1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.txt for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * fault() vm_op implementation for relay file mapping. 41 */ 42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 43 { 44 struct page *page; 45 struct rchan_buf *buf = vma->vm_private_data; 46 pgoff_t pgoff = vmf->pgoff; 47 48 if (!buf) 49 return VM_FAULT_OOM; 50 51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 52 if (!page) 53 return VM_FAULT_SIGBUS; 54 get_page(page); 55 vmf->page = page; 56 57 return 0; 58 } 59 60 /* 61 * vm_ops for relay file mappings. 62 */ 63 static const struct vm_operations_struct relay_file_mmap_ops = { 64 .fault = relay_buf_fault, 65 .close = relay_file_mmap_close, 66 }; 67 68 /* 69 * allocate an array of pointers of struct page 70 */ 71 static struct page **relay_alloc_page_array(unsigned int n_pages) 72 { 73 const size_t pa_size = n_pages * sizeof(struct page *); 74 if (pa_size > PAGE_SIZE) 75 return vzalloc(pa_size); 76 return kzalloc(pa_size, GFP_KERNEL); 77 } 78 79 /* 80 * free an array of pointers of struct page 81 */ 82 static void relay_free_page_array(struct page **array) 83 { 84 if (is_vmalloc_addr(array)) 85 vfree(array); 86 else 87 kfree(array); 88 } 89 90 /** 91 * relay_mmap_buf: - mmap channel buffer to process address space 92 * @buf: relay channel buffer 93 * @vma: vm_area_struct describing memory to be mapped 94 * 95 * Returns 0 if ok, negative on error 96 * 97 * Caller should already have grabbed mmap_sem. 98 */ 99 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 100 { 101 unsigned long length = vma->vm_end - vma->vm_start; 102 struct file *filp = vma->vm_file; 103 104 if (!buf) 105 return -EBADF; 106 107 if (length != (unsigned long)buf->chan->alloc_size) 108 return -EINVAL; 109 110 vma->vm_ops = &relay_file_mmap_ops; 111 vma->vm_flags |= VM_DONTEXPAND; 112 vma->vm_private_data = buf; 113 buf->chan->cb->buf_mapped(buf, filp); 114 115 return 0; 116 } 117 118 /** 119 * relay_alloc_buf - allocate a channel buffer 120 * @buf: the buffer struct 121 * @size: total size of the buffer 122 * 123 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 124 * passed in size will get page aligned, if it isn't already. 125 */ 126 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 127 { 128 void *mem; 129 unsigned int i, j, n_pages; 130 131 *size = PAGE_ALIGN(*size); 132 n_pages = *size >> PAGE_SHIFT; 133 134 buf->page_array = relay_alloc_page_array(n_pages); 135 if (!buf->page_array) 136 return NULL; 137 138 for (i = 0; i < n_pages; i++) { 139 buf->page_array[i] = alloc_page(GFP_KERNEL); 140 if (unlikely(!buf->page_array[i])) 141 goto depopulate; 142 set_page_private(buf->page_array[i], (unsigned long)buf); 143 } 144 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 145 if (!mem) 146 goto depopulate; 147 148 memset(mem, 0, *size); 149 buf->page_count = n_pages; 150 return mem; 151 152 depopulate: 153 for (j = 0; j < i; j++) 154 __free_page(buf->page_array[j]); 155 relay_free_page_array(buf->page_array); 156 return NULL; 157 } 158 159 /** 160 * relay_create_buf - allocate and initialize a channel buffer 161 * @chan: the relay channel 162 * 163 * Returns channel buffer if successful, %NULL otherwise. 164 */ 165 static struct rchan_buf *relay_create_buf(struct rchan *chan) 166 { 167 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 168 if (!buf) 169 return NULL; 170 171 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); 172 if (!buf->padding) 173 goto free_buf; 174 175 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 176 if (!buf->start) 177 goto free_buf; 178 179 buf->chan = chan; 180 kref_get(&buf->chan->kref); 181 return buf; 182 183 free_buf: 184 kfree(buf->padding); 185 kfree(buf); 186 return NULL; 187 } 188 189 /** 190 * relay_destroy_channel - free the channel struct 191 * @kref: target kernel reference that contains the relay channel 192 * 193 * Should only be called from kref_put(). 194 */ 195 static void relay_destroy_channel(struct kref *kref) 196 { 197 struct rchan *chan = container_of(kref, struct rchan, kref); 198 kfree(chan); 199 } 200 201 /** 202 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 203 * @buf: the buffer struct 204 */ 205 static void relay_destroy_buf(struct rchan_buf *buf) 206 { 207 struct rchan *chan = buf->chan; 208 unsigned int i; 209 210 if (likely(buf->start)) { 211 vunmap(buf->start); 212 for (i = 0; i < buf->page_count; i++) 213 __free_page(buf->page_array[i]); 214 relay_free_page_array(buf->page_array); 215 } 216 chan->buf[buf->cpu] = NULL; 217 kfree(buf->padding); 218 kfree(buf); 219 kref_put(&chan->kref, relay_destroy_channel); 220 } 221 222 /** 223 * relay_remove_buf - remove a channel buffer 224 * @kref: target kernel reference that contains the relay buffer 225 * 226 * Removes the file from the fileystem, which also frees the 227 * rchan_buf_struct and the channel buffer. Should only be called from 228 * kref_put(). 