1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.txt for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * fault() vm_op implementation for relay file mapping. 41 */ 42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 43 { 44 struct page *page; 45 struct rchan_buf *buf = vma->vm_private_data; 46 pgoff_t pgoff = vmf->pgoff; 47 48 if (!buf) 49 return VM_FAULT_OOM; 50 51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 52 if (!page) 53 return VM_FAULT_SIGBUS; 54 get_page(page); 55 vmf->page = page; 56 57 return 0; 58 } 59 60 /* 61 * vm_ops for relay file mappings. 62 */ 63 static const struct vm_operations_struct relay_file_mmap_ops = { 64 .fault = relay_buf_fault, 65 .close = relay_file_mmap_close, 66 }; 67 68 /* 69 * allocate an array of pointers of struct page 70 */ 71 static struct page **relay_alloc_page_array(unsigned int n_pages) 72 { 73 const size_t pa_size = n_pages * sizeof(struct page *); 74 if (pa_size > PAGE_SIZE) 75 return vzalloc(pa_size); 76 return kzalloc(pa_size, GFP_KERNEL); 77 } 78 79 /* 80 * free an array of pointers of struct page 81 */ 82 static void relay_free_page_array(struct page **array) 83 { 84 kvfree(array); 85 } 86 87 /** 88 * relay_mmap_buf: - mmap channel buffer to process address space 89 * @buf: relay channel buffer 90 * @vma: vm_area_struct describing memory to be mapped 91 * 92 * Returns 0 if ok, negative on error 93 * 94 * Caller should already have grabbed mmap_sem. 95 */ 96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 97 { 98 unsigned long length = vma->vm_end - vma->vm_start; 99 struct file *filp = vma->vm_file; 100 101 if (!buf) 102 return -EBADF; 103 104 if (length != (unsigned long)buf->chan->alloc_size) 105 return -EINVAL; 106 107 vma->vm_ops = &relay_file_mmap_ops; 108 vma->vm_flags |= VM_DONTEXPAND; 109 vma->vm_private_data = buf; 110 buf->chan->cb->buf_mapped(buf, filp); 111 112 return 0; 113 } 114 115 /** 116 * relay_alloc_buf - allocate a channel buffer 117 * @buf: the buffer struct 118 * @size: total size of the buffer 119 * 120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 121 * passed in size will get page aligned, if it isn't already. 122 */ 123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 124 { 125 void *mem; 126 unsigned int i, j, n_pages; 127 128 *size = PAGE_ALIGN(*size); 129 n_pages = *size >> PAGE_SHIFT; 130 131 buf->page_array = relay_alloc_page_array(n_pages); 132 if (!buf->page_array) 133 return NULL; 134 135 for (i = 0; i < n_pages; i++) { 136 buf->page_array[i] = alloc_page(GFP_KERNEL); 137 if (unlikely(!buf->page_array[i])) 138 goto depopulate; 139 set_page_private(buf->page_array[i], (unsigned long)buf); 140 } 141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 142 if (!mem) 143 goto depopulate; 144 145 memset(mem, 0, *size); 146 buf->page_count = n_pages; 147 return mem; 148 149 depopulate: 150 for (j = 0; j < i; j++) 151 __free_page(buf->page_array[j]); 152 relay_free_page_array(buf->page_array); 153 return NULL; 154 } 155 156 /** 157 * relay_create_buf - allocate and initialize a channel buffer 158 * @chan: the relay channel 159 * 160 * Returns channel buffer if successful, %NULL otherwise. 161 */ 162 static struct rchan_buf *relay_create_buf(struct rchan *chan) 163 { 164 struct rchan_buf *buf; 165 166 if (chan->n_subbufs > UINT_MAX / sizeof(size_t *)) 167 return NULL; 168 169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 170 if (!buf) 171 return NULL; 172 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); 173 if (!buf->padding) 174 goto free_buf; 175 176 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 177 if (!buf->start) 178 goto free_buf; 179 180 buf->chan = chan; 181 kref_get(&buf->chan->kref); 182 return buf; 183 184 free_buf: 185 kfree(buf->padding); 186 kfree(buf); 187 return NULL; 188 } 189 190 /** 191 * relay_destroy_channel - free the channel struct 192 * @kref: target kernel reference that contains the relay channel 193 * 194 * Should only be called from kref_put(). 195 */ 196 static void relay_destroy_channel(struct kref *kref) 197 { 198 struct rchan *chan = container_of(kref, struct rchan, kref); 199 kfree(chan); 200 } 201 202 /** 203 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 204 * @buf: the buffer struct 205 */ 206 static void relay_destroy_buf(struct rchan_buf *buf) 207 { 208 struct rchan *chan = buf->chan; 209 unsigned int i; 210 211 if (likely(buf->start)) { 212 vunmap(buf->start); 213 for (i = 0; i < buf->page_count; i++) 214 __free_page(buf->page_array[i]); 215 relay_free_page_array(buf->page_array); 216 } 217 chan->buf[buf->cpu] = NULL; 218 kfree(buf->padding); 219 kfree(buf); 220 kref_put(&chan->kref, relay_destroy_channel); 221 } 222 223 /** 224 * relay_remove_buf - remove a channel buffer 225 * @kref: target kernel reference that contains the relay buffer 226 * 227 * Removes the file from the filesystem, which also frees the 228 * rchan_buf_struct and the channel buffer. Should only be called from 229 * kref_put(). 