1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.txt for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * fault() vm_op implementation for relay file mapping. 41 */ 42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 43 { 44 struct page *page; 45 struct rchan_buf *buf = vma->vm_private_data; 46 pgoff_t pgoff = vmf->pgoff; 47 48 if (!buf) 49 return VM_FAULT_OOM; 50 51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 52 if (!page) 53 return VM_FAULT_SIGBUS; 54 get_page(page); 55 vmf->page = page; 56 57 return 0; 58 } 59 60 /* 61 * vm_ops for relay file mappings. 62 */ 63 static struct vm_operations_struct relay_file_mmap_ops = { 64 .fault = relay_buf_fault, 65 .close = relay_file_mmap_close, 66 }; 67 68 /** 69 * relay_mmap_buf: - mmap channel buffer to process address space 70 * @buf: relay channel buffer 71 * @vma: vm_area_struct describing memory to be mapped 72 * 73 * Returns 0 if ok, negative on error 74 * 75 * Caller should already have grabbed mmap_sem. 76 */ 77 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 78 { 79 unsigned long length = vma->vm_end - vma->vm_start; 80 struct file *filp = vma->vm_file; 81 82 if (!buf) 83 return -EBADF; 84 85 if (length != (unsigned long)buf->chan->alloc_size) 86 return -EINVAL; 87 88 vma->vm_ops = &relay_file_mmap_ops; 89 vma->vm_flags |= VM_DONTEXPAND; 90 vma->vm_private_data = buf; 91 buf->chan->cb->buf_mapped(buf, filp); 92 93 return 0; 94 } 95 96 /** 97 * relay_alloc_buf - allocate a channel buffer 98 * @buf: the buffer struct 99 * @size: total size of the buffer 100 * 101 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 102 * passed in size will get page aligned, if it isn't already. 103 */ 104 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 105 { 106 void *mem; 107 unsigned int i, j, n_pages; 108 109 *size = PAGE_ALIGN(*size); 110 n_pages = *size >> PAGE_SHIFT; 111 112 buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL); 113 if (!buf->page_array) 114 return NULL; 115 116 for (i = 0; i < n_pages; i++) { 117 buf->page_array[i] = alloc_page(GFP_KERNEL); 118 if (unlikely(!buf->page_array[i])) 119 goto depopulate; 120 set_page_private(buf->page_array[i], (unsigned long)buf); 121 } 122 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 123 if (!mem) 124 goto depopulate; 125 126 memset(mem, 0, *size); 127 buf->page_count = n_pages; 128 return mem; 129 130 depopulate: 131 for (j = 0; j < i; j++) 132 __free_page(buf->page_array[j]); 133 kfree(buf->page_array); 134 return NULL; 135 } 136 137 /** 138 * relay_create_buf - allocate and initialize a channel buffer 139 * @chan: the relay channel 140 * 141 * Returns channel buffer if successful, %NULL otherwise. 142 */ 143 static struct rchan_buf *relay_create_buf(struct rchan *chan) 144 { 145 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 146 if (!buf) 147 return NULL; 148 149 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); 150 if (!buf->padding) 151 goto free_buf; 152 153 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 154 if (!buf->start) 155 goto free_buf; 156 157 buf->chan = chan; 158 kref_get(&buf->chan->kref); 159 return buf; 160 161 free_buf: 162 kfree(buf->padding); 163 kfree(buf); 164 return NULL; 165 } 166 167 /** 168 * relay_destroy_channel - free the channel struct 169 * @kref: target kernel reference that contains the relay channel 170 * 171 * Should only be called from kref_put(). 172 */ 173 static void relay_destroy_channel(struct kref *kref) 174 { 175 struct rchan *chan = container_of(kref, struct rchan, kref); 176 kfree(chan); 177 } 178 179 /** 180 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 181 * @buf: the buffer struct 182 */ 183 static void relay_destroy_buf(struct rchan_buf *buf) 184 { 185 struct rchan *chan = buf->chan; 186 unsigned int i; 187 188 if (likely(buf->start)) { 189 vunmap(buf->start); 190 for (i = 0; i < buf->page_count; i++) 191 __free_page(buf->page_array[i]); 192 kfree(buf->page_array); 193 } 194 chan->buf[buf->cpu] = NULL; 195 kfree(buf->padding); 196 kfree(buf); 197 kref_put(&chan->kref, relay_destroy_channel); 198 } 199 200 /** 201 * relay_remove_buf - remove a channel buffer 202 * @kref: target kernel reference that contains the relay buffer 203 * 204 * Removes the file from the fileystem, which also frees the 205 * rchan_buf_struct and the channel buffer. Should only be called from 206 * kref_put(). 