1 /* 2 * Public API and common code for kernel->userspace relay file support. 3 * 4 * See Documentation/filesystems/relay.txt for an overview. 5 * 6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp 7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com) 8 * 9 * Moved to kernel/relay.c by Paul Mundt, 2006. 10 * November 2006 - CPU hotplug support by Mathieu Desnoyers 11 * (mathieu.desnoyers@polymtl.ca) 12 * 13 * This file is released under the GPL. 14 */ 15 #include <linux/errno.h> 16 #include <linux/stddef.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <linux/string.h> 20 #include <linux/relay.h> 21 #include <linux/vmalloc.h> 22 #include <linux/mm.h> 23 #include <linux/cpu.h> 24 #include <linux/splice.h> 25 26 /* list of open channels, for cpu hotplug */ 27 static DEFINE_MUTEX(relay_channels_mutex); 28 static LIST_HEAD(relay_channels); 29 30 /* 31 * close() vm_op implementation for relay file mapping. 32 */ 33 static void relay_file_mmap_close(struct vm_area_struct *vma) 34 { 35 struct rchan_buf *buf = vma->vm_private_data; 36 buf->chan->cb->buf_unmapped(buf, vma->vm_file); 37 } 38 39 /* 40 * fault() vm_op implementation for relay file mapping. 41 */ 42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 43 { 44 struct page *page; 45 struct rchan_buf *buf = vma->vm_private_data; 46 pgoff_t pgoff = vmf->pgoff; 47 48 if (!buf) 49 return VM_FAULT_OOM; 50 51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT)); 52 if (!page) 53 return VM_FAULT_SIGBUS; 54 get_page(page); 55 vmf->page = page; 56 57 return 0; 58 } 59 60 /* 61 * vm_ops for relay file mappings. 62 */ 63 static const struct vm_operations_struct relay_file_mmap_ops = { 64 .fault = relay_buf_fault, 65 .close = relay_file_mmap_close, 66 }; 67 68 /* 69 * allocate an array of pointers of struct page 70 */ 71 static struct page **relay_alloc_page_array(unsigned int n_pages) 72 { 73 const size_t pa_size = n_pages * sizeof(struct page *); 74 if (pa_size > PAGE_SIZE) 75 return vzalloc(pa_size); 76 return kzalloc(pa_size, GFP_KERNEL); 77 } 78 79 /* 80 * free an array of pointers of struct page 81 */ 82 static void relay_free_page_array(struct page **array) 83 { 84 kvfree(array); 85 } 86 87 /** 88 * relay_mmap_buf: - mmap channel buffer to process address space 89 * @buf: relay channel buffer 90 * @vma: vm_area_struct describing memory to be mapped 91 * 92 * Returns 0 if ok, negative on error 93 * 94 * Caller should already have grabbed mmap_sem. 95 */ 96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma) 97 { 98 unsigned long length = vma->vm_end - vma->vm_start; 99 struct file *filp = vma->vm_file; 100 101 if (!buf) 102 return -EBADF; 103 104 if (length != (unsigned long)buf->chan->alloc_size) 105 return -EINVAL; 106 107 vma->vm_ops = &relay_file_mmap_ops; 108 vma->vm_flags |= VM_DONTEXPAND; 109 vma->vm_private_data = buf; 110 buf->chan->cb->buf_mapped(buf, filp); 111 112 return 0; 113 } 114 115 /** 116 * relay_alloc_buf - allocate a channel buffer 117 * @buf: the buffer struct 118 * @size: total size of the buffer 119 * 120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The 121 * passed in size will get page aligned, if it isn't already. 122 */ 123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size) 124 { 125 void *mem; 126 unsigned int i, j, n_pages; 127 128 *size = PAGE_ALIGN(*size); 129 n_pages = *size >> PAGE_SHIFT; 130 131 buf->page_array = relay_alloc_page_array(n_pages); 132 if (!buf->page_array) 133 return NULL; 134 135 for (i = 0; i < n_pages; i++) { 136 buf->page_array[i] = alloc_page(GFP_KERNEL); 137 if (unlikely(!buf->page_array[i])) 138 goto depopulate; 139 set_page_private(buf->page_array[i], (unsigned long)buf); 140 } 141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL); 142 if (!mem) 143 goto depopulate; 144 145 memset(mem, 0, *size); 146 buf->page_count = n_pages; 147 return mem; 148 149 depopulate: 150 for (j = 0; j < i; j++) 151 __free_page(buf->page_array[j]); 152 relay_free_page_array(buf->page_array); 153 return NULL; 154 } 155 156 /** 157 * relay_create_buf - allocate and initialize a channel buffer 158 * @chan: the relay channel 159 * 160 * Returns channel buffer if successful, %NULL otherwise. 