMBOL_GPL(relay_reset); 408 409 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 410 struct dentry *dentry) 411 { 412 buf->dentry = dentry; 413 d_inode(buf->dentry)->i_size = buf->early_bytes; 414 } 415 416 static struct dentry *relay_create_buf_file(struct rchan *chan, 417 struct rchan_buf *buf, 418 unsigned int cpu) 419 { 420 struct dentry *dentry; 421 char *tmpname; 422 423 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 424 if (!tmpname) 425 return NULL; 426 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 427 428 /* Create file in fs */ 429 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 430 S_IRUSR, buf, 431 &chan->is_global); 432 if (IS_ERR(dentry)) 433 dentry = NULL; 434 435 kfree(tmpname); 436 437 return dentry; 438 } 439 440 /* 441 * relay_open_buf - create a new relay channel buffer 442 * 443 * used by relay_open() and CPU hotplug. 444 */ 445 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 446 { 447 struct rchan_buf *buf = NULL; 448 struct dentry *dentry; 449 450 if (chan->is_global) 451 return *per_cpu_ptr(chan->buf, 0); 452 453 buf = relay_create_buf(chan); 454 if (!buf) 455 return NULL; 456 457 if (chan->has_base_filename) { 458 dentry = relay_create_buf_file(chan, buf, cpu); 459 if (!dentry) 460 goto free_buf; 461 relay_set_buf_dentry(buf, dentry); 462 } else { 463 /* Only retrieve global info, nothing more, nothing less */ 464 dentry = chan->cb->create_buf_file(NULL, NULL, 465 S_IRUSR, buf, 466 &chan->is_global); 467 if (IS_ERR_OR_NULL(dentry)) 468 goto free_buf; 469 } 470 471 buf->cpu = cpu; 472 __relay_reset(buf, 1); 473 474 if(chan->is_global) { 475 *per_cpu_ptr(chan->buf, 0) = buf; 476 buf->cpu = 0; 477 } 478 479 return buf; 480 481 free_buf: 482 relay_destroy_buf(buf); 483 return NULL; 484 } 485 486 /** 487 * relay_close_buf - close a channel buffer 488 * @buf: channel buffer 489 * 490 * Marks the buffer finalized and restores the default callbacks. 491 * The channel buffer and channel buffer data structure are then freed 492 * automatically when the last reference is given up. 493 */ 494 static void relay_close_buf(struct rchan_buf *buf) 495 { 496 buf->finalized = 1; 497 irq_work_sync(&buf->wakeup_work); 498 buf->chan->cb->remove_buf_file(buf->dentry); 499 kref_put(&buf->kref, relay_remove_buf); 500 } 501 502 static void setup_callbacks(struct rchan *chan, 503 struct rchan_callbacks *cb) 504 { 505 if (!cb) { 506 chan->cb = &default_channel_callbacks; 507 return; 508 } 509 510 if (!cb->subbuf_start) 511 cb->subbuf_start = subbuf_start_default_callback; 512 if (!cb->buf_mapped) 513 cb->buf_mapped = buf_mapped_default_callback; 514 if (!cb->buf_unmapped) 515 cb->buf_unmapped = buf_unmapped_default_callback; 516 if (!cb->create_buf_file) 517 cb->create_buf_file = create_buf_file_default_callback; 518 if (!cb->remove_buf_file) 519 cb->remove_buf_file = remove_buf_file_default_callback; 520 chan->cb = cb; 521 } 522 523 int relay_prepare_cpu(unsigned int cpu) 524 { 525 struct rchan *chan; 526 struct rchan_buf *buf; 527 528 mutex_lock(&relay_channels_mutex); 529 list_for_each_entry(chan, &relay_channels, list) { 530 if ((buf = *per_cpu_ptr(chan->buf, cpu))) 531 continue; 532 buf = relay_open_buf(chan, cpu); 533 if (!buf) { 534 pr_err("relay: cpu %d buffer creation failed\n", cpu); 535 mutex_unlock(&relay_channels_mutex); 536 return -ENOMEM; 537 } 538 *per_cpu_ptr(chan->buf, cpu) = buf; 539 } 540 mutex_unlock(&relay_channels_mutex); 541 return 0; 542 } 543 544 /** 545 * relay_open - create a new relay channel 546 * @base_filename: base name of files to create, %NULL for buffering only 547 * @parent: dentry of parent directory, %NULL for root directory or buffer 548 * @subbuf_size: size of sub-buffers 549 * @n_subbufs: number of sub-buffers 550 * @cb: client callback functions 551 * @private_data: user-defined data 552 * 553 * Returns channel pointer if successful, %NULL otherwise. 