207 */ 208 static void relay_remove_buf(struct kref *kref) 209 { 210 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 211 buf->chan->cb->remove_buf_file(buf->dentry); 212 relay_destroy_buf(buf); 213 } 214 215 /** 216 * relay_buf_empty - boolean, is the channel buffer empty? 217 * @buf: channel buffer 218 * 219 * Returns 1 if the buffer is empty, 0 otherwise. 220 */ 221 static int relay_buf_empty(struct rchan_buf *buf) 222 { 223 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 224 } 225 226 /** 227 * relay_buf_full - boolean, is the channel buffer full? 228 * @buf: channel buffer 229 * 230 * Returns 1 if the buffer is full, 0 otherwise. 231 */ 232 int relay_buf_full(struct rchan_buf *buf) 233 { 234 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 235 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 236 } 237 EXPORT_SYMBOL_GPL(relay_buf_full); 238 239 /* 240 * High-level relay kernel API and associated functions. 241 */ 242 243 /* 244 * rchan_callback implementations defining default channel behavior. Used 245 * in place of corresponding NULL values in client callback struct. 246 */ 247 248 /* 249 * subbuf_start() default callback. Does nothing. 250 */ 251 static int subbuf_start_default_callback (struct rchan_buf *buf, 252 void *subbuf, 253 void *prev_subbuf, 254 size_t prev_padding) 255 { 256 if (relay_buf_full(buf)) 257 return 0; 258 259 return 1; 260 } 261 262 /* 263 * buf_mapped() default callback. Does nothing. 264 */ 265 static void buf_mapped_default_callback(struct rchan_buf *buf, 266 struct file *filp) 267 { 268 } 269 270 /* 271 * buf_unmapped() default callback. Does nothing. 272 */ 273 static void buf_unmapped_default_callback(struct rchan_buf *buf, 274 struct file *filp) 275 { 276 } 277 278 /* 279 * create_buf_file_create() default callback. Does nothing. 280 */ 281 static struct dentry *create_buf_file_default_callback(const char *filename, 282 struct dentry *parent, 283 int mode, 284 struct rchan_buf *buf, 285 int *is_global) 286 { 287 return NULL; 288 } 289 290 /* 291 * remove_buf_file() default callback. Does nothing. 292 */ 293 static int remove_buf_file_default_callback(struct dentry *dentry) 294 { 295 return -EINVAL; 296 } 297 298 /* relay channel default callbacks */ 299 static struct rchan_callbacks default_channel_callbacks = { 300 .subbuf_start = subbuf_start_default_callback, 301 .buf_mapped = buf_mapped_default_callback, 302 .buf_unmapped = buf_unmapped_default_callback, 303 .create_buf_file = create_buf_file_default_callback, 304 .remove_buf_file = remove_buf_file_default_callback, 305 }; 306 307 /** 308 * wakeup_readers - wake up readers waiting on a channel 309 * @data: contains the channel buffer 310 * 311 * This is the timer function used to defer reader waking. 312 */ 313 static void wakeup_readers(unsigned long data) 314 { 315 struct rchan_buf *buf = (struct rchan_buf *)data; 316 wake_up_interruptible(&buf->read_wait); 317 } 318 319 /** 320 * __relay_reset - reset a channel buffer 321 * @buf: the channel buffer 322 * @init: 1 if this is a first-time initialization 323 * 324 * See relay_reset() for description of effect. 