xref: /openbmc/linux/kernel/relay.c (revision 6d99a79c)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
43 {
44 	struct page *page;
45 	struct rchan_buf *buf = vmf->vma->vm_private_data;
46 	pgoff_t pgoff = vmf->pgoff;
47 
48 	if (!buf)
49 		return VM_FAULT_OOM;
50 
51 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 	if (!page)
53 		return VM_FAULT_SIGBUS;
54 	get_page(page);
55 	vmf->page = page;
56 
57 	return 0;
58 }
59 
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 	.fault = relay_buf_fault,
65 	.close = relay_file_mmap_close,
66 };
67 
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 	const size_t pa_size = n_pages * sizeof(struct page *);
74 	if (pa_size > PAGE_SIZE)
75 		return vzalloc(pa_size);
76 	return kzalloc(pa_size, GFP_KERNEL);
77 }
78 
79 /*
80  * free an array of pointers of struct page
81  */
82 static void relay_free_page_array(struct page **array)
83 {
84 	kvfree(array);
85 }
86 
87 /**
88  *	relay_mmap_buf: - mmap channel buffer to process address space
89  *	@buf: relay channel buffer
90  *	@vma: vm_area_struct describing memory to be mapped
91  *
92  *	Returns 0 if ok, negative on error
93  *
94  *	Caller should already have grabbed mmap_sem.
95  */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98 	unsigned long length = vma->vm_end - vma->vm_start;
99 	struct file *filp = vma->vm_file;
100 
101 	if (!buf)
102 		return -EBADF;
103 
104 	if (length != (unsigned long)buf->chan->alloc_size)
105 		return -EINVAL;
106 
107 	vma->vm_ops = &relay_file_mmap_ops;
108 	vma->vm_flags |= VM_DONTEXPAND;
109 	vma->vm_private_data = buf;
110 	buf->chan->cb->buf_mapped(buf, filp);
111 
112 	return 0;
113 }
114 
115 /**
116  *	relay_alloc_buf - allocate a channel buffer
117  *	@buf: the buffer struct
118  *	@size: total size of the buffer
119  *
120  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121  *	passed in size will get page aligned, if it isn't already.
122  */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125 	void *mem;
126 	unsigned int i, j, n_pages;
127 
128 	*size = PAGE_ALIGN(*size);
129 	n_pages = *size >> PAGE_SHIFT;
130 
131 	buf->page_array = relay_alloc_page_array(n_pages);
132 	if (!buf->page_array)
133 		return NULL;
134 
135 	for (i = 0; i < n_pages; i++) {
136 		buf->page_array[i] = alloc_page(GFP_KERNEL);
137 		if (unlikely(!buf->page_array[i]))
138 			goto depopulate;
139 		set_page_private(buf->page_array[i], (unsigned long)buf);
140 	}
141 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 	if (!mem)
143 		goto depopulate;
144 
145 	memset(mem, 0, *size);
146 	buf->page_count = n_pages;
147 	return mem;
148 
149 depopulate:
150 	for (j = 0; j < i; j++)
151 		__free_page(buf->page_array[j]);
152 	relay_free_page_array(buf->page_array);
153 	return NULL;
154 }
155 
156 /**
157  *	relay_create_buf - allocate and initialize a channel buffer
158  *	@chan: the relay channel
159  *
160  *	Returns channel buffer if successful, %NULL otherwise.
161  */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164 	struct rchan_buf *buf;
165 
166 	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
167 		return NULL;
168 
169 	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 	if (!buf)
171 		return NULL;
172 	buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *),
173 				     GFP_KERNEL);
174 	if (!buf->padding)
175 		goto free_buf;
176 
177 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
178 	if (!buf->start)
179 		goto free_buf;
180 
181 	buf->chan = chan;
182 	kref_get(&buf->chan->kref);
183 	return buf;
184 
185 free_buf:
186 	kfree(buf->padding);
187 	kfree(buf);
188 	return NULL;
189 }
190 
191 /**
192  *	relay_destroy_channel - free the channel struct
193  *	@kref: target kernel reference that contains the relay channel
194  *
195  *	Should only be called from kref_put().
196  */
197 static void relay_destroy_channel(struct kref *kref)
198 {
199 	struct rchan *chan = container_of(kref, struct rchan, kref);
200 	kfree(chan);
201 }
202 
203 /**
204  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
205  *	@buf: the buffer struct
206  */
207 static void relay_destroy_buf(struct rchan_buf *buf)
208 {
209 	struct rchan *chan = buf->chan;
210 	unsigned int i;
211 
212 	if (likely(buf->start)) {
213 		vunmap(buf->start);
214 		for (i = 0; i < buf->page_count; i++)
215 			__free_page(buf->page_array[i]);
216 		relay_free_page_array(buf->page_array);
217 	}
218 	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
219 	kfree(buf->padding);
220 	kfree(buf);
221 	kref_put(&chan->kref, relay_destroy_channel);
222 }
223 
224 /**
225  *	relay_remove_buf - remove a channel buffer
226  *	@kref: target kernel reference that contains the relay buffer
227  *
228  *	Removes the file from the filesystem, which also frees the
229  *	rchan_buf_struct and the channel buffer.  Should only be called from
230  *	kref_put().