161 */ 162 static struct rchan_buf *relay_create_buf(struct rchan *chan) 163 { 164 struct rchan_buf *buf; 165 166 if (chan->n_subbufs > UINT_MAX / sizeof(size_t *)) 167 return NULL; 168 169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL); 170 if (!buf) 171 return NULL; 172 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL); 173 if (!buf->padding) 174 goto free_buf; 175 176 buf->start = relay_alloc_buf(buf, &chan->alloc_size); 177 if (!buf->start) 178 goto free_buf; 179 180 buf->chan = chan; 181 kref_get(&buf->chan->kref); 182 return buf; 183 184 free_buf: 185 kfree(buf->padding); 186 kfree(buf); 187 return NULL; 188 } 189 190 /** 191 * relay_destroy_channel - free the channel struct 192 * @kref: target kernel reference that contains the relay channel 193 * 194 * Should only be called from kref_put(). 195 */ 196 static void relay_destroy_channel(struct kref *kref) 197 { 198 struct rchan *chan = container_of(kref, struct rchan, kref); 199 kfree(chan); 200 } 201 202 /** 203 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer 204 * @buf: the buffer struct 205 */ 206 static void relay_destroy_buf(struct rchan_buf *buf) 207 { 208 struct rchan *chan = buf->chan; 209 unsigned int i; 210 211 if (likely(buf->start)) { 212 vunmap(buf->start); 213 for (i = 0; i < buf->page_count; i++) 214 __free_page(buf->page_array[i]); 215 relay_free_page_array(buf->page_array); 216 } 217 chan->buf[buf->cpu] = NULL; 218 kfree(buf->padding); 219 kfree(buf); 220 kref_put(&chan->kref, relay_destroy_channel); 221 } 222 223 /** 224 * relay_remove_buf - remove a channel buffer 225 * @kref: target kernel reference that contains the relay buffer 226 * 227 * Removes the file from the filesystem, which also frees the 228 * rchan_buf_struct and the channel buffer. Should only be called from 229 * kref_put(). 230 */ 231 static void relay_remove_buf(struct kref *kref) 232 { 233 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref); 234 relay_destroy_buf(buf); 235 } 236 237 /** 238 * relay_buf_empty - boolean, is the channel buffer empty? 239 * @buf: channel buffer 240 * 241 * Returns 1 if the buffer is empty, 0 otherwise. 242 */ 243 static int relay_buf_empty(struct rchan_buf *buf) 244 { 245 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1; 246 } 247 248 /** 249 * relay_buf_full - boolean, is the channel buffer full? 250 * @buf: channel buffer 251 * 252 * Returns 1 if the buffer is full, 0 otherwise. 253 */ 254 int relay_buf_full(struct rchan_buf *buf) 255 { 256 size_t ready = buf->subbufs_produced - buf->subbufs_consumed; 257 return (ready >= buf->chan->n_subbufs) ? 1 : 0; 258 } 259 EXPORT_SYMBOL_GPL(relay_buf_full); 260 261 /* 262 * High-level relay kernel API and associated functions. 263 */ 264 265 /* 266 * rchan_callback implementations defining default channel behavior. Used 267 * in place of corresponding NULL values in client callback struct. 268 */ 269 270 /* 271 * subbuf_start() default callback. Does nothing. 272 */ 273 static int subbuf_start_default_callback (struct rchan_buf *buf, 274 void *subbuf, 275 void *prev_subbuf, 276 size_t prev_padding) 277 { 278 if (relay_buf_full(buf)) 279 return 0; 280 281 return 1; 282 } 283 284 /* 285 * buf_mapped() default callback. Does nothing. 286 */ 287 static void buf_mapped_default_callback(struct rchan_buf *buf, 288 struct file *filp) 289 { 290 } 291 292 /* 293 * buf_unmapped() default callback. Does nothing. 294 */ 295 static void buf_unmapped_default_callback(struct rchan_buf *buf, 296 struct file *filp) 297 { 298 } 299 300 /* 301 * create_buf_file_create() default callback. Does nothing. 302 */ 303 static struct dentry *create_buf_file_default_callback(const char *filename, 304 struct dentry *parent, 305 umode_t mode, 306 struct rchan_buf *buf, 307 int *is_global) 308 { 309 return NULL; 310 } 311 312 /* 313 * remove_buf_file() default callback. Does nothing. 314 */ 315 static int remove_buf_file_default_callback(struct dentry *dentry) 316 { 317 return -EINVAL; 318 } 319 320 /* relay channel default callbacks */ 321 static struct rchan_callbacks default_channel_callbacks = { 322 .subbuf_start = subbuf_start_default_callback, 323 .buf_mapped = buf_mapped_default_callback, 324 .buf_unmapped = buf_unmapped_default_callback, 325 .create_buf_file = create_buf_file_default_callback, 326 .remove_buf_file = remove_buf_file_default_callback, 327 }; 328 329 /** 330 * wakeup_readers - wake up readers waiting on a channel 331 * @data: contains the channel buffer 332 * 333 * This is the timer function used to defer reader waking. 334 */ 335 static void wakeup_readers(unsigned long data) 336 { 337 struct rchan_buf *buf = (struct rchan_buf *)data; 338 wake_up_interruptible(&buf->read_wait); 339 } 340 341 /** 342 * __relay_reset - reset a channel buffer 343 * @buf: the channel buffer 344 * @init: 1 if this is a first-time initialization 345 * 346 * See relay_reset() for description of effect. 