230 */ 231 static void relay_remove_buf(struct kref *kref) 232 { 233 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 234 relay_destroy_buf(buf); 235 } 236 237 /** 238 * relay_buf_empty - boolean, is the channel buffer empty? 239 * @buf: channel buffer 240 * 241 * Returns 1 if the buffer is empty, 0 otherwise. 242 */ 243 static int relay_buf_empty(struct rchan_buf *buf) 244 { 245 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 246 } 247 248 /** 249 * relay_buf_full - boolean, is the channel buffer full? 250 * @buf: channel buffer 251 * 252 * Returns 1 if the buffer is full, 0 otherwise. 253 */ 254 int relay_buf_full(struct rchan_buf *buf) 255 { 256 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 257 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 258 } 259 EXPORT_SYMBOL_GPL(relay_buf_full); 260 261 /* 262 * High-level relay kernel API and associated functions. 263 */ 264 265 /* 266 * rchan_callback implementations defining default channel behavior. Used 267 * in place of corresponding NULL values in client callback struct. 268 */ 269 270 /* 271 * subbuf_start() default callback. Does nothing. 272 */ 273 static int subbuf_start_default_callback (struct rchan_buf *buf, 274 void *subbuf, 275 void *prev_subbuf, 276 size_t prev_padding) 277 { 278 if (relay_buf_full(buf)) 279 return 0; 280 281 return 1; 282 } 283 284 /* 285 * buf_mapped() default callback. Does nothing. 286 */ 287 static void buf_mapped_default_callback(struct rchan_buf *buf, 288 struct file *filp) 289 { 290 } 291 292 /* 293 * buf_unmapped() default callback. Does nothing. 294 */ 295 static void buf_unmapped_default_callback(struct rchan_buf *buf, 296 struct file *filp) 297 { 298 } 299 300 /* 301 * create_buf_file_create() default callback. Does nothing. 302 */ 303 static struct dentry *create_buf_file_default_callback(const char *filename, 304 struct dentry *parent, 305 umode_t mode, 306 struct rchan_buf *buf, 307 int *is_global) 308 { 309 return NULL; 310 } 311 312 /* 313 * remove_buf_file() default callback. Does nothing. 314 */ 315 static int remove_buf_file_default_callback(struct dentry *dentry) 316 { 317 return -EINVAL; 318 } 319 320 /* relay channel default callbacks */ 321 static struct rchan_callbacks default_channel_callbacks = { 322 .subbuf_start = subbuf_start_default_callback, 323 .buf_mapped = buf_mapped_default_callback, 324 .buf_unmapped = buf_unmapped_default_callback, 325 .create_buf_file = create_buf_file_default_callback, 326 .remove_buf_file = remove_buf_file_default_callback, 327 }; 328 329 /** 330 * wakeup_readers - wake up readers waiting on a channel 331 * @data: contains the channel buffer 332 * 333 * This is the timer function used to defer reader waking. 334 */ 335 static void wakeup_readers(unsigned long data) 336 { 337 struct rchan_buf *buf = (struct rchan_buf *)data; 338 wake_up_interruptible(&buf->read_wait); 339 } 340 341 /** 342 * __relay_reset - reset a channel buffer 343 * @buf: the channel buffer 344 * @init: 1 if this is a first-time initialization 345 * 346 * See relay_reset() for description of effect. 347 */ 348 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 349 { 350 size_t i; 351 352 if (init) { 353 init_waitqueue_head(&buf->read_wait); 354 kref_init(&buf->kref); 355 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf); 356 } else 357 del_timer_sync(&buf->timer); 358 359 buf->subbufs_produced = 0; 360 buf->subbufs_consumed = 0; 361 buf->bytes_consumed = 0; 362 buf->finalized = 0; 363 buf->data = buf->start; 364 buf->offset = 0; 365 366 for (i = 0; i < buf->chan->n_subbufs; i++) 367 buf->padding[i] = 0; 368 369 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 370 } 371 372 /** 373 * relay_reset - reset the channel 374 * @chan: the channel 375 * 376 * This has the effect of erasing all data from all channel buffers 377 * and restarting the channel in its initial state. The buffers 378 * are not freed, so any mappings are still in effect. 