xref: /openbmc/linux/kernel/relay.c (revision 545e4006)
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.txt for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  * 	(mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25 
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29 
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 	struct rchan_buf *buf = vma->vm_private_data;
36 	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38 
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 	struct page *page;
45 	struct rchan_buf *buf = vma->vm_private_data;
46 	pgoff_t pgoff = vmf->pgoff;
47 
48 	if (!buf)
49 		return VM_FAULT_OOM;
50 
51 	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 	if (!page)
53 		return VM_FAULT_SIGBUS;
54 	get_page(page);
55 	vmf->page = page;
56 
57 	return 0;
58 }
59 
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static struct vm_operations_struct relay_file_mmap_ops = {
64 	.fault = relay_buf_fault,
65 	.close = relay_file_mmap_close,
66 };
67 
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 	struct page **array;
74 	size_t pa_size = n_pages * sizeof(struct page *);
75 
76 	if (pa_size > PAGE_SIZE) {
77 		array = vmalloc(pa_size);
78 		if (array)
79 			memset(array, 0, pa_size);
80 	} else {
81 		array = kzalloc(pa_size, GFP_KERNEL);
82 	}
83 	return array;
84 }
85 
86 /*
87  * free an array of pointers of struct page
88  */
89 static void relay_free_page_array(struct page **array)
90 {
91 	if (is_vmalloc_addr(array))
92 		vfree(array);
93 	else
94 		kfree(array);
95 }
96 
97 /**
98  *	relay_mmap_buf: - mmap channel buffer to process address space
99  *	@buf: relay channel buffer
100  *	@vma: vm_area_struct describing memory to be mapped
101  *
102  *	Returns 0 if ok, negative on error
103  *
104  *	Caller should already have grabbed mmap_sem.
105  */
106 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
107 {
108 	unsigned long length = vma->vm_end - vma->vm_start;
109 	struct file *filp = vma->vm_file;
110 
111 	if (!buf)
112 		return -EBADF;
113 
114 	if (length != (unsigned long)buf->chan->alloc_size)
115 		return -EINVAL;
116 
117 	vma->vm_ops = &relay_file_mmap_ops;
118 	vma->vm_flags |= VM_DONTEXPAND;
119 	vma->vm_private_data = buf;
120 	buf->chan->cb->buf_mapped(buf, filp);
121 
122 	return 0;
123 }
124 
125 /**
126  *	relay_alloc_buf - allocate a channel buffer
127  *	@buf: the buffer struct
128  *	@size: total size of the buffer
129  *
130  *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
131  *	passed in size will get page aligned, if it isn't already.
132  */
133 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
134 {
135 	void *mem;
136 	unsigned int i, j, n_pages;
137 
138 	*size = PAGE_ALIGN(*size);
139 	n_pages = *size >> PAGE_SHIFT;
140 
141 	buf->page_array = relay_alloc_page_array(n_pages);
142 	if (!buf->page_array)
143 		return NULL;
144 
145 	for (i = 0; i < n_pages; i++) {
146 		buf->page_array[i] = alloc_page(GFP_KERNEL);
147 		if (unlikely(!buf->page_array[i]))
148 			goto depopulate;
149 		set_page_private(buf->page_array[i], (unsigned long)buf);
150 	}
151 	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
152 	if (!mem)
153 		goto depopulate;
154 
155 	memset(mem, 0, *size);
156 	buf->page_count = n_pages;
157 	return mem;
158 
159 depopulate:
160 	for (j = 0; j < i; j++)
161 		__free_page(buf->page_array[j]);
162 	relay_free_page_array(buf->page_array);
163 	return NULL;
164 }
165 
166 /**
167  *	relay_create_buf - allocate and initialize a channel buffer
168  *	@chan: the relay channel
169  *
170  *	Returns channel buffer if successful, %NULL otherwise.
171  */
172 static struct rchan_buf *relay_create_buf(struct rchan *chan)
173 {
174 	struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
175 	if (!buf)
176 		return NULL;
177 
178 	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
179 	if (!buf->padding)
180 		goto free_buf;
181 
182 	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
183 	if (!buf->start)
184 		goto free_buf;
185 
186 	buf->chan = chan;
187 	kref_get(&buf->chan->kref);
188 	return buf;
189 
190 free_buf:
191 	kfree(buf->padding);
192 	kfree(buf);
193 	return NULL;
194 }
195 
196 /**
197  *	relay_destroy_channel - free the channel struct
198  *	@kref: target kernel reference that contains the relay channel
199  *
200  *	Should only be called from kref_put().
