xref: /openbmc/linux/kernel/relay.c (revision 64c70b1c)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relayfs.txt for an overview of relayfs.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * nopage() vm_op implementation for relay file mapping.
41  */
42 static struct page *relay_buf_nopage(struct vm_area_struct *vma,
43 				     unsigned long address,
44 				     int *type)
45 {
46 	struct page *page;
47 	struct rchan_buf *buf = vma->vm_private_data;
48 	unsigned long offset = address - vma->vm_start;
49 
50 	if (address > vma->vm_end)
51 		return NOPAGE_SIGBUS; /* Disallow mremap */
52 	if (!buf)
53 		return NOPAGE_OOM;
54 
55 	page = vmalloc_to_page(buf->start + offset);
56 	if (!page)
57 		return NOPAGE_OOM;
58 	get_page(page);
59 
60 	if (type)
61 		*type = VM_FAULT_MINOR;
62 
63 	return page;
64 }
65 
66 /*
67  * vm_ops for relay file mappings.
68  */
69 static struct vm_operations_struct relay_file_mmap_ops = {
70 	.nopage = relay_buf_nopage,
71 	.close = relay_file_mmap_close,
72 };
73 
74 /**
75  *	relay_mmap_buf: - mmap channel buffer to process address space
76  *	@buf: relay channel buffer
77  *	@vma: vm_area_struct describing memory to be mapped
78  *
79  *	Returns 0 if ok, negative on error
80  *
81  *	Caller should already have grabbed mmap_sem.
82  */
83 int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
84 {
85 	unsigned long length = vma->vm_end - vma->vm_start;
86 	struct file *filp = vma->vm_file;
87 
88 	if (!buf)
89 		return -EBADF;
90 
91 	if (length != (unsigned long)buf->chan->alloc_size)
92 		return -EINVAL;
93 
94 	vma->vm_ops = &relay_file_mmap_ops;
95 	vma->vm_private_data = buf;
96 	buf->chan->cb->buf_mapped(buf, filp);
97 
98 	return 0;
99 }
100 
101 /**
102  *	relay_alloc_buf - allocate a channel buffer
103  *	@buf: the buffer struct
104  *	@size: total size of the buffer
105  *
106  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
107  *	passed in size will get page aligned, if it isn't already.
108  */
109 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
110 {
111 	void *mem;
112 	unsigned int i, j, n_pages;
113 
114 	*size = PAGE_ALIGN(*size);
115 	n_pages = *size >> PAGE_SHIFT;
116 
117 	buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
118 	if (!buf->page_array)
119 		return NULL;
120 
121 	for (i = 0; i < n_pages; i++) {
122 		buf->page_array[i] = alloc_page(GFP_KERNEL);
123 		if (unlikely(!buf->page_array[i]))
124 			goto depopulate;
125 		set_page_private(buf->page_array[i], (unsigned long)buf);
126 	}
127 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
128 	if (!mem)
129 		goto depopulate;
130 
131 	memset(mem, 0, *size);
132 	buf->page_count = n_pages;
133 	return mem;
134 
135 depopulate:
136 	for (j = 0; j < i; j++)
137 		__free_page(buf->page_array[j]);
138 	kfree(buf->page_array);
139 	return NULL;
140 }
141 
142 /**
143  *	relay_create_buf - allocate and initialize a channel buffer
144  *	@chan: the relay channel
145  *
146  *	Returns channel buffer if successful, %NULL otherwise.
147  */
148 struct rchan_buf *relay_create_buf(struct rchan *chan)
149 {
150 	struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
151 	if (!buf)
152 		return NULL;
153 
154 	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
155 	if (!buf->padding)
156 		goto free_buf;
157 
158 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
159 	if (!buf->start)
160 		goto free_buf;
161 
162 	buf->chan = chan;
163 	kref_get(&buf->chan->kref);
164 	return buf;
165 
166 free_buf:
167 	kfree(buf->padding);
168 	kfree(buf);
169 	return NULL;
170 }
171 
172 /**
173  *	relay_destroy_channel - free the channel struct
174  *	@kref: target kernel reference that contains the relay channel
175  *
176  *	Should only be called from kref_put().