325 */ 326 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 327 { 328 size_t i; 329 330 if (init) { 331 init_waitqueue_head(&buf->read_wait); 332 kref_init(&buf->kref); 333 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf); 334 } else 335 del_timer_sync(&buf->timer); 336 337 buf->subbufs_produced = 0; 338 buf->subbufs_consumed = 0; 339 buf->bytes_consumed = 0; 340 buf->finalized = 0; 341 buf->data = buf->start; 342 buf->offset = 0; 343 344 for (i = 0; i < buf->chan->n_subbufs; i++) 345 buf->padding[i] = 0; 346 347 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 348 } 349 350 /** 351 * relay_reset - reset the channel 352 * @chan: the channel 353 * 354 * This has the effect of erasing all data from all channel buffers 355 * and restarting the channel in its initial state. The buffers 356 * are not freed, so any mappings are still in effect. 357 * 358 * NOTE. Care should be taken that the channel isn't actually 359 * being used by anything when this call is made. 360 */ 361 void relay_reset(struct rchan *chan) 362 { 363 unsigned int i; 364 365 if (!chan) 366 return; 367 368 if (chan->is_global && chan->buf[0]) { 369 __relay_reset(chan->buf[0], 0); 370 return; 371 } 372 373 mutex_lock(&relay_channels_mutex); 374 for_each_online_cpu(i) 375 if (chan->buf[i]) 376 __relay_reset(chan->buf[i], 0); 377 mutex_unlock(&relay_channels_mutex); 378 } 379 EXPORT_SYMBOL_GPL(relay_reset); 380 381 /* 382 * relay_open_buf - create a new relay channel buffer 383 * 384 * used by relay_open() and CPU hotplug. 385 */ 386 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 387 { 388 struct rchan_buf *buf = NULL; 389 struct dentry *dentry; 390 char *tmpname; 391 392 if (chan->is_global) 393 return chan->buf[0]; 394 395 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 396 if (!tmpname) 397 goto end; 398 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 399 400 buf = relay_create_buf(chan); 401 if (!buf) 402 goto free_name; 403 404 buf->cpu = cpu; 405 __relay_reset(buf, 1); 406 407 /* Create file in fs */ 408 dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR, 409 buf, &chan->is_global); 410 if (!dentry) 411 goto free_buf; 412 413 buf->dentry = dentry; 414 415 if(chan->is_global) { 416 chan->buf[0] = buf; 417 buf->cpu = 0; 418 } 419 420 goto free_name; 421 422 free_buf: 423 relay_destroy_buf(buf); 424 buf = NULL; 425 free_name: 426 kfree(tmpname); 427 end: 428 return buf; 429 } 430 431 /** 432 * relay_close_buf - close a channel buffer 433 * @buf: channel buffer 434 * 435 * Marks the buffer finalized and restores the default callbacks. 436 * The channel buffer and channel buffer data structure are then freed 437 * automatically when the last reference is given up. 438 */ 439 static void relay_close_buf(struct rchan_buf *buf) 440 { 441 buf->finalized = 1; 442 del_timer_sync(&buf->timer); 443 kref_put(&buf->kref, relay_remove_buf); 444 } 445 446 static void setup_callbacks(struct rchan *chan, 447 struct rchan_callbacks *cb) 448 { 449 if (!cb) { 450 chan->cb = &default_channel_callbacks; 451 return; 452 } 453 454 if (!cb->subbuf_start) 455 cb->subbuf_start = subbuf_start_default_callback; 456 if (!cb->buf_mapped) 457 cb->buf_mapped = buf_mapped_default_callback; 458 if (!cb->buf_unmapped) 459 cb->buf_unmapped = buf_unmapped_default_callback; 460 if (!cb->create_buf_file) 461 cb->create_buf_file = create_buf_file_default_callback; 462 if (!cb->remove_buf_file) 463 cb->remove_buf_file = remove_buf_file_default_callback; 464 chan->cb = cb; 465 } 466 467 /** 468 * relay_hotcpu_callback - CPU hotplug callback 469 * @nb: notifier block 470 * @action: hotplug action to take 471 * @hcpu: CPU number 472 * 473 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD) 474 */ 475 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb, 476 unsigned long action, 477 void *hcpu) 478 { 479 unsigned int hotcpu = (unsigned long)hcpu; 480 struct rchan *chan; 481 482 switch(action) { 483 case CPU_UP_PREPARE: 484 case CPU_UP_PREPARE_FROZEN: 485 mutex_lock(&relay_channels_mutex); 486 list_for_each_entry(chan, &relay_channels, list) { 487 if (chan->buf[hotcpu]) 488 continue; 489 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu); 490 if(!chan->buf[hotcpu]) { 491 printk(KERN_ERR 492 "relay_hotcpu_callback: cpu %d buffer " 493 "creation failed\n", hotcpu); 494 mutex_unlock(&relay_channels_mutex); 495 return NOTIFY_BAD; 496 } 497 } 498 mutex_unlock(&relay_channels_mutex); 499 break; 500 case CPU_DEAD: 501 case CPU_DEAD_FROZEN: 502 /* No need to flush the cpu : will be flushed upon 503 * final relay_flush() call. */ 504 break; 505 } 506 return NOTIFY_OK; 507 } 508 509 /** 510 * relay_open - create a new relay channel 511 * @base_filename: base name of files to create 512 * @parent: dentry of parent directory, %NULL for root directory 513 * @subbuf_size: size of sub-buffers 514 * @n_subbufs: number of sub-buffers 515 * @cb: client callback functions 516 * @private_data: user-defined data 517 * 518 * Returns channel pointer if successful, %NULL otherwise. 519 * 520 * Creates a channel buffer for each cpu using the sizes and 521 * attributes specified. The created channel buffer files 522 * will be named base_filename0...base_filenameN-1. File 523 * permissions will be %S_IRUSR. 524 */ 525 struct rchan *relay_open(const char *base_filename, 526 struct dentry *parent, 527 size_t subbuf_size, 528 size_t n_subbufs, 529 struct rchan_callbacks *cb, 530 void *private_data) 531 { 532 unsigned int i; 533 struct rchan *chan; 534 if (!base_filename) 535 return NULL; 536 537 if (!(subbuf_size && n_subbufs)) 538 return NULL; 539 540 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 541 if (!chan) 542 return NULL; 543 544 chan->version = RELAYFS_CHANNEL_VERSION; 545 chan->n_subbufs = n_subbufs; 546 chan->subbuf_size = subbuf_size; 547 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs); 548 chan->parent = parent; 549 chan->private_data = private_data; 550 strlcpy(chan->base_filename, base_filename, NAME_MAX); 551 setup_callbacks(chan, cb); 552 kref_init(&chan->kref); 553 554 mutex_lock(&relay_channels_mutex); 555 for_each_online_cpu(i) { 556 chan->buf[i] = relay_open_buf(chan, i); 557 if (!chan->buf[i]) 558 goto free_bufs; 559 } 560 list_add(&chan->list, &relay_channels); 561 mutex_unlock(&relay_channels_mutex); 562 563 return chan; 564 565 free_bufs: 566 for_each_online_cpu(i) { 567 if (!chan->buf[i]) 568 break; 569 relay_close_buf(chan->buf[i]); 570 } 571 572 kref_put(&chan->kref, relay_destroy_channel); 573 mutex_unlock(&relay_channels_mutex); 574 return NULL; 575 } 576 EXPORT_SYMBOL_GPL(relay_open); 577 578 /** 579 * relay_switch_subbuf - switch to a new sub-buffer 580 * @buf: channel buffer 581 * @length: size of current event 582 * 583 * Returns either the length passed in or 0 if full. 584 * 585 * Performs sub-buffer-switch tasks such as invoking callbacks, 586 * updating padding counts, waking up readers, etc. 587 */ 588 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 589 { 590 void *old, *new; 591 size_t old_subbuf, new_subbuf; 592 593 if (unlikely(length > buf->chan->subbuf_size)) 594 goto toobig; 595 596 if (buf->offset != buf->chan->subbuf_size + 1) { 597 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 598 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 599 buf->padding[old_subbuf] = buf->prev_padding; 600 buf->subbufs_produced++; 601 buf->dentry->d_inode->i_size += buf->chan->subbuf_size - 602 buf->padding[old_subbuf]; 603 smp_mb(); 604 if (waitqueue_active(&buf->read_wait)) 605 /* 606 * Calling wake_up_interruptible() from here 607 * will deadlock if we happen to be logging 608 * from the scheduler (trying to re-grab 609 * rq->lock), so defer it. 610 */ 611 __mod_timer(&buf->timer, jiffies + 1); 612 } 613 614 old = buf->data; 615 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 616 new = buf->start + new_subbuf * buf->chan->subbuf_size; 617 buf->offset = 0; 618 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 619 buf->offset = buf->chan->subbuf_size + 1; 620 return 0; 621 } 622 buf->data = new; 623 buf->padding[new_subbuf] = 0; 624 625 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 626 goto toobig; 627 628 return length; 629 630 toobig: 631 buf->chan->last_toobig = length; 632 return 0; 633 } 634 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 635 636 /** 637 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 638 * @chan: the channel 639 * @cpu: the cpu associated with the channel buffer to update 640 * @subbufs_consumed: number of sub-buffers to add to current buf's count 641 * 642 * Adds to the channel buffer's consumed sub-buffer count. 