1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.txt for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * fault() vm_op implementation for relay file mapping. 41 */ 42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 43 { 44 struct page *page; 45 struct rchan_buf *buf = vma->vm_private_data; 46 pgoff_t pgoff = vmf->pgoff; 47 48 if (!buf) 49 return VM_FAULT_OOM; 50 51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 52 if (!page) 53 return VM_FAULT_SIGBUS; 54 get_page(page); 55 vmf->page = page; 56 57 return 0; 58 } 59 60 /* 61 * vm_ops for relay file mappings. 62 */ 63 static const struct vm_operations_struct relay_file_mmap_ops = { 64 .fault = relay_buf_fault, 65 .close = relay_file_mmap_close, 66 }; 67 68 /* 69 * allocate an array of pointers of struct page 70 */ 71 static struct page **relay_alloc_page_array(unsigned int n_pages) 72 { 73 const size_t pa_size = n_pages * sizeof(struct page *); 74 if (pa_size > PAGE_SIZE) 75 return vzalloc(pa_size); 76 return kzalloc(pa_size, GFP_KERNEL); 77 } 78 79 /* 80 * free an array of pointers of struct page 81 */ 82 static void relay_free_page_array(struct page **array) 83 { 84 kvfree(array); 85 } 86 87 /** 88 * relay_mmap_buf: - mmap channel buffer to process address space 89 * @buf: relay channel buffer 90 * @vma: vm_area_struct describing memory to be mapped 91 * 92 * Returns 0 if ok, negative on error 93 * 94 * Caller should already have grabbed mmap_sem. 95 */ 96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 97 { 98 unsigned long length = vma->vm_end - vma->vm_start; 99 struct file *filp = vma->vm_file; 100 101 if (!buf) 102 return -EBADF; 103 104 if (length != (unsigned long)buf->chan->alloc_size) 105 return -EINVAL; 106 107 vma->vm_ops = &relay_file_mmap_ops; 108 vma->vm_flags |= VM_DONTEXPAND; 109 vma->vm_private_data = buf; 110 buf->chan->cb->buf_mapped(buf, filp); 111 112 return 0; 113 } 114 115 /** 116 * relay_alloc_buf - allocate a channel buffer 117 * @buf: the buffer struct 118 * @size: total size of the buffer 119 * 120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 121 * passed in size will get page aligned, if it isn't already. 122 */ 123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 124 { 125 void *mem; 126 unsigned int i, j, n_pages; 127 128 *size = PAGE_ALIGN(*size); 129 n_pages = *size >> PAGE_SHIFT; 130 131 buf->page_array = relay_alloc_page_array(n_pages); 132 if (!buf->page_array) 133 return NULL; 134 135 for (i = 0; i < n_pages; i++) { 136 buf->page_array[i] = alloc_page(GFP_KERNEL); 137 if (unlikely(!buf->page_array[i])) 138 goto depopulate; 139 set_page_private(buf->page_array[i], (unsigned long)buf); 140 } 141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 142 if (!mem) 143 goto depopulate; 144 145 memset(mem, 0, *size); 146 buf->page_count = n_pages; 147 return mem; 148 149 depopulate: 150 for (j = 0; j < i; j++) 151 __free_page(buf->page_array[j]); 152 relay_free_page_array(buf->page_array); 153 return NULL; 154 } 155 156 /** 157 * relay_create_buf - allocate and initialize a channel buffer 158 * @chan: the relay channel 159 * 160 * Returns channel buffer if successful, %NULL otherwise. 161 */ 162 static struct rchan_buf *relay_create_buf(struct rchan *chan) 163 { 164 struct rchan_buf *buf; 165 166 if (chan->n_subbufs > UINT_MAX / sizeof(size_t *)) 167 return NULL; 168 169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 170 if (!buf) 171 return NULL; 172 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); 173 if (!buf->padding) 174 goto free_buf; 175 176 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 177 if (!buf->start) 178 goto free_buf; 179 180 buf->chan = chan; 181 kref_get(&buf->chan->kref); 182 return buf; 183 184 free_buf: 185 kfree(buf->padding); 186 kfree(buf); 187 return NULL; 188 } 189 190 /** 191 * relay_destroy_channel - free the channel struct 192 * @kref: target kernel reference that contains the relay channel 193 * 194 * Should only be called from kref_put(). 