229 */ 230 static void relay_remove_buf(struct kref *kref) 231 { 232 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 233 buf->chan->cb->remove_buf_file(buf->dentry); 234 relay_destroy_buf(buf); 235 } 236 237 /** 238 * relay_buf_empty - boolean, is the channel buffer empty? 239 * @buf: channel buffer 240 * 241 * Returns 1 if the buffer is empty, 0 otherwise. 242 */ 243 static int relay_buf_empty(struct rchan_buf *buf) 244 { 245 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 246 } 247 248 /** 249 * relay_buf_full - boolean, is the channel buffer full? 250 * @buf: channel buffer 251 * 252 * Returns 1 if the buffer is full, 0 otherwise. 253 */ 254 int relay_buf_full(struct rchan_buf *buf) 255 { 256 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 257 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 258 } 259 EXPORT_SYMBOL_GPL(relay_buf_full); 260 261 /* 262 * High-level relay kernel API and associated functions. 263 */ 264 265 /* 266 * rchan_callback implementations defining default channel behavior. Used 267 * in place of corresponding NULL values in client callback struct. 268 */ 269 270 /* 271 * subbuf_start() default callback. Does nothing. 272 */ 273 static int subbuf_start_default_callback (struct rchan_buf *buf, 274 void *subbuf, 275 void *prev_subbuf, 276 size_t prev_padding) 277 { 278 if (relay_buf_full(buf)) 279 return 0; 280 281 return 1; 282 } 283 284 /* 285 * buf_mapped() default callback. Does nothing. 286 */ 287 static void buf_mapped_default_callback(struct rchan_buf *buf, 288 struct file *filp) 289 { 290 } 291 292 /* 293 * buf_unmapped() default callback. Does nothing. 294 */ 295 static void buf_unmapped_default_callback(struct rchan_buf *buf, 296 struct file *filp) 297 { 298 } 299 300 /* 301 * create_buf_file_create() default callback. Does nothing. 302 */ 303 static struct dentry *create_buf_file_default_callback(const char *filename, 304 struct dentry *parent, 305 int mode, 306 struct rchan_buf *buf, 307 int *is_global) 308 { 309 return NULL; 310 } 311 312 /* 313 * remove_buf_file() default callback. Does nothing. 314 */ 315 static int remove_buf_file_default_callback(struct dentry *dentry) 316 { 317 return -EINVAL; 318 } 319 320 /* relay channel default callbacks */ 321 static struct rchan_callbacks default_channel_callbacks = { 322 .subbuf_start = subbuf_start_default_callback, 323 .buf_mapped = buf_mapped_default_callback, 324 .buf_unmapped = buf_unmapped_default_callback, 325 .create_buf_file = create_buf_file_default_callback, 326 .remove_buf_file = remove_buf_file_default_callback, 327 }; 328 329 /** 330 * wakeup_readers - wake up readers waiting on a channel 331 * @data: contains the channel buffer 332 * 333 * This is the timer function used to defer reader waking. 334 */ 335 static void wakeup_readers(unsigned long data) 336 { 337 struct rchan_buf *buf = (struct rchan_buf *)data; 338 wake_up_interruptible(&buf->read_wait); 339 } 340 341 /** 342 * __relay_reset - reset a channel buffer 343 * @buf: the channel buffer 344 * @init: 1 if this is a first-time initialization 345 * 346 * See relay_reset() for description of effect. 347 */ 348 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 349 { 350 size_t i; 351 352 if (init) { 353 init_waitqueue_head(&buf->read_wait); 354 kref_init(&buf->kref); 355 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf); 356 } else 357 del_timer_sync(&buf->timer); 358 359 buf->subbufs_produced = 0; 360 buf->subbufs_consumed = 0; 361 buf->bytes_consumed = 0; 362 buf->finalized = 0; 363 buf->data = buf->start; 364 buf->offset = 0; 365 366 for (i = 0; i < buf->chan->n_subbufs; i++) 367 buf->padding[i] = 0; 368 369 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 370 } 371 372 /** 373 * relay_reset - reset the channel 374 * @chan: the channel 375 * 376 * This has the effect of erasing all data from all channel buffers 377 * and restarting the channel in its initial state. The buffers 378 * are not freed, so any mappings are still in effect. 