201  */
202 static void relay_destroy_channel(struct kref *kref)
203 {
204 	struct rchan *chan = container_of(kref, struct rchan, kref);
205 	kfree(chan);
206 }
207 
208 /**
209  *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
210  *	@buf: the buffer struct
211  */
212 static void relay_destroy_buf(struct rchan_buf *buf)
213 {
214 	struct rchan *chan = buf->chan;
215 	unsigned int i;
216 
217 	if (likely(buf->start)) {
218 		vunmap(buf->start);
219 		for (i = 0; i < buf->page_count; i++)
220 			__free_page(buf->page_array[i]);
221 		relay_free_page_array(buf->page_array);
222 	}
223 	chan->buf[buf->cpu] = NULL;
224 	kfree(buf->padding);
225 	kfree(buf);
226 	kref_put(&chan->kref, relay_destroy_channel);
227 }
228 
229 /**
230  *	relay_remove_buf - remove a channel buffer
231  *	@kref: target kernel reference that contains the relay buffer
232  *
233  *	Removes the file from the fileystem, which also frees the
234  *	rchan_buf_struct and the channel buffer.  Should only be called from
235  *	kref_put().
236  */
237 static void relay_remove_buf(struct kref *kref)
238 {
239 	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
240 	buf->chan->cb->remove_buf_file(buf->dentry);
241 	relay_destroy_buf(buf);
242 }
243 
244 /**
245  *	relay_buf_empty - boolean, is the channel buffer empty?
246  *	@buf: channel buffer
247  *
248  *	Returns 1 if the buffer is empty, 0 otherwise.
249  */
250 static int relay_buf_empty(struct rchan_buf *buf)
251 {
252 	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
253 }
254 
255 /**
256  *	relay_buf_full - boolean, is the channel buffer full?
257  *	@buf: channel buffer
258  *
259  *	Returns 1 if the buffer is full, 0 otherwise.
260  */
261 int relay_buf_full(struct rchan_buf *buf)
262 {
263 	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
264 	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
265 }
266 EXPORT_SYMBOL_GPL(relay_buf_full);
267 
268 /*
269  * High-level relay kernel API and associated functions.
270  */
271 
272 /*
273  * rchan_callback implementations defining default channel behavior.  Used
274  * in place of corresponding NULL values in client callback struct.
275  */
276 
277 /*
278  * subbuf_start() default callback.  Does nothing.
279  */
280 static int subbuf_start_default_callback (struct rchan_buf *buf,
281 					  void *subbuf,
282 					  void *prev_subbuf,
283 					  size_t prev_padding)
284 {
285 	if (relay_buf_full(buf))
286 		return 0;
287 
288 	return 1;
289 }
290 
291 /*
292  * buf_mapped() default callback.  Does nothing.
293  */
294 static void buf_mapped_default_callback(struct rchan_buf *buf,
295 					struct file *filp)
296 {
297 }
298 
299 /*
300  * buf_unmapped() default callback.  Does nothing.
301  */
302 static void buf_unmapped_default_callback(struct rchan_buf *buf,
303 					  struct file *filp)
304 {
305 }
306 
307 /*
308  * create_buf_file_create() default callback.  Does nothing.
309  */
310 static struct dentry *create_buf_file_default_callback(const char *filename,
311 						       struct dentry *parent,
312 						       int mode,
313 						       struct rchan_buf *buf,
314 						       int *is_global)
315 {
316 	return NULL;
317 }
318 
319 /*
320  * remove_buf_file() default callback.  Does nothing.
321  */
322 static int remove_buf_file_default_callback(struct dentry *dentry)
323 {
324 	return -EINVAL;
325 }
326 
327 /* relay channel default callbacks */
328 static struct rchan_callbacks default_channel_callbacks = {
329 	.subbuf_start = subbuf_start_default_callback,
330 	.buf_mapped = buf_mapped_default_callback,
331 	.buf_unmapped = buf_unmapped_default_callback,
332 	.create_buf_file = create_buf_file_default_callback,
333 	.remove_buf_file = remove_buf_file_default_callback,
334 };
335 
336 /**
337  *	wakeup_readers - wake up readers waiting on a channel
338  *	@data: contains the channel buffer
339  *
340  *	This is the timer function used to defer reader waking.
341  */
342 static void wakeup_readers(unsigned long data)
343 {
344 	struct rchan_buf *buf = (struct rchan_buf *)data;
345 	wake_up_interruptible(&buf->read_wait);
346 }
347 
348 /**
349  *	__relay_reset - reset a channel buffer
350  *	@buf: the channel buffer
351  *	@init: 1 if this is a first-time initialization
352  *
353  *	See relay_reset() for description of effect.