231  */
232 static void relay_remove_buf(struct kref *kref)
233 {
234 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
235 	relay_destroy_buf(buf);
236 }
237 
238 /**
239  *	relay_buf_empty - boolean, is the channel buffer empty?
240  *	@buf: channel buffer
241  *
242  *	Returns 1 if the buffer is empty, 0 otherwise.
243  */
244 static int relay_buf_empty(struct rchan_buf *buf)
245 {
246 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
247 }
248 
249 /**
250  *	relay_buf_full - boolean, is the channel buffer full?
251  *	@buf: channel buffer
252  *
253  *	Returns 1 if the buffer is full, 0 otherwise.
254  */
255 int relay_buf_full(struct rchan_buf *buf)
256 {
257 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
258 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
259 }
260 EXPORT_SYMBOL_GPL(relay_buf_full);
261 
262 /*
263  * High-level relay kernel API and associated functions.
264  */
265 
266 /*
267  * rchan_callback implementations defining default channel behavior.  Used
268  * in place of corresponding NULL values in client callback struct.
269  */
270 
271 /*
272  * subbuf_start() default callback.  Does nothing.
273  */
274 static int subbuf_start_default_callback (struct rchan_buf *buf,
275 					  void *subbuf,
276 					  void *prev_subbuf,
277 					  size_t prev_padding)
278 {
279 	if (relay_buf_full(buf))
280 		return 0;
281 
282 	return 1;
283 }
284 
285 /*
286  * buf_mapped() default callback.  Does nothing.
287  */
288 static void buf_mapped_default_callback(struct rchan_buf *buf,
289 					struct file *filp)
290 {
291 }
292 
293 /*
294  * buf_unmapped() default callback.  Does nothing.
295  */
296 static void buf_unmapped_default_callback(struct rchan_buf *buf,
297 					  struct file *filp)
298 {
299 }
300 
301 /*
302  * create_buf_file_create() default callback.  Does nothing.
303  */
304 static struct dentry *create_buf_file_default_callback(const char *filename,
305 						       struct dentry *parent,
306 						       umode_t mode,
307 						       struct rchan_buf *buf,
308 						       int *is_global)
309 {
310 	return NULL;
311 }
312 
313 /*
314  * remove_buf_file() default callback.  Does nothing.
315  */
316 static int remove_buf_file_default_callback(struct dentry *dentry)
317 {
318 	return -EINVAL;
319 }
320 
321 /* relay channel default callbacks */
322 static struct rchan_callbacks default_channel_callbacks = {
323 	.subbuf_start = subbuf_start_default_callback,
324 	.buf_mapped = buf_mapped_default_callback,
325 	.buf_unmapped = buf_unmapped_default_callback,
326 	.create_buf_file = create_buf_file_default_callback,
327 	.remove_buf_file = remove_buf_file_default_callback,
328 };
329 
330 /**
331  *	wakeup_readers - wake up readers waiting on a channel
332  *	@work: contains the channel buffer
333  *
334  *	This is the function used to defer reader waking
335  */
336 static void wakeup_readers(struct irq_work *work)
337 {
338 	struct rchan_buf *buf;
339 
340 	buf = container_of(work, struct rchan_buf, wakeup_work);
341 	wake_up_interruptible(&buf->read_wait);
342 }
343 
344 /**
345  *	__relay_reset - reset a channel buffer
346  *	@buf: the channel buffer
347  *	@init: 1 if this is a first-time initialization
348  *
349  *	See relay_reset() for description of effect.
350  */
351 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
352 {
353 	size_t i;
354 
355 	if (init) {
356 		init_waitqueue_head(&buf->read_wait);
357 		kref_init(&buf->kref);
358 		init_irq_work(&buf->wakeup_work, wakeup_readers);
359 	} else {
360 		irq_work_sync(&buf->wakeup_work);
361 	}
362 
363 	buf->subbufs_produced = 0;
364 	buf->subbufs_consumed = 0;
365 	buf->bytes_consumed = 0;
366 	buf->finalized = 0;
367 	buf->data = buf->start;
368 	buf->offset = 0;
369 
370 	for (i = 0; i < buf->chan->n_subbufs; i++)
371 		buf->padding[i] = 0;
372 
373 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
374 }
375 
376 /**
377  *	relay_reset - reset the channel
378  *	@chan: the channel
379  *
380  *	This has the effect of erasing all data from all channel buffers
381  *	and restarting the channel in its initial state.  The buffers
382  *	are not freed, so any mappings are still in effect.
383  *
384  *	NOTE. Care should be taken that the channel isn't actually
385  *	being used by anything when this call is made.