554 * 555 * Creates a channel buffer for each cpu using the sizes and 556 * attributes specified. The created channel buffer files 557 * will be named base_filename0...base_filenameN-1. File 558 * permissions will be %S_IRUSR. 559 * 560 * If opening a buffer (@parent = NULL) that you later wish to register 561 * in a filesystem, call relay_late_setup_files() once the @parent dentry 562 * is available. 563 */ 564 struct rchan *relay_open(const char *base_filename, 565 struct dentry *parent, 566 size_t subbuf_size, 567 size_t n_subbufs, 568 struct rchan_callbacks *cb, 569 void *private_data) 570 { 571 unsigned int i; 572 struct rchan *chan; 573 struct rchan_buf *buf; 574 575 if (!(subbuf_size && n_subbufs)) 576 return NULL; 577 if (subbuf_size > UINT_MAX / n_subbufs) 578 return NULL; 579 580 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 581 if (!chan) 582 return NULL; 583 584 chan->buf = alloc_percpu(struct rchan_buf *); 585 if (!chan->buf) { 586 kfree(chan); 587 return NULL; 588 } 589 590 chan->version = RELAYFS_CHANNEL_VERSION; 591 chan->n_subbufs = n_subbufs; 592 chan->subbuf_size = subbuf_size; 593 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs); 594 chan->parent = parent; 595 chan->private_data = private_data; 596 if (base_filename) { 597 chan->has_base_filename = 1; 598 strlcpy(chan->base_filename, base_filename, NAME_MAX); 599 } 600 setup_callbacks(chan, cb); 601 kref_init(&chan->kref); 602 603 mutex_lock(&relay_channels_mutex); 604 for_each_online_cpu(i) { 605 buf = relay_open_buf(chan, i); 606 if (!buf) 607 goto free_bufs; 608 *per_cpu_ptr(chan->buf, i) = buf; 609 } 610 list_add(&chan->list, &relay_channels); 611 mutex_unlock(&relay_channels_mutex); 612 613 return chan; 614 615 free_bufs: 616 for_each_possible_cpu(i) { 617 if ((buf = *per_cpu_ptr(chan->buf, i))) 618 relay_close_buf(buf); 619 } 620 621 kref_put(&chan->kref, relay_destroy_channel); 622 mutex_unlock(&relay_channels_mutex); 623 return NULL; 624 } 625 EXPORT_SYMBOL_GPL(relay_open); 626 627 struct rchan_percpu_buf_dispatcher { 628 struct rchan_buf *buf; 629 struct dentry *dentry; 630 }; 631 632 /* Called in atomic context. */ 633 static void __relay_set_buf_dentry(void *info) 634 { 635 struct rchan_percpu_buf_dispatcher *p = info; 636 637 relay_set_buf_dentry(p->buf, p->dentry); 638 } 639 640 /** 641 * relay_late_setup_files - triggers file creation 642 * @chan: channel to operate on 643 * @base_filename: base name of files to create 644 * @parent: dentry of parent directory, %NULL for root directory 645 * 646 * Returns 0 if successful, non-zero otherwise. 647 * 648 * Use to setup files for a previously buffer-only channel created 649 * by relay_open() with a NULL parent dentry. 650 * 651 * For example, this is useful for perfomring early tracing in kernel, 652 * before VFS is up and then exposing the early results once the dentry 653 * is available. 