177  */
178 void relay_destroy_channel(struct kref *kref)
179 {
180 	struct rchan *chan = container_of(kref, struct rchan, kref);
181 	kfree(chan);
182 }
183 
184 /**
185  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
186  *	@buf: the buffer struct
187  */
188 void relay_destroy_buf(struct rchan_buf *buf)
189 {
190 	struct rchan *chan = buf->chan;
191 	unsigned int i;
192 
193 	if (likely(buf->start)) {
194 		vunmap(buf->start);
195 		for (i = 0; i < buf->page_count; i++)
196 			__free_page(buf->page_array[i]);
197 		kfree(buf->page_array);
198 	}
199 	chan->buf[buf->cpu] = NULL;
200 	kfree(buf->padding);
201 	kfree(buf);
202 	kref_put(&chan->kref, relay_destroy_channel);
203 }
204 
205 /**
206  *	relay_remove_buf - remove a channel buffer
207  *	@kref: target kernel reference that contains the relay buffer
208  *
209  *	Removes the file from the fileystem, which also frees the
210  *	rchan_buf_struct and the channel buffer.  Should only be called from
211  *	kref_put().
212  */
213 void relay_remove_buf(struct kref *kref)
214 {
215 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
216 	buf->chan->cb->remove_buf_file(buf->dentry);
217 	relay_destroy_buf(buf);
218 }
219 
220 /**
221  *	relay_buf_empty - boolean, is the channel buffer empty?
222  *	@buf: channel buffer
223  *
224  *	Returns 1 if the buffer is empty, 0 otherwise.
225  */
226 int relay_buf_empty(struct rchan_buf *buf)
227 {
228 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
229 }
230 EXPORT_SYMBOL_GPL(relay_buf_empty);
231 
232 /**
233  *	relay_buf_full - boolean, is the channel buffer full?
234  *	@buf: channel buffer
235  *
236  *	Returns 1 if the buffer is full, 0 otherwise.
237  */
238 int relay_buf_full(struct rchan_buf *buf)
239 {
240 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
241 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
242 }
243 EXPORT_SYMBOL_GPL(relay_buf_full);
244 
245 /*
246  * High-level relay kernel API and associated functions.
247  */
248 
249 /*
250  * rchan_callback implementations defining default channel behavior.  Used
251  * in place of corresponding NULL values in client callback struct.
252  */
253 
254 /*
255  * subbuf_start() default callback.  Does nothing.
256  */
257 static int subbuf_start_default_callback (struct rchan_buf *buf,
258 					  void *subbuf,
259 					  void *prev_subbuf,
260 					  size_t prev_padding)
261 {
262 	if (relay_buf_full(buf))
263 		return 0;
264 
265 	return 1;
266 }
267 
268 /*
269  * buf_mapped() default callback.  Does nothing.
270  */
271 static void buf_mapped_default_callback(struct rchan_buf *buf,
272 					struct file *filp)
273 {
274 }
275 
276 /*
277  * buf_unmapped() default callback.  Does nothing.
278  */
279 static void buf_unmapped_default_callback(struct rchan_buf *buf,
280 					  struct file *filp)
281 {
282 }
283 
284 /*
285  * create_buf_file_create() default callback.  Does nothing.
286  */
287 static struct dentry *create_buf_file_default_callback(const char *filename,
288 						       struct dentry *parent,
289 						       int mode,
290 						       struct rchan_buf *buf,
291 						       int *is_global)
292 {
293 	return NULL;
294 }
295 
296 /*
297  * remove_buf_file() default callback.  Does nothing.
298  */
299 static int remove_buf_file_default_callback(struct dentry *dentry)
300 {
301 	return -EINVAL;
302 }
303 
304 /* relay channel default callbacks */
305 static struct rchan_callbacks default_channel_callbacks = {
306 	.subbuf_start = subbuf_start_default_callback,
307 	.buf_mapped = buf_mapped_default_callback,
308 	.buf_unmapped = buf_unmapped_default_callback,
309 	.create_buf_file = create_buf_file_default_callback,
310 	.remove_buf_file = remove_buf_file_default_callback,
311 };
312 
313 /**
314  *	wakeup_readers - wake up readers waiting on a channel
315  *	@data: contains the channel buffer
316  *
317  *	This is the timer function used to defer reader waking.
318  */
319 static void wakeup_readers(unsigned long data)
320 {
321 	struct rchan_buf *buf = (struct rchan_buf *)data;
322 	wake_up_interruptible(&buf->read_wait);
323 }
324 
325 /**
326  *	__relay_reset - reset a channel buffer
327  *	@buf: the channel buffer
328  *	@init: 1 if this is a first-time initialization
329  *
330  *	See relay_reset() for description of effect.