379 * 380 * NOTE. Care should be taken that the channel isn't actually 381 * being used by anything when this call is made. 382 */ 383 void relay_reset(struct rchan *chan) 384 { 385 unsigned int i; 386 387 if (!chan) 388 return; 389 390 if (chan->is_global && chan->buf[0]) { 391 __relay_reset(chan->buf[0], 0); 392 return; 393 } 394 395 mutex_lock(&relay_channels_mutex); 396 for_each_possible_cpu(i) 397 if (chan->buf[i]) 398 __relay_reset(chan->buf[i], 0); 399 mutex_unlock(&relay_channels_mutex); 400 } 401 EXPORT_SYMBOL_GPL(relay_reset); 402 403 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 404 struct dentry *dentry) 405 { 406 buf->dentry = dentry; 407 buf->dentry->d_inode->i_size = buf->early_bytes; 408 } 409 410 static struct dentry *relay_create_buf_file(struct rchan *chan, 411 struct rchan_buf *buf, 412 unsigned int cpu) 413 { 414 struct dentry *dentry; 415 char *tmpname; 416 417 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 418 if (!tmpname) 419 return NULL; 420 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 421 422 /* Create file in fs */ 423 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 424 S_IRUSR, buf, 425 &chan->is_global); 426 427 kfree(tmpname); 428 429 return dentry; 430 } 431 432 /* 433 * relay_open_buf - create a new relay channel buffer 434 * 435 * used by relay_open() and CPU hotplug. 436 */ 437 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 438 { 439 struct rchan_buf *buf = NULL; 440 struct dentry *dentry; 441 442 if (chan->is_global) 443 return chan->buf[0]; 444 445 buf = relay_create_buf(chan); 446 if (!buf) 447 return NULL; 448 449 if (chan->has_base_filename) { 450 dentry = relay_create_buf_file(chan, buf, cpu); 451 if (!dentry) 452 goto free_buf; 453 relay_set_buf_dentry(buf, dentry); 454 } 455 456 buf->cpu = cpu; 457 __relay_reset(buf, 1); 458 459 if(chan->is_global) { 460 chan->buf[0] = buf; 461 buf->cpu = 0; 462 } 463 464 return buf; 465 466 free_buf: 467 relay_destroy_buf(buf); 468 return NULL; 469 } 470 471 /** 472 * relay_close_buf - close a channel buffer 473 * @buf: channel buffer 474 * 475 * Marks the buffer finalized and restores the default callbacks. 476 * The channel buffer and channel buffer data structure are then freed 477 * automatically when the last reference is given up. 478 */ 479 static void relay_close_buf(struct rchan_buf *buf) 480 { 481 buf->finalized = 1; 482 del_timer_sync(&buf->timer); 483 kref_put(&buf->kref, relay_remove_buf); 484 } 485 486 static void setup_callbacks(struct rchan *chan, 487 struct rchan_callbacks *cb) 488 { 489 if (!cb) { 490 chan->cb = &default_channel_callbacks; 491 return; 492 } 493 494 if (!cb->subbuf_start) 495 cb->subbuf_start = subbuf_start_default_callback; 496 if (!cb->buf_mapped) 497 cb->buf_mapped = buf_mapped_default_callback; 498 if (!cb->buf_unmapped) 499 cb->buf_unmapped = buf_unmapped_default_callback; 500 if (!cb->create_buf_file) 501 cb->create_buf_file = create_buf_file_default_callback; 502 if (!cb->remove_buf_file) 503 cb->remove_buf_file = remove_buf_file_default_callback; 504 chan->cb = cb; 505 } 506 507 /** 508 * relay_hotcpu_callback - CPU hotplug callback 509 * @nb: notifier block 510 * @action: hotplug action to take 511 * @hcpu: CPU number 512 * 513 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD) 514 */ 515 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb, 516 unsigned long action, 517 void *hcpu) 518 { 519 unsigned int hotcpu = (unsigned long)hcpu; 520 struct rchan *chan; 521 522 switch(action) { 523 case CPU_UP_PREPARE: 524 case CPU_UP_PREPARE_FROZEN: 525 mutex_lock(&relay_channels_mutex); 526 list_for_each_entry(chan, &relay_channels, list) { 527 if (chan->buf[hotcpu]) 528 continue; 529 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu); 530 if(!chan->buf[hotcpu]) { 531 printk(KERN_ERR 532 "relay_hotcpu_callback: cpu %d buffer " 533 "creation failed\n", hotcpu); 534 mutex_unlock(&relay_channels_mutex); 535 return notifier_from_errno(-ENOMEM); 536 } 537 } 538 mutex_unlock(&relay_channels_mutex); 539 break; 540 case CPU_DEAD: 541 case CPU_DEAD_FROZEN: 542 /* No need to flush the cpu : will be flushed upon 543 * final relay_flush() call. */ 544 break; 545 } 546 return NOTIFY_OK; 547 } 548 549 /** 550 * relay_open - create a new relay channel 551 * @base_filename: base name of files to create, %NULL for buffering only 552 * @parent: dentry of parent directory, %NULL for root directory or buffer 553 * @subbuf_size: size of sub-buffers 554 * @n_subbufs: number of sub-buffers 555 * @cb: client callback functions 556 * @private_data: user-defined data 557 * 558 * Returns channel pointer if successful, %NULL otherwise. 