1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.txt for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * fault() vm_op implementation for relay file mapping. 41 */ 42 static int relay_buf_fault(struct vm_fault *vmf) 43 { 44 struct page *page; 45 struct rchan_buf *buf = vmf->vma->vm_private_data; 46 pgoff_t pgoff = vmf->pgoff; 47 48 if (!buf) 49 return VM_FAULT_OOM; 50 51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 52 if (!page) 53 return VM_FAULT_SIGBUS; 54 get_page(page); 55 vmf->page = page; 56 57 return 0; 58 } 59 60 /* 61 * vm_ops for relay file mappings. 62 */ 63 static const struct vm_operations_struct relay_file_mmap_ops = { 64 .fault = relay_buf_fault, 65 .close = relay_file_mmap_close, 66 }; 67 68 /* 69 * allocate an array of pointers of struct page 70 */ 71 static struct page **relay_alloc_page_array(unsigned int n_pages) 72 { 73 const size_t pa_size = n_pages * sizeof(struct page *); 74 if (pa_size > PAGE_SIZE) 75 return vzalloc(pa_size); 76 return kzalloc(pa_size, GFP_KERNEL); 77 } 78 79 /* 80 * free an array of pointers of struct page 81 */ 82 static void relay_free_page_array(struct page **array) 83 { 84 kvfree(array); 85 } 86 87 /** 88 * relay_mmap_buf: - mmap channel buffer to process address space 89 * @buf: relay channel buffer 90 * @vma: vm_area_struct describing memory to be mapped 91 * 92 * Returns 0 if ok, negative on error 93 * 94 * Caller should already have grabbed mmap_sem. 95 */ 96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 97 { 98 unsigned long length = vma->vm_end - vma->vm_start; 99 struct file *filp = vma->vm_file; 100 101 if (!buf) 102 return -EBADF; 103 104 if (length != (unsigned long)buf->chan->alloc_size) 105 return -EINVAL; 106 107 vma->vm_ops = &relay_file_mmap_ops; 108 vma->vm_flags |= VM_DONTEXPAND; 109 vma->vm_private_data = buf; 110 buf->chan->cb->buf_mapped(buf, filp); 111 112 return 0; 113 } 114 115 /** 116 * relay_alloc_buf - allocate a channel buffer 117 * @buf: the buffer struct 118 * @size: total size of the buffer 119 * 120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 121 * passed in size will get page aligned, if it isn't already. 122 */ 123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 124 { 125 void *mem; 126 unsigned int i, j, n_pages; 127 128 *size = PAGE_ALIGN(*size); 129 n_pages = *size >> PAGE_SHIFT; 130 131 buf->page_array = relay_alloc_page_array(n_pages); 132 if (!buf->page_array) 133 return NULL; 134 135 for (i = 0; i < n_pages; i++) { 136 buf->page_array[i] = alloc_page(GFP_KERNEL); 137 if (unlikely(!buf->page_array[i])) 138 goto depopulate; 139 set_page_private(buf->page_array[i], (unsigned long)buf); 140 } 141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 142 if (!mem) 143 goto depopulate; 144 145 memset(mem, 0, *size); 146 buf->page_count = n_pages; 147 return mem; 148 149 depopulate: 150 for (j = 0; j < i; j++) 151 __free_page(buf->page_array[j]); 152 relay_free_page_array(buf->page_array); 153 return NULL; 154 } 155 156 /** 157 * relay_create_buf - allocate and initialize a channel buffer 158 * @chan: the relay channel 159 * 160 * Returns channel buffer if successful, %NULL otherwise. 161 */ 162 static struct rchan_buf *relay_create_buf(struct rchan *chan) 163 { 164 struct rchan_buf *buf; 165 166 if (chan->n_subbufs > UINT_MAX / sizeof(size_t *)) 167 return NULL; 168 169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 170 if (!buf) 171 return NULL; 172 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); 173 if (!buf->padding) 174 goto free_buf; 175 176 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 177 if (!buf->start) 178 goto free_buf; 179 180 buf->chan = chan; 181 kref_get(&buf->chan->kref); 182 return buf; 183 184 free_buf: 185 kfree(buf->padding); 186 kfree(buf); 187 return NULL; 188 } 189 190 /** 191 * relay_destroy_channel - free the channel struct 192 * @kref: target kernel reference that contains the relay channel 193 * 194 * Should only be called from kref_put(). 