331  */
332 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
333 {
334 	size_t i;
335 
336 	if (init) {
337 		init_waitqueue_head(&buf->read_wait);
338 		kref_init(&buf->kref);
339 		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
340 	} else
341 		del_timer_sync(&buf->timer);
342 
343 	buf->subbufs_produced = 0;
344 	buf->subbufs_consumed = 0;
345 	buf->bytes_consumed = 0;
346 	buf->finalized = 0;
347 	buf->data = buf->start;
348 	buf->offset = 0;
349 
350 	for (i = 0; i < buf->chan->n_subbufs; i++)
351 		buf->padding[i] = 0;
352 
353 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
354 }
355 
356 /**
357  *	relay_reset - reset the channel
358  *	@chan: the channel
359  *
360  *	This has the effect of erasing all data from all channel buffers
361  *	and restarting the channel in its initial state.  The buffers
362  *	are not freed, so any mappings are still in effect.
363  *
364  *	NOTE. Care should be taken that the channel isn't actually
365  *	being used by anything when this call is made.
366  */
367 void relay_reset(struct rchan *chan)
368 {
369 	unsigned int i;
370 
371 	if (!chan)
372 		return;
373 
374  	if (chan->is_global && chan->buf[0]) {
375 		__relay_reset(chan->buf[0], 0);
376 		return;
377 	}
378 
379 	mutex_lock(&relay_channels_mutex);
380 	for_each_online_cpu(i)
381 		if (chan->buf[i])
382 			__relay_reset(chan->buf[i], 0);
383 	mutex_unlock(&relay_channels_mutex);
384 }
385 EXPORT_SYMBOL_GPL(relay_reset);
386 
387 /*
388  *	relay_open_buf - create a new relay channel buffer
389  *
390  *	used by relay_open() and CPU hotplug.
391  */
392 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
393 {
394  	struct rchan_buf *buf = NULL;
395 	struct dentry *dentry;
396  	char *tmpname;
397 
398  	if (chan->is_global)
399 		return chan->buf[0];
400 
401 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
402  	if (!tmpname)
403  		goto end;
404  	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
405 
406 	buf = relay_create_buf(chan);
407 	if (!buf)
408  		goto free_name;
409 
410  	buf->cpu = cpu;
411  	__relay_reset(buf, 1);
412 
413 	/* Create file in fs */
414  	dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
415  					   buf, &chan->is_global);
416  	if (!dentry)
417  		goto free_buf;
418 
419 	buf->dentry = dentry;
420 
421  	if(chan->is_global) {
422  		chan->buf[0] = buf;
423  		buf->cpu = 0;
424   	}
425 
426  	goto free_name;
427 
428 free_buf:
429  	relay_destroy_buf(buf);
430 free_name:
431  	kfree(tmpname);
432 end:
433 	return buf;
434 }
435 
436 /**
437  *	relay_close_buf - close a channel buffer
438  *	@buf: channel buffer
439  *
440  *	Marks the buffer finalized and restores the default callbacks.
441  *	The channel buffer and channel buffer data structure are then freed
442  *	automatically when the last reference is given up.
443  */
444 static void relay_close_buf(struct rchan_buf *buf)
445 {
446 	buf->finalized = 1;
447 	del_timer_sync(&buf->timer);
448 	kref_put(&buf->kref, relay_remove_buf);
449 }
450 
451 static void setup_callbacks(struct rchan *chan,
452 				   struct rchan_callbacks *cb)
453 {
454 	if (!cb) {
455 		chan->cb = &default_channel_callbacks;
456 		return;
457 	}
458 
459 	if (!cb->subbuf_start)
460 		cb->subbuf_start = subbuf_start_default_callback;
461 	if (!cb->buf_mapped)
462 		cb->buf_mapped = buf_mapped_default_callback;
463 	if (!cb->buf_unmapped)
464 		cb->buf_unmapped = buf_unmapped_default_callback;
465 	if (!cb->create_buf_file)
466 		cb->create_buf_file = create_buf_file_default_callback;
467 	if (!cb->remove_buf_file)
468 		cb->remove_buf_file = remove_buf_file_default_callback;
469 	chan->cb = cb;
470 }
471 
472 /**
473  * 	relay_hotcpu_callback - CPU hotplug callback
474  * 	@nb: notifier block
475  * 	@action: hotplug action to take
476  * 	@hcpu: CPU number
477  *
478  * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
479  */
480 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
481 				unsigned long action,
482 				void *hcpu)
483 {
484 	unsigned int hotcpu = (unsigned long)hcpu;
485 	struct rchan *chan;
486 
487 	switch(action) {
488 	case CPU_UP_PREPARE:
489 	case CPU_UP_PREPARE_FROZEN:
490 		mutex_lock(&relay_channels_mutex);
491 		list_for_each_entry(chan, &relay_channels, list) {
492 			if (chan->buf[hotcpu])
493 				continue;
494 			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
495 			if(!chan->buf[hotcpu]) {
496 				printk(KERN_ERR
497 					"relay_hotcpu_callback: cpu %d buffer "
498 					"creation failed\n", hotcpu);
499 				mutex_unlock(&relay_channels_mutex);
500 				return NOTIFY_BAD;
501 			}
502 		}
503 		mutex_unlock(&relay_channels_mutex);
504 		break;
505 	case CPU_DEAD:
506 	case CPU_DEAD_FROZEN:
507 		/* No need to flush the cpu : will be flushed upon
508 		 * final relay_flush() call. */
509 		break;
510 	}
511 	return NOTIFY_OK;
512 }
513 
514 /**
515  *	relay_open - create a new relay channel
516  *	@base_filename: base name of files to create
517  *	@parent: dentry of parent directory, %NULL for root directory
518  *	@subbuf_size: size of sub-buffers
519  *	@n_subbufs: number of sub-buffers
520  *	@cb: client callback functions
521  *	@private_data: user-defined data
522  *
523  *	Returns channel pointer if successful, %NULL otherwise.