559 * 560 * Creates a channel buffer for each cpu using the sizes and 561 * attributes specified. The created channel buffer files 562 * will be named base_filename0...base_filenameN-1. File 563 * permissions will be %S_IRUSR. 564 */ 565 struct rchan *relay_open(const char *base_filename, 566 struct dentry *parent, 567 size_t subbuf_size, 568 size_t n_subbufs, 569 struct rchan_callbacks *cb, 570 void *private_data) 571 { 572 unsigned int i; 573 struct rchan *chan; 574 575 if (!(subbuf_size && n_subbufs)) 576 return NULL; 577 578 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 579 if (!chan) 580 return NULL; 581 582 chan->version = RELAYFS_CHANNEL_VERSION; 583 chan->n_subbufs = n_subbufs; 584 chan->subbuf_size = subbuf_size; 585 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs); 586 chan->parent = parent; 587 chan->private_data = private_data; 588 if (base_filename) { 589 chan->has_base_filename = 1; 590 strlcpy(chan->base_filename, base_filename, NAME_MAX); 591 } 592 setup_callbacks(chan, cb); 593 kref_init(&chan->kref); 594 595 mutex_lock(&relay_channels_mutex); 596 for_each_online_cpu(i) { 597 chan->buf[i] = relay_open_buf(chan, i); 598 if (!chan->buf[i]) 599 goto free_bufs; 600 } 601 list_add(&chan->list, &relay_channels); 602 mutex_unlock(&relay_channels_mutex); 603 604 return chan; 605 606 free_bufs: 607 for_each_possible_cpu(i) { 608 if (chan->buf[i]) 609 relay_close_buf(chan->buf[i]); 610 } 611 612 kref_put(&chan->kref, relay_destroy_channel); 613 mutex_unlock(&relay_channels_mutex); 614 return NULL; 615 } 616 EXPORT_SYMBOL_GPL(relay_open); 617 618 struct rchan_percpu_buf_dispatcher { 619 struct rchan_buf *buf; 620 struct dentry *dentry; 621 }; 622 623 /* Called in atomic context. */ 624 static void __relay_set_buf_dentry(void *info) 625 { 626 struct rchan_percpu_buf_dispatcher *p = info; 627 628 relay_set_buf_dentry(p->buf, p->dentry); 629 } 630 631 /** 632 * relay_late_setup_files - triggers file creation 633 * @chan: channel to operate on 634 * @base_filename: base name of files to create 635 * @parent: dentry of parent directory, %NULL for root directory 636 * 637 * Returns 0 if successful, non-zero otherwise. 638 * 639 * Use to setup files for a previously buffer-only channel. 640 * Useful to do early tracing in kernel, before VFS is up, for example. 641 */ 642 int relay_late_setup_files(struct rchan *chan, 643 const char *base_filename, 644 struct dentry *parent) 645 { 646 int err = 0; 647 unsigned int i, curr_cpu; 648 unsigned long flags; 649 struct dentry *dentry; 650 struct rchan_percpu_buf_dispatcher disp; 651 652 if (!chan || !base_filename) 653 return -EINVAL; 654 655 strlcpy(chan->base_filename, base_filename, NAME_MAX); 656 657 mutex_lock(&relay_channels_mutex); 658 /* Is chan already set up? */ 659 if (unlikely(chan->has_base_filename)) { 660 mutex_unlock(&relay_channels_mutex); 661 return -EEXIST; 662 } 663 chan->has_base_filename = 1; 664 chan->parent = parent; 665 curr_cpu = get_cpu(); 666 /* 667 * The CPU hotplug notifier ran before us and created buffers with 668 * no files associated. So it's safe to call relay_setup_buf_file() 669 * on all currently online CPUs. 670 */ 671 for_each_online_cpu(i) { 672 if (unlikely(!chan->buf[i])) { 673 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n"); 674 err = -EINVAL; 675 break; 676 } 677 678 dentry = relay_create_buf_file(chan, chan->buf[i], i); 679 if (unlikely(!dentry)) { 680 err = -EINVAL; 681 break; 682 } 683 684 if (curr_cpu == i) { 685 local_irq_save(flags); 686 relay_set_buf_dentry(chan->buf[i], dentry); 687 local_irq_restore(flags); 688 } else { 689 disp.buf = chan->buf[i]; 690 disp.dentry = dentry; 691 smp_mb(); 692 /* relay_channels_mutex must be held, so wait. */ 693 err = smp_call_function_single(i, 694 __relay_set_buf_dentry, 695 &disp, 1); 696 } 697 if (unlikely(err)) 698 break; 699 } 700 put_cpu(); 701 mutex_unlock(&relay_channels_mutex); 702 703 return err; 704 } 705 706 /** 707 * relay_switch_subbuf - switch to a new sub-buffer 708 * @buf: channel buffer 709 * @length: size of current event 710 * 711 * Returns either the length passed in or 0 if full. 712 * 713 * Performs sub-buffer-switch tasks such as invoking