1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relayfs.txt for an overview of relayfs. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * nopage() vm_op implementation for relay file mapping. 41 */ 42 static struct page *relay_buf_nopage(struct vm_area_struct *vma, 43 unsigned long address, 44 int *type) 45 { 46 struct page *page; 47 struct rchan_buf *buf = vma->vm_private_data; 48 unsigned long offset = address - vma->vm_start; 49 50 if (address > vma->vm_end) 51 return NOPAGE_SIGBUS; /* Disallow mremap */ 52 if (!buf) 53 return NOPAGE_OOM; 54 55 page = vmalloc_to_page(buf->start + offset); 56 if (!page) 57 return NOPAGE_OOM; 58 get_page(page); 59 60 if (type) 61 *type = VM_FAULT_MINOR; 62 63 return page; 64 } 65 66 /* 67 * vm_ops for relay file mappings. 68 */ 69 static struct vm_operations_struct relay_file_mmap_ops = { 70 .nopage = relay_buf_nopage, 71 .close = relay_file_mmap_close, 72 }; 73 74 /** 75 * relay_mmap_buf: - mmap channel buffer to process address space 76 * @buf: relay channel buffer 77 * @vma: vm_area_struct describing memory to be mapped 78 * 79 * Returns 0 if ok, negative on error 80 * 81 * Caller should already have grabbed mmap_sem. 82 */ 83 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 84 { 85 unsigned long length = vma->vm_end - vma->vm_start; 86 struct file *filp = vma->vm_file; 87 88 if (!buf) 89 return -EBADF; 90 91 if (length != (unsigned long)buf->chan->alloc_size) 92 return -EINVAL; 93 94 vma->vm_ops = &relay_file_mmap_ops; 95 vma->vm_private_data = buf; 96 buf->chan->cb->buf_mapped(buf, filp); 97 98 return 0; 99 } 100 101 /** 102 * relay_alloc_buf - allocate a channel buffer 103 * @buf: the buffer struct 104 * @size: total size of the buffer 105 * 106 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 107 * passed in size will get page aligned, if it isn't already. 108 */ 109 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 110 { 111 void *mem; 112 unsigned int i, j, n_pages; 113 114 *size = PAGE_ALIGN(*size); 115 n_pages = *size >> PAGE_SHIFT; 116 117 buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL); 118 if (!buf->page_array) 119 return NULL; 120 121 for (i = 0; i < n_pages; i++) { 122 buf->page_array[i] = alloc_page(GFP_KERNEL); 123 if (unlikely(!buf->page_array[i])) 124 goto depopulate; 125 set_page_private(buf->page_array[i], (unsigned long)buf); 126 } 127 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 128 if (!mem) 129 goto depopulate; 130 131 memset(mem, 0, *size); 132 buf->page_count = n_pages; 133 return mem; 134 135 depopulate: 136 for (j = 0; j < i; j++) 137 __free_page(buf->page_array[j]); 138 kfree(buf->page_array); 139 return NULL; 140 } 141 142 /** 143 * relay_create_buf - allocate and initialize a channel buffer 144 * @chan: the relay channel 145 * 146 * Returns channel buffer if successful, %NULL otherwise. 147 */ 148 static struct rchan_buf *relay_create_buf(struct rchan *chan) 149 { 150 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 151 if (!buf) 152 return NULL; 153 154 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); 155 if (!buf->padding) 156 goto free_buf; 157 158 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 159 if (!buf->start) 160 goto free_buf; 161 162 buf->chan = chan; 163 kref_get(&buf->chan->kref); 164 return buf; 165 166 free_buf: 167 kfree(buf->padding); 168 kfree(buf); 169 return NULL; 170 } 171 172 /** 173 * relay_destroy_channel - free the channel struct 174 * @kref: target kernel reference that contains the relay channel 175 * 176 * Should only be called from kref_put(). 