195 */ 196 static void relay_destroy_channel(struct kref *kref) 197 { 198 struct rchan *chan = container_of(kref, struct rchan, kref); 199 kfree(chan); 200 } 201 202 /** 203 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 204 * @buf: the buffer struct 205 */ 206 static void relay_destroy_buf(struct rchan_buf *buf) 207 { 208 struct rchan *chan = buf->chan; 209 unsigned int i; 210 211 if (likely(buf->start)) { 212 vunmap(buf->start); 213 for (i = 0; i < buf->page_count; i++) 214 __free_page(buf->page_array[i]); 215 relay_free_page_array(buf->page_array); 216 } 217 chan->buf[buf->cpu] = NULL; 218 kfree(buf->padding); 219 kfree(buf); 220 kref_put(&chan->kref, relay_destroy_channel); 221 } 222 223 /** 224 * relay_remove_buf - remove a channel buffer 225 * @kref: target kernel reference that contains the relay buffer 226 * 227 * Removes the file from the filesystem, which also frees the 228 * rchan_buf_struct and the channel buffer. Should only be called from 229 * kref_put(). 230 */ 231 static void relay_remove_buf(struct kref *kref) 232 { 233 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 234 relay_destroy_buf(buf); 235 } 236 237 /** 238 * relay_buf_empty - boolean, is the channel buffer empty? 239 * @buf: channel buffer 240 * 241 * Returns 1 if the buffer is empty, 0 otherwise. 242 */ 243 static int relay_buf_empty(struct rchan_buf *buf) 244 { 245 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 246 } 247 248 /** 249 * relay_buf_full - boolean, is the channel buffer full? 250 * @buf: channel buffer 251 * 252 * Returns 1 if the buffer is full, 0 otherwise. 253 */ 254 int relay_buf_full(struct rchan_buf *buf) 255 { 256 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 257 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 258 } 259 EXPORT_SYMBOL_GPL(relay_buf_full); 260 261 /* 262 * High-level relay kernel API and associated functions. 263 */ 264 265 /* 266 * rchan_callback implementations defining default channel behavior. Used 267 * in place of corresponding NULL values in client callback struct. 268 */ 269 270 /* 271 * subbuf_start() default callback. Does nothing. 272 */ 273 static int subbuf_start_default_callback (struct rchan_buf *buf, 274 void *subbuf, 275 void *prev_subbuf, 276 size_t prev_padding) 277 { 278 if (relay_buf_full(buf)) 279 return 0; 280 281 return 1; 282 } 283 284 /* 285 * buf_mapped() default callback. Does nothing. 286 */ 287 static void buf_mapped_default_callback(struct rchan_buf *buf, 288 struct file *filp) 289 { 290 } 291 292 /* 293 * buf_unmapped() default callback. Does nothing. 294 */ 295 static void buf_unmapped_default_callback(struct rchan_buf *buf, 296 struct file *filp) 297 { 298 } 299 300 /* 301 * create_buf_file_create() default callback. Does nothing. 302 */ 303 static struct dentry *create_buf_file_default_callback(const char *filename, 304 struct dentry *parent, 305 umode_t mode, 306 struct rchan_buf *buf, 307 int *is_global) 308 { 309 return NULL; 310 } 311 312 /* 313 * remove_buf_file() default callback. Does nothing. 314 */ 315 static int remove_buf_file_default_callback(struct dentry *dentry) 316 { 317 return -EINVAL; 318 } 319 320 /* relay channel default callbacks */ 321 static struct rchan_callbacks default_channel_callbacks = { 322 .subbuf_start = subbuf_start_default_callback, 323 .buf_mapped = buf_mapped_default_callback, 324 .buf_unmapped = buf_unmapped_default_callback, 325 .create_buf_file = create_buf_file_default_callback, 326 .remove_buf_file = remove_buf_file_default_callback, 327 }; 328 329 /** 330 * wakeup_readers - wake up readers waiting on a channel 331 * @data: contains the channel buffer 332 * 333 * This is the timer function used to defer reader waking. 334 */ 335 static void wakeup_readers(unsigned long data) 336 { 337 struct rchan_buf *buf = (struct rchan_buf *)data; 338 wake_up_interruptible(&buf->read_wait); 339 } 340 341 /** 342 * __relay_reset - reset a channel buffer 343 * @buf: the channel buffer 344 * @init: 1 if this is a first-time initialization 345 * 346 * See relay_reset() for description of effect. 347 */ 348 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 349 { 350 size_t i; 351 352 if (init) { 353 init_waitqueue_head(&buf->read_wait); 354 kref_init(&buf->kref); 355 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf); 356 } else 357 del_timer_sync(&buf->timer); 358 359 buf->subbufs_produced = 0; 360 buf->subbufs_consumed = 0; 361 buf->bytes_consumed = 0; 362 buf->finalized = 0; 363 buf->data = buf->start; 364 buf->offset = 0; 365 366 for (i = 0; i < buf->chan->n_subbufs; i++) 367 buf->padding[i] = 0; 368 369 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 370 } 371 372 /** 373 * relay_reset - reset the channel 374 * @chan: the channel 375 * 376 * This has the effect of erasing all data from all channel buffers 377 * and restarting the channel in its initial state. The buffers 378 * are not freed, so any mappings are still in effect. 