xref: /openbmc/linux/kernel/relay.c (revision c21b37f6)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relayfs.txt for an overview of relayfs.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * nopage() vm_op implementation for relay file mapping.
41  */
42 static struct page *relay_buf_nopage(struct vm_area_struct *vma,
43 				     unsigned long address,
44 				     int *type)
45 {
46 	struct page *page;
47 	struct rchan_buf *buf = vma->vm_private_data;
48 	unsigned long offset = address - vma->vm_start;
49 
50 	if (address > vma->vm_end)
51 		return NOPAGE_SIGBUS; /* Disallow mremap */
52 	if (!buf)
53 		return NOPAGE_OOM;
54 
55 	page = vmalloc_to_page(buf->start + offset);
56 	if (!page)
57 		return NOPAGE_OOM;
58 	get_page(page);
59 
60 	if (type)
61 		*type = VM_FAULT_MINOR;
62 
63 	return page;
64 }
65 
66 /*
67  * vm_ops for relay file mappings.
68  */
69 static struct vm_operations_struct relay_file_mmap_ops = {
70 	.nopage = relay_buf_nopage,
71 	.close = relay_file_mmap_close,
72 };
73 
74 /**
75  *	relay_mmap_buf: - mmap channel buffer to process address space
76  *	@buf: relay channel buffer
77  *	@vma: vm_area_struct describing memory to be mapped
78  *
79  *	Returns 0 if ok, negative on error
80  *
81  *	Caller should already have grabbed mmap_sem.
82  */
83 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
84 {
85 	unsigned long length = vma->vm_end - vma->vm_start;
86 	struct file *filp = vma->vm_file;
87 
88 	if (!buf)
89 		return -EBADF;
90 
91 	if (length != (unsigned long)buf->chan->alloc_size)
92 		return -EINVAL;
93 
94 	vma->vm_ops = &relay_file_mmap_ops;
95 	vma->vm_private_data = buf;
96 	buf->chan->cb->buf_mapped(buf, filp);
97 
98 	return 0;
99 }
100 
101 /**
102  *	relay_alloc_buf - allocate a channel buffer
103  *	@buf: the buffer struct
104  *	@size: total size of the buffer
105  *
106  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
107  *	passed in size will get page aligned, if it isn't already.
108  */
109 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
110 {
111 	void *mem;
112 	unsigned int i, j, n_pages;
113 
114 	*size = PAGE_ALIGN(*size);
115 	n_pages = *size >> PAGE_SHIFT;
116 
117 	buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
118 	if (!buf->page_array)
119 		return NULL;
120 
121 	for (i = 0; i < n_pages; i++) {
122 		buf->page_array[i] = alloc_page(GFP_KERNEL);
123 		if (unlikely(!buf->page_array[i]))
124 			goto depopulate;
125 		set_page_private(buf->page_array[i], (unsigned long)buf);
126 	}
127 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
128 	if (!mem)
129 		goto depopulate;
130 
131 	memset(mem, 0, *size);
132 	buf->page_count = n_pages;
133 	return mem;
134 
135 depopulate:
136 	for (j = 0; j < i; j++)
137 		__free_page(buf->page_array[j]);
138 	kfree(buf->page_array);
139 	return NULL;
140 }
141 
142 /**
143  *	relay_create_buf - allocate and initialize a channel buffer
144  *	@chan: the relay channel
145  *
146  *	Returns channel buffer if successful, %NULL otherwise.
147  */
148 static struct rchan_buf *relay_create_buf(struct rchan *chan)
149 {
150 	struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
151 	if (!buf)
152 		return NULL;
153 
154 	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
155 	if (!buf->padding)
156 		goto free_buf;
157 
158 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
159 	if (!buf->start)
160 		goto free_buf;
161 
162 	buf->chan = chan;
163 	kref_get(&buf->chan->kref);
164 	return buf;
165 
166 free_buf:
167 	kfree(buf->padding);
168 	kfree(buf);
169 	return NULL;
170 }
171 
172 /**
173  *	relay_destroy_channel - free the channel struct
174  *	@kref: target kernel reference that contains the relay channel
175  *
176  *	Should only be called from kref_put().