379 * 380 * NOTE. Care should be taken that the channel isn't actually 381 * being used by anything when this call is made. 382 */ 383 void relay_reset(struct rchan *chan) 384 { 385 unsigned int i; 386 387 if (!chan) 388 return; 389 390 if (chan->is_global && chan->buf[0]) { 391 __relay_reset(chan->buf[0], 0); 392 return; 393 } 394 395 mutex_lock(&relay_channels_mutex); 396 for_each_possible_cpu(i) 397 if (chan->buf[i]) 398 __relay_reset(chan->buf[i], 0); 399 mutex_unlock(&relay_channels_mutex); 400 } 401 EXPORT_SYMBOL_GPL(relay_reset); 402 403 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 404 struct dentry *dentry) 405 { 406 buf->dentry = dentry; 407 d_inode(buf->dentry)->i_size = buf->early_bytes; 408 } 409 410 static struct dentry *relay_create_buf_file(struct rchan *chan, 411 struct rchan_buf *buf, 412 unsigned int cpu) 413 { 414 struct dentry *dentry; 415 char *tmpname; 416 417 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 418 if (!tmpname) 419 return NULL; 420 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 421 422 /* Create file in fs */ 423 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 424 S_IRUSR, buf, 425 &chan->is_global); 426 427 kfree(tmpname); 428 429 return dentry; 430 } 431 432 /* 433 * relay_open_buf - create a new relay channel buffer 434 * 435 * used by relay_open() and CPU hotplug. 436 */ 437 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 438 { 439 struct rchan_buf *buf = NULL; 440 struct dentry *dentry; 441 442 if (chan->is_global) 443 return chan->buf[0]; 444 445 buf = relay_create_buf(chan); 446 if (!buf) 447 return NULL; 448 449 if (chan->has_base_filename) { 450 dentry = relay_create_buf_file(chan, buf, cpu); 451 if (!dentry) 452 goto free_buf; 453 relay_set_buf_dentry(buf, dentry); 454 } else { 455 /* Only retrieve global info, nothing more, nothing less */ 456 dentry = chan->cb->create_buf_file(NULL, NULL, 457 S_IRUSR, buf, 458 &chan->is_global); 459 if (WARN_ON(dentry)) 460 goto free_buf; 461 } 462 463 buf->cpu = cpu; 464 __relay_reset(buf, 1); 465 466 if(chan->is_global) { 467 chan->buf[0] = buf; 468 buf->cpu = 0; 469 } 470 471 return buf; 472 473 free_buf: 474 relay_destroy_buf(buf); 475 return NULL; 476 } 477 478 /** 479 * relay_close_buf - close a channel buffer 480 * @buf: channel buffer 481 * 482 * Marks the buffer finalized and restores the default callbacks. 483 * The channel buffer and channel buffer data structure are then freed 484 * automatically when the last reference is given up. 485 */ 486 static void relay_close_buf(struct rchan_buf *buf) 487 { 488 buf->finalized = 1; 489 del_timer_sync(&buf->timer); 490 buf->chan->cb->remove_buf_file(buf->dentry); 491 kref_put(&buf->kref, relay_remove_buf); 492 } 493 494 static void setup_callbacks(struct rchan *chan, 495 struct rchan_callbacks *cb) 496 { 497 if (!cb) { 498 chan->cb = &default_channel_callbacks; 499 return; 500 } 501 502 if (!cb->subbuf_start) 503 cb->subbuf_start = subbuf_start_default_callback; 504 if (!cb->buf_mapped) 505 cb->buf_mapped = buf_mapped_default_callback; 506 if (!cb->buf_unmapped) 507 cb->buf_unmapped = buf_unmapped_default_callback; 508 if (!cb->create_buf_file) 509 cb->create_buf_file = create_buf_file_default_callback; 510 if (!cb->remove_buf_file) 511 cb->remove_buf_file = remove_buf_file_default_callback; 512 chan->cb = cb; 513 } 514 515 /** 516 * relay_hotcpu_callback - CPU hotplug callback 517 * @nb: notifier block 518 * @action: hotplug action to take 519 * @hcpu: CPU number 520 * 521 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD) 522 */ 523 static int relay_hotcpu_callback(struct notifier_block *nb, 524 unsigned long action, 525 void *hcpu) 526 { 527 unsigned int hotcpu = (unsigned long)hcpu; 528 struct rchan *chan; 529 530 switch(action) { 531 case CPU_UP_PREPARE: 532 case CPU_UP_PREPARE_FROZEN: 533 mutex_lock(&relay_channels_mutex); 534 list_for_each_entry(chan, &relay_channels, list) { 535 if (chan->buf[hotcpu]) 536 continue; 537 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu); 538 if(!chan->buf[hotcpu]) { 539 printk(KERN_ERR 540 "relay_hotcpu_callback: cpu %d buffer " 541 "creation failed\n", hotcpu); 542 mutex_unlock(&relay_channels_mutex); 543 return notifier_from_errno(-ENOMEM); 544 } 545 } 546 mutex_unlock(&relay_channels_mutex); 547 break; 548 case CPU_DEAD: 549 case CPU_DEAD_FROZEN: 550 /* No need to flush the cpu : will be flushed upon 551 * final relay_flush() call. */ 552 break; 553 } 554 return NOTIFY_OK; 555 } 556 557 /** 558 * relay_open - create a new relay channel 559 * @base_filename: base name of files to create, %NULL for buffering only 560 * @parent: dentry of parent directory, %NULL for root directory or buffer 561 * @subbuf_size: size of sub-buffers 562 * @n_subbufs: number of sub-buffers 563 * @cb: client callback functions 564 * @private_data: user-defined data 565 * 566 * Returns channel pointer if successful, %NULL otherwise. 