643 * subbufs_consumed should be the number of sub-buffers newly consumed, 644 * not the total consumed. 645 * 646 * NOTE. Kernel clients don't need to call this function if the channel 647 * mode is 'overwrite'. 648 */ 649 void relay_subbufs_consumed(struct rchan *chan, 650 unsigned int cpu, 651 size_t subbufs_consumed) 652 { 653 struct rchan_buf *buf; 654 655 if (!chan) 656 return; 657 658 if (cpu >= NR_CPUS || !chan->buf[cpu]) 659 return; 660 661 buf = chan->buf[cpu]; 662 buf->subbufs_consumed += subbufs_consumed; 663 if (buf->subbufs_consumed > buf->subbufs_produced) 664 buf->subbufs_consumed = buf->subbufs_produced; 665 } 666 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 667 668 /** 669 * relay_close - close the channel 670 * @chan: the channel 671 * 672 * Closes all channel buffers and frees the channel. 673 */ 674 void relay_close(struct rchan *chan) 675 { 676 unsigned int i; 677 678 if (!chan) 679 return; 680 681 mutex_lock(&relay_channels_mutex); 682 if (chan->is_global && chan->buf[0]) 683 relay_close_buf(chan->buf[0]); 684 else 685 for_each_possible_cpu(i) 686 if (chan->buf[i]) 687 relay_close_buf(chan->buf[i]); 688 689 if (chan->last_toobig) 690 printk(KERN_WARNING "relay: one or more items not logged " 691 "[item size (%Zd) > sub-buffer size (%Zd)]\n", 692 chan->last_toobig, chan->subbuf_size); 693 694 list_del(&chan->list); 695 kref_put(&chan->kref, relay_destroy_channel); 696 mutex_unlock(&relay_channels_mutex); 697 } 698 EXPORT_SYMBOL_GPL(relay_close); 699 700 /** 701 * relay_flush - close the channel 702 * @chan: the channel 703 * 704 * Flushes all channel buffers, i.e. forces buffer switch. 705 */ 706 void relay_flush(struct rchan *chan) 707 { 708 unsigned int i; 709 710 if (!chan) 711 return; 712 713 if (chan->is_global && chan->buf[0]) { 714 relay_switch_subbuf(chan->buf[0], 0); 715 return; 716 } 717 718 mutex_lock(&relay_channels_mutex); 719 for_each_possible_cpu(i) 720 if (chan->buf[i]) 721 relay_switch_subbuf(chan->buf[i], 0); 722 mutex_unlock(&relay_channels_mutex); 723 } 724 EXPORT_SYMBOL_GPL(relay_flush); 725 726 /** 727 * relay_file_open - open file op for relay files 728 * @inode: the inode 729 * @filp: the file 730 * 731 * Increments the channel buffer refcount. 732 */ 733 static int relay_file_open(struct inode *inode, struct file *filp) 734 { 735 struct rchan_buf *buf = inode->i_private; 736 kref_get(&buf->kref); 737 filp->private_data = buf; 738 739 return nonseekable_open(inode, filp); 740 } 741 742 /** 743 * relay_file_mmap - mmap file op for relay files 744 * @filp: the file 745 * @vma: the vma describing what to map 746 * 747 * Calls upon relay_mmap_buf() to map the file into user space. 748 */ 749 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 750 { 751 struct rchan_buf *buf = filp->private_data; 752 return relay_mmap_buf(buf, vma); 753 } 754 755 /** 756 * relay_file_poll - poll file op for relay files 757 * @filp: the file 758 * @wait: poll table 759 * 760 * Poll implemention. 