1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relayfs.txt for an overview of relayfs. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * nopage() vm_op implementation for relay file mapping. 41 */ 42 static struct page *relay_buf_nopage(struct vm_area_struct *vma, 43 unsigned long address, 44 int *type) 45 { 46 struct page *page; 47 struct rchan_buf *buf = vma->vm_private_data; 48 unsigned long offset = address - vma->vm_start; 49 50 if (address > vma->vm_end) 51 return NOPAGE_SIGBUS; /* Disallow mremap */ 52 if (!buf) 53 return NOPAGE_OOM; 54 55 page = vmalloc_to_page(buf->start + offset); 56 if (!page) 57 return NOPAGE_OOM; 58 get_page(page); 59 60 if (type) 61 *type = VM_FAULT_MINOR; 62 63 return page; 64 } 65 66 /* 67 * vm_ops for relay file mappings. 68 */ 69 static struct vm_operations_struct relay_file_mmap_ops = { 70 .nopage = relay_buf_nopage, 71 .close = relay_file_mmap_close, 72 }; 73 74 /** 75 * relay_mmap_buf: - mmap channel buffer to process address space 76 * @buf: relay channel buffer 77 * @vma: vm_area_struct describing memory to be mapped 78 * 79 * Returns 0 if ok, negative on error 80 * 81 * Caller should already have grabbed mmap_sem. 82 */ 83 int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 84 { 85 unsigned long length = vma->vm_end - vma->vm_start; 86 struct file *filp = vma->vm_file; 87 88 if (!buf) 89 return -EBADF; 90 91 if (length != (unsigned long)buf->chan->alloc_size) 92 return -EINVAL; 93 94 vma->vm_ops = &relay_file_mmap_ops; 95 vma->vm_private_data = buf; 96 buf->chan->cb->buf_mapped(buf, filp); 97 98 return 0; 99 } 100 101 /** 102 * relay_alloc_buf - allocate a channel buffer 103 * @buf: the buffer struct 104 * @size: total size of the buffer 105 * 106 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 107 * passed in size will get page aligned, if it isn't already. 108 */ 109 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 110 { 111 void *mem; 112 unsigned int i, j, n_pages; 113 114 *size = PAGE_ALIGN(*size); 115 n_pages = *size >> PAGE_SHIFT; 116 117 buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL); 118 if (!buf->page_array) 119 return NULL; 120 121 for (i = 0; i < n_pages; i++) { 122 buf->page_array[i] = alloc_page(GFP_KERNEL); 123 if (unlikely(!buf->page_array[i])) 124 goto depopulate; 125 set_page_private(buf->page_array[i], (unsigned long)buf); 126 } 127 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 128 if (!mem) 129 goto depopulate; 130 131 memset(mem, 0, *size); 132 buf->page_count = n_pages; 133 return mem; 134 135 depopulate: 136 for (j = 0; j < i; j++) 137 __free_page(buf->page_array[j]); 138 kfree(buf->page_array); 139 return NULL; 140 } 141 142 /** 143 * relay_create_buf - allocate and initialize a channel buffer 144 * @chan: the relay channel 145 * 146 * Returns channel buffer if successful, %NULL otherwise. 147 */ 148 struct rchan_buf *relay_create_buf(struct rchan *chan) 149 { 150 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 151 if (!buf) 152 return NULL; 153 154 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); 155 if (!buf->padding) 156 goto free_buf; 157 158 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 159 if (!buf->start) 160 goto free_buf; 161 162 buf->chan = chan; 163 kref_get(&buf->chan->kref); 164 return buf; 165 166 free_buf: 167 kfree(buf->padding); 168 kfree(buf); 169 return NULL; 170 } 171 172 /** 173 * relay_destroy_channel - free the channel struct 174 * @kref: target kernel reference that contains the relay channel 175 * 176 * Should only be called from kref_put(). 