379 * 380 * NOTE. Care should be taken that the channel isn't actually 381 * being used by anything when this call is made. 382 */ 383 void relay_reset(struct rchan *chan) 384 { 385 unsigned int i; 386 387 if (!chan) 388 return; 389 390 if (chan->is_global && chan->buf[0]) { 391 __relay_reset(chan->buf[0], 0); 392 return; 393 } 394 395 mutex_lock(&relay_channels_mutex); 396 for_each_possible_cpu(i) 397 if (chan->buf[i]) 398 __relay_reset(chan->buf[i], 0); 399 mutex_unlock(&relay_channels_mutex); 400 } 401 EXPORT_SYMBOL_GPL(relay_reset); 402 403 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 404 struct dentry *dentry) 405 { 406 buf->dentry = dentry; 407 d_inode(buf->dentry)->i_size = buf->early_bytes; 408 } 409 410 static struct dentry *relay_create_buf_file(struct rchan *chan, 411 struct rchan_buf *buf, 412 unsigned int cpu) 413 { 414 struct dentry *dentry; 415 char *tmpname; 416 417 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 418 if (!tmpname) 419 return NULL; 420 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 421 422 /* Create file in fs */ 423 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 424 S_IRUSR, buf, 425 &chan->is_global); 426 427 kfree(tmpname); 428 429 return dentry; 430 } 431 432 /* 433 * relay_open_buf - create a new relay channel buffer 434 * 435 * used by relay_open() and CPU hotplug. 436 */ 437 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 438 { 439 struct rchan_buf *buf = NULL; 440 struct dentry *dentry; 441 442 if (chan->is_global) 443 return chan->buf[0]; 444 445 buf = relay_create_buf(chan); 446 if (!buf) 447 return NULL; 448 449 if (chan->has_base_filename) { 450 dentry = relay_create_buf_file(chan, buf, cpu); 451 if (!dentry) 452 goto free_buf; 453 relay_set_buf_dentry(buf, dentry); 454 } 455 456 buf->cpu = cpu; 457 __relay_reset(buf, 1); 458 459 if(chan->is_global) { 460 chan->buf[0] = buf; 461 buf->cpu = 0; 462 } 463 464 return buf; 465 466 free_buf: 467 relay_destroy_buf(buf); 468 return NULL; 469 } 470 471 /** 472 * relay_close_buf - close a channel buffer 473 * @buf: channel buffer 474 * 475 * Marks the buffer finalized and restores the default callbacks. 476 * The channel buffer and channel buffer data structure are then freed 477 * automatically when the last reference is given up. 478 */ 479 static void relay_close_buf(struct rchan_buf *buf) 480 { 481 buf->finalized = 1; 482 del_timer_sync(&buf->timer); 483 buf->chan->cb->remove_buf_file(buf->dentry); 484 kref_put(&buf->kref, relay_remove_buf); 485 } 486 487 static void setup_callbacks(struct rchan *chan, 488 struct rchan_callbacks *cb) 489 { 490 if (!cb) { 491 chan->cb = &default_channel_callbacks; 492 return; 493 } 494 495 if (!cb->subbuf_start) 496 cb->subbuf_start = subbuf_start_default_callback; 497 if (!cb->buf_mapped) 498 cb->buf_mapped = buf_mapped_default_callback; 499 if (!cb->buf_unmapped) 500 cb->buf_unmapped = buf_unmapped_default_callback; 501 if (!cb->create_buf_file) 502 cb->create_buf_file = create_buf_file_default_callback; 503 if (!cb->remove_buf_file) 504 cb->remove_buf_file = remove_buf_file_default_callback; 505 chan->cb = cb; 506 } 507 508 /** 509 * relay_hotcpu_callback - CPU hotplug callback 510 * @nb: notifier block 511 * @action: hotplug action to take 512 * @hcpu: CPU number 513 * 514 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD) 515 */ 516 static int relay_hotcpu_callback(struct notifier_block *nb, 517 unsigned long action, 518 void *hcpu) 519 { 520 unsigned int hotcpu = (unsigned long)hcpu; 521 struct rchan *chan; 522 523 switch(action) { 524 case CPU_UP_PREPARE: 525 case CPU_UP_PREPARE_FROZEN: 526 mutex_lock(&relay_channels_mutex); 527 list_for_each_entry(chan, &relay_channels, list) { 528 if (chan->buf[hotcpu]) 529 continue; 530 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu); 531 if(!chan->buf[hotcpu]) { 532 printk(KERN_ERR 533 "relay_hotcpu_callback: cpu %d buffer " 534 "creation failed\n", hotcpu); 535 mutex_unlock(&relay_channels_mutex); 536 return notifier_from_errno(-ENOMEM); 537 } 538 } 539 mutex_unlock(&relay_channels_mutex); 540 break; 541 case CPU_DEAD: 542 case CPU_DEAD_FROZEN: 543 /* No need to flush the cpu : will be flushed upon 544 * final relay_flush() call. */ 545 break; 546 } 547 return NOTIFY_OK; 548 } 549 550 /** 551 * relay_open - create a new relay channel 552 * @base_filename: base name of files to create, %NULL for buffering only 553 * @parent: dentry of parent directory, %NULL for root directory or buffer 554 * @subbuf_size: size of sub-buffers 555 * @n_subbufs: number of sub-buffers 556 * @cb: client callback functions 557 * @private_data: user-defined data 558 * 559 * Returns channel pointer if successful, %NULL otherwise. 