761 */ 762 static unsigned int relay_file_poll(struct file *filp, poll_table *wait) 763 { 764 unsigned int mask = 0; 765 struct rchan_buf *buf = filp->private_data; 766 767 if (buf->finalized) 768 return POLLERR; 769 770 if (filp->f_mode & FMODE_READ) { 771 poll_wait(filp, &buf->read_wait, wait); 772 if (!relay_buf_empty(buf)) 773 mask |= POLLIN | POLLRDNORM; 774 } 775 776 return mask; 777 } 778 779 /** 780 * relay_file_release - release file op for relay files 781 * @inode: the inode 782 * @filp: the file 783 * 784 * Decrements the channel refcount, as the filesystem is 785 * no longer using it. 786 */ 787 static int relay_file_release(struct inode *inode, struct file *filp) 788 { 789 struct rchan_buf *buf = filp->private_data; 790 kref_put(&buf->kref, relay_remove_buf); 791 792 return 0; 793 } 794 795 /* 796 * relay_file_read_consume - update the consumed count for the buffer 797 */ 798 static void relay_file_read_consume(struct rchan_buf *buf, 799 size_t read_pos, 800 size_t bytes_consumed) 801 { 802 size_t subbuf_size = buf->chan->subbuf_size; 803 size_t n_subbufs = buf->chan->n_subbufs; 804 size_t read_subbuf; 805 806 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 807 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 808 buf->bytes_consumed = 0; 809 } 810 811 buf->bytes_consumed += bytes_consumed; 812 if (!read_pos) 813 read_subbuf = buf->subbufs_consumed % n_subbufs; 814 else 815 read_subbuf = read_pos / buf->chan->subbuf_size; 816 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 817 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 818 (buf->offset == subbuf_size)) 819 return; 820 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 821 buf->bytes_consumed = 0; 822 } 823 } 824 825 /* 826 * relay_file_read_avail - boolean, are there unconsumed bytes available? 827 */ 828 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) 829 { 830 size_t subbuf_size = buf->chan->subbuf_size; 831 size_t n_subbufs = buf->chan->n_subbufs; 832 size_t produced = buf->subbufs_produced; 833 size_t consumed = buf->subbufs_consumed; 834 835 relay_file_read_consume(buf, read_pos, 0); 836 837 if (unlikely(buf->offset > subbuf_size)) { 838 if (produced == consumed) 839 return 0; 840 return 1; 841 } 842 843 if (unlikely(produced - consumed >= n_subbufs)) { 844 consumed = produced - n_subbufs + 1; 845 buf->subbufs_consumed = consumed; 846 buf->bytes_consumed = 0; 847 } 848 849 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 850 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 851 852 if (consumed > produced) 853 produced += n_subbufs * subbuf_size; 854 855 if (consumed == produced) 856 return 0; 857 858 return 1; 859 } 860 861 /** 862 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 863 * @read_pos: file read position 864 * @buf: relay channel buffer 865 */ 866 static size_t relay_file_read_subbuf_avail(size_t read_pos, 867 struct rchan_buf *buf) 868 { 869 size_t padding, avail = 0; 870 size_t read_subbuf, read_offset, write_subbuf, write_offset; 871 size_t subbuf_size = buf->chan->subbuf_size; 872 873 write_subbuf = (buf->data - buf->start) / subbuf_size; 874 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 875 read_subbuf = read_pos / subbuf_size; 876 read_offset = read_pos % subbuf_size; 877 padding = buf->padding[read_subbuf]; 878 879 if (read_subbuf == write_subbuf) { 880 if (read_offset + padding < write_offset) 881 avail = write_offset - (read_offset + padding); 882 } else 883 avail = (subbuf_size - padding) - read_offset; 884 885 return avail; 886 } 887 888 /** 889 * relay_file_read_start_pos - find the first available byte to read 890 * @read_pos: file read position 891 * @buf: relay channel buffer 892 * 893 * If the @read_pos is in the middle of padding, return the 894 * position of the first actually available byte, otherwise 895 * return the original value. 