callbacks, 714 * updating padding counts, waking up readers, etc. 715 */ 716 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 717 { 718 void *old, *new; 719 size_t old_subbuf, new_subbuf; 720 721 if (unlikely(length > buf->chan->subbuf_size)) 722 goto toobig; 723 724 if (buf->offset != buf->chan->subbuf_size + 1) { 725 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 726 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 727 buf->padding[old_subbuf] = buf->prev_padding; 728 buf->subbufs_produced++; 729 if (buf->dentry) 730 buf->dentry->d_inode->i_size += 731 buf->chan->subbuf_size - 732 buf->padding[old_subbuf]; 733 else 734 buf->early_bytes += buf->chan->subbuf_size - 735 buf->padding[old_subbuf]; 736 smp_mb(); 737 if (waitqueue_active(&buf->read_wait)) 738 /* 739 * Calling wake_up_interruptible() from here 740 * will deadlock if we happen to be logging 741 * from the scheduler (trying to re-grab 742 * rq->lock), so defer it. 743 */ 744 mod_timer(&buf->timer, jiffies + 1); 745 } 746 747 old = buf->data; 748 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 749 new = buf->start + new_subbuf * buf->chan->subbuf_size; 750 buf->offset = 0; 751 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 752 buf->offset = buf->chan->subbuf_size + 1; 753 return 0; 754 } 755 buf->data = new; 756 buf->padding[new_subbuf] = 0; 757 758 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 759 goto toobig; 760 761 return length; 762 763 toobig: 764 buf->chan->last_toobig = length; 765 return 0; 766 } 767 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 768 769 /** 770 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 771 * @chan: the channel 772 * @cpu: the cpu associated with the channel buffer to update 773 * @subbufs_consumed: number of sub-buffers to add to current buf's count 774 * 775 * Adds to the channel buffer's consumed sub-buffer count. 776 * subbufs_consumed should be the number of sub-buffers newly consumed, 777 * not the total consumed. 778 * 779 * NOTE. Kernel clients don't need to call this function if the channel 780 * mode is 'overwrite'. 781 */ 782 void relay_subbufs_consumed(struct rchan *chan, 783 unsigned int cpu, 784 size_t subbufs_consumed) 785 { 786 struct rchan_buf *buf; 787 788 if (!chan) 789 return; 790 791 if (cpu >= NR_CPUS || !chan->buf[cpu] || 792 subbufs_consumed > chan->n_subbufs) 793 return; 794 795 buf = chan->buf[cpu]; 796 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) 797 buf->subbufs_consumed = buf->subbufs_produced; 798 else 799 buf->subbufs_consumed += subbufs_consumed; 800 } 801 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 802 803 /** 804 * relay_close - close the channel 805 * @chan: the channel 806 * 807 * Closes all channel buffers and frees the channel. 808 */ 809 void relay_close(struct rchan *chan) 810 { 811 unsigned int i; 812 813 if (!chan) 814 return; 815 816 mutex_lock(&relay_channels_mutex); 817 if (chan->is_global && chan->buf[0]) 818 relay_close_buf(chan->buf[0]); 819 else 820 for_each_possible_cpu(i) 821 if (chan->buf[i]) 822 relay_close_buf(chan->buf[i]); 823 824 if (chan->last_toobig) 825 printk(KERN_WARNING "relay: one or more items not logged " 826 "[item size (%Zd) > sub-buffer size (%Zd)]\n", 827 chan->last_toobig, chan->subbuf_size); 828 829 list_del(&chan->list); 830 kref_put(&chan->kref, relay_destroy_channel); 831 mutex_unlock(&relay_channels_mutex); 832 } 833 EXPORT_SYMBOL_GPL(relay_close); 834 835 /** 836 * relay_flush - close the channel 837 * @chan: the channel 838 * 839 * Flushes all channel buffers, i.e. forces buffer switch. 840 */ 841 void relay_flush(struct rchan *chan) 842 { 843 unsigned int i; 844 845 if (!chan) 846 return; 847 848 if (chan->is_global && chan->buf[0]) { 849 relay_switch_subbuf(chan->buf[0], 0); 850 return; 851 } 852 853 mutex_lock(&relay_channels_mutex); 854 for_each_possible_cpu(i) 855 if (chan->buf[i]) 856 relay_switch_subbuf(chan->buf[i], 0); 857 mutex_unlock(&relay_channels_mutex); 858 } 859 EXPORT_SYMBOL_GPL(relay_flush); 860 861 /** 862 * relay_file_open - open file op for relay files 863 * @inode: the inode 864 * @filp: the file 865 * 866 * Increments the channel buffer refcount. 867 */ 868 static int relay_file_open(struct inode *inode, struct file *filp) 869 { 870 struct rchan_buf *buf = inode->i_private; 871 kref_get(&buf->kref); 872 filp->private_data = buf; 873 874 return nonseekable_open(inode, filp); 875 } 876 877 /** 878 * relay_file_mmap - mmap file op for relay files 879 * @filp: the file 880 * @vma: the vma describing what to map 881 * 882 * Calls upon relay_mmap_buf() to map the file into user space. 