xref: /openbmc/linux/kernel/relay.c (revision cff11abeca78aa782378401ca2800bd2194aa14e)
1  /*
2   * Public API and common code for kernel->userspace relay file support.
3   *
4   * See Documentation/filesystems/relay.rst for an overview.
5   *
6   * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7   * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8   *
9   * Moved to kernel/relay.c by Paul Mundt, 2006.
10   * November 2006 - CPU hotplug support by Mathieu Desnoyers
11   * 	(mathieu.desnoyers@polymtl.ca)
12   *
13   * This file is released under the GPL.
14   */
15  #include <linux/errno.h>
16  #include <linux/stddef.h>
17  #include <linux/slab.h>
18  #include <linux/export.h>
19  #include <linux/string.h>
20  #include <linux/relay.h>
21  #include <linux/vmalloc.h>
22  #include <linux/mm.h>
23  #include <linux/cpu.h>
24  #include <linux/splice.h>
25  
26  /* list of open channels, for cpu hotplug */
27  static DEFINE_MUTEX(relay_channels_mutex);
28  static LIST_HEAD(relay_channels);
29  
30  /*
31   * close() vm_op implementation for relay file mapping.
32   */
33  static void relay_file_mmap_close(struct vm_area_struct *vma)
34  {
35  	struct rchan_buf *buf = vma->vm_private_data;
36  	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37  }
38  
39  /*
40   * fault() vm_op implementation for relay file mapping.
41   */
42  static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
43  {
44  	struct page *page;
45  	struct rchan_buf *buf = vmf->vma->vm_private_data;
46  	pgoff_t pgoff = vmf->pgoff;
47  
48  	if (!buf)
49  		return VM_FAULT_OOM;
50  
51  	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52  	if (!page)
53  		return VM_FAULT_SIGBUS;
54  	get_page(page);
55  	vmf->page = page;
56  
57  	return 0;
58  }
59  
60  /*
61   * vm_ops for relay file mappings.
62   */
63  static const struct vm_operations_struct relay_file_mmap_ops = {
64  	.fault = relay_buf_fault,
65  	.close = relay_file_mmap_close,
66  };
67  
68  /*
69   * allocate an array of pointers of struct page
70   */
71  static struct page **relay_alloc_page_array(unsigned int n_pages)
72  {
73  	const size_t pa_size = n_pages * sizeof(struct page *);
74  	if (pa_size > PAGE_SIZE)
75  		return vzalloc(pa_size);
76  	return kzalloc(pa_size, GFP_KERNEL);
77  }
78  
79  /*
80   * free an array of pointers of struct page
81   */
82  static void relay_free_page_array(struct page **array)
83  {
84  	kvfree(array);
85  }
86  
87  /**
88   *	relay_mmap_buf: - mmap channel buffer to process address space
89   *	@buf: relay channel buffer
90   *	@vma: vm_area_struct describing memory to be mapped
91   *
92   *	Returns 0 if ok, negative on error
93   *
94   *	Caller should already have grabbed mmap_sem.
95   */
96  static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97  {
98  	unsigned long length = vma->vm_end - vma->vm_start;
99  	struct file *filp = vma->vm_file;
100  
101  	if (!buf)
102  		return -EBADF;
103  
104  	if (length != (unsigned long)buf->chan->alloc_size)
105  		return -EINVAL;
106  
107  	vma->vm_ops = &relay_file_mmap_ops;
108  	vma->vm_flags |= VM_DONTEXPAND;
109  	vma->vm_private_data = buf;
110  	buf->chan->cb->buf_mapped(buf, filp);
111  
112  	return 0;
113  }
114  
115  /**
116   *	relay_alloc_buf - allocate a channel buffer
117   *	@buf: the buffer struct
118   *	@size: total size of the buffer
119   *
120   *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121   *	passed in size will get page aligned, if it isn't already.
122   */
123  static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124  {
125  	void *mem;
126  	unsigned int i, j, n_pages;
127  
128  	*size = PAGE_ALIGN(*size);
129  	n_pages = *size >> PAGE_SHIFT;
130  
131  	buf->page_array = relay_alloc_page_array(n_pages);
132  	if (!buf->page_array)
133  		return NULL;
134  
135  	for (i = 0; i < n_pages; i++) {
136  		buf->page_array[i] = alloc_page(GFP_KERNEL);
137  		if (unlikely(!buf->page_array[i]))
138  			goto depopulate;
139  		set_page_private(buf->page_array[i], (unsigned long)buf);
140  	}
141  	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142  	if (!mem)
143  		goto depopulate;
144  
145  	memset(mem, 0, *size);
146  	buf->page_count = n_pages;
147  	return mem;
148  
149  depopulate:
150  	for (j = 0; j < i; j++)
151  		__free_page(buf->page_array[j]);
152  	relay_free_page_array(buf->page_array);
153  	return NULL;
154  }
155  
156  /**
157   *	relay_create_buf - allocate and initialize a channel buffer
158   *	@chan: the relay channel
159   *
160   *	Returns channel buffer if successful, %NULL otherwise.
