xref: /openbmc/linux/kernel/relay.c (revision bc5aa3a0)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 	struct page *page;
45 	struct rchan_buf *buf = vma->vm_private_data;
46 	pgoff_t pgoff = vmf->pgoff;
47 
48 	if (!buf)
49 		return VM_FAULT_OOM;
50 
51 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 	if (!page)
53 		return VM_FAULT_SIGBUS;
54 	get_page(page);
55 	vmf->page = page;
56 
57 	return 0;
58 }
59 
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 	.fault = relay_buf_fault,
65 	.close = relay_file_mmap_close,
66 };
67 
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 	const size_t pa_size = n_pages * sizeof(struct page *);
74 	if (pa_size > PAGE_SIZE)
75 		return vzalloc(pa_size);
76 	return kzalloc(pa_size, GFP_KERNEL);
77 }
78 
79 /*
80  * free an array of pointers of struct page
81  */
82 static void relay_free_page_array(struct page **array)
83 {
84 	kvfree(array);
85 }
86 
87 /**
88  *	relay_mmap_buf: - mmap channel buffer to process address space
89  *	@buf: relay channel buffer
90  *	@vma: vm_area_struct describing memory to be mapped
91  *
92  *	Returns 0 if ok, negative on error
93  *
94  *	Caller should already have grabbed mmap_sem.
95  */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98 	unsigned long length = vma->vm_end - vma->vm_start;
99 	struct file *filp = vma->vm_file;
100 
101 	if (!buf)
102 		return -EBADF;
103 
104 	if (length != (unsigned long)buf->chan->alloc_size)
105 		return -EINVAL;
106 
107 	vma->vm_ops = &relay_file_mmap_ops;
108 	vma->vm_flags |= VM_DONTEXPAND;
109 	vma->vm_private_data = buf;
110 	buf->chan->cb->buf_mapped(buf, filp);
111 
112 	return 0;
113 }
114 
115 /**
116  *	relay_alloc_buf - allocate a channel buffer
117  *	@buf: the buffer struct
118  *	@size: total size of the buffer
119  *
120  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121  *	passed in size will get page aligned, if it isn't already.
122  */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125 	void *mem;
126 	unsigned int i, j, n_pages;
127 
128 	*size = PAGE_ALIGN(*size);
129 	n_pages = *size >> PAGE_SHIFT;
130 
131 	buf->page_array = relay_alloc_page_array(n_pages);
132 	if (!buf->page_array)
133 		return NULL;
134 
135 	for (i = 0; i < n_pages; i++) {
136 		buf->page_array[i] = alloc_page(GFP_KERNEL);
137 		if (unlikely(!buf->page_array[i]))
138 			goto depopulate;
139 		set_page_private(buf->page_array[i], (unsigned long)buf);
140 	}
141 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 	if (!mem)
143 		goto depopulate;
144 
145 	memset(mem, 0, *size);
146 	buf->page_count = n_pages;
147 	return mem;
148 
149 depopulate:
150 	for (j = 0; j < i; j++)
151 		__free_page(buf->page_array[j]);
152 	relay_free_page_array(buf->page_array);
153 	return NULL;
154 }
155 
156 /**
157  *	relay_create_buf - allocate and initialize a channel buffer
158  *	@chan: the relay channel
159  *
160  *	Returns channel buffer if successful, %NULL otherwise.
161  */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164 	struct rchan_buf *buf;
165 
166 	if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
167 		return NULL;
168 
169 	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 	if (!buf)
171 		return NULL;
172 	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
173 	if (!buf->padding)
174 		goto free_buf;
175 
176 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
177 	if (!buf->start)
178 		goto free_buf;
179 
180 	buf->chan = chan;
181 	kref_get(&buf->chan->kref);
182 	return buf;
183 
184 free_buf:
185 	kfree(buf->padding);
186 	kfree(buf);
187 	return NULL;
188 }
189 
190 /**
191  *	relay_destroy_channel - free the channel struct
192  *	@kref: target kernel reference that contains the relay channel
193  *
194  *	Should only be called from kref_put().
195  */
196 static void relay_destroy_channel(struct kref *kref)
197 {
198 	struct rchan *chan = container_of(kref, struct rchan, kref);
199 	kfree(chan);
200 }
201 
202 /**
203  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
204  *	@buf: the buffer struct
205  */
206 static void relay_destroy_buf(struct rchan_buf *buf)
207 {
208 	struct rchan *chan = buf->chan;
209 	unsigned int i;
210 
211 	if (likely(buf->start)) {
212 		vunmap(buf->start);
213 		for (i = 0; i < buf->page_count; i++)
214 			__free_page(buf->page_array[i]);
215 		relay_free_page_array(buf->page_array);
216 	}
217 	chan->buf[buf->cpu] = NULL;
218 	kfree(buf->padding);
219 	kfree(buf);
220 	kref_put(&chan->kref, relay_destroy_channel);
221 }
222 
223 /**
224  *	relay_remove_buf - remove a channel buffer
225  *	@kref: target kernel reference that contains the relay buffer
226  *
227  *	Removes the file from the filesystem, which also frees the
228  *	rchan_buf_struct and the channel buffer.  Should only be called from
229  *	kref_put().