560 * 561 * Creates a channel buffer for each cpu using the sizes and 562 * attributes specified. The created channel buffer files 563 * will be named base_filename0...base_filenameN-1. File 564 * permissions will be %S_IRUSR. 565 */ 566 struct rchan *relay_open(const char *base_filename, 567 struct dentry *parent, 568 size_t subbuf_size, 569 size_t n_subbufs, 570 struct rchan_callbacks *cb, 571 void *private_data) 572 { 573 unsigned int i; 574 struct rchan *chan; 575 576 if (!(subbuf_size && n_subbufs)) 577 return NULL; 578 if (subbuf_size > UINT_MAX / n_subbufs) 579 return NULL; 580 581 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 582 if (!chan) 583 return NULL; 584 585 chan->version = RELAYFS_CHANNEL_VERSION; 586 chan->n_subbufs = n_subbufs; 587 chan->subbuf_size = subbuf_size; 588 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs); 589 chan->parent = parent; 590 chan->private_data = private_data; 591 if (base_filename) { 592 chan->has_base_filename = 1; 593 strlcpy(chan->base_filename, base_filename, NAME_MAX); 594 } 595 setup_callbacks(chan, cb); 596 kref_init(&chan->kref); 597 598 mutex_lock(&relay_channels_mutex); 599 for_each_online_cpu(i) { 600 chan->buf[i] = relay_open_buf(chan, i); 601 if (!chan->buf[i]) 602 goto free_bufs; 603 } 604 list_add(&chan->list, &relay_channels); 605 mutex_unlock(&relay_channels_mutex); 606 607 return chan; 608 609 free_bufs: 610 for_each_possible_cpu(i) { 611 if (chan->buf[i]) 612 relay_close_buf(chan->buf[i]); 613 } 614 615 kref_put(&chan->kref, relay_destroy_channel); 616 mutex_unlock(&relay_channels_mutex); 617 return NULL; 618 } 619 EXPORT_SYMBOL_GPL(relay_open); 620 621 struct rchan_percpu_buf_dispatcher { 622 struct rchan_buf *buf; 623 struct dentry *dentry; 624 }; 625 626 /* Called in atomic context. */ 627 static void __relay_set_buf_dentry(void *info) 628 { 629 struct rchan_percpu_buf_dispatcher *p = info; 630 631 relay_set_buf_dentry(p->buf, p->dentry); 632 } 633 634 /** 635 * relay_late_setup_files - triggers file creation 636 * @chan: channel to operate on 637 * @base_filename: base name of files to create 638 * @parent: dentry of parent directory, %NULL for root directory 639 * 640 * Returns 0 if successful, non-zero otherwise. 641 * 642 * Use to setup files for a previously buffer-only channel. 643 * Useful to do early tracing in kernel, before VFS is up, for example. 644 */ 645 int relay_late_setup_files(struct rchan *chan, 646 const char *base_filename, 647 struct dentry *parent) 648 { 649 int err = 0; 650 unsigned int i, curr_cpu; 651 unsigned long flags; 652 struct dentry *dentry; 653 struct rchan_percpu_buf_dispatcher disp; 654 655 if (!chan || !base_filename) 656 return -EINVAL; 657 658 strlcpy(chan->base_filename, base_filename, NAME_MAX); 659 660 mutex_lock(&relay_channels_mutex); 661 /* Is chan already set up? */ 662 if (unlikely(chan->has_base_filename)) { 663 mutex_unlock(&relay_channels_mutex); 664 return -EEXIST; 665 } 666 chan->has_base_filename = 1; 667 chan->parent = parent; 668 curr_cpu = get_cpu(); 669 /* 670 * The CPU hotplug notifier ran before us and created buffers with 671 * no files associated. So it's safe to call relay_setup_buf_file() 672 * on all currently online CPUs. 673 */ 674 for_each_online_cpu(i) { 675 if (unlikely(!chan->buf[i])) { 676 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n"); 677 err = -EINVAL; 678 break; 679 } 680 681 dentry = relay_create_buf_file(chan, chan->buf[i], i); 682 if (unlikely(!dentry)) { 683 err = -EINVAL; 684 break; 685 } 686 687 if (curr_cpu == i) { 688 local_irq_save(flags); 689 relay_set_buf_dentry(chan->buf[i], dentry); 690 local_irq_restore(flags); 691 } else { 692 disp.buf = chan->buf[i]; 693 disp.dentry = dentry; 694 smp_mb(); 695 /* relay_channels_mutex must be held, so wait. */ 696 err = smp_call_function_single(i, 697 __relay_set_buf_dentry, 698 &disp, 1); 699 } 700 if (unlikely(err)) 701 break; 702 } 703 put_cpu(); 704 mutex_unlock(&relay_channels_mutex); 705 706 return err; 707 } 708 709 /** 710 * relay_switch_subbuf - switch to a new sub-buffer 711 * @buf: channel buffer 712 * @length: size of current