347 */ 348 static void __relay_reset(struct rchan_buf *buf, unsigned int init) 349 { 350 size_t i; 351 352 if (init) { 353 init_waitqueue_head(&buf->read_wait); 354 kref_init(&buf->kref); 355 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf); 356 } else 357 del_timer_sync(&buf->timer); 358 359 buf->subbufs_produced = 0; 360 buf->subbufs_consumed = 0; 361 buf->bytes_consumed = 0; 362 buf->finalized = 0; 363 buf->data = buf->start; 364 buf->offset = 0; 365 366 for (i = 0; i < buf->chan->n_subbufs; i++) 367 buf->padding[i] = 0; 368 369 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0); 370 } 371 372 /** 373 * relay_reset - reset the channel 374 * @chan: the channel 375 * 376 * This has the effect of erasing all data from all channel buffers 377 * and restarting the channel in its initial state. The buffers 378 * are not freed, so any mappings are still in effect. 379 * 380 * NOTE. Care should be taken that the channel isn't actually 381 * being used by anything when this call is made. 382 */ 383 void relay_reset(struct rchan *chan) 384 { 385 unsigned int i; 386 387 if (!chan) 388 return; 389 390 if (chan->is_global && chan->buf[0]) { 391 __relay_reset(chan->buf[0], 0); 392 return; 393 } 394 395 mutex_lock(&relay_channels_mutex); 396 for_each_possible_cpu(i) 397 if (chan->buf[i]) 398 __relay_reset(chan->buf[i], 0); 399 mutex_unlock(&relay_channels_mutex); 400 } 401 EXPORT_SYMBOL_GPL(relay_reset); 402 403 static inline void relay_set_buf_dentry(struct rchan_buf *buf, 404 struct dentry *dentry) 405 { 406 buf->dentry = dentry; 407 d_inode(buf->dentry)->i_size = buf->early_bytes; 408 } 409 410 static struct dentry *relay_create_buf_file(struct rchan *chan, 411 struct rchan_buf *buf, 412 unsigned int cpu) 413 { 414 struct dentry *dentry; 415 char *tmpname; 416 417 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL); 418 if (!tmpname) 419 return NULL; 420 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu); 421 422 /* Create file in fs */ 423 dentry = chan->cb->create_buf_file(tmpname, chan->parent, 424 S_IRUSR, buf, 425 &chan->is_global); 426 427 kfree(tmpname); 428 429 return dentry; 430 } 431 432 /* 433 * relay_open_buf - create a new relay channel buffer 434 * 435 * used by relay_open() and CPU hotplug. 436 */ 437 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu) 438 { 439 struct rchan_buf *buf = NULL; 440 struct dentry *dentry; 441 442 if (chan->is_global) 443 return chan->buf[0]; 444 445 buf = relay_create_buf(chan); 446 if (!buf) 447 return NULL; 448 449 if (chan->has_base_filename) { 450 dentry = relay_create_buf_file(chan, buf, cpu); 451 if (!dentry) 452 goto free_buf; 453 relay_set_buf_dentry(buf, dentry); 454 } 455 456 buf->cpu = cpu; 457 __relay_reset(buf, 1); 458 459 if(chan->is_global) { 460 chan->buf[0] = buf; 461 buf->cpu = 0; 462 } 463 464 return buf; 465 466 free_buf: 467 relay_destroy_buf(buf); 468 return NULL; 469 } 470 471 /** 472 * relay_close_buf - close a channel buffer 473 * @buf: channel buffer 474 * 475 * Marks the buffer finalized and restores the default callbacks. 476 * The channel buffer and channel buffer data structure are then freed 477 * automatically when the last reference is given up. 478 */ 479 static void relay_close_buf(struct rchan_buf *buf) 480 { 481 buf->finalized = 1; 482 del_timer_sync(&buf->timer); 483 buf->chan->cb->remove_buf_file(buf->dentry); 484 kref_put(&buf->kref, relay_remove_buf); 485 } 486 487 static void setup_callbacks(struct rchan *chan, 488 struct rchan_callbacks *cb) 489 { 490 if (!cb) { 491 chan->cb = &default_channel_callbacks; 492 return; 493 } 494 495 if (!cb->subbuf_start) 496 cb->subbuf_start = subbuf_start_default_callback; 497 if (!cb->buf_mapped) 498 cb->buf_mapped = buf_mapped_default_callback; 499 if (!cb->buf_unmapped) 500 cb->buf_unmapped = buf_unmapped_default_callback; 501 if (!cb->create_buf_file) 502 cb->create_buf_file = create_buf_file_default_callback; 503 if (!cb->remove_buf_file) 504 cb->remove_buf_file = remove_buf_file_default_callback; 505 chan->cb = cb; 506 } 507 508 /** 509 * relay_hotcpu_callback - CPU hotplug callback 510 * @nb: notifier block 511 * @action: hotplug action to take 512 * @hcpu: CPU number 513 * 514 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD) 515 */ 516 static int relay_hotcpu_callback(struct notifier_block *nb, 517 unsigned long action, 518 void *hcpu) 519 { 520 unsigned int hotcpu = (unsigned long)hcpu; 521 struct rchan *chan; 522 523 switch(action) { 524 case CPU_UP_PREPARE: 525 case CPU_UP_PREPARE_FROZEN: 526 mutex_lock(&relay_channels_mutex); 527 list_for_each_entry(chan, &relay_channels, list) { 528 if (chan->buf[hotcpu]) 529 continue; 