xref: /openbmc/linux/kernel/relay.c (revision a1e58bbd)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 	struct page *page;
45 	struct rchan_buf *buf = vma->vm_private_data;
46 	pgoff_t pgoff = vmf->pgoff;
47 
48 	if (!buf)
49 		return VM_FAULT_OOM;
50 
51 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 	if (!page)
53 		return VM_FAULT_SIGBUS;
54 	get_page(page);
55 	vmf->page = page;
56 
57 	return 0;
58 }
59 
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static struct vm_operations_struct relay_file_mmap_ops = {
64 	.fault = relay_buf_fault,
65 	.close = relay_file_mmap_close,
66 };
67 
68 /**
69  *	relay_mmap_buf: - mmap channel buffer to process address space
70  *	@buf: relay channel buffer
71  *	@vma: vm_area_struct describing memory to be mapped
72  *
73  *	Returns 0 if ok, negative on error
74  *
75  *	Caller should already have grabbed mmap_sem.
76  */
77 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
78 {
79 	unsigned long length = vma->vm_end - vma->vm_start;
80 	struct file *filp = vma->vm_file;
81 
82 	if (!buf)
83 		return -EBADF;
84 
85 	if (length != (unsigned long)buf->chan->alloc_size)
86 		return -EINVAL;
87 
88 	vma->vm_ops = &relay_file_mmap_ops;
89 	vma->vm_flags |= VM_DONTEXPAND;
90 	vma->vm_private_data = buf;
91 	buf->chan->cb->buf_mapped(buf, filp);
92 
93 	return 0;
94 }
95 
96 /**
97  *	relay_alloc_buf - allocate a channel buffer
98  *	@buf: the buffer struct
99  *	@size: total size of the buffer
100  *
101  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
102  *	passed in size will get page aligned, if it isn't already.
103  */
104 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
105 {
106 	void *mem;
107 	unsigned int i, j, n_pages;
108 
109 	*size = PAGE_ALIGN(*size);
110 	n_pages = *size >> PAGE_SHIFT;
111 
112 	buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
113 	if (!buf->page_array)
114 		return NULL;
115 
116 	for (i = 0; i < n_pages; i++) {
117 		buf->page_array[i] = alloc_page(GFP_KERNEL);
118 		if (unlikely(!buf->page_array[i]))
119 			goto depopulate;
120 		set_page_private(buf->page_array[i], (unsigned long)buf);
121 	}
122 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
123 	if (!mem)
124 		goto depopulate;
125 
126 	memset(mem, 0, *size);
127 	buf->page_count = n_pages;
128 	return mem;
129 
130 depopulate:
131 	for (j = 0; j < i; j++)
132 		__free_page(buf->page_array[j]);
133 	kfree(buf->page_array);
134 	return NULL;
135 }
136 
137 /**
138  *	relay_create_buf - allocate and initialize a channel buffer
139  *	@chan: the relay channel
140  *
141  *	Returns channel buffer if successful, %NULL otherwise.
142  */
143 static struct rchan_buf *relay_create_buf(struct rchan *chan)
144 {
145 	struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
146 	if (!buf)
147 		return NULL;
148 
149 	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
150 	if (!buf->padding)
151 		goto free_buf;
152 
153 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
154 	if (!buf->start)
155 		goto free_buf;
156 
157 	buf->chan = chan;
158 	kref_get(&buf->chan->kref);
159 	return buf;
160 
161 free_buf:
162 	kfree(buf->padding);
163 	kfree(buf);
164 	return NULL;
165 }
166 
167 /**
168  *	relay_destroy_channel - free the channel struct
169  *	@kref: target kernel reference that contains the relay channel
170  *
171  *	Should only be called from kref_put().
172  */
173 static void relay_destroy_channel(struct kref *kref)
174 {
175 	struct rchan *chan = container_of(kref, struct rchan, kref);
176 	kfree(chan);
177 }
178 
179 /**
180  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
181  *	@buf: the buffer struct
182  */
183 static void relay_destroy_buf(struct rchan_buf *buf)
184 {
185 	struct rchan *chan = buf->chan;
186 	unsigned int i;
187 
188 	if (likely(buf->start)) {
189 		vunmap(buf->start);
190 		for (i = 0; i < buf->page_count; i++)
191 			__free_page(buf->page_array[i]);
192 		kfree(buf->page_array);
193 	}
194 	chan->buf[buf->cpu] = NULL;
195 	kfree(buf->padding);
196 	kfree(buf);
197 	kref_put(&chan->kref, relay_destroy_channel);
198 }
199 
200 /**
201  *	relay_remove_buf - remove a channel buffer
202  *	@kref: target kernel reference that contains the relay buffer
203  *
204  *	Removes the file from the fileystem, which also frees the
205  *	rchan_buf_struct and the channel buffer.  Should only be called from
206  *	kref_put().