386  */
387 void relay_reset(struct rchan *chan)
388 {
389 	struct rchan_buf *buf;
390 	unsigned int i;
391 
392 	if (!chan)
393 		return;
394 
395 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
396 		__relay_reset(buf, 0);
397 		return;
398 	}
399 
400 	mutex_lock(&relay_channels_mutex);
401 	for_each_possible_cpu(i)
402 		if ((buf = *per_cpu_ptr(chan->buf, i)))
403 			__relay_reset(buf, 0);
404 	mutex_unlock(&relay_channels_mutex);
405 }
406 EXPORT_SYMBOL_GPL(relay_reset);
407 
408 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
409 					struct dentry *dentry)
410 {
411 	buf->dentry = dentry;
412 	d_inode(buf->dentry)->i_size = buf->early_bytes;
413 }
414 
415 static struct dentry *relay_create_buf_file(struct rchan *chan,
416 					    struct rchan_buf *buf,
417 					    unsigned int cpu)
418 {
419 	struct dentry *dentry;
420 	char *tmpname;
421 
422 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
423 	if (!tmpname)
424 		return NULL;
425 	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
426 
427 	/* Create file in fs */
428 	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
429 					   S_IRUSR, buf,
430 					   &chan->is_global);
431 
432 	kfree(tmpname);
433 
434 	return dentry;
435 }
436 
437 /*
438  *	relay_open_buf - create a new relay channel buffer
439  *
440  *	used by relay_open() and CPU hotplug.
441  */
442 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
443 {
444  	struct rchan_buf *buf = NULL;
445 	struct dentry *dentry;
446 
447  	if (chan->is_global)
448 		return *per_cpu_ptr(chan->buf, 0);
449 
450 	buf = relay_create_buf(chan);
451 	if (!buf)
452 		return NULL;
453 
454 	if (chan->has_base_filename) {
455 		dentry = relay_create_buf_file(chan, buf, cpu);
456 		if (!dentry)
457 			goto free_buf;
458 		relay_set_buf_dentry(buf, dentry);
459 	} else {
460 		/* Only retrieve global info, nothing more, nothing less */
461 		dentry = chan->cb->create_buf_file(NULL, NULL,
462 						   S_IRUSR, buf,
463 						   &chan->is_global);
464 		if (WARN_ON(dentry))
465 			goto free_buf;
466 	}
467 
468  	buf->cpu = cpu;
469  	__relay_reset(buf, 1);
470 
471  	if(chan->is_global) {
472 		*per_cpu_ptr(chan->buf, 0) = buf;
473  		buf->cpu = 0;
474   	}
475 
476 	return buf;
477 
478 free_buf:
479  	relay_destroy_buf(buf);
480 	return NULL;
481 }
482 
483 /**
484  *	relay_close_buf - close a channel buffer
485  *	@buf: channel buffer
486  *
487  *	Marks the buffer finalized and restores the default callbacks.
488  *	The channel buffer and channel buffer data structure are then freed
489  *	automatically when the last reference is given up.
490  */
491 static void relay_close_buf(struct rchan_buf *buf)
492 {
493 	buf->finalized = 1;
494 	irq_work_sync(&buf->wakeup_work);
495 	buf->chan->cb->remove_buf_file(buf->dentry);
496 	kref_put(&buf->kref, relay_remove_buf);
497 }
498 
499 static void setup_callbacks(struct rchan *chan,
500 				   struct rchan_callbacks *cb)
501 {
502 	if (!cb) {
503 		chan->cb = &default_channel_callbacks;
504 		return;
505 	}
506 
507 	if (!cb->subbuf_start)
508 		cb->subbuf_start = subbuf_start_default_callback;
509 	if (!cb->buf_mapped)
510 		cb->buf_mapped = buf_mapped_default_callback;
511 	if (!cb->buf_unmapped)
512 		cb->buf_unmapped = buf_unmapped_default_callback;
513 	if (!cb->create_buf_file)
514 		cb->create_buf_file = create_buf_file_default_callback;
515 	if (!cb->remove_buf_file)
516 		cb->remove_buf_file = remove_buf_file_default_callback;
517 	chan->cb = cb;
518 }
519 
520 int relay_prepare_cpu(unsigned int cpu)
521 {
522 	struct rchan *chan;
523 	struct rchan_buf *buf;
524 
525 	mutex_lock(&relay_channels_mutex);
526 	list_for_each_entry(chan, &relay_channels, list) {
527 		if ((buf = *per_cpu_ptr(chan->buf, cpu)))
528 			continue;
529 		buf = relay_open_buf(chan, cpu);
530 		if (!buf) {
531 			pr_err("relay: cpu %d buffer creation failed\n", cpu);
532 			mutex_unlock(&relay_channels_mutex);
533 			return -ENOMEM;
534 		}
535 		*per_cpu_ptr(chan->buf, cpu) = buf;
536 	}
537 	mutex_unlock(&relay_channels_mutex);
538 	return 0;
539 }
540 
541 /**
542  *	relay_open - create a new relay channel
543  *	@base_filename: base name of files to create, %NULL for buffering only
544  *	@parent: dentry of parent directory, %NULL for root directory or buffer
545  *	@subbuf_size: size of sub-buffers
546  *	@n_subbufs: number of sub-buffers
547  *	@cb: client callback functions
548  *	@private_data: user-defined data
549  *
550  *	Returns channel pointer if successful, %NULL otherwise.