161   */
162  static struct rchan_buf *relay_create_buf(struct rchan *chan)
163  {
164  	struct rchan_buf *buf;
165  
166  	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
167  		return NULL;
168  
169  	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170  	if (!buf)
171  		return NULL;
172  	buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *),
173  				     GFP_KERNEL);
174  	if (!buf->padding)
175  		goto free_buf;
176  
177  	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
178  	if (!buf->start)
179  		goto free_buf;
180  
181  	buf->chan = chan;
182  	kref_get(&buf->chan->kref);
183  	return buf;
184  
185  free_buf:
186  	kfree(buf->padding);
187  	kfree(buf);
188  	return NULL;
189  }
190  
191  /**
192   *	relay_destroy_channel - free the channel struct
193   *	@kref: target kernel reference that contains the relay channel
194   *
195   *	Should only be called from kref_put().
196   */
197  static void relay_destroy_channel(struct kref *kref)
198  {
199  	struct rchan *chan = container_of(kref, struct rchan, kref);
200  	kfree(chan);
201  }
202  
203  /**
204   *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
205   *	@buf: the buffer struct
206   */
207  static void relay_destroy_buf(struct rchan_buf *buf)
208  {
209  	struct rchan *chan = buf->chan;
210  	unsigned int i;
211  
212  	if (likely(buf->start)) {
213  		vunmap(buf->start);
214  		for (i = 0; i < buf->page_count; i++)
215  			__free_page(buf->page_array[i]);
216  		relay_free_page_array(buf->page_array);
217  	}
218  	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
219  	kfree(buf->padding);
220  	kfree(buf);
221  	kref_put(&chan->kref, relay_destroy_channel);
222  }
223  
224  /**
225   *	relay_remove_buf - remove a channel buffer
226   *	@kref: target kernel reference that contains the relay buffer
227   *
228   *	Removes the file from the filesystem, which also frees the
229   *	rchan_buf_struct and the channel buffer.  Should only be called from
230   *	kref_put().
231   */
232  static void relay_remove_buf(struct kref *kref)
233  {
234  	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
235  	relay_destroy_buf(buf);
236  }
237  
238  /**
239   *	relay_buf_empty - boolean, is the channel buffer empty?
240   *	@buf: channel buffer
241   *
242   *	Returns 1 if the buffer is empty, 0 otherwise.
243   */
244  static int relay_buf_empty(struct rchan_buf *buf)
245  {
246  	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
247  }
248  
249  /**
250   *	relay_buf_full - boolean, is the channel buffer full?
251   *	@buf: channel buffer
252   *
253   *	Returns 1 if the buffer is full, 0 otherwise.
254   */
255  int relay_buf_full(struct rchan_buf *buf)
256  {
257  	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
258  	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
259  }
260  EXPORT_SYMBOL_GPL(relay_buf_full);
261  
262  /*
263   * High-level relay kernel API and associated functions.
264   */
265  
266  /*
267   * rchan_callback implementations defining default channel behavior.  Used
268   * in place of corresponding NULL values in client callback struct.
269   */
270  
271  /*
272   * subbuf_start() default callback.  Does nothing.
273   */
274  static int subbuf_start_default_callback (struct rchan_buf *buf,
275  					  void *subbuf,
276  					  void *prev_subbuf,
277  					  size_t prev_padding)
278  {
279  	if (relay_buf_full(buf))
280  		return 0;
281  
282  	return 1;
283  }
284  
285  /*
286   * buf_mapped() default callback.  Does nothing.
287   */
288  static void buf_mapped_default_callback(struct rchan_buf *buf,
289  					struct file *filp)
290  {
291  }
292  
293  /*
294   * buf_unmapped() default callback.  Does nothing.
295   */
296  static void buf_unmapped_default_callback(struct rchan_buf *buf,
297  					  struct file *filp)
298  {
299  }
300  
301  /*
302   * create_buf_file_create() default callback.  Does nothing.
303   */
304  static struct dentry *create_buf_file_default_callback(const char *filename,
305  						       struct dentry *parent,
306  						       umode_t mode,
307  						       struct rchan_buf *buf,
308  						       int *is_global)
309  {
310  	return NULL;
311  }
312  
313  /*
314   * remove_buf_file() default callback.  Does nothing.
315   */
316  static int remove_buf_file_default_callback(struct dentry *dentry)
317  {
318  	return -EINVAL;
319  }
320  
321  /* relay channel default callbacks */
322  static struct rchan_callbacks default_channel_callbacks = {
323  	.subbuf_start = subbuf_start_default_callback,
324  	.buf_mapped = buf_mapped_default_callback,
325  	.buf_unmapped = buf_unmapped_default_callback,
326  	.create_buf_file = create_buf_file_default_callback,
327  	.remove_buf_file = remove_buf_file_default_callback,
328  };
329  
330  /**
331   *	wakeup_readers - wake up readers waiting on a channel
332   *	@work: contains the channel buffer
333   *
334   *	This is the function used to defer reader waking
335   */
336  static void wakeup_readers(struct irq_work *work)
337  {
338  	struct rchan_buf *buf;
339  
340  	buf = container_of(work, struct rchan_buf, wakeup_work);
341  	wake_up_interruptible(&buf->read_wait);
342  }
343  
344  /**
345   *	__relay_reset - reset a channel buffer
346   *	@buf: the channel buffer
347   *	@init: 1 if this is a first-time initialization
348   *
349   *	See relay_reset() for description of effect.