207  */
208 static void relay_remove_buf(struct kref *kref)
209 {
210 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
211 	buf->chan->cb->remove_buf_file(buf->dentry);
212 	relay_destroy_buf(buf);
213 }
214 
215 /**
216  *	relay_buf_empty - boolean, is the channel buffer empty?
217  *	@buf: channel buffer
218  *
219  *	Returns 1 if the buffer is empty, 0 otherwise.
220  */
221 static int relay_buf_empty(struct rchan_buf *buf)
222 {
223 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
224 }
225 
226 /**
227  *	relay_buf_full - boolean, is the channel buffer full?
228  *	@buf: channel buffer
229  *
230  *	Returns 1 if the buffer is full, 0 otherwise.
231  */
232 int relay_buf_full(struct rchan_buf *buf)
233 {
234 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
235 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
236 }
237 EXPORT_SYMBOL_GPL(relay_buf_full);
238 
239 /*
240  * High-level relay kernel API and associated functions.
241  */
242 
243 /*
244  * rchan_callback implementations defining default channel behavior.  Used
245  * in place of corresponding NULL values in client callback struct.
246  */
247 
248 /*
249  * subbuf_start() default callback.  Does nothing.
250  */
251 static int subbuf_start_default_callback (struct rchan_buf *buf,
252 					  void *subbuf,
253 					  void *prev_subbuf,
254 					  size_t prev_padding)
255 {
256 	if (relay_buf_full(buf))
257 		return 0;
258 
259 	return 1;
260 }
261 
262 /*
263  * buf_mapped() default callback.  Does nothing.
264  */
265 static void buf_mapped_default_callback(struct rchan_buf *buf,
266 					struct file *filp)
267 {
268 }
269 
270 /*
271  * buf_unmapped() default callback.  Does nothing.
272  */
273 static void buf_unmapped_default_callback(struct rchan_buf *buf,
274 					  struct file *filp)
275 {
276 }
277 
278 /*
279  * create_buf_file_create() default callback.  Does nothing.
280  */
281 static struct dentry *create_buf_file_default_callback(const char *filename,
282 						       struct dentry *parent,
283 						       int mode,
284 						       struct rchan_buf *buf,
285 						       int *is_global)
286 {
287 	return NULL;
288 }
289 
290 /*
291  * remove_buf_file() default callback.  Does nothing.
292  */
293 static int remove_buf_file_default_callback(struct dentry *dentry)
294 {
295 	return -EINVAL;
296 }
297 
298 /* relay channel default callbacks */
299 static struct rchan_callbacks default_channel_callbacks = {
300 	.subbuf_start = subbuf_start_default_callback,
301 	.buf_mapped = buf_mapped_default_callback,
302 	.buf_unmapped = buf_unmapped_default_callback,
303 	.create_buf_file = create_buf_file_default_callback,
304 	.remove_buf_file = remove_buf_file_default_callback,
305 };
306 
307 /**
308  *	wakeup_readers - wake up readers waiting on a channel
309  *	@data: contains the channel buffer
310  *
311  *	This is the timer function used to defer reader waking.
312  */
313 static void wakeup_readers(unsigned long data)
314 {
315 	struct rchan_buf *buf = (struct rchan_buf *)data;
316 	wake_up_interruptible(&buf->read_wait);
317 }
318 
319 /**
320  *	__relay_reset - reset a channel buffer
321  *	@buf: the channel buffer
322  *	@init: 1 if this is a first-time initialization
323  *
324  *	See relay_reset() for description of effect.
325  */
326 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
327 {
328 	size_t i;
329 
330 	if (init) {
331 		init_waitqueue_head(&buf->read_wait);
332 		kref_init(&buf->kref);
333 		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
334 	} else
335 		del_timer_sync(&buf->timer);
336 
337 	buf->subbufs_produced = 0;
338 	buf->subbufs_consumed = 0;
339 	buf->bytes_consumed = 0;
340 	buf->finalized = 0;
341 	buf->data = buf->start;
342 	buf->offset = 0;
343 
344 	for (i = 0; i < buf->chan->n_subbufs; i++)
345 		buf->padding[i] = 0;
346 
347 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
348 }
349 
350 /**
351  *	relay_reset - reset the channel
352  *	@chan: the channel
353  *
354  *	This has the effect of erasing all data from all channel buffers
355  *	and restarting the channel in its initial state.  The buffers
356  *	are not freed, so any mappings are still in effect.