883 */ 884 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 885 { 886 struct rchan_buf *buf = filp->private_data; 887 return relay_mmap_buf(buf, vma); 888 } 889 890 /** 891 * relay_file_poll - poll file op for relay files 892 * @filp: the file 893 * @wait: poll table 894 * 895 * Poll implemention. 896 */ 897 static unsigned int relay_file_poll(struct file *filp, poll_table *wait) 898 { 899 unsigned int mask = 0; 900 struct rchan_buf *buf = filp->private_data; 901 902 if (buf->finalized) 903 return POLLERR; 904 905 if (filp->f_mode & FMODE_READ) { 906 poll_wait(filp, &buf->read_wait, wait); 907 if (!relay_buf_empty(buf)) 908 mask |= POLLIN | POLLRDNORM; 909 } 910 911 return mask; 912 } 913 914 /** 915 * relay_file_release - release file op for relay files 916 * @inode: the inode 917 * @filp: the file 918 * 919 * Decrements the channel refcount, as the filesystem is 920 * no longer using it. 921 */ 922 static int relay_file_release(struct inode *inode, struct file *filp) 923 { 924 struct rchan_buf *buf = filp->private_data; 925 kref_put(&buf->kref, relay_remove_buf); 926 927 return 0; 928 } 929 930 /* 931 * relay_file_read_consume - update the consumed count for the buffer 932 */ 933 static void relay_file_read_consume(struct rchan_buf *buf, 934 size_t read_pos, 935 size_t bytes_consumed) 936 { 937 size_t subbuf_size = buf->chan->subbuf_size; 938 size_t n_subbufs = buf->chan->n_subbufs; 939 size_t read_subbuf; 940 941 if (buf->subbufs_produced == buf->subbufs_consumed && 942 buf->offset == buf->bytes_consumed) 943 return; 944 945 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 946 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 947 buf->bytes_consumed = 0; 948 } 949 950 buf->bytes_consumed += bytes_consumed; 951 if (!read_pos) 952 read_subbuf = buf->subbufs_consumed % n_subbufs; 953 else 954 read_subbuf = read_pos / buf->chan->subbuf_size; 955 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 956 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 957 (buf->offset == subbuf_size)) 958 return; 959 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 960 buf->bytes_consumed = 0; 961 } 962 } 963 964 /* 965 * relay_file_read_avail - boolean, are there unconsumed bytes available? 966 */ 967 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) 968 { 969 size_t subbuf_size = buf->chan->subbuf_size; 970 size_t n_subbufs = buf->chan->n_subbufs; 971 size_t produced = buf->subbufs_produced; 972 size_t consumed = buf->subbufs_consumed; 973 974 relay_file_read_consume(buf, read_pos, 0); 975 976 consumed = buf->subbufs_consumed; 977 978 if (unlikely(buf->offset > subbuf_size)) { 979 if (produced == consumed) 980 return 0; 981 return 1; 982 } 983 984 if (unlikely(produced - consumed >= n_subbufs)) { 985 consumed = produced - n_subbufs + 1; 986 buf->subbufs_consumed = consumed; 987 buf->bytes_consumed = 0; 988 } 989 990 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 991 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 992 993 if (consumed > produced) 994 produced += n_subbufs * subbuf_size; 995 996 if (consumed == produced) { 997 if (buf->offset == subbuf_size && 998 buf->subbufs_produced > buf->subbufs_consumed) 999 return 1; 1000 return 0; 1001 } 1002 1003 return 1; 1004 } 1005 1006 /** 1007 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 1008 * @read_pos: file read position 1009 * @buf: relay channel buffer 1010 */ 1011 static size_t relay_file_read_subbuf_avail(size_t read_pos, 1012 struct rchan_buf *buf) 1013 { 1014 size_t padding, avail = 0; 1015 size_t read_subbuf, read_offset, write_subbuf, write_offset; 1016 size_t subbuf_size = buf->chan->subbuf_size; 1017 1018 write_subbuf = (buf->data - buf->start) / subbuf_size; 1019 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 1020 read_subbuf = read_pos / subbuf_size; 1021 read_offset = read_pos % subbuf_size; 1022 padding = buf->padding[read_subbuf]; 1023 1024 if (read_subbuf == write_subbuf) { 1025 if (read_offset + padding < write_offset) 1026 avail = write_offset - (read_offset + padding); 1027 } else 1028 avail = (subbuf_size - padding) - read_offset; 1029 1030 return avail; 1031 } 1032 1033 /** 1034 * relay_file_read_start_pos - find the first available byte to read 1035 * @read_pos: file read position 1036 * @buf: relay channel buffer 1037 * 1038 * If the @read_pos is in the middle of padding, return the 1039 * position of the first actually available byte, otherwise 1040 * return the original value. 