354  */
355 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
356 {
357 	size_t i;
358 
359 	if (init) {
360 		init_waitqueue_head(&buf->read_wait);
361 		kref_init(&buf->kref);
362 		setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
363 	} else
364 		del_timer_sync(&buf->timer);
365 
366 	buf->subbufs_produced = 0;
367 	buf->subbufs_consumed = 0;
368 	buf->bytes_consumed = 0;
369 	buf->finalized = 0;
370 	buf->data = buf->start;
371 	buf->offset = 0;
372 
373 	for (i = 0; i < buf->chan->n_subbufs; i++)
374 		buf->padding[i] = 0;
375 
376 	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
377 }
378 
379 /**
380  *	relay_reset - reset the channel
381  *	@chan: the channel
382  *
383  *	This has the effect of erasing all data from all channel buffers
384  *	and restarting the channel in its initial state.  The buffers
385  *	are not freed, so any mappings are still in effect.
386  *
387  *	NOTE. Care should be taken that the channel isn't actually
388  *	being used by anything when this call is made.
389  */
390 void relay_reset(struct rchan *chan)
391 {
392 	unsigned int i;
393 
394 	if (!chan)
395 		return;
396 
397 	if (chan->is_global && chan->buf[0]) {
398 		__relay_reset(chan->buf[0], 0);
399 		return;
400 	}
401 
402 	mutex_lock(&relay_channels_mutex);
403 	for_each_online_cpu(i)
404 		if (chan->buf[i])
405 			__relay_reset(chan->buf[i], 0);
406 	mutex_unlock(&relay_channels_mutex);
407 }
408 EXPORT_SYMBOL_GPL(relay_reset);
409 
410 /*
411  *	relay_open_buf - create a new relay channel buffer
412  *
413  *	used by relay_open() and CPU hotplug.
414  */
415 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
416 {
417  	struct rchan_buf *buf = NULL;
418 	struct dentry *dentry;
419  	char *tmpname;
420 
421  	if (chan->is_global)
422 		return chan->buf[0];
423 
424 	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
425  	if (!tmpname)
426  		goto end;
427  	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
428 
429 	buf = relay_create_buf(chan);
430 	if (!buf)
431  		goto free_name;
432 
433  	buf->cpu = cpu;
434  	__relay_reset(buf, 1);
435 
436 	/* Create file in fs */
437  	dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
438  					   buf, &chan->is_global);
439  	if (!dentry)
440  		goto free_buf;
441 
442 	buf->dentry = dentry;
443 
444  	if(chan->is_global) {
445  		chan->buf[0] = buf;
446  		buf->cpu = 0;
447   	}
448 
449  	goto free_name;
450 
451 free_buf:
452  	relay_destroy_buf(buf);
453  	buf = NULL;
454 free_name:
455  	kfree(tmpname);
456 end:
457 	return buf;
458 }
459 
460 /**
461  *	relay_close_buf - close a channel buffer
462  *	@buf: channel buffer
463  *
464  *	Marks the buffer finalized and restores the default callbacks.
465  *	The channel buffer and channel buffer data structure are then freed
466  *	automatically when the last reference is given up.
467  */
468 static void relay_close_buf(struct rchan_buf *buf)
469 {
470 	buf->finalized = 1;
471 	del_timer_sync(&buf->timer);
472 	kref_put(&buf->kref, relay_remove_buf);
473 }
474 
475 static void setup_callbacks(struct rchan *chan,
476 				   struct rchan_callbacks *cb)
477 {
478 	if (!cb) {
479 		chan->cb = &default_channel_callbacks;
480 		return;
481 	}
482 
483 	if (!cb->subbuf_start)
484 		cb->subbuf_start = subbuf_start_default_callback;
485 	if (!cb->buf_mapped)
486 		cb->buf_mapped = buf_mapped_default_callback;
487 	if (!cb->buf_unmapped)
488 		cb->buf_unmapped = buf_unmapped_default_callback;
489 	if (!cb->create_buf_file)
490 		cb->create_buf_file = create_buf_file_default_callback;
491 	if (!cb->remove_buf_file)
492 		cb->remove_buf_file = remove_buf_file_default_callback;
493 	chan->cb = cb;
494 }
495 
496 /**
497  * 	relay_hotcpu_callback - CPU hotplug callback
498  * 	@nb: notifier block
499  * 	@action: hotplug action to take
500  * 	@hcpu: CPU number
501  *
502  * 	Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
503  */
504 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
505 				unsigned long action,
506 				void *hcpu)
507 {
508 	unsigned int hotcpu = (unsigned long)hcpu;
509 	struct rchan *chan;
510 
511 	switch(action) {
512 	case CPU_UP_PREPARE:
513 	case CPU_UP_PREPARE_FROZEN:
514 		mutex_lock(&relay_channels_mutex);
515 		list_for_each_entry(chan, &relay_channels, list) {
516 			if (chan->buf[hotcpu])
517 				continue;
518 			chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
519 			if(!chan->buf[hotcpu]) {
520 				printk(KERN_ERR
521 					"relay_hotcpu_callback: cpu %d buffer "
522 					"creation failed\n", hotcpu);
523 				mutex_unlock(&relay_channels_mutex);
524 				return NOTIFY_BAD;
525 			}
526 		}
527 		mutex_unlock(&relay_channels_mutex);
528 		break;
529 	case CPU_DEAD:
530 	case CPU_DEAD_FROZEN:
531 		/* No need to flush the cpu : will be flushed upon
532 		 * final relay_flush() call. */
533 		break;
534 	}
535 	return NOTIFY_OK;
536 }
537 
538 /**
539  *	relay_open - create a new relay channel
540  *	@base_filename: base name of files to create
541  *	@parent: dentry of parent directory, %NULL for root directory
542  *	@subbuf_size: size of sub-buffers
543  *	@n_subbufs: number of sub-buffers
544  *	@cb: client callback functions
545  *	@private_data: user-defined data
546  *
547  *	Returns channel pointer if successful, %NULL otherwise.