177  */
178 static void relay_destroy_channel(struct kref *kref)
179 {
180 	struct rchan *chan = container_of(kref, struct rchan, kref);
181 	kfree(chan);
182 }
183 
184 /**
185  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
186  *	@buf: the buffer struct
187  */
188 static void relay_destroy_buf(struct rchan_buf *buf)
189 {
190 	struct rchan *chan = buf->chan;
191 	unsigned int i;
192 
193 	if (likely(buf->start)) {
194 		vunmap(buf->start);
195 		for (i = 0; i < buf->page_count; i++)
196 			__free_page(buf->page_array[i]);
197 		kfree(buf->page_array);
198 	}
199 	chan->buf[buf->cpu] = NULL;
200 	kfree(buf->padding);
201 	kfree(buf);
202 	kref_put(&chan->kref, relay_destroy_channel);
203 }
204 
205 /**
206  *	relay_remove_buf - remove a channel buffer
207  *	@kref: target kernel reference that contains the relay buffer
208  *
209  *	Removes the file from the fileystem, which also frees the
210  *	rchan_buf_struct and the channel buffer.  Should only be called from
211  *	kref_put().
212  */
213 static void relay_remove_buf(struct kref *kref)
214 {
215 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
216 	buf->chan->cb->remove_buf_file(buf->dentry);
217 	relay_destroy_buf(buf);
218 }
219 
220 /**
221  *	relay_buf_empty - boolean, is the channel buffer empty?
222  *	@buf: channel buffer
223  *
224  *	Returns 1 if the buffer is empty, 0 otherwise.
225  */
226 static int relay_buf_empty(struct rchan_buf *buf)
227 {
228 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
229 }
230 
231 /**
232  *	relay_buf_full - boolean, is the channel buffer full?
233  *	@buf: channel buffer
234  *
235  *	Returns 1 if the buffer is full, 0 otherwise.
236  */
237 int relay_buf_full(struct rchan_buf *buf)
238 {
239 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
240 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
241 }
242 EXPORT_SYMBOL_GPL(relay_buf_full);
243 
244 /*
245  * High-level relay kernel API and associated functions.
246  */
247 
248 /*
249  * rchan_callback implementations defining default channel behavior.  Used
250  * in place of corresponding NULL values in client callback struct.
251  */
252 
253 /*
254  * subbuf_start() default callback.  Does nothing.
255  */
256 static int subbuf_start_default_callback (struct rchan_buf *buf,
257 					  void *subbuf,
258 					  void *prev_subbuf,
259 					  size_t prev_padding)
260 {
261 	if (relay_buf_full(buf))
262 		return 0;
263 
264 	return 1;
265 }
266 
267 /*
268  * buf_mapped() default callback.  Does nothing.
269  */
270 static void buf_mapped_default_callback(struct rchan_buf *buf,
271 					struct file *filp)
272 {
273 }
274 
275 /*
276  * buf_unmapped() default callback.  Does nothing.
277  */
278 static void buf_unmapped_default_callback(struct rchan_buf *buf,
279 					  struct file *filp)
280 {
281 }
282 
283 /*
284  * create_buf_file_create() default callback.  Does nothing.
285  */
286 static struct dentry *create_buf_file_default_callback(const char *filename,
287 						       struct dentry *parent,
288 						       int mode,
289 						       struct rchan_buf *buf,
290 						       int *is_global)
291 {
292 	return NULL;
293 }
294 
295 /*
296  * remove_buf_file() default callback.  Does nothing.
297  */
298 static int remove_buf_file_default_callback(struct dentry *dentry)
299 {
300 	return -EINVAL;
301 }
302 
303 /* relay channel default callbacks */
304 static struct rchan_callbacks default_channel_callbacks = {
305 	.subbuf_start = subbuf_start_default_callback,
306 	.buf_mapped = buf_mapped_default_callback,
307 	.buf_unmapped = buf_unmapped_default_callback,
308 	.create_buf_file = create_buf_file_default_callback,
309 	.remove_buf_file = remove_buf_file_default_callback,
310 };
311 
312 /**
313  *	wakeup_readers - wake up readers waiting on a channel
314  *	@data: contains the channel buffer
315  *
316  *	This is the timer function used to defer reader waking.
317  */
318 static void wakeup_readers(unsigned long data)
319 {
320 	struct rchan_buf *buf = (struct rchan_buf *)data;
321 	wake_up_interruptible(&buf->read_wait);
322 }
323 
324 /**
325  *	__relay_reset - reset a channel buffer
326  *	@buf: the channel buffer
327  *	@init: 1 if this is a first-time initialization
328  *
329  *	See relay_reset() for description of effect.