524  *
525  *	Creates a channel buffer for each cpu using the sizes and
526  *	attributes specified.  The created channel buffer files
527  *	will be named base_filename0...base_filenameN-1.  File
528  *	permissions will be %S_IRUSR.
529  */
530 struct rchan *relay_open(const char *base_filename,
531 			 struct dentry *parent,
532 			 size_t subbuf_size,
533 			 size_t n_subbufs,
534 			 struct rchan_callbacks *cb,
535 			 void *private_data)
536 {
537 	unsigned int i;
538 	struct rchan *chan;
539 	if (!base_filename)
540 		return NULL;
541 
542 	if (!(subbuf_size && n_subbufs))
543 		return NULL;
544 
545 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
546 	if (!chan)
547 		return NULL;
548 
549 	chan->version = RELAYFS_CHANNEL_VERSION;
550 	chan->n_subbufs = n_subbufs;
551 	chan->subbuf_size = subbuf_size;
552 	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
553 	chan->parent = parent;
554 	chan->private_data = private_data;
555 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
556 	setup_callbacks(chan, cb);
557 	kref_init(&chan->kref);
558 
559 	mutex_lock(&relay_channels_mutex);
560 	for_each_online_cpu(i) {
561 		chan->buf[i] = relay_open_buf(chan, i);
562 		if (!chan->buf[i])
563 			goto free_bufs;
564 	}
565 	list_add(&chan->list, &relay_channels);
566 	mutex_unlock(&relay_channels_mutex);
567 
568 	return chan;
569 
570 free_bufs:
571 	for_each_online_cpu(i) {
572 		if (!chan->buf[i])
573 			break;
574 		relay_close_buf(chan->buf[i]);
575 	}
576 
577 	kref_put(&chan->kref, relay_destroy_channel);
578 	mutex_unlock(&relay_channels_mutex);
579 	return NULL;
580 }
581 EXPORT_SYMBOL_GPL(relay_open);
582 
583 /**
584  *	relay_switch_subbuf - switch to a new sub-buffer
585  *	@buf: channel buffer
586  *	@length: size of current event
587  *
588  *	Returns either the length passed in or 0 if full.
589  *
590  *	Performs sub-buffer-switch tasks such as invoking callbacks,
591  *	updating padding counts, waking up readers, etc.
592  */
593 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
594 {
595 	void *old, *new;
596 	size_t old_subbuf, new_subbuf;
597 
598 	if (unlikely(length > buf->chan->subbuf_size))
599 		goto toobig;
600 
601 	if (buf->offset != buf->chan->subbuf_size + 1) {
602 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
603 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
604 		buf->padding[old_subbuf] = buf->prev_padding;
605 		buf->subbufs_produced++;
606 		buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
607 			buf->padding[old_subbuf];
608 		smp_mb();
609 		if (waitqueue_active(&buf->read_wait))
610 			/*
611 			 * Calling wake_up_interruptible() from here
612 			 * will deadlock if we happen to be logging
613 			 * from the scheduler (trying to re-grab
614 			 * rq->lock), so defer it.