177 */ 178 void relay_destroy_channel(struct kref *kref) 179 { 180 struct rchan *chan = container_of(kref, struct rchan, kref); 181 kfree(chan); 182 } 183 184 /** 185 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 186 * @buf: the buffer struct 187 */ 188 void relay_destroy_buf(struct rchan_buf *buf) 189 { 190 struct rchan *chan = buf->chan; 191 unsigned int i; 192 193 if (likely(buf->start)) { 194 vunmap(buf->start); 195 for (i = 0; i < buf->page_count; i++) 196 __free_page(buf->page_array[i]); 197 kfree(buf->page_array); 198 } 199 chan->buf[buf->cpu] = NULL; 200 kfree(buf->padding); 201 kfree(buf); 202 kref_put(&chan->kref, relay_destroy_channel); 203 } 204 205 /** 206 * relay_remove_buf - remove a channel buffer 207 * @kref: target kernel reference that contains the relay buffer 208 * 209 * Removes the file from the fileystem, which also frees the 210 * rchan_buf_struct and the channel buffer. Should only be called from 211 * kref_put(). 212 */ 213 void relay_remove_buf(struct kref *kref) 214 { 215 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 216 buf->chan->cb->remove_buf_file(buf->dentry); 217 relay_destroy_buf(buf); 218 } 219 220 /** 221 * relay_buf_empty - boolean, is the channel buffer empty? 222 * @buf: channel buffer 223 * 224 * Returns 1 if the buffer is empty, 0 otherwise. 225 */ 226 int relay_buf_empty(struct rchan_buf *buf) 227 { 228 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 229 } 230 EXPORT_SYMBOL_GPL(relay_buf_empty); 231 232 /** 233 * relay_buf_full - boolean, is the channel buffer full? 234 * @buf: channel buffer 235 * 236 * Returns 1 if the buffer is full, 0 otherwise. 237 */ 238 int relay_buf_full(struct rchan_buf *buf) 239 { 240 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 241 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 242 } 243 EXPORT_SYMBOL_GPL(relay_buf_full); 244 245 /* 246 * High-level relay kernel API and associated functions. 247 */ 248 249 /* 250 * rchan_callback implementations defining default channel behavior. Used 251 * in place of corresponding NULL values in client callback struct. 252 */ 253 254 /* 255 * subbuf_start() default callback. Does nothing. 256 */ 257 static int subbuf_start_default_callback (struct rchan_buf *buf, 258 void *subbuf, 259 void *prev_subbuf, 260 size_t prev_padding) 261 { 262 if (relay_buf_full(buf)) 263 return 0; 264 265 return 1; 266 } 267 268 /* 269 * buf_mapped() default callback. Does nothing. 270 */ 271 static void buf_mapped_default_callback(struct rchan_buf *buf, 272 struct file *filp) 273 { 274 } 275 276 /* 277 * buf_unmapped() default callback. Does nothing. 278 */ 279 static void buf_unmapped_default_callback(struct rchan_buf *buf, 280 struct file *filp) 281 { 282 } 283 284 /* 285 * create_buf_file_create() default callback. Does nothing. 286 */ 287 static struct dentry *create_buf_file_default_callback(const char *filename, 288 struct dentry *parent, 289 int mode, 290 struct rchan_buf *buf, 291 int *is_global) 292 { 293 return NULL; 294 } 295 296 /* 297 * remove_buf_file() default callback. Does nothing. 298 */ 299 static int remove_buf_file_default_callback(struct dentry *dentry) 300 { 301 return -EINVAL; 302 } 303 304 /* relay channel default callbacks */ 305 static struct rchan_callbacks default_channel_callbacks = { 306 .subbuf_start = subbuf_start_default_callback, 307 .buf_mapped = buf_mapped_default_callback, 308 .buf_unmapped = buf_unmapped_default_callback, 309 .create_buf_file = create_buf_file_default_callback, 310 .remove_buf_file = remove_buf_file_default_callback, 311 }; 312 313 /** 314 * wakeup_readers - wake up readers waiting on a channel 315 * @data: contains the channel buffer 316 * 317 * This is the timer function used to defer reader waking. 318 */ 319 static void wakeup_readers(unsigned long data) 320 { 321 struct rchan_buf *buf = (struct rchan_buf *)data; 322 wake_up_interruptible(&buf->read_wait); 323 } 324 325 /** 326 * __relay_reset - reset a channel buffer 327 * @buf: the channel buffer 328 * @init: 1 if this is a first-time initialization 329 * 330 * See relay_reset() for description of effect. 