330  */
331 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
332 {
333 	size_t i;
334 
335 	if (init) {
336 		init_waitqueue_head(&buf->read_wait);
337 		kref_init(&buf->kref);
338 		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
339 	} else
340 		del_timer_sync(&buf->timer);
341 
342 	buf->subbufs_produced = 0;
343 	buf->subbufs_consumed = 0;
344 	buf->bytes_consumed = 0;
345 	buf->finalized = 0;
346 	buf->data = buf->start;
347 	buf->offset = 0;
348 
349 	for (i = 0; i < buf->chan->n_subbufs; i++)
350 		buf->padding[i] = 0;
351 
352 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
353 }
354 
355 /**
356  *	relay_reset - reset the channel
357  *	@chan: the channel
358  *
359  *	This has the effect of erasing all data from all channel buffers
360  *	and restarting the channel in its initial state.  The buffers
361  *	are not freed, so any mappings are still in effect.
362  *
363  *	NOTE. Care should be taken that the channel isn't actually
364  *	being used by anything when this call is made.
365  */
366 void relay_reset(struct rchan *chan)
367 {
368 	unsigned int i;
369 
370 	if (!chan)
371 		return;
372 
373  	if (chan->is_global && chan->buf[0]) {
374 		__relay_reset(chan->buf[0], 0);
375 		return;
376 	}
377 
378 	mutex_lock(&relay_channels_mutex);
379 	for_each_online_cpu(i)
380 		if (chan->buf[i])
381 			__relay_reset(chan->buf[i], 0);
382 	mutex_unlock(&relay_channels_mutex);
383 }
384 EXPORT_SYMBOL_GPL(relay_reset);
385 
386 /*
387  *	relay_open_buf - create a new relay channel buffer
388  *
389  *	used by relay_open() and CPU hotplug.
390  */
391 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
392 {
393  	struct rchan_buf *buf = NULL;
394 	struct dentry *dentry;
395  	char *tmpname;
396 
397  	if (chan->is_global)
398 		return chan->buf[0];
399 
400 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
401  	if (!tmpname)
402  		goto end;
403  	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
404 
405 	buf = relay_create_buf(chan);
406 	if (!buf)
407  		goto free_name;
408 
409  	buf->cpu = cpu;
410  	__relay_reset(buf, 1);
411 
412 	/* Create file in fs */
413  	dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
414  					   buf, &chan->is_global);
415  	if (!dentry)
416  		goto free_buf;
417 
418 	buf->dentry = dentry;
419 
420  	if(chan->is_global) {
421  		chan->buf[0] = buf;
422  		buf->cpu = 0;
423   	}
424 
425  	goto free_name;
426 
427 free_buf:
428  	relay_destroy_buf(buf);
429 free_name:
430  	kfree(tmpname);
431 end:
432 	return buf;
433 }
434 
435 /**
436  *	relay_close_buf - close a channel buffer
437  *	@buf: channel buffer
438  *
439  *	Marks the buffer finalized and restores the default callbacks.
440  *	The channel buffer and channel buffer data structure are then freed
441  *	automatically when the last reference is given up.
442  */
443 static void relay_close_buf(struct rchan_buf *buf)
444 {
445 	buf->finalized = 1;
446 	del_timer_sync(&buf->timer);
447 	kref_put(&buf->kref, relay_remove_buf);
448 }
449 
450 static void setup_callbacks(struct rchan *chan,
451 				   struct rchan_callbacks *cb)
452 {
453 	if (!cb) {
454 		chan->cb = &default_channel_callbacks;
455 		return;
456 	}
457 
458 	if (!cb->subbuf_start)
459 		cb->subbuf_start = subbuf_start_default_callback;
460 	if (!cb->buf_mapped)
461 		cb->buf_mapped = buf_mapped_default_callback;
462 	if (!cb->buf_unmapped)
463 		cb->buf_unmapped = buf_unmapped_default_callback;
464 	if (!cb->create_buf_file)
465 		cb->create_buf_file = create_buf_file_default_callback;
466 	if (!cb->remove_buf_file)
467 		cb->remove_buf_file = remove_buf_file_default_callback;
468 	chan->cb = cb;
469 }
470 
471 /**
472  * 	relay_hotcpu_callback - CPU hotplug callback
473  * 	@nb: notifier block
474  * 	@action: hotplug action to take
475  * 	@hcpu: CPU number
476  *
477  * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
478  */
479 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
480 				unsigned long action,
481 				void *hcpu)
482 {
483 	unsigned int hotcpu = (unsigned long)hcpu;
484 	struct rchan *chan;
485 
486 	switch(action) {
487 	case CPU_UP_PREPARE:
488 	case CPU_UP_PREPARE_FROZEN:
489 		mutex_lock(&relay_channels_mutex);
490 		list_for_each_entry(chan, &relay_channels, list) {
491 			if (chan->buf[hotcpu])
492 				continue;
493 			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
494 			if(!chan->buf[hotcpu]) {
495 				printk(KERN_ERR
496 					"relay_hotcpu_callback: cpu %d buffer "
497 					"creation failed\n", hotcpu);
498 				mutex_unlock(&relay_channels_mutex);
499 				return NOTIFY_BAD;
500 			}
501 		}
502 		mutex_unlock(&relay_channels_mutex);
503 		break;
504 	case CPU_DEAD:
505 	case CPU_DEAD_FROZEN:
506 		/* No need to flush the cpu : will be flushed upon
507 		 * final relay_flush() call. */
508 		break;
509 	}
510 	return NOTIFY_OK;
511 }
512 
513 /**
514  *	relay_open - create a new relay channel
515  *	@base_filename: base name of files to create
516  *	@parent: dentry of parent directory, %NULL for root directory
517  *	@subbuf_size: size of sub-buffers
518  *	@n_subbufs: number of sub-buffers
519  *	@cb: client callback functions
520  *	@private_data: user-defined data
521  *
522  *	Returns channel pointer if successful, %NULL otherwise.