230  */
231 static void relay_remove_buf(struct kref *kref)
232 {
233 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
234 	relay_destroy_buf(buf);
235 }
236 
237 /**
238  *	relay_buf_empty - boolean, is the channel buffer empty?
239  *	@buf: channel buffer
240  *
241  *	Returns 1 if the buffer is empty, 0 otherwise.
242  */
243 static int relay_buf_empty(struct rchan_buf *buf)
244 {
245 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
246 }
247 
248 /**
249  *	relay_buf_full - boolean, is the channel buffer full?
250  *	@buf: channel buffer
251  *
252  *	Returns 1 if the buffer is full, 0 otherwise.
253  */
254 int relay_buf_full(struct rchan_buf *buf)
255 {
256 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
257 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
258 }
259 EXPORT_SYMBOL_GPL(relay_buf_full);
260 
261 /*
262  * High-level relay kernel API and associated functions.
263  */
264 
265 /*
266  * rchan_callback implementations defining default channel behavior.  Used
267  * in place of corresponding NULL values in client callback struct.
268  */
269 
270 /*
271  * subbuf_start() default callback.  Does nothing.
272  */
273 static int subbuf_start_default_callback (struct rchan_buf *buf,
274 					  void *subbuf,
275 					  void *prev_subbuf,
276 					  size_t prev_padding)
277 {
278 	if (relay_buf_full(buf))
279 		return 0;
280 
281 	return 1;
282 }
283 
284 /*
285  * buf_mapped() default callback.  Does nothing.
286  */
287 static void buf_mapped_default_callback(struct rchan_buf *buf,
288 					struct file *filp)
289 {
290 }
291 
292 /*
293  * buf_unmapped() default callback.  Does nothing.
294  */
295 static void buf_unmapped_default_callback(struct rchan_buf *buf,
296 					  struct file *filp)
297 {
298 }
299 
300 /*
301  * create_buf_file_create() default callback.  Does nothing.
302  */
303 static struct dentry *create_buf_file_default_callback(const char *filename,
304 						       struct dentry *parent,
305 						       umode_t mode,
306 						       struct rchan_buf *buf,
307 						       int *is_global)
308 {
309 	return NULL;
310 }
311 
312 /*
313  * remove_buf_file() default callback.  Does nothing.
314  */
315 static int remove_buf_file_default_callback(struct dentry *dentry)
316 {
317 	return -EINVAL;
318 }
319 
320 /* relay channel default callbacks */
321 static struct rchan_callbacks default_channel_callbacks = {
322 	.subbuf_start = subbuf_start_default_callback,
323 	.buf_mapped = buf_mapped_default_callback,
324 	.buf_unmapped = buf_unmapped_default_callback,
325 	.create_buf_file = create_buf_file_default_callback,
326 	.remove_buf_file = remove_buf_file_default_callback,
327 };
328 
329 /**
330  *	wakeup_readers - wake up readers waiting on a channel
331  *	@data: contains the channel buffer
332  *
333  *	This is the timer function used to defer reader waking.
334  */
335 static void wakeup_readers(unsigned long data)
336 {
337 	struct rchan_buf *buf = (struct rchan_buf *)data;
338 	wake_up_interruptible(&buf->read_wait);
339 }
340 
341 /**
342  *	__relay_reset - reset a channel buffer
343  *	@buf: the channel buffer
344  *	@init: 1 if this is a first-time initialization
345  *
346  *	See relay_reset() for description of effect.
347  */
348 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
349 {
350 	size_t i;
351 
352 	if (init) {
353 		init_waitqueue_head(&buf->read_wait);
354 		kref_init(&buf->kref);
355 		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
356 	} else
357 		del_timer_sync(&buf->timer);
358 
359 	buf->subbufs_produced = 0;
360 	buf->subbufs_consumed = 0;
361 	buf->bytes_consumed = 0;
362 	buf->finalized = 0;
363 	buf->data = buf->start;
364 	buf->offset = 0;
365 
366 	for (i = 0; i < buf->chan->n_subbufs; i++)
367 		buf->padding[i] = 0;
368 
369 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
370 }
371 
372 /**
373  *	relay_reset - reset the channel
374  *	@chan: the channel
375  *
376  *	This has the effect of erasing all data from all channel buffers
377  *	and restarting the channel in its initial state.  The buffers
378  *	are not freed, so any mappings are still in effect.
379  *
380  *	NOTE. Care should be taken that the channel isn't actually
381  *	being used by anything when this call is made.
382  */
383 void relay_reset(struct rchan *chan)
384 {
385 	unsigned int i;
386 
387 	if (!chan)
388 		return;
389 
390 	if (chan->is_global && chan->buf[0]) {
391 		__relay_reset(chan->buf[0], 0);
392 		return;
393 	}
394 
395 	mutex_lock(&relay_channels_mutex);
396 	for_each_possible_cpu(i)
397 		if (chan->buf[i])
398 			__relay_reset(chan->buf[i], 0);
399 	mutex_unlock(&relay_channels_mutex);
400 }
401 EXPORT_SYMBOL_GPL(relay_reset);
402 
403 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
404 					struct dentry *dentry)
405 {
406 	buf->dentry = dentry;
407 	d_inode(buf->dentry)->i_size = buf->early_bytes;
408 }
409 
410 static struct dentry *relay_create_buf_file(struct rchan *chan,
411 					    struct rchan_buf *buf,
412 					    unsigned int cpu)
413 {
414 	struct dentry *dentry;
415 	char *tmpname;
416 
417 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
418 	if (!tmpname)
419 		return NULL;
420 	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
421 
422 	/* Create file in fs */
423 	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
424 					   S_IRUSR, buf,
425 					   &chan->is_global);
426 
427 	kfree(tmpname);
428 
429 	return dentry;
430 }
431 
432 /*
433  *	relay_open_buf - create a new relay channel buffer
434  *
435  *	used by relay_open() and CPU hotplug.