567 * 568 * Creates a channel buffer for each cpu using the sizes and 569 * attributes specified. The created channel buffer files 570 * will be named base_filename0...base_filenameN-1. File 571 * permissions will be %S_IRUSR. 572 * 573 * If opening a buffer (@parent = NULL) that you later wish to register 574 * in a filesystem, call relay_late_setup_files() once the @parent dentry 575 * is available. 576 */ 577 struct rchan *relay_open(const char *base_filename, 578 struct dentry *parent, 579 size_t subbuf_size, 580 size_t n_subbufs, 581 struct rchan_callbacks *cb, 582 void *private_data) 583 { 584 unsigned int i; 585 struct rchan *chan; 586 587 if (!(subbuf_size && n_subbufs)) 588 return NULL; 589 if (subbuf_size > UINT_MAX / n_subbufs) 590 return NULL; 591 592 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 593 if (!chan) 594 return NULL; 595 596 chan->version = RELAYFS_CHANNEL_VERSION; 597 chan->n_subbufs = n_subbufs; 598 chan->subbuf_size = subbuf_size; 599 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs); 600 chan->parent = parent; 601 chan->private_data = private_data; 602 if (base_filename) { 603 chan->has_base_filename = 1; 604 strlcpy(chan->base_filename, base_filename, NAME_MAX); 605 } 606 setup_callbacks(chan, cb); 607 kref_init(&chan->kref); 608 609 mutex_lock(&relay_channels_mutex); 610 for_each_online_cpu(i) { 611 chan->buf[i] = relay_open_buf(chan, i); 612 if (!chan->buf[i]) 613 goto free_bufs; 614 } 615 list_add(&chan->list, &relay_channels); 616 mutex_unlock(&relay_channels_mutex); 617 618 return chan; 619 620 free_bufs: 621 for_each_possible_cpu(i) { 622 if (chan->buf[i]) 623 relay_close_buf(chan->buf[i]); 624 } 625 626 kref_put(&chan->kref, relay_destroy_channel); 627 mutex_unlock(&relay_channels_mutex); 628 kfree(chan); 629 return NULL; 630 } 631 EXPORT_SYMBOL_GPL(relay_open); 632 633 struct rchan_percpu_buf_dispatcher { 634 struct rchan_buf *buf; 635 struct dentry *dentry; 636 }; 637 638 /* Called in atomic context. */ 639 static void __relay_set_buf_dentry(void *info) 640 { 641 struct rchan_percpu_buf_dispatcher *p = info; 642 643 relay_set_buf_dentry(p->buf, p->dentry); 644 } 645 646 /** 647 * relay_late_setup_files - triggers file creation 648 * @chan: channel to operate on 649 * @base_filename: base name of files to create 650 * @parent: dentry of parent directory, %NULL for root directory 651 * 652 * Returns 0 if successful, non-zero otherwise. 653 * 654 * Use to setup files for a previously buffer-only channel created 655 * by relay_open() with a NULL parent dentry. 656 * 657 * For example, this is useful for perfomring early tracing in kernel, 658 * before VFS is up and then exposing the early results once the dentry 659 * is available. 660 */ 661 int relay_late_setup_files(struct rchan *chan, 662 const char *base_filename, 663 struct dentry *parent) 664 { 665 int err = 0; 666 unsigned int i, curr_cpu; 667 unsigned long flags; 668 struct dentry *dentry; 669 struct rchan_percpu_buf_dispatcher disp; 670 671 if (!chan || !base_filename) 672 return -EINVAL; 673 674 strlcpy(chan->base_filename, base_filename, NAME_MAX); 675 676 mutex_lock(&relay_channels_mutex); 677 /* Is chan already set up? */ 678 if (unlikely(chan->has_base_filename)) { 679 mutex_unlock(&relay_channels_mutex); 680 return -EEXIST; 681 } 682 chan->has_base_filename = 1; 683 chan->parent = parent; 684 685 if (chan->is_global) { 686 err = -EINVAL; 687 if (!WARN_ON_ONCE(!chan->buf[0])) { 688 dentry = relay_create_buf_file(chan, chan->buf[0], 0); 689 if (dentry && !WARN_ON_ONCE(!chan->is_global)) { 690 relay_set_buf_dentry(chan->buf[0], dentry); 691 err = 0; 692 } 693 } 694 mutex_unlock(&relay_channels_mutex); 695 return err; 696 } 697 698 curr_cpu = get_cpu(); 699 /* 700 * The CPU hotplug notifier ran before us and created buffers with 701 * no files associated. So it's safe to call relay_setup_buf_file() 702 * on all currently online CPUs. 703 */ 704 for_each_online_cpu(i) { 705 if (unlikely(!chan->buf[i])) { 706 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n"); 707 err = -EINVAL; 708 break; 709 } 710 711 dentry = relay_create_buf_file(chan, chan->buf[i], i); 712 if (unlikely(!dentry)) { 713 err = -EINVAL; 714 break; 715 } 716 717 if (curr_cpu == i) { 718 local_irq_save(flags); 719 relay_set_buf_dentry(chan->buf[i], dentry); 720 local_irq_restore(flags); 721 } else { 722 disp.buf = chan->buf[i]; 