654 */ 655 int relay_late_setup_files(struct rchan *chan, 656 const char *base_filename, 657 struct dentry *parent) 658 { 659 int err = 0; 660 unsigned int i, curr_cpu; 661 unsigned long flags; 662 struct dentry *dentry; 663 struct rchan_buf *buf; 664 struct rchan_percpu_buf_dispatcher disp; 665 666 if (!chan || !base_filename) 667 return -EINVAL; 668 669 strlcpy(chan->base_filename, base_filename, NAME_MAX); 670 671 mutex_lock(&relay_channels_mutex); 672 /* Is chan already set up? */ 673 if (unlikely(chan->has_base_filename)) { 674 mutex_unlock(&relay_channels_mutex); 675 return -EEXIST; 676 } 677 chan->has_base_filename = 1; 678 chan->parent = parent; 679 680 if (chan->is_global) { 681 err = -EINVAL; 682 buf = *per_cpu_ptr(chan->buf, 0); 683 if (!WARN_ON_ONCE(!buf)) { 684 dentry = relay_create_buf_file(chan, buf, 0); 685 if (dentry && !WARN_ON_ONCE(!chan->is_global)) { 686 relay_set_buf_dentry(buf, dentry); 687 err = 0; 688 } 689 } 690 mutex_unlock(&relay_channels_mutex); 691 return err; 692 } 693 694 curr_cpu = get_cpu(); 695 /* 696 * The CPU hotplug notifier ran before us and created buffers with 697 * no files associated. So it's safe to call relay_setup_buf_file() 698 * on all currently online CPUs. 699 */ 700 for_each_online_cpu(i) { 701 buf = *per_cpu_ptr(chan->buf, i); 702 if (unlikely(!buf)) { 703 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n"); 704 err = -EINVAL; 705 break; 706 } 707 708 dentry = relay_create_buf_file(chan, buf, i); 709 if (unlikely(!dentry)) { 710 err = -EINVAL; 711 break; 712 } 713 714 if (curr_cpu == i) { 715 local_irq_save(flags); 716 relay_set_buf_dentry(buf, dentry); 717 local_irq_restore(flags); 718 } else { 719 disp.buf = buf; 720 disp.dentry = dentry; 721 smp_mb(); 722 /* relay_channels_mutex must be held, so wait. */ 723 err = smp_call_function_single(i, 724 __relay_set_buf_dentry, 725 &disp, 1); 726 } 727 if (unlikely(err)) 728 break; 729 } 730 put_cpu(); 731 mutex_unlock(&relay_channels_mutex); 732 733 return err; 734 } 735 EXPORT_SYMBOL_GPL(relay_late_setup_files); 736 737 /** 738 * relay_switch_subbuf - switch to a new sub-buffer 739 * @buf: channel buffer 740 * @length: size of current event 741 * 742 * Returns either the length passed in or 0 if full. 743 * 744 * Performs sub-buffer-switch tasks such as invoking callbacks, 745 * updating padding counts, waking up readers, etc. 746 */ 747 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 748 { 749 void *old, *new; 750 size_t old_subbuf, new_subbuf; 751 752 if (unlikely(length > buf->chan->subbuf_size)) 753 goto toobig; 754 755 if (buf->offset != buf->chan->subbuf_size + 1) { 756 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 757 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 758 buf->padding[old_subbuf] = buf->prev_padding; 759 buf->subbufs_produced++; 760 if (buf->dentry) 761 d_inode(buf->dentry)->i_size += 762 buf->chan->subbuf_size - 763 buf->padding[old_subbuf]; 764 else 765 buf->early_bytes += buf->chan->subbuf_size - 766 buf->padding[old_subbuf]; 767 smp_mb(); 768 if (waitqueue_active(&buf->read_wait)) { 769 /* 770 * Calling wake_up_interruptible() from here 771 * will deadlock if we happen to be logging 772 * from the scheduler (trying to re-grab 773 * rq->lock), so defer it. 774 */ 775 irq_work_queue(&buf->wakeup_work); 776 } 777 } 778 779 old = buf->data; 780 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 781 new = buf->start + new_subbuf * buf->chan->subbuf_size; 782 buf->offset = 0; 783 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 784 buf->offset = buf->chan->subbuf_size + 1; 785 return 0; 786 } 787 buf->data = new; 788 buf->padding[new_subbuf] = 0; 789 790 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 791 goto toobig; 792 793 return length; 794 795 toobig: 796 buf->chan->last_toobig = length; 797 return 0; 798 } 799 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 800 801 /** 802 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 803 * @chan: the channel 804 * @cpu: the cpu associated with the channel buffer to update 805 * @subbufs_consumed: number of sub-buffers to add to current buf's count 806 * 807 * Adds to the channel buffer's consumed sub-buffer count. 