896 */ 897 static size_t relay_file_read_start_pos(size_t read_pos, 898 struct rchan_buf *buf) 899 { 900 size_t read_subbuf, padding, padding_start, padding_end; 901 size_t subbuf_size = buf->chan->subbuf_size; 902 size_t n_subbufs = buf->chan->n_subbufs; 903 size_t consumed = buf->subbufs_consumed % n_subbufs; 904 905 if (!read_pos) 906 read_pos = consumed * subbuf_size + buf->bytes_consumed; 907 read_subbuf = read_pos / subbuf_size; 908 padding = buf->padding[read_subbuf]; 909 padding_start = (read_subbuf + 1) * subbuf_size - padding; 910 padding_end = (read_subbuf + 1) * subbuf_size; 911 if (read_pos >= padding_start && read_pos < padding_end) { 912 read_subbuf = (read_subbuf + 1) % n_subbufs; 913 read_pos = read_subbuf * subbuf_size; 914 } 915 916 return read_pos; 917 } 918 919 /** 920 * relay_file_read_end_pos - return the new read position 921 * @read_pos: file read position 922 * @buf: relay channel buffer 923 * @count: number of bytes to be read 924 */ 925 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 926 size_t read_pos, 927 size_t count) 928 { 929 size_t read_subbuf, padding, end_pos; 930 size_t subbuf_size = buf->chan->subbuf_size; 931 size_t n_subbufs = buf->chan->n_subbufs; 932 933 read_subbuf = read_pos / subbuf_size; 934 padding = buf->padding[read_subbuf]; 935 if (read_pos % subbuf_size + count + padding == subbuf_size) 936 end_pos = (read_subbuf + 1) * subbuf_size; 937 else 938 end_pos = read_pos + count; 939 if (end_pos >= subbuf_size * n_subbufs) 940 end_pos = 0; 941 942 return end_pos; 943 } 944 945 /* 946 * subbuf_read_actor - read up to one subbuf's worth of data 947 */ 948 static int subbuf_read_actor(size_t read_start, 949 struct rchan_buf *buf, 950 size_t avail, 951 read_descriptor_t *desc, 952 read_actor_t actor) 953 { 954 void *from; 955 int ret = 0; 956 957 from = buf->start + read_start; 958 ret = avail; 959 if (copy_to_user(desc->arg.buf, from, avail)) { 960 desc->error = -EFAULT; 961 ret = 0; 962 } 963 desc->arg.data += ret; 964 desc->written += ret; 965 desc->count -= ret; 966 967 return ret; 968 } 969 970 typedef int (*subbuf_actor_t) (size_t read_start, 971 struct rchan_buf *buf, 972 size_t avail, 973 read_descriptor_t *desc, 974 read_actor_t actor); 975 976 /* 977 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries 978 */ 979 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos, 980 subbuf_actor_t subbuf_actor, 981 read_actor_t actor, 982 read_descriptor_t *desc) 983 { 984 struct rchan_buf *buf = filp->private_data; 985 size_t read_start, avail; 986 int ret; 987 988 if (!desc->count) 989 return 0; 990 991 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 992 do { 993 if (!relay_file_read_avail(buf, *ppos)) 994 break; 995 996 read_start = relay_file_read_start_pos(*ppos, buf); 997 avail = relay_file_read_subbuf_avail(read_start, buf); 998 if (!avail) 999 break; 1000 1001 avail = min(desc->count, avail); 1002 ret = subbuf_actor(read_start, buf, avail, desc, actor); 1003 if (desc->error < 0) 1004 break; 1005 1006 if (ret) { 1007 relay_file_read_consume(buf, read_start, ret); 1008 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1009 } 1010 } while (desc->count && ret); 1011 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 1012 1013 return desc->written; 1014 } 1015 1016 static ssize_t relay_file_read(struct file *filp, 1017 char __user *buffer, 1018 size_t count, 1019 loff_t *ppos) 1020 { 1021 read_descriptor_t desc; 1022 desc.written = 0; 1023 desc.count = count; 1024 desc.arg.buf = buffer; 1025 desc.error = 0; 1026 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, 1027 NULL, &desc); 1028 } 1029 1030 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1031 { 1032 rbuf->bytes_consumed += bytes_consumed; 1033 1034 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1035 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1036 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1037 } 1038 } 1039 1040 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1041 struct pipe_buffer *buf) 1042 { 1043 struct rchan_buf *rbuf; 1044 1045 rbuf = (struct rchan_buf *)page_private(buf->page); 1046 relay_consume_bytes(rbuf, buf->private); 1047 } 1048 1049 static struct pipe_buf_operations relay_pipe_buf_ops = { 1050 .can_merge = 0, 1051 .map = generic_pipe_buf_map, 1052 .unmap = generic_pipe_buf_unmap, 1053 .confirm = generic_pipe_buf_confirm, 1054 .release = relay_pipe_buf_release, 1055 .steal = generic_pipe_buf_steal, 1056 .get = generic_pipe_buf_get, 1057 }; 1058 1059 