436  */
437 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
438 {
439  	struct rchan_buf *buf = NULL;
440 	struct dentry *dentry;
441 
442  	if (chan->is_global)
443 		return chan->buf[0];
444 
445 	buf = relay_create_buf(chan);
446 	if (!buf)
447 		return NULL;
448 
449 	if (chan->has_base_filename) {
450 		dentry = relay_create_buf_file(chan, buf, cpu);
451 		if (!dentry)
452 			goto free_buf;
453 		relay_set_buf_dentry(buf, dentry);
454 	} else {
455 		/* Only retrieve global info, nothing more, nothing less */
456 		dentry = chan->cb->create_buf_file(NULL, NULL,
457 						   S_IRUSR, buf,
458 						   &chan->is_global);
459 		if (WARN_ON(dentry))
460 			goto free_buf;
461 	}
462 
463  	buf->cpu = cpu;
464  	__relay_reset(buf, 1);
465 
466  	if(chan->is_global) {
467  		chan->buf[0] = buf;
468  		buf->cpu = 0;
469   	}
470 
471 	return buf;
472 
473 free_buf:
474  	relay_destroy_buf(buf);
475 	return NULL;
476 }
477 
478 /**
479  *	relay_close_buf - close a channel buffer
480  *	@buf: channel buffer
481  *
482  *	Marks the buffer finalized and restores the default callbacks.
483  *	The channel buffer and channel buffer data structure are then freed
484  *	automatically when the last reference is given up.
485  */
486 static void relay_close_buf(struct rchan_buf *buf)
487 {
488 	buf->finalized = 1;
489 	del_timer_sync(&buf->timer);
490 	buf->chan->cb->remove_buf_file(buf->dentry);
491 	kref_put(&buf->kref, relay_remove_buf);
492 }
493 
494 static void setup_callbacks(struct rchan *chan,
495 				   struct rchan_callbacks *cb)
496 {
497 	if (!cb) {
498 		chan->cb = &default_channel_callbacks;
499 		return;
500 	}
501 
502 	if (!cb->subbuf_start)
503 		cb->subbuf_start = subbuf_start_default_callback;
504 	if (!cb->buf_mapped)
505 		cb->buf_mapped = buf_mapped_default_callback;
506 	if (!cb->buf_unmapped)
507 		cb->buf_unmapped = buf_unmapped_default_callback;
508 	if (!cb->create_buf_file)
509 		cb->create_buf_file = create_buf_file_default_callback;
510 	if (!cb->remove_buf_file)
511 		cb->remove_buf_file = remove_buf_file_default_callback;
512 	chan->cb = cb;
513 }
514 
515 /**
516  * 	relay_hotcpu_callback - CPU hotplug callback
517  * 	@nb: notifier block
518  * 	@action: hotplug action to take
519  * 	@hcpu: CPU number
520  *
521  * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
522  */
523 static int relay_hotcpu_callback(struct notifier_block *nb,
524 				unsigned long action,
525 				void *hcpu)
526 {
527 	unsigned int hotcpu = (unsigned long)hcpu;
528 	struct rchan *chan;
529 
530 	switch(action) {
531 	case CPU_UP_PREPARE:
532 	case CPU_UP_PREPARE_FROZEN:
533 		mutex_lock(&relay_channels_mutex);
534 		list_for_each_entry(chan, &relay_channels, list) {
535 			if (chan->buf[hotcpu])
536 				continue;
537 			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
538 			if(!chan->buf[hotcpu]) {
539 				printk(KERN_ERR
540 					"relay_hotcpu_callback: cpu %d buffer "
541 					"creation failed\n", hotcpu);
542 				mutex_unlock(&relay_channels_mutex);
543 				return notifier_from_errno(-ENOMEM);
544 			}
545 		}
546 		mutex_unlock(&relay_channels_mutex);
547 		break;
548 	case CPU_DEAD:
549 	case CPU_DEAD_FROZEN:
550 		/* No need to flush the cpu : will be flushed upon
551 		 * final relay_flush() call. */
552 		break;
553 	}
554 	return NOTIFY_OK;
555 }
556 
557 /**
558  *	relay_open - create a new relay channel
559  *	@base_filename: base name of files to create, %NULL for buffering only
560  *	@parent: dentry of parent directory, %NULL for root directory or buffer
561  *	@subbuf_size: size of sub-buffers
562  *	@n_subbufs: number of sub-buffers
563  *	@cb: client callback functions
564  *	@private_data: user-defined data
565  *
566  *	Returns channel pointer if successful, %NULL otherwise.