551  *
552  *	Creates a channel buffer for each cpu using the sizes and
553  *	attributes specified.  The created channel buffer files
554  *	will be named base_filename0...base_filenameN-1.  File
555  *	permissions will be %S_IRUSR.
556  *
557  *	If opening a buffer (@parent = NULL) that you later wish to register
558  *	in a filesystem, call relay_late_setup_files() once the @parent dentry
559  *	is available.
560  */
561 struct rchan *relay_open(const char *base_filename,
562 			 struct dentry *parent,
563 			 size_t subbuf_size,
564 			 size_t n_subbufs,
565 			 struct rchan_callbacks *cb,
566 			 void *private_data)
567 {
568 	unsigned int i;
569 	struct rchan *chan;
570 	struct rchan_buf *buf;
571 
572 	if (!(subbuf_size && n_subbufs))
573 		return NULL;
574 	if (subbuf_size > UINT_MAX / n_subbufs)
575 		return NULL;
576 
577 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
578 	if (!chan)
579 		return NULL;
580 
581 	chan->buf = alloc_percpu(struct rchan_buf *);
582 	chan->version = RELAYFS_CHANNEL_VERSION;
583 	chan->n_subbufs = n_subbufs;
584 	chan->subbuf_size = subbuf_size;
585 	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
586 	chan->parent = parent;
587 	chan->private_data = private_data;
588 	if (base_filename) {
589 		chan->has_base_filename = 1;
590 		strlcpy(chan->base_filename, base_filename, NAME_MAX);
591 	}
592 	setup_callbacks(chan, cb);
593 	kref_init(&chan->kref);
594 
595 	mutex_lock(&relay_channels_mutex);
596 	for_each_online_cpu(i) {
597 		buf = relay_open_buf(chan, i);
598 		if (!buf)
599 			goto free_bufs;
600 		*per_cpu_ptr(chan->buf, i) = buf;
601 	}
602 	list_add(&chan->list, &relay_channels);
603 	mutex_unlock(&relay_channels_mutex);
604 
605 	return chan;
606 
607 free_bufs:
608 	for_each_possible_cpu(i) {
609 		if ((buf = *per_cpu_ptr(chan->buf, i)))
610 			relay_close_buf(buf);
611 	}
612 
613 	kref_put(&chan->kref, relay_destroy_channel);
614 	mutex_unlock(&relay_channels_mutex);
615 	return NULL;
616 }
617 EXPORT_SYMBOL_GPL(relay_open);
618 
619 struct rchan_percpu_buf_dispatcher {
620 	struct rchan_buf *buf;
621 	struct dentry *dentry;
622 };
623 
624 /* Called in atomic context. */
625 static void __relay_set_buf_dentry(void *info)
626 {
627 	struct rchan_percpu_buf_dispatcher *p = info;
628 
629 	relay_set_buf_dentry(p->buf, p->dentry);
630 }
631 
632 /**
633  *	relay_late_setup_files - triggers file creation
634  *	@chan: channel to operate on
635  *	@base_filename: base name of files to create
636  *	@parent: dentry of parent directory, %NULL for root directory
637  *
638  *	Returns 0 if successful, non-zero otherwise.
639  *
640  *	Use to setup files for a previously buffer-only channel created
641  *	by relay_open() with a NULL parent dentry.
642  *
643  *	For example, this is useful for perfomring early tracing in kernel,
644  *	before VFS is up and then exposing the early results once the dentry
645  *	is available.
646  */
647 int relay_late_setup_files(struct rchan *chan,
648 			   const char *base_filename,
649 			   struct dentry *parent)
650 {
651 	int err = 0;
652 	unsigned int i, curr_cpu;
653 	unsigned long flags;
654 	struct dentry *dentry;
655 	struct rchan_buf *buf;
656 	struct rchan_percpu_buf_dispatcher disp;
657 
658 	if (!chan || !base_filename)
659 		return -EINVAL;
660 
661 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
662 
663 	mutex_lock(&relay_channels_mutex);
664 	/* Is chan already set up? */
665 	if (unlikely(chan->has_base_filename)) {
666 		mutex_unlock(&relay_channels_mutex);
667 		return -EEXIST;
668 	}
669 	chan->has_base_filename = 1;
670 	chan->parent = parent;
671 
672 	if (chan->is_global) {
673 		err = -EINVAL;
674 		buf = *per_cpu_ptr(chan->buf, 0);
675 		if (!WARN_ON_ONCE(!buf)) {
676 			dentry = relay_create_buf_file(chan, buf, 0);
677 			if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
678 				relay_set_buf_dentry(buf, dentry);
679 				err = 0;
680 			}
681 		}
682 		mutex_unlock(&relay_channels_mutex);
683 		return err;
684 	}
685 
686 	curr_cpu = get_cpu();
687 	/*
688 	 * The CPU hotplug notifier ran before us and created buffers with
689 	 * no files associated. So it's safe to call relay_setup_buf_file()
690 	 * on all currently online CPUs.