615 			 */
616 			__mod_timer(&buf->timer, jiffies + 1);
617 	}
618 
619 	old = buf->data;
620 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
621 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
622 	buf->offset = 0;
623 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
624 		buf->offset = buf->chan->subbuf_size + 1;
625 		return 0;
626 	}
627 	buf->data = new;
628 	buf->padding[new_subbuf] = 0;
629 
630 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
631 		goto toobig;
632 
633 	return length;
634 
635 toobig:
636 	buf->chan->last_toobig = length;
637 	return 0;
638 }
639 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
640 
641 /**
642  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
643  *	@chan: the channel
644  *	@cpu: the cpu associated with the channel buffer to update
645  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
646  *
647  *	Adds to the channel buffer's consumed sub-buffer count.
648  *	subbufs_consumed should be the number of sub-buffers newly consumed,
649  *	not the total consumed.
650  *
651  *	NOTE. Kernel clients don't need to call this function if the channel
652  *	mode is 'overwrite'.
653  */
654 void relay_subbufs_consumed(struct rchan *chan,
655 			    unsigned int cpu,
656 			    size_t subbufs_consumed)
657 {
658 	struct rchan_buf *buf;
659 
660 	if (!chan)
661 		return;
662 
663 	if (cpu >= NR_CPUS || !chan->buf[cpu])
664 		return;
665 
666 	buf = chan->buf[cpu];
667 	buf->subbufs_consumed += subbufs_consumed;
668 	if (buf->subbufs_consumed > buf->subbufs_produced)
669 		buf->subbufs_consumed = buf->subbufs_produced;
670 }
671 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
672 
673 /**
674  *	relay_close - close the channel
675  *	@chan: the channel
676  *
677  *	Closes all channel buffers and frees the channel.
678  */
679 void relay_close(struct rchan *chan)
680 {
681 	unsigned int i;
682 
683 	if (!chan)
684 		return;
685 
686 	mutex_lock(&relay_channels_mutex);
687 	if (chan->is_global && chan->buf[0])
688 		relay_close_buf(chan->buf[0]);
689 	else
690 		for_each_possible_cpu(i)
691 			if (chan->buf[i])
692 				relay_close_buf(chan->buf[i]);
693 
694 	if (chan->last_toobig)
695 		printk(KERN_WARNING "relay: one or more items not logged "
696 		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
697 		       chan->last_toobig, chan->subbuf_size);
698 
699 	list_del(&chan->list);
700 	kref_put(&chan->kref, relay_destroy_channel);
701 	mutex_unlock(&relay_channels_mutex);
702 }
703 EXPORT_SYMBOL_GPL(relay_close);
704 
705 /**
706  *	relay_flush - close the channel
707  *	@chan: the channel
708  *
709  *	Flushes all channel buffers, i.e. forces buffer switch.
710  */
711 void relay_flush(struct rchan *chan)
712 {
713 	unsigned int i;
714 
715 	if (!chan)
716 		return;
717 
718 	if (chan->is_global && chan->buf[0]) {
719 		relay_switch_subbuf(chan->buf[0], 0);
720 		return;
721 	}
722 
723 	mutex_lock(&relay_channels_mutex);
724 	for_each_possible_cpu(i)
725 		if (chan->buf[i])
726 			relay_switch_subbuf(chan->buf[i], 0);
727 	mutex_unlock(&relay_channels_mutex);
728 }
729 EXPORT_SYMBOL_GPL(relay_flush);
730 
731 /**
732  *	relay_file_open - open file op for relay files
733  *	@inode: the inode
734  *	@filp: the file
735  *
736  *	Increments the channel buffer refcount.
737  */
738 static int relay_file_open(struct inode *inode, struct file *filp)
739 {
740 	struct rchan_buf *buf = inode->i_private;
741 	kref_get(&buf->kref);
742 	filp->private_data = buf;
743 
744 	return 0;
745 }
746 
747 /**
748  *	relay_file_mmap - mmap file op for relay files
749  *	@filp: the file
750  *	@vma: the vma describing what to map
751  *
752  *	Calls upon relay_mmap_buf() to map the file into user space.
753  */
754 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
755 {
756 	struct rchan_buf *buf = filp->private_data;
757 	return relay_mmap_buf(buf, vma);
758 }
759 
760 /**
761  *	relay_file_poll - poll file op for relay files
762  *	@filp: the file
763  *	@wait: poll table
764  *
765  *	Poll implemention.