350   */
351  static void __relay_reset(struct rchan_buf *buf, unsigned int init)
352  {
353  	size_t i;
354  
355  	if (init) {
356  		init_waitqueue_head(&buf->read_wait);
357  		kref_init(&buf->kref);
358  		init_irq_work(&buf->wakeup_work, wakeup_readers);
359  	} else {
360  		irq_work_sync(&buf->wakeup_work);
361  	}
362  
363  	buf->subbufs_produced = 0;
364  	buf->subbufs_consumed = 0;
365  	buf->bytes_consumed = 0;
366  	buf->finalized = 0;
367  	buf->data = buf->start;
368  	buf->offset = 0;
369  
370  	for (i = 0; i < buf->chan->n_subbufs; i++)
371  		buf->padding[i] = 0;
372  
373  	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
374  }
375  
376  /**
377   *	relay_reset - reset the channel
378   *	@chan: the channel
379   *
380   *	This has the effect of erasing all data from all channel buffers
381   *	and restarting the channel in its initial state.  The buffers
382   *	are not freed, so any mappings are still in effect.
383   *
384   *	NOTE. Care should be taken that the channel isn't actually
385   *	being used by anything when this call is made.
386   */
387  void relay_reset(struct rchan *chan)
388  {
389  	struct rchan_buf *buf;
390  	unsigned int i;
391  
392  	if (!chan)
393  		return;
394  
395  	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
396  		__relay_reset(buf, 0);
397  		return;
398  	}
399  
400  	mutex_lock(&relay_channels_mutex);
401  	for_each_possible_cpu(i)
402  		if ((buf = *per_cpu_ptr(chan->buf, i)))
403  			__relay_reset(buf, 0);
404  	mutex_unlock(&relay_channels_mutex);
405  }
406  EXPORT_SYMBOL_GPL(relay_reset);
407  
408  static inline void relay_set_buf_dentry(struct rchan_buf *buf,
409  					struct dentry *dentry)
410  {
411  	buf->dentry = dentry;
412  	d_inode(buf->dentry)->i_size = buf->early_bytes;
413  }
414  
415  static struct dentry *relay_create_buf_file(struct rchan *chan,
416  					    struct rchan_buf *buf,
417  					    unsigned int cpu)
418  {
419  	struct dentry *dentry;
420  	char *tmpname;
421  
422  	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
423  	if (!tmpname)
424  		return NULL;
425  	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
426  
427  	/* Create file in fs */
428  	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
429  					   S_IRUSR, buf,
430  					   &chan->is_global);
431  	if (IS_ERR(dentry))
432  		dentry = NULL;
433  
434  	kfree(tmpname);
435  
436  	return dentry;
437  }
438  
439  /*
440   *	relay_open_buf - create a new relay channel buffer
441   *
442   *	used by relay_open() and CPU hotplug.
443   */
444  static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
445  {
446   	struct rchan_buf *buf = NULL;
447  	struct dentry *dentry;
448  
449   	if (chan->is_global)
450  		return *per_cpu_ptr(chan->buf, 0);
451  
452  	buf = relay_create_buf(chan);
453  	if (!buf)
454  		return NULL;
455  
456  	if (chan->has_base_filename) {
457  		dentry = relay_create_buf_file(chan, buf, cpu);
458  		if (!dentry)
459  			goto free_buf;
460  		relay_set_buf_dentry(buf, dentry);
461  	} else {
462  		/* Only retrieve global info, nothing more, nothing less */
463  		dentry = chan->cb->create_buf_file(NULL, NULL,
464  						   S_IRUSR, buf,
465  						   &chan->is_global);
466  		if (IS_ERR_OR_NULL(dentry))
467  			goto free_buf;
468  	}
469  
470   	buf->cpu = cpu;
471   	__relay_reset(buf, 1);
472  
473   	if(chan->is_global) {
474  		*per_cpu_ptr(chan->buf, 0) = buf;
475   		buf->cpu = 0;
476    	}
477  
478  	return buf;
479  
480  free_buf:
481   	relay_destroy_buf(buf);
482  	return NULL;
483  }
484  
485  /**
486   *	relay_close_buf - close a channel buffer
487   *	@buf: channel buffer
488   *
489   *	Marks the buffer finalized and restores the default callbacks.
490   *	The channel buffer and channel buffer data structure are then freed
491   *	automatically when the last reference is given up.
492   */
493  static void relay_close_buf(struct rchan_buf *buf)
494  {
495  	buf->finalized = 1;
496  	irq_work_sync(&buf->wakeup_work);
497  	buf->chan->cb->remove_buf_file(buf->dentry);
498  	kref_put(&buf->kref, relay_remove_buf);
499  }
500  
501  static void setup_callbacks(struct rchan *chan,
502  				   struct rchan_callbacks *cb)
503  {
504  	if (!cb) {
505  		chan->cb = &default_channel_callbacks;
506  		return;
507  	}
508  
509  	if (!cb->subbuf_start)
510  		cb->subbuf_start = subbuf_start_default_callback;
511  	if (!cb->buf_mapped)
512  		cb->buf_mapped = buf_mapped_default_callback;
513  	if (!cb->buf_unmapped)
514  		cb->buf_unmapped = buf_unmapped_default_callback;
515  	if (!cb->create_buf_file)
516  		cb->create_buf_file = create_buf_file_default_callback;
517  	if (!cb->remove_buf_file)
518  		cb->remove_buf_file = remove_buf_file_default_callback;
519  	chan->cb = cb;
520  }
521  
522  int relay_prepare_cpu(unsigned int cpu)
523  {
524  	struct rchan *chan;
525  	struct rchan_buf *buf;
526  
527  	mutex_lock(&relay_channels_mutex);
528  	list_for_each_entry(chan, &relay_channels, list) {
529  		if ((buf = *per_cpu_ptr(chan->buf, cpu)))
530  			continue;
531  		buf = relay_open_buf(chan, cpu);
532  		if (!buf) {
533  			pr_err("relay: cpu %d buffer creation failed\n", cpu);
534  			mutex_unlock(&relay_channels_mutex);
535  			return -ENOMEM;
536  		}
537  		*per_cpu_ptr(chan->buf, cpu) = buf;
538  	}
539  	mutex_unlock(&relay_channels_mutex);
540  	return 0;
541  }
542  
543  /**
544   *	relay_open - create a new relay channel
545   *	@base_filename: base name of files to create, %NULL for buffering only
546   *	@parent: dentry of parent directory, %NULL for root directory or buffer
547   *	@subbuf_size: size of sub-buffers
548   *	@n_subbufs: number of sub-buffers
549   *	@cb: client callback functions
550   *	@private_data: user-defined data
551   *
552   *	Returns channel pointer if successful, %NULL otherwise.