177 */ 178 static void relay_destroy_channel(struct kref *kref) 179 { 180 struct rchan *chan = container_of(kref, struct rchan, kref); 181 kfree(chan); 182 } 183 184 /** 185 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 186 * @buf: the buffer struct 187 */ 188 static void relay_destroy_buf(struct rchan_buf *buf) 189 { 190 struct rchan *chan = buf->chan; 191 unsigned int i; 192 193 if (likely(buf->start)) { 194 vunmap(buf->start); 195 for (i = 0; i < buf->page_count; i++) 196 __free_page(buf->page_array[i]); 197 kfree(buf->page_array); 198 } 199 chan->buf[buf->cpu] = NULL; 200 kfree(buf->padding); 201 kfree(buf); 202 kref_put(&chan->kref, relay_destroy_channel); 203 } 204 205 /** 206 * relay_remove_buf - remove a channel buffer 207 * @kref: target kernel reference that contains the relay buffer 208 * 209 * Removes the file from the fileystem, which also frees the 210 * rchan_buf_struct and the channel buffer. Should only be called from 211 * kref_put(). 212 */ 213 static void relay_remove_buf(struct kref *kref) 214 { 215 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 216 buf->chan->cb->remove_buf_file(buf->dentry); 217 relay_destroy_buf(buf); 218 } 219 220 /** 221 * relay_buf_empty - boolean, is the channel buffer empty? 222 * @buf: channel buffer 223 * 224 * Returns 1 if the buffer is empty, 0 otherwise. 225 */ 226 static int relay_buf_empty(struct rchan_buf *buf) 227 { 228 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 229 } 230 231 /** 232 * relay_buf_full - boolean, is the channel buffer full? 233 * @buf: channel buffer 234 * 235 * Returns 1 if the buffer is full, 0 otherwise. 236 */ 237 int relay_buf_full(struct rchan_buf *buf) 238 { 239 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 240 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 241 } 242 EXPORT_SYMBOL_GPL(relay_buf_full); 243 244 /* 245 * High-level relay kernel API and associated functions. 246 */ 247 248 /* 249 * rchan_callback implementations defining default channel behavior. Used 250 * in place of corresponding NULL values in client callback struct. 251 */ 252 253 /* 254 * subbuf_start() default callback. Does nothing. 255 */ 256 static int subbuf_start_default_callback (struct rchan_buf *buf, 257 void *subbuf, 258 void *prev_subbuf, 259 size_t prev_padding) 260 { 261 if (relay_buf_full(buf)) 262 return 0; 263 264 return 1; 265 } 266 267 /* 268 * buf_mapped() default callback. Does nothing. 269 */ 270 static void buf_mapped_default_callback(struct rchan_buf *buf, 271 struct file *filp) 272 { 273 } 274 275 /* 276 * buf_unmapped() default callback. Does nothing. 277 */ 278 static void buf_unmapped_default_callback(struct rchan_buf *buf, 279 struct file *filp) 280 { 281 } 282 283 /* 284 * create_buf_file_create() default callback. Does nothing. 285 */ 286 static struct dentry *create_buf_file_default_callback(const char *filename, 287 struct dentry *parent, 288 int mode, 289 struct rchan_buf *buf, 290 int *is_global) 291 { 292 return NULL; 293 } 294 295 /* 296 * remove_buf_file() default callback. Does nothing. 297 */ 298 static int remove_buf_file_default_callback(struct dentry *dentry) 299 { 300 return -EINVAL; 301 } 302 303 /* relay channel default callbacks */ 304 static struct rchan_callbacks default_channel_callbacks = { 305 .subbuf_start = subbuf_start_default_callback, 306 .buf_mapped = buf_mapped_default_callback, 307 .buf_unmapped = buf_unmapped_default_callback, 308 .create_buf_file = create_buf_file_default_callback, 309 .remove_buf_file = remove_buf_file_default_callback, 310 }; 311 312 /** 313 * wakeup_readers - wake up readers waiting on a channel 314 * @data: contains the channel buffer 315 * 316 * This is the timer function used to defer reader waking. 317 */ 318 static void wakeup_readers(unsigned long data) 319 { 320 struct rchan_buf *buf = (struct rchan_buf *)data; 321 wake_up_interruptible(&buf->read_wait); 322 } 323 324 /** 325 * __relay_reset - reset a channel buffer 326 * @buf: the channel buffer 327 * @init: 1 if this is a first-time initialization 328 * 329 * See relay_reset() for description of effect. 