195 */ 196 static void relay_destroy_channel(struct kref *kref) 197 { 198 struct rchan *chan = container_of(kref, struct rchan, kref); 199 kfree(chan); 200 } 201 202 /** 203 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 204 * @buf: the buffer struct 205 */ 206 static void relay_destroy_buf(struct rchan_buf *buf) 207 { 208 struct rchan *chan = buf->chan; 209 unsigned int i; 210 211 if (likely(buf->start)) { 212 vunmap(buf->start); 213 for (i = 0; i < buf->page_count; i++) 214 __free_page(buf->page_array[i]); 215 relay_free_page_array(buf->page_array); 216 } 217 *per_cpu_ptr(chan->buf, buf->cpu) = NULL; 218 kfree(buf->padding); 219 kfree(buf); 220 kref_put(&chan->kref, relay_destroy_channel); 221 } 222 223 /** 224 * relay_remove_buf - remove a channel buffer 225 * @kref: target kernel reference that contains the relay buffer 226 * 227 * Removes the file from the filesystem, which also frees the 228 * rchan_buf_struct and the channel buffer. Should only be called from 229 * kref_put(). 230 */ 231 static void relay_remove_buf(struct kref *kref) 232 { 233 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 234 relay_destroy_buf(buf); 235 } 236 237 /** 238 * relay_buf_empty - boolean, is the channel buffer empty? 239 * @buf: channel buffer 240 * 241 * Returns 1 if the buffer is empty, 0 otherwise. 242 */ 243 static int relay_buf_empty(struct rchan_buf *buf) 244 { 245 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 246 } 247 248 /** 249 * relay_buf_full - boolean, is the channel buffer full? 250 * @buf: channel buffer 251 * 252 * Returns 1 if the buffer is full, 0 otherwise. 253 */ 254 int relay_buf_full(struct rchan_buf *buf) 255 { 256 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 257 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 258 } 259 EXPORT_SYMBOL_GPL(relay_buf_full); 260 261 /* 262 * High-level relay kernel API and associated functions. 263 */ 264 265 /* 266 * rchan_callback implementations defining default channel behavior. Used 267 * in place of corresponding NULL values in client callback struct. 268 */ 269 270 /* 271 * subbuf_start() default callback. Does nothing. 272 */ 273 static int subbuf_start_default_callback (struct rchan_buf *buf, 274 void *subbuf, 275 void *prev_subbuf, 276 size_t prev_padding) 277 { 278 if (relay_buf_full(buf)) 279 return 0; 280 281 return 1; 282 } 283 284 /* 285 * buf_mapped() default callback. Does nothing. 286 */ 287 static void buf_mapped_default_callback(struct rchan_buf *buf, 288 struct file *filp) 289 { 290 } 291 292 /* 293 * buf_unmapped() default callback. Does nothing. 294 */ 295 static void buf_unmapped_default_callback(struct rchan_buf *buf, 296 struct file *filp) 297 { 298 } 299 300 /* 301 * create_buf_file_create() default callback. Does nothing. 302 */ 303 static struct dentry *create_buf_file_default_callback(const char *filename, 304 struct dentry *parent, 305 umode_t mode, 306 struct rchan_buf *buf, 307 int *is_global) 308 { 309 return NULL; 310 } 311 312 /* 313 * remove_buf_file() default callback. Does nothing. 314 */ 315 static int remove_buf_file_default_callback(struct dentry *dentry) 316 { 317 return -EINVAL; 318 } 319 320 /* relay channel default callbacks */ 321 static struct rchan_callbacks default_channel_callbacks = { 322 .subbuf_start = subbuf_start_default_callback, 323 .buf_mapped = buf_mapped_default_callback, 324 .buf_unmapped = buf_unmapped_default_callback, 325 .create_buf_file = create_buf_file_default_callback, 326 .remove_buf_file = remove_buf_file_default_callback, 327 }; 328 329 /** 330 * wakeup_readers - wake up readers waiting on a channel 331 * @work: contains the channel buffer 332 * 333 * This is the function used to defer reader waking 334 */ 335 static void wakeup_readers(struct irq_work *work) 336 { 337 struct rchan_buf *buf; 338 339 buf = container_of(work, struct rchan_buf, wakeup_work); 340 wake_up_interruptible(&buf->read_wait); 341 } 342 343 /** 344 * __relay_reset - reset a channel buffer 345 * @buf: the channel buffer 346 * @init: 1 if this is a first-time initialization 347 * 348 * See relay_reset() for description of effect. 349 */ 350 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 351 { 352 size_t i; 353 354 if (init) { 355 init_waitqueue_head(&buf->read_wait); 356 kref_init(&buf->kref); 357 init_irq_work(&buf->wakeup_work, wakeup_readers); 358 } else { 359 irq_work_sync(&buf->wakeup_work); 360 } 361 362 buf->subbufs_produced = 0; 363 buf->subbufs_consumed = 0; 364 buf->bytes_consumed = 0; 365 buf->finalized = 0; 366 buf->data = buf->start; 367 buf->offset = 0; 368 369 for (i = 0; i < buf->chan->n_subbufs; i++) 370 buf->padding[i] = 0; 371 372 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 373 } 374 375 /** 376 * relay_reset - reset the channel 377 * @chan: the channel 378 * 379 * This has the effect of erasing all data from all channel buffers 380 * and restarting the channel in its initial state. The buffers 381 * are not freed, so any mappings are still in effect. 