691 	 */
692 	for_each_online_cpu(i) {
693 		buf = *per_cpu_ptr(chan->buf, i);
694 		if (unlikely(!buf)) {
695 			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
696 			err = -EINVAL;
697 			break;
698 		}
699 
700 		dentry = relay_create_buf_file(chan, buf, i);
701 		if (unlikely(!dentry)) {
702 			err = -EINVAL;
703 			break;
704 		}
705 
706 		if (curr_cpu == i) {
707 			local_irq_save(flags);
708 			relay_set_buf_dentry(buf, dentry);
709 			local_irq_restore(flags);
710 		} else {
711 			disp.buf = buf;
712 			disp.dentry = dentry;
713 			smp_mb();
714 			/* relay_channels_mutex must be held, so wait. */
715 			err = smp_call_function_single(i,
716 						       __relay_set_buf_dentry,
717 						       &disp, 1);
718 		}
719 		if (unlikely(err))
720 			break;
721 	}
722 	put_cpu();
723 	mutex_unlock(&relay_channels_mutex);
724 
725 	return err;
726 }
727 EXPORT_SYMBOL_GPL(relay_late_setup_files);
728 
729 /**
730  *	relay_switch_subbuf - switch to a new sub-buffer
731  *	@buf: channel buffer
732  *	@length: size of current event
733  *
734  *	Returns either the length passed in or 0 if full.
735  *
736  *	Performs sub-buffer-switch tasks such as invoking callbacks,
737  *	updating padding counts, waking up readers, etc.
738  */
739 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
740 {
741 	void *old, *new;
742 	size_t old_subbuf, new_subbuf;
743 
744 	if (unlikely(length > buf->chan->subbuf_size))
745 		goto toobig;
746 
747 	if (buf->offset != buf->chan->subbuf_size + 1) {
748 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
749 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
750 		buf->padding[old_subbuf] = buf->prev_padding;
751 		buf->subbufs_produced++;
752 		if (buf->dentry)
753 			d_inode(buf->dentry)->i_size +=
754 				buf->chan->subbuf_size -
755 				buf->padding[old_subbuf];
756 		else
757 			buf->early_bytes += buf->chan->subbuf_size -
758 					    buf->padding[old_subbuf];
759 		smp_mb();
760 		if (waitqueue_active(&buf->read_wait)) {
761 			/*
762 			 * Calling wake_up_interruptible() from here
763 			 * will deadlock if we happen to be logging
764 			 * from the scheduler (trying to re-grab
765 			 * rq->lock), so defer it.
766 			 */
767 			irq_work_queue(&buf->wakeup_work);
768 		}
769 	}
770 
771 	old = buf->data;
772 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
773 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
774 	buf->offset = 0;
775 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
776 		buf->offset = buf->chan->subbuf_size + 1;
777 		return 0;
778 	}
779 	buf->data = new;
780 	buf->padding[new_subbuf] = 0;
781 
782 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
783 		goto toobig;
784 
785 	return length;
786 
787 toobig:
788 	buf->chan->last_toobig = length;
789 	return 0;
790 }
791 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
792 
793 /**
794  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
795  *	@chan: the channel
796  *	@cpu: the cpu associated with the channel buffer to update
797  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
798  *
799  *	Adds to the channel buffer's consumed sub-buffer count.
800  *	subbufs_consumed should be the number of sub-buffers newly consumed,
801  *	not the total consumed.
802  *
803  *	NOTE. Kernel clients don't need to call this function if the channel
804  *	mode is 'overwrite'.
805  */
806 void relay_subbufs_consumed(struct rchan *chan,
807 			    unsigned int cpu,
808 			    size_t subbufs_consumed)
809 {
810 	struct rchan_buf *buf;
811 
812 	if (!chan || cpu >= NR_CPUS)
813 		return;
814 
815 	buf = *per_cpu_ptr(chan->buf, cpu);
816 	if (!buf || subbufs_consumed > chan->n_subbufs)
817 		return;
818 
819 	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
820 		buf->subbufs_consumed = buf->subbufs_produced;
821 	else
822 		buf->subbufs_consumed += subbufs_consumed;
823 }
824 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
825 
826 /**
827  *	relay_close - close the channel
828  *	@chan: the channel
829  *
830  *	Closes all channel buffers and frees the channel.
831  */
832 void relay_close(struct rchan *chan)
833 {
834 	struct rchan_buf *buf;
835 	unsigned int i;
836 
837 	if (!chan)
838 		return;
839 
840 	mutex_lock(&relay_channels_mutex);
841 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
842 		relay_close_buf(buf);
843 	else
844 		for_each_possible_cpu(i)
845 			if ((buf = *per_cpu_ptr(chan->buf, i)))
846 				relay_close_buf(buf);
847 
848 	if (chan->last_toobig)
849 		printk(KERN_WARNING "relay: one or more items not logged "
850 		       "[item size (%zd) > sub-buffer size (%zd)]\n",
851 		       chan->last_toobig, chan->subbuf_size);
852 
853 	list_del(&chan->list);
854 	kref_put(&chan->kref, relay_destroy_channel);
855 	mutex_unlock(&relay_channels_mutex);
856 }
857 EXPORT_SYMBOL_GPL(relay_close);
858 
859 /**
860  *	relay_flush - close the channel
861  *	@chan: the channel
862  *
863  *	Flushes all channel buffers, i.e. forces buffer switch.