567  *
568  *	Creates a channel buffer for each cpu using the sizes and
569  *	attributes specified.  The created channel buffer files
570  *	will be named base_filename0...base_filenameN-1.  File
571  *	permissions will be %S_IRUSR.
572  *
573  *	If opening a buffer (@parent = NULL) that you later wish to register
574  *	in a filesystem, call relay_late_setup_files() once the @parent dentry
575  *	is available.
576  */
577 struct rchan *relay_open(const char *base_filename,
578 			 struct dentry *parent,
579 			 size_t subbuf_size,
580 			 size_t n_subbufs,
581 			 struct rchan_callbacks *cb,
582 			 void *private_data)
583 {
584 	unsigned int i;
585 	struct rchan *chan;
586 
587 	if (!(subbuf_size && n_subbufs))
588 		return NULL;
589 	if (subbuf_size > UINT_MAX / n_subbufs)
590 		return NULL;
591 
592 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
593 	if (!chan)
594 		return NULL;
595 
596 	chan->version = RELAYFS_CHANNEL_VERSION;
597 	chan->n_subbufs = n_subbufs;
598 	chan->subbuf_size = subbuf_size;
599 	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
600 	chan->parent = parent;
601 	chan->private_data = private_data;
602 	if (base_filename) {
603 		chan->has_base_filename = 1;
604 		strlcpy(chan->base_filename, base_filename, NAME_MAX);
605 	}
606 	setup_callbacks(chan, cb);
607 	kref_init(&chan->kref);
608 
609 	mutex_lock(&relay_channels_mutex);
610 	for_each_online_cpu(i) {
611 		chan->buf[i] = relay_open_buf(chan, i);
612 		if (!chan->buf[i])
613 			goto free_bufs;
614 	}
615 	list_add(&chan->list, &relay_channels);
616 	mutex_unlock(&relay_channels_mutex);
617 
618 	return chan;
619 
620 free_bufs:
621 	for_each_possible_cpu(i) {
622 		if (chan->buf[i])
623 			relay_close_buf(chan->buf[i]);
624 	}
625 
626 	kref_put(&chan->kref, relay_destroy_channel);
627 	mutex_unlock(&relay_channels_mutex);
628 	kfree(chan);
629 	return NULL;
630 }
631 EXPORT_SYMBOL_GPL(relay_open);
632 
633 struct rchan_percpu_buf_dispatcher {
634 	struct rchan_buf *buf;
635 	struct dentry *dentry;
636 };
637 
638 /* Called in atomic context. */
639 static void __relay_set_buf_dentry(void *info)
640 {
641 	struct rchan_percpu_buf_dispatcher *p = info;
642 
643 	relay_set_buf_dentry(p->buf, p->dentry);
644 }
645 
646 /**
647  *	relay_late_setup_files - triggers file creation
648  *	@chan: channel to operate on
649  *	@base_filename: base name of files to create
650  *	@parent: dentry of parent directory, %NULL for root directory
651  *
652  *	Returns 0 if successful, non-zero otherwise.
653  *
654  *	Use to setup files for a previously buffer-only channel created
655  *	by relay_open() with a NULL parent dentry.
656  *
657  *	For example, this is useful for perfomring early tracing in kernel,
658  *	before VFS is up and then exposing the early results once the dentry
659  *	is available.
660  */
661 int relay_late_setup_files(struct rchan *chan,
662 			   const char *base_filename,
663 			   struct dentry *parent)
664 {
665 	int err = 0;
666 	unsigned int i, curr_cpu;
667 	unsigned long flags;
668 	struct dentry *dentry;
669 	struct rchan_percpu_buf_dispatcher disp;
670 
671 	if (!chan || !base_filename)
672 		return -EINVAL;
673 
674 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
675 
676 	mutex_lock(&relay_channels_mutex);
677 	/* Is chan already set up? */
678 	if (unlikely(chan->has_base_filename)) {
679 		mutex_unlock(&relay_channels_mutex);
680 		return -EEXIST;
681 	}
682 	chan->has_base_filename = 1;
683 	chan->parent = parent;
684 
685 	if (chan->is_global) {
686 		err = -EINVAL;
687 		if (!WARN_ON_ONCE(!chan->buf[0])) {
688 			dentry = relay_create_buf_file(chan, chan->buf[0], 0);
689 			if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
690 				relay_set_buf_dentry(chan->buf[0], dentry);
691 				err = 0;
692 			}
693 		}
694 		mutex_unlock(&relay_channels_mutex);
695 		return err;
696 	}
697 
698 	curr_cpu = get_cpu();
699 	/*
700 	 * The CPU hotplug notifier ran before us and created buffers with
701 	 * no files associated. So it's safe to call relay_setup_buf_file()
702 	 * on all currently online CPUs.