808 * subbufs_consumed should be the number of sub-buffers newly consumed, 809 * not the total consumed. 810 * 811 * NOTE. Kernel clients don't need to call this function if the channel 812 * mode is 'overwrite'. 813 */ 814 void relay_subbufs_consumed(struct rchan *chan, 815 unsigned int cpu, 816 size_t subbufs_consumed) 817 { 818 struct rchan_buf *buf; 819 820 if (!chan || cpu >= NR_CPUS) 821 return; 822 823 buf = *per_cpu_ptr(chan->buf, cpu); 824 if (!buf || subbufs_consumed > chan->n_subbufs) 825 return; 826 827 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) 828 buf->subbufs_consumed = buf->subbufs_produced; 829 else 830 buf->subbufs_consumed += subbufs_consumed; 831 } 832 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 833 834 /** 835 * relay_close - close the channel 836 * @chan: the channel 837 * 838 * Closes all channel buffers and frees the channel. 839 */ 840 void relay_close(struct rchan *chan) 841 { 842 struct rchan_buf *buf; 843 unsigned int i; 844 845 if (!chan) 846 return; 847 848 mutex_lock(&relay_channels_mutex); 849 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) 850 relay_close_buf(buf); 851 else 852 for_each_possible_cpu(i) 853 if ((buf = *per_cpu_ptr(chan->buf, i))) 854 relay_close_buf(buf); 855 856 if (chan->last_toobig) 857 printk(KERN_WARNING "relay: one or more items not logged " 858 "[item size (%zd) > sub-buffer size (%zd)]\n", 859 chan->last_toobig, chan->subbuf_size); 860 861 list_del(&chan->list); 862 kref_put(&chan->kref, relay_destroy_channel); 863 mutex_unlock(&relay_channels_mutex); 864 } 865 EXPORT_SYMBOL_GPL(relay_close); 866 867 /** 868 * relay_flush - close the channel 869 * @chan: the channel 870 * 871 * Flushes all channel buffers, i.e. forces buffer switch. 872 */ 873 void relay_flush(struct rchan *chan) 874 { 875 struct rchan_buf *buf; 876 unsigned int i; 877 878 if (!chan) 879 return; 880 881 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 882 relay_switch_subbuf(buf, 0); 883 return; 884 } 885 886 mutex_lock(&relay_channels_mutex); 887 for_each_possible_cpu(i) 888 if ((buf = *per_cpu_ptr(chan->buf, i))) 889 relay_switch_subbuf(buf, 0); 890 mutex_unlock(&relay_channels_mutex); 891 } 892 EXPORT_SYMBOL_GPL(relay_flush); 893 894 /** 895 * relay_file_open - open file op for relay files 896 * @inode: the inode 897 * @filp: the file 898 * 899 * Increments the channel buffer refcount. 900 */ 901 static int relay_file_open(struct inode *inode, struct file *filp) 902 { 903 struct rchan_buf *buf = inode->i_private; 904 kref_get(&buf->kref); 905 filp->private_data = buf; 906 907 return nonseekable_open(inode, filp); 908 } 909 910 /** 911 * relay_file_mmap - mmap file op for relay files 912 * @filp: the file 913 * @vma: the vma describing what to map 914 * 915 * Calls upon relay_mmap_buf() to map the file into user space. 916 */ 917 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 918 { 919 struct rchan_buf *buf = filp->private_data; 920 return relay_mmap_buf(buf, vma); 921 } 922 923 /** 924 * relay_file_poll - poll file op for relay files 925 * @filp: the file 926 * @wait: poll table 927 * 928 * Poll implemention. 