330 */ 331 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 332 { 333 size_t i; 334 335 if (init) { 336 init_waitqueue_head(&buf->read_wait); 337 kref_init(&buf->kref); 338 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf); 339 } else 340 del_timer_sync(&buf->timer); 341 342 buf->subbufs_produced = 0; 343 buf->subbufs_consumed = 0; 344 buf->bytes_consumed = 0; 345 buf->finalized = 0; 346 buf->data = buf->start; 347 buf->offset = 0; 348 349 for (i = 0; i < buf->chan->n_subbufs; i++) 350 buf->padding[i] = 0; 351 352 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 353 } 354 355 /** 356 * relay_reset - reset the channel 357 * @chan: the channel 358 * 359 * This has the effect of erasing all data from all channel buffers 360 * and restarting the channel in its initial state. The buffers 361 * are not freed, so any mappings are still in effect. 362 * 363 * NOTE. Care should be taken that the channel isn't actually 364 * being used by anything when this call is made. 365 */ 366 void relay_reset(struct rchan *chan) 367 { 368 unsigned int i; 369 370 if (!chan) 371 return; 372 373 if (chan->is_global && chan->buf[0]) { 374 __relay_reset(chan->buf[0], 0); 375 return; 376 } 377 378 mutex_lock(&relay_channels_mutex); 379 for_each_online_cpu(i) 380 if (chan->buf[i]) 381 __relay_reset(chan->buf[i], 0); 382 mutex_unlock(&relay_channels_mutex); 383 } 384 EXPORT_SYMBOL_GPL(relay_reset); 385 386 /* 387 * relay_open_buf - create a new relay channel buffer 388 * 389 * used by relay_open() and CPU hotplug. 390 */ 391 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 392 { 393 struct rchan_buf *buf = NULL; 394 struct dentry *dentry; 395 char *tmpname; 396 397 if (chan->is_global) 398 return chan->buf[0]; 399 400 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 401 if (!tmpname) 402 goto end; 403 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 404 405 buf = relay_create_buf(chan); 406 if (!buf) 407 goto free_name; 408 409 buf->cpu = cpu; 410 __relay_reset(buf, 1); 411 412 /* Create file in fs */ 413 dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR, 414 buf, &chan->is_global); 415 if (!dentry) 416 goto free_buf; 417 418 buf->dentry = dentry; 419 420 if(chan->is_global) { 421 chan->buf[0] = buf; 422 buf->cpu = 0; 423 } 424 425 goto free_name; 426 427 free_buf: 428 relay_destroy_buf(buf); 429 free_name: 430 kfree(tmpname); 431 end: 432 return buf; 433 } 434 435 /** 436 * relay_close_buf - close a channel buffer 437 * @buf: channel buffer 438 * 439 * Marks the buffer finalized and restores the default callbacks. 440 * The channel buffer and channel buffer data structure are then freed 441 * automatically when the last reference is given up. 442 */ 443 static void relay_close_buf(struct rchan_buf *buf) 444 { 445 buf->finalized = 1; 446 del_timer_sync(&buf->timer); 447 kref_put(&buf->kref, relay_remove_buf); 448 } 449 450 static void setup_callbacks(struct rchan *chan, 451 struct rchan_callbacks *cb) 452 { 453 if (!cb) { 454 chan->cb = &default_channel_callbacks; 455 return; 456 } 457 458 if (!cb->subbuf_start) 459 cb->subbuf_start = subbuf_start_default_callback; 460 if (!cb->buf_mapped) 461 cb->buf_mapped = buf_mapped_default_callback; 462 if (!cb->buf_unmapped) 463 cb->buf_unmapped = buf_unmapped_default_callback; 464 if (!cb->create_buf_file) 465 cb->create_buf_file = create_buf_file_default_callback; 466 if (!cb->remove_buf_file) 467 cb->remove_buf_file = remove_buf_file_default_callback; 468 chan->cb = cb; 469 } 470 471 /** 472 * relay_hotcpu_callback - CPU hotplug callback 473 * @nb: notifier block 474 * @action: hotplug action to take 475 * @hcpu: CPU number 476 * 477 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD) 478 */ 479 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb, 480 unsigned long action, 481 void *hcpu) 482 { 483 unsigned int hotcpu = (unsigned long)hcpu; 484 struct rchan *chan; 485 486 switch(action) { 487 case CPU_UP_PREPARE: 488 case CPU_UP_PREPARE_FROZEN: 489 mutex_lock(&relay_channels_mutex); 490 list_for_each_entry(chan, &relay_channels, list) { 491 if (chan->buf[hotcpu]) 