1041 */ 1042 static size_t relay_file_read_start_pos(size_t read_pos, 1043 struct rchan_buf *buf) 1044 { 1045 size_t read_subbuf, padding, padding_start, padding_end; 1046 size_t subbuf_size = buf->chan->subbuf_size; 1047 size_t n_subbufs = buf->chan->n_subbufs; 1048 size_t consumed = buf->subbufs_consumed % n_subbufs; 1049 1050 if (!read_pos) 1051 read_pos = consumed * subbuf_size + buf->bytes_consumed; 1052 read_subbuf = read_pos / subbuf_size; 1053 padding = buf->padding[read_subbuf]; 1054 padding_start = (read_subbuf + 1) * subbuf_size - padding; 1055 padding_end = (read_subbuf + 1) * subbuf_size; 1056 if (read_pos >= padding_start && read_pos < padding_end) { 1057 read_subbuf = (read_subbuf + 1) % n_subbufs; 1058 read_pos = read_subbuf * subbuf_size; 1059 } 1060 1061 return read_pos; 1062 } 1063 1064 /** 1065 * relay_file_read_end_pos - return the new read position 1066 * @read_pos: file read position 1067 * @buf: relay channel buffer 1068 * @count: number of bytes to be read 1069 */ 1070 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 1071 size_t read_pos, 1072 size_t count) 1073 { 1074 size_t read_subbuf, padding, end_pos; 1075 size_t subbuf_size = buf->chan->subbuf_size; 1076 size_t n_subbufs = buf->chan->n_subbufs; 1077 1078 read_subbuf = read_pos / subbuf_size; 1079 padding = buf->padding[read_subbuf]; 1080 if (read_pos % subbuf_size + count + padding == subbuf_size) 1081 end_pos = (read_subbuf + 1) * subbuf_size; 1082 else 1083 end_pos = read_pos + count; 1084 if (end_pos >= subbuf_size * n_subbufs) 1085 end_pos = 0; 1086 1087 return end_pos; 1088 } 1089 1090 /* 1091 * subbuf_read_actor - read up to one subbuf's worth of data 1092 */ 1093 static int subbuf_read_actor(size_t read_start, 1094 struct rchan_buf *buf, 1095 size_t avail, 1096 read_descriptor_t *desc, 1097 read_actor_t actor) 1098 { 1099 void *from; 1100 int ret = 0; 1101 1102 from = buf->start + read_start; 1103 ret = avail; 1104 if (copy_to_user(desc->arg.buf, from, avail)) { 1105 desc->error = -EFAULT; 1106 ret = 0; 1107 } 1108 desc->arg.data += ret; 1109 desc->written += ret; 1110 desc->count -= ret; 1111 1112 return ret; 1113 } 1114 1115 typedef int (*subbuf_actor_t) (size_t read_start, 1116 struct rchan_buf *buf, 1117 size_t avail, 1118 read_descriptor_t *desc, 1119 read_actor_t actor); 1120 1121 /* 1122 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries 1123 */ 1124 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos, 1125 subbuf_actor_t subbuf_actor, 1126 read_actor_t actor, 1127 read_descriptor_t *desc) 1128 { 1129 struct rchan_buf *buf = filp->private_data; 1130 size_t read_start, avail; 1131 int ret; 1132 1133 if (!desc->count) 1134 return 0; 1135 1136 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 1137 do { 1138 if (!relay_file_read_avail(buf, *ppos)) 1139 break; 1140 1141 read_start = relay_file_read_start_pos(*ppos, buf); 1142 avail = relay_file_read_subbuf_avail(read_start, buf); 1143 if (!avail) 1144 break; 1145 1146 avail = min(desc->count, avail); 1147 ret = subbuf_actor(read_start, buf, avail, desc, actor); 1148 if (desc->error < 0) 1149 break; 1150 1151 if (ret) { 1152 relay_file_read_consume(buf, read_start, ret); 1153 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1154 } 1155 } while (desc->count && ret); 1156 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 1157 1158 return desc->written; 1159 } 1160 1161 static ssize_t relay_file_read(struct file *filp, 1162 char __user *buffer, 1163 size_t count, 1164 loff_t *ppos) 1165 { 1166 read_descriptor_t desc; 1167 desc.written = 0; 1168 desc.count = count; 1169 desc.arg.buf = buffer; 1170 desc.error = 0; 1171 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, 1172 NULL, &desc); 1173 } 1174 1175 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1176 { 1177 rbuf->bytes_consumed += bytes_consumed; 1178 1179 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1180 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1181 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1182 } 1183 } 1184 1185 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1186 struct pipe_buffer *buf) 1187 { 1188 struct rchan_buf *rbuf; 1189 1190 rbuf = (struct rchan_buf *)page_private(buf->page); 1191 