523  *
524  *	Creates a channel buffer for each cpu using the sizes and
525  *	attributes specified.  The created channel buffer files
526  *	will be named base_filename0...base_filenameN-1.  File
527  *	permissions will be %S_IRUSR.
528  */
529 struct rchan *relay_open(const char *base_filename,
530 			 struct dentry *parent,
531 			 size_t subbuf_size,
532 			 size_t n_subbufs,
533 			 struct rchan_callbacks *cb,
534 			 void *private_data)
535 {
536 	unsigned int i;
537 	struct rchan *chan;
538 	if (!base_filename)
539 		return NULL;
540 
541 	if (!(subbuf_size && n_subbufs))
542 		return NULL;
543 
544 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
545 	if (!chan)
546 		return NULL;
547 
548 	chan->version = RELAYFS_CHANNEL_VERSION;
549 	chan->n_subbufs = n_subbufs;
550 	chan->subbuf_size = subbuf_size;
551 	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
552 	chan->parent = parent;
553 	chan->private_data = private_data;
554 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
555 	setup_callbacks(chan, cb);
556 	kref_init(&chan->kref);
557 
558 	mutex_lock(&relay_channels_mutex);
559 	for_each_online_cpu(i) {
560 		chan->buf[i] = relay_open_buf(chan, i);
561 		if (!chan->buf[i])
562 			goto free_bufs;
563 	}
564 	list_add(&chan->list, &relay_channels);
565 	mutex_unlock(&relay_channels_mutex);
566 
567 	return chan;
568 
569 free_bufs:
570 	for_each_online_cpu(i) {
571 		if (!chan->buf[i])
572 			break;
573 		relay_close_buf(chan->buf[i]);
574 	}
575 
576 	kref_put(&chan->kref, relay_destroy_channel);
577 	mutex_unlock(&relay_channels_mutex);
578 	return NULL;
579 }
580 EXPORT_SYMBOL_GPL(relay_open);
581 
582 /**
583  *	relay_switch_subbuf - switch to a new sub-buffer
584  *	@buf: channel buffer
585  *	@length: size of current event
586  *
587  *	Returns either the length passed in or 0 if full.
588  *
589  *	Performs sub-buffer-switch tasks such as invoking callbacks,
590  *	updating padding counts, waking up readers, etc.
591  */
592 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
593 {
594 	void *old, *new;
595 	size_t old_subbuf, new_subbuf;
596 
597 	if (unlikely(length > buf->chan->subbuf_size))
598 		goto toobig;
599 
600 	if (buf->offset != buf->chan->subbuf_size + 1) {
601 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
602 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
603 		buf->padding[old_subbuf] = buf->prev_padding;
604 		buf->subbufs_produced++;
605 		buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
606 			buf->padding[old_subbuf];
607 		smp_mb();
608 		if (waitqueue_active(&buf->read_wait))
609 			/*
610 			 * Calling wake_up_interruptible() from here
611 			 * will deadlock if we happen to be logging
612 			 * from the scheduler (trying to re-grab
613 			 * rq->lock), so defer it.