357  *
358  *	NOTE. Care should be taken that the channel isn't actually
359  *	being used by anything when this call is made.
360  */
361 void relay_reset(struct rchan *chan)
362 {
363 	unsigned int i;
364 
365 	if (!chan)
366 		return;
367 
368 	if (chan->is_global && chan->buf[0]) {
369 		__relay_reset(chan->buf[0], 0);
370 		return;
371 	}
372 
373 	mutex_lock(&relay_channels_mutex);
374 	for_each_online_cpu(i)
375 		if (chan->buf[i])
376 			__relay_reset(chan->buf[i], 0);
377 	mutex_unlock(&relay_channels_mutex);
378 }
379 EXPORT_SYMBOL_GPL(relay_reset);
380 
381 /*
382  *	relay_open_buf - create a new relay channel buffer
383  *
384  *	used by relay_open() and CPU hotplug.
385  */
386 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
387 {
388  	struct rchan_buf *buf = NULL;
389 	struct dentry *dentry;
390  	char *tmpname;
391 
392  	if (chan->is_global)
393 		return chan->buf[0];
394 
395 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
396  	if (!tmpname)
397  		goto end;
398  	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
399 
400 	buf = relay_create_buf(chan);
401 	if (!buf)
402  		goto free_name;
403 
404  	buf->cpu = cpu;
405  	__relay_reset(buf, 1);
406 
407 	/* Create file in fs */
408  	dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
409  					   buf, &chan->is_global);
410  	if (!dentry)
411  		goto free_buf;
412 
413 	buf->dentry = dentry;
414 
415  	if(chan->is_global) {
416  		chan->buf[0] = buf;
417  		buf->cpu = 0;
418   	}
419 
420  	goto free_name;
421 
422 free_buf:
423  	relay_destroy_buf(buf);
424  	buf = NULL;
425 free_name:
426  	kfree(tmpname);
427 end:
428 	return buf;
429 }
430 
431 /**
432  *	relay_close_buf - close a channel buffer
433  *	@buf: channel buffer
434  *
435  *	Marks the buffer finalized and restores the default callbacks.
436  *	The channel buffer and channel buffer data structure are then freed
437  *	automatically when the last reference is given up.
438  */
439 static void relay_close_buf(struct rchan_buf *buf)
440 {
441 	buf->finalized = 1;
442 	del_timer_sync(&buf->timer);
443 	kref_put(&buf->kref, relay_remove_buf);
444 }
445 
446 static void setup_callbacks(struct rchan *chan,
447 				   struct rchan_callbacks *cb)
448 {
449 	if (!cb) {
450 		chan->cb = &default_channel_callbacks;
451 		return;
452 	}
453 
454 	if (!cb->subbuf_start)
455 		cb->subbuf_start = subbuf_start_default_callback;
456 	if (!cb->buf_mapped)
457 		cb->buf_mapped = buf_mapped_default_callback;
458 	if (!cb->buf_unmapped)
459 		cb->buf_unmapped = buf_unmapped_default_callback;
460 	if (!cb->create_buf_file)
461 		cb->create_buf_file = create_buf_file_default_callback;
462 	if (!cb->remove_buf_file)
463 		cb->remove_buf_file = remove_buf_file_default_callback;
464 	chan->cb = cb;
465 }
466 
467 /**
468  * 	relay_hotcpu_callback - CPU hotplug callback
469  * 	@nb: notifier block
470  * 	@action: hotplug action to take
471  * 	@hcpu: CPU number
472  *
473  * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
474  */
475 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
476 				unsigned long action,
477 				void *hcpu)
478 {
479 	unsigned int hotcpu = (unsigned long)hcpu;
480 	struct rchan *chan;
481 
482 	switch(action) {
483 	case CPU_UP_PREPARE:
484 	case CPU_UP_PREPARE_FROZEN:
485 		mutex_lock(&relay_channels_mutex);
486 		list_for_each_entry(chan, &relay_channels, list) {
487 			if (chan->buf[hotcpu])
488 				continue;
489 			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
490 			if(!chan->buf[hotcpu]) {
491 				printk(KERN_ERR
492 					"relay_hotcpu_callback: cpu %d buffer "
493 					"creation failed\n", hotcpu);
494 				mutex_unlock(&relay_channels_mutex);
495 				return NOTIFY_BAD;
496 			}
497 		}
498 		mutex_unlock(&relay_channels_mutex);
499 		break;
500 	case CPU_DEAD:
501 	case CPU_DEAD_FROZEN:
502 		/* No need to flush the cpu : will be flushed upon
503 		 * final relay_flush() call. */
504 		break;
505 	}
506 	return NOTIFY_OK;
507 }
508 
509 /**
510  *	relay_open - create a new relay channel
511  *	@base_filename: base name of files to create
512  *	@parent: dentry of parent directory, %NULL for root directory
513  *	@subbuf_size: size of sub-buffers
514  *	@n_subbufs: number of sub-buffers
515  *	@cb: client callback functions
516  *	@private_data: user-defined data
517  *
518  *	Returns channel pointer if successful, %NULL otherwise.