723 disp.dentry = dentry; 724 smp_mb(); 725 /* relay_channels_mutex must be held, so wait. */ 726 err = smp_call_function_single(i, 727 __relay_set_buf_dentry, 728 &disp, 1); 729 } 730 if (unlikely(err)) 731 break; 732 } 733 put_cpu(); 734 mutex_unlock(&relay_channels_mutex); 735 736 return err; 737 } 738 EXPORT_SYMBOL_GPL(relay_late_setup_files); 739 740 /** 741 * relay_switch_subbuf - switch to a new sub-buffer 742 * @buf: channel buffer 743 * @length: size of current event 744 * 745 * Returns either the length passed in or 0 if full. 746 * 747 * Performs sub-buffer-switch tasks such as invoking callbacks, 748 * updating padding counts, waking up readers, etc. 749 */ 750 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 751 { 752 void *old, *new; 753 size_t old_subbuf, new_subbuf; 754 755 if (unlikely(length > buf->chan->subbuf_size)) 756 goto toobig; 757 758 if (buf->offset != buf->chan->subbuf_size + 1) { 759 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 760 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 761 buf->padding[old_subbuf] = buf->prev_padding; 762 buf->subbufs_produced++; 763 if (buf->dentry) 764 d_inode(buf->dentry)->i_size += 765 buf->chan->subbuf_size - 766 buf->padding[old_subbuf]; 767 else 768 buf->early_bytes += buf->chan->subbuf_size - 769 buf->padding[old_subbuf]; 770 smp_mb(); 771 if (waitqueue_active(&buf->read_wait)) 772 /* 773 * Calling wake_up_interruptible() from here 774 * will deadlock if we happen to be logging 775 * from the scheduler (trying to re-grab 776 * rq->lock), so defer it. 777 */ 778 mod_timer(&buf->timer, jiffies + 1); 779 } 780 781 old = buf->data; 782 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 783 new = buf->start + new_subbuf * buf->chan->subbuf_size; 784 buf->offset = 0; 785 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 786 buf->offset = buf->chan->subbuf_size + 1; 787 return 0; 788 } 789 buf->data = new; 790 buf->padding[new_subbuf] = 0; 791 792 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 793 goto toobig; 794 795 return length; 796 797 toobig: 798 buf->chan->last_toobig = length; 799 return 0; 800 } 801 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 802 803 /** 804 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 805 * @chan: the channel 806 * @cpu: the cpu associated with the channel buffer to update 807 * @subbufs_consumed: number of sub-buffers to add to current buf's count 808 * 809 * Adds to the channel buffer's consumed sub-buffer count. 810 * subbufs_consumed should be the number of sub-buffers newly consumed, 811 * not the total consumed. 812 * 813 * NOTE. Kernel clients don't need to call this function if the channel 814 * mode is 'overwrite'. 815 */ 816 void relay_subbufs_consumed(struct rchan *chan, 817 unsigned int cpu, 818 size_t subbufs_consumed) 819 { 820 struct rchan_buf *buf; 821 822 if (!chan) 823 return; 824 825 if (cpu >= NR_CPUS || !chan->buf[cpu] || 826 subbufs_consumed > chan->n_subbufs) 827 return; 828 829 buf = chan->buf[cpu]; 830 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) 831 buf->subbufs_consumed = buf->subbufs_produced; 832 else 833 buf->subbufs_consumed += subbufs_consumed; 834 } 835 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 836 837 /** 838 * relay_close - close the channel 839 * @chan: the channel 840 * 841 * Closes all channel buffers and frees the channel. 842 */ 843 void relay_close(struct rchan *chan) 844 { 845 unsigned int i; 846 847 if (!chan) 848 return; 849 850 mutex_lock(&relay_channels_mutex); 851 if (chan->is_global && chan->buf[0]) 852 relay_close_buf(chan->buf[0]); 853 else 854 for_each_possible_cpu(i) 855 if (chan->buf[i]) 856 relay_close_buf(chan->buf[i]); 857 858 if (chan->last_toobig) 859 printk(KERN_WARNING "relay: one or more items not logged " 860 "[item size (%Zd) > sub-buffer size (%Zd)]\n", 861 chan->last_toobig, chan->subbuf_size); 862 863 list_del(&chan->list); 864 kref_put(&chan->kref, relay_destroy_channel); 865 mutex_unlock(&relay_channels_mutex); 866 } 867 EXPORT_SYMBOL_GPL(relay_close); 868 869 /** 870 * relay_flush - close the channel 871 * @chan: the channel 872 * 873 * Flushes all channel buffers, i.e. forces buffer switch. 874 */ 875 void relay_flush(struct rchan *chan) 876 { 877 unsigned int i; 878 879 if (!chan) 880 return; 881 882 if (chan->is_global && chan->buf[0]) { 883 relay_switch_subbuf(chan->buf[0], 0); 884 return; 885 } 886 887 mutex_lock(&relay_channels_mutex); 888 for_each_possible_cpu(i) 889 if (chan->buf[i]) 890 relay_switch_subbuf(chan->buf[i], 0); 891 mutex_unlock(&relay_channels_mutex); 892 } 893 EXPORT_SYMBOL_GPL(relay_flush); 894 895 /** 896 * relay_file_open - open file op for relay files 897 * @inode: the inode 898 * @filp: the file 899 * 900 * Increments the channel buffer refcount. 