614 			 */
615 			__mod_timer(&buf->timer, jiffies + 1);
616 	}
617 
618 	old = buf->data;
619 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
620 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
621 	buf->offset = 0;
622 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
623 		buf->offset = buf->chan->subbuf_size + 1;
624 		return 0;
625 	}
626 	buf->data = new;
627 	buf->padding[new_subbuf] = 0;
628 
629 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
630 		goto toobig;
631 
632 	return length;
633 
634 toobig:
635 	buf->chan->last_toobig = length;
636 	return 0;
637 }
638 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
639 
640 /**
641  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
642  *	@chan: the channel
643  *	@cpu: the cpu associated with the channel buffer to update
644  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
645  *
646  *	Adds to the channel buffer's consumed sub-buffer count.
647  *	subbufs_consumed should be the number of sub-buffers newly consumed,
648  *	not the total consumed.
649  *
650  *	NOTE. Kernel clients don't need to call this function if the channel
651  *	mode is 'overwrite'.
652  */
653 void relay_subbufs_consumed(struct rchan *chan,
654 			    unsigned int cpu,
655 			    size_t subbufs_consumed)
656 {
657 	struct rchan_buf *buf;
658 
659 	if (!chan)
660 		return;
661 
662 	if (cpu >= NR_CPUS || !chan->buf[cpu])
663 		return;
664 
665 	buf = chan->buf[cpu];
666 	buf->subbufs_consumed += subbufs_consumed;
667 	if (buf->subbufs_consumed > buf->subbufs_produced)
668 		buf->subbufs_consumed = buf->subbufs_produced;
669 }
670 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
671 
672 /**
673  *	relay_close - close the channel
674  *	@chan: the channel
675  *
676  *	Closes all channel buffers and frees the channel.
677  */
678 void relay_close(struct rchan *chan)
679 {
680 	unsigned int i;
681 
682 	if (!chan)
683 		return;
684 
685 	mutex_lock(&relay_channels_mutex);
686 	if (chan->is_global && chan->buf[0])
687 		relay_close_buf(chan->buf[0]);
688 	else
689 		for_each_possible_cpu(i)
690 			if (chan->buf[i])
691 				relay_close_buf(chan->buf[i]);
692 
693 	if (chan->last_toobig)
694 		printk(KERN_WARNING "relay: one or more items not logged "
695 		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
696 		       chan->last_toobig, chan->subbuf_size);
697 
698 	list_del(&chan->list);
699 	kref_put(&chan->kref, relay_destroy_channel);
700 	mutex_unlock(&relay_channels_mutex);
701 }
702 EXPORT_SYMBOL_GPL(relay_close);
703 
704 /**
705  *	relay_flush - close the channel
706  *	@chan: the channel
707  *
708  *	Flushes all channel buffers, i.e. forces buffer switch.
709  */
710 void relay_flush(struct rchan *chan)
711 {
712 	unsigned int i;
713 
714 	if (!chan)
715 		return;
716 
717 	if (chan->is_global && chan->buf[0]) {
718 		relay_switch_subbuf(chan->buf[0], 0);
719 		return;
720 	}
721 
722 	mutex_lock(&relay_channels_mutex);
723 	for_each_possible_cpu(i)
724 		if (chan->buf[i])
725 			relay_switch_subbuf(chan->buf[i], 0);
726 	mutex_unlock(&relay_channels_mutex);
727 }
728 EXPORT_SYMBOL_GPL(relay_flush);
729 
730 /**
731  *	relay_file_open - open file op for relay files
732  *	@inode: the inode
733  *	@filp: the file
734  *
735  *	Increments the channel buffer refcount.
736  */
737 static int relay_file_open(struct inode *inode, struct file *filp)
738 {
739 	struct rchan_buf *buf = inode->i_private;
740 	kref_get(&buf->kref);
741 	filp->private_data = buf;
742 
743 	return 0;
744 }
745 
746 /**
747  *	relay_file_mmap - mmap file op for relay files
748  *	@filp: the file
749  *	@vma: the vma describing what to map
750  *
751  *	Calls upon relay_mmap_buf() to map the file into user space.
752  */
753 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
754 {
755 	struct rchan_buf *buf = filp->private_data;
756 	return relay_mmap_buf(buf, vma);
757 }
758 
759 /**
760  *	relay_file_poll - poll file op for relay files
761  *	@filp: the file
762  *	@wait: poll table
763  *
764  *	Poll implemention.
765  */
766 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
767 {
768 	unsigned int mask = 0;
769 	struct rchan_buf *buf = filp->private_data;
770 
771 	if (buf->finalized)
772 		return POLLERR;
773 
774 	if (filp->f_mode & FMODE_READ) {
775 		poll_wait(filp, &buf->read_wait, wait);
776 		if (!relay_buf_empty(buf))
777 			mask |= POLLIN | POLLRDNORM;
778 	}
779 
780 	return mask;
781 }
782 
783 /**
784  *	relay_file_release - release file op for relay files
785  *	@inode: the inode
786  *	@filp: the file
787  *
788  *	Decrements the channel refcount, as the filesystem is
789  *	no longer using it.