929 */ 930 static __poll_t relay_file_poll(struct file *filp, poll_table *wait) 931 { 932 __poll_t mask = 0; 933 struct rchan_buf *buf = filp->private_data; 934 935 if (buf->finalized) 936 return EPOLLERR; 937 938 if (filp->f_mode & FMODE_READ) { 939 poll_wait(filp, &buf->read_wait, wait); 940 if (!relay_buf_empty(buf)) 941 mask |= EPOLLIN | EPOLLRDNORM; 942 } 943 944 return mask; 945 } 946 947 /** 948 * relay_file_release - release file op for relay files 949 * @inode: the inode 950 * @filp: the file 951 * 952 * Decrements the channel refcount, as the filesystem is 953 * no longer using it. 954 */ 955 static int relay_file_release(struct inode *inode, struct file *filp) 956 { 957 struct rchan_buf *buf = filp->private_data; 958 kref_put(&buf->kref, relay_remove_buf); 959 960 return 0; 961 } 962 963 /* 964 * relay_file_read_consume - update the consumed count for the buffer 965 */ 966 static void relay_file_read_consume(struct rchan_buf *buf, 967 size_t read_pos, 968 size_t bytes_consumed) 969 { 970 size_t subbuf_size = buf->chan->subbuf_size; 971 size_t n_subbufs = buf->chan->n_subbufs; 972 size_t read_subbuf; 973 974 if (buf->subbufs_produced == buf->subbufs_consumed && 975 buf->offset == buf->bytes_consumed) 976 return; 977 978 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 979 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 980 buf->bytes_consumed = 0; 981 } 982 983 buf->bytes_consumed += bytes_consumed; 984 if (!read_pos) 985 read_subbuf = buf->subbufs_consumed % n_subbufs; 986 else 987 read_subbuf = read_pos / buf->chan->subbuf_size; 988 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 989 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 990 (buf->offset == subbuf_size)) 991 return; 992 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 993 buf->bytes_consumed = 0; 994 } 995 } 996 997 /* 998 * relay_file_read_avail - boolean, are there unconsumed bytes available? 999 */ 1000 static int relay_file_read_avail(struct rchan_buf *buf) 1001 { 1002 size_t subbuf_size = buf->chan->subbuf_size; 1003 size_t n_subbufs = buf->chan->n_subbufs; 1004 size_t produced = buf->subbufs_produced; 1005 size_t consumed = buf->subbufs_consumed; 1006 1007 relay_file_read_consume(buf, 0, 0); 1008 1009 consumed = buf->subbufs_consumed; 1010 1011 if (unlikely(buf->offset > subbuf_size)) { 1012 if (produced == consumed) 1013 return 0; 1014 return 1; 1015 } 1016 1017 if (unlikely(produced - consumed >= n_subbufs)) { 1018 consumed = produced - n_subbufs + 1; 1019 buf->subbufs_consumed = consumed; 1020 buf->bytes_consumed = 0; 1021 } 1022 1023 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 1024 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 1025 1026 if (consumed > produced) 1027 produced += n_subbufs * subbuf_size; 1028 1029 if (consumed == produced) { 1030 if (buf->offset == subbuf_size && 1031 buf->subbufs_produced > buf->subbufs_consumed) 1032 return 1; 1033 return 0; 1034 } 1035 1036 return 1; 1037 } 1038 1039 /** 1040 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 1041 * @read_pos: file read position 1042 * @buf: relay channel buffer 1043 */ 1044 static size_t relay_file_read_subbuf_avail(size_t read_pos, 1045 struct rchan_buf *buf) 1046 { 1047 size_t padding, avail = 0; 1048 size_t read_subbuf, read_offset, write_subbuf, write_offset; 1049 size_t subbuf_size = buf->chan->subbuf_size; 1050 1051 write_subbuf = (buf->data - buf->start) / subbuf_size; 1052 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 1053 read_subbuf = read_pos / subbuf_size; 1054 read_offset = read_pos % subbuf_size; 1055 padding = buf->padding[read_subbuf]; 1056 1057 if (read_subbuf == write_subbuf) { 1058 if (read_offset + padding < write_offset) 1059 avail = write_offset - (read_offset + padding); 1060 } else 1061 avail = (subbuf_size - padding) - read_offset; 1062 1063 return avail; 1064 } 1065 1066 /** 1067 * relay_file_read_start_pos - find the first available byte to read 1068 * @buf: relay channel buffer 1069 * 1070 * If the read_pos is in the middle of padding, return the 1071 * position of the first actually available byte, otherwise 1072 * return the original value. 