548  *
549  *	Creates a channel buffer for each cpu using the sizes and
550  *	attributes specified.  The created channel buffer files
551  *	will be named base_filename0...base_filenameN-1.  File
552  *	permissions will be %S_IRUSR.
553  */
554 struct rchan *relay_open(const char *base_filename,
555 			 struct dentry *parent,
556 			 size_t subbuf_size,
557 			 size_t n_subbufs,
558 			 struct rchan_callbacks *cb,
559 			 void *private_data)
560 {
561 	unsigned int i;
562 	struct rchan *chan;
563 	if (!base_filename)
564 		return NULL;
565 
566 	if (!(subbuf_size && n_subbufs))
567 		return NULL;
568 
569 	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
570 	if (!chan)
571 		return NULL;
572 
573 	chan->version = RELAYFS_CHANNEL_VERSION;
574 	chan->n_subbufs = n_subbufs;
575 	chan->subbuf_size = subbuf_size;
576 	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
577 	chan->parent = parent;
578 	chan->private_data = private_data;
579 	strlcpy(chan->base_filename, base_filename, NAME_MAX);
580 	setup_callbacks(chan, cb);
581 	kref_init(&chan->kref);
582 
583 	mutex_lock(&relay_channels_mutex);
584 	for_each_online_cpu(i) {
585 		chan->buf[i] = relay_open_buf(chan, i);
586 		if (!chan->buf[i])
587 			goto free_bufs;
588 	}
589 	list_add(&chan->list, &relay_channels);
590 	mutex_unlock(&relay_channels_mutex);
591 
592 	return chan;
593 
594 free_bufs:
595 	for_each_online_cpu(i) {
596 		if (!chan->buf[i])
597 			break;
598 		relay_close_buf(chan->buf[i]);
599 	}
600 
601 	kref_put(&chan->kref, relay_destroy_channel);
602 	mutex_unlock(&relay_channels_mutex);
603 	return NULL;
604 }
605 EXPORT_SYMBOL_GPL(relay_open);
606 
607 /**
608  *	relay_switch_subbuf - switch to a new sub-buffer
609  *	@buf: channel buffer
610  *	@length: size of current event
611  *
612  *	Returns either the length passed in or 0 if full.
613  *
614  *	Performs sub-buffer-switch tasks such as invoking callbacks,
615  *	updating padding counts, waking up readers, etc.
616  */
617 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
618 {
619 	void *old, *new;
620 	size_t old_subbuf, new_subbuf;
621 
622 	if (unlikely(length > buf->chan->subbuf_size))
623 		goto toobig;
624 
625 	if (buf->offset != buf->chan->subbuf_size + 1) {
626 		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
627 		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
628 		buf->padding[old_subbuf] = buf->prev_padding;
629 		buf->subbufs_produced++;
630 		buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
631 			buf->padding[old_subbuf];
632 		smp_mb();
633 		if (waitqueue_active(&buf->read_wait))
634 			/*
635 			 * Calling wake_up_interruptible() from here
636 			 * will deadlock if we happen to be logging
637 			 * from the scheduler (trying to re-grab
638 			 * rq->lock), so defer it.