530 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu); 531 if(!chan->buf[hotcpu]) { 532 printk(KERN_ERR 533 "relay_hotcpu_callback: cpu %d buffer " 534 "creation failed\n", hotcpu); 535 mutex_unlock(&relay_channels_mutex); 536 return notifier_from_errno(-ENOMEM); 537 } 538 } 539 mutex_unlock(&relay_channels_mutex); 540 break; 541 case CPU_DEAD: 542 case CPU_DEAD_FROZEN: 543 /* No need to flush the cpu : will be flushed upon 544 * final relay_flush() call. */ 545 break; 546 } 547 return NOTIFY_OK; 548 } 549 550 /** 551 * relay_open - create a new relay channel 552 * @base_filename: base name of files to create, %NULL for buffering only 553 * @parent: dentry of parent directory, %NULL for root directory or buffer 554 * @subbuf_size: size of sub-buffers 555 * @n_subbufs: number of sub-buffers 556 * @cb: client callback functions 557 * @private_data: user-defined data 558 * 559 * Returns channel pointer if successful, %NULL otherwise. 560 * 561 * Creates a channel buffer for each cpu using the sizes and 562 * attributes specified. The created channel buffer files 563 * will be named base_filename0...base_filenameN-1. File 564 * permissions will be %S_IRUSR. 565 */ 566 struct rchan *relay_open(const char *base_filename, 567 struct dentry *parent, 568 size_t subbuf_size, 569 size_t n_subbufs, 570 struct rchan_callbacks *cb, 571 void *private_data) 572 { 573 unsigned int i; 574 struct rchan *chan; 575 576 if (!(subbuf_size && n_subbufs)) 577 return NULL; 578 if (subbuf_size > UINT_MAX / n_subbufs) 579 return NULL; 580 581 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL); 582 if (!chan) 583 return NULL; 584 585 chan->version = RELAYFS_CHANNEL_VERSION; 586 chan->n_subbufs = n_subbufs; 587 chan->subbuf_size = subbuf_size; 588 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs); 589 chan->parent = parent; 590 chan->private_data = private_data; 591 if (base_filename) { 592 chan->has_base_filename = 1; 593 strlcpy(chan->base_filename, base_filename, NAME_MAX); 594 } 595 setup_callbacks(chan, cb); 596 kref_init(&chan->kref); 597 598 mutex_lock(&relay_channels_mutex); 599 for_each_online_cpu(i) { 600 chan->buf[i] = relay_open_buf(chan, i); 601 if (!chan->buf[i]) 602 goto free_bufs; 603 } 604 list_add(&chan->list, &relay_channels); 605 mutex_unlock(&relay_channels_mutex); 606 607 return chan; 608 609 free_bufs: 610 for_each_possible_cpu(i) { 611 if (chan->buf[i]) 612 relay_close_buf(chan->buf[i]); 613 } 614 615 kref_put(&chan->kref, relay_destroy_channel); 616 mutex_unlock(&relay_channels_mutex); 617 kfree(chan); 618 return NULL; 619 } 620 EXPORT_SYMBOL_GPL(relay_open); 621 622 struct rchan_percpu_buf_dispatcher { 623 struct rchan_buf *buf; 624 struct dentry *dentry; 625 }; 626 627 /* Called in atomic context. */ 628 static void __relay_set_buf_dentry(void *info) 629 { 630 struct rchan_percpu_buf_dispatcher *p = info; 631 632 relay_set_buf_dentry(p->buf, p->dentry); 633 } 634 635 /** 636 * relay_late_setup_files - triggers file creation 637 * @chan: channel to operate on 638 * @base_filename: base name of files to create 639 * @parent: dentry of parent directory, %NULL for root directory 640 * 641 * Returns 0 if successful, non-zero otherwise. 642 * 643 * Use to setup files for a previously buffer-only channel. 644 * Useful to do early tracing in kernel, before VFS is up, for example. 645 */ 646 int relay_late_setup_files(struct rchan *chan, 647 const char *base_filename, 648 struct dentry *parent) 649 { 650 int err = 0; 651 unsigned int i, curr_cpu; 652 unsigned long flags; 653 struct dentry *dentry; 654 struct rchan_percpu_buf_dispatcher disp; 655 656 if (!chan || !base_filename) 657 return -EINVAL; 658 659 strlcpy(chan->base_filename, base_filename, NAME_MAX); 660 661 mutex_lock(&relay_channels_mutex); 662 /* Is chan already set up? */ 663 if (unlikely(chan->has_base_filename)) { 664 mutex_unlock(&relay_channels_mutex); 665 return -EEXIST; 666 } 667 chan->has_base_filename = 1; 668 chan->parent = parent; 669 curr_cpu = get_cpu(); 670 /* 671 * The CPU hotplug notifier ran before us and created buffers with 672 * no files associated. So it's safe to call relay_setup_buf_file() 673 * on all currently online CPUs. 674 */ 675 for_each_online_cpu(i) { 676 if (unlikely(!chan->buf[i])) { 677 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n"); 678 err = -EINVAL; 679 break; 680 } 681 682 dentry = relay_create_buf_file(chan, chan->buf[i], i); 683 if (unlikely(!dentry)) { 684 err = -EINVAL; 685 break; 686 } 687 688 if (curr_cpu == i) { 689 local_irq_save(flags); 690 relay_set_buf_dentry(chan->buf[i], dentry); 