492 continue; 493 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu); 494 if(!chan->buf[hotcpu]) { 495 printk(KERN_ERR 496 "relay_hotcpu_callback: cpu %d buffer " 497 "creation failed\n", hotcpu); 498 mutex_unlock(&relay_channels_mutex); 499 return NOTIFY_BAD; 500 } 501 } 502 mutex_unlock(&relay_channels_mutex); 503 break; 504 case CPU_DEAD: 505 case CPU_DEAD_FROZEN: 506 /* No need to flush the cpu : will be flushed upon 507 * final relay_flush() call. */ 508 break; 509 } 510 return NOTIFY_OK; 511 } 512 513 /** 514 * relay_open - create a new relay channel 515 * @base_filename: base name of files to create 516 * @parent: dentry of parent directory, %NULL for root directory 517 * @subbuf_size: size of sub-buffers 518 * @n_subbufs: number of sub-buffers 519 * @cb: client callback functions 520 * @private_data: user-defined data 521 * 522 * Returns channel pointer if successful, %NULL otherwise. 523 * 524 * Creates a channel buffer for each cpu using the sizes and 525 * attributes specified. The created channel buffer files 526 * will be named base_filename0...base_filenameN-1. File 527 * permissions will be %S_IRUSR. 528 */ 529 struct rchan *relay_open(const char *base_filename, 530 struct dentry *parent, 531 size_t subbuf_size, 532 size_t n_subbufs, 533 struct rchan_callbacks *cb, 534 void *private_data) 535 { 536 unsigned int i; 537 struct rchan *chan; 538 if (!base_filename) 539 return NULL; 540 541 if (!(subbuf_size && n_subbufs)) 542 return NULL; 543 544 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 545 if (!chan) 546 return NULL; 547 548 chan->version = RELAYFS_CHANNEL_VERSION; 549 chan->n_subbufs = n_subbufs; 550 chan->subbuf_size = subbuf_size; 551 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs); 552 chan->parent = parent; 553 chan->private_data = private_data; 554 strlcpy(chan->base_filename, base_filename, NAME_MAX); 555 setup_callbacks(chan, cb); 556 kref_init(&chan->kref); 557 558 mutex_lock(&relay_channels_mutex); 559 for_each_online_cpu(i) { 560 chan->buf[i] = relay_open_buf(chan, i); 561 if (!chan->buf[i]) 562 goto free_bufs; 563 } 564 list_add(&chan->list, &relay_channels); 565 mutex_unlock(&relay_channels_mutex); 566 567 return chan; 568 569 free_bufs: 570 for_each_online_cpu(i) { 571 if (!chan->buf[i]) 572 break; 573 relay_close_buf(chan->buf[i]); 574 } 575 576 kref_put(&chan->kref, relay_destroy_channel); 577 mutex_unlock(&relay_channels_mutex); 578 return NULL; 579 } 580 EXPORT_SYMBOL_GPL(relay_open); 581 582 /** 583 * relay_switch_subbuf - switch to a new sub-buffer 584 * @buf: channel buffer 585 * @length: size of current event 586 * 587 * Returns either the length passed in or 0 if full. 588 * 589 * Performs sub-buffer-switch tasks such as invoking callbacks, 590 * updating padding counts, waking up readers, etc. 591 */ 592 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 593 { 594 void *old, *new; 595 size_t old_subbuf, new_subbuf; 596 597 if (unlikely(length > buf->chan->subbuf_size)) 598 goto toobig; 599 600 if (buf->offset != buf->chan->subbuf_size + 1) { 601 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 602 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 603 buf->padding[old_subbuf] = buf->prev_padding; 604 buf->subbufs_produced++; 605 buf->dentry->d_inode->i_size += buf->chan->subbuf_size - 606 buf->padding[old_subbuf]; 607 smp_mb(); 608 if (waitqueue_active(&buf->read_wait)) 609 /* 610 * Calling wake_up_interruptible() from here 611 * will deadlock if we happen to be logging 612 * from the scheduler (trying to re-grab 613 * rq->lock), so defer it. 614 */ 615 __mod_timer(&buf->timer, jiffies + 1); 616 } 617 618 old = buf->data; 619 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 620 new = buf->start + new_subbuf * buf->chan->subbuf_size; 621 buf->offset = 0; 622 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 623 buf->offset = buf->chan->subbuf_size + 1; 624 return 0; 625 } 626 buf->data = new; 627 buf->padding[new_subbuf] = 0; 628 629 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 630 goto toobig; 631 632 return length; 633 634 toobig: 635 buf->chan->last_toobig = length; 636 return 0; 637 } 638 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 639 640 /** 641 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 642 * @chan: the channel 643 * @cpu: the cpu associated with the channel buffer to update 644 * @subbufs_consumed: number of sub-buffers to add to current buf's count 645 * 646 * Adds to the channel buffer's consumed sub-buffer count. 647 * subbufs_consumed should be the number of sub-buffers newly consumed, 648 * not the total consumed. 649 * 650 * NOTE. Kernel clients don't need to call this function if the channel 651 * mode is 'overwrite'. 652 */ 653 void relay_subbufs_consumed(struct rchan *chan, 654 unsigned int cpu, 655 size_t subbufs_consumed) 656 { 657 struct rchan_buf *buf; 658 659 if (!chan) 660 return; 661 662 if (cpu >= NR_CPUS || !chan->buf[cpu]) 663 return; 664 665 buf = chan->buf[cpu]; 666 buf->subbufs_consumed += subbufs_consumed; 667 if (buf->subbufs_consumed > buf->subbufs_produced) 668 buf->subbufs_consumed = buf->subbufs_produced; 669 } 670 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 671 672 /** 673 * relay_close - close the channel 674 * @chan: the channel 675 * 676 * Closes all channel buffers and frees the channel. 677 */ 678 void relay_close(struct rchan *chan) 679 { 680 unsigned int i; 681 682 if (!chan) 683 return; 684 685 mutex_lock(&relay_channels_mutex); 686 if (chan->is_global && chan->buf[0]) 687 relay_close_buf(chan->buf[0]); 688 else 689 for_each_possible_cpu(i) 690 if (chan->buf[i]) 691 relay_close_buf(chan->buf[i]); 692 693 if (chan->last_toobig) 694 printk(KERN_WARNING "relay: one or more items not logged " 695 "[item size (%Zd) > sub-buffer size (%Zd)]\n", 696 chan->last_toobig, chan->subbuf_size); 697 698 list_del(&chan->list); 699 kref_put(&chan->kref, relay_destroy_channel); 700 mutex_unlock(&relay_channels_mutex); 701 } 702 EXPORT_SYMBOL_GPL(relay_close); 703 704 /** 705 * relay_flush - close the channel 706 * @chan: the channel 707 * 708 * Flushes all channel buffers, i.e. forces buffer switch. 709 */ 710 void relay_flush(struct rchan *chan) 711 { 712 unsigned int i; 713 714 if (!chan) 715 return; 716 717 if (chan->is_global && chan->buf[0]) { 718 relay_switch_subbuf(chan->buf[0], 0); 719 return; 720 } 721 722 mutex_lock(&relay_channels_mutex); 723 for_each_possible_cpu(i) 724 if (chan->buf[i]) 725 relay_switch_subbuf(chan->buf[i], 0); 726 mutex_unlock(&relay_channels_mutex); 727 } 728 EXPORT_SYMBOL_GPL(relay_flush); 729 730 /** 731 * relay_file_open - open file op for relay files 732 * @inode: the inode 733 * @filp: the file 734 * 735 * Increments the channel buffer refcount. 736 */ 737 static int relay_file_open(struct inode *inode, struct file *filp) 738 { 739 struct rchan_buf *buf = inode->i_private; 740 kref_get(&buf->kref); 741 filp->private_data = buf; 742 743 return 0; 744 } 745 746 /** 747 * relay_file_mmap - mmap file op for relay files 748 * @filp: the file 749 * @vma: the vma describing what to map 750 * 751 * Calls upon relay_mmap_buf() to map the file into user space. 752 */ 753 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 754 { 755 struct rchan_buf *buf = filp->private_data; 756 return relay_mmap_buf(buf, vma); 757 } 758 759 /** 760 * relay_file_poll - poll file op for relay files 761 * @filp: the file 762 * @wait: poll table 763 * 764 * Poll implemention. 