639 			 */
640 			__mod_timer(&buf->timer, jiffies + 1);
641 	}
642 
643 	old = buf->data;
644 	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
645 	new = buf->start + new_subbuf * buf->chan->subbuf_size;
646 	buf->offset = 0;
647 	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
648 		buf->offset = buf->chan->subbuf_size + 1;
649 		return 0;
650 	}
651 	buf->data = new;
652 	buf->padding[new_subbuf] = 0;
653 
654 	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
655 		goto toobig;
656 
657 	return length;
658 
659 toobig:
660 	buf->chan->last_toobig = length;
661 	return 0;
662 }
663 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
664 
665 /**
666  *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
667  *	@chan: the channel
668  *	@cpu: the cpu associated with the channel buffer to update
669  *	@subbufs_consumed: number of sub-buffers to add to current buf's count
670  *
671  *	Adds to the channel buffer's consumed sub-buffer count.
672  *	subbufs_consumed should be the number of sub-buffers newly consumed,
673  *	not the total consumed.
674  *
675  *	NOTE. Kernel clients don't need to call this function if the channel
676  *	mode is 'overwrite'.
677  */
678 void relay_subbufs_consumed(struct rchan *chan,
679 			    unsigned int cpu,
680 			    size_t subbufs_consumed)
681 {
682 	struct rchan_buf *buf;
683 
684 	if (!chan)
685 		return;
686 
687 	if (cpu >= NR_CPUS || !chan->buf[cpu])
688 		return;
689 
690 	buf = chan->buf[cpu];
691 	buf->subbufs_consumed += subbufs_consumed;
692 	if (buf->subbufs_consumed > buf->subbufs_produced)
693 		buf->subbufs_consumed = buf->subbufs_produced;
694 }
695 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
696 
697 /**
698  *	relay_close - close the channel
699  *	@chan: the channel
700  *
701  *	Closes all channel buffers and frees the channel.
702  */
703 void relay_close(struct rchan *chan)
704 {
705 	unsigned int i;
706 
707 	if (!chan)
708 		return;
709 
710 	mutex_lock(&relay_channels_mutex);
711 	if (chan->is_global && chan->buf[0])
712 		relay_close_buf(chan->buf[0]);
713 	else
714 		for_each_possible_cpu(i)
715 			if (chan->buf[i])
716 				relay_close_buf(chan->buf[i]);
717 
718 	if (chan->last_toobig)
719 		printk(KERN_WARNING "relay: one or more items not logged "
720 		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
721 		       chan->last_toobig, chan->subbuf_size);
722 
723 	list_del(&chan->list);
724 	kref_put(&chan->kref, relay_destroy_channel);
725 	mutex_unlock(&relay_channels_mutex);
726 }
727 EXPORT_SYMBOL_GPL(relay_close);
728 
729 /**
730  *	relay_flush - close the channel
731  *	@chan: the channel
732  *
733  *	Flushes all channel buffers, i.e. forces buffer switch.
734  */
735 void relay_flush(struct rchan *chan)
736 {
737 	unsigned int i;
738 
739 	if (!chan)
740 		return;
741 
742 	if (chan->is_global && chan->buf[0]) {
743 		relay_switch_subbuf(chan->buf[0], 0);
744 		return;
745 	}
746 
747 	mutex_lock(&relay_channels_mutex);
748 	for_each_possible_cpu(i)
749 		if (chan->buf[i])
750 			relay_switch_subbuf(chan->buf[i], 0);
751 	mutex_unlock(&relay_channels_mutex);
752 }
753 EXPORT_SYMBOL_GPL(relay_flush);
754 
755 /**
756  *	relay_file_open - open file op for relay files
757  *	@inode: the inode
758  *	@filp: the file
759  *
760  *	Increments the channel buffer refcount.
761  */
762 static int relay_file_open(struct inode *inode, struct file *filp)
763 {
764 	struct rchan_buf *buf = inode->i_private;
765 	kref_get(&buf->kref);
766 	filp->private_data = buf;
767 
768 	return nonseekable_open(inode, filp);
769 }
770 
771 /**
772  *	relay_file_mmap - mmap file op for relay files
773  *	@filp: the file
774  *	@vma: the vma describing what to map
775  *
776  *	Calls upon relay_mmap_buf() to map the file into user space.
777  */
778 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
779 {
780 	struct rchan_buf *buf = filp->private_data;
781 	return relay_mmap_buf(buf, vma);
782 }
783 
784 /**
785  *	relay_file_poll - poll file op for relay files
786  *	@filp: the file
787  *	@wait: poll table
788  *
789  *	Poll implemention.
790  */
791 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
792 {
793 	unsigned int mask = 0;
794 	struct rchan_buf *buf = filp->private_data;
795 
796 	if (buf->finalized)
797 		return POLLERR;
798 
799 	if (filp->f_mode & FMODE_READ) {
800 		poll_wait(filp, &buf->read_wait, wait);
801 		if (!relay_buf_empty(buf))
802 			mask |= POLLIN | POLLRDNORM;
803 	}
804 
805 	return mask;
806 }
807 
808 /**
809  *	relay_file_release - release file op for relay files
810  *	@inode: the inode
811  *	@filp: the file
812  *
813  *	Decrements the channel refcount, as the filesystem is
814  *	no longer using it.