691 local_irq_restore(flags); 692 } else { 693 disp.buf = chan->buf[i]; 694 disp.dentry = dentry; 695 smp_mb(); 696 /* relay_channels_mutex must be held, so wait. */ 697 err = smp_call_function_single(i, 698 __relay_set_buf_dentry, 699 &disp, 1); 700 } 701 if (unlikely(err)) 702 break; 703 } 704 put_cpu(); 705 mutex_unlock(&relay_channels_mutex); 706 707 return err; 708 } 709 710 /** 711 * relay_switch_subbuf - switch to a new sub-buffer 712 * @buf: channel buffer 713 * @length: size of current event 714 * 715 * Returns either the length passed in or 0 if full. 716 * 717 * Performs sub-buffer-switch tasks such as invoking callbacks, 718 * updating padding counts, waking up readers, etc. 719 */ 720 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length) 721 { 722 void *old, *new; 723 size_t old_subbuf, new_subbuf; 724 725 if (unlikely(length > buf->chan->subbuf_size)) 726 goto toobig; 727 728 if (buf->offset != buf->chan->subbuf_size + 1) { 729 buf->prev_padding = buf->chan->subbuf_size - buf->offset; 730 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 731 buf->padding[old_subbuf] = buf->prev_padding; 732 buf->subbufs_produced++; 733 if (buf->dentry) 734 d_inode(buf->dentry)->i_size += 735 buf->chan->subbuf_size - 736 buf->padding[old_subbuf]; 737 else 738 buf->early_bytes += buf->chan->subbuf_size - 739 buf->padding[old_subbuf]; 740 smp_mb(); 741 if (waitqueue_active(&buf->read_wait)) 742 /* 743 * Calling wake_up_interruptible() from here 744 * will deadlock if we happen to be logging 745 * from the scheduler (trying to re-grab 746 * rq->lock), so defer it. 747 */ 748 mod_timer(&buf->timer, jiffies + 1); 749 } 750 751 old = buf->data; 752 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs; 753 new = buf->start + new_subbuf * buf->chan->subbuf_size; 754 buf->offset = 0; 755 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) { 756 buf->offset = buf->chan->subbuf_size + 1; 757 return 0; 758 } 759 buf->data = new; 760 buf->padding[new_subbuf] = 0; 761 762 if (unlikely(length + buf->offset > buf->chan->subbuf_size)) 763 goto toobig; 764 765 return length; 766 767 toobig: 768 buf->chan->last_toobig = length; 769 return 0; 770 } 771 EXPORT_SYMBOL_GPL(relay_switch_subbuf); 772 773 /** 774 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count 775 * @chan: the channel 776 * @cpu: the cpu associated with the channel buffer to update 777 * @subbufs_consumed: number of sub-buffers to add to current buf's count 778 * 779 * Adds to the channel buffer's consumed sub-buffer count. 780 * subbufs_consumed should be the number of sub-buffers newly consumed, 781 * not the total consumed. 782 * 783 * NOTE. Kernel clients don't need to call this function if the channel 784 * mode is 'overwrite'. 785 */ 786 void relay_subbufs_consumed(struct rchan *chan, 787 unsigned int cpu, 788 size_t subbufs_consumed) 789 { 790 struct rchan_buf *buf; 791 792 if (!chan) 793 return; 794 795 if (cpu >= NR_CPUS || !chan->buf[cpu] || 796 subbufs_consumed > chan->n_subbufs) 797 return; 798 799 buf = chan->buf[cpu]; 800 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed) 801 buf->subbufs_consumed = buf->subbufs_produced; 802 else 803 buf->subbufs_consumed += subbufs_consumed; 804 } 805 EXPORT_SYMBOL_GPL(relay_subbufs_consumed); 806 807 /** 808 * relay_close - close the channel 809 * @chan: the channel 810 * 811 * Closes all channel buffers and frees the channel. 812 */ 813 void relay_close(struct rchan *chan) 814 { 815 unsigned int i; 816 817 if (!chan) 818 return; 819 820 mutex_lock(&relay_channels_mutex); 821 if (chan->is_global && chan->buf[0]) 822 relay_close_buf(chan->buf[0]); 823 else 824 for_each_possible_cpu(i) 825 if (chan->buf[i]) 826 relay_close_buf(chan->buf[i]); 827 828 if (chan->last_toobig) 829 printk(KERN_WARNING "relay: one or more items not logged " 830 "[item size (%Zd) > sub-buffer size (%Zd)]\n", 831 chan->last_toobig, chan->subbuf_size); 832 833 list_del(&chan->list); 834 kref_put(&chan->kref, relay_destroy_channel); 835 mutex_unlock(&relay_channels_mutex); 836 } 837 EXPORT_SYMBOL_GPL(relay_close); 838 839 /** 840 * relay_flush - close the channel 841 * @chan: the channel 842 * 843 * Flushes all channel buffers, i.e. forces buffer switch. 844 */ 845 void relay_flush(struct rchan *chan) 846 { 847 unsigned int i; 848 849 if (!chan) 850 return; 851 852 if (chan->is_global && chan->buf[0]) { 853 relay_switch_subbuf(chan->buf[0], 0); 854 return; 855 } 856 857 mutex_lock(&relay_channels_mutex); 858 for_each_possible_cpu(i) 859 if (chan->buf[i]) 860 relay_switch_subbuf(chan->buf[i], 0); 861 mutex_unlock(&relay_channels_mutex); 862 } 863 EXPORT_SYMBOL_GPL(relay_flush); 864 865 /** 866 * relay_file_open - open file op for relay files 867 * @inode: the inode 868 * @filp: the file 869 * 870 * Increments the channel buffer refcount. 