703 	 */
704 	for_each_online_cpu(i) {
705 		if (unlikely(!chan->buf[i])) {
706 			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
707 			err = -EINVAL;
708 			break;
709 		}
710 
711 		dentry = relay_create_buf_file(chan, chan->buf[i], i);
712 		if (unlikely(!dentry)) {
713 			err = -EINVAL;
714 			break;
715 		}
716 
717 		if (curr_cpu == i) {
718 			local_irq_save(flags);
719 			relay_set_buf_dentry(chan->buf[i], dentry);
720 			local_irq_restore(flags);
721 		} else {
722 			disp.buf = chan->buf[i];
723 			disp.dentry = dentry;
724 			smp_mb();
725 			/* relay_channels_mutex must be held, so wait. */
726 			err = smp_call_function_single(i,
727 						       __relay_set_buf_dentry,
728 						       &disp, 1);
729 		}
730 		if (unlikely(err))
731 			break;
732 	}
733 	put_cpu();
734 	mutex_unlock(&relay_channels_mutex);
735 
736 	return err;
737 }
738 EXPORT_SYMBOL_GPL(relay_late_setup_files);
739 
740 /**
741  *	relay_switch_subbuf - switch to a new sub-buffer
742  *	@buf: channel buffer
743  *	@length: size of current event
744  *
745  *	Returns either the length passed in or 0 if full.
746  *
747  *	Performs sub-buffer-switch tasks such as invoking callbacks,
748  *	updating padding counts, waking up readers, etc.
749  */
750 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
751 {
752 	void *old, *new;
753 	size_t old_subbuf, new_subbuf;
754 
755 	if (unlikely(length > buf->chan->subbuf_size))
756 		goto toobig;
757 
758 	if (buf->offset != buf->chan->subbuf_size + 1) {
759 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
760 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
761 		buf->padding[old_subbuf] = buf->prev_padding;
762 		buf->subbufs_produced++;
763 		if (buf->dentry)
764 			d_inode(buf->dentry)->i_size +=
765 				buf->chan->subbuf_size -
766 				buf->padding[old_subbuf];
767 		else
768 			buf->early_bytes += buf->chan->subbuf_size -
769 					    buf->padding[old_subbuf];
770 		smp_mb();
771 		if (waitqueue_active(&buf->read_wait))
772 			/*
773 			 * Calling wake_up_interruptible() from here
774 			 * will deadlock if we happen to be logging
775 			 * from the scheduler (trying to re-grab
776 			 * rq->lock), so defer it.
777 			 */
778 			mod_timer(&buf->timer, jiffies + 1);
779 	}
780 
781 	old = buf->data;
782 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
783 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
784 	buf->offset = 0;
785 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
786 		buf->offset = buf->chan->subbuf_size + 1;
787 		return 0;
788 	}
789 	buf->data = new;
790 	buf->padding[new_subbuf] = 0;
791 
792 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
793 		goto toobig;
794 
795 	return length;
796 
797 toobig:
798 	buf->chan->last_toobig = length;
799 	return 0;
800 }
801 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
802 
803 /**
804  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
805  *	@chan: the channel
806  *	@cpu: the cpu associated with the channel buffer to update
807  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
808  *
809  *	Adds to the channel buffer's consumed sub-buffer count.
810  *	subbufs_consumed should be the number of sub-buffers newly consumed,
811  *	not the total consumed.
812  *
813  *	NOTE. Kernel clients don't need to call this function if the channel
814  *	mode is 'overwrite'.
815  */
816 void relay_subbufs_consumed(struct rchan *chan,
817 			    unsigned int cpu,
818 			    size_t subbufs_consumed)
819 {
820 	struct rchan_buf *buf;
821 
822 	if (!chan)
823 		return;
824 
825 	if (cpu >= NR_CPUS || !chan->buf[cpu] ||
826 					subbufs_consumed > chan->n_subbufs)
827 		return;
828 
829 	buf = chan->buf[cpu];
830 	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
831 		buf->subbufs_consumed = buf->subbufs_produced;
832 	else
833 		buf->subbufs_consumed += subbufs_consumed;
834 }
835 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
836 
837 /**
838  *	relay_close - close the channel
839  *	@chan: the channel
840  *
841  *	Closes all channel buffers and frees the channel.
842  */
843 void relay_close(struct rchan *chan)
844 {
845 	unsigned int i;
846 
847 	if (!chan)
848 		return;
849 
850 	mutex_lock(&relay_channels_mutex);
851 	if (chan->is_global && chan->buf[0])
852 		relay_close_buf(chan->buf[0]);
853 	else
854 		for_each_possible_cpu(i)
855 			if (chan->buf[i])
856 				relay_close_buf(chan->buf[i]);
857 
858 	if (chan->last_toobig)
859 		printk(KERN_WARNING "relay: one or more items not logged "
860 		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
861 		       chan->last_toobig, chan->subbuf_size);
862 
863 	list_del(&chan->list);
864 	kref_put(&chan->kref, relay_destroy_channel);
865 	mutex_unlock(&relay_channels_mutex);
866 }
867 EXPORT_SYMBOL_GPL(relay_close);
868 
869 /**
870  *	relay_flush - close the channel
871  *	@chan: the channel
872  *
873  *	Flushes all channel buffers, i.e. forces buffer switch.
874  */
875 void relay_flush(struct rchan *chan)
876 {
877 	unsigned int i;
878 
879 	if (!chan)
880 		return;
881 
882 	if (chan->is_global && chan->buf[0]) {
883 		relay_switch_subbuf(chan->buf[0], 0);
884 		return;
885 	}
886 
887 	mutex_lock(&relay_channels_mutex);
888 	for_each_possible_cpu(i)
889 		if (chan->buf[i])
890 			relay_switch_subbuf(chan->buf[i], 0);
891 	mutex_unlock(&relay_channels_mutex);
892 }
893 EXPORT_SYMBOL_GPL(relay_flush);
894 
895 /**
896  *	relay_file_open - open file op for relay files
897  *	@inode: the inode
898  *	@filp: the file
899  *
900  *	Increments the channel buffer refcount.