event 713 * 714 * Returns either the length passed in or 0 if full. 715 * 716 * Performs sub-buffer-switch tasks such as invoking callbacks, 717 * updating padding counts, waking up readers, etc. 718 */ 719 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 720 { 721 void *old, *new; 722 size_t old_subbuf, new_subbuf; 723 724 if (unlikely(length > buf->chan->subbuf_size)) 725 goto toobig; 726 727 if (buf->offset != buf->chan->subbuf_size + 1) { 728 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 729 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 730 buf->padding[old_subbuf] = buf->prev_padding; 731 buf->subbufs_produced++; 732 if (buf->dentry) 733 d_inode(buf->dentry)->i_size += 734 buf->chan->subbuf_size - 735 buf->padding[old_subbuf]; 736 else 737 buf->early_bytes += buf->chan->subbuf_size - 738 buf->padding[old_subbuf]; 739 smp_mb(); 740 if (waitqueue_active(&buf->read_wait)) 741 /* 742 * Calling wake_up_interruptible() from here 743 * will deadlock if we happen to be logging 744 * from the scheduler (trying to re-grab 745 * rq->lock), so defer it. 746 */ 747 mod_timer(&buf->timer, jiffies + 1); 748 } 749 750 old = buf->data; 751 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 752 new = buf->start + new_subbuf * buf->chan->subbuf_size; 753 buf->offset = 0; 754 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 755 buf->offset = buf->chan->subbuf_size + 1; 756 return 0; 757 } 758 buf->data = new; 759 buf->padding[new_subbuf] = 0; 760 761 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 762 goto toobig; 763 764 return length; 765 766 toobig: 767 buf->chan->last_toobig = length; 768 return 0; 769 } 770 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 771 772 /** 773 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 774 * @chan: the channel 775 * @cpu: the cpu associated with the channel buffer to update 776 * @subbufs_consumed: number of sub-buffers to add to current buf's count 777 * 778 * Adds to the channel buffer's consumed sub-buffer count. 779 * subbufs_consumed should be the number of sub-buffers newly consumed, 780 * not the total consumed. 781 * 782 * NOTE. Kernel clients don't need to call this function if the channel 783 * mode is 'overwrite'. 784 */ 785 void relay_subbufs_consumed(struct rchan *chan, 786 unsigned int cpu, 787 size_t subbufs_consumed) 788 { 789 struct rchan_buf *buf; 790 791 if (!chan) 792 return; 793 794 if (cpu >= NR_CPUS || !chan->buf[cpu] || 795 subbufs_consumed > chan->n_subbufs) 796 return; 797 798 buf = chan->buf[cpu]; 799 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) 800 buf->subbufs_consumed = buf->subbufs_produced; 801 else 802 buf->subbufs_consumed += subbufs_consumed; 803 } 804 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 805 806 /** 807 * relay_close - close the channel 808 * @chan: the channel 809 * 810 * Closes all channel buffers and frees the channel. 811 */ 812 void relay_close(struct rchan *chan) 813 { 814 unsigned int i; 815 816 if (!chan) 817 return; 818 819 mutex_lock(&relay_channels_mutex); 820 if (chan->is_global && chan->buf[0]) 821 relay_close_buf(chan->buf[0]); 822 else 823 for_each_possible_cpu(i) 824 if (chan->buf[i]) 825 relay_close_buf(chan->buf[i]); 826 827 if (chan->last_toobig) 828 printk(KERN_WARNING "relay: one or more items not logged " 829 "[item size (%Zd) > sub-buffer size (%Zd)]\n", 830 chan->last_toobig, chan->subbuf_size); 831 832 list_del(&chan->list); 833 kref_put(&chan->kref, relay_destroy_channel); 834 mutex_unlock(&relay_channels_mutex); 835 } 836 EXPORT_SYMBOL_GPL(relay_close); 837 838 /** 839 * relay_flush - close the channel 840 * @chan: the channel 841 * 842 * Flushes all channel buffers, i.e. forces buffer switch. 843 */ 844 void relay_flush(struct rchan *chan) 845 { 846 unsigned int i; 847 848 if (!chan) 849 return; 850 851 if (chan->is_global && chan->buf[0]) { 852 relay_switch_subbuf(chan->buf[0], 0); 853 return; 854 } 855 856 mutex_lock(&relay_channels_mutex); 857 for_each_possible_cpu(i) 858 if (chan->buf[i]) 859 relay_switch_subbuf(chan->buf[i], 0); 860 mutex_unlock(&relay_channels_mutex); 861 } 862 EXPORT_SYMBOL_GPL(relay_flush); 863 864 /** 865 * relay_file_open - open file op for relay files 866 * @inode: the inode 867 * @filp: the file 868 * 869 * Increments the channel buffer refcount. 