766  */
767 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
768 {
769 	unsigned int mask = 0;
770 	struct rchan_buf *buf = filp->private_data;
771 
772 	if (buf->finalized)
773 		return POLLERR;
774 
775 	if (filp->f_mode & FMODE_READ) {
776 		poll_wait(filp, &buf->read_wait, wait);
777 		if (!relay_buf_empty(buf))
778 			mask |= POLLIN | POLLRDNORM;
779 	}
780 
781 	return mask;
782 }
783 
784 /**
785  *	relay_file_release - release file op for relay files
786  *	@inode: the inode
787  *	@filp: the file
788  *
789  *	Decrements the channel refcount, as the filesystem is
790  *	no longer using it.
791  */
792 static int relay_file_release(struct inode *inode, struct file *filp)
793 {
794 	struct rchan_buf *buf = filp->private_data;
795 	kref_put(&buf->kref, relay_remove_buf);
796 
797 	return 0;
798 }
799 
800 /*
801  *	relay_file_read_consume - update the consumed count for the buffer
802  */
803 static void relay_file_read_consume(struct rchan_buf *buf,
804 				    size_t read_pos,
805 				    size_t bytes_consumed)
806 {
807 	size_t subbuf_size = buf->chan->subbuf_size;
808 	size_t n_subbufs = buf->chan->n_subbufs;
809 	size_t read_subbuf;
810 
811 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
812 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
813 		buf->bytes_consumed = 0;
814 	}
815 
816 	buf->bytes_consumed += bytes_consumed;
817 	if (!read_pos)
818 		read_subbuf = buf->subbufs_consumed % n_subbufs;
819 	else
820 		read_subbuf = read_pos / buf->chan->subbuf_size;
821 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
822 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
823 		    (buf->offset == subbuf_size))
824 			return;
825 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
826 		buf->bytes_consumed = 0;
827 	}
828 }
829 
830 /*
831  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
832  */
833 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
834 {
835 	size_t subbuf_size = buf->chan->subbuf_size;
836 	size_t n_subbufs = buf->chan->n_subbufs;
837 	size_t produced = buf->subbufs_produced;
838 	size_t consumed = buf->subbufs_consumed;
839 
840 	relay_file_read_consume(buf, read_pos, 0);
841 
842 	if (unlikely(buf->offset > subbuf_size)) {
843 		if (produced == consumed)
844 			return 0;
845 		return 1;
846 	}
847 
848 	if (unlikely(produced - consumed >= n_subbufs)) {
849 		consumed = produced - n_subbufs + 1;
850 		buf->subbufs_consumed = consumed;
851 		buf->bytes_consumed = 0;
852 	}
853 
854 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
855 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
856 
857 	if (consumed > produced)
858 		produced += n_subbufs * subbuf_size;
859 
860 	if (consumed == produced)
861 		return 0;
862 
863 	return 1;
864 }
865 
866 /**
867  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
868  *	@read_pos: file read position
869  *	@buf: relay channel buffer
870  */
871 static size_t relay_file_read_subbuf_avail(size_t read_pos,
872 					   struct rchan_buf *buf)
873 {
874 	size_t padding, avail = 0;
875 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
876 	size_t subbuf_size = buf->chan->subbuf_size;
877 
878 	write_subbuf = (buf->data - buf->start) / subbuf_size;
879 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
880 	read_subbuf = read_pos / subbuf_size;
881 	read_offset = read_pos % subbuf_size;
882 	padding = buf->padding[read_subbuf];
883 
884 	if (read_subbuf == write_subbuf) {
885 		if (read_offset + padding < write_offset)
886 			avail = write_offset - (read_offset + padding);
887 	} else
888 		avail = (subbuf_size - padding) - read_offset;
889 
890 	return avail;
891 }
892 
893 /**
894  *	relay_file_read_start_pos - find the first available byte to read
895  *	@read_pos: file read position
896  *	@buf: relay channel buffer
897  *
898  *	If the @read_pos is in the middle of padding, return the
899  *	position of the first actually available byte, otherwise
900  *	return the original value.