382 * 383 * NOTE. Care should be taken that the channel isn't actually 384 * being used by anything when this call is made. 385 */ 386 void relay_reset(struct rchan *chan) 387 { 388 struct rchan_buf *buf; 389 unsigned int i; 390 391 if (!chan) 392 return; 393 394 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 395 __relay_reset(buf, 0); 396 return; 397 } 398 399 mutex_lock(&relay_channels_mutex); 400 for_each_possible_cpu(i) 401 if ((buf = *per_cpu_ptr(chan->buf, i))) 402 __relay_reset(buf, 0); 403 mutex_unlock(&relay_channels_mutex); 404 } 405 EXPORT_SYMBOL_GPL(relay_reset); 406 407 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 408 struct dentry *dentry) 409 { 410 buf->dentry = dentry; 411 d_inode(buf->dentry)->i_size = buf->early_bytes; 412 } 413 414 static struct dentry *relay_create_buf_file(struct rchan *chan, 415 struct rchan_buf *buf, 416 unsigned int cpu) 417 { 418 struct dentry *dentry; 419 char *tmpname; 420 421 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 422 if (!tmpname) 423 return NULL; 424 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 425 426 /* Create file in fs */ 427 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 428 S_IRUSR, buf, 429 &chan->is_global); 430 431 kfree(tmpname); 432 433 return dentry; 434 } 435 436 /* 437 * relay_open_buf - create a new relay channel buffer 438 * 439 * used by relay_open() and CPU hotplug. 440 */ 441 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 442 { 443 struct rchan_buf *buf = NULL; 444 struct dentry *dentry; 445 446 if (chan->is_global) 447 return *per_cpu_ptr(chan->buf, 0); 448 449 buf = relay_create_buf(chan); 450 if (!buf) 451 return NULL; 452 453 if (chan->has_base_filename) { 454 dentry = relay_create_buf_file(chan, buf, cpu); 455 if (!dentry) 456 goto free_buf; 457 relay_set_buf_dentry(buf, dentry); 458 } else { 459 /* Only retrieve global info, nothing more, nothing less */ 460 dentry = chan->cb->create_buf_file(NULL, NULL, 461 S_IRUSR, buf, 462 &chan->is_global); 463 if (WARN_ON(dentry)) 464 goto free_buf; 465 } 466 467 buf->cpu = cpu; 468 __relay_reset(buf, 1); 469 470 if(chan->is_global) { 471 *per_cpu_ptr(chan->buf, 0) = buf; 472 buf->cpu = 0; 473 } 474 475 return buf; 476 477 free_buf: 478 relay_destroy_buf(buf); 479 return NULL; 480 } 481 482 /** 483 * relay_close_buf - close a channel buffer 484 * @buf: channel buffer 485 * 486 * Marks the buffer finalized and restores the default callbacks. 487 * The channel buffer and channel buffer data structure are then freed 488 * automatically when the last reference is given up. 489 */ 490 static void relay_close_buf(struct rchan_buf *buf) 491 { 492 buf->finalized = 1; 493 irq_work_sync(&buf->wakeup_work); 494 buf->chan->cb->remove_buf_file(buf->dentry); 495 kref_put(&buf->kref, relay_remove_buf); 496 } 497 498 static void setup_callbacks(struct rchan *chan, 499 struct rchan_callbacks *cb) 500 { 501 if (!cb) { 502 chan->cb = &default_channel_callbacks; 503 return; 504 } 505 506 if (!cb->subbuf_start) 507 cb->subbuf_start = subbuf_start_default_callback; 508 if (!cb->buf_mapped) 509 cb->buf_mapped = buf_mapped_default_callback; 510 if (!cb->buf_unmapped) 511 cb->buf_unmapped = buf_unmapped_default_callback; 512 if (!cb->create_buf_file) 513 cb->create_buf_file = create_buf_file_default_callback; 514 if (!cb->remove_buf_file) 515 cb->remove_buf_file = remove_buf_file_default_callback; 516 chan->cb = cb; 517 } 518 519 int relay_prepare_cpu(unsigned int cpu) 520 { 521 struct rchan *chan; 522 struct rchan_buf *buf; 523 524 mutex_lock(&relay_channels_mutex); 525 list_for_each_entry(chan, &relay_channels, list) { 526 if ((buf = *per_cpu_ptr(chan->buf, cpu))) 527 continue; 528 buf = relay_open_buf(chan, cpu); 529 if (!buf) { 530 pr_err("relay: cpu %d buffer creation failed\n", cpu); 531 mutex_unlock(&relay_channels_mutex); 532 return -ENOMEM; 533 } 534 *per_cpu_ptr(chan->buf, cpu) = buf; 535 } 536 mutex_unlock(&relay_channels_mutex); 537 return 0; 538 } 539 540 /** 541 * relay_open - create a new relay channel 542 * @base_filename: base name of files to create, %NULL for buffering only 543 * @parent: dentry of parent directory, %NULL for root directory or buffer 544 * @subbuf_size: size of sub-buffers 545 * @n_subbufs: number of sub-buffers 546 * @cb: client callback functions 547 * @private_data: user-defined data 548 * 549 * Returns channel pointer if successful, %NULL otherwise. 