901  */
902 static int relay_file_open(struct inode *inode, struct file *filp)
903 {
904 	struct rchan_buf *buf = inode->i_private;
905 	kref_get(&buf->kref);
906 	filp->private_data = buf;
907 
908 	return nonseekable_open(inode, filp);
909 }
910 
911 /**
912  *	relay_file_mmap - mmap file op for relay files
913  *	@filp: the file
914  *	@vma: the vma describing what to map
915  *
916  *	Calls upon relay_mmap_buf() to map the file into user space.
917  */
918 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
919 {
920 	struct rchan_buf *buf = filp->private_data;
921 	return relay_mmap_buf(buf, vma);
922 }
923 
924 /**
925  *	relay_file_poll - poll file op for relay files
926  *	@filp: the file
927  *	@wait: poll table
928  *
929  *	Poll implemention.
930  */
931 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
932 {
933 	unsigned int mask = 0;
934 	struct rchan_buf *buf = filp->private_data;
935 
936 	if (buf->finalized)
937 		return POLLERR;
938 
939 	if (filp->f_mode & FMODE_READ) {
940 		poll_wait(filp, &buf->read_wait, wait);
941 		if (!relay_buf_empty(buf))
942 			mask |= POLLIN | POLLRDNORM;
943 	}
944 
945 	return mask;
946 }
947 
948 /**
949  *	relay_file_release - release file op for relay files
950  *	@inode: the inode
951  *	@filp: the file
952  *
953  *	Decrements the channel refcount, as the filesystem is
954  *	no longer using it.
955  */
956 static int relay_file_release(struct inode *inode, struct file *filp)
957 {
958 	struct rchan_buf *buf = filp->private_data;
959 	kref_put(&buf->kref, relay_remove_buf);
960 
961 	return 0;
962 }
963 
964 /*
965  *	relay_file_read_consume - update the consumed count for the buffer
966  */
967 static void relay_file_read_consume(struct rchan_buf *buf,
968 				    size_t read_pos,
969 				    size_t bytes_consumed)
970 {
971 	size_t subbuf_size = buf->chan->subbuf_size;
972 	size_t n_subbufs = buf->chan->n_subbufs;
973 	size_t read_subbuf;
974 
975 	if (buf->subbufs_produced == buf->subbufs_consumed &&
976 	    buf->offset == buf->bytes_consumed)
977 		return;
978 
979 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
980 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
981 		buf->bytes_consumed = 0;
982 	}
983 
984 	buf->bytes_consumed += bytes_consumed;
985 	if (!read_pos)
986 		read_subbuf = buf->subbufs_consumed % n_subbufs;
987 	else
988 		read_subbuf = read_pos / buf->chan->subbuf_size;
989 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
990 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
991 		    (buf->offset == subbuf_size))
992 			return;
993 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
994 		buf->bytes_consumed = 0;
995 	}
996 }
997 
998 /*
999  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
1000  */
1001 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
1002 {
1003 	size_t subbuf_size = buf->chan->subbuf_size;
1004 	size_t n_subbufs = buf->chan->n_subbufs;
1005 	size_t produced = buf->subbufs_produced;
1006 	size_t consumed = buf->subbufs_consumed;
1007 
1008 	relay_file_read_consume(buf, read_pos, 0);
1009 
1010 	consumed = buf->subbufs_consumed;
1011 
1012 	if (unlikely(buf->offset > subbuf_size)) {
1013 		if (produced == consumed)
1014 			return 0;
1015 		return 1;
1016 	}
1017 
1018 	if (unlikely(produced - consumed >= n_subbufs)) {
1019 		consumed = produced - n_subbufs + 1;
1020 		buf->subbufs_consumed = consumed;
1021 		buf->bytes_consumed = 0;
1022 	}
1023 
1024 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1025 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1026 
1027 	if (consumed > produced)
1028 		produced += n_subbufs * subbuf_size;
1029 
1030 	if (consumed == produced) {
1031 		if (buf->offset == subbuf_size &&
1032 		    buf->subbufs_produced > buf->subbufs_consumed)
1033 			return 1;
1034 		return 0;
1035 	}
1036 
1037 	return 1;
1038 }
1039 
1040 /**
1041  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1042  *	@read_pos: file read position
1043  *	@buf: relay channel buffer
1044  */
1045 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1046 					   struct rchan_buf *buf)
1047 {
1048 	size_t padding, avail = 0;
1049 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1050 	size_t subbuf_size = buf->chan->subbuf_size;
1051 
1052 	write_subbuf = (buf->data - buf->start) / subbuf_size;
1053 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1054 	read_subbuf = read_pos / subbuf_size;
1055 	read_offset = read_pos % subbuf_size;
1056 	padding = buf->padding[read_subbuf];
1057 
1058 	if (read_subbuf == write_subbuf) {
1059 		if (read_offset + padding < write_offset)
1060 			avail = write_offset - (read_offset + padding);
1061 	} else
1062 		avail = (subbuf_size - padding) - read_offset;
1063 
1064 	return avail;
1065 }
1066 
1067 /**
1068  *	relay_file_read_start_pos - find the first available byte to read
1069  *	@read_pos: file read position
1070  *	@buf: relay channel buffer
1071  *
1072  *	If the @read_pos is in the middle of padding, return the
1073  *	position of the first actually available byte, otherwise
1074  *	return the original value.