901  */
902 static size_t relay_file_read_start_pos(size_t read_pos,
903 					struct rchan_buf *buf)
904 {
905 	size_t read_subbuf, padding, padding_start, padding_end;
906 	size_t subbuf_size = buf->chan->subbuf_size;
907 	size_t n_subbufs = buf->chan->n_subbufs;
908 	size_t consumed = buf->subbufs_consumed % n_subbufs;
909 
910 	if (!read_pos)
911 		read_pos = consumed * subbuf_size + buf->bytes_consumed;
912 	read_subbuf = read_pos / subbuf_size;
913 	padding = buf->padding[read_subbuf];
914 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
915 	padding_end = (read_subbuf + 1) * subbuf_size;
916 	if (read_pos >= padding_start && read_pos < padding_end) {
917 		read_subbuf = (read_subbuf + 1) % n_subbufs;
918 		read_pos = read_subbuf * subbuf_size;
919 	}
920 
921 	return read_pos;
922 }
923 
924 /**
925  *	relay_file_read_end_pos - return the new read position
926  *	@read_pos: file read position
927  *	@buf: relay channel buffer
928  *	@count: number of bytes to be read
929  */
930 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
931 				      size_t read_pos,
932 				      size_t count)
933 {
934 	size_t read_subbuf, padding, end_pos;
935 	size_t subbuf_size = buf->chan->subbuf_size;
936 	size_t n_subbufs = buf->chan->n_subbufs;
937 
938 	read_subbuf = read_pos / subbuf_size;
939 	padding = buf->padding[read_subbuf];
940 	if (read_pos % subbuf_size + count + padding == subbuf_size)
941 		end_pos = (read_subbuf + 1) * subbuf_size;
942 	else
943 		end_pos = read_pos + count;
944 	if (end_pos >= subbuf_size * n_subbufs)
945 		end_pos = 0;
946 
947 	return end_pos;
948 }
949 
950 /*
951  *	subbuf_read_actor - read up to one subbuf's worth of data
952  */
953 static int subbuf_read_actor(size_t read_start,
954 			     struct rchan_buf *buf,
955 			     size_t avail,
956 			     read_descriptor_t *desc,
957 			     read_actor_t actor)
958 {
959 	void *from;
960 	int ret = 0;
961 
962 	from = buf->start + read_start;
963 	ret = avail;
964 	if (copy_to_user(desc->arg.buf, from, avail)) {
965 		desc->error = -EFAULT;
966 		ret = 0;
967 	}
968 	desc->arg.data += ret;
969 	desc->written += ret;
970 	desc->count -= ret;
971 
972 	return ret;
973 }
974 
975 typedef int (*subbuf_actor_t) (size_t read_start,
976 			       struct rchan_buf *buf,
977 			       size_t avail,
978 			       read_descriptor_t *desc,
979 			       read_actor_t actor);
980 
981 /*
982  *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
983  */
984 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
985 					subbuf_actor_t subbuf_actor,
986 					read_actor_t actor,
987 					read_descriptor_t *desc)
988 {
989 	struct rchan_buf *buf = filp->private_data;
990 	size_t read_start, avail;
991 	int ret;
992 
993 	if (!desc->count)
994 		return 0;
995 
996 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
997 	do {
998 		if (!relay_file_read_avail(buf, *ppos))
999 			break;
1000 
1001 		read_start = relay_file_read_start_pos(*ppos, buf);
1002 		avail = relay_file_read_subbuf_avail(read_start, buf);
1003 		if (!avail)
1004 			break;
1005 
1006 		avail = min(desc->count, avail);
1007 		ret = subbuf_actor(read_start, buf, avail, desc, actor);
1008 		if (desc->error < 0)
1009 			break;
1010 
1011 		if (ret) {
1012 			relay_file_read_consume(buf, read_start, ret);
1013 			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1014 		}
1015 	} while (desc->count && ret);
1016 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1017 
1018 	return desc->written;
1019 }
1020 
1021 static ssize_t relay_file_read(struct file *filp,
1022 			       char __user *buffer,
1023 			       size_t count,
1024 			       loff_t *ppos)
1025 {
1026 	read_descriptor_t desc;
1027 	desc.written = 0;
1028 	desc.count = count;
1029 	desc.arg.buf = buffer;
1030 	desc.error = 0;
1031 	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1032 				       NULL, &desc);
1033 }
1034 
1035 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1036 {
1037 	rbuf->bytes_consumed += bytes_consumed;
1038 
1039 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1040 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1041 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1042 	}
1043 }
1044 
1045 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1046 				   struct pipe_buffer *buf)
1047 {
1048 	struct rchan_buf *rbuf;
1049 
1050 	rbuf = (struct rchan_buf *)page_private(buf->page);