550 * 551 * Creates a channel buffer for each cpu using the sizes and 552 * attributes specified. The created channel buffer files 553 * will be named base_filename0...base_filenameN-1. File 554 * permissions will be %S_IRUSR. 555 * 556 * If opening a buffer (@parent = NULL) that you later wish to register 557 * in a filesystem, call relay_late_setup_files() once the @parent dentry 558 * is available. 559 */ 560 struct rchan *relay_open(const char *base_filename, 561 struct dentry *parent, 562 size_t subbuf_size, 563 size_t n_subbufs, 564 struct rchan_callbacks *cb, 565 void *private_data) 566 { 567 unsigned int i; 568 struct rchan *chan; 569 struct rchan_buf *buf; 570 571 if (!(subbuf_size && n_subbufs)) 572 return NULL; 573 if (subbuf_size > UINT_MAX / n_subbufs) 574 return NULL; 575 576 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 577 if (!chan) 578 return NULL; 579 580 chan->buf = alloc_percpu(struct rchan_buf *); 581 chan->version = RELAYFS_CHANNEL_VERSION; 582 chan->n_subbufs = n_subbufs; 583 chan->subbuf_size = subbuf_size; 584 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs); 585 chan->parent = parent; 586 chan->private_data = private_data; 587 if (base_filename) { 588 chan->has_base_filename = 1; 589 strlcpy(chan->base_filename, base_filename, NAME_MAX); 590 } 591 setup_callbacks(chan, cb); 592 kref_init(&chan->kref); 593 594 mutex_lock(&relay_channels_mutex); 595 for_each_online_cpu(i) { 596 buf = relay_open_buf(chan, i); 597 if (!buf) 598 goto free_bufs; 599 *per_cpu_ptr(chan->buf, i) = buf; 600 } 601 list_add(&chan->list, &relay_channels); 602 mutex_unlock(&relay_channels_mutex); 603 604 return chan; 605 606 free_bufs: 607 for_each_possible_cpu(i) { 608 if ((buf = *per_cpu_ptr(chan->buf, i))) 609 relay_close_buf(buf); 610 } 611 612 kref_put(&chan->kref, relay_destroy_channel); 613 mutex_unlock(&relay_channels_mutex); 614 kfree(chan); 615 return NULL; 616 } 617 EXPORT_SYMBOL_GPL(relay_open); 618 619 struct rchan_percpu_buf_dispatcher { 620 struct rchan_buf *buf; 621 struct dentry *dentry; 622 }; 623 624 /* Called in atomic context. */ 625 static void __relay_set_buf_dentry(void *info) 626 { 627 struct rchan_percpu_buf_dispatcher *p = info; 628 629 relay_set_buf_dentry(p->buf, p->dentry); 630 } 631 632 /** 633 * relay_late_setup_files - triggers file creation 634 * @chan: channel to operate on 635 * @base_filename: base name of files to create 636 * @parent: dentry of parent directory, %NULL for root directory 637 * 638 * Returns 0 if successful, non-zero otherwise. 639 * 640 * Use to setup files for a previously buffer-only channel created 641 * by relay_open() with a NULL parent dentry. 642 * 643 * For example, this is useful for perfomring early tracing in kernel, 644 * before VFS is up and then exposing the early results once the dentry 645 * is available. 646 */ 647 int relay_late_setup_files(struct rchan *chan, 648 const char *base_filename, 649 struct dentry *parent) 650 { 651 int err = 0; 652 unsigned int i, curr_cpu; 653 unsigned long flags; 654 struct dentry *dentry; 655 struct rchan_buf *buf; 656 struct rchan_percpu_buf_dispatcher disp; 657 658 if (!chan || !base_filename) 659 return -EINVAL; 660 661 strlcpy(chan->base_filename, base_filename, NAME_MAX); 662 663 mutex_lock(&relay_channels_mutex); 664 /* Is chan already set up? */ 665 if (unlikely(chan->has_base_filename)) { 666 mutex_unlock(&relay_channels_mutex); 667 return -EEXIST; 668 } 669 chan->has_base_filename = 1; 670 chan->parent = parent; 671 672 if (chan->is_global) { 673 err = -EINVAL; 674 buf = *per_cpu_ptr(chan->buf, 0); 675 if (!WARN_ON_ONCE(!buf)) { 676 dentry = relay_create_buf_file(chan, buf, 0); 677 if (dentry && !WARN_ON_ONCE(!chan->is_global)) { 678 relay_set_buf_dentry(buf, dentry); 679 err = 0; 680 } 681 } 682 mutex_unlock(&relay_channels_mutex); 683 return err; 684 } 685 686 curr_cpu = get_cpu(); 687 /* 688 * The CPU hotplug notifier ran before us and created buffers with 689 * no files associated. So it's safe to call relay_setup_buf_file() 690 * on all currently online CPUs. 691 */ 692 for_each_online_cpu(i) { 693 buf = *per_cpu_ptr(chan->buf, i); 694 if (unlikely(!buf)) { 