553   *
554   *	Creates a channel buffer for each cpu using the sizes and
555   *	attributes specified.  The created channel buffer files
556   *	will be named base_filename0...base_filenameN-1.  File
557   *	permissions will be %S_IRUSR.
558   *
559   *	If opening a buffer (@parent = NULL) that you later wish to register
560   *	in a filesystem, call relay_late_setup_files() once the @parent dentry
561   *	is available.
562   */
563  struct rchan *relay_open(const char *base_filename,
564  			 struct dentry *parent,
565  			 size_t subbuf_size,
566  			 size_t n_subbufs,
567  			 struct rchan_callbacks *cb,
568  			 void *private_data)
569  {
570  	unsigned int i;
571  	struct rchan *chan;
572  	struct rchan_buf *buf;
573  
574  	if (!(subbuf_size && n_subbufs))
575  		return NULL;
576  	if (subbuf_size > UINT_MAX / n_subbufs)
577  		return NULL;
578  
579  	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
580  	if (!chan)
581  		return NULL;
582  
583  	chan->buf = alloc_percpu(struct rchan_buf *);
584  	if (!chan->buf) {
585  		kfree(chan);
586  		return NULL;
587  	}
588  
589  	chan->version = RELAYFS_CHANNEL_VERSION;
590  	chan->n_subbufs = n_subbufs;
591  	chan->subbuf_size = subbuf_size;
592  	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
593  	chan->parent = parent;
594  	chan->private_data = private_data;
595  	if (base_filename) {
596  		chan->has_base_filename = 1;
597  		strlcpy(chan->base_filename, base_filename, NAME_MAX);
598  	}
599  	setup_callbacks(chan, cb);
600  	kref_init(&chan->kref);
601  
602  	mutex_lock(&relay_channels_mutex);
603  	for_each_online_cpu(i) {
604  		buf = relay_open_buf(chan, i);
605  		if (!buf)
606  			goto free_bufs;
607  		*per_cpu_ptr(chan->buf, i) = buf;
608  	}
609  	list_add(&chan->list, &relay_channels);
610  	mutex_unlock(&relay_channels_mutex);
611  
612  	return chan;
613  
614  free_bufs:
615  	for_each_possible_cpu(i) {
616  		if ((buf = *per_cpu_ptr(chan->buf, i)))
617  			relay_close_buf(buf);
618  	}
619  
620  	kref_put(&chan->kref, relay_destroy_channel);
621  	mutex_unlock(&relay_channels_mutex);
622  	return NULL;
623  }
624  EXPORT_SYMBOL_GPL(relay_open);
625  
626  struct rchan_percpu_buf_dispatcher {
627  	struct rchan_buf *buf;
628  	struct dentry *dentry;
629  };
630  
631  /* Called in atomic context. */
632  static void __relay_set_buf_dentry(void *info)
633  {
634  	struct rchan_percpu_buf_dispatcher *p = info;
635  
636  	relay_set_buf_dentry(p->buf, p->dentry);
637  }
638  
639  /**
640   *	relay_late_setup_files - triggers file creation
641   *	@chan: channel to operate on
642   *	@base_filename: base name of files to create
643   *	@parent: dentry of parent directory, %NULL for root directory
644   *
645   *	Returns 0 if successful, non-zero otherwise.
646   *
647   *	Use to setup files for a previously buffer-only channel created
648   *	by relay_open() with a NULL parent dentry.
649   *
650   *	For example, this is useful for perfomring early tracing in kernel,
651   *	before VFS is up and then exposing the early results once the dentry
652   *	is available.