1051 	relay_consume_bytes(rbuf, buf->private);
1052 }
1053 
1054 static struct pipe_buf_operations relay_pipe_buf_ops = {
1055 	.can_merge = 0,
1056 	.map = generic_pipe_buf_map,
1057 	.unmap = generic_pipe_buf_unmap,
1058 	.confirm = generic_pipe_buf_confirm,
1059 	.release = relay_pipe_buf_release,
1060 	.steal = generic_pipe_buf_steal,
1061 	.get = generic_pipe_buf_get,
1062 };
1063 
1064 /**
1065  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1066  */
1067 static int subbuf_splice_actor(struct file *in,
1068 			       loff_t *ppos,
1069 			       struct pipe_inode_info *pipe,
1070 			       size_t len,
1071 			       unsigned int flags,
1072 			       int *nonpad_ret)
1073 {
1074 	unsigned int pidx, poff, total_len, subbuf_pages, ret;
1075 	struct rchan_buf *rbuf = in->private_data;
1076 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1077 	size_t read_start = ((size_t)*ppos) % rbuf->chan->alloc_size;
1078 	size_t read_subbuf = read_start / subbuf_size;
1079 	size_t padding = rbuf->padding[read_subbuf];
1080 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1081 	struct page *pages[PIPE_BUFFERS];
1082 	struct partial_page partial[PIPE_BUFFERS];
1083 	struct splice_pipe_desc spd = {
1084 		.pages = pages,
1085 		.nr_pages = 0,
1086 		.partial = partial,
1087 		.flags = flags,
1088 		.ops = &relay_pipe_buf_ops,
1089 	};
1090 
1091 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1092 		return 0;
1093 
1094 	/*
1095 	 * Adjust read len, if longer than what is available
1096 	 */
1097 	if (len > (subbuf_size - read_start % subbuf_size))
1098 		len = subbuf_size - read_start % subbuf_size;
1099 
1100 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1101 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1102 	poff = read_start & ~PAGE_MASK;
1103 
1104 	for (total_len = 0; spd.nr_pages < subbuf_pages; spd.nr_pages++) {
1105 		unsigned int this_len, this_end, private;
1106 		unsigned int cur_pos = read_start + total_len;
1107 
1108 		if (!len)
1109 			break;
1110 
1111 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1112 		private = this_len;
1113 
1114 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1115 		spd.partial[spd.nr_pages].offset = poff;
1116 
1117 		this_end = cur_pos + this_len;
1118 		if (this_end >= nonpad_end) {
1119 			this_len = nonpad_end - cur_pos;
1120 			private = this_len + padding;
1121 		}
1122 		spd.partial[spd.nr_pages].len = this_len;
1123 		spd.partial[spd.nr_pages].private = private;
1124 
1125 		len -= this_len;
1126 		total_len += this_len;
1127 		poff = 0;
1128 		pidx = (pidx + 1) % subbuf_pages;
1129 
1130 		if (this_end >= nonpad_end) {
1131 			spd.nr_pages++;
1132 			break;
1133 		}
1134 	}
1135 
1136 	if (!spd.nr_pages)
1137 		return 0;
1138 
1139 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1140 	if (ret < 0 || ret < total_len)
1141 		return ret;
1142 
1143         if (read_start + ret == nonpad_end)
1144                 ret += padding;
1145 
1146         return ret;
1147 }
1148 
1149 static ssize_t relay_file_splice_read(struct file *in,
1150 				      loff_t *ppos,
1151 				      struct pipe_inode_info *pipe,
1152 				      size_t len,
1153 				      unsigned int flags)
1154 {
1155 	ssize_t spliced;
1156 	int ret;
1157 	int nonpad_ret = 0;
1158 
1159 	ret = 0;
1160 	spliced = 0;
1161 
1162 	while (len) {
1163 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1164 		if (ret < 0)
1165 			break;
1166 		else if (!ret) {
1167 			if (spliced)
1168 				break;
1169 			if (flags & SPLICE_F_NONBLOCK) {
1170 				ret = -EAGAIN;
1171 				break;
1172 			}
1173 		}
1174 
1175 		*ppos += ret;
1176 		if (ret > len)
1177 			len = 0;
1178 		else
1179 			len -= ret;
1180 		spliced += nonpad_ret;
1181 		nonpad_ret = 0;
1182 	}
1183 
1184 	if (spliced)
1185 		return spliced;
1186 
1187 	return ret;
1188 }
1189 
1190 const struct file_operations relay_file_operations = {
1191 	.open		= relay_file_open,
1192 	.poll		= relay_file_poll,
1193 	.mmap		= relay_file_mmap,
1194 	.read		= relay_file_read,
1195 	.llseek		= no_llseek,
1196 	.release	= relay_file_release,
1197 	.splice_read	= relay_file_splice_read,
1198 };
1199 EXPORT_SYMBOL_GPL(relay_file_operations);
1200 
1201 static __init int relay_init(void)
1202 {
1203 
1204 	hotcpu_notifier(relay_hotcpu_callback, 0);
1205 	return 0;
1206 }
1207 
1208 module_init(relay_init);
1209