871 */ 872 static int relay_file_open(struct inode *inode, struct file *filp) 873 { 874 struct rchan_buf *buf = inode->i_private; 875 kref_get(&buf->kref); 876 filp->private_data = buf; 877 878 return nonseekable_open(inode, filp); 879 } 880 881 /** 882 * relay_file_mmap - mmap file op for relay files 883 * @filp: the file 884 * @vma: the vma describing what to map 885 * 886 * Calls upon relay_mmap_buf() to map the file into user space. 887 */ 888 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma) 889 { 890 struct rchan_buf *buf = filp->private_data; 891 return relay_mmap_buf(buf, vma); 892 } 893 894 /** 895 * relay_file_poll - poll file op for relay files 896 * @filp: the file 897 * @wait: poll table 898 * 899 * Poll implemention. 900 */ 901 static unsigned int relay_file_poll(struct file *filp, poll_table *wait) 902 { 903 unsigned int mask = 0; 904 struct rchan_buf *buf = filp->private_data; 905 906 if (buf->finalized) 907 return POLLERR; 908 909 if (filp->f_mode & FMODE_READ) { 910 poll_wait(filp, &buf->read_wait, wait); 911 if (!relay_buf_empty(buf)) 912 mask |= POLLIN | POLLRDNORM; 913 } 914 915 return mask; 916 } 917 918 /** 919 * relay_file_release - release file op for relay files 920 * @inode: the inode 921 * @filp: the file 922 * 923 * Decrements the channel refcount, as the filesystem is 924 * no longer using it. 925 */ 926 static int relay_file_release(struct inode *inode, struct file *filp) 927 { 928 struct rchan_buf *buf = filp->private_data; 929 kref_put(&buf->kref, relay_remove_buf); 930 931 return 0; 932 } 933 934 /* 935 * relay_file_read_consume - update the consumed count for the buffer 936 */ 937 static void relay_file_read_consume(struct rchan_buf *buf, 938 size_t read_pos, 939 size_t bytes_consumed) 940 { 941 size_t subbuf_size = buf->chan->subbuf_size; 942 size_t n_subbufs = buf->chan->n_subbufs; 943 size_t read_subbuf; 944 945 if (buf->subbufs_produced == buf->subbufs_consumed && 946 buf->offset == buf->bytes_consumed) 947 return; 948 949 if (buf->bytes_consumed + bytes_consumed > subbuf_size) { 950 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 951 buf->bytes_consumed = 0; 952 } 953 954 buf->bytes_consumed += bytes_consumed; 955 if (!read_pos) 956 read_subbuf = buf->subbufs_consumed % n_subbufs; 957 else 958 read_subbuf = read_pos / buf->chan->subbuf_size; 959 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) { 960 if ((read_subbuf == buf->subbufs_produced % n_subbufs) && 961 (buf->offset == subbuf_size)) 962 return; 963 relay_subbufs_consumed(buf->chan, buf->cpu, 1); 964 buf->bytes_consumed = 0; 965 } 966 } 967 968 /* 969 * relay_file_read_avail - boolean, are there unconsumed bytes available? 970 */ 971 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos) 972 { 973 size_t subbuf_size = buf->chan->subbuf_size; 974 size_t n_subbufs = buf->chan->n_subbufs; 975 size_t produced = buf->subbufs_produced; 976 size_t consumed = buf->subbufs_consumed; 977 978 relay_file_read_consume(buf, read_pos, 0); 979 980 consumed = buf->subbufs_consumed; 981 982 if (unlikely(buf->offset > subbuf_size)) { 983 if (produced == consumed) 984 return 0; 985 return 1; 986 } 987 988 if (unlikely(produced - consumed >= n_subbufs)) { 989 consumed = produced - n_subbufs + 1; 990 buf->subbufs_consumed = consumed; 991 buf->bytes_consumed = 0; 992 } 993 994 produced = (produced % n_subbufs) * subbuf_size + buf->offset; 995 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed; 996 997 if (consumed > produced) 998 produced += n_subbufs * subbuf_size; 999 1000 if (consumed == produced) { 1001 if (buf->offset == subbuf_size && 1002 buf->subbufs_produced > buf->subbufs_consumed) 1003 return 1; 1004 return 0; 1005 } 1006 1007 return 1; 1008 } 1009 1010 /** 1011 * relay_file_read_subbuf_avail - return bytes available in sub-buffer 1012 * @read_pos: file read position 1013 * @buf: relay channel buffer 1014 */ 1015 static size_t relay_file_read_subbuf_avail(size_t read_pos, 1016 struct rchan_buf *buf) 1017 { 1018 size_t padding, avail = 0; 1019 size_t read_subbuf, read_offset, write_subbuf, write_offset; 1020 size_t subbuf_size = buf->chan->subbuf_size; 1021 1022 write_subbuf = (buf->data - buf->start) / subbuf_size; 1023 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset; 1024 read_subbuf = read_pos / subbuf_size; 1025 read_offset = read_pos % subbuf_size; 1026 padding = buf->padding[read_subbuf]; 1027 1028 if (read_subbuf == write_subbuf) { 1029 if (read_offset + padding < write_offset) 1030 avail = write_offset - (read_offset + padding); 1031 } else 1032 avail = (subbuf_size - padding) - read_offset; 1033 1034 return avail; 1035 } 1036 1037 /** 1038 * relay_file_read_start_pos - find the first available byte to read 1039 * @read_pos: file read position 1040 * @buf: relay channel buffer 1041 * 1042 * If the @read_pos is in the middle of padding, return the 1043 * position of the first actually available byte, otherwise 1044 * return the original value. 