653   */
654  int relay_late_setup_files(struct rchan *chan,
655  			   const char *base_filename,
656  			   struct dentry *parent)
657  {
658  	int err = 0;
659  	unsigned int i, curr_cpu;
660  	unsigned long flags;
661  	struct dentry *dentry;
662  	struct rchan_buf *buf;
663  	struct rchan_percpu_buf_dispatcher disp;
664  
665  	if (!chan || !base_filename)
666  		return -EINVAL;
667  
668  	strlcpy(chan->base_filename, base_filename, NAME_MAX);
669  
670  	mutex_lock(&relay_channels_mutex);
671  	/* Is chan already set up? */
672  	if (unlikely(chan->has_base_filename)) {
673  		mutex_unlock(&relay_channels_mutex);
674  		return -EEXIST;
675  	}
676  	chan->has_base_filename = 1;
677  	chan->parent = parent;
678  
679  	if (chan->is_global) {
680  		err = -EINVAL;
681  		buf = *per_cpu_ptr(chan->buf, 0);
682  		if (!WARN_ON_ONCE(!buf)) {
683  			dentry = relay_create_buf_file(chan, buf, 0);
684  			if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
685  				relay_set_buf_dentry(buf, dentry);
686  				err = 0;
687  			}
688  		}
689  		mutex_unlock(&relay_channels_mutex);
690  		return err;
691  	}
692  
693  	curr_cpu = get_cpu();
694  	/*
695  	 * The CPU hotplug notifier ran before us and created buffers with
696  	 * no files associated. So it's safe to call relay_setup_buf_file()
697  	 * on all currently online CPUs.
698  	 */
699  	for_each_online_cpu(i) {
700  		buf = *per_cpu_ptr(chan->buf, i);
701  		if (unlikely(!buf)) {
702  			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
703  			err = -EINVAL;
704  			break;
705  		}
706  
707  		dentry = relay_create_buf_file(chan, buf, i);
708  		if (unlikely(!dentry)) {
709  			err = -EINVAL;
710  			break;
711  		}
712  
713  		if (curr_cpu == i) {
714  			local_irq_save(flags);
715  			relay_set_buf_dentry(buf, dentry);
716  			local_irq_restore(flags);
717  		} else {
718  			disp.buf = buf;
719  			disp.dentry = dentry;
720  			smp_mb();
721  			/* relay_channels_mutex must be held, so wait. */
722  			err = smp_call_function_single(i,
723  						       __relay_set_buf_dentry,
724  						       &disp, 1);
725  		}
726  		if (unlikely(err))
727  			break;
728  	}
729  	put_cpu();
730  	mutex_unlock(&relay_channels_mutex);
731  
732  	return err;
733  }
734  EXPORT_SYMBOL_GPL(relay_late_setup_files);
735  
736  /**
737   *	relay_switch_subbuf - switch to a new sub-buffer
738   *	@buf: channel buffer
739   *	@length: size of current event
740   *
741   *	Returns either the length passed in or 0 if full.
742   *
743   *	Performs sub-buffer-switch tasks such as invoking callbacks,
744   *	updating padding counts, waking up readers, etc.
745   */
746  size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
747  {
748  	void *old, *new;
749  	size_t old_subbuf, new_subbuf;
750  
751  	if (unlikely(length > buf->chan->subbuf_size))
752  		goto toobig;
753  
754  	if (buf->offset != buf->chan->subbuf_size + 1) {
755  		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
756  		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
757  		buf->padding[old_subbuf] = buf->prev_padding;
758  		buf->subbufs_produced++;
759  		if (buf->dentry)
760  			d_inode(buf->dentry)->i_size +=
761  				buf->chan->subbuf_size -
762  				buf->padding[old_subbuf];
763  		else
764  			buf->early_bytes += buf->chan->subbuf_size -
765  					    buf->padding[old_subbuf];
766  		smp_mb();
767  		if (waitqueue_active(&buf->read_wait)) {
768  			/*
769  			 * Calling wake_up_interruptible() from here
770  			 * will deadlock if we happen to be logging
771  			 * from the scheduler (trying to re-grab
772  			 * rq->lock), so defer it.
773  			 */
774  			irq_work_queue(&buf->wakeup_work);
775  		}
776  	}
777  
778  	old = buf->data;
779  	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
780  	new = buf->start + new_subbuf * buf->chan->subbuf_size;
781  	buf->offset = 0;
782  	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
783  		buf->offset = buf->chan->subbuf_size + 1;
784  		return 0;
785  	}
786  	buf->data = new;
787  	buf->padding[new_subbuf] = 0;
788  
789  	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
790  		goto toobig;
791  
792  	return length;
793  
794  toobig:
795  	buf->chan->last_toobig = length;
796  	return 0;
797  }
798  EXPORT_SYMBOL_GPL(relay_switch_subbuf);
799  
800  /**
801   *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
802   *	@chan: the channel
803   *	@cpu: the cpu associated with the channel buffer to update
804   *	@subbufs_consumed: number of sub-buffers to add to current buf's count
805   *
806   *	Adds to the channel buffer's consumed sub-buffer count.
807   *	subbufs_consumed should be the number of sub-buffers newly consumed,
808   *	not the total consumed.
809   *
810   *	NOTE. Kernel clients don't need to call this function if the channel
811   *	mode is 'overwrite'.
812   */
813  void relay_subbufs_consumed(struct rchan *chan,
814  			    unsigned int cpu,
815  			    size_t subbufs_consumed)
816  {
817  	struct rchan_buf *buf;
818  
819  	if (!chan || cpu >= NR_CPUS)
820  		return;
821  
822  	buf = *per_cpu_ptr(chan->buf, cpu);
823  	if (!buf || subbufs_consumed > chan->n_subbufs)
824  		return;
825  
826  	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
827  		buf->subbufs_consumed = buf->subbufs_produced;
828  	else
829  		buf->subbufs_consumed += subbufs_consumed;
830  }
831  EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
832  
833  /**
834   *	relay_close - close the channel
835   *	@chan: the channel
836   *
837   *	Closes all channel buffers and frees the channel.