815  */
816 static int relay_file_release(struct inode *inode, struct file *filp)
817 {
818 	struct rchan_buf *buf = filp->private_data;
819 	kref_put(&buf->kref, relay_remove_buf);
820 
821 	return 0;
822 }
823 
824 /*
825  *	relay_file_read_consume - update the consumed count for the buffer
826  */
827 static void relay_file_read_consume(struct rchan_buf *buf,
828 				    size_t read_pos,
829 				    size_t bytes_consumed)
830 {
831 	size_t subbuf_size = buf->chan->subbuf_size;
832 	size_t n_subbufs = buf->chan->n_subbufs;
833 	size_t read_subbuf;
834 
835 	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
836 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
837 		buf->bytes_consumed = 0;
838 	}
839 
840 	buf->bytes_consumed += bytes_consumed;
841 	if (!read_pos)
842 		read_subbuf = buf->subbufs_consumed % n_subbufs;
843 	else
844 		read_subbuf = read_pos / buf->chan->subbuf_size;
845 	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
846 		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
847 		    (buf->offset == subbuf_size))
848 			return;
849 		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
850 		buf->bytes_consumed = 0;
851 	}
852 }
853 
854 /*
855  *	relay_file_read_avail - boolean, are there unconsumed bytes available?
856  */
857 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
858 {
859 	size_t subbuf_size = buf->chan->subbuf_size;
860 	size_t n_subbufs = buf->chan->n_subbufs;
861 	size_t produced = buf->subbufs_produced;
862 	size_t consumed = buf->subbufs_consumed;
863 
864 	relay_file_read_consume(buf, read_pos, 0);
865 
866 	if (unlikely(buf->offset > subbuf_size)) {
867 		if (produced == consumed)
868 			return 0;
869 		return 1;
870 	}
871 
872 	if (unlikely(produced - consumed >= n_subbufs)) {
873 		consumed = produced - n_subbufs + 1;
874 		buf->subbufs_consumed = consumed;
875 		buf->bytes_consumed = 0;
876 	}
877 
878 	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
879 	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
880 
881 	if (consumed > produced)
882 		produced += n_subbufs * subbuf_size;
883 
884 	if (consumed == produced)
885 		return 0;
886 
887 	return 1;
888 }
889 
890 /**
891  *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
892  *	@read_pos: file read position
893  *	@buf: relay channel buffer
894  */
895 static size_t relay_file_read_subbuf_avail(size_t read_pos,
896 					   struct rchan_buf *buf)
897 {
898 	size_t padding, avail = 0;
899 	size_t read_subbuf, read_offset, write_subbuf, write_offset;
900 	size_t subbuf_size = buf->chan->subbuf_size;
901 
902 	write_subbuf = (buf->data - buf->start) / subbuf_size;
903 	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
904 	read_subbuf = read_pos / subbuf_size;
905 	read_offset = read_pos % subbuf_size;
906 	padding = buf->padding[read_subbuf];
907 
908 	if (read_subbuf == write_subbuf) {
909 		if (read_offset + padding < write_offset)
910 			avail = write_offset - (read_offset + padding);
911 	} else
912 		avail = (subbuf_size - padding) - read_offset;
913 
914 	return avail;
915 }
916 
917 /**
918  *	relay_file_read_start_pos - find the first available byte to read
919  *	@read_pos: file read position
920  *	@buf: relay channel buffer
921  *
922  *	If the @read_pos is in the middle of padding, return the
923  *	position of the first actually available byte, otherwise
924  *	return the original value.