765 */ 766 static unsigned int relay_file_poll(struct file *filp, poll_table *wait) 767 { 768 unsigned int mask = 0; 769 struct rchan_buf *buf = filp->private_data; 770 771 if (buf->finalized) 772 return POLLERR; 773 774 if (filp->f_mode & FMODE_READ) { 775 poll_wait(filp, &buf->read_wait, wait); 776 if (!relay_buf_empty(buf)) 777 mask |= POLLIN | POLLRDNORM; 778 } 779 780 return mask; 781 } 782 783 /** 784 * relay_file_release - release file op for relay files 785 * @inode: the inode 786 * @filp: the file 787 * 788 * Decrements the channel refcount, as the filesystem is 789 * no longer using it. 790 */ 791 static int relay_file_release(struct inode *inode, struct file *filp) 792 { 793 struct rchan_buf *buf = filp->private_data; 794 kref_put(&buf->kref, relay_remove_buf); 795 796 return 0; 797 } 798 799 /* 800 * relay_file_read_consume - update the consumed count for the buffer 801 */ 802 static void relay_file_read_consume(struct rchan_buf *buf, 803 size_t read_pos, 804 size_t bytes_consumed) 805 { 806 size_t subbuf_size = buf->chan->subbuf_size; 807 size_t n_subbufs = buf->chan->n_subbufs; 808 size_t read_subbuf; 809 810 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 811 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 812 buf->bytes_consumed = 0; 813 } 814 815 buf->bytes_consumed += bytes_consumed; 816 if (!read_pos) 817 read_subbuf = buf->subbufs_consumed % n_subbufs; 818 else 819 read_subbuf = read_pos / buf->chan->subbuf_size; 820 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 821 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 822 (buf->offset == subbuf_size)) 823 return; 824 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 825 buf->bytes_consumed = 0; 826 } 827 } 828 829 /* 830 * relay_file_read_avail - boolean, are there unconsumed bytes available? 831 */ 832 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) 833 { 834 size_t subbuf_size = buf->chan->subbuf_size; 835 size_t n_subbufs = buf->chan->n_subbufs; 836 size_t produced = buf->subbufs_produced; 837 size_t consumed = buf->subbufs_consumed; 838 839 relay_file_read_consume(buf, read_pos, 0); 840 841 if (unlikely(buf->offset > subbuf_size)) { 842 if (produced == consumed) 843 return 0; 844 return 1; 845 } 846 847 if (unlikely(produced - consumed >= n_subbufs)) { 848 consumed = produced - n_subbufs + 1; 849 buf->subbufs_consumed = consumed; 850 buf->bytes_consumed = 0; 851 } 852 853 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 854 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 855 856 if (consumed > produced) 857 produced += n_subbufs * subbuf_size; 858 859 if (consumed == produced) 860 return 0; 861 862 return 1; 863 } 864 865 /** 866 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 867 * @read_pos: file read position 868 * @buf: relay channel buffer 869 */ 870 static size_t relay_file_read_subbuf_avail(size_t read_pos, 871 struct rchan_buf *buf) 872 { 873 size_t padding, avail = 0; 874 size_t read_subbuf, read_offset, write_subbuf, write_offset; 875 size_t subbuf_size = buf->chan->subbuf_size; 876 877 write_subbuf = (buf->data - buf->start) / subbuf_size; 878 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 879 read_subbuf = read_pos / subbuf_size; 880 read_offset = read_pos % subbuf_size; 881 padding = buf->padding[read_subbuf]; 882 883 if (read_subbuf == write_subbuf) { 884 if (read_offset + padding < write_offset) 885 avail = write_offset - (read_offset + padding); 886 } else 887 avail = (subbuf_size - padding) - read_offset; 888 889 return avail; 890 } 891 892 /** 893 * relay_file_read_start_pos - find the first available byte to read 894 * @read_pos: file read position 895 * @buf: relay channel buffer 896 * 897 * If the @read_pos is in the middle of padding, return the 898 * position of the first actually available byte, otherwise 899 * return the original value. 