838   */
839  void relay_close(struct rchan *chan)
840  {
841  	struct rchan_buf *buf;
842  	unsigned int i;
843  
844  	if (!chan)
845  		return;
846  
847  	mutex_lock(&relay_channels_mutex);
848  	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
849  		relay_close_buf(buf);
850  	else
851  		for_each_possible_cpu(i)
852  			if ((buf = *per_cpu_ptr(chan->buf, i)))
853  				relay_close_buf(buf);
854  
855  	if (chan->last_toobig)
856  		printk(KERN_WARNING "relay: one or more items not logged "
857  		       "[item size (%zd) > sub-buffer size (%zd)]\n",
858  		       chan->last_toobig, chan->subbuf_size);
859  
860  	list_del(&chan->list);
861  	kref_put(&chan->kref, relay_destroy_channel);
862  	mutex_unlock(&relay_channels_mutex);
863  }
864  EXPORT_SYMBOL_GPL(relay_close);
865  
866  /**
867   *	relay_flush - close the channel
868   *	@chan: the channel
869   *
870   *	Flushes all channel buffers, i.e. forces buffer switch.
871   */
872  void relay_flush(struct rchan *chan)
873  {
874  	struct rchan_buf *buf;
875  	unsigned int i;
876  
877  	if (!chan)
878  		return;
879  
880  	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
881  		relay_switch_subbuf(buf, 0);
882  		return;
883  	}
884  
885  	mutex_lock(&relay_channels_mutex);
886  	for_each_possible_cpu(i)
887  		if ((buf = *per_cpu_ptr(chan->buf, i)))
888  			relay_switch_subbuf(buf, 0);
889  	mutex_unlock(&relay_channels_mutex);
890  }
891  EXPORT_SYMBOL_GPL(relay_flush);
892  
893  /**
894   *	relay_file_open - open file op for relay files
895   *	@inode: the inode
896   *	@filp: the file
897   *
898   *	Increments the channel buffer refcount.
899   */
900  static int relay_file_open(struct inode *inode, struct file *filp)
901  {
902  	struct rchan_buf *buf = inode->i_private;
903  	kref_get(&buf->kref);
904  	filp->private_data = buf;
905  
906  	return nonseekable_open(inode, filp);
907  }
908  
909  /**
910   *	relay_file_mmap - mmap file op for relay files
911   *	@filp: the file
912   *	@vma: the vma describing what to map
913   *
914   *	Calls upon relay_mmap_buf() to map the file into user space.
915   */
916  static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
917  {
918  	struct rchan_buf *buf = filp->private_data;
919  	return relay_mmap_buf(buf, vma);
920  }
921  
922  /**
923   *	relay_file_poll - poll file op for relay files
924   *	@filp: the file
925   *	@wait: poll table
926   *
927   *	Poll implemention.
928   */
929  static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
930  {
931  	__poll_t mask = 0;
932  	struct rchan_buf *buf = filp->private_data;
933  
934  	if (buf->finalized)
935  		return EPOLLERR;
936  
937  	if (filp->f_mode & FMODE_READ) {
938  		poll_wait(filp, &buf->read_wait, wait);
939  		if (!relay_buf_empty(buf))
940  			mask |= EPOLLIN | EPOLLRDNORM;
941  	}
942  
943  	return mask;
944  }
945  
946  /**
947   *	relay_file_release - release file op for relay files
948   *	@inode: the inode
949   *	@filp: the file
950   *
951   *	Decrements the channel refcount, as the filesystem is
952   *	no longer using it.
953   */
954  static int relay_file_release(struct inode *inode, struct file *filp)
955  {
956  	struct rchan_buf *buf = filp->private_data;
957  	kref_put(&buf->kref, relay_remove_buf);
958  
959  	return 0;
960  }
961  
962  /*
963   *	relay_file_read_consume - update the consumed count for the buffer
964   */
965  static void relay_file_read_consume(struct rchan_buf *buf,
966  				    size_t read_pos,
967  				    size_t bytes_consumed)
968  {
969  	size_t subbuf_size = buf->chan->subbuf_size;
970  	size_t n_subbufs = buf->chan->n_subbufs;
971  	size_t read_subbuf;
972  
973  	if (buf->subbufs_produced == buf->subbufs_consumed &&
974  	    buf->offset == buf->bytes_consumed)
975  		return;
976  
977  	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
978  		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
979  		buf->bytes_consumed = 0;
980  	}
981  
982  	buf->bytes_consumed += bytes_consumed;
983  	if (!read_pos)
984  		read_subbuf = buf->subbufs_consumed % n_subbufs;
985  	else
986  		read_subbuf = read_pos / buf->chan->subbuf_size;
987  	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
988  		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
989  		    (buf->offset == subbuf_size))
990  			return;
991  		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
992  		buf->bytes_consumed = 0;
993  	}
994  }
995  
996  /*
997   *	relay_file_read_avail - boolean, are there unconsumed bytes available?