695 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n"); 696 err = -EINVAL; 697 break; 698 } 699 700 dentry = relay_create_buf_file(chan, buf, i); 701 if (unlikely(!dentry)) { 702 err = -EINVAL; 703 break; 704 } 705 706 if (curr_cpu == i) { 707 local_irq_save(flags); 708 relay_set_buf_dentry(buf, dentry); 709 local_irq_restore(flags); 710 } else { 711 disp.buf = buf; 712 disp.dentry = dentry; 713 smp_mb(); 714 /* relay_channels_mutex must be held, so wait. */ 715 err = smp_call_function_single(i, 716 __relay_set_buf_dentry, 717 &disp, 1); 718 } 719 if (unlikely(err)) 720 break; 721 } 722 put_cpu(); 723 mutex_unlock(&relay_channels_mutex); 724 725 return err; 726 } 727 EXPORT_SYMBOL_GPL(relay_late_setup_files); 728 729 /** 730 * relay_switch_subbuf - switch to a new sub-buffer 731 * @buf: channel buffer 732 * @length: size of current event 733 * 734 * Returns either the length passed in or 0 if full. 735 * 736 * Performs sub-buffer-switch tasks such as invoking callbacks, 737 * updating padding counts, waking up readers, etc. 738 */ 739 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 740 { 741 void *old, *new; 742 size_t old_subbuf, new_subbuf; 743 744 if (unlikely(length > buf->chan->subbuf_size)) 745 goto toobig; 746 747 if (buf->offset != buf->chan->subbuf_size + 1) { 748 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 749 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 750 buf->padding[old_subbuf] = buf->prev_padding; 751 buf->subbufs_produced++; 752 if (buf->dentry) 753 d_inode(buf->dentry)->i_size += 754 buf->chan->subbuf_size - 755 buf->padding[old_subbuf]; 756 else 757 buf->early_bytes += buf->chan->subbuf_size - 758 buf->padding[old_subbuf]; 759 smp_mb(); 760 if (waitqueue_active(&buf->read_wait)) { 761 /* 762 * Calling wake_up_interruptible() from here 763 * will deadlock if we happen to be logging 764 * from the scheduler (trying to re-grab 765 * rq->lock), so defer it. 766 */ 767 irq_work_queue(&buf->wakeup_work); 768 } 769 } 770 771 old = buf->data; 772 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 773 new = buf->start + new_subbuf * buf->chan->subbuf_size; 774 buf->offset = 0; 775 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 776 buf->offset = buf->chan->subbuf_size + 1; 777 return 0; 778 } 779 buf->data = new; 780 buf->padding[new_subbuf] = 0; 781 782 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 783 goto toobig; 784 785 return length; 786 787 toobig: 788 buf->chan->last_toobig = length; 789 return 0; 790 } 791 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 792 793 /** 794 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 795 * @chan: the channel 796 * @cpu: the cpu associated with the channel buffer to update 797 * @subbufs_consumed: number of sub-buffers to add to current buf's count 798 * 799 * Adds to the channel buffer's consumed sub-buffer count. 800 * subbufs_consumed should be the number of sub-buffers newly consumed, 801 * not the total consumed. 802 * 803 * NOTE. Kernel clients don't need to call this function if the channel 804 * mode is 'overwrite'. 805 */ 806 void relay_subbufs_consumed(struct rchan *chan, 807 unsigned int cpu, 808 size_t subbufs_consumed) 809 { 810 struct rchan_buf *buf; 811 812 if (!chan || cpu >= NR_CPUS) 813 return; 814 815 buf = *per_cpu_ptr(chan->buf, cpu); 816 if (!buf || subbufs_consumed > chan->n_subbufs) 817 return; 818 819 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) 820 buf->subbufs_consumed = buf->subbufs_produced; 821 else 822 buf->subbufs_consumed += subbufs_consumed; 823 } 824 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 825 826 /** 827 * relay_close - close the channel 828 * @chan: the channel 829 * 830 * Closes all channel buffers and frees the channel. 831 */ 832 void relay_close(struct rchan *chan) 833 { 834 struct rchan_buf *buf; 835 unsigned int i; 836 837 if (!chan) 838 return; 839 840 mutex_lock(&relay_channels_mutex); 841 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) 842 relay_close_buf(buf); 843 else 844 for_each_possible_cpu(i) 845 if ((buf = *per_cpu_ptr(chan->buf, i))) 846 relay_close_buf(buf); 847 848 if (chan->last_toobig) 849 printk(KERN_WARNING "relay: one or more items not logged " 850 "[item size (%zd) > sub-buffer size (%zd)]\n", 851 chan->last_toobig, chan->subbuf_size); 852 853 list_del(&chan->list); 854 kref_put(&chan->kref, relay_destroy_channel); 855 mutex_unlock(&relay_channels_mutex); 856 } 857 EXPORT_SYMBOL_GPL(relay_close); 858 859 /** 860 * relay_flush - close the channel 861 * @chan: the channel 862 * 863 * Flushes all channel buffers, i.e. forces buffer switch. 