870 */ 871 static int relay_file_open(struct inode *inode, struct file *filp) 872 { 873 struct rchan_buf *buf = inode->i_private; 874 kref_get(&buf->kref); 875 filp->private_data = buf; 876 877 return nonseekable_open(inode, filp); 878 } 879 880 /** 881 * relay_file_mmap - mmap file op for relay files 882 * @filp: the file 883 * @vma: the vma describing what to map 884 * 885 * Calls upon relay_mmap_buf() to map the file into user space. 886 */ 887 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 888 { 889 struct rchan_buf *buf = filp->private_data; 890 return relay_mmap_buf(buf, vma); 891 } 892 893 /** 894 * relay_file_poll - poll file op for relay files 895 * @filp: the file 896 * @wait: poll table 897 * 898 * Poll implemention. 899 */ 900 static unsigned int relay_file_poll(struct file *filp, poll_table *wait) 901 { 902 unsigned int mask = 0; 903 struct rchan_buf *buf = filp->private_data; 904 905 if (buf->finalized) 906 return POLLERR; 907 908 if (filp->f_mode & FMODE_READ) { 909 poll_wait(filp, &buf->read_wait, wait); 910 if (!relay_buf_empty(buf)) 911 mask |= POLLIN | POLLRDNORM; 912 } 913 914 return mask; 915 } 916 917 /** 918 * relay_file_release - release file op for relay files 919 * @inode: the inode 920 * @filp: the file 921 * 922 * Decrements the channel refcount, as the filesystem is 923 * no longer using it. 924 */ 925 static int relay_file_release(struct inode *inode, struct file *filp) 926 { 927 struct rchan_buf *buf = filp->private_data; 928 kref_put(&buf->kref, relay_remove_buf); 929 930 return 0; 931 } 932 933 /* 934 * relay_file_read_consume - update the consumed count for the buffer 935 */ 936 static void relay_file_read_consume(struct rchan_buf *buf, 937 size_t read_pos, 938 size_t bytes_consumed) 939 { 940 size_t subbuf_size = buf->chan->subbuf_size; 941 size_t n_subbufs = buf->chan->n_subbufs; 942 size_t read_subbuf; 943 944 if (buf->subbufs_produced == buf->subbufs_consumed && 945 buf->offset == buf->bytes_consumed) 946 return; 947 948 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 949 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 950 buf->bytes_consumed = 0; 951 } 952 953 buf->bytes_consumed += bytes_consumed; 954 if (!read_pos) 955 read_subbuf = buf->subbufs_consumed % n_subbufs; 956 else 957 read_subbuf = read_pos / buf->chan->subbuf_size; 958 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 959 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 960 (buf->offset == subbuf_size)) 961 return; 962 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 963 buf->bytes_consumed = 0; 964 } 965 } 966 967 /* 968 * relay_file_read_avail - boolean, are there unconsumed bytes available? 969 */ 970 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) 971 { 972 size_t subbuf_size = buf->chan->subbuf_size; 973 size_t n_subbufs = buf->chan->n_subbufs; 974 size_t produced = buf->subbufs_produced; 975 size_t consumed = buf->subbufs_consumed; 976 977 relay_file_read_consume(buf, read_pos, 0); 978 979 consumed = buf->subbufs_consumed; 980 981 if (unlikely(buf->offset > subbuf_size)) { 982 if (produced == consumed) 983 return 0; 984 return 1; 985 } 986 987 if (unlikely(produced - consumed >= n_subbufs)) { 988 consumed = produced - n_subbufs + 1; 989 buf->subbufs_consumed = consumed; 990 buf->bytes_consumed = 0; 991 } 992 993 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 994 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 995 996 if (consumed > produced) 997 produced += n_subbufs * subbuf_size; 998 999 if (consumed == produced) { 1000 if (buf->offset == subbuf_size && 1001 buf->subbufs_produced > buf->subbufs_consumed) 1002 return 1; 1003 return 0; 1004 } 1005 1006 return 1; 1007 } 1008 1009 /** 1010 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 1011 * @read_pos: file read position 1012 * @buf: relay channel buffer 1013 */ 1014 static size_t relay_file_read_subbuf_avail(size_t read_pos, 1015 struct rchan_buf *buf) 1016 { 1017 size_t padding, avail = 0; 1018 size_t read_subbuf, read_offset, write_subbuf, write_offset; 1019 size_t subbuf_size = buf->chan->subbuf_size; 1020 1021 write_subbuf = (buf->data - buf->start) / subbuf_size; 1022 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 1023 read_subbuf = read_pos / subbuf_size; 1024 read_offset = read_pos % subbuf_size; 1025 padding = buf->padding[read_subbuf]; 1026 1027 if (read_subbuf == write_subbuf) { 1028 if (read_offset + padding < write_offset) 1029 avail = write_offset - (read_offset + padding); 1030 } else 1031 avail = (subbuf_size - padding) - read_offset; 1032 1033 return avail; 1034 } 1035 1036 /** 1037 * relay_file_read_start_pos - find the first available byte to read 1038 * @read_pos: file read position 1039 * @buf: relay channel buffer 1040 * 1041 * If the @read_pos is in the middle of padding, return the 1042 * position of the first actually available byte, otherwise 1043 * return the original value. 