901 */ 902 static int relay_file_open(struct inode *inode, struct file *filp) 903 { 904 struct rchan_buf *buf = inode->i_private; 905 kref_get(&buf->kref); 906 filp->private_data = buf; 907 908 return nonseekable_open(inode, filp); 909 } 910 911 /** 912 * relay_file_mmap - mmap file op for relay files 913 * @filp: the file 914 * @vma: the vma describing what to map 915 * 916 * Calls upon relay_mmap_buf() to map the file into user space. 917 */ 918 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 919 { 920 struct rchan_buf *buf = filp->private_data; 921 return relay_mmap_buf(buf, vma); 922 } 923 924 /** 925 * relay_file_poll - poll file op for relay files 926 * @filp: the file 927 * @wait: poll table 928 * 929 * Poll implemention. 930 */ 931 static unsigned int relay_file_poll(struct file *filp, poll_table *wait) 932 { 933 unsigned int mask = 0; 934 struct rchan_buf *buf = filp->private_data; 935 936 if (buf->finalized) 937 return POLLERR; 938 939 if (filp->f_mode & FMODE_READ) { 940 poll_wait(filp, &buf->read_wait, wait); 941 if (!relay_buf_empty(buf)) 942 mask |= POLLIN | POLLRDNORM; 943 } 944 945 return mask; 946 } 947 948 /** 949 * relay_file_release - release file op for relay files 950 * @inode: the inode 951 * @filp: the file 952 * 953 * Decrements the channel refcount, as the filesystem is 954 * no longer using it. 955 */ 956 static int relay_file_release(struct inode *inode, struct file *filp) 957 { 958 struct rchan_buf *buf = filp->private_data; 959 kref_put(&buf->kref, relay_remove_buf); 960 961 return 0; 962 } 963 964 /* 965 * relay_file_read_consume - update the consumed count for the buffer 966 */ 967 static void relay_file_read_consume(struct rchan_buf *buf, 968 size_t read_pos, 969 size_t bytes_consumed) 970 { 971 size_t subbuf_size = buf->chan->subbuf_size; 972 size_t n_subbufs = buf->chan->n_subbufs; 973 size_t read_subbuf; 974 975 if (buf->subbufs_produced == buf->subbufs_consumed && 976 buf->offset == buf->bytes_consumed) 977 return; 978 979 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 980 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 981 buf->bytes_consumed = 0; 982 } 983 984 buf->bytes_consumed += bytes_consumed; 985 if (!read_pos) 986 read_subbuf = buf->subbufs_consumed % n_subbufs; 987 else 988 read_subbuf = read_pos / buf->chan->subbuf_size; 989 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 990 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 991 (buf->offset == subbuf_size)) 992 return; 993 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 994 buf->bytes_consumed = 0; 995 } 996 } 997 998 /* 999 * relay_file_read_avail - boolean, are there unconsumed bytes available? 1000 */ 1001 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) 1002 { 1003 size_t subbuf_size = buf->chan->subbuf_size; 1004 size_t n_subbufs = buf->chan->n_subbufs; 1005 size_t produced = buf->subbufs_produced; 1006 size_t consumed = buf->subbufs_consumed; 1007 1008 relay_file_read_consume(buf, read_pos, 0); 1009 1010 consumed = buf->subbufs_consumed; 1011 1012 if (unlikely(buf->offset > subbuf_size)) { 1013 if (produced == consumed) 1014 return 0; 1015 return 1; 1016 } 1017 1018 if (unlikely(produced - consumed >= n_subbufs)) { 1019 consumed = produced - n_subbufs + 1; 1020 buf->subbufs_consumed = consumed; 1021 buf->bytes_consumed = 0; 1022 } 1023 1024 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 1025 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 1026 1027 if (consumed > produced) 1028 produced += n_subbufs * subbuf_size; 1029 1030 if (consumed == produced) { 1031 if (buf->offset == subbuf_size && 1032 buf->subbufs_produced > buf->subbufs_consumed) 1033 return 1; 1034 return 0; 1035 } 1036 1037 return 1; 1038 } 1039 1040 /** 1041 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 1042 * @read_pos: file read position 1043 * @buf: relay channel buffer 1044 */ 1045 static size_t relay_file_read_subbuf_avail(size_t read_pos, 1046 struct rchan_buf *buf) 1047 { 1048 size_t padding, avail = 0; 1049 size_t read_subbuf, read_offset, write_subbuf, write_offset; 1050 size_t subbuf_size = buf->chan->subbuf_size; 1051 1052 write_subbuf = (buf->data - buf->start) / subbuf_size; 1053 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 1054 read_subbuf = read_pos / subbuf_size; 1055 read_offset = read_pos % subbuf_size; 1056 padding = buf->padding[read_subbuf]; 1057 1058 if (read_subbuf == write_subbuf) { 1059 if (read_offset + padding < write_offset) 1060 avail = write_offset - (read_offset + padding); 1061 } else 1062 avail = (subbuf_size - padding) - read_offset; 1063 1064 return avail; 1065 } 1066 1067 /** 1068 * relay_file_read_start_pos - find the first available byte to read 1069 * @read_pos: file read position 1070 * @buf: relay channel buffer 1071 * 1072 * If the @read_pos is in the middle of padding, return the 1073 * position of the first actually available byte, otherwise 1074 * return the original value. 