864  */
865 void relay_flush(struct rchan *chan)
866 {
867 	struct rchan_buf *buf;
868 	unsigned int i;
869 
870 	if (!chan)
871 		return;
872 
873 	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
874 		relay_switch_subbuf(buf, 0);
875 		return;
876 	}
877 
878 	mutex_lock(&relay_channels_mutex);
879 	for_each_possible_cpu(i)
880 		if ((buf = *per_cpu_ptr(chan->buf, i)))
881 			relay_switch_subbuf(buf, 0);
882 	mutex_unlock(&relay_channels_mutex);
883 }
884 EXPORT_SYMBOL_GPL(relay_flush);
885 
886 /**
887  *	relay_file_open - open file op for relay files
888  *	@inode: the inode
889  *	@filp: the file
890  *
891  *	Increments the channel buffer refcount.
892  */
893 static int relay_file_open(struct inode *inode, struct file *filp)
894 {
895 	struct rchan_buf *buf = inode->i_private;
896 	kref_get(&buf->kref);
897 	filp->private_data = buf;
898 
899 	return nonseekable_open(inode, filp);
900 }
901 
902 /**
903  *	relay_file_mmap - mmap file op for relay files
904  *	@filp: the file
905  *	@vma: the vma describing what to map
906  *
907  *	Calls upon relay_mmap_buf() to map the file into user space.
908  */
909 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
910 {
911 	struct rchan_buf *buf = filp->private_data;
912 	return relay_mmap_buf(buf, vma);
913 }
914 
915 /**
916  *	relay_file_poll - poll file op for relay files
917  *	@filp: the file
918  *	@wait: poll table
919  *
920  *	Poll implemention.
921  */
922 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
923 {
924 	__poll_t mask = 0;
925 	struct rchan_buf *buf = filp->private_data;
926 
927 	if (buf->finalized)
928 		return EPOLLERR;
929 
930 	if (filp->f_mode & FMODE_READ) {
931 		poll_wait(filp, &buf->read_wait, wait);
932 		if (!relay_buf_empty(buf))
933 			mask |= EPOLLIN | EPOLLRDNORM;
934 	}
935 
936 	return mask;
937 }
938 
939 /**
940  *	relay_file_release - release file op for relay files
941  *	@inode: the inode
942  *	@filp: the file
943  *
944  *	Decrements the channel refcount, as the filesystem is
945  *	no longer using it.
946  */
947 static int relay_file_release(struct inode *inode, struct file *filp)
948 {
949 	struct rchan_buf *buf = filp->private_data;
950 	kref_put(&buf->kref, relay_remove_buf);
951 
952 	return 0;
953 }
954 
955 /*
956  *	relay_file_read_consume - update the consumed count for the buffer
957  */
958 static void relay_file_read_consume(struct rchan_buf *buf,
959 				    size_t read_pos,
960 				    size_t bytes_consumed)
961 {
962 	size_t subbuf_size = buf->chan->subbuf_size;
963 	size_t n_subbufs = buf->chan->n_subbufs;
964 	size_t read_subbuf;
965 
966 	if (buf->subbufs_produced == buf->subbufs_consumed &&
967 	    buf->offset == buf->bytes_consumed)
968 		return;
969 
970 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
971 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
972 		buf->bytes_consumed = 0;
973 	}
974 
975 	buf->bytes_consumed += bytes_consumed;
976 	if (!read_pos)
977 		read_subbuf = buf->subbufs_consumed % n_subbufs;
978 	else
979 		read_subbuf = read_pos / buf->chan->subbuf_size;
980 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
981 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
982 		    (buf->offset == subbuf_size))
983 			return;
984 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
985 		buf->bytes_consumed = 0;
986 	}
987 }
988 
989 /*
990  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
991  */
992 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
993 {
994 	size_t subbuf_size = buf->chan->subbuf_size;
995 	size_t n_subbufs = buf->chan->n_subbufs;
996 	size_t produced = buf->subbufs_produced;
997 	size_t consumed = buf->subbufs_consumed;
998 
999 	relay_file_read_consume(buf, read_pos, 0);
1000 
1001 	consumed = buf->subbufs_consumed;
1002 
1003 	if (unlikely(buf->offset > subbuf_size)) {
1004 		if (produced == consumed)
1005 			return 0;
1006 		return 1;
1007 	}
1008 
1009 	if (unlikely(produced - consumed >= n_subbufs)) {
1010 		consumed = produced - n_subbufs + 1;
1011 		buf->subbufs_consumed = consumed;
1012 		buf->bytes_consumed = 0;
1013 	}
1014 
1015 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1016 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1017 
1018 	if (consumed > produced)
1019 		produced += n_subbufs * subbuf_size;
1020 
1021 	if (consumed == produced) {
1022 		if (buf->offset == subbuf_size &&
1023 		    buf->subbufs_produced > buf->subbufs_consumed)
1024 			return 1;
1025 		return 0;
1026 	}
1027 
1028 	return 1;
1029 }
1030 
1031 /**
1032  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
1033  *	@read_pos: file read position
1034  *	@buf: relay channel buffer
1035  */
1036 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1037 					   struct rchan_buf *buf)
1038 {
1039 	size_t padding, avail = 0;
1040 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
1041 	size_t subbuf_size = buf->chan->subbuf_size;
1042 
1043 	write_subbuf = (buf->data - buf->start) / subbuf_size;
1044 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1045 	read_subbuf = read_pos / subbuf_size;
1046 	read_offset = read_pos % subbuf_size;
1047 	padding = buf->padding[read_subbuf];
1048 
1049 	if (read_subbuf == write_subbuf) {
1050 		if (read_offset + padding < write_offset)
1051 			avail = write_offset - (read_offset + padding);
1052 	} else
1053 		avail = (subbuf_size - padding) - read_offset;
1054 
1055 	return avail;
1056 }
1057 
1058 /**
1059  *	relay_file_read_start_pos - find the first available byte to read
1060  *	@read_pos: file read position
1061  *	@buf: relay channel buffer
1062  *
1063  *	If the @read_pos is in the middle of padding, return the
1064  *	position of the first actually available byte, otherwise
1065  *	return the original value.