1045 */ 1046 static size_t relay_file_read_start_pos(size_t read_pos, 1047 struct rchan_buf *buf) 1048 { 1049 size_t read_subbuf, padding, padding_start, padding_end; 1050 size_t subbuf_size = buf->chan->subbuf_size; 1051 size_t n_subbufs = buf->chan->n_subbufs; 1052 size_t consumed = buf->subbufs_consumed % n_subbufs; 1053 1054 if (!read_pos) 1055 read_pos = consumed * subbuf_size + buf->bytes_consumed; 1056 read_subbuf = read_pos / subbuf_size; 1057 padding = buf->padding[read_subbuf]; 1058 padding_start = (read_subbuf + 1) * subbuf_size - padding; 1059 padding_end = (read_subbuf + 1) * subbuf_size; 1060 if (read_pos >= padding_start && read_pos < padding_end) { 1061 read_subbuf = (read_subbuf + 1) % n_subbufs; 1062 read_pos = read_subbuf * subbuf_size; 1063 } 1064 1065 return read_pos; 1066 } 1067 1068 /** 1069 * relay_file_read_end_pos - return the new read position 1070 * @read_pos: file read position 1071 * @buf: relay channel buffer 1072 * @count: number of bytes to be read 1073 */ 1074 static size_t relay_file_read_end_pos(struct rchan_buf *buf, 1075 size_t read_pos, 1076 size_t count) 1077 { 1078 size_t read_subbuf, padding, end_pos; 1079 size_t subbuf_size = buf->chan->subbuf_size; 1080 size_t n_subbufs = buf->chan->n_subbufs; 1081 1082 read_subbuf = read_pos / subbuf_size; 1083 padding = buf->padding[read_subbuf]; 1084 if (read_pos % subbuf_size + count + padding == subbuf_size) 1085 end_pos = (read_subbuf + 1) * subbuf_size; 1086 else 1087 end_pos = read_pos + count; 1088 if (end_pos >= subbuf_size * n_subbufs) 1089 end_pos = 0; 1090 1091 return end_pos; 1092 } 1093 1094 /* 1095 * subbuf_read_actor - read up to one subbuf's worth of data 1096 */ 1097 static int subbuf_read_actor(size_t read_start, 1098 struct rchan_buf *buf, 1099 size_t avail, 1100 read_descriptor_t *desc) 1101 { 1102 void *from; 1103 int ret = 0; 1104 1105 from = buf->start + read_start; 1106 ret = avail; 1107 if (copy_to_user(desc->arg.buf, from, avail)) { 1108 desc->error = -EFAULT; 1109 ret = 0; 1110 } 1111 desc->arg.data += ret; 1112 desc->written += ret; 1113 desc->count -= ret; 1114 1115 return ret; 1116 } 1117 1118 typedef int (*subbuf_actor_t) (size_t read_start, 1119 struct rchan_buf *buf, 1120 size_t avail, 1121 read_descriptor_t *desc); 1122 1123 /* 1124 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries 1125 */ 1126 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos, 1127 subbuf_actor_t subbuf_actor, 1128 read_descriptor_t *desc) 1129 { 1130 struct rchan_buf *buf = filp->private_data; 1131 size_t read_start, avail; 1132 int ret; 1133 1134 if (!desc->count) 1135 return 0; 1136 1137 inode_lock(file_inode(filp)); 1138 do { 1139 if (!relay_file_read_avail(buf, *ppos)) 1140 break; 1141 1142 read_start = relay_file_read_start_pos(*ppos, buf); 1143 avail = relay_file_read_subbuf_avail(read_start, buf); 1144 if (!avail) 1145 break; 1146 1147 avail = min(desc->count, avail); 1148 ret = subbuf_actor(read_start, buf, avail, desc); 1149 if (desc->error < 0) 1150 break; 1151 1152 if (ret) { 1153 relay_file_read_consume(buf, read_start, ret); 1154 *ppos = relay_file_read_end_pos(buf, read_start, ret); 1155 } 1156 } while (desc->count && ret); 1157 inode_unlock(file_inode(filp)); 1158 1159 return desc->written; 1160 } 1161 1162 static ssize_t relay_file_read(struct file *filp, 1163 char __user *buffer, 1164 size_t count, 1165 loff_t *ppos) 1166 { 1167 read_descriptor_t desc; 1168 desc.written = 0; 1169 desc.count = count; 1170 desc.arg.buf = buffer; 1171 desc.error = 0; 1172 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc); 1173 } 1174 1175 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed) 1176 { 1177 rbuf->bytes_consumed += bytes_consumed; 1178 1179 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) { 1180 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1); 1181 rbuf->bytes_consumed %= rbuf->chan->subbuf_size; 1182 } 1183 } 1184 1185 static void relay_pipe_buf_release(struct