1075 */ 1076 static size_t relay_file_read_start_pos(size_t read_pos, 1077 struct rchan_buf *buf) 1078 { 1079 size_t read_subbuf, padding, padding_start, padding_end; 1080 size_t subbuf_size = buf->chan->subbuf_size; 1081 size_t n_subbufs = buf->chan->n_subbufs; 1082 size_t consumed = buf->subbufs_consumed % n_subbufs; 1083 1084 if (!read_pos) 1085 read_pos = consumed * subbuf_size + buf->bytes_consumed; 1086 read_subbuf = read_pos / subbuf_size; 1087 padding = buf->padding[read_subbuf]; 1088 padding_start = (read_subbuf + 1) * subbuf_size - padding; 1089 padding_end = (read_subbuf + 1) * subbuf_size; 1090 if (read_pos >= padding_start && read_pos < padding_end) { 1091 read_subbuf = (read_subbuf + 1) % n_subbufs; 1092 read_pos = read_subbuf * subbuf_size; 1093 } 1094 1095 return read_pos; 1096 } 1097 1098 /** 1099 * relay_file_read_end_pos - return the new read position 1100 * @read_pos: file read position 1101 * @buf: relay channel buffer 1102 * @count: number of bytes to be read 1103 */ 1104 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 1105 size_t read_pos, 1106 size_t count) 1107 { 1108 size_t read_subbuf, padding, end_pos; 1109 size_t subbuf_size = buf->chan->subbuf_size; 1110 size_t n_subbufs = buf->chan->n_subbufs; 1111 1112 read_subbuf = read_pos / subbuf_size; 1113 padding = buf->padding[read_subbuf]; 1114 if (read_pos % subbuf_size + count + padding == subbuf_size) 1115 end_pos = (read_subbuf + 1) * subbuf_size; 1116 else 1117 end_pos = read_pos + count; 1118 if (end_pos >= subbuf_size * n_subbufs) 1119 end_pos = 0; 1120 1121 return end_pos; 1122 } 1123 1124 /* 1125 * subbuf_read_actor - read up to one subbuf's worth of data 1126 */ 1127 static int subbuf_read_actor(size_t read_start, 1128 struct rchan_buf *buf, 1129 size_t avail, 1130 read_descriptor_t *desc) 1131 { 1132 void *from; 1133 int ret = 0; 1134 1135 from = buf->start + read_start; 1136 ret = avail; 1137 if (copy_to_user(desc->arg.buf, from, avail)) { 1138 desc->error = -EFAULT; 1139 ret = 0; 1140 } 1141 desc->arg.data += ret; 1142 desc->written += ret; 1143 desc->count -= ret; 1144 1145 return ret; 1146 } 1147 1148 typedef int (*subbuf_actor_t) (size_t read_start, 1149 struct rchan_buf *buf, 1150 size_t avail, 1151 read_descriptor_t *desc); 1152 1153 /* 1154 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries 1155 */ 1156 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos, 1157 subbuf_actor_t subbuf_actor, 1158 read_descriptor_t *desc) 1159 { 1160 struct rchan_buf *buf = filp->private_data; 1161 size_t read_start, avail; 1162 int ret; 1163 1164 if (!desc->count) 1165 return 0; 1166 1167 inode_lock(file_inode(filp)); 1168 do { 1169 if (!relay_file_read_avail(buf, *ppos)) 1170 break; 1171 1172 read_start = relay_file_read_start_pos(*ppos, buf); 1173 avail = relay_file_read_subbuf_avail(read_start, buf); 1174 if (!avail) 1175 break; 1176 1177 avail = min(desc->count, avail); 1178 ret = subbuf_actor(read_start, buf, avail, desc); 1179 if (desc->error < 0) 1180 break; 1181 1182 if (ret) { 1183 relay_file_read_consume(buf, read_start, ret); 1184 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1185 } 1186 } while (desc->count && ret); 1187 inode_unlock(file_inode(filp)); 1188 1189 return desc->written; 1190 } 1191 1192 static ssize_t relay_file_read(struct file *filp, 1193 char __user *buffer, 1194 size_t count, 1195 loff_t *ppos) 1196 { 1197 read_descriptor_t desc; 1198 desc.written = 0; 1199 desc.count = count; 1200 desc.arg.buf = buffer; 1201 desc.error = 0; 1202 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc); 1203 } 1204 1205 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1206 { 1207 rbuf->bytes_consumed += bytes_consumed; 1208 1209 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1210 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1211 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1212 } 1213 } 1214 1215 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1216 