790  */
791 static int relay_file_release(struct inode *inode, struct file *filp)
792 {
793 	struct rchan_buf *buf = filp->private_data;
794 	kref_put(&buf->kref, relay_remove_buf);
795 
796 	return 0;
797 }
798 
799 /*
800  *	relay_file_read_consume - update the consumed count for the buffer
801  */
802 static void relay_file_read_consume(struct rchan_buf *buf,
803 				    size_t read_pos,
804 				    size_t bytes_consumed)
805 {
806 	size_t subbuf_size = buf->chan->subbuf_size;
807 	size_t n_subbufs = buf->chan->n_subbufs;
808 	size_t read_subbuf;
809 
810 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
811 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
812 		buf->bytes_consumed = 0;
813 	}
814 
815 	buf->bytes_consumed += bytes_consumed;
816 	if (!read_pos)
817 		read_subbuf = buf->subbufs_consumed % n_subbufs;
818 	else
819 		read_subbuf = read_pos / buf->chan->subbuf_size;
820 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
821 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
822 		    (buf->offset == subbuf_size))
823 			return;
824 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
825 		buf->bytes_consumed = 0;
826 	}
827 }
828 
829 /*
830  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
831  */
832 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
833 {
834 	size_t subbuf_size = buf->chan->subbuf_size;
835 	size_t n_subbufs = buf->chan->n_subbufs;
836 	size_t produced = buf->subbufs_produced;
837 	size_t consumed = buf->subbufs_consumed;
838 
839 	relay_file_read_consume(buf, read_pos, 0);
840 
841 	if (unlikely(buf->offset > subbuf_size)) {
842 		if (produced == consumed)
843 			return 0;
844 		return 1;
845 	}
846 
847 	if (unlikely(produced - consumed >= n_subbufs)) {
848 		consumed = produced - n_subbufs + 1;
849 		buf->subbufs_consumed = consumed;
850 		buf->bytes_consumed = 0;
851 	}
852 
853 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
854 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
855 
856 	if (consumed > produced)
857 		produced += n_subbufs * subbuf_size;
858 
859 	if (consumed == produced)
860 		return 0;
861 
862 	return 1;
863 }
864 
865 /**
866  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
867  *	@read_pos: file read position
868  *	@buf: relay channel buffer
869  */
870 static size_t relay_file_read_subbuf_avail(size_t read_pos,
871 					   struct rchan_buf *buf)
872 {
873 	size_t padding, avail = 0;
874 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
875 	size_t subbuf_size = buf->chan->subbuf_size;
876 
877 	write_subbuf = (buf->data - buf->start) / subbuf_size;
878 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
879 	read_subbuf = read_pos / subbuf_size;
880 	read_offset = read_pos % subbuf_size;
881 	padding = buf->padding[read_subbuf];
882 
883 	if (read_subbuf == write_subbuf) {
884 		if (read_offset + padding < write_offset)
885 			avail = write_offset - (read_offset + padding);
886 	} else
887 		avail = (subbuf_size - padding) - read_offset;
888 
889 	return avail;
890 }
891 
892 /**
893  *	relay_file_read_start_pos - find the first available byte to read
894  *	@read_pos: file read position
895  *	@buf: relay channel buffer
896  *
897  *	If the @read_pos is in the middle of padding, return the
898  *	position of the first actually available byte, otherwise
899  *	return the original value.