864 */ 865 void relay_flush(struct rchan *chan) 866 { 867 struct rchan_buf *buf; 868 unsigned int i; 869 870 if (!chan) 871 return; 872 873 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) { 874 relay_switch_subbuf(buf, 0); 875 return; 876 } 877 878 mutex_lock(&relay_channels_mutex); 879 for_each_possible_cpu(i) 880 if ((buf = *per_cpu_ptr(chan->buf, i))) 881 relay_switch_subbuf(buf, 0); 882 mutex_unlock(&relay_channels_mutex); 883 } 884 EXPORT_SYMBOL_GPL(relay_flush); 885 886 /** 887 * relay_file_open - open file op for relay files 888 * @inode: the inode 889 * @filp: the file 890 * 891 * Increments the channel buffer refcount. 892 */ 893 static int relay_file_open(struct inode *inode, struct file *filp) 894 { 895 struct rchan_buf *buf = inode->i_private; 896 kref_get(&buf->kref); 897 filp->private_data = buf; 898 899 return nonseekable_open(inode, filp); 900 } 901 902 /** 903 * relay_file_mmap - mmap file op for relay files 904 * @filp: the file 905 * @vma: the vma describing what to map 906 * 907 * Calls upon relay_mmap_buf() to map the file into user space. 908 */ 909 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 910 { 911 struct rchan_buf *buf = filp->private_data; 912 return relay_mmap_buf(buf, vma); 913 } 914 915 /** 916 * relay_file_poll - poll file op for relay files 917 * @filp: the file 918 * @wait: poll table 919 * 920 * Poll implemention. 921 */ 922 static unsigned int relay_file_poll(struct file *filp, poll_table *wait) 923 { 924 unsigned int mask = 0; 925 struct rchan_buf *buf = filp->private_data; 926 927 if (buf->finalized) 928 return POLLERR; 929 930 if (filp->f_mode & FMODE_READ) { 931 poll_wait(filp, &buf->read_wait, wait); 932 if (!relay_buf_empty(buf)) 933 mask |= POLLIN | POLLRDNORM; 934 } 935 936 return mask; 937 } 938 939 /** 940 * relay_file_release - release file op for relay files 941 * @inode: the inode 942 * @filp: the file 943 * 944 * Decrements the channel refcount, as the filesystem is 945 * no longer using it. 946 */ 947 static int relay_file_release(struct inode *inode, struct file *filp) 948 { 949 struct rchan_buf *buf = filp->private_data; 950 kref_put(&buf->kref, relay_remove_buf); 951 952 return 0; 953 } 954 955 /* 956 * relay_file_read_consume - update the consumed count for the buffer 957 */ 958 static void relay_file_read_consume(struct rchan_buf *buf, 959 size_t read_pos, 960 size_t bytes_consumed) 961 { 962 size_t subbuf_size = buf->chan->subbuf_size; 963 size_t n_subbufs = buf->chan->n_subbufs; 964 size_t read_subbuf; 965 966 if (buf->subbufs_produced == buf->subbufs_consumed && 967 buf->offset == buf->bytes_consumed) 968 return; 969 970 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 971 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 972 buf->bytes_consumed = 0; 973 } 974 975 buf->bytes_consumed += bytes_consumed; 976 if (!read_pos) 977 read_subbuf = buf->subbufs_consumed % n_subbufs; 978 else 979 read_subbuf = read_pos / buf->chan->subbuf_size; 980 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 981 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 982 (buf->offset == subbuf_size)) 983 return; 984 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 985 buf->bytes_consumed = 0; 986 } 987 } 988 989 /* 990 * relay_file_read_avail - boolean, are there unconsumed bytes available? 991 */ 992 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) 993 { 994 size_t subbuf_size = buf->chan->subbuf_size; 995 size_t n_subbufs = buf->chan->n_subbufs; 996 size_t produced = buf->subbufs_produced; 997 size_t consumed = buf->subbufs_consumed; 998 999 relay_file_read_consume(buf, read_pos, 0); 1000 1001 consumed = buf->subbufs_consumed; 1002 1003 if (unlikely(buf->offset > subbuf_size)) { 1004 if (produced == consumed) 1005 return 0; 1006 return 1; 1007 } 1008 1009 if (unlikely(produced - consumed >= n_subbufs)) { 1010 consumed = produced - n_subbufs + 1; 1011 buf->subbufs_consumed = consumed; 1012 buf->bytes_consumed = 0; 1013 } 1014 1015 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 1016 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 1017 1018 if (consumed > produced) 1019 