1044 */ 1045 static size_t relay_file_read_start_pos(size_t read_pos, 1046 struct rchan_buf *buf) 1047 { 1048 size_t read_subbuf, padding, padding_start, padding_end; 1049 size_t subbuf_size = buf->chan->subbuf_size; 1050 size_t n_subbufs = buf->chan->n_subbufs; 1051 size_t consumed = buf->subbufs_consumed % n_subbufs; 1052 1053 if (!read_pos) 1054 read_pos = consumed * subbuf_size + buf->bytes_consumed; 1055 read_subbuf = read_pos / subbuf_size; 1056 padding = buf->padding[read_subbuf]; 1057 padding_start = (read_subbuf + 1) * subbuf_size - padding; 1058 padding_end = (read_subbuf + 1) * subbuf_size; 1059 if (read_pos >= padding_start && read_pos < padding_end) { 1060 read_subbuf = (read_subbuf + 1) % n_subbufs; 1061 read_pos = read_subbuf * subbuf_size; 1062 } 1063 1064 return read_pos; 1065 } 1066 1067 /** 1068 * relay_file_read_end_pos - return the new read position 1069 * @read_pos: file read position 1070 * @buf: relay channel buffer 1071 * @count: number of bytes to be read 1072 */ 1073 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 1074 size_t read_pos, 1075 size_t count) 1076 { 1077 size_t read_subbuf, padding, end_pos; 1078 size_t subbuf_size = buf->chan->subbuf_size; 1079 size_t n_subbufs = buf->chan->n_subbufs; 1080 1081 read_subbuf = read_pos / subbuf_size; 1082 padding = buf->padding[read_subbuf]; 1083 if (read_pos % subbuf_size + count + padding == subbuf_size) 1084 end_pos = (read_subbuf + 1) * subbuf_size; 1085 else 1086 end_pos = read_pos + count; 1087 if (end_pos >= subbuf_size * n_subbufs) 1088 end_pos = 0; 1089 1090 return end_pos; 1091 } 1092 1093 /* 1094 * subbuf_read_actor - read up to one subbuf's worth of data 1095 */ 1096 static int subbuf_read_actor(size_t read_start, 1097 struct rchan_buf *buf, 1098 size_t avail, 1099 read_descriptor_t *desc) 1100 { 1101 void *from; 1102 int ret = 0; 1103 1104 from = buf->start + read_start; 1105 ret = avail; 1106 if (copy_to_user(desc->arg.buf, from, avail)) { 1107 desc->error = -EFAULT; 1108 ret = 0; 1109 } 1110 desc->arg.data += ret; 1111 desc->written += ret; 1112 desc->count -= ret; 1113 1114 return ret; 1115 } 1116 1117 typedef int (*subbuf_actor_t) (size_t read_start, 1118 struct rchan_buf *buf, 1119 size_t avail, 1120 read_descriptor_t *desc); 1121 1122 /* 1123 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries 1124 */ 1125 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos, 1126 subbuf_actor_t subbuf_actor, 1127 read_descriptor_t *desc) 1128 { 1129 struct rchan_buf *buf = filp->private_data; 1130 size_t read_start, avail; 1131 int ret; 1132 1133 if (!desc->count) 1134 return 0; 1135 1136 mutex_lock(&file_inode(filp)->i_mutex); 1137 do { 1138 if (!relay_file_read_avail(buf, *ppos)) 1139 break; 1140 1141 read_start = relay_file_read_start_pos(*ppos, buf); 1142 avail = relay_file_read_subbuf_avail(read_start, buf); 1143 if (!avail) 1144 break; 1145 1146 avail = min(desc->count, avail); 1147 ret = subbuf_actor(read_start, buf, avail, desc); 1148 if (desc->error < 0) 1149 break; 1150 1151 if (ret) { 1152 relay_file_read_consume(buf, read_start, ret); 1153 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1154 } 1155 } while (desc->count && ret); 1156 mutex_unlock(&file_inode(filp)->i_mutex); 1157 1158 return desc->written; 1159 } 1160 1161 static ssize_t relay_file_read(struct file *filp, 1162 char __user *buffer, 1163 size_t count, 1164 loff_t *ppos) 1165 { 1166 read_descriptor_t desc; 1167 desc.written = 0; 1168 desc.count = count; 1169 desc.arg.buf = buffer; 1170 desc.error = 0; 1171 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc); 1172 } 1173 1174 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1175 { 1176 rbuf->bytes_consumed += bytes_consumed; 1177 1178 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1179 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1180 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1181 } 1182 } 1183 1184 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1185 struct pipe_buffer *buf) 1186 { 1187 struct rchan_buf *rbuf; 1188 1189 rbuf = (struct rchan_buf *)page_private(buf->page); 1190 relay_consume_bytes(rbuf, buf->private); 1191 } 1192 1193 static const struct pipe_buf_operations relay_pipe_buf_ops = { 1194 .can_merge = 0, 1195 .confirm = generic_pipe_buf_confirm, 1196 .release = relay_pipe_buf_release, 1197 .steal = generic_pipe_buf_steal, 1198 .get = generic_pipe_buf_get, 1199 }; 1200 1201 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1202 { 1203 } 1204 1205 /* 1206 * subbuf_splice_actor - splice up to one subbuf's worth of data 1207 */ 1208 static ssize_t subbuf_splice_actor(struct file *in, 1209 loff_t *ppos, 1210 struct pipe_inode_info *pipe, 1211 size_t len, 1212 unsigned int flags, 1213 int *nonpad_ret) 1214 { 1215 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages; 1216 struct rchan_buf *rbuf = in->private_data; 1217 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1218 uint64_t pos = (uint64_t) *ppos; 1219 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1220 size_t read_start = (size_t) do_div(pos, alloc_size); 1221 size_t read_subbuf = read_start / subbuf_size; 1222 size_t padding = rbuf->padding[read_subbuf]; 1223 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1224 struct page *pages[PIPE_DEF_BUFFERS]; 1225 struct partial_page partial[PIPE_DEF_BUFFERS]; 1226 struct splice_pipe_desc spd = { 1227 .pages = pages, 1228 .nr_pages = 0, 1229 .nr_pages_max = PIPE_DEF_BUFFERS, 1230 .partial = partial, 1231 .flags = flags, 1232 .ops = &relay_pipe_buf_ops, 1233 .spd_release = relay_page_release, 1234 }; 1235 ssize_t ret; 1236 1237 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1238 return 0; 1239 if (splice_grow_spd(pipe, &spd)) 1240 return -ENOMEM; 1241 1242 /* 1243 * Adjust read len, if longer than what is available 1244 */ 1245 if (len > (subbuf_size - read_start % subbuf_size)) 1246 len = subbuf_size - read_start % subbuf_size; 1247 1248 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1249 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1250 poff = read_start & ~PAGE_MASK; 1251 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max); 1252 1253 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1254 unsigned int this_len, this_end, private; 1255 unsigned int cur_pos = read_start + total_len; 1256 1257 if (!len) 1258 break; 1259 1260 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1261 private = this_len; 1262 1263 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1264 spd.partial[spd.nr_pages].offset = poff; 1265 1266 this_end = cur_pos + this_len; 1267 if (this_end >= nonpad_end) { 1268 this_len = nonpad_end - cur_pos; 1269 private = this_len + padding; 1270 } 1271 spd.partial[spd.nr_pages].len = this_len; 1272 spd.partial[spd.nr_pages].private = private; 1273 1274 len -= this_len; 1275 total_len += this_len; 1276 poff = 0; 1277 pidx = (pidx + 1) % subbuf_pages; 1278 1279 if (this_end >= nonpad_end) { 1280 spd.nr_pages++; 1281 break; 1282 } 1283 } 1284 1285 ret = 0; 1286 if (!spd.nr_pages) 1287 goto out; 1288 1289 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1290 if (ret < 0 || ret < total_len) 1291 goto out; 1292 1293 if (read_start + ret == nonpad_end) 1294 ret += padding; 1295 1296 out: 1297 splice_shrink_spd(&spd); 1298 return ret; 1299 } 1300 1301 static ssize_t relay_file_splice_read(struct file *in, 1302 loff_t *ppos, 1303 struct pipe_inode_info *pipe, 1304 size_t len, 1305 unsigned int flags) 1306 { 1307 ssize_t spliced; 1308 int ret; 1309 int nonpad_ret = 0; 1310 1311 ret = 0; 1312 spliced = 0; 1313 1314 while (len && !spliced) { 1315 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1316 if (ret < 0) 1317 break; 1318 else if (!ret) { 1319 if (flags & SPLICE_F_NONBLOCK) 1320 ret = -EAGAIN; 1321 break; 1322 } 1323 1324 *ppos += ret; 1325 if (ret > len) 1326 len = 0; 1327 else 1328 len -= ret; 1329 spliced += nonpad_ret; 1330 nonpad_ret = 0; 1331 } 1332 1333 if (spliced) 1334 return spliced; 1335 1336 return ret; 1337 } 1338 1339 const struct file_operations relay_file_operations = { 1340 .open = relay_file_open, 1341 .poll = relay_file_poll, 1342 .mmap = relay_file_mmap, 1343 .read = relay_file_read, 1344 .llseek = no_llseek, 1345 .release = relay_file_release, 1346 .splice_read = relay_file_splice_read, 1347 }; 1348 EXPORT_SYMBOL_GPL(relay_file_operations); 1349 1350 static __init int relay_init(void) 1351 { 1352 1353 hotcpu_notifier(relay_hotcpu_callback, 0); 1354 return 0; 1355 } 1356 1357 early_initcall(relay_init); 1358