331 */ 332 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 333 { 334 size_t i; 335 336 if (init) { 337 init_waitqueue_head(&buf->read_wait); 338 kref_init(&buf->kref); 339 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf); 340 } else 341 del_timer_sync(&buf->timer); 342 343 buf->subbufs_produced = 0; 344 buf->subbufs_consumed = 0; 345 buf->bytes_consumed = 0; 346 buf->finalized = 0; 347 buf->data = buf->start; 348 buf->offset = 0; 349 350 for (i = 0; i < buf->chan->n_subbufs; i++) 351 buf->padding[i] = 0; 352 353 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 354 } 355 356 /** 357 * relay_reset - reset the channel 358 * @chan: the channel 359 * 360 * This has the effect of erasing all data from all channel buffers 361 * and restarting the channel in its initial state. The buffers 362 * are not freed, so any mappings are still in effect. 363 * 364 * NOTE. Care should be taken that the channel isn't actually 365 * being used by anything when this call is made. 366 */ 367 void relay_reset(struct rchan *chan) 368 { 369 unsigned int i; 370 371 if (!chan) 372 return; 373 374 if (chan->is_global && chan->buf[0]) { 375 __relay_reset(chan->buf[0], 0); 376 return; 377 } 378 379 mutex_lock(&relay_channels_mutex); 380 for_each_online_cpu(i) 381 if (chan->buf[i]) 382 __relay_reset(chan->buf[i], 0); 383 mutex_unlock(&relay_channels_mutex); 384 } 385 EXPORT_SYMBOL_GPL(relay_reset); 386 387 /* 388 * relay_open_buf - create a new relay channel buffer 389 * 390 * used by relay_open() and CPU hotplug. 391 */ 392 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 393 { 394 struct rchan_buf *buf = NULL; 395 struct dentry *dentry; 396 char *tmpname; 397 398 if (chan->is_global) 399 return chan->buf[0]; 400 401 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 402 if (!tmpname) 403 goto end; 404 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 405 406 buf = relay_create_buf(chan); 407 if (!buf) 408 goto free_name; 409 410 buf->cpu = cpu; 411 __relay_reset(buf, 1); 412 413 /* Create file in fs */ 414 dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR, 415 buf, &chan->is_global); 416 if (!dentry) 417 goto free_buf; 418 419 buf->dentry = dentry; 420 421 if(chan->is_global) { 422 chan->buf[0] = buf; 423 buf->cpu = 0; 424 } 425 426 goto free_name; 427 428 free_buf: 429 relay_destroy_buf(buf); 430 free_name: 431 kfree(tmpname); 432 end: 433 return buf; 434 } 435 436 /** 437 * relay_close_buf - close a channel buffer 438 * @buf: channel buffer 439 * 440 * Marks the buffer finalized and restores the default callbacks. 441 * The channel buffer and channel buffer data structure are then freed 442 * automatically when the last reference is given up. 443 */ 444 static void relay_close_buf(struct rchan_buf *buf) 445 { 446 buf->finalized = 1; 447 del_timer_sync(&buf->timer); 448 kref_put(&buf->kref, relay_remove_buf); 449 } 450 451 static void setup_callbacks(struct rchan *chan, 452 struct rchan_callbacks *cb) 453 { 454 if (!cb) { 455 chan->cb = &default_channel_callbacks; 456 return; 457 } 458 459 if (!cb->subbuf_start) 460 cb->subbuf_start = subbuf_start_default_callback; 461 if (!cb->buf_mapped) 462 cb->buf_mapped = buf_mapped_default_callback; 463 if (!cb->buf_unmapped) 464 cb->buf_unmapped = buf_unmapped_default_callback; 465 if (!cb->create_buf_file) 466 cb->create_buf_file = create_buf_file_default_callback; 467 if (!cb->remove_buf_file) 468 cb->remove_buf_file = remove_buf_file_default_callback; 469 chan->cb = cb; 470 } 471 472 /** 473 * relay_hotcpu_callback - CPU hotplug callback 474 * @nb: notifier block 475 * @action: hotplug action to take 476 * @hcpu: CPU number 477 * 478 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD) 479 */ 480 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb, 481 unsigned long action, 482 void *hcpu) 483 { 484 unsigned int hotcpu = (unsigned long)hcpu; 485 struct rchan *chan; 486 487 switch(action) { 488 case CPU_UP_PREPARE: 489 case CPU_UP_PREPARE_FROZEN: 490 mutex_lock(&relay_channels_mutex); 491 list_for_each_entry(chan, &relay_channels, list) { 