925  */
926 static size_t relay_file_read_start_pos(size_t read_pos,
927 					struct rchan_buf *buf)
928 {
929 	size_t read_subbuf, padding, padding_start, padding_end;
930 	size_t subbuf_size = buf->chan->subbuf_size;
931 	size_t n_subbufs = buf->chan->n_subbufs;
932 	size_t consumed = buf->subbufs_consumed % n_subbufs;
933 
934 	if (!read_pos)
935 		read_pos = consumed * subbuf_size + buf->bytes_consumed;
936 	read_subbuf = read_pos / subbuf_size;
937 	padding = buf->padding[read_subbuf];
938 	padding_start = (read_subbuf + 1) * subbuf_size - padding;
939 	padding_end = (read_subbuf + 1) * subbuf_size;
940 	if (read_pos >= padding_start && read_pos < padding_end) {
941 		read_subbuf = (read_subbuf + 1) % n_subbufs;
942 		read_pos = read_subbuf * subbuf_size;
943 	}
944 
945 	return read_pos;
946 }
947 
948 /**
949  *	relay_file_read_end_pos - return the new read position
950  *	@read_pos: file read position
951  *	@buf: relay channel buffer
952  *	@count: number of bytes to be read
953  */
954 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
955 				      size_t read_pos,
956 				      size_t count)
957 {
958 	size_t read_subbuf, padding, end_pos;
959 	size_t subbuf_size = buf->chan->subbuf_size;
960 	size_t n_subbufs = buf->chan->n_subbufs;
961 
962 	read_subbuf = read_pos / subbuf_size;
963 	padding = buf->padding[read_subbuf];
964 	if (read_pos % subbuf_size + count + padding == subbuf_size)
965 		end_pos = (read_subbuf + 1) * subbuf_size;
966 	else
967 		end_pos = read_pos + count;
968 	if (end_pos >= subbuf_size * n_subbufs)
969 		end_pos = 0;
970 
971 	return end_pos;
972 }
973 
974 /*
975  *	subbuf_read_actor - read up to one subbuf's worth of data
976  */
977 static int subbuf_read_actor(size_t read_start,
978 			     struct rchan_buf *buf,
979 			     size_t avail,
980 			     read_descriptor_t *desc,
981 			     read_actor_t actor)
982 {
983 	void *from;
984 	int ret = 0;
985 
986 	from = buf->start + read_start;
987 	ret = avail;
988 	if (copy_to_user(desc->arg.buf, from, avail)) {
989 		desc->error = -EFAULT;
990 		ret = 0;
991 	}
992 	desc->arg.data += ret;
993 	desc->written += ret;
994 	desc->count -= ret;
995 
996 	return ret;
997 }
998 
999 typedef int (*subbuf_actor_t) (size_t read_start,
1000 			       struct rchan_buf *buf,
1001 			       size_t avail,
1002 			       read_descriptor_t *desc,
1003 			       read_actor_t actor);
1004 
1005 /*
1006  *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1007  */
1008 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1009 					subbuf_actor_t subbuf_actor,
1010 					read_actor_t actor,
1011 					read_descriptor_t *desc)
1012 {
1013 	struct rchan_buf *buf = filp->private_data;
1014 	size_t read_start, avail;
1015 	int ret;
1016 
1017 	if (!desc->count)
1018 		return 0;
1019 
1020 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1021 	do {
1022 		if (!relay_file_read_avail(buf, *ppos))
1023 			break;
1024 
1025 		read_start = relay_file_read_start_pos(*ppos, buf);
1026 		avail = relay_file_read_subbuf_avail(read_start, buf);
1027 		if (!avail)
1028 			break;
1029 
1030 		avail = min(desc->count, avail);
1031 		ret = subbuf_actor(read_start, buf, avail, desc, actor);
1032 		if (desc->error < 0)
1033 			break;
1034 
1035 		if (ret) {
1036 			relay_file_read_consume(buf, read_start, ret);
1037 			*ppos = relay_file_read_end_pos(buf, read_start, ret);
1038 		}
1039 	} while (desc->count && ret);
1040 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1041 
1042 	return desc->written;
1043 }
1044 
1045 static ssize_t relay_file_read(struct file *filp,
1046 			       char __user *buffer,
1047 			       size_t count,
1048 			       loff_t *ppos)
1049 {
1050 	read_descriptor_t desc;
1051 	desc.written = 0;
1052 	desc.count = count;
1053 	desc.arg.buf = buffer;
1054 	desc.error = 0;
1055 	return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1056 				       NULL, &desc);
1057 }
1058 
1059 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1060 {
1061 	rbuf->bytes_consumed += bytes_consumed;
1062 
1063 	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1064 		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1065 		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1066 	}
1067 }
1068 
1069 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1070 				   struct pipe_buffer *buf)
1071 {
1072 	struct rchan_buf *rbuf;
1073 
1074 	rbuf = (struct rchan_buf *)page_private(buf->page);
1075 	relay_consume_bytes(rbuf, buf->private);
1076 }
1077 
1078 static struct pipe_buf_operations relay_pipe_buf_ops = {