900  */
901 static size_t relay_file_read_start_pos(size_t read_pos,
902 					struct rchan_buf *buf)
903 {
904 	size_t read_subbuf, padding, padding_start, padding_end;
905 	size_t subbuf_size = buf->chan->subbuf_size;
906 	size_t n_subbufs = buf->chan->n_subbufs;
907 	size_t consumed = buf->subbufs_consumed % n_subbufs;
908 
909 	if (!read_pos)
910 		read_pos = consumed * subbuf_size + buf->bytes_consumed;
911 	read_subbuf = read_pos / subbuf_size;
912 	padding = buf->padding[read_subbuf];
913 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
914 	padding_end = (read_subbuf + 1) * subbuf_size;
915 	if (read_pos >= padding_start && read_pos < padding_end) {
916 		read_subbuf = (read_subbuf + 1) % n_subbufs;
917 		read_pos = read_subbuf * subbuf_size;
918 	}
919 
920 	return read_pos;
921 }
922 
923 /**
924  *	relay_file_read_end_pos - return the new read position
925  *	@read_pos: file read position
926  *	@buf: relay channel buffer
927  *	@count: number of bytes to be read
928  */
929 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
930 				      size_t read_pos,
931 				      size_t count)
932 {
933 	size_t read_subbuf, padding, end_pos;
934 	size_t subbuf_size = buf->chan->subbuf_size;
935 	size_t n_subbufs = buf->chan->n_subbufs;
936 
937 	read_subbuf = read_pos / subbuf_size;
938 	padding = buf->padding[read_subbuf];
939 	if (read_pos % subbuf_size + count + padding == subbuf_size)
940 		end_pos = (read_subbuf + 1) * subbuf_size;
941 	else
942 		end_pos = read_pos + count;
943 	if (end_pos >= subbuf_size * n_subbufs)
944 		end_pos = 0;
945 
946 	return end_pos;
947 }
948 
949 /*
950  *	subbuf_read_actor - read up to one subbuf's worth of data
951  */
952 static int subbuf_read_actor(size_t read_start,
953 			     struct rchan_buf *buf,
954 			     size_t avail,
955 			     read_descriptor_t *desc,
956 			     read_actor_t actor)
957 {
958 	void *from;
959 	int ret = 0;
960 
961 	from = buf->start + read_start;
962 	ret = avail;
963 	if (copy_to_user(desc->arg.buf, from, avail)) {
964 		desc->error = -EFAULT;
965 		ret = 0;
966 	}
967 	desc->arg.data += ret;
968 	desc->written += ret;
969 	desc->count -= ret;
970 
971 	return ret;
972 }
973 
974 typedef int (*subbuf_actor_t) (size_t read_start,
975 			       struct rchan_buf *buf,
976 			       size_t avail,
977 			       read_descriptor_t *desc,
978 			       read_actor_t actor);
979 
980 /*
981  *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
982  */
983 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
984 					subbuf_actor_t subbuf_actor,
985 					read_actor_t actor,
986 					read_descriptor_t *desc)
987 {
988 	struct rchan_buf *buf = filp->private_data;
989 	size_t read_start, avail;
990 	int ret;
991 
992 	if (!desc->count)
993 		return 0;
994 
995 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
996 	do {
997 		if (!relay_file_read_avail(buf, *ppos))
998 			break;
999 
1000 		read_start = relay_file_read_start_pos(*ppos, buf);
1001 		avail = relay_file_read_subbuf_avail(read_start, buf);
1002 		if (!avail)
1003 			break;
1004 
1005 		avail = min(desc->count, avail);
1006 		ret = subbuf_actor(read_start, buf, avail, desc, actor);
1007 		if (desc->error < 0)
1008 			break;
1009 
1010 		if (ret) {
1011 			relay_file_read_consume(buf, read_start, ret);
1012 			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1013 		}
1014 	} while (desc->count && ret);
1015 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1016 
1017 	return desc->written;
1018 }
1019 
1020 static ssize_t relay_file_read(struct file *filp,
1021 			       char __user *buffer,
1022 			       size_t count,
1023 			       loff_t *ppos)
1024 {
1025 	read_descriptor_t desc;
1026 	desc.written = 0;
1027 	desc.count = count;
1028 	desc.arg.buf = buffer;
1029 	desc.error = 0;
1030 	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1031 				       NULL, &desc);
1032 }
1033 
1034 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1035 {
1036 	rbuf->bytes_consumed += bytes_consumed;
1037 
1038 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1039 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1040 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1041 	}
1042 }
1043 
1044 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1045 				   struct pipe_buffer *buf)
1046 {
1047 	struct rchan_buf *rbuf;
1048 
1049 	rbuf = (struct rchan_buf *)page_private(buf->page);
1050 	relay_consume_bytes(rbuf, buf->private);