relay_consume_bytes(rbuf, buf->private); 1192 } 1193 1194 static const struct pipe_buf_operations relay_pipe_buf_ops = { 1195 .can_merge = 0, 1196 .map = generic_pipe_buf_map, 1197 .unmap = generic_pipe_buf_unmap, 1198 .confirm = generic_pipe_buf_confirm, 1199 .release = relay_pipe_buf_release, 1200 .steal = generic_pipe_buf_steal, 1201 .get = generic_pipe_buf_get, 1202 }; 1203 1204 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1205 { 1206 } 1207 1208 /* 1209 * subbuf_splice_actor - splice up to one subbuf's worth of data 1210 */ 1211 static ssize_t subbuf_splice_actor(struct file *in, 1212 loff_t *ppos, 1213 struct pipe_inode_info *pipe, 1214 size_t len, 1215 unsigned int flags, 1216 int *nonpad_ret) 1217 { 1218 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages; 1219 struct rchan_buf *rbuf = in->private_data; 1220 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1221 uint64_t pos = (uint64_t) *ppos; 1222 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1223 size_t read_start = (size_t) do_div(pos, alloc_size); 1224 size_t read_subbuf = read_start / subbuf_size; 1225 size_t padding = rbuf->padding[read_subbuf]; 1226 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1227 struct page *pages[PIPE_DEF_BUFFERS]; 1228 struct partial_page partial[PIPE_DEF_BUFFERS]; 1229 struct splice_pipe_desc spd = { 1230 .pages = pages, 1231 .nr_pages = 0, 1232 .partial = partial, 1233 .flags = flags, 1234 .ops = &relay_pipe_buf_ops, 1235 .spd_release = relay_page_release, 1236 }; 1237 ssize_t ret; 1238 1239 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1240 return 0; 1241 if (splice_grow_spd(pipe, &spd)) 1242 return -ENOMEM; 1243 1244 /* 1245 * Adjust read len, if longer than what is available 1246 */ 1247 if (len > (subbuf_size - read_start % subbuf_size)) 1248 len = subbuf_size - read_start % subbuf_size; 1249 1250 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1251 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1252 poff = read_start & ~PAGE_MASK; 1253 nr_pages = min_t(unsigned int, subbuf_pages, pipe->buffers); 1254 1255 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1256 unsigned int this_len, this_end, private; 1257 unsigned int cur_pos = read_start + total_len; 1258 1259 if (!len) 1260 break; 1261 1262 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1263 private = this_len; 1264 1265 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1266 spd.partial[spd.nr_pages].offset = poff; 1267 1268 this_end = cur_pos + this_len; 1269 if (this_end >= nonpad_end) { 1270 this_len = nonpad_end - cur_pos; 1271 private = this_len + padding; 1272 } 1273 spd.partial[spd.nr_pages].len = this_len; 1274 spd.partial[spd.nr_pages].private = private; 1275 1276 len -= this_len; 1277 total_len += this_len; 1278 poff = 0; 1279 pidx = (pidx + 1) % subbuf_pages; 1280 1281 if (this_end >= nonpad_end) { 1282 spd.nr_pages++; 1283 break; 1284 } 1285 } 1286 1287 ret = 0; 1288 if (!spd.nr_pages) 1289 goto out; 1290 1291 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1292 if (ret < 0 || ret < total_len) 1293 goto out; 1294 1295 if (read_start + ret == nonpad_end) 1296 ret += padding; 1297 1298 out: 1299 splice_shrink_spd(pipe, &spd); 1300 return ret; 1301 } 1302 1303 static ssize_t relay_file_splice_read(struct file *in, 1304 loff_t *ppos, 1305 struct pipe_inode_info *pipe, 1306 size_t len, 1307 unsigned int flags) 1308 { 1309 ssize_t spliced; 1310 int ret; 1311 int nonpad_ret = 0; 1312 1313 ret = 0; 1314 spliced = 0; 1315 1316 while (len && !spliced) { 1317 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1318 if (ret < 0) 1319 break; 1320 else if (!ret) { 1321 if (flags & SPLICE_F_NONBLOCK) 1322 ret = -EAGAIN; 1323 break; 1324 } 1325 1326 *ppos += ret; 1327 if (ret > len) 1328 len = 0; 1329 else 1330 len -= ret; 1331 spliced += nonpad_ret; 1332 nonpad_ret = 0; 1333 } 1334 1335 if (spliced) 1336 return spliced; 1337 1338 return ret; 1339 } 1340 1341 const struct file_operations relay_file_operations = { 1342 .open = relay_file_open, 1343 .poll = relay_file_poll, 1344 .mmap = relay_file_mmap, 1345 .read = relay_file_read, 1346 .llseek = no_llseek, 1347 .release = relay_file_release, 1348 .splice_read = relay_file_splice_read, 1349 }; 1350 EXPORT_SYMBOL_GPL(relay_file_operations); 1351 1352 static __init int relay_init(void) 1353 { 1354 1355 hotcpu_notifier(relay_hotcpu_callback, 0); 1356 return 0; 1357 } 1358 1359 early_initcall(relay_init); 1360