519  *
520  *	Creates a channel buffer for each cpu using the sizes and
521  *	attributes specified.  The created channel buffer files
522  *	will be named base_filename0...base_filenameN-1.  File
523  *	permissions will be %S_IRUSR.
524  */
525 struct rchan *relay_open(const char *base_filename,
526 			 struct dentry *parent,
527 			 size_t subbuf_size,
528 			 size_t n_subbufs,
529 			 struct rchan_callbacks *cb,
530 			 void *private_data)
531 {
532 	unsigned int i;
533 	struct rchan *chan;
534 	if (!base_filename)
535 		return NULL;
536 
537 	if (!(subbuf_size && n_subbufs))
538 		return NULL;
539 
540 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
541 	if (!chan)
542 		return NULL;
543 
544 	chan->version = RELAYFS_CHANNEL_VERSION;
545 	chan->n_subbufs = n_subbufs;
546 	chan->subbuf_size = subbuf_size;
547 	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
548 	chan->parent = parent;
549 	chan->private_data = private_data;
550 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
551 	setup_callbacks(chan, cb);
552 	kref_init(&chan->kref);
553 
554 	mutex_lock(&relay_channels_mutex);
555 	for_each_online_cpu(i) {
556 		chan->buf[i] = relay_open_buf(chan, i);
557 		if (!chan->buf[i])
558 			goto free_bufs;
559 	}
560 	list_add(&chan->list, &relay_channels);
561 	mutex_unlock(&relay_channels_mutex);
562 
563 	return chan;
564 
565 free_bufs:
566 	for_each_online_cpu(i) {
567 		if (!chan->buf[i])
568 			break;
569 		relay_close_buf(chan->buf[i]);
570 	}
571 
572 	kref_put(&chan->kref, relay_destroy_channel);
573 	mutex_unlock(&relay_channels_mutex);
574 	return NULL;
575 }
576 EXPORT_SYMBOL_GPL(relay_open);
577 
578 /**
579  *	relay_switch_subbuf - switch to a new sub-buffer
580  *	@buf: channel buffer
581  *	@length: size of current event
582  *
583  *	Returns either the length passed in or 0 if full.
584  *
585  *	Performs sub-buffer-switch tasks such as invoking callbacks,
586  *	updating padding counts, waking up readers, etc.
587  */
588 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
589 {
590 	void *old, *new;
591 	size_t old_subbuf, new_subbuf;
592 
593 	if (unlikely(length > buf->chan->subbuf_size))
594 		goto toobig;
595 
596 	if (buf->offset != buf->chan->subbuf_size + 1) {
597 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
598 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
599 		buf->padding[old_subbuf] = buf->prev_padding;
600 		buf->subbufs_produced++;
601 		buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
602 			buf->padding[old_subbuf];
603 		smp_mb();
604 		if (waitqueue_active(&buf->read_wait))
605 			/*
606 			 * Calling wake_up_interruptible() from here
607 			 * will deadlock if we happen to be logging
608 			 * from the scheduler (trying to re-grab
609 			 * rq->lock), so defer it.
610 			 */
611 			__mod_timer(&buf->timer, jiffies + 1);
612 	}
613 
614 	old = buf->data;
615 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
616 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
617 	buf->offset = 0;
618 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
619 		buf->offset = buf->chan->subbuf_size + 1;
620 		return 0;
621 	}
622 	buf->data = new;
623 	buf->padding[new_subbuf] = 0;
624 
625 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
626 		goto toobig;
627 
628 	return length;
629 
630 toobig:
631 	buf->chan->last_toobig = length;
632 	return 0;
633 }
634 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
635 
636 /**
637  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
638  *	@chan: the channel
639  *	@cpu: the cpu associated with the channel buffer to update
640  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
641  *
642  *	Adds to the channel buffer's consumed sub-buffer count.