produced += n_subbufs * subbuf_size; 1020 1021 if (consumed == produced) { 1022 if (buf->offset == subbuf_size && 1023 buf->subbufs_produced > buf->subbufs_consumed) 1024 return 1; 1025 return 0; 1026 } 1027 1028 return 1; 1029 } 1030 1031 /** 1032 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 1033 * @read_pos: file read position 1034 * @buf: relay channel buffer 1035 */ 1036 static size_t relay_file_read_subbuf_avail(size_t read_pos, 1037 struct rchan_buf *buf) 1038 { 1039 size_t padding, avail = 0; 1040 size_t read_subbuf, read_offset, write_subbuf, write_offset; 1041 size_t subbuf_size = buf->chan->subbuf_size; 1042 1043 write_subbuf = (buf->data - buf->start) / subbuf_size; 1044 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 1045 read_subbuf = read_pos / subbuf_size; 1046 read_offset = read_pos % subbuf_size; 1047 padding = buf->padding[read_subbuf]; 1048 1049 if (read_subbuf == write_subbuf) { 1050 if (read_offset + padding < write_offset) 1051 avail = write_offset - (read_offset + padding); 1052 } else 1053 avail = (subbuf_size - padding) - read_offset; 1054 1055 return avail; 1056 } 1057 1058 /** 1059 * relay_file_read_start_pos - find the first available byte to read 1060 * @read_pos: file read position 1061 * @buf: relay channel buffer 1062 * 1063 * If the @read_pos is in the middle of padding, return the 1064 * position of the first actually available byte, otherwise 1065 * return the original value. 1066 */ 1067 static size_t relay_file_read_start_pos(size_t read_pos, 1068 struct rchan_buf *buf) 1069 { 1070 size_t read_subbuf, padding, padding_start, padding_end; 1071 size_t subbuf_size = buf->chan->subbuf_size; 1072 size_t n_subbufs = buf->chan->n_subbufs; 1073 size_t consumed = buf->subbufs_consumed % n_subbufs; 1074 1075 if (!read_pos) 1076 read_pos = consumed * subbuf_size + buf->bytes_consumed; 1077 read_subbuf = read_pos / subbuf_size; 1078 padding = buf->padding[read_subbuf]; 1079 padding_start = (read_subbuf + 1) * subbuf_size - padding; 1080 padding_end = (read_subbuf + 1) * subbuf_size; 1081 if (read_pos >= padding_start && read_pos < padding_end) { 1082 read_subbuf = (read_subbuf + 1) % n_subbufs; 1083 read_pos = read_subbuf * subbuf_size; 1084 } 1085 1086 return read_pos; 1087 } 1088 1089 /** 1090 * relay_file_read_end_pos - return the new read position 1091 * @read_pos: file read position 1092 * @buf: relay channel buffer 1093 * @count: number of bytes to be read 1094 */ 1095 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 1096 size_t read_pos, 1097 size_t count) 1098 { 1099 size_t read_subbuf, padding, end_pos; 1100 size_t subbuf_size = buf->chan->subbuf_size; 1101 size_t n_subbufs = buf->chan->n_subbufs; 1102 1103 read_subbuf = read_pos / subbuf_size; 1104 padding = buf->padding[read_subbuf]; 1105 if (read_pos % subbuf_size + count + padding == subbuf_size) 1106 end_pos = (read_subbuf + 1) * subbuf_size; 1107 else 1108 end_pos = read_pos + count; 1109 if (end_pos >= subbuf_size * n_subbufs) 1110 end_pos = 0; 1111 1112 return end_pos; 1113 } 1114 1115 static ssize_t relay_file_read(struct file *filp, 1116 char __user *buffer, 1117 size_t count, 1118 loff_t *ppos) 1119 { 1120 struct rchan_buf *buf = filp->private_data; 1121 size_t read_start, avail; 1122 size_t written = 0; 1123 int ret; 1124 1125 if (!count) 1126 return 0; 1127 1128 inode_lock(file_inode(filp)); 1129 do { 1130 void *from; 1131 1132 if (!relay_file_read_avail(buf, *ppos)) 1133 break; 1134 1135 read_start = relay_file_read_start_pos(*ppos, buf); 1136 avail = relay_file_read_subbuf_avail(read_start, buf); 1137 if (!avail) 1138 break; 1139 1140 avail = min(count, avail); 1141 from = buf->start + read_start; 1142 ret = avail; 1143 if (copy_to_user(buffer, from, avail)) 1144 break; 1145 1146 buffer += ret; 1147 written += ret; 1148 count -= ret; 1149 1150 relay_file_read_consume(buf, read_start, ret); 1151 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1152 } while (count); 1153 inode_unlock(file_inode(filp)); 1154 1155 return written; 1156 } 1157 1158 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1159 { 1160 rbuf->bytes_consumed += bytes_consumed; 1161 1162 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1163 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1164 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1165 } 1166 } 1167 1168 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1169 