1075  */
1076 static size_t relay_file_read_start_pos(size_t read_pos,
1077 					struct rchan_buf *buf)
1078 {
1079 	size_t read_subbuf, padding, padding_start, padding_end;
1080 	size_t subbuf_size = buf->chan->subbuf_size;
1081 	size_t n_subbufs = buf->chan->n_subbufs;
1082 	size_t consumed = buf->subbufs_consumed % n_subbufs;
1083 
1084 	if (!read_pos)
1085 		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1086 	read_subbuf = read_pos / subbuf_size;
1087 	padding = buf->padding[read_subbuf];
1088 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1089 	padding_end = (read_subbuf + 1) * subbuf_size;
1090 	if (read_pos >= padding_start && read_pos < padding_end) {
1091 		read_subbuf = (read_subbuf + 1) % n_subbufs;
1092 		read_pos = read_subbuf * subbuf_size;
1093 	}
1094 
1095 	return read_pos;
1096 }
1097 
1098 /**
1099  *	relay_file_read_end_pos - return the new read position
1100  *	@read_pos: file read position
1101  *	@buf: relay channel buffer
1102  *	@count: number of bytes to be read
1103  */
1104 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1105 				      size_t read_pos,
1106 				      size_t count)
1107 {
1108 	size_t read_subbuf, padding, end_pos;
1109 	size_t subbuf_size = buf->chan->subbuf_size;
1110 	size_t n_subbufs = buf->chan->n_subbufs;
1111 
1112 	read_subbuf = read_pos / subbuf_size;
1113 	padding = buf->padding[read_subbuf];
1114 	if (read_pos % subbuf_size + count + padding == subbuf_size)
1115 		end_pos = (read_subbuf + 1) * subbuf_size;
1116 	else
1117 		end_pos = read_pos + count;
1118 	if (end_pos >= subbuf_size * n_subbufs)
1119 		end_pos = 0;
1120 
1121 	return end_pos;
1122 }
1123 
1124 /*
1125  *	subbuf_read_actor - read up to one subbuf's worth of data
1126  */
1127 static int subbuf_read_actor(size_t read_start,
1128 			     struct rchan_buf *buf,
1129 			     size_t avail,
1130 			     read_descriptor_t *desc)
1131 {
1132 	void *from;
1133 	int ret = 0;
1134 
1135 	from = buf->start + read_start;
1136 	ret = avail;
1137 	if (copy_to_user(desc->arg.buf, from, avail)) {
1138 		desc->error = -EFAULT;
1139 		ret = 0;
1140 	}
1141 	desc->arg.data += ret;
1142 	desc->written += ret;
1143 	desc->count -= ret;
1144 
1145 	return ret;
1146 }
1147 
1148 typedef int (*subbuf_actor_t) (size_t read_start,
1149 			       struct rchan_buf *buf,
1150 			       size_t avail,
1151 			       read_descriptor_t *desc);
1152 
1153 /*
1154  *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1155  */
1156 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1157 					subbuf_actor_t subbuf_actor,
1158 					read_descriptor_t *desc)
1159 {
1160 	struct rchan_buf *buf = filp->private_data;
1161 	size_t read_start, avail;
1162 	int ret;
1163 
1164 	if (!desc->count)
1165 		return 0;
1166 
1167 	inode_lock(file_inode(filp));
1168 	do {
1169 		if (!relay_file_read_avail(buf, *ppos))
1170 			break;
1171 
1172 		read_start = relay_file_read_start_pos(*ppos, buf);
1173 		avail = relay_file_read_subbuf_avail(read_start, buf);
1174 		if (!avail)
1175 			break;
1176 
1177 		avail = min(desc->count, avail);
1178 		ret = subbuf_actor(read_start, buf, avail, desc);
1179 		if (desc->error < 0)
1180 			break;
1181 
1182 		if (ret) {
1183 			relay_file_read_consume(buf, read_start, ret);
1184 			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1185 		}
1186 	} while (desc->count && ret);
1187 	inode_unlock(file_inode(filp));
1188 
1189 	return desc->written;
1190 }
1191 
1192 static ssize_t relay_file_read(struct file *filp,
1193 			       char __user *buffer,
1194 			       size_t count,
1195 			       loff_t *ppos)
1196 {
1197 	read_descriptor_t desc;
1198 	desc.written = 0;
1199 	desc.count = count;
1200 	desc.arg.buf = buffer;
1201 	desc.error = 0;
1202 	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc);
1203 }
1204 
1205 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1206 {
1207 	rbuf->bytes_consumed += bytes_consumed;
1208 
1209 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1210 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1211 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1212 	}
1213 }
1214 
1215 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1216 				   struct pipe_buffer *buf)
1217 {
1218 	struct rchan_buf *rbuf;
1219 
1220 	rbuf = (struct rchan_buf *)page_private(buf->page);
1221 	relay_consume_bytes(rbuf, buf->private);
1222 }
1223 
1224 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1225 	.can_merge = 0,
1226 	.confirm = generic_pipe_buf_confirm,