643  *	subbufs_consumed should be the number of sub-buffers newly consumed,
644  *	not the total consumed.
645  *
646  *	NOTE. Kernel clients don't need to call this function if the channel
647  *	mode is 'overwrite'.
648  */
649 void relay_subbufs_consumed(struct rchan *chan,
650 			    unsigned int cpu,
651 			    size_t subbufs_consumed)
652 {
653 	struct rchan_buf *buf;
654 
655 	if (!chan)
656 		return;
657 
658 	if (cpu >= NR_CPUS || !chan->buf[cpu])
659 		return;
660 
661 	buf = chan->buf[cpu];
662 	buf->subbufs_consumed += subbufs_consumed;
663 	if (buf->subbufs_consumed > buf->subbufs_produced)
664 		buf->subbufs_consumed = buf->subbufs_produced;
665 }
666 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
667 
668 /**
669  *	relay_close - close the channel
670  *	@chan: the channel
671  *
672  *	Closes all channel buffers and frees the channel.
673  */
674 void relay_close(struct rchan *chan)
675 {
676 	unsigned int i;
677 
678 	if (!chan)
679 		return;
680 
681 	mutex_lock(&relay_channels_mutex);
682 	if (chan->is_global && chan->buf[0])
683 		relay_close_buf(chan->buf[0]);
684 	else
685 		for_each_possible_cpu(i)
686 			if (chan->buf[i])
687 				relay_close_buf(chan->buf[i]);
688 
689 	if (chan->last_toobig)
690 		printk(KERN_WARNING "relay: one or more items not logged "
691 		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
692 		       chan->last_toobig, chan->subbuf_size);
693 
694 	list_del(&chan->list);
695 	kref_put(&chan->kref, relay_destroy_channel);
696 	mutex_unlock(&relay_channels_mutex);
697 }
698 EXPORT_SYMBOL_GPL(relay_close);
699 
700 /**
701  *	relay_flush - close the channel
702  *	@chan: the channel
703  *
704  *	Flushes all channel buffers, i.e. forces buffer switch.
705  */
706 void relay_flush(struct rchan *chan)
707 {
708 	unsigned int i;
709 
710 	if (!chan)
711 		return;
712 
713 	if (chan->is_global && chan->buf[0]) {
714 		relay_switch_subbuf(chan->buf[0], 0);
715 		return;
716 	}
717 
718 	mutex_lock(&relay_channels_mutex);
719 	for_each_possible_cpu(i)
720 		if (chan->buf[i])
721 			relay_switch_subbuf(chan->buf[i], 0);
722 	mutex_unlock(&relay_channels_mutex);
723 }
724 EXPORT_SYMBOL_GPL(relay_flush);
725 
726 /**
727  *	relay_file_open - open file op for relay files
728  *	@inode: the inode
729  *	@filp: the file
730  *
731  *	Increments the channel buffer refcount.
732  */
733 static int relay_file_open(struct inode *inode, struct file *filp)
734 {
735 	struct rchan_buf *buf = inode->i_private;
736 	kref_get(&buf->kref);
737 	filp->private_data = buf;
738 
739 	return nonseekable_open(inode, filp);
740 }
741 
742 /**
743  *	relay_file_mmap - mmap file op for relay files
744  *	@filp: the file
745  *	@vma: the vma describing what to map
746  *
747  *	Calls upon relay_mmap_buf() to map the file into user space.
748  */
749 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
750 {
751 	struct rchan_buf *buf = filp->private_data;
752 	return relay_mmap_buf(buf, vma);
753 }
754 
755 /**
756  *	relay_file_poll - poll file op for relay files
757  *	@filp: the file
758  *	@wait: poll table
759  *
760  *	Poll implemention.
761  */
762 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
763 {
764 	unsigned int mask = 0;
765 	struct rchan_buf *buf = filp->private_data;
766 
767 	if (buf->finalized)
768 		return POLLERR;
769 
770 	if (filp->f_mode & FMODE_READ) {
771 		poll_wait(filp, &buf->read_wait, wait);
772 		if (!relay_buf_empty(buf))
773 			mask |= POLLIN | POLLRDNORM;
774 	}
775 
776 	return mask;
777 }
778 
779 /**
780  *	relay_file_release - release file op for relay files
781  *	@inode: the inode
782  *	@filp: the file
783  *
784  *	Decrements the channel refcount, as the filesystem is
785  *	no longer using it.