998   */
999  static int relay_file_read_avail(struct rchan_buf *buf)
1000  {
1001  	size_t subbuf_size = buf->chan->subbuf_size;
1002  	size_t n_subbufs = buf->chan->n_subbufs;
1003  	size_t produced = buf->subbufs_produced;
1004  	size_t consumed = buf->subbufs_consumed;
1005  
1006  	relay_file_read_consume(buf, 0, 0);
1007  
1008  	consumed = buf->subbufs_consumed;
1009  
1010  	if (unlikely(buf->offset > subbuf_size)) {
1011  		if (produced == consumed)
1012  			return 0;
1013  		return 1;
1014  	}
1015  
1016  	if (unlikely(produced - consumed >= n_subbufs)) {
1017  		consumed = produced - n_subbufs + 1;
1018  		buf->subbufs_consumed = consumed;
1019  		buf->bytes_consumed = 0;
1020  	}
1021  
1022  	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1023  	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1024  
1025  	if (consumed > produced)
1026  		produced += n_subbufs * subbuf_size;
1027  
1028  	if (consumed == produced) {
1029  		if (buf->offset == subbuf_size &&
1030  		    buf->subbufs_produced > buf->subbufs_consumed)
1031  			return 1;
1032  		return 0;
1033  	}
1034  
1035  	return 1;
1036  }
1037  
1038  /**
1039   *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1040   *	@read_pos: file read position
1041   *	@buf: relay channel buffer
1042   */
1043  static size_t relay_file_read_subbuf_avail(size_t read_pos,
1044  					   struct rchan_buf *buf)
1045  {
1046  	size_t padding, avail = 0;
1047  	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1048  	size_t subbuf_size = buf->chan->subbuf_size;
1049  
1050  	write_subbuf = (buf->data - buf->start) / subbuf_size;
1051  	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1052  	read_subbuf = read_pos / subbuf_size;
1053  	read_offset = read_pos % subbuf_size;
1054  	padding = buf->padding[read_subbuf];
1055  
1056  	if (read_subbuf == write_subbuf) {
1057  		if (read_offset + padding < write_offset)
1058  			avail = write_offset - (read_offset + padding);
1059  	} else
1060  		avail = (subbuf_size - padding) - read_offset;
1061  
1062  	return avail;
1063  }
1064  
1065  /**
1066   *	relay_file_read_start_pos - find the first available byte to read
1067   *	@buf: relay channel buffer
1068   *
1069   *	If the read_pos is in the middle of padding, return the
1070   *	position of the first actually available byte, otherwise
1071   *	return the original value.
1072   */
1073  static size_t relay_file_read_start_pos(struct rchan_buf *buf)
1074  {
1075  	size_t read_subbuf, padding, padding_start, padding_end;
1076  	size_t subbuf_size = buf->chan->subbuf_size;
1077  	size_t n_subbufs = buf->chan->n_subbufs;
1078  	size_t consumed = buf->subbufs_consumed % n_subbufs;
1079  	size_t read_pos = consumed * subbuf_size + buf->bytes_consumed;
1080  
1081  	read_subbuf = read_pos / subbuf_size;
1082  	padding = buf->padding[read_subbuf];
1083  	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1084  	padding_end = (read_subbuf + 1) * subbuf_size;
1085  	if (read_pos >= padding_start && read_pos < padding_end) {
1086  		read_subbuf = (read_subbuf + 1) % n_subbufs;
1087  		read_pos = read_subbuf * subbuf_size;
1088  	}
1089  
1090  	return read_pos;
1091  }
1092  
1093  /**
1094   *	relay_file_read_end_pos - return the new read position
1095   *	@read_pos: file read position
1096   *	@buf: relay channel buffer
1097   *	@count: number of bytes to be read
1098   */
1099  static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1100  				      size_t read_pos,
1101  				      size_t count)
1102  {
1103  	size_t read_subbuf, padding, end_pos;
1104  	size_t subbuf_size = buf->chan->subbuf_size;
1105  	size_t n_subbufs = buf->chan->n_subbufs;
1106  
1107  	read_subbuf = read_pos / subbuf_size;
1108  	padding = buf->padding[read_subbuf];
1109  	if (read_pos % subbuf_size + count + padding == subbuf_size)
1110  		end_pos = (read_subbuf + 1) * subbuf_size;
1111  	else
1112  		end_pos = read_pos + count;
1113  	if (end_pos >= subbuf_size * n_subbufs)
1114  		end_pos = 0;
1115  
1116  	return end_pos;
1117  }
1118  
1119  static ssize_t relay_file_read(struct file *filp,
1120  			       char __user *buffer,
1121  			       size_t count,
1122  			       loff_t *ppos)
1123  {
1124  	struct rchan_buf *buf = filp->private_data;
1125  	size_t read_start, avail;
1126  	size_t written = 0;
1127  	int ret;
1128  
1129  	if (!count)
1130  		return 0;
1131  
1132  	inode_lock(file_inode(filp));
1133  	do {
1134  		void *from;
1135  
1136  		if (!relay_file_read_avail(buf))
1137  			break;
1138  
1139  		read_start = relay_file_read_start_pos(buf);
1140  		avail = relay_file_read_subbuf_avail(read_start, buf);
1141  		if (!avail)
1142  			break;
1143  
1144  		avail = min(count, avail);
1145  		from = buf->start + read_start;
1146  		ret = avail;
1147  		if (copy_to_user(buffer, from, avail))
1148  			break;
1149  
1150  		buffer += ret;
1151  		written += ret;
1152  		count -= ret;
1153  
1154  		relay_file_read_consume(buf, read_start, ret);
1155  		*ppos = relay_file_read_end_pos(buf, read_start, ret);
1156  	} while (count);
1157  	inode_unlock(file_inode(filp));
1158  
1159  	return written;
1160  }
1161  