struct pipe_buffer *buf) 1170 { 1171 struct rchan_buf *rbuf; 1172 1173 rbuf = (struct rchan_buf *)page_private(buf->page); 1174 relay_consume_bytes(rbuf, buf->private); 1175 } 1176 1177 static const struct pipe_buf_operations relay_pipe_buf_ops = { 1178 .can_merge = 0, 1179 .confirm = generic_pipe_buf_confirm, 1180 .release = relay_pipe_buf_release, 1181 .steal = generic_pipe_buf_steal, 1182 .get = generic_pipe_buf_get, 1183 }; 1184 1185 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1186 { 1187 } 1188 1189 /* 1190 * subbuf_splice_actor - splice up to one subbuf's worth of data 1191 */ 1192 static ssize_t subbuf_splice_actor(struct file *in, 1193 loff_t *ppos, 1194 struct pipe_inode_info *pipe, 1195 size_t len, 1196 unsigned int flags, 1197 int *nonpad_ret) 1198 { 1199 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages; 1200 struct rchan_buf *rbuf = in->private_data; 1201 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1202 uint64_t pos = (uint64_t) *ppos; 1203 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1204 size_t read_start = (size_t) do_div(pos, alloc_size); 1205 size_t read_subbuf = read_start / subbuf_size; 1206 size_t padding = rbuf->padding[read_subbuf]; 1207 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1208 struct page *pages[PIPE_DEF_BUFFERS]; 1209 struct partial_page partial[PIPE_DEF_BUFFERS]; 1210 struct splice_pipe_desc spd = { 1211 .pages = pages, 1212 .nr_pages = 0, 1213 .nr_pages_max = PIPE_DEF_BUFFERS, 1214 .partial = partial, 1215 .flags = flags, 1216 .ops = &relay_pipe_buf_ops, 1217 .spd_release = relay_page_release, 1218 }; 1219 ssize_t ret; 1220 1221 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1222 return 0; 1223 if (splice_grow_spd(pipe, &spd)) 1224 return -ENOMEM; 1225 1226 /* 1227 * Adjust read len, if longer than what is available 1228 */ 1229 if (len > (subbuf_size - read_start % subbuf_size)) 1230 len = subbuf_size - read_start % subbuf_size; 1231 1232 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1233 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1234 poff = read_start & ~PAGE_MASK; 1235 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max); 1236 1237 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1238 unsigned int this_len, this_end, private; 1239 unsigned int cur_pos = read_start + total_len; 1240 1241 if (!len) 1242 break; 1243 1244 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1245 private = this_len; 1246 1247 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1248 spd.partial[spd.nr_pages].offset = poff; 1249 1250 this_end = cur_pos + this_len; 1251 if (this_end >= nonpad_end) { 1252 this_len = nonpad_end - cur_pos; 1253 private = this_len + padding; 1254 } 1255 spd.partial[spd.nr_pages].len = this_len; 1256 spd.partial[spd.nr_pages].private = private; 1257 1258 len -= this_len; 1259 total_len += this_len; 1260 poff = 0; 1261 pidx = (pidx + 1) % subbuf_pages; 1262 1263 if (this_end >= nonpad_end) { 1264 spd.nr_pages++; 1265 break; 1266 } 1267 } 1268 1269 ret = 0; 1270 if (!spd.nr_pages) 1271 goto out; 1272 1273 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1274 if (ret < 0 || ret < total_len) 1275 goto out; 1276 1277 if (read_start + ret == nonpad_end) 1278 ret += padding; 1279 1280 out: 1281 splice_shrink_spd(&spd); 1282 return ret; 1283 } 1284 1285 static ssize_t relay_file_splice_read(struct file *in, 1286 loff_t *ppos, 1287 struct pipe_inode_info *pipe, 1288 size_t len, 1289 unsigned int flags) 1290 { 1291 ssize_t spliced; 1292 int ret; 1293 int nonpad_ret = 0; 1294 1295 ret = 0; 1296 spliced = 0; 1297 1298 while (len && !spliced) { 1299 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1300 if (ret < 0) 1301 break; 1302 else if (!ret) { 1303 if (flags & SPLICE_F_NONBLOCK) 1304 ret = -EAGAIN; 1305 break; 1306 } 1307 1308 *ppos += ret; 1309 if (ret > len) 1310 len = 0; 1311 else 1312 len -= ret; 1313 spliced += nonpad_ret; 1314 nonpad_ret = 0; 1315 } 1316 1317 if (spliced) 1318 return spliced; 1319 1320 return ret; 1321 } 1322 1323 const struct file_operations relay_file_operations = { 1324 .open = relay_file_open, 1325 .poll = relay_file_poll, 1326 .mmap = relay_file_mmap, 1327 .read = relay_file_read, 1328 .llseek = no_llseek, 1329 .release = relay_file_release, 1330 .splice_read = relay_file_splice_read, 1331 }; 1332 EXPORT_SYMBOL_GPL(relay_file_operations); 1333