786  */
787 static int relay_file_release(struct inode *inode, struct file *filp)
788 {
789 	struct rchan_buf *buf = filp->private_data;
790 	kref_put(&buf->kref, relay_remove_buf);
791 
792 	return 0;
793 }
794 
795 /*
796  *	relay_file_read_consume - update the consumed count for the buffer
797  */
798 static void relay_file_read_consume(struct rchan_buf *buf,
799 				    size_t read_pos,
800 				    size_t bytes_consumed)
801 {
802 	size_t subbuf_size = buf->chan->subbuf_size;
803 	size_t n_subbufs = buf->chan->n_subbufs;
804 	size_t read_subbuf;
805 
806 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
807 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
808 		buf->bytes_consumed = 0;
809 	}
810 
811 	buf->bytes_consumed += bytes_consumed;
812 	if (!read_pos)
813 		read_subbuf = buf->subbufs_consumed % n_subbufs;
814 	else
815 		read_subbuf = read_pos / buf->chan->subbuf_size;
816 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
817 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
818 		    (buf->offset == subbuf_size))
819 			return;
820 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
821 		buf->bytes_consumed = 0;
822 	}
823 }
824 
825 /*
826  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
827  */
828 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
829 {
830 	size_t subbuf_size = buf->chan->subbuf_size;
831 	size_t n_subbufs = buf->chan->n_subbufs;
832 	size_t produced = buf->subbufs_produced;
833 	size_t consumed = buf->subbufs_consumed;
834 
835 	relay_file_read_consume(buf, read_pos, 0);
836 
837 	if (unlikely(buf->offset > subbuf_size)) {
838 		if (produced == consumed)
839 			return 0;
840 		return 1;
841 	}
842 
843 	if (unlikely(produced - consumed >= n_subbufs)) {
844 		consumed = produced - n_subbufs + 1;
845 		buf->subbufs_consumed = consumed;
846 		buf->bytes_consumed = 0;
847 	}
848 
849 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
850 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
851 
852 	if (consumed > produced)
853 		produced += n_subbufs * subbuf_size;
854 
855 	if (consumed == produced)
856 		return 0;
857 
858 	return 1;
859 }
860 
861 /**
862  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
863  *	@read_pos: file read position
864  *	@buf: relay channel buffer
865  */
866 static size_t relay_file_read_subbuf_avail(size_t read_pos,
867 					   struct rchan_buf *buf)
868 {
869 	size_t padding, avail = 0;
870 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
871 	size_t subbuf_size = buf->chan->subbuf_size;
872 
873 	write_subbuf = (buf->data - buf->start) / subbuf_size;
874 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
875 	read_subbuf = read_pos / subbuf_size;
876 	read_offset = read_pos % subbuf_size;
877 	padding = buf->padding[read_subbuf];
878 
879 	if (read_subbuf == write_subbuf) {
880 		if (read_offset + padding < write_offset)
881 			avail = write_offset - (read_offset + padding);
882 	} else
883 		avail = (subbuf_size - padding) - read_offset;
884 
885 	return avail;
886 }
887 
888 /**
889  *	relay_file_read_start_pos - find the first available byte to read
890  *	@read_pos: file read position
891  *	@buf: relay channel buffer
892  *
893  *	If the @read_pos is in the middle of padding, return the
894  *	position of the first actually available byte, otherwise
895  *	return the original value.