1051 }
1052 
1053 static struct pipe_buf_operations relay_pipe_buf_ops = {
1054 	.can_merge = 0,
1055 	.map = generic_pipe_buf_map,
1056 	.unmap = generic_pipe_buf_unmap,
1057 	.confirm = generic_pipe_buf_confirm,
1058 	.release = relay_pipe_buf_release,
1059 	.steal = generic_pipe_buf_steal,
1060 	.get = generic_pipe_buf_get,
1061 };
1062 
1063 /*
1064  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1065  */
1066 static int subbuf_splice_actor(struct file *in,
1067 			       loff_t *ppos,
1068 			       struct pipe_inode_info *pipe,
1069 			       size_t len,
1070 			       unsigned int flags,
1071 			       int *nonpad_ret)
1072 {
1073 	unsigned int pidx, poff, total_len, subbuf_pages, ret;
1074 	struct rchan_buf *rbuf = in->private_data;
1075 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1076 	uint64_t pos = (uint64_t) *ppos;
1077 	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1078 	size_t read_start = (size_t) do_div(pos, alloc_size);
1079 	size_t read_subbuf = read_start / subbuf_size;
1080 	size_t padding = rbuf->padding[read_subbuf];
1081 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1082 	struct page *pages[PIPE_BUFFERS];
1083 	struct partial_page partial[PIPE_BUFFERS];
1084 	struct splice_pipe_desc spd = {
1085 		.pages = pages,
1086 		.nr_pages = 0,
1087 		.partial = partial,
1088 		.flags = flags,
1089 		.ops = &relay_pipe_buf_ops,
1090 	};
1091 
1092 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1093 		return 0;
1094 
1095 	/*
1096 	 * Adjust read len, if longer than what is available
1097 	 */
1098 	if (len > (subbuf_size - read_start % subbuf_size))
1099 		len = subbuf_size - read_start % subbuf_size;
1100 
1101 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1102 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1103 	poff = read_start & ~PAGE_MASK;
1104 
1105 	for (total_len = 0; spd.nr_pages < subbuf_pages; spd.nr_pages++) {
1106 		unsigned int this_len, this_end, private;
1107 		unsigned int cur_pos = read_start + total_len;
1108 
1109 		if (!len)
1110 			break;
1111 
1112 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1113 		private = this_len;
1114 
1115 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1116 		spd.partial[spd.nr_pages].offset = poff;
1117 
1118 		this_end = cur_pos + this_len;
1119 		if (this_end >= nonpad_end) {
1120 			this_len = nonpad_end - cur_pos;
1121 			private = this_len + padding;
1122 		}
1123 		spd.partial[spd.nr_pages].len = this_len;
1124 		spd.partial[spd.nr_pages].private = private;
1125 
1126 		len -= this_len;
1127 		total_len += this_len;
1128 		poff = 0;
1129 		pidx = (pidx + 1) % subbuf_pages;
1130 
1131 		if (this_end >= nonpad_end) {
1132 			spd.nr_pages++;
1133 			break;
1134 		}
1135 	}
1136 
1137 	if (!spd.nr_pages)
1138 		return 0;
1139 
1140 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1141 	if (ret < 0 || ret < total_len)
1142 		return ret;
1143 
1144         if (read_start + ret == nonpad_end)
1145                 ret += padding;
1146 
1147         return ret;
1148 }
1149 
1150 static ssize_t relay_file_splice_read(struct file *in,
1151 				      loff_t *ppos,
1152 				      struct pipe_inode_info *pipe,
1153 				      size_t len,
1154 				      unsigned int flags)
1155 {
1156 	ssize_t spliced;
1157 	int ret;
1158 	int nonpad_ret = 0;
1159 
1160 	ret = 0;
1161 	spliced = 0;
1162 
1163 	while (len) {
1164 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1165 		if (ret < 0)
1166 			break;
1167 		else if (!ret) {
1168 			if (spliced)
1169 				break;
1170 			if (flags & SPLICE_F_NONBLOCK) {
1171 				ret = -EAGAIN;
1172 				break;
1173 			}
1174 		}
1175 
1176 		*ppos += ret;
1177 		if (ret > len)
1178 			len = 0;
1179 		else
1180 			len -= ret;
1181 		spliced += nonpad_ret;
1182 		nonpad_ret = 0;
1183 	}
1184 
1185 	if (spliced)
1186 		return spliced;
1187 
1188 	return ret;
1189 }
1190 
1191 const struct file_operations relay_file_operations = {
1192 	.open		= relay_file_open,
1193 	.poll		= relay_file_poll,
1194 	.mmap		= relay_file_mmap,
1195 	.read		= relay_file_read,
1196 	.llseek		= no_llseek,
1197 	.release	= relay_file_release,
1198 	.splice_read	= relay_file_splice_read,
1199 };
1200 EXPORT_SYMBOL_GPL(relay_file_operations);
1201 
1202 static __init int relay_init(void)
1203 {
1204 
1205 	hotcpu_notifier(relay_hotcpu_callback, 0);
1206 	return 0;
1207 }
1208 
1209 module_init(relay_init);
1210