492 if (chan->buf[hotcpu]) 493 continue; 494 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu); 495 if(!chan->buf[hotcpu]) { 496 printk(KERN_ERR 497 "relay_hotcpu_callback: cpu %d buffer " 498 "creation failed\n", hotcpu); 499 mutex_unlock(&relay_channels_mutex); 500 return NOTIFY_BAD; 501 } 502 } 503 mutex_unlock(&relay_channels_mutex); 504 break; 505 case CPU_DEAD: 506 case CPU_DEAD_FROZEN: 507 /* No need to flush the cpu : will be flushed upon 508 * final relay_flush() call. */ 509 break; 510 } 511 return NOTIFY_OK; 512 } 513 514 /** 515 * relay_open - create a new relay channel 516 * @base_filename: base name of files to create 517 * @parent: dentry of parent directory, %NULL for root directory 518 * @subbuf_size: size of sub-buffers 519 * @n_subbufs: number of sub-buffers 520 * @cb: client callback functions 521 * @private_data: user-defined data 522 * 523 * Returns channel pointer if successful, %NULL otherwise. 524 * 525 * Creates a channel buffer for each cpu using the sizes and 526 * attributes specified. The created channel buffer files 527 * will be named base_filename0...base_filenameN-1. File 528 * permissions will be %S_IRUSR. 529 */ 530 struct rchan *relay_open(const char *base_filename, 531 struct dentry *parent, 532 size_t subbuf_size, 533 size_t n_subbufs, 534 struct rchan_callbacks *cb, 535 void *private_data) 536 { 537 unsigned int i; 538 struct rchan *chan; 539 if (!base_filename) 540 return NULL; 541 542 if (!(subbuf_size && n_subbufs)) 543 return NULL; 544 545 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 546 if (!chan) 547 return NULL; 548 549 chan->version = RELAYFS_CHANNEL_VERSION; 550 chan->n_subbufs = n_subbufs; 551 chan->subbuf_size = subbuf_size; 552 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs); 553 chan->parent = parent; 554 chan->private_data = private_data; 555 strlcpy(chan->base_filename, base_filename, NAME_MAX); 556 setup_callbacks(chan, cb); 557 kref_init(&chan->kref); 558 559 mutex_lock(&relay_channels_mutex); 560 for_each_online_cpu(i) { 561 chan->buf[i] = relay_open_buf(chan, i); 562 if (!chan->buf[i]) 563 goto free_bufs; 564 } 565 list_add(&chan->list, &relay_channels); 566 mutex_unlock(&relay_channels_mutex); 567 568 return chan; 569 570 free_bufs: 571 for_each_online_cpu(i) { 572 if (!chan->buf[i]) 573 break; 574 relay_close_buf(chan->buf[i]); 575 } 576 577 kref_put(&chan->kref, relay_destroy_channel); 578 mutex_unlock(&relay_channels_mutex); 579 return NULL; 580 } 581 EXPORT_SYMBOL_GPL(relay_open); 582 583 /** 584 * relay_switch_subbuf - switch to a new sub-buffer 585 * @buf: channel buffer 586 * @length: size of current event 587 * 588 * Returns either the length passed in or 0 if full. 589 * 590 * Performs sub-buffer-switch tasks such as invoking callbacks, 591 * updating padding counts, waking up readers, etc. 592 */ 593 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 594 { 595 void *old, *new; 596 size_t old_subbuf, new_subbuf; 597 598 if (unlikely(length > buf->chan->subbuf_size)) 599 goto toobig; 600 601 if (buf->offset != buf->chan->subbuf_size + 1) { 602 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 603 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 604 buf->padding[old_subbuf] = buf->prev_padding; 605 buf->subbufs_produced++; 606 buf->dentry->d_inode->i_size += buf->chan->subbuf_size - 607 buf->padding[old_subbuf]; 608 smp_mb(); 609 if (waitqueue_active(&buf->read_wait)) 610 /* 611 * Calling wake_up_interruptible() from here 612 * will deadlock if we happen to be logging 613 * from the scheduler (trying to re-grab 614 * rq->lock), so defer it. 615 */ 616 __mod_timer(&buf->timer, jiffies + 1); 617 } 618 619 old = buf->data; 620 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 621 new = buf->start + new_subbuf * buf->chan->subbuf_size; 622 buf->offset = 0; 623 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 624 buf->offset = buf->chan->subbuf_size + 1; 625 return 0; 626 } 627 buf->data = new; 628 buf->padding[new_subbuf] = 0; 629 630 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 631 goto toobig; 632 633 return length; 634 635 toobig: 636 buf->chan->last_toobig = length; 637 return 0; 638 } 639 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 640 641 /** 642 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 643 * @chan: the channel 644 * @cpu: the cpu associated with the channel buffer to update 645 * @subbufs_consumed: number of sub-buffers to add to current buf's count 646 * 647 * Adds to the channel buffer's consumed sub-buffer count. 648 * subbufs_consumed should be the number of sub-buffers newly consumed, 649 * not the total consumed. 650 * 651 * NOTE. Kernel clients don't need to call this function if the channel 652 * mode is 'overwrite'. 653 */ 654 void relay_subbufs_consumed(struct rchan *chan, 655 unsigned int cpu, 656 size_t subbufs_consumed) 657 { 658 struct rchan_buf *buf; 659 660 if (!chan) 661 return; 662 663 if (cpu >= NR_CPUS || !chan->buf[cpu]) 664 return; 665 666 buf = chan->buf[cpu]; 667 buf->subbufs_consumed += subbufs_consumed; 668 if (buf->subbufs_consumed > buf->subbufs_produced) 669 buf->subbufs_consumed = buf->subbufs_produced; 670 } 671 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 672 673 /** 674 * relay_close - close the channel 675 * @chan: the channel 676 * 677 * Closes all channel buffers and frees the channel. 678 */ 679 void relay_close(struct rchan *chan) 680 { 681 unsigned int i; 682 683 if (!chan) 684 return; 685 686 mutex_lock(&relay_channels_mutex); 687 if (chan->is_global && chan->buf[0]) 688 relay_close_buf(chan->buf[0]); 689 else 690 for_each_possible_cpu(i) 691 if (chan->buf[i]) 692 relay_close_buf(chan->buf[i]); 693 694 if (chan->last_toobig) 695 printk(KERN_WARNING "relay: one or more items not logged " 696 "[item size (%Zd) > sub-buffer size (%Zd)]\n", 697 chan->last_toobig, chan->subbuf_size); 698 699 list_del(&chan->list); 700 kref_put(&chan->kref, relay_destroy_channel); 701 mutex_unlock(&relay_channels_mutex); 702 } 703 EXPORT_SYMBOL_GPL(relay_close); 704 705 /** 706 * relay_flush - close the channel 707 * @chan: the channel 708 * 709 * Flushes all channel buffers, i.e. forces buffer switch. 710 */ 711 void relay_flush(struct rchan *chan) 712 { 713 unsigned int i; 714 715 if (!chan) 716 return; 717 718 if (chan->is_global && chan->buf[0]) { 719 relay_switch_subbuf(chan->buf[0], 0); 720 return; 721 } 722 723 mutex_lock(&relay_channels_mutex); 724 for_each_possible_cpu(i) 725 if (chan->buf[i]) 726 relay_switch_subbuf(chan->buf[i], 0); 727 mutex_unlock(&relay_channels_mutex); 728 } 729 EXPORT_SYMBOL_GPL(relay_flush); 730 731 /** 732 * relay_file_open - open file op for relay files 733 * @inode: the inode 734 * @filp: the file 735 * 736 * Increments the channel buffer refcount. 737 */ 738 static int relay_file_open(struct inode *inode, struct file *filp) 739 { 740 struct rchan_buf *buf = inode->i_private; 741 kref_get(&buf->kref); 742 filp->private_data = buf; 743 744 return 0; 745 } 746 747 /** 748 * relay_file_mmap - mmap file op for relay files 749 * @filp: the file 750 * @vma: the vma describing what to map 751 * 752 * Calls upon relay_mmap_buf() to map the file into user space. 753 */ 754 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 755 { 756 struct rchan_buf *buf = filp->private_data; 757 return relay_mmap_buf(buf, vma); 758 } 759 760 /** 761 * relay_file_poll - poll file op for relay files 762 * @filp: the file 763 * @wait: poll table 764 * 765 * Poll implemention. 