1073 */ 1074 static size_t relay_file_read_start_pos(struct rchan_buf *buf) 1075 { 1076 size_t read_subbuf, padding, padding_start, padding_end; 1077 size_t subbuf_size = buf->chan->subbuf_size; 1078 size_t n_subbufs = buf->chan->n_subbufs; 1079 size_t consumed = buf->subbufs_consumed % n_subbufs; 1080 size_t read_pos = consumed * subbuf_size + buf->bytes_consumed; 1081 1082 read_subbuf = read_pos / subbuf_size; 1083 padding = buf->padding[read_subbuf]; 1084 padding_start = (read_subbuf + 1) * subbuf_size - padding; 1085 padding_end = (read_subbuf + 1) * subbuf_size; 1086 if (read_pos >= padding_start && read_pos < padding_end) { 1087 read_subbuf = (read_subbuf + 1) % n_subbufs; 1088 read_pos = read_subbuf * subbuf_size; 1089 } 1090 1091 return read_pos; 1092 } 1093 1094 /** 1095 * relay_file_read_end_pos - return the new read position 1096 * @read_pos: file read position 1097 * @buf: relay channel buffer 1098 * @count: number of bytes to be read 1099 */ 1100 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 1101 size_t read_pos, 1102 size_t count) 1103 { 1104 size_t read_subbuf, padding, end_pos; 1105 size_t subbuf_size = buf->chan->subbuf_size; 1106 size_t n_subbufs = buf->chan->n_subbufs; 1107 1108 read_subbuf = read_pos / subbuf_size; 1109 padding = buf->padding[read_subbuf]; 1110 if (read_pos % subbuf_size + count + padding == subbuf_size) 1111 end_pos = (read_subbuf + 1) * subbuf_size; 1112 else 1113 end_pos = read_pos + count; 1114 if (end_pos >= subbuf_size * n_subbufs) 1115 end_pos = 0; 1116 1117 return end_pos; 1118 } 1119 1120 static ssize_t relay_file_read(struct file *filp, 1121 char __user *buffer, 1122 size_t count, 1123 loff_t *ppos) 1124 { 1125 struct rchan_buf *buf = filp->private_data; 1126 size_t read_start, avail; 1127 size_t written = 0; 1128 int ret; 1129 1130 if (!count) 1131 return 0; 1132 1133 inode_lock(file_inode(filp)); 1134 do { 1135 void *from; 1136 1137 if (!relay_file_read_avail(buf)) 1138 break; 1139 1140 read_start = relay_file_read_start_pos(buf); 1141 avail = relay_file_read_subbuf_avail(read_start, buf); 1142 if (!avail) 1143 break; 1144 1145 avail = min(count, avail); 1146 from = buf->start + read_start; 1147 ret = avail; 1148 if (copy_to_user(buffer, from, avail)) 1149 break; 1150 1151 buffer += ret; 1152 written += ret; 1153 count -= ret; 1154 1155 relay_file_read_consume(buf, read_start, ret); 1156 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1157 } while (count); 1158 inode_unlock(file_inode(filp)); 1159 1160 return written; 1161 } 1162 1163 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1164 { 1165 rbuf->bytes_consumed += bytes_consumed; 1166 1167 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1168 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1169 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1170 } 1171 } 1172 1173 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1174 struct pipe_buffer *buf) 1175 { 1176 struct rchan_buf *rbuf; 1177 1178 rbuf = (struct rchan_buf *)page_private(buf->page); 1179 relay_consume_bytes(rbuf, buf->private); 1180 } 1181 1182 static const struct pipe_buf_operations relay_pipe_buf_ops = { 1183 .release = relay_pipe_buf_release, 1184 .try_steal = generic_pipe_buf_try_steal, 1185 .get = generic_pipe_buf_get, 1186 }; 1187 1188 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1189 { 1190 } 1191 1192 /* 1193 * subbuf_splice_actor - splice up to one subbuf's worth of data 1194 */ 1195 static ssize_t subbuf_splice_actor(struct file *in, 1196 loff_t *ppos, 1197 struct pipe_inode_info *pipe, 