900 */ 901 static size_t relay_file_read_start_pos(size_t read_pos, 902 struct rchan_buf *buf) 903 { 904 size_t read_subbuf, padding, padding_start, padding_end; 905 size_t subbuf_size = buf->chan->subbuf_size; 906 size_t n_subbufs = buf->chan->n_subbufs; 907 size_t consumed = buf->subbufs_consumed % n_subbufs; 908 909 if (!read_pos) 910 read_pos = consumed * subbuf_size + buf->bytes_consumed; 911 read_subbuf = read_pos / subbuf_size; 912 padding = buf->padding[read_subbuf]; 913 padding_start = (read_subbuf + 1) * subbuf_size - padding; 914 padding_end = (read_subbuf + 1) * subbuf_size; 915 if (read_pos >= padding_start && read_pos < padding_end) { 916 read_subbuf = (read_subbuf + 1) % n_subbufs; 917 read_pos = read_subbuf * subbuf_size; 918 } 919 920 return read_pos; 921 } 922 923 /** 924 * relay_file_read_end_pos - return the new read position 925 * @read_pos: file read position 926 * @buf: relay channel buffer 927 * @count: number of bytes to be read 928 */ 929 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 930 size_t read_pos, 931 size_t count) 932 { 933 size_t read_subbuf, padding, end_pos; 934 size_t subbuf_size = buf->chan->subbuf_size; 935 size_t n_subbufs = buf->chan->n_subbufs; 936 937 read_subbuf = read_pos / subbuf_size; 938 padding = buf->padding[read_subbuf]; 939 if (read_pos % subbuf_size + count + padding == subbuf_size) 940 end_pos = (read_subbuf + 1) * subbuf_size; 941 else 942 end_pos = read_pos + count; 943 if (end_pos >= subbuf_size * n_subbufs) 944 end_pos = 0; 945 946 return end_pos; 947 } 948 949 /* 950 * subbuf_read_actor - read up to one subbuf's worth of data 951 */ 952 static int subbuf_read_actor(size_t read_start, 953 struct rchan_buf *buf, 954 size_t avail, 955 read_descriptor_t *desc, 956 read_actor_t actor) 957 { 958 void *from; 959 int ret = 0; 960 961 from = buf->start + read_start; 962 ret = avail; 963 if (copy_to_user(desc->arg.buf, from, avail)) { 964 desc->error = -EFAULT; 965 ret = 0; 966 } 967 desc->arg.data += ret; 968 desc->written += ret; 969 desc->count -= ret; 970 971 return ret; 972 } 973 974 typedef int (*subbuf_actor_t) (size_t read_start, 975 struct rchan_buf *buf, 976 size_t avail, 977 read_descriptor_t *desc, 978 read_actor_t actor); 979 980 /* 981 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries 982 */ 983 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos, 984 subbuf_actor_t subbuf_actor, 985 read_actor_t actor, 986 read_descriptor_t *desc) 987 { 988 struct rchan_buf *buf = filp->private_data; 989 size_t read_start, avail; 990 int ret; 991 992 if (!desc->count) 993 return 0; 994 995 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 996 do { 997 if (!relay_file_read_avail(buf, *ppos)) 998 break; 999 1000 read_start = relay_file_read_start_pos(*ppos, buf); 1001 avail = relay_file_read_subbuf_avail(read_start, buf); 1002 if (!avail) 1003 break; 1004 1005 avail = min(desc->count, avail); 1006 ret = subbuf_actor(read_start, buf, avail, desc, actor); 1007 if (desc->error < 0) 1008 break; 1009 1010 if (ret) { 1011 relay_file_read_consume(buf, read_start, ret); 1012 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1013 } 1014 } while (desc->count && ret); 1015 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 1016 1017 return desc->written; 1018 } 1019 1020 static ssize_t relay_file_read(struct file *filp, 1021 char __user *buffer, 1022 size_t count, 1023 loff_t *ppos) 1024 { 1025 read_descriptor_t desc; 1026 desc.written = 0; 1027 desc.count = count; 1028 desc.arg.buf = buffer; 1029 desc.error = 0; 1030 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, 1031 NULL, &desc); 1032 } 1033 1034 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1035 { 1036 rbuf->bytes_consumed += bytes_consumed; 1037 1038 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1039 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1040 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1041 } 1042 } 1043 1044 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1045 struct pipe_buffer *buf) 1046 { 1047 struct rchan_buf *rbuf; 1048 1049 rbuf = (struct rchan_buf *)page_private(buf->page); 1050 relay_consume_bytes(rbuf, buf->private); 1051 } 1052 1053 static struct pipe_buf_operations relay_pipe_buf_ops = { 1054 .can_merge = 0, 1055 .map = generic_pipe_buf_map, 1056 .unmap = generic_pipe_buf_unmap, 1057 .confirm = generic_pipe_buf_confirm, 1058 .release = relay_pipe_buf_release, 1059 .steal = generic_pipe_buf_steal, 1060 .get = generic_pipe_buf_get, 1061 }; 1062 1063 /* 1064 * subbuf_splice_actor - splice up to one subbuf's worth of data 1065 */ 1066 static int subbuf_splice_actor(struct file *in, 1067 loff_t *ppos, 1068 struct pipe_inode_info *pipe, 1069 size_t len, 1070 unsigned int flags, 1071 int *nonpad_ret) 1072 { 1073 unsigned int pidx, poff, total_len, subbuf_pages, ret; 1074 struct rchan_buf *rbuf = in->private_data; 1075 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1076 uint64_t pos = (uint64_t) *ppos; 1077 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1078 size_t read_start = (size_t) do_div(pos, alloc_size); 1079 size_t read_subbuf = read_start / subbuf_size; 1080 size_t padding = rbuf->padding[read_subbuf]; 1081 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1082 struct page *pages[PIPE_BUFFERS]; 1083 struct partial_page partial[PIPE_BUFFERS]; 1084 struct splice_pipe_desc spd = { 1085 .pages = pages, 1086 .nr_pages = 0, 1087 .partial = partial, 1088 .flags = flags, 1089 .ops = &relay_pipe_buf_ops, 1090 }; 1091 1092 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1093 return 0; 1094 1095 /* 1096 * Adjust read len, if longer than what is available 1097 */ 1098 if (len > (subbuf_size - read_start % subbuf_size)) 1099 len = subbuf_size - read_start % subbuf_size; 1100 1101 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1102 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1103 poff = read_start & ~PAGE_MASK; 1104 1105 for (total_len = 0; spd.nr_pages < subbuf_pages; spd.nr_pages++) { 1106 unsigned int this_len, this_end, private; 1107 unsigned int cur_pos = read_start + total_len; 1108 1109 if (!len) 1110 break; 1111 1112 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1113 private = this_len; 1114 1115 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1116 spd.partial[spd.nr_pages].offset = poff; 1117 1118 this_end = cur_pos + this_len; 1119 if (this_end >= nonpad_end) { 1120 this_len = nonpad_end - cur_pos; 1121 private = this_len + padding; 1122 } 1123 spd.partial[spd.nr_pages].len = this_len; 1124 spd.partial[spd.nr_pages].private = private; 1125 1126 len -= this_len; 1127 total_len += this_len; 1128 poff = 0; 1129 pidx = (pidx + 1) % subbuf_pages; 1130 1131 if (this_end >= nonpad_end) { 1132 spd.nr_pages++; 1133 break; 1134 } 1135 } 1136 1137 if (!spd.nr_pages) 1138 return 0; 1139 1140 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1141 if (ret < 0 || ret < total_len) 1142 return ret; 1143 1144 if (read_start + ret == nonpad_end) 1145 ret += padding; 1146 1147 return ret; 1148 } 1149 1150 static ssize_t relay_file_splice_read(struct file *in, 1151 loff_t *ppos, 1152 struct pipe_inode_info *pipe, 1153 size_t len, 1154 unsigned int flags) 1155 { 1156 ssize_t spliced; 1157 int ret; 1158 int nonpad_ret = 0; 1159 1160 ret = 0; 1161 spliced = 0; 1162 1163 while (len) { 1164 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1165 if (ret < 0) 1166 break; 1167 else if (!ret) { 1168 if (spliced) 1169 break; 1170 if (flags & SPLICE_F_NONBLOCK) { 1171 ret = -EAGAIN; 1172 break; 1173 } 1174 } 1175 1176 *ppos += ret; 1177 if (ret > len) 1178 len = 0; 1179 else 1180 len -= ret; 1181 spliced += nonpad_ret; 1182 nonpad_ret = 0; 1183 } 1184 1185 if (spliced) 1186 return spliced; 1187 1188 return ret; 1189 } 1190 1191 const struct file_operations relay_file_operations = { 1192 .open = relay_file_open, 1193 .poll = relay_file_poll, 1194 .mmap = relay_file_mmap, 1195 .read = relay_file_read, 1196 .llseek = no_llseek, 1197 .release = relay_file_release, 1198 .splice_read = relay_file_splice_read, 1199 }; 1200 EXPORT_SYMBOL_GPL(relay_file_operations); 1201 1202 static __init int relay_init(void) 1203 { 1204 1205 hotcpu_notifier(relay_hotcpu_callback, 0); 1206 return 0; 1207 } 1208 1209 module_init(relay_init); 1210