1162  static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1163  {
1164  	rbuf->bytes_consumed += bytes_consumed;
1165  
1166  	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1167  		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1168  		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1169  	}
1170  }
1171  
1172  static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1173  				   struct pipe_buffer *buf)
1174  {
1175  	struct rchan_buf *rbuf;
1176  
1177  	rbuf = (struct rchan_buf *)page_private(buf->page);
1178  	relay_consume_bytes(rbuf, buf->private);
1179  }
1180  
1181  static const struct pipe_buf_operations relay_pipe_buf_ops = {
1182  	.release	= relay_pipe_buf_release,
1183  	.try_steal	= generic_pipe_buf_try_steal,
1184  	.get		= generic_pipe_buf_get,
1185  };
1186  
1187  static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1188  {
1189  }
1190  
1191  /*
1192   *	subbuf_splice_actor - splice up to one subbuf's worth of data
1193   */
1194  static ssize_t subbuf_splice_actor(struct file *in,
1195  			       loff_t *ppos,
1196  			       struct pipe_inode_info *pipe,
1197  			       size_t len,
1198  			       unsigned int flags,
1199  			       int *nonpad_ret)
1200  {
1201  	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1202  	struct rchan_buf *rbuf = in->private_data;
1203  	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1204  	uint64_t pos = (uint64_t) *ppos;
1205  	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1206  	size_t read_start = (size_t) do_div(pos, alloc_size);
1207  	size_t read_subbuf = read_start / subbuf_size;
1208  	size_t padding = rbuf->padding[read_subbuf];
1209  	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1210  	struct page *pages[PIPE_DEF_BUFFERS];
1211  	struct partial_page partial[PIPE_DEF_BUFFERS];
1212  	struct splice_pipe_desc spd = {
1213  		.pages = pages,
1214  		.nr_pages = 0,
1215  		.nr_pages_max = PIPE_DEF_BUFFERS,
1216  		.partial = partial,
1217  		.ops = &relay_pipe_buf_ops,
1218  		.spd_release = relay_page_release,
1219  	};
1220  	ssize_t ret;
1221  
1222  	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1223  		return 0;
1224  	if (splice_grow_spd(pipe, &spd))
1225  		return -ENOMEM;
1226  
1227  	/*
1228  	 * Adjust read len, if longer than what is available
1229  	 */
1230  	if (len > (subbuf_size - read_start % subbuf_size))
1231  		len = subbuf_size - read_start % subbuf_size;
1232  
1233  	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1234  	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1235  	poff = read_start & ~PAGE_MASK;
1236  	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1237  
1238  	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1239  		unsigned int this_len, this_end, private;
1240  		unsigned int cur_pos = read_start + total_len;
1241  
1242  		if (!len)
1243  			break;
1244  
1245  		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1246  		private = this_len;
1247  
1248  		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1249  		spd.partial[spd.nr_pages].offset = poff;
1250  
1251  		this_end = cur_pos + this_len;
1252  		if (this_end >= nonpad_end) {
1253  			this_len = nonpad_end - cur_pos;
1254  			private = this_len + padding;
1255  		}
1256  		spd.partial[spd.nr_pages].len = this_len;
1257  		spd.partial[spd.nr_pages].private = private;
1258  
1259  		len -= this_len;
1260  		total_len += this_len;
1261  		poff = 0;
1262  		pidx = (pidx + 1) % subbuf_pages;
1263  
1264  		if (this_end >= nonpad_end) {
1265  			spd.nr_pages++;
1266  			break;
1267  		}
1268  	}
1269  
1270  	ret = 0;
1271  	if (!spd.nr_pages)
1272  		goto out;
1273  
1274  	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1275  	if (ret < 0 || ret < total_len)
1276  		goto out;
1277  
1278          if (read_start + ret == nonpad_end)
1279                  ret += padding;
1280  
1281  out:
1282  	splice_shrink_spd(&spd);
1283  	return ret;
1284  }
1285  
1286  static ssize_t relay_file_splice_read(struct file *in,
1287  				      loff_t *ppos,
1288  				      struct pipe_inode_info *pipe,
1289  				      size_t len,
1290  				      unsigned int flags)
1291  {
1292  	ssize_t spliced;
1293  	int ret;
1294  	int nonpad_ret = 0;
1295  
1296  	ret = 0;
1297  	spliced = 0;
1298  
1299  	while (len && !spliced) {
1300  		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1301  		if (ret < 0)
1302  			break;
1303  		else if (!ret) {
1304  			if (flags & SPLICE_F_NONBLOCK)
1305  				ret = -EAGAIN;
1306  			break;
1307  		}
1308  
1309  		*ppos += ret;
1310  		if (ret > len)
1311  			len = 0;
1312  		else
1313  			len -= ret;
1314  		spliced += nonpad_ret;
1315  		nonpad_ret = 0;
1316  	}
1317  
1318  	if (spliced)
1319  		return spliced;
1320  
1321  	return ret;
1322  }
1323  
1324  const struct file_operations relay_file_operations = {
1325  	.open		= relay_file_open,
1326  	.poll		= relay_file_poll,
1327  	.mmap		= relay_file_mmap,
1328  	.read		= relay_file_read,
1329  	.llseek		= no_llseek,
1330  	.release	= relay_file_release,
1331  	.splice_read	= relay_file_splice_read,
1332  };
1333  EXPORT_SYMBOL_GPL(relay_file_operations);
1334