896  */
897 static size_t relay_file_read_start_pos(size_t read_pos,
898 					struct rchan_buf *buf)
899 {
900 	size_t read_subbuf, padding, padding_start, padding_end;
901 	size_t subbuf_size = buf->chan->subbuf_size;
902 	size_t n_subbufs = buf->chan->n_subbufs;
903 	size_t consumed = buf->subbufs_consumed % n_subbufs;
904 
905 	if (!read_pos)
906 		read_pos = consumed * subbuf_size + buf->bytes_consumed;
907 	read_subbuf = read_pos / subbuf_size;
908 	padding = buf->padding[read_subbuf];
909 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
910 	padding_end = (read_subbuf + 1) * subbuf_size;
911 	if (read_pos >= padding_start && read_pos < padding_end) {
912 		read_subbuf = (read_subbuf + 1) % n_subbufs;
913 		read_pos = read_subbuf * subbuf_size;
914 	}
915 
916 	return read_pos;
917 }
918 
919 /**
920  *	relay_file_read_end_pos - return the new read position
921  *	@read_pos: file read position
922  *	@buf: relay channel buffer
923  *	@count: number of bytes to be read
924  */
925 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
926 				      size_t read_pos,
927 				      size_t count)
928 {
929 	size_t read_subbuf, padding, end_pos;
930 	size_t subbuf_size = buf->chan->subbuf_size;
931 	size_t n_subbufs = buf->chan->n_subbufs;
932 
933 	read_subbuf = read_pos / subbuf_size;
934 	padding = buf->padding[read_subbuf];
935 	if (read_pos % subbuf_size + count + padding == subbuf_size)
936 		end_pos = (read_subbuf + 1) * subbuf_size;
937 	else
938 		end_pos = read_pos + count;
939 	if (end_pos >= subbuf_size * n_subbufs)
940 		end_pos = 0;
941 
942 	return end_pos;
943 }
944 
945 /*
946  *	subbuf_read_actor - read up to one subbuf's worth of data
947  */
948 static int subbuf_read_actor(size_t read_start,
949 			     struct rchan_buf *buf,
950 			     size_t avail,
951 			     read_descriptor_t *desc,
952 			     read_actor_t actor)
953 {
954 	void *from;
955 	int ret = 0;
956 
957 	from = buf->start + read_start;
958 	ret = avail;
959 	if (copy_to_user(desc->arg.buf, from, avail)) {
960 		desc->error = -EFAULT;
961 		ret = 0;
962 	}
963 	desc->arg.data += ret;
964 	desc->written += ret;
965 	desc->count -= ret;
966 
967 	return ret;
968 }
969 
970 typedef int (*subbuf_actor_t) (size_t read_start,
971 			       struct rchan_buf *buf,
972 			       size_t avail,
973 			       read_descriptor_t *desc,
974 			       read_actor_t actor);
975 
976 /*
977  *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
978  */
979 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
980 					subbuf_actor_t subbuf_actor,
981 					read_actor_t actor,
982 					read_descriptor_t *desc)
983 {
984 	struct rchan_buf *buf = filp->private_data;
985 	size_t read_start, avail;
986 	int ret;
987 
988 	if (!desc->count)
989 		return 0;
990 
991 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
992 	do {
993 		if (!relay_file_read_avail(buf, *ppos))
994 			break;
995 
996 		read_start = relay_file_read_start_pos(*ppos, buf);
997 		avail = relay_file_read_subbuf_avail(read_start, buf);
998 		if (!avail)
999 			break;
1000 
1001 		avail = min(desc->count, avail);
1002 		ret = subbuf_actor(read_start, buf, avail, desc, actor);
1003 		if (desc->error < 0)
1004 			break;
1005 
1006 		if (ret) {
1007 			relay_file_read_consume(buf, read_start, ret);
1008 			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1009 		}
1010 	} while (desc->count && ret);
1011 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1012 
1013 	return desc->written;
1014 }
1015 
1016 static ssize_t relay_file_read(struct file *filp,
1017 			       char __user *buffer,
1018 			       size_t count,
1019 			       loff_t *ppos)
1020 {
1021 	read_descriptor_t desc;
1022 	desc.written = 0;
1023 	desc.count = count;
1024 	desc.arg.buf = buffer;
1025 	desc.error = 0;
1026 	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1027 				       NULL, &desc);
1028 }
1029 
1030 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1031 {
1032 	rbuf->bytes_consumed += bytes_consumed;
1033 
1034 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1035 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1036 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1037 	}
1038 }
1039 
1040 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1041 				   struct pipe_buffer *buf)
1042 {
1043 	struct rchan_buf *rbuf;
1044 
1045 	rbuf = (struct rchan_buf *)page_private(buf->page);
1046 	relay_consume_bytes(rbuf, buf->private);
1047 }
1048 
1049 static struct pipe_buf_operations relay_pipe_buf_ops = {