1066  */
1067 static size_t relay_file_read_start_pos(size_t read_pos,
1068 					struct rchan_buf *buf)
1069 {
1070 	size_t read_subbuf, padding, padding_start, padding_end;
1071 	size_t subbuf_size = buf->chan->subbuf_size;
1072 	size_t n_subbufs = buf->chan->n_subbufs;
1073 	size_t consumed = buf->subbufs_consumed % n_subbufs;
1074 
1075 	if (!read_pos)
1076 		read_pos = consumed * subbuf_size + buf->bytes_consumed;
1077 	read_subbuf = read_pos / subbuf_size;
1078 	padding = buf->padding[read_subbuf];
1079 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
1080 	padding_end = (read_subbuf + 1) * subbuf_size;
1081 	if (read_pos >= padding_start && read_pos < padding_end) {
1082 		read_subbuf = (read_subbuf + 1) % n_subbufs;
1083 		read_pos = read_subbuf * subbuf_size;
1084 	}
1085 
1086 	return read_pos;
1087 }
1088 
1089 /**
1090  *	relay_file_read_end_pos - return the new read position
1091  *	@read_pos: file read position
1092  *	@buf: relay channel buffer
1093  *	@count: number of bytes to be read
1094  */
1095 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1096 				      size_t read_pos,
1097 				      size_t count)
1098 {
1099 	size_t read_subbuf, padding, end_pos;
1100 	size_t subbuf_size = buf->chan->subbuf_size;
1101 	size_t n_subbufs = buf->chan->n_subbufs;
1102 
1103 	read_subbuf = read_pos / subbuf_size;
1104 	padding = buf->padding[read_subbuf];
1105 	if (read_pos % subbuf_size + count + padding == subbuf_size)
1106 		end_pos = (read_subbuf + 1) * subbuf_size;
1107 	else
1108 		end_pos = read_pos + count;
1109 	if (end_pos >= subbuf_size * n_subbufs)
1110 		end_pos = 0;
1111 
1112 	return end_pos;
1113 }
1114 
1115 static ssize_t relay_file_read(struct file *filp,
1116 			       char __user *buffer,
1117 			       size_t count,
1118 			       loff_t *ppos)
1119 {
1120 	struct rchan_buf *buf = filp->private_data;
1121 	size_t read_start, avail;
1122 	size_t written = 0;
1123 	int ret;
1124 
1125 	if (!count)
1126 		return 0;
1127 
1128 	inode_lock(file_inode(filp));
1129 	do {
1130 		void *from;
1131 
1132 		if (!relay_file_read_avail(buf, *ppos))
1133 			break;
1134 
1135 		read_start = relay_file_read_start_pos(*ppos, buf);
1136 		avail = relay_file_read_subbuf_avail(read_start, buf);
1137 		if (!avail)
1138 			break;
1139 
1140 		avail = min(count, avail);
1141 		from = buf->start + read_start;
1142 		ret = avail;
1143 		if (copy_to_user(buffer, from, avail))
1144 			break;
1145 
1146 		buffer += ret;
1147 		written += ret;
1148 		count -= ret;
1149 
1150 		relay_file_read_consume(buf, read_start, ret);
1151 		*ppos = relay_file_read_end_pos(buf, read_start, ret);
1152 	} while (count);
1153 	inode_unlock(file_inode(filp));
1154 
1155 	return written;
1156 }
1157 
1158 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1159 {
1160 	rbuf->bytes_consumed += bytes_consumed;
1161 
1162 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1163 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1164 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1165 	}
1166 }
1167 
1168 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1169 				   struct pipe_buffer *buf)
1170 {
1171 	struct rchan_buf *rbuf;
1172 
1173 	rbuf = (struct rchan_buf *)page_private(buf->page);
1174 	relay_consume_bytes(rbuf, buf->private);
1175 }
1176 
1177 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1178 	.can_merge = 0,
1179 	.confirm = generic_pipe_buf_confirm,
1180 	.release = relay_pipe_buf_release,
1181 	.steal = generic_pipe_buf_steal,
1182 	.get = generic_pipe_buf_get,
1183 };
1184 
1185 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1186 {
1187 }
1188 
1189 /*
1190  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1191  */
1192 static ssize_t subbuf_splice_actor(struct file *in,
1193 			       loff_t *ppos,
1194 			       struct pipe_inode_info *pipe,
1195 			       size_t len,