766 */ 767 static unsigned int relay_file_poll(struct file *filp, poll_table *wait) 768 { 769 unsigned int mask = 0; 770 struct rchan_buf *buf = filp->private_data; 771 772 if (buf->finalized) 773 return POLLERR; 774 775 if (filp->f_mode & FMODE_READ) { 776 poll_wait(filp, &buf->read_wait, wait); 777 if (!relay_buf_empty(buf)) 778 mask |= POLLIN | POLLRDNORM; 779 } 780 781 return mask; 782 } 783 784 /** 785 * relay_file_release - release file op for relay files 786 * @inode: the inode 787 * @filp: the file 788 * 789 * Decrements the channel refcount, as the filesystem is 790 * no longer using it. 791 */ 792 static int relay_file_release(struct inode *inode, struct file *filp) 793 { 794 struct rchan_buf *buf = filp->private_data; 795 kref_put(&buf->kref, relay_remove_buf); 796 797 return 0; 798 } 799 800 /* 801 * relay_file_read_consume - update the consumed count for the buffer 802 */ 803 static void relay_file_read_consume(struct rchan_buf *buf, 804 size_t read_pos, 805 size_t bytes_consumed) 806 { 807 size_t subbuf_size = buf->chan->subbuf_size; 808 size_t n_subbufs = buf->chan->n_subbufs; 809 size_t read_subbuf; 810 811 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 812 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 813 buf->bytes_consumed = 0; 814 } 815 816 buf->bytes_consumed += bytes_consumed; 817 if (!read_pos) 818 read_subbuf = buf->subbufs_consumed % n_subbufs; 819 else 820 read_subbuf = read_pos / buf->chan->subbuf_size; 821 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 822 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 823 (buf->offset == subbuf_size)) 824 return; 825 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 826 buf->bytes_consumed = 0; 827 } 828 } 829 830 /* 831 * relay_file_read_avail - boolean, are there unconsumed bytes available? 832 */ 833 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) 834 { 835 size_t subbuf_size = buf->chan->subbuf_size; 836 size_t n_subbufs = buf->chan->n_subbufs; 837 size_t produced = buf->subbufs_produced; 838 size_t consumed = buf->subbufs_consumed; 839 840 relay_file_read_consume(buf, read_pos, 0); 841 842 if (unlikely(buf->offset > subbuf_size)) { 843 if (produced == consumed) 844 return 0; 845 return 1; 846 } 847 848 if (unlikely(produced - consumed >= n_subbufs)) { 849 consumed = produced - n_subbufs + 1; 850 buf->subbufs_consumed = consumed; 851 buf->bytes_consumed = 0; 852 } 853 854 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 855 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 856 857 if (consumed > produced) 858 produced += n_subbufs * subbuf_size; 859 860 if (consumed == produced) 861 return 0; 862 863 return 1; 864 } 865 866 /** 867 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 868 * @read_pos: file read position 869 * @buf: relay channel buffer 870 */ 871 static size_t relay_file_read_subbuf_avail(size_t read_pos, 872 struct rchan_buf *buf) 873 { 874 size_t padding, avail = 0; 875 size_t read_subbuf, read_offset, write_subbuf, write_offset; 876 size_t subbuf_size = buf->chan->subbuf_size; 877 878 write_subbuf = (buf->data - buf->start) / subbuf_size; 879 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 880 read_subbuf = read_pos / subbuf_size; 881 read_offset = read_pos % subbuf_size; 882 padding = buf->padding[read_subbuf]; 883 884 if (read_subbuf == write_subbuf) { 885 if (read_offset + padding < write_offset) 886 avail = write_offset - (read_offset + padding); 887 } else 888 avail = (subbuf_size - padding) - read_offset; 889 890 return avail; 891 } 892 893 /** 894 * relay_file_read_start_pos - find the first available byte to read 895 * @read_pos: file read position 896 * @buf: relay channel buffer 897 * 898 * If the @read_pos is in the middle of padding, return the 899 * position of the first actually available byte, otherwise 900 * return the original value. 