pipe_inode_info *pipe, 1186 struct pipe_buffer *buf) 1187 { 1188 struct rchan_buf *rbuf; 1189 1190 rbuf = (struct rchan_buf *)page_private(buf->page); 1191 relay_consume_bytes(rbuf, buf->private); 1192 } 1193 1194 static const struct pipe_buf_operations relay_pipe_buf_ops = { 1195 .can_merge = 0, 1196 .confirm = generic_pipe_buf_confirm, 1197 .release = relay_pipe_buf_release, 1198 .steal = generic_pipe_buf_steal, 1199 .get = generic_pipe_buf_get, 1200 }; 1201 1202 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i) 1203 { 1204 } 1205 1206 /* 1207 * subbuf_splice_actor - splice up to one subbuf's worth of data 1208 */ 1209 static ssize_t subbuf_splice_actor(struct file *in, 1210 loff_t *ppos, 1211 struct pipe_inode_info *pipe, 1212 size_t len, 1213 unsigned int flags, 1214 int *nonpad_ret) 1215 { 1216 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages; 1217 struct rchan_buf *rbuf = in->private_data; 1218 unsigned int subbuf_size = rbuf->chan->subbuf_size; 1219 uint64_t pos = (uint64_t) *ppos; 1220 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size; 1221 size_t read_start = (size_t) do_div(pos, alloc_size); 1222 size_t read_subbuf = read_start / subbuf_size; 1223 size_t padding = rbuf->padding[read_subbuf]; 1224 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding; 1225 struct page *pages[PIPE_DEF_BUFFERS]; 1226 struct partial_page partial[PIPE_DEF_BUFFERS]; 1227 struct splice_pipe_desc spd = { 1228 .pages = pages, 1229 .nr_pages = 0, 1230 .nr_pages_max = PIPE_DEF_BUFFERS, 1231 .partial = partial, 1232 .flags = flags, 1233 .ops = &relay_pipe_buf_ops, 1234 .spd_release = relay_page_release, 1235 }; 1236 ssize_t ret; 1237 1238 if (rbuf->subbufs_produced == rbuf->subbufs_consumed) 1239 return 0; 1240 if (splice_grow_spd(pipe, &spd)) 1241 return -ENOMEM; 1242 1243 /* 1244 * Adjust read len, if longer than what is available 1245 */ 1246 if (len > (subbuf_size - read_start % subbuf_size)) 1247 len = subbuf_size - read_start % subbuf_size; 1248 1249 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT; 1250 pidx = (read_start / PAGE_SIZE) % subbuf_pages; 1251 poff = read_start & ~PAGE_MASK; 1252 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max); 1253 1254 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) { 1255 unsigned int this_len, this_end, private; 1256 unsigned int cur_pos = read_start + total_len; 1257 1258 if (!len) 1259 break; 1260 1261 this_len = min_t(unsigned long, len, PAGE_SIZE - poff); 1262 private = this_len; 1263 1264 spd.pages[spd.nr_pages] = rbuf->page_array[pidx]; 1265 spd.partial[spd.nr_pages].offset = poff; 1266 1267 this_end = cur_pos + this_len; 1268 if (this_end >= nonpad_end) { 1269 this_len = nonpad_end - cur_pos; 1270 private = this_len + padding; 1271 } 1272 spd.partial[spd.nr_pages].len = this_len; 1273 spd.partial[spd.nr_pages].private = private; 1274 1275 len -= this_len; 1276 total_len += this_len; 1277 poff = 0; 1278 pidx = (pidx + 1) % subbuf_pages; 1279 1280 if (this_end >= nonpad_end) { 1281 spd.nr_pages++; 1282 break; 1283 } 1284 } 1285 1286 ret = 0; 1287 if (!spd.nr_pages) 1288 goto out; 1289 1290 ret = *nonpad_ret = splice_to_pipe(pipe, &spd); 1291 if (ret < 0 || ret < total_len) 1292 goto out; 1293 1294 if (read_start + ret == nonpad_end) 1295 ret += padding; 1296 1297 out: 1298 splice_shrink_spd(&spd); 1299 return ret; 1300 } 1301 1302 static ssize_t relay_file_splice_read(struct file *in, 1303 loff_t *ppos, 1304 struct pipe_inode_info *pipe, 1305 size_t len, 1306 unsigned int flags) 1307 { 1308 ssize_t spliced; 1309 int ret; 1310 int nonpad_ret = 0; 1311 1312 ret = 0; 1313 spliced = 0; 1314 1315 while (len && !spliced) { 1316 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret); 1317 if (ret < 0) 1318 break; 1319 else if (!ret) { 1320 if (flags & SPLICE_F_NONBLOCK) 1321 ret = -EAGAIN; 1322 break; 1323 } 1324 1325 *ppos += ret; 1326 if (ret > len) 1327 len = 0; 1328 else 1329 len -= ret; 1330 spliced += nonpad_ret; 1331 nonpad_ret = 0; 1332 } 1333 1334 if (spliced) 1335 return spliced; 1336 1337 return ret; 1338 } 1339 1340 const struct file_operations relay_file_operations = { 1341 .open = relay_file_open, 1342 .poll = relay_file_poll, 1343 .mmap = relay_file_mmap, 1344 .read = relay_file_read, 1345 .llseek = no_llseek, 1346 .release = relay_file_release, 1347 .splice_read = relay_file_splice_read, 1348 }; 1349 EXPORT_SYMBOL_GPL(relay_file_operations); 1350 1351 static __init int relay_init(void) 1352 { 1353 1354 hotcpu_notifier(relay_hotcpu_callback, 0); 1355 return 0; 1356 } 1357 1358 early_initcall(relay_init); 1359