1050 	.can_merge = 0,
1051 	.map = generic_pipe_buf_map,
1052 	.unmap = generic_pipe_buf_unmap,
1053 	.confirm = generic_pipe_buf_confirm,
1054 	.release = relay_pipe_buf_release,
1055 	.steal = generic_pipe_buf_steal,
1056 	.get = generic_pipe_buf_get,
1057 };
1058 
1059 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1060 {
1061 }
1062 
1063 /*
1064  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1065  */
1066 static int subbuf_splice_actor(struct file *in,
1067 			       loff_t *ppos,
1068 			       struct pipe_inode_info *pipe,
1069 			       size_t len,
1070 			       unsigned int flags,
1071 			       int *nonpad_ret)
1072 {
1073 	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret;
1074 	struct rchan_buf *rbuf = in->private_data;
1075 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1076 	uint64_t pos = (uint64_t) *ppos;
1077 	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1078 	size_t read_start = (size_t) do_div(pos, alloc_size);
1079 	size_t read_subbuf = read_start / subbuf_size;
1080 	size_t padding = rbuf->padding[read_subbuf];
1081 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1082 	struct page *pages[PIPE_BUFFERS];
1083 	struct partial_page partial[PIPE_BUFFERS];
1084 	struct splice_pipe_desc spd = {
1085 		.pages = pages,
1086 		.nr_pages = 0,
1087 		.partial = partial,
1088 		.flags = flags,
1089 		.ops = &relay_pipe_buf_ops,
1090 		.spd_release = relay_page_release,
1091 	};
1092 
1093 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1094 		return 0;
1095 
1096 	/*
1097 	 * Adjust read len, if longer than what is available
1098 	 */
1099 	if (len > (subbuf_size - read_start % subbuf_size))
1100 		len = subbuf_size - read_start % subbuf_size;
1101 
1102 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1103 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1104 	poff = read_start & ~PAGE_MASK;
1105 	nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1106 
1107 	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1108 		unsigned int this_len, this_end, private;
1109 		unsigned int cur_pos = read_start + total_len;
1110 
1111 		if (!len)
1112 			break;
1113 
1114 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1115 		private = this_len;
1116 
1117 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1118 		spd.partial[spd.nr_pages].offset = poff;
1119 
1120 		this_end = cur_pos + this_len;
1121 		if (this_end >= nonpad_end) {
1122 			this_len = nonpad_end - cur_pos;
1123 			private = this_len + padding;
1124 		}
1125 		spd.partial[spd.nr_pages].len = this_len;
1126 		spd.partial[spd.nr_pages].private = private;
1127 
1128 		len -= this_len;
1129 		total_len += this_len;
1130 		poff = 0;
1131 		pidx = (pidx + 1) % subbuf_pages;
1132 
1133 		if (this_end >= nonpad_end) {
1134 			spd.nr_pages++;
1135 			break;
1136 		}
1137 	}
1138 
1139 	if (!spd.nr_pages)
1140 		return 0;
1141 
1142 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1143 	if (ret < 0 || ret < total_len)
1144 		return ret;
1145 
1146         if (read_start + ret == nonpad_end)
1147                 ret += padding;
1148 
1149         return ret;
1150 }
1151 
1152 static ssize_t relay_file_splice_read(struct file *in,
1153 				      loff_t *ppos,
1154 				      struct pipe_inode_info *pipe,
1155 				      size_t len,
1156 				      unsigned int flags)
1157 {
1158 	ssize_t spliced;
1159 	int ret;
1160 	int nonpad_ret = 0;
1161 
1162 	ret = 0;
1163 	spliced = 0;
1164 
1165 	while (len) {
1166 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1167 		if (ret < 0)
1168 			break;
1169 		else if (!ret) {
1170 			if (spliced)
1171 				break;
1172 			if (flags & SPLICE_F_NONBLOCK) {
1173 				ret = -EAGAIN;
1174 				break;
1175 			}
1176 		}
1177 
1178 		*ppos += ret;
1179 		if (ret > len)
1180 			len = 0;
1181 		else
1182 			len -= ret;
1183 		spliced += nonpad_ret;
1184 		nonpad_ret = 0;
1185 	}
1186 
1187 	if (spliced)
1188 		return spliced;
1189 
1190 	return ret;
1191 }
1192 
1193 const struct file_operations relay_file_operations = {
1194 	.open		= relay_file_open,
1195 	.poll		= relay_file_poll,
1196 	.mmap		= relay_file_mmap,
1197 	.read		= relay_file_read,
1198 	.llseek		= no_llseek,
1199 	.release	= relay_file_release,
1200 	.splice_read	= relay_file_splice_read,
1201 };
1202 EXPORT_SYMBOL_GPL(relay_file_operations);
1203 
1204 static __init int relay_init(void)
1205 {
1206 
1207 	hotcpu_notifier(relay_hotcpu_callback, 0);
1208 	return 0;
1209 }
1210 
1211 module_init(relay_init);
1212