901 */ 902 static size_t relay_file_read_start_pos(size_t read_pos, 903 struct rchan_buf *buf) 904 { 905 size_t read_subbuf, padding, padding_start, padding_end; 906 size_t subbuf_size = buf->chan->subbuf_size; 907 size_t n_subbufs = buf->chan->n_subbufs; 908 size_t consumed = buf->subbufs_consumed % n_subbufs; 909 910 if (!read_pos) 911 read_pos = consumed * subbuf_size + buf->bytes_consumed; 912 read_subbuf = read_pos / subbuf_size; 913 padding = buf->padding[read_subbuf]; 914 padding_start = (read_subbuf + 1) * subbuf_size - padding; 915 padding_end = (read_subbuf + 1) * subbuf_size; 916 if (read_pos >= padding_start && read_pos < padding_end) { 917 read_subbuf = (read_subbuf + 1) % n_subbufs; 918 read_pos = read_subbuf * subbuf_size; 919 } 920 921 return read_pos; 922 } 923 924 /** 925 * relay_file_read_end_pos - return the new read position 926 * @read_pos: file read position 927 * @buf: relay channel buffer 928 * @count: number of bytes to be read 929 */ 930 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 931 size_t read_pos, 932 size_t count) 933 { 934 size_t read_subbuf, padding, end_pos; 935 size_t subbuf_size = buf->chan->subbuf_size; 936 size_t n_subbufs = buf->chan->n_subbufs; 937 938 read_subbuf = read_pos / subbuf_size; 939 padding = buf->padding[read_subbuf]; 940 if (read_pos % subbuf_size + count + padding == subbuf_size) 941 end_pos = (read_subbuf + 1) * subbuf_size; 942 else 943 end_pos = read_pos + count; 944 if (end_pos >= subbuf_size * n_subbufs) 945 end_pos = 0; 946 947 return end_pos; 948 } 949 950 /* 951 * subbuf_read_actor - read up to one subbuf's worth of data 952 */ 953 static int subbuf_read_actor(size_t read_start, 954 struct rchan_buf *buf, 955 size_t avail, 956 read_descriptor_t *desc, 957 read_actor_t actor) 958 { 959 void *from; 960 int ret = 0; 961 962 from = buf->start + read_start; 963 ret = avail; 964 if (copy_to_user(desc->arg.buf, from, avail)) { 965 desc->error = -EFAULT; 966 ret = 0; 967 } 968 desc->arg.data += ret; 969 desc->written += ret; 970 desc->count -= ret; 971 972 return ret; 973 } 974 975 typedef int (*subbuf_actor_t) (size_t read_start, 976 struct rchan_buf *buf, 977 size_t avail, 978 read_descriptor_t *desc, 979 read_actor_t actor); 980 981 /* 982 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries 983 */ 984 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos, 985 subbuf_actor_t subbuf_actor, 986 read_actor_t actor, 987 read_descriptor_t *desc) 988 { 989 struct rchan_buf *buf = filp->private_data; 990 size_t read_start, avail; 991 int ret; 992 993 if (!desc->count) 994 return 0; 995 996 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 997 do { 998 if (!relay_file_read_avail(buf, *ppos)) 999 break; 1000 1001 read_start = relay_file_read_start_pos(*ppos, buf); 1002 avail = relay_file_read_subbuf_avail(read_start, buf); 1003 if (!avail) 1004 break; 1005 1006 avail = min(desc->count, avail); 1007 ret = subbuf_actor(read_start, buf, avail, desc, actor); 1008 if (desc->error < 0) 1009 break; 1010 1011 if (ret) { 1012 relay_file_read_consume(buf, read_start, ret); 1013 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1014 } 1015 } while (desc->count && ret); 1016 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 1017 1018 return desc->written; 1019 } 1020 1021 static ssize_t relay_file_read(struct file *filp, 1022 char __user *buffer, 1023 size_t count, 1024 loff_t *ppos) 1025 { 1026 read_descriptor_t desc; 1027 desc.written = 0; 1028 desc.count = count; 1029 desc.arg.buf = buffer; 1030 desc.error = 0; 1031 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, 1032 NULL, &desc); 1033 } 1034 1035 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1036 { 1037 rbuf->bytes_consumed += bytes_consumed; 1038 1039 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1040 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1041 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1042 } 1043 } 1044 1045 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1046 struct pipe_buffer *buf) 1047 { 1048 struct rchan_buf *rbuf; 1049 1050 rbuf = (struct rchan_buf *)page_private(buf->page); 1051 relay_consume_bytes(rbuf, buf->private); 1052 } 1053 1054 static struct pipe_buf_operations relay_pipe_buf_ops = { 1055 .can_merge = 0, 1056 .map = generic_pipe_buf_map, 1057 .unmap = generic_pipe_buf_unmap, 1058 .confirm = generic_pipe_buf_confirm, 1059 .release = relay_pipe_buf_release, 1060 .steal = generic_pipe_buf_steal, 1061 .get = generic_pipe_buf_get, 1062 }; 1063 1064 /** 1065 * subbuf_splice_actor - splice up to one subbuf's worth of data 1066 */ 1067 static int subbuf_splice_actor(struct file *in, 1068 loff_t *ppos, 1069 struct pipe_inode_info *pipe, 1070 size_t len, 1071 unsigned int flags, 1072 int *nonpad_ret) 1073 { 1074 unsigned int pidx, poff, total_len, subbuf_pages, ret; 1075 struct rchan_buf *rbuf = in->private_data; 1076 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1077 size_t read_start = ((size_t)*ppos) % rbuf->chan->alloc_size; 1078 size_t read_subbuf = read_start / subbuf_size; 1079 size_t padding = rbuf->padding[read_subbuf]; 1080 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1081 struct page *pages[PIPE_BUFFERS]; 1082 struct partial_page partial[PIPE_BUFFERS]; 1083 struct splice_pipe_desc spd = { 1084 .pages = pages, 1085 .nr_pages = 0, 1086 .partial = partial, 1087 .flags = flags, 1088 .ops = &relay_pipe_buf_ops, 1089 }; 1090 1091 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1092 return 0; 1093 1094 /* 1095 * Adjust read len, if longer than what is available 1096 */ 1097 if (len > (subbuf_size - read_start % subbuf_size)) 1098 len = subbuf_size - read_start % subbuf_size; 1099 1100 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1101 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1102 poff = read_start & ~PAGE_MASK; 1103 1104 for (total_len = 0; spd.nr_pages < subbuf_pages; spd.nr_pages++) { 1105 unsigned int this_len, this_end, private; 1106 unsigned int cur_pos = read_start + total_len; 1107 1108 if (!len) 1109 break; 1110 1111 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1112 private = this_len; 1113 1114 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1115 spd.partial[spd.nr_pages].offset = poff; 1116 1117 this_end = cur_pos + this_len; 1118 if (this_end >= nonpad_end) { 1119 this_len = nonpad_end - cur_pos; 1120 private = this_len + padding; 1121 } 1122 spd.partial[spd.nr_pages].len = this_len; 1123 spd.partial[spd.nr_pages].private = private; 1124 1125 len -= this_len; 1126 total_len += this_len; 1127 poff = 0; 1128 pidx = (pidx + 1) % subbuf_pages; 1129 1130 if (this_end >= nonpad_end) { 1131 spd.nr_pages++; 1132 break; 1133 } 1134 } 1135 1136 if (!spd.nr_pages) 1137 return 0; 1138 1139 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1140 if (ret < 0 || ret < total_len) 1141 return ret; 1142 1143 if (read_start + ret == nonpad_end) 1144 ret += padding; 1145 1146 return ret; 1147 } 1148 1149 static ssize_t relay_file_splice_read(struct file *in, 1150 loff_t *ppos, 1151 struct pipe_inode_info *pipe, 1152 size_t len, 1153 unsigned int flags) 1154 { 1155 ssize_t spliced; 1156 int ret; 1157 int nonpad_ret = 0; 1158 1159 ret = 0; 1160 spliced = 0; 1161 1162 while (len) { 1163 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1164 if (ret < 0) 1165 break; 1166 else if (!ret) { 1167 if (spliced) 1168 break; 1169 if (flags & SPLICE_F_NONBLOCK) { 1170 ret = -EAGAIN; 1171 break; 1172 } 1173 } 1174 1175 *ppos += ret; 1176 if (ret > len) 1177 len = 0; 1178 else 1179 len -= ret; 1180 spliced += nonpad_ret; 1181 nonpad_ret = 0; 1182 } 1183 1184 if (spliced) 1185 return spliced; 1186 1187 return ret; 1188 } 1189 1190 const struct file_operations relay_file_operations = { 1191 .open = relay_file_open, 1192 .poll = relay_file_poll, 1193 .mmap = relay_file_mmap, 1194 .read = relay_file_read, 1195 .llseek = no_llseek, 1196 .release = relay_file_release, 1197 .splice_read = relay_file_splice_read, 1198 }; 1199 EXPORT_SYMBOL_GPL(relay_file_operations); 1200 1201 static __init int relay_init(void) 1202 { 1203 1204 hotcpu_notifier(relay_hotcpu_callback, 0); 1205 return 0; 1206 } 1207 1208 module_init(relay_init); 1209