1079 	.can_merge = 0,
1080 	.map = generic_pipe_buf_map,
1081 	.unmap = generic_pipe_buf_unmap,
1082 	.confirm = generic_pipe_buf_confirm,
1083 	.release = relay_pipe_buf_release,
1084 	.steal = generic_pipe_buf_steal,
1085 	.get = generic_pipe_buf_get,
1086 };
1087 
1088 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1089 {
1090 }
1091 
1092 /*
1093  *	subbuf_splice_actor - splice up to one subbuf's worth of data
1094  */
1095 static int subbuf_splice_actor(struct file *in,
1096 			       loff_t *ppos,
1097 			       struct pipe_inode_info *pipe,
1098 			       size_t len,
1099 			       unsigned int flags,
1100 			       int *nonpad_ret)
1101 {
1102 	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret;
1103 	struct rchan_buf *rbuf = in->private_data;
1104 	unsigned int subbuf_size = rbuf->chan->subbuf_size;
1105 	uint64_t pos = (uint64_t) *ppos;
1106 	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1107 	size_t read_start = (size_t) do_div(pos, alloc_size);
1108 	size_t read_subbuf = read_start / subbuf_size;
1109 	size_t padding = rbuf->padding[read_subbuf];
1110 	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1111 	struct page *pages[PIPE_BUFFERS];
1112 	struct partial_page partial[PIPE_BUFFERS];
1113 	struct splice_pipe_desc spd = {
1114 		.pages = pages,
1115 		.nr_pages = 0,
1116 		.partial = partial,
1117 		.flags = flags,
1118 		.ops = &relay_pipe_buf_ops,
1119 		.spd_release = relay_page_release,
1120 	};
1121 
1122 	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1123 		return 0;
1124 
1125 	/*
1126 	 * Adjust read len, if longer than what is available
1127 	 */
1128 	if (len > (subbuf_size - read_start % subbuf_size))
1129 		len = subbuf_size - read_start % subbuf_size;
1130 
1131 	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1132 	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1133 	poff = read_start & ~PAGE_MASK;
1134 	nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1135 
1136 	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1137 		unsigned int this_len, this_end, private;
1138 		unsigned int cur_pos = read_start + total_len;
1139 
1140 		if (!len)
1141 			break;
1142 
1143 		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1144 		private = this_len;
1145 
1146 		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1147 		spd.partial[spd.nr_pages].offset = poff;
1148 
1149 		this_end = cur_pos + this_len;
1150 		if (this_end >= nonpad_end) {
1151 			this_len = nonpad_end - cur_pos;
1152 			private = this_len + padding;
1153 		}
1154 		spd.partial[spd.nr_pages].len = this_len;
1155 		spd.partial[spd.nr_pages].private = private;
1156 
1157 		len -= this_len;
1158 		total_len += this_len;
1159 		poff = 0;
1160 		pidx = (pidx + 1) % subbuf_pages;
1161 
1162 		if (this_end >= nonpad_end) {
1163 			spd.nr_pages++;
1164 			break;
1165 		}
1166 	}
1167 
1168 	if (!spd.nr_pages)
1169 		return 0;
1170 
1171 	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1172 	if (ret < 0 || ret < total_len)
1173 		return ret;
1174 
1175         if (read_start + ret == nonpad_end)
1176                 ret += padding;
1177 
1178         return ret;
1179 }
1180 
1181 static ssize_t relay_file_splice_read(struct file *in,
1182 				      loff_t *ppos,
1183 				      struct pipe_inode_info *pipe,
1184 				      size_t len,
1185 				      unsigned int flags)
1186 {
1187 	ssize_t spliced;
1188 	int ret;
1189 	int nonpad_ret = 0;
1190 
1191 	ret = 0;
1192 	spliced = 0;
1193 
1194 	while (len && !spliced) {
1195 		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1196 		if (ret < 0)
1197 			break;
1198 		else if (!ret) {
1199 			if (spliced)
1200 				break;
1201 			if (flags & SPLICE_F_NONBLOCK) {
1202 				ret = -EAGAIN;
1203 				break;
1204 			}
1205 		}
1206 
1207 		*ppos += ret;
1208 		if (ret > len)
1209 			len = 0;
1210 		else
1211 			len -= ret;
1212 		spliced += nonpad_ret;
1213 		nonpad_ret = 0;
1214 	}
1215 
1216 	if (spliced)
1217 		return spliced;
1218 
1219 	return ret;
1220 }
1221 
1222 const struct file_operations relay_file_operations = {
1223 	.open		= relay_file_open,
1224 	.poll		= relay_file_poll,
1225 	.mmap		= relay_file_mmap,
1226 	.read		= relay_file_read,
1227 	.llseek		= no_llseek,
1228 	.release	= relay_file_release,
1229 	.splice_read	= relay_file_splice_read,
1230 };
1231 EXPORT_SYMBOL_GPL(relay_file_operations);
1232 
1233 static __init int relay_init(void)
1234 {
1235 
1236 	hotcpu_notifier(relay_hotcpu_callback, 0);
1237 	return 0;
1238 }
1239 
1240 module_init(relay_init);
1241