struct pipe_buffer *buf) 1217 { 1218 struct rchan_buf *rbuf; 1219 1220 rbuf = (struct rchan_buf *)page_private(buf->page); 1221 relay_consume_bytes(rbuf, buf->private); 1222 } 1223 1224 static const struct pipe_buf_operations relay_pipe_buf_ops = { 1225 .can_merge = 0, 1226 .confirm = generic_pipe_buf_confirm, 1227 .release = relay_pipe_buf_release, 1228 .steal = generic_pipe_buf_steal, 1229 .get = generic_pipe_buf_get, 1230 }; 1231 1232 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1233 { 1234 } 1235 1236 /* 1237 * subbuf_splice_actor - splice up to one subbuf's worth of data 1238 */ 1239 static ssize_t subbuf_splice_actor(struct file *in, 1240 loff_t *ppos, 1241 struct pipe_inode_info *pipe, 1242 size_t len, 1243 unsigned int flags, 1244 int *nonpad_ret) 1245 { 1246 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages; 1247 struct rchan_buf *rbuf = in->private_data; 1248 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1249 uint64_t pos = (uint64_t) *ppos; 1250 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1251 size_t read_start = (size_t) do_div(pos, alloc_size); 1252 size_t read_subbuf = read_start / subbuf_size; 1253 size_t padding = rbuf->padding[read_subbuf]; 1254 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1255 struct page *pages[PIPE_DEF_BUFFERS]; 1256 struct partial_page partial[PIPE_DEF_BUFFERS]; 1257 struct splice_pipe_desc spd = { 1258 .pages = pages, 1259 .nr_pages = 0, 1260 .nr_pages_max = PIPE_DEF_BUFFERS, 1261 .partial = partial, 1262 .flags = flags, 1263 .ops = &relay_pipe_buf_ops, 1264 .spd_release = relay_page_release, 1265 }; 1266 ssize_t ret; 1267 1268 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1269 return 0; 1270 if (splice_grow_spd(pipe, &spd)) 1271 return -ENOMEM; 1272 1273 /* 1274 * Adjust read len, if longer than what is available 1275 */ 1276 if (len > (subbuf_size - read_start % subbuf_size)) 1277 len = subbuf_size - read_start % subbuf_size; 1278 1279 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1280 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1281 poff = read_start & ~PAGE_MASK; 1282 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max); 1283 1284 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1285 unsigned int this_len, this_end, private; 1286 unsigned int cur_pos = read_start + total_len; 1287 1288 if (!len) 1289 break; 1290 1291 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1292 private = this_len; 1293 1294 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1295 spd.partial[spd.nr_pages].offset = poff; 1296 1297 this_end = cur_pos + this_len; 1298 if (this_end >= nonpad_end) { 1299 this_len = nonpad_end - cur_pos; 1300 private = this_len + padding; 1301 } 1302 spd.partial[spd.nr_pages].len = this_len; 1303 spd.partial[spd.nr_pages].private = private; 1304 1305 len -= this_len; 1306 total_len += this_len; 1307 poff = 0; 1308 pidx = (pidx + 1) % subbuf_pages; 1309 1310 if (this_end >= nonpad_end) { 1311 spd.nr_pages++; 1312 break; 1313 } 1314 } 1315 1316 ret = 0; 1317 if (!spd.nr_pages) 1318 goto out; 1319 1320 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1321 if (ret < 0 || ret < total_len) 1322 goto out; 1323 1324 if (read_start + ret == nonpad_end) 1325 ret += padding; 1326 1327 out: 1328 splice_shrink_spd(&spd); 1329 return ret; 1330 } 1331 1332 static ssize_t relay_file_splice_read(struct file *in, 1333 loff_t *ppos, 1334 struct pipe_inode_info *pipe, 1335 size_t len, 1336 unsigned int flags) 1337 { 1338 ssize_t spliced; 1339 int ret; 1340 int nonpad_ret = 0; 1341 1342 ret = 0; 1343 spliced = 0; 1344 1345 while (len && !spliced) { 1346 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1347 if (ret < 0) 1348 break; 1349 else if (!ret) { 1350 if (flags & SPLICE_F_NONBLOCK) 1351 ret = -EAGAIN; 1352 break; 1353 } 1354 1355 *ppos += ret; 1356 if (ret > len) 1357 len = 0; 1358 else 1359 len -= ret; 1360 spliced += nonpad_ret; 1361 nonpad_ret = 0; 1362 } 1363 1364 if (spliced) 1365 return spliced; 1366 1367 return ret; 1368 } 1369 1370 const struct file_operations relay_file_operations = { 1371 .open = relay_file_open, 1372 .poll = relay_file_poll, 1373 .mmap = relay_file_mmap, 1374 .read = relay_file_read, 1375 .llseek = no_llseek, 1376 .release = relay_file_release, 1377 .splice_read = relay_file_splice_read, 1378 }; 1379 EXPORT_SYMBOL_GPL(relay_file_operations); 1380 1381 static __init int relay_init(void) 1382 { 1383 1384 hotcpu_notifier(relay_hotcpu_callback, 0); 1385 return 0; 1386 } 1387 1388 early_initcall(relay_init); 1389