1227 	.release = relay_pipe_buf_release,
1228 	.steal = generic_pipe_buf_steal,
1229 	.get = generic_pipe_buf_get,
1230 };
1231 
1232 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1233 {
1234 }
1235 
1236 /*
1237  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1238  */
1239 static ssize_t subbuf_splice_actor(struct file *in,
1240 			       loff_t *ppos,
1241 			       struct pipe_inode_info *pipe,
1242 			       size_t len,
1243 			       unsigned int flags,
1244 			       int *nonpad_ret)
1245 {
1246 	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1247 	struct rchan_buf *rbuf = in->private_data;
1248 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1249 	uint64_t pos = (uint64_t) *ppos;
1250 	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1251 	size_t read_start = (size_t) do_div(pos, alloc_size);
1252 	size_t read_subbuf = read_start / subbuf_size;
1253 	size_t padding = rbuf->padding[read_subbuf];
1254 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1255 	struct page *pages[PIPE_DEF_BUFFERS];
1256 	struct partial_page partial[PIPE_DEF_BUFFERS];
1257 	struct splice_pipe_desc spd = {
1258 		.pages = pages,
1259 		.nr_pages = 0,
1260 		.nr_pages_max = PIPE_DEF_BUFFERS,
1261 		.partial = partial,
1262 		.flags = flags,
1263 		.ops = &relay_pipe_buf_ops,
1264 		.spd_release = relay_page_release,
1265 	};
1266 	ssize_t ret;
1267 
1268 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1269 		return 0;
1270 	if (splice_grow_spd(pipe, &spd))
1271 		return -ENOMEM;
1272 
1273 	/*
1274 	 * Adjust read len, if longer than what is available
1275 	 */
1276 	if (len > (subbuf_size - read_start % subbuf_size))
1277 		len = subbuf_size - read_start % subbuf_size;
1278 
1279 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1280 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1281 	poff = read_start & ~PAGE_MASK;
1282 	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1283 
1284 	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1285 		unsigned int this_len, this_end, private;
1286 		unsigned int cur_pos = read_start + total_len;
1287 
1288 		if (!len)
1289 			break;
1290 
1291 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1292 		private = this_len;
1293 
1294 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1295 		spd.partial[spd.nr_pages].offset = poff;
1296 
1297 		this_end = cur_pos + this_len;
1298 		if (this_end >= nonpad_end) {
1299 			this_len = nonpad_end - cur_pos;
1300 			private = this_len + padding;
1301 		}
1302 		spd.partial[spd.nr_pages].len = this_len;
1303 		spd.partial[spd.nr_pages].private = private;
1304 
1305 		len -= this_len;
1306 		total_len += this_len;
1307 		poff = 0;
1308 		pidx = (pidx + 1) % subbuf_pages;
1309 
1310 		if (this_end >= nonpad_end) {
1311 			spd.nr_pages++;
1312 			break;
1313 		}
1314 	}
1315 
1316 	ret = 0;
1317 	if (!spd.nr_pages)
1318 		goto out;
1319 
1320 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1321 	if (ret < 0 || ret < total_len)
1322 		goto out;
1323 
1324         if (read_start + ret == nonpad_end)
1325                 ret += padding;
1326 
1327 out:
1328 	splice_shrink_spd(&spd);
1329 	return ret;
1330 }
1331 
1332 static ssize_t relay_file_splice_read(struct file *in,
1333 				      loff_t *ppos,
1334 				      struct pipe_inode_info *pipe,
1335 				      size_t len,
1336 				      unsigned int flags)
1337 {
1338 	ssize_t spliced;
1339 	int ret;
1340 	int nonpad_ret = 0;
1341 
1342 	ret = 0;
1343 	spliced = 0;
1344 
1345 	while (len && !spliced) {
1346 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1347 		if (ret < 0)
1348 			break;
1349 		else if (!ret) {
1350 			if (flags & SPLICE_F_NONBLOCK)
1351 				ret = -EAGAIN;
1352 			break;
1353 		}
1354 
1355 		*ppos += ret;
1356 		if (ret > len)
1357 			len = 0;
1358 		else
1359 			len -= ret;
1360 		spliced += nonpad_ret;
1361 		nonpad_ret = 0;
1362 	}
1363 
1364 	if (spliced)
1365 		return spliced;
1366 
1367 	return ret;
1368 }
1369 
1370 const struct file_operations relay_file_operations = {
1371 	.open		= relay_file_open,
1372 	.poll		= relay_file_poll,
1373 	.mmap		= relay_file_mmap,
1374 	.read		= relay_file_read,
1375 	.llseek		= no_llseek,
1376 	.release	= relay_file_release,
1377 	.splice_read	= relay_file_splice_read,
1378 };
1379 EXPORT_SYMBOL_GPL(relay_file_operations);
1380 
1381 static __init int relay_init(void)
1382 {
1383 
1384 	hotcpu_notifier(relay_hotcpu_callback, 0);
1385 	return 0;
1386 }
1387 
1388 early_initcall(relay_init);
1389