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1060 { 1061 } 1062 1063 /* 1064 * subbuf_splice_actor - splice up to one subbuf's worth of data 1065 */ 1066 static int subbuf_splice_actor(struct file *in, 1067 loff_t *ppos, 1068 struct pipe_inode_info *pipe, 1069 size_t len, 1070 unsigned int flags, 1071 int *nonpad_ret) 1072 { 1073 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret; 1074 struct rchan_buf *rbuf = in->private_data; 1075 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1076 uint64_t pos = (uint64_t) *ppos; 1077 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1078 size_t read_start = (size_t) do_div(pos, alloc_size); 1079 size_t read_subbuf = read_start / subbuf_size; 1080 size_t padding = rbuf->padding[read_subbuf]; 1081 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1082 struct page *pages[PIPE_BUFFERS]; 1083 struct partial_page partial[PIPE_BUFFERS]; 1084 struct splice_pipe_desc spd = { 1085 .pages = pages, 1086 .nr_pages = 0, 1087 .partial = partial, 1088 .flags = flags, 1089 .ops = &relay_pipe_buf_ops, 1090 .spd_release = relay_page_release, 1091 }; 1092 1093 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1094 return 0; 1095 1096 /* 1097 * Adjust read len, if longer than what is available 1098 */ 1099 if (len > (subbuf_size - read_start % subbuf_size)) 1100 len = subbuf_size - read_start % subbuf_size; 1101 1102 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1103 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1104 poff = read_start & ~PAGE_MASK; 1105 nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS); 1106 1107 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1108 unsigned int this_len, this_end, private; 1109 unsigned int cur_pos = read_start + total_len; 1110 1111 if (!len) 1112 break; 1113 1114 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1115 private = this_len; 1116 1117 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1118 spd.partial[spd.nr_pages].offset = poff; 1119 1120 this_end = cur_pos + this_len; 1121 if (this_end >= nonpad_end) { 1122 this_len = nonpad_end - cur_pos; 1123 private = this_len + padding; 1124 } 1125 spd.partial[spd.nr_pages].len = this_len; 1126 spd.partial[spd.nr_pages].private = private; 1127 1128 len -= this_len; 1129 total_len += this_len; 1130 poff = 0; 1131 pidx = (pidx + 1) % subbuf_pages; 1132 1133 if (this_end >= nonpad_end) { 1134 spd.nr_pages++; 1135 break; 1136 } 1137 } 1138 1139 if (!spd.nr_pages) 1140 return 0; 1141 1142 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1143 if (ret < 0 || ret < total_len) 1144 return ret; 1145 1146 if (read_start + ret == nonpad_end) 1147 ret += padding; 1148 1149 return ret; 1150 } 1151 1152 static ssize_t relay_file_splice_read(struct file *in, 1153 loff_t *ppos, 1154 struct pipe_inode_info *pipe, 1155 size_t len, 1156 unsigned int flags) 1157 { 1158 ssize_t spliced; 1159 int ret; 1160 int nonpad_ret = 0; 1161 1162 ret = 0; 1163 spliced = 0; 1164 1165 while (len) { 1166 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1167 if (ret < 0) 1168 break; 1169 else if (!ret) { 1170 if (spliced) 1171 break; 1172 if (flags & SPLICE_F_NONBLOCK) { 1173 ret = -EAGAIN; 1174 break; 1175 } 1176 } 1177 1178 *ppos += ret; 1179 if (ret > len) 1180 len = 0; 1181 else 1182 len -= ret; 1183 spliced += nonpad_ret; 1184 nonpad_ret = 0; 1185 } 1186 1187 if (spliced) 1188 return spliced; 1189 1190 return ret; 1191 } 1192 1193 const struct file_operations relay_file_operations = { 1194 .open = relay_file_open, 1195 .poll = relay_file_poll, 1196 .mmap = relay_file_mmap, 1197 .read = relay_file_read, 1198 .llseek = no_llseek, 1199 .release = relay_file_release, 1200 .splice_read = relay_file_splice_read, 1201 }; 1202 EXPORT_SYMBOL_GPL(relay_file_operations); 1203 1204 static __init int relay_init(void) 1205 { 1206 1207 hotcpu_notifier(relay_hotcpu_callback, 0); 1208 return 0; 1209 } 1210 1211 module_init(relay_init); 1212