1198 size_t len, 1199 unsigned int flags, 1200 int *nonpad_ret) 1201 { 1202 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages; 1203 struct rchan_buf *rbuf = in->private_data; 1204 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1205 uint64_t pos = (uint64_t) *ppos; 1206 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1207 size_t read_start = (size_t) do_div(pos, alloc_size); 1208 size_t read_subbuf = read_start / subbuf_size; 1209 size_t padding = rbuf->padding[read_subbuf]; 1210 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1211 struct page *pages[PIPE_DEF_BUFFERS]; 1212 struct partial_page partial[PIPE_DEF_BUFFERS]; 1213 struct splice_pipe_desc spd = { 1214 .pages = pages, 1215 .nr_pages = 0, 1216 .nr_pages_max = PIPE_DEF_BUFFERS, 1217 .partial = partial, 1218 .ops = &relay_pipe_buf_ops, 1219 .spd_release = relay_page_release, 1220 }; 1221 ssize_t ret; 1222 1223 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1224 return 0; 1225 if (splice_grow_spd(pipe, &spd)) 1226 return -ENOMEM; 1227 1228 /* 1229 * Adjust read len, if longer than what is available 1230 */ 1231 if (len > (subbuf_size - read_start % subbuf_size)) 1232 len = subbuf_size - read_start % subbuf_size; 1233 1234 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1235 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1236 poff = read_start & ~PAGE_MASK; 1237 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max); 1238 1239 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1240 unsigned int this_len, this_end, private; 1241 unsigned int cur_pos = read_start + total_len; 1242 1243 if (!len) 1244 break; 1245 1246 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1247 private = this_len; 1248 1249 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1250 spd.partial[spd.nr_pages].offset = poff; 1251 1252 this_end = cur_pos + this_len; 1253 if (this_end >= nonpad_end) { 1254 this_len = nonpad_end - cur_pos; 1255 private = this_len + padding; 1256 } 1257 spd.partial[spd.nr_pages].len = this_len; 1258 spd.partial[spd.nr_pages].private = private; 1259 1260 len -= this_len; 1261 total_len += this_len; 1262 poff = 0; 1263 pidx = (pidx + 1) % subbuf_pages; 1264 1265 if (this_end >= nonpad_end) { 1266 spd.nr_pages++; 1267 break; 1268 } 1269 } 1270 1271 ret = 0; 1272 if (!spd.nr_pages) 1273 goto out; 1274 1275 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1276 if (ret < 0 || ret < total_len) 1277 goto out; 1278 1279 if (read_start + ret == nonpad_end) 1280 ret += padding; 1281 1282 out: 1283 splice_shrink_spd(&spd); 1284 return ret; 1285 } 1286 1287 static ssize_t relay_file_splice_read(struct file *in, 1288 loff_t *ppos, 1289 struct pipe_inode_info *pipe, 1290 size_t len, 1291 unsigned int flags) 1292 { 1293 ssize_t spliced; 1294 int ret; 1295 int nonpad_ret = 0; 1296 1297 ret = 0; 1298 spliced = 0; 1299 1300 while (len && !spliced) { 1301 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1302 if (ret < 0) 1303 break; 1304 else if (!ret) { 1305 if (flags & SPLICE_F_NONBLOCK) 1306 ret = -EAGAIN; 1307 break; 1308 } 1309 1310 *ppos += ret; 1311 if (ret > len) 1312 len = 0; 1313 else 1314 len -= ret; 1315 spliced += nonpad_ret; 1316 nonpad_ret = 0; 1317 } 1318 1319 if (spliced) 1320 return spliced; 1321 1322 return ret; 1323 } 1324 1325 const struct file_operations relay_file_operations = { 1326 .open = relay_file_open, 1327 .poll = relay_file_poll, 1328 .mmap = relay_file_mmap, 1329 .read = relay_file_read, 1330 .llseek = no_llseek, 1331 .release = relay_file_release, 1332 .splice_read = relay_file_splice_read, 1333 }; 1334 EXPORT_SYMBOL_GPL(relay_file_operations); 1335