1196 			       unsigned int flags,
1197 			       int *nonpad_ret)
1198 {
1199 	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1200 	struct rchan_buf *rbuf = in->private_data;
1201 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1202 	uint64_t pos = (uint64_t) *ppos;
1203 	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1204 	size_t read_start = (size_t) do_div(pos, alloc_size);
1205 	size_t read_subbuf = read_start / subbuf_size;
1206 	size_t padding = rbuf->padding[read_subbuf];
1207 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1208 	struct page *pages[PIPE_DEF_BUFFERS];
1209 	struct partial_page partial[PIPE_DEF_BUFFERS];
1210 	struct splice_pipe_desc spd = {
1211 		.pages = pages,
1212 		.nr_pages = 0,
1213 		.nr_pages_max = PIPE_DEF_BUFFERS,
1214 		.partial = partial,
1215 		.ops = &relay_pipe_buf_ops,
1216 		.spd_release = relay_page_release,
1217 	};
1218 	ssize_t ret;
1219 
1220 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1221 		return 0;
1222 	if (splice_grow_spd(pipe, &spd))
1223 		return -ENOMEM;
1224 
1225 	/*
1226 	 * Adjust read len, if longer than what is available
1227 	 */
1228 	if (len > (subbuf_size - read_start % subbuf_size))
1229 		len = subbuf_size - read_start % subbuf_size;
1230 
1231 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1232 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1233 	poff = read_start & ~PAGE_MASK;
1234 	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1235 
1236 	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1237 		unsigned int this_len, this_end, private;
1238 		unsigned int cur_pos = read_start + total_len;
1239 
1240 		if (!len)
1241 			break;
1242 
1243 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1244 		private = this_len;
1245 
1246 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1247 		spd.partial[spd.nr_pages].offset = poff;
1248 
1249 		this_end = cur_pos + this_len;
1250 		if (this_end >= nonpad_end) {
1251 			this_len = nonpad_end - cur_pos;
1252 			private = this_len + padding;
1253 		}
1254 		spd.partial[spd.nr_pages].len = this_len;
1255 		spd.partial[spd.nr_pages].private = private;
1256 
1257 		len -= this_len;
1258 		total_len += this_len;
1259 		poff = 0;
1260 		pidx = (pidx + 1) % subbuf_pages;
1261 
1262 		if (this_end >= nonpad_end) {
1263 			spd.nr_pages++;
1264 			break;
1265 		}
1266 	}
1267 
1268 	ret = 0;
1269 	if (!spd.nr_pages)
1270 		goto out;
1271 
1272 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1273 	if (ret < 0 || ret < total_len)
1274 		goto out;
1275 
1276         if (read_start + ret == nonpad_end)
1277                 ret += padding;
1278 
1279 out:
1280 	splice_shrink_spd(&spd);
1281 	return ret;
1282 }
1283 
1284 static ssize_t relay_file_splice_read(struct file *in,
1285 				      loff_t *ppos,
1286 				      struct pipe_inode_info *pipe,
1287 				      size_t len,
1288 				      unsigned int flags)
1289 {
1290 	ssize_t spliced;
1291 	int ret;
1292 	int nonpad_ret = 0;
1293 
1294 	ret = 0;
1295 	spliced = 0;
1296 
1297 	while (len && !spliced) {
1298 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1299 		if (ret < 0)
1300 			break;
1301 		else if (!ret) {
1302 			if (flags & SPLICE_F_NONBLOCK)
1303 				ret = -EAGAIN;
1304 			break;
1305 		}
1306 
1307 		*ppos += ret;
1308 		if (ret > len)
1309 			len = 0;
1310 		else
1311 			len -= ret;
1312 		spliced += nonpad_ret;
1313 		nonpad_ret = 0;
1314 	}
1315 
1316 	if (spliced)
1317 		return spliced;
1318 
1319 	return ret;
1320 }
1321 
1322 const struct file_operations relay_file_operations = {
1323 	.open		= relay_file_open,
1324 	.poll		= relay_file_poll,
1325 	.mmap		= relay_file_mmap,
1326 	.read		= relay_file_read,
1327 	.llseek		= no_llseek,
1328 	.release	= relay_file_release,
1329 	.splice_read	= relay_file_splice_read,
1330 };
1331 EXPORT_SYMBOL_GPL(relay_file_operations);
1332